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ABSTRACT 

 

COMPARISON OF SEARCH-BASED AND KERNEL-BASED METHODS 

FOR GRAPH-BASED RELATIONAL LEARNING 

 

Publication No. ______ 
 

Chris M Gonsalves, M.S. 
 

The University of Texas at Arlington, 2005 
 

Supervising Professor:  Dr. Lawrence B. Holder 

Graph-based relational learning has been the focus of relational learning for 

quite some time. As most of the real-world data is structured, and hence cannot be 

represented in a single table, various logic-based and graph-based techniques have been 

proposed for dealing with structured data. Our goal is to perform an in-depth analysis of 

two such graph-based learning systems. We have selected Subdue to represent the 

search-based approach and support vector machine (SVM) with graph kernels to 

represent the kernel-based approach. We perform a comparison between search-based 

and kernel-based approaches and evaluate their performance in various domains. 

A search-based approach to learning typically involves a search through a larger 

hypotheses space. The main concern of a search-based learning system is to search 
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through the hypothesis space efficiently. Kernel-based approaches on the other hand do 

not involve generation and search of a hypotheses space. Instead, a kernel-based system 

maps the given input space to a higher-dimensional space to perform linear 

classification. 

Experiments are performed on the mutagenesis dataset which is one of the 

benchmark datasets for structured, relational learning and artificial domains. Our aim is 

to evaluate these two systems based on their classification performance on the 

mutagenesis dataset with and without background knowledge. Besides mutagenesis 

data, various synthetic data including concepts such as ring, tree, clique problem and

simple geometric shapes were used to study the ability of the systems to learn the 

required concepts. Subdue uses an inexact graph match to compute the cost involved in 

transforming one graph to another. We have implemented this inexact graph match as a 

potential graph kernel with Support Vector Machine and study its performance on 

various data domains.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Description

Graph-based learning approaches have gained focus for relational learning in 

recent years. The main idea behind graph-based relational learning is the ease of 

representing structured relational data in graph form. Various graph-based techniques 

have been the focus of research in recent years. Our aim is to perform an empirical 

analysis on two such graph-based relational systems – Subdue and Support Vector 

Machine. In this course of research we represent Subdue as a candidate for search-based 

learning approach and Support Vector Machine as a candidate for kernel-based 

approach. Our aim is to evaluate these systems to analyze the performance based on 

classification accuracy and time complexity on various artificial data domains and real-

world data domains. As a conclusion, we will highlight the various aspects for which 

one system is better than the other. 

In chapter 2 we will give a brief introduction to relational data and graph-based 

approaches to representing relational data. In chapter 3 we will introduce graph-based 

learning systems: Subdue and Support Vector Machine (SVM) – Graph Kernel. We will 

do an in-depth analysis of both the systems and discuss their characteristics and 

functioning. We will also discuss the kernel trick and its application with SVM. In this 
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chapter we will give a detailed approach to the implemented Random Tree Graph 

Kernel. In chapter 4 we will describe the relational dataset used in our experiments and 

give an introduction to the Mutagenesis dataset. The Mutagenesis dataset is a standard 

benchmark dataset used widely in relational learning. We will also comment on the 

various comparison factors taken under consideration. In this chapter, we will discuss 

the implementation of Subdue’s inexact graph match as an potential graph kernel.  In 

chapter 5 we will show experimental results, depicting the performance of the two 

systems. In chapter 6 we will discuss the conclusion of the research.  
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

2.1 Overview

In this chapter we will give a basic introduction to graphs and graph 

isomorphism. We will then introduce relational learning and see the various 

representations possible. Finally we will discuss the representation of structured 

relational data using graph.  

2.2 Graph

2.2.1 Basics 

A graph G can be represented as  

 G = (V, E). 

 Where V represent a set of vertices/nodes in the graph 

 E represent a set of edges in the graph. 

 E Є {(u, v) | u, v V}. 

There are various ways to represent a graph. For our purpose we will consider a 

labeled graph G [23] as:  

Let ΣV, ΣE be the sets of vertex labels and edge labels respectively. Let X be a

finite nonempty set of vertices. Let v be a function such that v: X � ΣV. 
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Let L be a set of ordered pairs of vertices called edges and e be a function such 

that e: L � ΣE. 

Then G = (X, v, ΣV, L, e ΣE) is a labeled graph with directed edges. 

 
Figure 2.1 Connected Graph 

ΣV = {A, B, C, D, E} 

ΣE = {e1, e2, e3, e4, e5, e6}

2.2.2 Graph Isomorphism 

As we will discuss later, graph isomorphism and subgraph isomorphism are few 

of the many techniques used in graph-based approaches. Isomorphism can be used as 

tools to calculate the similarity level between given two graphs. Consider two graphs G1

= (V1, E1) and G2 = (V2, E2). G1 and G2 are said to be isomorphic if and only if there 

exists a function.  

F: V1 � V2 such that for all u, v є V1,

(u, v) є E1 ↔ (f (u), f (v)) Є E2.

The function f is said to be an isomorphism between G1 and G2.
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Subgraph isomorphism generalization of the graph isomorphism problem.  

A subgraph can be defined as a graph whose vertices and edges are a subset of 

the other graph. Subgraph isomorphism for given two graphs G1 and G2 decides if there 

is a subgraph of one graph (G1 or G2) which is isomorphic to another graph.  

In the later chapters we will observe how graph isomorphism and subgraph 

isomorphism are both implemented in graph-based learning algorithms. As subgraph 

isomorphism is NP-Complete, most of the algorithms implementing this technique face 

the drawback of time complexity. 

 

2.3 Relational Learning: Graph-Based approach

2.3.1 Introduction - Relational Learning 

Relational learning involves learning a structured concept from structured data. 

By structured data we mean data that is generated by combining simpler components 

into more complex objects. Problems involving natural language understanding, 

complex planning problems or understanding molecular biology involve understanding 

the entities involved and relations among them. Such relational representations use a 

first-order model to describe the problem domain; wherein examples are given to the 

learner in terms of attribute and attribute relations rather than by simple propositions. 

ILP is the study of learning methods for data and rules that are represented in first-order 

predicate logic [41].  Recently many approaches have been practiced to represent and 

learn concepts relationally, as a propositional representation leads to loss of relational 

information and generates larger representations of data. An alternative representation 
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of relational data besides first-order logic is graphs. The main advantage of a graph-

based representation is the ease of representing the data and the ease of understanding 

the sample space, the hypothesis space and the concepts learned.  

Graphs help in representing more complex domains as compared to traditional 

attribute-value approaches, i.e., to represent spaces that provide a more natural means 

for expressing real-world data. Most work in machine learning has been based on 

attribute-value learning. However, as the size of the data increases, the attributes 

associated with them increase. Often real-world data has attribute associations, which 

are usually lost in an attribute-value representation. Consider an example concept to be 

learned – ‘Water molecule: H2O’  

This concept can be represented in attribute format as 

 1. <atom, atom, atom> : <H, H, O> 

 2. <atom, no_atoms, atom> : <H, 2, O> 

 3. <atom, no_atoms, bonding, atom> : <H, 2, single_bond, O> 

We however observe that the attribute-based approach is incapable of 

representing the actual concept. Also the semantics associated with the concept 

becomes more complex as more information needs to be represented. 
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A graph-based representation of this concept can be given as: 

Figure 2.2  Simple Concept 

For real-world relational data, the best representation is either first-order logic 

or graphs. We will concentrate on graph-based approaches for representing structured 

relational data.   

 

2.3.2 Graph-based Relational Learning  

The field of relational learning has only recently focused on graph-based 

approaches. In a graph-based approach, the relational data is represented as a graph. 

Even though the graph-based approach has been applied in unsupervised learning, with 

the advancement of graph-based search techniques with potential heuristics, recently the 

graph-based approach has been introduced in supervised learning.  

Most of the graph-based learning approaches make use of graph search 

techniques and other characteristics of graph to learn concepts and to search the 

hypothesis space. Some of the most common graph-based search techniques used are 

heuristic searches, random walk, tree, graph isomorphism and subgraph isomorphism. 
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An efficient and approximate method of extracting typical patterns from graph 

structured data by Graph-Based Induction (GBI) and its improvement (B-GBI, Cl-GBI) 

is introduced by Motoda [45, 46, 47]. 

In a graph-based learning system, the basic issue to be considered is that of 

searching for a graph pattern, also called a subgraph common to a given set of graphs. A 

graph G1 is said to be a subgraph of G2 if and only if the set of vertices and set of edges 

of G1 are a subset of the set of vertices and set of edges of G2 respectively. A subgraph 

can represent a concept to be learned. The second issue is an extension of the first, 

wherein one has to comment on the existence of a particular subgraph in a given list of 

graphs. The efficiency of a graph-based learning system depends on the efficiency of 

searching for regular graph patterns in a given set of datasets. Some approaches such as 

QSAR based on SVM [31] and random walk kernel by Kashima, Tsuda and Inokuchi 

[10], use random walk on graphs to search for subgraphs. Other approaches based on a 

tree approach are discussed by Gartner [8]. Few approaches involved in the search of 

such graph patterns include subgraph isomorphism. A system that implements both 

graph isomorphism and greedy search is Subdue [2]. 
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CHAPTER 3 

GRAPH-BASED RELATIONAL LEARNING SYSTEMS 

 

In this chapter we will introduce two graph-based learning systems: Subdue and 

Support Vector Machine (SVM). We will present the basic differences in these systems 

on the basis of learning from the hypothesis space and performing classification. We 

will introduce the kernel trick applied by SVM and discuss in depth the graph kernel. 

Finally we will introduce the random tree graph kernel implemented in the course of 

this research. 

3.1 Subdue

Subdue [2] is a graph-based learning system capable of performing both 

unsupervised and supervised learning. Subdue represents data as labeled graphs where 

the vertices of these graphs represent entities and the edges represent entity attribute and 

relationships. As an unsupervised learner, Subdue does knowledge discovery by finding 

common and frequent subgraphs in the given set of input graphs using a compression-

based heuristic. It then compresses the graphs with the substructures found. This 

process continues until all potential substructures have been discovered and the graph 

can be represented by  a single vertex.  

Subdue implements an inexact graph match method to search for potential 

substructures. For an error free dataset, an exact graph match can suffice. However, 
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inexact graph match is applied when the input data contains noise. Due to the presence 

of noise there can occur small differences in the relational concept to be learned in the 

given data. The inexact graph match approach handles this situation by calculating the 

cost required to transform one graph into another. Thus for given graphs G1 and 

G2,inexact graph match calculates the minimum cost required to make G1 and G2

isomorphic to each other. The working of the inexact graph match is shown in figure 

3.1. 

Figure 3.1 Subdue - Inexact Graph Match 

In the inexact graph match approach [42], each distortion is assigned a cost. A 

distortion can be a transformation such as deletion, insertion and substitution of vertices 

and edges. Given two graphs G1 and G2, we assume G2 to be the distorted version of G1.

By definition inexact graph match is a mapping  
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f : V1 � V2 U {λ}

where V1 and V2 are the set of vertices of G1 and G2, respectively. 

A vertex v Є V1 that is mapped to  λ (i.e. f(v) = λ) is deleted. The cost involved 

in an inexact graph match cost(f), is the sum of the cost of individual transformations 

resulting from f. We also define matchcost(G1, G2) as the least-cost function that is 

sufficient to map graph G1 onto graph G2.

Given two graphs G1 and G2, and a set of distortion costs, the actual 

computation of matchcost(G1, G2) is determined using a tree search approach as shown 

in figure 3.1. A state in the search tree corresponds to a partial match that maps a subset 

of the vertices of G1 to a subset of the vertices in G2. Initially we start with an empty 

mapping ({}) at the root of the tree. Expanding a state corresponds to adding a pair of 

vertices, one from G1 and one from G2. A final state in the search tree is a match that 

maps all vertices of G1 to G2 or to λ. In figure 3.1 we assume unit distortion cost. The 

numbers in circles are the costs computed at the corresponding states. The goal state to 

be found by our tree search procedure is the final state with minimum cost among all 

final states. From figure 3.1 we observe that the minimum cost is given by the mapping 

f(1) = 4 and f(2) = 3. Given graphs G1 with n vertices and G2 with m vertices, m ≥ n, the 

complexity of the full inexact graph match is O(nm+1). The inexact graph match is 

widely used throughout the discovery and evaluation process in Subdue and can thus 

degrade the performance significantly. 

Subdue performs a search – “beam search”, where the generated substructures 

are stored for further expansion on a limited-length queue. The process of generating a 
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substructure begins with a single vertex. Subdue then expands one adjacent vertex and 

the corresponding edge at a time. If the newly generated substructure is better than the 

parent substructure, the parent substructure is replaced with the new substructure. As an 

unsupervised learner, Subdue uses these generated substructures to compress the input 

graphs.  The process of finding the substructures and compressing the graph continues 

until no further compression is possible and the whole graph can be represented by a 

single vertex.  

As a supervised learner, Subdue removes all the positive examples covered by 

the generated substructures. Thus the process of generating better substructures and 

removing all the positive examples continues until all positive examples are covered. 

The beam search implemented represents a general to specific search guided by a 

Minimum Description Length (MDL) heuristic [2].  The MDL is based on the principle 

that the best way to describe a given set of data is by minimizing the description length 

of the entire dataset. Description length can be best described as the number of bits 

necessary to describe a given graph. This description length can then be used to 

calculate the MDL of each substructure considered by the beam search. 

For classification, Subdue uses subgraph isomorphism. A graph S = (V’, E’) is a 

subgraph of another graph G = (V, E) if and only if  

V’ V, and E’ E and ((v1, v2) E’ → (v1, v2) E’).  

From an application point of view, Subdue has been applied as a knowledge 

discovery system to learn from structured data in various domains. Some of the domains 

of application are 
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• Link Discovery for Counter Terrorism. 

• Anomaly Detection. 

• CAD Circuit Analysis. 

• Web Search. 

• Protein Structure Analysis. 

• DNA gene transcription sites. 

• Analyzing carcinogenic chemical compounds. 

• Analyzing compounds for chemical toxicity. 

• Analyzing aviation incident reports. 

• Analyzing seismic events. 

• Analyzing program source code. 

• Analyzing telecommunications data. 

 

3.2 Support Vector Machine

The Support Vector Machine (SVM) originated from the statistical learning 

theory proposed by Vladimir Vapnik [31] and developed by Boser, Guyon and Vapnik 

[32]. SVM is a method for generating functions from a given set of labeled training 

examples. SVM as a learning system can be implemented for both classification as well 

as regression. The simplest model of SVM is the Maximal Margin Classifier (MMC). 

MMC works only for data which are linearly separable in the hypothesis space and 

hence cannot be used in many real-world problems.  
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For classification, SVM takes in a set of training examples and maps the input 

space into a feature space. The feature space is a high dimensional space and the 

mapping is given by Ф. SVM then tries to create a hyperplane in the generated feature 

space. This hyperplane will partition the given space into positive examples space and 

negative examples space. Figure 3.2 shows the basic operation of SVM. The given 

input-space is a non-linear space as shown in figure 3.2.a. The input-space is mapped to 

feature-space via the mapping Ф as shown in figure 3.2.b. Figure 3.2.c shows the linear 

hyperplane learned by SVM.  

Figure 3.2 Support Vector Machine. (a) Input Space, (b) Mapped Space and (c) 
Application of Linear Machine. 

 
SVM uses a real-valued function h(x) = sign(w.x + b), such that for any input xi

Є X, x is a positive class if h(x) ≥ 0 and a negative class if h(x) < 0. Thus SVM when 

used for a simple linear binary classification, creates a hyperplane that divides the given 

data examples into two binary classes. This is done by setting a maximum margin such 

that the distance from the closest examples i.e. the margin to the hyperplane is 

maximized. The use of maximum-margin hyperplane was motivated by Vapnik 
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Chervonenkis’s theory, which states that the error involved is minimized when the 

margins are maximized.  

Figure 3.3 Support Vector 

Figure 3.3 shows a hyperplane and the associated support vectors. The 

hyperplane is defined as <w, x> + b = 0 [1]. A hyperplane is an affine subspace of 

dimension (n-1) which divides the space into two spaces which corresponds to the 

inputs of the two distinct classes. We will discuss more about hyperplanes in a later 

section. In the maximum margin method, the supporting planes (margins) are pushed 

apart until they bump into the support vectors as shown in figure 3.3. The solution 

hence only depends on these support vectors [43]. The parameters involved in defining 

the maximum-margin hyperplane are derived by solving a quadratic programming 

optimization (QP) problem. Various approaches are presented for solving the QP 

problem. The most common method implemented for solving a QP problem is Platt’s 

Sequential Minimal Optimization (SMO) [36]. SMO breaks the given QP problem into 

various smaller possible QP problems. These subset QP problems are then solved 



16

analytically to avoid the time complexity involved in the original numerical QP 

optimization problem. This is also a major reason why the memory requirement 

involved in SVM with SMO is linear. This also assists the SMO to handle larger 

training sets.  

 

Figure 3.4 SVM Components. 

Figure 3.4 shows the various components that contribute to the SVM. The figure 

shows a hyperplane drawn in linear space. The hyperplane is defined as 

f(x) = <w, x> + b  

The linear separation of the feature space is then given by 

f(x) = <w, x> + b  

h(x) = sign(f(x)) 
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The solution to the linear combination of training points is then given by 

W = Σ αi yi xi

αi ≥ 0

where αi are the parameters that define the margin and yi is the 

corresponding class of xi.

Figure 3.5 Hyperplane 

A geometric interpretation of the hypothesis defined by the hyperplane that 

splits the input space X into two parts is defined by <w, x> + b = 0 as shown in figure 

3.5.  The positive examples are above the hyperplane and the negative examples below 

the hyperplane as shown in figure 3.5. The vector w defines a direction perpendicular to 

the hyperplane, while varying the parameter b moves the hyperplane parallel to itself. 
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The parameter w is often referred to as the weight while the parameter b is referred to as 

bias or the threshold.  

The decision function f(x) can then be re-written as 

f(x) = Σ αi yi xi + b

where b is the offset of the hyperplane and is given as [43] 

b is determined by the support vectors for which αi ≥ 0. yi is the class 

corresponding to xi and m is the number of data points in the input space. K (xi,

xj) is the kernel implemented to map the input space into the feature space. 

 

H(x) is the classifying function. Thus if h(x) ≥ 0, then x is classified positive else 

negative. The output of SVM, usually a real value is hard to interpret.  An algorithm to 

map the SVM outputs into posterior probabilities has been introduced by Platt [3].   

 

3.3 SVM – Kernel Trick

The original optimal hyperplane algorithm proposed by Vladimir Vapnik [31] is 

a linear classifier. As most data is not linear, Bernhard Boser, Isabelle Guyon and 

Vapnik [32] suggested a way to create non-linear classifiers by applying the kernel trick  

to maximum-margin hyperplanes. The kernel trick was originally proposed by 

Aizerman [33]. By using the kernel trick, one can map the given nonlinear space to a 
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higher-dimensional space. The need to map the non-linear space to a higher-

dimensional space is to allow the classifier to draw a linear hyperplane in the mapped 

space. Thus the new approach with the kernel trick which generates a linear hyperplane 

in the higher dimensional space is actually a non-linear plane in the original input space. 

The kernel K can be represented as K(x, s) = < Ф(x). Ф (s) >; where x and s are 

the examples from the input space X  ⊂ Rd, Ф is a non-linear mapping from the input 

space X to feature space F and <,.,> is the inner dot product. Thus a kernel K(x, s) can 

be described as the inner dot product of not x and y but Ф(x) and Ф(s) in higher 

dimension. Thus the mapping Ф: X → H is called a feature map from the input data 

space X to a higher-dimension feature space H. The feature space H is assumed to be a 

Hilbert space of real-valued functions defined on X. A Hilbert space is a vector space H 

with an inner product of <x, s>. An example of a Hilbert space includes a real number 

Rn which is the dot product of <x, s>. 

Let us consider a mapping of data from R2 to R3 using a feature map  

K (x, s) = <Ф(x) .Ф (s)> = (x2, √2xs, s2)
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Figure 3.6 Kernel Trick 

There are various approaches for mapping data elements from R2 space to R3

space. Figure 3.6 shows such a mapping from R2 space to R3 space. The mapping 

function Ф maps the given input space R2 to R3 space The mapping discussed above  

has a useful property of allowing the computation of the inner products of feature 

vectors Ф(x) and Ф(w) in R3 by just squaring the inner product of the data vectors x and 

s in R2. Thus we have: 

K(x, s) = < φ(x), φ(s) > 

 = x12w12 + 2 x1x2s1s2 + x22s22

= (x1s1 + x2s2)2

= (< x, s >) 2 

Thus, for SVM with kernel trick, the hyperplane is defined as 
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f(x) = Σ αi yi < Ф(xi), Ф(x)> + b 

Hence we have, 

f(x) = Σ αi yi K(xi ,x) + b 

In the above equations we observe that one need not compute the dot product 

between x1 and x2. The kernel K(x1, x2) is used to implicitly compute the dot product. 

Thus the kernel K can be used to map the non-linear space into a linear higher-

dimensional space,  enabling linear separation by a hyperplane. 

3.4 Kernel Properties

To prove the existence of feature spaces, Mercer [1, 30] showed that the 

necessary and sufficient condition for a symmetric kernel K(x, s) to be a kernel, is that it 

needs to be positive definite [44]. A function h is positive definite, if for given inputs 

x1…xn Є Rn and complex numbers α1… αn we have 

 Σ h( xj – xk) αj αk ≥ 0.

j, k = 1…n. 

Hence for any given set of input examples x1, x2… xn and for a set of some real-

valued numbers λ1… λn
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Some commonly-used kernels include: 

Polynomial Kernel: 

Radial Basis Kernel:   

Sigmoid Kernel:    

Exponential Kernel:    

The basic properties of a kernel are: 

1. A kernel is continuous. 

2. A kernel is symmetric: K(x, s) = K(s, x). 

 

It is also easy to create a new hybrid kernel [29] from existing kernels due to 

some basic properties of being positive definite. 

1. Given two kernels K1 and K2, let α1, α2 be two positive numbers. 

K(x, s) = α1K1 (x, s) + α2K2 (s, x). 
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2. Given two kernels K1 and K2, the multiplication yields a kernel. 

 K(x, s) = K1 (x, s) K2 (s, x) 

3. Also K(x, s) = exp (K1 (x, s)), is a kernel by taking the limit of the series 

expansion of the exponential function. 

4. If ψ is an Rp – valued function on X and K3 is a kernel on Rp Rp,

then: K(x, z) = K3 (ψ (x), ψ (z)).

5. If A is a positive definite matrix of size d × d, then: K(x, z) = xT Az. 

Our aim is to develop a graph kernel, which satisfies the basic properties of 

kernels discussed above. The graph kernel we developed is both continuous and 

symmetric. 

 

3.5 Graph Kernel

In this section we will give a brief introduction to graph kernels and their 

application in SVM. As discussed in chapter 2, a labeled graph G can be defined by its 

set of vertices V, set of edges E, set of vertex labels ΣV and set of edges labels ΣE.  Our 

task is to construct a kernel function K (G1, G2) between graphs G1 and G2. In the case 

of SVM one tries to map the given data space to a higher-dimensional space. With 

graph kernels, we try to compute product graphs G1xG2.

We define the product of two graphs G1 = (V1, E1) and G2 = (V2, E2) as G1 x G2.

The vertex and edge set of the product graphs are thus defined as 

V (G1 x G2) = {(v1, v2) Є V1 x V2: (label(v1) = label(v2))} 
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E (G1 x G2) = {((u1, u2), (v1, v2)} Є V2 (G1 x G2):  

 (u1, v1) Є E1 Λ (u2, v2) Є E2 Λ (label(u1, v1) = label(u2, v2))}  

Various approaches have been proposed for a complete graph kernel [20]. The 

most common approach is the measure of the common subgraph of the two graphs. 

Thus a basic graph kernel can be given as, 

K (G1, G2) = < Ф (G1), Ф (G2)>. 

Where, Ф (G1) represents the mapping of G1 into a higher-dimensional space 

and Ф (G2) represents the mapping of G2 into a higher-dimensional space.  

Thus if G1 and G2 are isomorphic to each other then we have the mapping Ф as  

K (G1, G1) – 2 K (G1, G2) + K (G2, G2) = < Ф (G1) – Ф (G2), Ф (G1) – Ф (G2)> = 0 

If G1 and G2 are not isomorphic to each other then 

 K (G1, G1) – 2 K (G1, G2) + K (G2, G2) ≠ 0. 

Hence to decide if given graphs G1 and G2 are isomorphic it is sufficient to 

evaluate the expressions K (G1, G1), K (G1, G2) and K (G2, G2). 

As general isomorphism problems are computationally expensive, various 

approaches have been developed to generate an efficient graph kernel. One such 

approach for a graph kernel between labeled graphs has been proposed by Kashima [10, 

11, 12]. In this approach, graph comparison is based on a comparison of the path 

distributions under two independent random walks on the graphs to be compared. 
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For graphs G1 and G2 the kernel is given as 

Where, H (G) is the set of paths of the graph G and pG the corresponding 

random walk model. KL is a label kernel, i.e. a function assessing the paths similarity. 

Figure 3.7 Random Walk Graph Kernel 

This kernel thus averages the label kernel with respect to the set of paths found 

in the graphs. The mapping involves implicit projection of the graphs G1 and G2 into a 

higher-dimensional feature space where each dimension corresponds to a particular path 

in the graph. For more details on the functioning of the graph kernel refer to [10]. 
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3.6 Algorithms

In this section we will present the algorithms for both Subdue and Support 

Vector Machine. We will also introduce the Random Tree Graph kernel implemented in 

this research. 

3.6.1 Subdue  

1. Training: Given – Training examples (x1, y1), (x2, y2)… (xn yn) and yi Є {+1/-

1}. Where, yi is the class corresponding to xi.

A. Search for best substructure 

1. Initially consider single vertex. This is the current 

substructure. Let best-list be the list of best substructures 

found. 

2. Let parent-list be the list of all parent substructures found. 

 Let child-list be the list of substructures been generated.  

While the queue is not empty and the number of 

substructures found ≤ limit, do 

• Extend the current substructures on the parent-list in all 

possible ways. This gives the new child substructure list.  

• Evaluate the current substructures found and replace the 

parent-list with the child-list. 

• Replace the substructures in the best substructure list 

with new substructures based on the value. 

B. Store the best substructures. 
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C. Remove all the positive examples covered by the best substructures.  

D. Repeat step A-C until all positive examples are covered. 

2. Testing: Given – Testing examples (x1, y1), (x2, y2)… (xn yn).  

A. Consider each substructure concept learned and perform a subgraph 

isomorphism on the given testing examples. 

B. If the concept is found in the test example xi, then xi is classified as 

(+1) else (-1). 

3.6.2 SVM  

1. Training: Given – Training examples (x1, y1), (x2, y2)… (xn yn) and yi Є {+1/-1}. 

Where, yi is the class corresponding to xi.

A. Map the given input data into a higher-dimension by applying the 

mapping Ф. This mapping will generate the feature space. The 

feature space is generated by applying the kernel trick as discussed 

in section 3.3.  

B. Create a hyperplane in the Feature Space. SVM creates a hyperplane 

by implementing SMO. SMO helps solve the QP problem involved 

thus generating the parameters necessary to define the hyperplane. 

The hyperplane has maximum margin in the feature space and 

minimal error. 

C. The results of the training are the parameters of the margins of the 

Support Vector (SV) i.e. α1, α2… αn. These parameters αi define the 

margins and the hyperplane. 
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2. Testing: Given – Testing examples (x1, y1), (x2, y2)… (xn, yn). The hypothesis 

space H is the feature space defined by Kernel K (g1, g2).  

A. For a test example xi compute  

Where, αi is the margin parameter. 

 Yi is the class corresponding to xi.

K (g1, g2) is the graph Kernel. 

 B is the offset of the plane from the origin.  

 To determine b, we consider an example, say p, which is unbound 

i.e. αi is non-zero. 

If h (xi) ≥ 0, xi is classified as class +1 and if h (xi) < 0, xi is classified as 

class -1. 

3.6.3 Random Tree Graph Kernel  

As compared to various graph kernel approaches mentioned above, we have 

concentrated on the information flow in the graph. We calculated information flow by 

calculating entropy at the nodes. Each node can be assumed to have information 

flowing in and out from the neighboring nodes. Each adjacent edge-vertex pair can 

define the information flow depending on the weight associated with each adjacent 
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edge. We have considered unit weight for all edges. A very general definition of 

information entropy can be given as the amount of information carried in a signal at a 

given time. For more detailed information on information entropy refer to Shannon’s 

discussion [40]. 

In our approach we are concentrating on the amount of information carried at 

the nodes of the graph. As discussed above, various kernels can be applied with SVM. 

However, the exponential kernel has shown better performance as compared to other 

kernels on many datasets. More about exponential families and kernels methods are 

discussed by Canu and Smola [39]. We will use the exponential kernel as a part of the 

graph kernel to calculate K (G1, G2). 

 

Algorithm:  

1. Calculate Information Entropy at all nodes of the graphs G1 and G2. In case of 

directed graphs, each node consists of incoming edges and outgoing edges. Let 

Wi be the weight of node Ni. Let p and q be the number of incoming edges and 

outgoing edges. Thus each outgoing edge from node Ni will transfer (Wi / q)

units of information. To simplify the calculation we consider unit weight of both 

edges and nodes. Hence in this case, the total information at any node is equal to 

the summation of the incoming nodes and the outgoing nodes. Thus at all time, 

the information content of any node is the number of its adjacent edges. 

2. Sort the nodes in ascending order.  This generates vi Є V, where V is the set of 

all vertices of graph G and the corresponding ei Є E, where E is the list of edges 
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in the graph G, for graph G1 and G2. Depending on the required accuracy level 

and resource allocation, we consider vi Є V as potential roots for random tree 

generation. Here we consider a tradeoff between accuracy and computation 

time. Ideally all nodes in the graph should be considered as potential roots. But 

this proves computationally expensive. We hence consider a set of nodes as 

potential roots for tree expansion. It may happen that, skipping a few nodes as 

potential roots may led to a fall in accuracy. In our course of experimentation 

we have considered minimum five nodes as potential roots. The number of 

potential roots to be considered is a user defined value and can be varied 

depending on the time constraints. More number of roots involves more 

computation.  

3. For each ui Є V1 .

Set Cost to zero. 
For each vi Є V2

If  label(ui) = label(vi) then 

Expand tree with ui as root, one edge and one vertex at a time. Let eui

and pi be the expanded edge and vertex pair for ui. Similarly, let evi

and qi be the expanded edge and vertex pair for vi.

If  label(eui) = label(evi) and label(qi) = label(pi) then 

Add eui and pi to the expanded graph. 

 Calculate cost = cost + weight (eui) * weight (pi). 

 Cost (ui, vi) = max_cost (Cost(ui,vi), cost). 



31

4. Final_Cost = max(Cost(ui, vi)) 

5. Normalization factor: norm_factor =  (number of vertices in G1 + number of 

vertices in G2 + number of edges in G1 + number of edges in G2)

6. Thus, 

An example implementation of the random tree graph kernel is shown in figure 

3.8 and figure 3.9. Our aim is to calculate K (G1, G2) for two graphs G1 and G2. As 

shown, the potential roots considered for G1 are {B, E, C} and G2 are {C, B, D}. In the 

case of G1, node B, E and C each have three adjoining edges. Likewise, nodes A, F and 

D each have one adjoining edge. Thus arranging the nodes in ascending order we get 

{B, E, C, A, F, D}. We can consider all nodes as potential roots for tree expansion. 

However in figure 3.8  we have considered three to speed up the process. Thus the 

potential roots considered are {B, E, C}. Similarly, in case of G2, we obtain the potential 

roots as {C, B, D}. The max cost calculated is 7 as shown in figure 3.9.  

Hence K (G1, G2) = exp (1.0 + 2.0 * 7.0 / 24.0) = 4.87. 

Similarly, we can evaluate the various kernels required by the SVM. 
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Figure 3.8 Random Tree Graph Kernel – Problem Setup 
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Figure 3.9 Random Tree Graph Kernel – Generated Trees 
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CHAPTER 4 

EXPERIMENTAL SETUP 

 

Comparison of two learning systems involves analysis of the ability to learn a 

particular concept and classification efficiency. In this chapter we will consider the 

comparison factors involved. We will also discuss the Mutagenesis dataset and the 

graph representation of Mutagenesis Data. We also present the two systems under 

consideration and analyze their functionality. 

 

4.1 Comparison Factors

The main factors to be considered while comparing graph-based approaches 

such as Subdue and SVM-Graph Kernel is the ability of the system to learn a particular 

complex concept efficiently. In case of both SUBDUE and SVM-Graph Kernel, the 

systems search the hypothesis space for a possible concept that best classifies the given 

datasets. However, the main difference lies in fact that, Subdue actually searches for a 

concept in the hypothesis space. On the other hand, SVM tries to generate a hyperplane 

in the mapped higher-dimensional space. Theoretically, there are an infinite number of 

possibilities for generating a hyperplane. Figure 4.1 shows examples of various possible 

hyperplanes. 
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Figure 4.1 Possible Hyperplanes. 

These hyperplanes form the Hypothesis space for SVM. However, SVM does 

not actually generate all the possible hyperplanes. A hyperplane is generated by 

calculating the parameters αi, required as discussed in chapter 3. These parameters are 

the result of the implemented kernel. Hence, the better the kernel the better is the 

hyperplane generated and the better is the classification. Thus we are interested in 

evaluating Subdue on the basis of the hypothesis space generated and the search for a 

potential hypothesis. For SVM, we will try to evaluate the performance of the system by 

evaluating the hyperplane generated based on the implemented kernel. 

 For any learner, the concept to be learned depends on the representation of that 

particular concept. By representation we mean the ability to represent the knowledge 

involved i.e. the syntax and the semantics associated with the meaning of the concept. 

The concept learned by Subdue is a subgraph while SVM outputs a vector that maps the 

input data into the feature space. Due to the graph format of the concept learned it is 

usually straightforward to understand the concept. However, the output of SVM is a 

higher-dimensional space vector and hence difficult to interpret. 
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Various techniques have been implemented in improving the performance of 

supervised learners. Some of the techniques are discussed below: 

1. Semantics:

Improving the representation of the input space reduces semantic 

complexity. By reducing semantic complexity, the hypothesis space 

generated is simple and easy to search. As the representation of a particular 

dataset becomes complex, the time and resources involved in generating the 

hypothesis space and searching for the best concept increases. Hence 

resolving the best representation of the data before being fed to the learning 

system can definitely improve the performance of the learning system. 

2. Background Knowledge:

In most cases of supervised learning, we usually have some knowledge 

about the concept we want to learn. This knowledge can be passed on to the 

learning system as background knowledge. By providing the background 

knowledge, we make sure that the system is learning in the right direction. 

This can also be called biased supervised learning. There are basically two 

ways of providing background knowledge. Background knowledge can be 

implicitly provided to the learner by including it in the input datasets by 

adding the necessary additional information to the data examples. The other 

method is to explicitly provide the background knowledge. In this case the 

background knowledge is provided explicitly to the learner during the 

learning process. 
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The techniques described above help in reduction of the hypothesis space 

learned thus aiding the learner to learn more accurate concepts. This helps in improving 

the performance of the system.  We have addressed the performance of the systems 

under consideration on the basis of the accuracy of classifying data and the time 

complexity involved. 

 

4.2 k-Fold Cross Validation

In this research we have concentrated on 10-fold cross validation. In a k-fold 

cross-validation, the given sample set is divided into k subsets (folds) each of size m/k. 

For each fold, the classifier is allowed to train using the remaining subsets and the 

current subset is used for testing. Thus we randomly divide the sample into k disjoint 

subsets which are fed to the classification algorithm. The left-out subset of the training 

set is used to evaluate classification accuracy.  

 

4.3 Mutagenesis Data

The Mutagenesis dataset is a standard benchmark dataset for most Inductive 

Logic Programming [38] related data mining. The dataset consists of 230 compounds, 

from which 138 are the positive examples while the remaining 92 are the negative 

examples. The data is obtained from ILP experiments conducted with Progol [37]. The 

ILP experiments used the generic description of compounds consisting of atoms and 

their bond connectivity. Mutagenicity is measured using the Ames test using S. 
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typhimurium TA98. Nitroaromatic and Hydrocyclic compounds are of most concern 

because of their carcinogenicity. More about this test and results can be found in [4]. 

The prediction of mutagenesis is important for the understanding and prediction 

of carcinogenesis as mutagenic chemicals have often been found to be carcinogenic. 

Various structures of chemical Mutagenesis are discussed by Dr. Josephy [28]. Some 

common compounds used in mutagenesis study are shown in figure 4.2.  
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Figure 4.2 Mutagenesis Compounds*. 

* Redrawn with permission from Dr. Josephy. 
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4.3.1 Graph-based Representation of Mutagenesis Data 

A basic graph-based representation of mutagenesis data was obtained from 

Akihiro Inokuchi, Tokyo Research Laboratory IBM Japan. The dataset consisted of 

plain atoms and bonds. Figure 4.3 shows partial Mutagenesis data as provided by 

Akihiro Inokuchi.  

Figure 4.3 Mutagenesis Data with Atoms and Bonds. 

To learn more complex structures consisting of more information than just 

atoms and bonds, we concentrated on the representations described in [27]. This 
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mutagenesis data contains information about the atoms, bonds, elements, atom type, 

partial charge and bond type. 

In the graph-based representation of mutagenesis data, we represent entities as 

nodes while the entity-to-entity relationships are represented as edges. Figure 4.4 shows 

a graph-based template representation of a bond in the mutagenesis dataset. 

Figure 4.4 Graph-Representations of Mutagenesis Data. 

 

This dataset describes a basic template that forms the entire mutagenesis 

compound. In this structure, we consider atoms having three basic properties – the atom 

type, the element itself and the charge of the atom. One atom connects to another 

through as bond. The bond specifies the bonding type between any two atoms. The 

various elements under consideration are Carbon (C), Hydrogen (H), Nitrogen (N) and 
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Oxygen (O). These elements are the major elements constituting a mutagenesis 

compound. The various charges that are possibly available on these atoms are -0.117, -

0.087, 0.013, 0.142, 0.143 and -0.388. Figure 4.5 shows an example bond between a 

Carbon and Hydrogen, i.e., (C – H). 

Figure 4.5 Bond between Carbon and Hydrogen Atom. 

In our course of research, we will show empirical results of experimentation on 

the various forms of mutagenesis data. We will also discuss about the role of 

background knowledge in these mutagenesis datasets. 
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4.4. System Implementation

4.4.1 Subdue: 

A. Algorithm Execution: The source code can be found at 

http://ailab.uta.edu/subdue/.

B. Training: The command to train SUBDUE is –  

subdue [parameters] <train graph file> 

C. The basic parameters used are – 

a. -eval [1, 2, 3]

i. MDL (Minimum Description length): The value of 

substructure S in a graph G is 

Where DL is the description length in bits, and (G|S) is G 
compressed with S. 
If Negative graph Gn is present then 

ii. Size: The value of substructure S in a graph G is 
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Where,  

 
(G | S) is G compressed with S. 

If Negative Graph Gn is present then, 

iii. Set Cover: The value of a substructure S is computed as 

the number of positive examples containing S, plus the 

number of negative examples not containing S, all divided 

by the total number of examples. At the end of the each 

iteration, the compression done is replaced by removing 

all positive examples containing S. In our course of 

experiments we have used ‘Set Cover’ evaluation. 

b. - iterations #:

This specifies the number of iterations made over the input 

graph in which the best substructure from the previous 

substructure is used to compress the graph and use in the next 

iteration. The default value is 1. 
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c. - limit #:

This specifies the number of substructures to be considered 

in different iterations. The default value is (Vertices + Edges) / 

2. 

d. – out<file name>

This option outputs the best substructure found during the 

training session in the specified file. 

D. Testing: The command to test the input graphs is –  

test <sub graph file> <test graph file> 

The parameters include a sub graph file; one generated using the 

–out option in Subdue command. The test utility computes the 

following for a given set of substructures and a given set of test 

graphs: 

FP – false positives 

TP – true positives 

FN – false negatives 

TN – true negatives 

 These parameters can then be used to compute the test set 

accuracy.  

 In our experiments we have mostly used 10 fold cross validation. 

The command to perform m-fold cross validation is –  

cvtest [parameters] –nfold m <train graph file> 
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The parameters are the same as discussed in the training stage. 

The parameter –nfold specifies the number of cross validation test to be 

performed. The cvtest command internally calls the test command 

discussed above. 

 

E. Input and Output Data Type:

Subdue takes in a graph file (*.g) as the input file. A 

Subdue graph is a sequence of vertices and edges. A positive 

graph is addressed as XP whereas a negative graph is addressed 

XN. 

A vertex is defined as: 

v <#> <label>  

Where, <#> is a unique vertex ID and <label> is any 

string or real number. 

 An edge is defined as follows: 

 e <vertex 1 #> <vertex 2 #> <label> 

d <vertex 1 #> <vertex 2 #> <label> 

u <vertex 1 #> <vertex 2 #> <label> 

Where, <vertex 1 #> & <vertex 2 #> are the vertex ID’s 

of vertices between which the edge lies. <label> is any 

string or real number. 
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The edge ‘e’ is assumed to be directed, unless ‘-undirected’ 

option is explicitly specified. An edge‘d’ is always directed while 

an edge ‘u’ is always undirected. 

In our course of research, we have concentrated on the evaluation technique the 

set-cover with limit set to 100. Rest of the parameters were set to their default values. 

4.4.2 SVM – Random Tree Graph Kernel: 

A. Graph Kernel Algorithm: We have applied a Random Tree Graph Kernel 

in our approach. The Random Tree Graph Kernel is discussed in details 

in chapter 3. 

B. Algorithm Execution: The executable and source code can be found at 

http://svmlight.joachims.org/. 

C. Training: The command to train SVM is –  

 svm_learn [parameters] <train data file> <output model file> 

D. The basic parameters used are – 

a. – t [0,1, 2 ,3 ,4]:

i. 0: linear (default) 

ii. 1: polynomial (s a * b + c) d 

iii. 2: radial basis function exp(-gamma ||a - b|| 2)

iv. 3: sigmoid tanh(s a * b + c) 

v. 4: user defined kernel (Graph Kernel)
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b. – q #

Maximum size of QP– sub problem. The value of # 

should be more than 2 and by default the value is 10. 

c. – m #

Define the size of cache for kernel evaluations, in MB 

(default 40). 

d. – u [1, 2, 3]:

i. 1: Vertex Only (default). Used for datasets wherein all the 

information is concentrated at the vertices. Faster than the 

other two options as computationally simple. 

ii. 2:  Vertex – Edge pair. Used for datasets wherein the 

information is concentrated at both the vertices and edges. 

iii. 3: Vertex-Edge-Vertex. A general approach combining 

the above two options. 

This option is implemented to provide background knowledge to 

SVM while dealing with different datasets. 

E. Testing: The command to test the input test examples is –  

svm_classify [parameters] <test  file> <model file> <output file> 

F. Input and Output Data Types:  

SVM takes in a data file (*.dat) as the input file. The syntax of a 

‘dat’ is as follows: 
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<line>=<target><feature>:<value> feature>:<value>...  
 <feature>:<value>#<info> 

<target>=+1|-1|0|<float> 
<feature>=<integer>|<#> 
<value>=<float> 
<info>=<string> 

At each <line>, the <target> specifies the target class 

(+1/-1). The <feature> : <value> pair specifies the data feature 

and the associated value. The string <info> can be used to pass 

additional information to the kernel. 

 Example -  
-1 1:0.43 3:0.12 9284:0.2 # abcdef 

+1 2:1.00 5:0.93 1000:0.5 # pqrstu 

The string passed after ‘#’ is the user defined 

representation of the graphs and is as follows: 

|#c| [1 v1] [2 v2] … [n vn] <#e vi vj e1> ... <#e vp vq en> 

 Where, |#c| - class of the graph i.e. +1 or -1. 

 [vertex_no vertex_label] is the vertex information 

<edge_type start_vertex end_vertex edge_lable>. Where, 

‘edge_type’ can be ‘d’ for directed edges and ‘u’ for undirected 

edges. ‘start_vertex’ and ‘end_vertex’ indicated the vertices 

between whom the edge exist and ‘edge_lable’ corresponds to the 

edge label. 
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4.4.3 SVM – Inexact Graph Match Kernel: 

A. Graph Kernel Algorithm: We have applied Subdue’s Inexact Graph 

match as the graph kernel. The Inexact Graph match is discussed in more 

detail in  section 3.1. 

The Inexact Graph Match calculates a cost factor involved in 

transforming graph G1 to graph G2.   

 The kernel K (G1, G2) is calculated as: 

Where, T = number of vertices in G1 + number of edges in G1 + 

number of vertices in G2 + number of edges in G2. 

B. Algorithm Execution: 

The training and testing is the same as for SVM – Graph Kernel 

discussed above. 

C. Input and Output Data Type: 

The input and output data types are the same as for SVM – Graph 

Kernel discussed above. 

In this chapter we have introduced the Mutagenesis Data domain and its graph-

based representation. We have also described  in details the experiment setup for both 

systems and the parameters involved. We also introduced Subdue’s inexact graph match 

as a graph kernel to function with SVM. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

 

In this chapter, we will evaluate the systems using both an artificial domain and 

a real-world domain – the Mutagenesis domain. Our main aim is to analyze the 

performance of the systems on the basis of classification accuracy and computation 

time. For artificial datasets, we will concentrate on geometric shapes such as rings of 

varying size and completely-connected graphs. As the graph kernel implemented uses a 

tree-based approach, we will analyze the performance of both the systems on trees with 

varying depth.  We will then perform experiments on a variety of mutagenesis datasets 

and analyze the results. Finally, we have introduced the concept of using Subdue’s 

inexact graph match technique as a potential graph kernel. 

 
5.1 Artificial Data Domain – Ring Domain and Tree Domain

We have generated a variety of artificial datasets to test both Subdue and SVM 

– Graph Kernel. The artificial datasets were generated using ‘subgen’ an artificial 

graph-based dataset generator developed for the Subdue project.  Subgen takes in input 

of vertex labels ΣV, edge labels ΣE, size of the graphs which specifies the number of 

vertices and edges to be included in the graph and the substructure under consideration 

plus some additional information regarding the connectivity and coverage. Subgen 

outputs either instances or graphs. Subgen first generates N instances. It then computes 
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the number of common structures needed to be overlapped. The overlapping limit is 

provided to Subgen as an input parameter. Subgen tries to merge the instances such that 

the preferred overlapping is achieved. The final graph is generated from the instances. 

To achieve the desired graph size and connectivity, Subgen adds random vertices and 

edges. For source code and information visit: http://ailab.uta.edu/subdue/.

5.1.1 Structurally Large Concepts 

Initially we performed experiments with artificial domains such as the ring 

domain and the tree domain. Our aim was to measure the time constraint involved in 

learning a concept of increasing structural size from a given set of training examples 

while maintaining a 100 % training set accuracy. By increasing the size of the ring 

under consideration, it is possible to analyze the performance of both the systems. 

The training set consisted of 10 positive and 10 negative examples from the ring 

domain. The positive example is the ring of size N (N nodes), whereas the negative 

example is a line of N nodes. Figure 5.1 shows the list of positive and negative 

examples for ring with varying size. All the vertices are labeled ‘V’ and all the edges 

are labeled ‘E’. The positive and negative examples are such that, the basic concept 

learned by the system is the ring concept, i.e. the only structure that can distinguish the 

given positive and negative examples is the ring structure. 

The parameters set for Subdue are as follows: 

1. – eval = 3 (Set cover.) 

2. – limit (default).  
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3. – iterations = 2 (Sufficient to cover all the concepts necessary to be 

learned.) 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1 (default) 

Figure 5.1 Simple Ring Domain Experiment. 
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Figure 5.2 Chart - Simple Ring Domain. 

Figure 5.2 shows the performance of the systems in learning a simple ring 

concept. A point to be noted is that the performance of both the systems in terms of 

training set classification-accuracy has been 100%. We observe that Subdue has 

performed faster than SVM in learning the simple ring concept.  

We will next try to observe the effect of noise in the process of learning a 

concept. Noise can be introduced in a variety of ways. In our experiments, we will 

introduce noise as incorrect vertex or edge labels in the concept to be learned or as 

introduction of unwanted edges in the concept or by varying the number of adjacent 

nodes.  
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Figure 5.3 Ring Domain Experiment with Noise in Dataset. 

Figure 5.3 shows noise being introduced as adjacent irrelevant nodes. We will 

consider two adjoining nodes, per node of the concept as shown in figure 5.3. The 

presence of such irrelevant nodes causes the search-based approach to explore the 

hypothesis space to larger extent.  
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The parameters set for Subdue are as follows: 

1. – eval = 3 (Set cover.) 

2. – limit (default) 

3. – iterations = 2 (Sufficient to cover all the concepts necessary to be 

learned.) 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1 (default) 

Figure 5.4 shows the performance of both search-based and kernel-based 

approaches in terms of time, maintaining 100% classification accuracy on training set. 
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Figure 5.4 Chart - Ring Domain Experiment with Noise in Dataset. 
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The introduction of noise in the dataset has shown that Subdue spends more 

time analyzing the irrelevant nodes along with the actual concept in order to learn the 

concept. SVM on the other hand gives a much better performance. The main reason for 

the increase in Subdue’s time complexity is due to the fact that Subdue expands one 

vertex and an edge or edge in all directions at a time. As discussed in chapter 3, Subdue 

expands one vertex and one edge or an edge in all directions of the substructure at a 

time, till all the positive graphs are covered by the substructure found. On the other 

hand, SVM with graph-kernel does a simple graph traversal and match. Even in case of 

the complex ring structure discussed above, the graph kernel has to do a simple tree 

traversal, which in this case is along nodes of the concept. We can also comment that 

the number of kernels evaluated by SVM in this case is less, and with  fewer kernel 

evaluations SVM is able to optimize the problem faster.  

In the next experiment, we will increase the number of irrelevant adjoining 

nodes to 3. Figure 5.5 shows the performance of Subdue in case of a simple ring 

concept, a ring with two irrelevant nodes and a ring with three irrelevant nodes. 
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Subdue's Performance in Ring Domain

0

500

1000

1500

2000

2500

3000

3500

4000

4500

3 4 5 6 7 8 9 10
Ring Size

Tim
e(

sec
)

Simple Ring Concept Ring Concept with 2 adjacent nodes Ring Concept with 3 adjacent nodes  
Figure 5.5 Chart - Subdue’s Performance in Ring Domain with Varying Complexity. 

Figure 5.6 shows the performance of SVM in case of a simple ring concept, ring 

with two irrelevant nodes and ring with three irrelevant nodes. 
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SVM Performance in Ring Domain
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Figure 5.6 Chart - SVM’s Performance in Ring Domain with Varying Complexity. 

From the above results (figure 5.5 and figure 5.6), we observe that Subdue’s 

time complexity is exponential as the dataset becomes more complex and large, though 

the concept needed to be learned is the same. SVM however has shown almost linear 

time complexity in the ring domain. The linearity observed is due to the implementation 

of the SMO algorithm in the SVM, which solves the QP problem in a more efficient and 

linear fashion. Refer to chapter 3 for more details on the functioning of SVM and SMO. 

In the next set of experiments we introduced noise in the actual concept to be 

learned. Noise was introduced by changing the vertex/edge labels and by 

adding/removing edges of the concept. We have considered a dataset consisting of 10 

positive and 10 negative examples. We have considered a ring of size N, with five 
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positive examples having the pure concept while noise is introduced into the remaining 

5 positive concepts. Figure 5.7 shows an example setup of such a dataset for a ring of 

size 5. 

Figure 5.7 Ring Domain Experiment with Noise in Concept. (a) pure ring concept, (b) 
noise as unwanted edge, (c) noise as unwanted vertex label and (d) noise as self-loop. 

 
Figure 5.7 shows various ways of introducing noise in the concept to be learned. 

Figure (5.7.a) is the actual concept to be learned. In figure (5.7.b) noise has been 

introduced as an additional edge in the concept. In figure (5.7.c) noise has been 

introduced as an incorrect vertex-label. Similarly, in figure (5.7.d), noise has been 

introduced as a self loop. The dataset was initially generated with 10 positive and 10 

negative examples. Noise was then manually introduced as described above. The final 
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training set consisted of 5 positive examples with pure ring concepts, 5 positive 

examples with noise in them and remaining 10 negative examples. The introduction of 

such noise makes it difficult and sometimes impossible for any system to learn the 

desired concept efficiently. 

The parameters set for Subdue are as follows: 

1. – eval = 3 (Set cover.) 

2. – limit (default)  

3. – iterations = 2 (Sufficient to cover all the concepts necessary to be 

learned.) 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1 (default) 

Table 5.1 Ring Domain Experiment with Noise in Concept. 
 

size of ring 
subdue accuracy 

(training set) 
svm accuracy 
(training set) 

3 55 % 90%
4 55% 95%
5 60% 100%
6 60% 95%
7 55% 95%

From table 5.1, we observe that the performance of Subdue for learning a 

simple ring concept in the presence of noise has reduced. SVM- graph kernel on the 

other hand shows comparatively better performance. This is due to the fact that the 

concepts learned by Subdue from the ring domain with noise, are not the complete ring 

structure as desired. Hence, the presence of noise in the concept causes Subdue to learn 
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an incomplete concept reducing its classification efficiency. We experimented with the 

same dataset with increasing beam-width for Subdue. We observed that in this case 

Subdue gave the same performance, even though we provided it larger limits to search 

the hypothesis space. We can thus comment that this is a potential drawback of  

Subdues representation wherein it fails to learn the desired concept in the presence of 

noise in the concept. 

In the next set of experiments, we have concentrated on the ability of both 

search-based and kernel-based systems to learn a tree-like concept. As we have 

implemented a random tree graph kernel in the kernel-based approach, we can predict a 

better performance of SVM with a random tree graph kernel as compared to Subdue. 

Figure 5.8 shows a 3-level and a 4-level tree with both positive and negative example. 

The positive graph is a complete binary tree of level-n. The negative graph is a similar 

tree with one fewer vertex. Due to this, the only differentiating structure between a 

positive and negative graph is the tree structure of level-n.  Hence the concept to be 

learned is by minimum a complete binary tree. All the vertices of the tree have label ‘V’ 

while the edges are undirected and labeled ‘E’. 
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Figure 5.8 Simple Tree Domain. 

 

The parameters set for Subdue are as follows: 

1. – eval = 3 (Set cover.) 

2. – limit = 100 (Specially for trees with level 4 and above) 

3. – iterations = 10 (Sufficient to cover all the concepts necessary to be 

learned.) 

The parameters set for SVM are as follows: 

1. – t  = 4 (Graph kernel.) 

2. – u = 1 (default) 
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Figure 5.9 Chart - Simple Tree Domain. 

Figure 5.9 shows the performance (time complexity) of the systems in learning 

a simple tree concept. A point to be noted is that the performance of both the systems in 

terms of training set classification accuracy has been 100%. As we had predicted, SVM 

outperforms Subdue in terms of speed in learning a tree-like concept. We also observe 

that Subdue is incapable of learning larger concepts in a comparable time frame with 

SVM. The larger the concept, the more exploration of the hypothesis space is needed to 

learn the concept. This is due to the fact that Subdue generates its hypothesis space from 

the given training examples. As discussed in Subdue’s algorithm, the candidate 

hypotheses are generated by expanding the subgraph by a vertex and edge or an edge in 
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all possible directions. Thus as the concepts get larger, more and more of the hypothesis 

space need to be explored to learn the particular concept.  

Figure 5.10 Tree Domain Experiment with Noise in Dataset. 

Figure 5.10 shows noise being introduced in the tree domain dataset as adjacent 

irrelevant nodes. We will consider two adjoining nodes, per node of the desired concept, 

as shown in figure 5.10. The presence of such irrelevant nodes causes the search-based 

approach to explore the hypothesis space to a larger extent. Figure 5.11 shows the 

performance of both search-based and kernel-based approach in terms of time, 

maintaining 100% classification accuracy on the training set. 

The parameters set for Subdue are as follows: 

1. – eval = 3 (Set cover.) 

2. – limit = 100 (Specially for trees with level 4 and above) 
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3. – iterations = 10 (Sufficient to cover all the concepts necessary to be 

learned.) 

The parameters set for SVM are as follows: 

1. – t  = 4 (Graph kernel.) 

2. – u = 1 (default). 
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Figure 5.11 Chart - Tree Domain Experiment with Noise in Dataset. 

The introduction of noise in the dataset results in Subdue spending more time 

analyzing the irrelevant nodes along with the actual concept in order to learn the 

concept. SVM, on the other hand, gives a much better performance. The main reason 

for such an increase in Subdue’s time complexity is due to the fact that Subdue expands 

one vertex at a time. As discussed in chapter 3, Subdue expands one vertex or one edge 
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of the substructure at a time, until a substructure is found that covers many positive, but 

fewer negative example graphs. On the other hand, SVM with graph-kernel does a 

simple graph traversal and match. Due to the tree nature of the concept to be learned, 

SVM with the implemented random tree graph kernel is able to traverse and match the 

given graphs in a much more efficient way than Subdue.  

The figure 5.12 shows the performance of Subdue in the case of a simple tree 

concept, a tree concept with one irrelevant node and a tree concept with two irrelevant 

nodes. 
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Figure 5.12 Chart - Subdue’s Performance in Ring domain with Varying 

Complexity. 
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Figure 5.13 shows the performance of SVM in case of a simple tree concept, a 

tree concept with one irrelevant node and a tree concept with two irrelevant nodes. 
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Figure 5.13 Chart - SVM’s Performance in Tree domain with Varying 

Complexity. 

From the above results (figure 5.12 and figure 5.13), we observe that Subdue’s 

time complexity increases at a faster rate compared to SVM as the dataset becomes 

more and more complex, though the concept needed to be learned is the same. The 

improved complexity observed is due to the implementation of the SMO algorithm in 

the SVM, which solves the QP problem in a more efficient manner. Refer to Chapter 3 

for more details on the functioning of SVM. More information about the working of 

SMO can be found at [36]. 
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In the next set of experiments we introduced noise in the actual concept to be 

learned. Noise was introduced by changing the vertex/edge labels and by 

adding/removing edges of the concept. We have considered a dataset consisting of 10 

positive and 10 negative examples. We have considered a tree of level N, with five 

positive examples having the pure concept while noise is introduced into the remaining 

5 positive concepts. The dataset was generated in a similar way as in the case of the ring 

domain with noise in the concept. Figure 5.14 shows an example setup of such a dataset 

for a tree of level 3. 

Figure 5.14 Tree Domain Experiment with Noise in Concept. (a) pure tree concept, (b) 
noise as unwanted edge, (c) noise as unwanted vertex label and (d) noise as double 

edge.    
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Figure 5.14 shows various ways of introducing noise in the concept to be 

learned. Figure 5.14.a is the actual concept to be learned. In figure 5.14.b noise has been 

introduced as an additional edge in the concept. In figure 5.14.c noise has been 

introduced as an incorrect vertex-label. Similarly, in figure 5.14.d, noise has been 

introduced as a double edge. The introduction of such noise makes it difficult and 

sometimes impossible for the systems to learn the desired concept efficiently. 

The parameters set for Subdue are as follows: 

1. – eval = 3 (Set cover.) 

2. – limit = 100 (Specially for trees with level 4 and above) 

3. – iterations = 10  

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

Table 5.2 Tree Domain Experiment with Noise in Concept. 
 

Level 
subdue accuracy 

(training set) 
svm accuracy 
(training set) 

2 95.00% 100.00%
3 60.00% 95.00%
4 55.00% 95.00%
5 55.00% 50.00%
6 65.00% 100.00%

From table 5.2, we observe that the performance of Subdue for learning a 

simple tree concept in the presence of noise has reduced. SVM- graph kernel on the 

other hand shows comparatively better performance. This is due to the fact that the 
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concepts learned by Subdue from the tree domain with noise is not the complete tree 

structure as desired. Hence, the presence of noise in the concept causes Subdue to learn 

an incomplete concept reducing its classification efficiency.  

From the above sets of results, we can conclude that Subdue is not capable of 

learning structurally large concepts in a comparable time frame with SVM.  The time 

complexity of Subdue increases in case of datasets with irrelevant information. Subdue 

also falls short of learning the actual concepts in the presence of the noise in both 

datasets and the concept. Noise is introduced in the dataset as the number of irrelevant 

nodes present around the actual concept to be learned. Due to this, a search-based 

approach explores a larger hypothesis space taking such noise into consideration to 

learn the concept. Noise can also be embedded into the concept itself. We have 

discussed a few ways of embedding noise in the concept in the experiments above. We 

have also observed that the kernel-based approach is able to give better performance in 

terms of both time and accuracy as compared to a search-based approach in case of 

structurally large concepts and datasets involving noise. 

 

5.1.2 Structurally Complex Concepts 

We will now try to analyze the performance of both systems in learning 

structurally complex concepts. We considered a series of completely connected graphs 

for the same. Our aim here is to see how a search-based approach and kernel-based 

approach learn a complex concept. We have considered 10 positive and 10 negative 

examples. The positive example is a complex concept with varying degree of 
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complexity. The negative examples are subsets of the positive example under 

consideration, such that the only differentiating factor between a positive and negative 

example is the complex structure.  Figure 5.15 shows a 4 vertex completely connected 

graph with positive and negative examples. 

Figure 5.15 Structurally Complex Structures Domain. 

The parameters set for Subdue are as follows: 

1. – eval = 3 (Set cover.) 

2. – limit (default) 

3. – iterations = 2 (Sufficient to cover all the concepts necessary to be 

learned.) 

The parameters set for SVM are as follows: 

3. – t = 4 (Graph kernel.) 

4. – u = 1 (default). 
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Figure 5.16 Chart - Structurally Complex Structures Domain. 

Figure 5.16 shows the performance of the systems in learning structurally-

complex concepts. One point to be noted is that the training set accuracy in case of both 

systems was 100%. We can observe that the search-based approach requires more 

exploration of the hypothesis space  when learning structurally complex concepts. The 

kernel-based approach on the other hand has shown good performance because SVM 

with the implemented random tree graph kernel is able to reach all the vertices and 

edges of the concept in a faster way as compared to Subdue, which expands one vertex 

or one edge at a time to compute the potential substructure. 

 From the above results, we can observe that with the increase of structural 

complexity of a concept to be learned, the exploration of the hypothesis space results in 
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an increase in the time complexity. We also observe that in the case of Subdue, the time 

involved in learning a particular concept also depends on the amount of irregularities 

(noise) in and around the concept. Thus from the above set of experiments on a variety 

of artificial domains we have observed that Subdue though able to learn larger concepts, 

is not capable of learning larger concepts in a comparable time frame as SVM. The 

main reason behind the time complexity of Subdue is the basic Subdue algorithm. As 

we discussed in chapter 3, Subdue implements a inexact graph match algorithm. As we 

have already seen, the time complexity of inexact graph match is O(nm+1). Thus as the 

umber of nodes in the graphs increase, the time complexity involved with Subdue 

increases. SVM on the other hand shows much better time complexity due to the SMO 

and the kernel implementation in its basic algorithm. As discussed in chapter 3, the 

SMO approach is used to solve the QP problem in a more efficient and linear fashion. 

The random tree graph kernel implemented has time complexity O(n2). These factors 

result in a faster working of the SVM algorithm. 

 

5.2 Mutagenesis Data Domain

We have discussed the Mutagenesis data in chapter 4, section 4.2. We have 

considered the graph-based representation of Mutagenesis data as presented by [27]. 

Initially we consider a dataset consisting of all the related information such as atom 

type, bond type, element and charge. We will try to explore the idea of how a system is 

capable of learning a concept given all the information associated with the concept. The 

inclusion of this additional information makes the dataset structurally large. Figure 4.5 
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shows a template example of a bond between a carbon and hydrogen atom. Refer to 

appendix A.1 and appendix A.2 for more details on the graph representation of this 

dataset used by both Subdue and SVM. 

The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit = 100 

3. – iterations = 25  

4. – nfolds = 10 (10-fold cross validation) 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

3. – q = 2 

Table 5.3 Mutagenesis Data with Atom, Bond, Atom Type, Bond Type, Element and 
Charge. 

 
System 

 
Training Set 

10-fold cross 
validation 

time 
(sec) 

Subdue 73.36% 61.30% 49380 
SVM-Graph Kernel 90.24% 87.16% 1050 

From the results in table 5.3 we can observe that SVM has performed 

considerably better than Subdue. We can also observe that the time complexity in case 

of Subdue is much larger than SVM. One reason can be the presence of a large amount 

of irrelevant information around the concept to be learned which causes Subdue to 

explore a much larger hypothesis space. Another reason can be the fact that the concept 

to be learned is structurally large or complex. From the substructures learned, we can 
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see that Subdue performs classification mostly based on the charges involved rather 

than on molecular structure. Some of the concepts learned by Subdue are listed in 

appendix B.1. 

As we have observed in the case of artificial domains, Subdue has shown a 

larger exploration of the hypothesis space in search of a particular concept when the 

dataset included irrelevant information. In the next set of experiments, we will try to 

reduce some of the information associated with the atoms and bonds to analyze the 

performance of  Subdue and SVM. 

 In the above experiment we observed that the classification was done based on 

the partial charges involved with the atoms. In our next experimentation, we will 

concentrate on learning concepts without the charges involved to see if Subdue is able 

to learn a better concept for classification. This data representation is similar to the one 

shown in figure 4.4. The basic difference is the absence of the partial charge associated 

with each atom. 
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Figure 5.17 Mutagenesis Data – Without Partial Charges. 

The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit = 100  

3. – iterations = 25  

4. – nfolds = 10 (10-fold cross validation) 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1 (default). 

3. – q = 2 
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Table 5.4 Mutagenesis Data – Without Partial Charges. 
 

System 
 

Training Set 
10-fold cross 

validation 
time 
(sec) 

Subdue 63.02% 62. 80% 300 
SVM-Graph Kernel 81.47% 78.45% 690 

From table 5.4, we once again observe that SVM outperforms Subdue in case of 

classification accuracy. Subdue, however, has show some improvement in the time 

complexity and accuracy as compared to the results shown in table 5.3. However from 

the above result we can see that removal of information, such as the partial charges has 

not greatly improved Subdues classification accuracy.  For SVM we observe that as the 

amount of information in the dataset is reduced, the time involved for the random tree 

graph kernel to traverse through the graphs decreases thus reducing the time complexity 

involved. This supports our results from figure 5.6 and figure 5.13. 

 In the next dataset under consideration, we will further reduce the amount of 

information associated with the dataset. This is done by removing all the ‘Atom Type’ 

and ‘Bond Type’ information associated with the atoms and bonds. A basic template 

representing the dataset is shown in figure 5.18.  
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Figure 5.18 Mutagenesis Data – Without Partial Charges, Atom Type and Bond Type. 
 

The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit = 100 

3. – iterations = 25  

4. – nfolds = 10 (10-fold cross validation) 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

3. – q = 2 
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Table 5.5 Mutagenesis Data without Partial Charges, Atom Type and Bond Type. 
 

System 
 

Training Set 
10-fold cross 

validation 
time 
(sec) 

Subdue 63.45% 60.00%  53000 
SVM-Graph Kernel 79.75% 76.25% 310 

From table 5.5, we can observe that the removal of additional information such 

as the ‘Atom Type’ and ‘Bond Type’ has not made any significant improvement in the 

performance of both systems. The only change observed in case of Subdue is the 

increase in the time complexity.  This is due to the fact that Subdue in the case of the 

given dataset has to explore the hypothesis space to a much larger extent in order to find 

an optimal concept. The larger the search through the hypothesis space the higher is the 

time complexity. SVM on the other hand has shown a reduction in the time complexity. 

This supports our observations from figure 5.6 and figure 5.13. The fewer the number 

of features involved, the less computation involved and hence less time complexity. For 

this dataset, we observe no significant difference in the classification accuracy for both 

the systems. 

In the next dataset under consideration, we further reduced the amount of 

information associated with the atoms and bonds in the dataset. A basic template of the  

dataset is shown in figure 5.19. 
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Figure 5.19 Mutagenesis Data- Atom and Elements. 

This data representation is similar to the one shown in figure 5.18. The basic 

difference is the declaration of each element as an atom and introducing a bond as an 

edge between two atoms.  

The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit = 100 

3. – iterations = 25  

4. – nfolds = 10 (10-fold cross validation) 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

3. – q = 2 
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Table 5.6 Mutagenesis Data with Atoms, Elements and Bonds. 
 

System 
 

Training Set 
10-fold cross 

validation 
time 
(sec) 

Subdue 60.85% 60.00% 1350 
SVM-Graph Kernel 84.74% 76.52% 140 

From table 5.6 we once again observe that neither Subdue or SVM have shown 

any significant improvement in classification accuracy. However a significant 

difference is observed in the time complexity of both Subdue and SVM. As we have 

discussed in the artificial datasets, as the number of features involved in the dataset 

reduces, the time complexity associated with SVM reduces. In case of Subdue we can 

comment that Subdue is able to find substructures that cover most of the positive 

examples and fewer negative examples in much lesser time as compared to the previous 

dataset.  

For the above Mutagenesis datasets we observe in table 5.1 to table 5.6 that 

SVM has outperformed Subdue in terms of both time and accuracy. We have also 

observed that Subdue is not able to learn an optimal concept for classification even as 

we reduced the amount of information in the dataset and hence the classification 

accuracy is low compared to SVM.   

To enhance the performance of the search-based approach, we will try to guide 

the search operation by explicitly introducing background knowledge. In the next set of 

experiments, we will try to analyze the effect of background knowledge on the 

performance of both Subdue and SVM. 
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Figure 5.20 shows a template that represents the introduction of a ‘HUB’ node 

to help learning systems learn disconnected concepts. It might happen that the 

complexity of the concept and its layout in the dataset is such that, it becomes 

computational costly for a learning system to learn the complete concept. By 

introducing the ‘HUB’ node we will try to guide the learning systems in reaching far 

away nodes with ease.  

Figure 5.20 ‘Hub’ Node as Background Knowledge. 
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The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit = 100 

3. – iterations = 25  

4. – nfolds = 10 (10-fold cross validation) 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

3. – q = 2 

Table 5.7 ‘Hub’ Node as Background Knowledge. 
 

System 
 

Training Set 
10-fold cross 

validation 
time 
(sec) 

Subdue 75.56% 63.48% 127 
SVM-Graph Kernel 88.31% 77.83% 850 

From table 5.7 we observe that the introduction of the ‘HUB’ node has helped 

in reducing the time complexity associated with Subdue as compared to the above 

results. SVM on the other hand has shown no such improvement in its performance. 

However, in this case SVM still outperforms Subdue in classification accuracy. 

The next Mutagenesis dataset is a variation of the above dataset (figure 5.20), wherein 

background knowledge is introduced in the form a ‘HUB’ node along with ‘Ia’ and ‘I1’ 

nodes.  These ‘Ia’ and ‘I1’ nodes are indicator variables [27]. They indicate the 

presence of features which are important in distinguishing mutagenesis compounds 

from non-mutagenesis compounds. The ‘Ia’ node indicates the presence of 
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acenthrylenes while ‘I1’ node indicates the presence of three or more fused rings. 

Figure 5.21 shows a schematic representation of the dataset.  

Figure 5.21 ‘Hub’ Node as Background Knowledge with ‘Ia’ and ‘I1’ Nodes. 

The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit = 100 

3. – iterations = 25  

4. – nfolds = 10 (10-fold cross validation) 
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The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

3. – q = 2 

Table 5.8 ‘Hub’ node as Background Knowledge with ‘Ia’ and ‘I1’ Nodes. 
 

System 
 

Training Set 
10-fold cross 

validation 
time 
(sec) 

Subdue 79.00% 78.69% 1100 
SVM-Graph Kernel 80.00% 77.34% 1005 

From the table 5.8, we observe that Subdue has obtained a performance boost in 

terms of both time and classification accuracy as compared to previous results. Thus we 

can comment on the fact that, the introduction of the ‘hub’ node as background 

knowledge with ‘Ia’ and ‘I1’ nodes have resulted in learning of a more accurate concept 

for classification. 

With the success of the ‘hub’ node as introduced background knowledge, let us 

now try to introduce background knowledge in the form of complete chemical 

compounds. Background knowledge in this sense will guide the learning systems to 

understand certain chemical compounds in a better fashion. Figure 5.22 shows the 

schematic representation of such background knowledge in the dataset. We will use this 

representation with ‘benzene’ as the concept. Hence we introduce node ‘benzene’ that 

connects to all the atoms that form the benzene compound. The main functionality of 

‘compound’ is to guide the systems to learn a particular concept directly. Our aim is to 
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see if the systems taken into consideration are able to make use of the embedded 

background knowledge to improve classification performance. 

Figure 5.22 ‘Concept’ Node as Background Knowledge. 

The compound in this case is ‘benzene’, which connect to the surrounding six 

carbon atoms that form the benzene ring as shown in figure 5.23.  
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Figure 5.23 ‘Benzene’ as Embedded ‘concept’. 

The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit = 100 

3. – iterations = 25  

4. – nfolds = 10 (10-fold cross validation) 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

3. – q = 2 
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Table 5.9 ‘Concept’ Node as Background Knowledge. 
 

System 
 

Training Set 
10-fold cross 

validation 
time 
(sec) 

Subdue 62.10% 60.88% 1480 
SVM-Graph Kernel 81.45% 75.65% 270 

From table 5.9, we observe that by introducing the background knowledge in 

terms of a compound concept has not improved the performance of Subdue. SVM has 

maintained a similar performance as before.  

From the above experiments we observe that Subdue is unable to learn 

molecular structure in close proximity to those discussed in figure 4.2. In the next 

dataset, we will concentrate on the capability of the systems to learn a well-defined 

molecular structure as in figure 4.2. We will hence consider a Mutagenesis domain that 

consists of just atoms and bonds. This dataset was provided by Akihiro Inokuchi, Tokyo 

Research Laboratory IBM Japan. The graph representation of this dataset is shown in 

figure 4.2. The Mutagenesis data under consideration is a basic dataset with atoms and 

bonds. Each atom is a carbon C, hydrogen H, nitrogen N, chlorine CL, or oxygen O.  

The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit = 100 

3. – iterations = 25 

4. – nfolds = 10 (10-fold cross validation) 
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The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

3. – q = 2 

Table 5.10 Mutagenesis Data with Atoms and Bonds. 
 

System 
 

Training Set 
10-fold cross 

validation 
time 
(sec) 

Subdue 69.30% 68.95% 1579 
SVM-Graph Kernel 93.13% 81.40% 17 

From table 5.10, we observe that SVM outperforms Subdue in terms of both 

time and accuracy.  We will now try to analyze some concepts learned by Subdue which 

are shown in figure 5.24. 

Figure 5.24 Molecular Structures Learned. 
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From figure 5.24, we notice that Subdue is not able to learn any of the 

molecular structures as described in figure 4.2. However, the concepts learned are parts 

of the various molecular structures shown in figure 4.2. The performance of SVM 

indicates that the random tree graph kernel is successful in traversing the given datasets 

and calculating cost optimal enough to generate a good hyperplane. As the number of 

nodes (features) in the dataset under consideration is less, the dimension of the feature 

space will be less, thus reducing the time complexity involved. A fewer number of 

features indicates less computation involved. 

We experimented with the Mutagenesis data from various perspectives. We 

initially tried to learn a concept from a dataset consisting of all the information 

associated with the atoms and bonds. In this case, we observed that Subdue failed to 

learn an accurate concept as the classification done was purely based on the charges 

associated with the atoms. SVM on the other hand showed comparatively better 

performance in terms of time and accuracy. We then considered experimentation with 

reduction in the information associated with the atoms and bonds, trying to learn a more 

accurate concept that falls in a close proximity to the various mutagenesis compounds 

as shown in figure 4.2.  In these experiments we observe that Subdue did not show 

much improvement in its performance as compared to SVM. A few reasons that support 

these results can be obtained from the artificial domain experiments.  

In the artificial domain experiments, we were able to show that Subdue was 

incapable of learning larger concepts in a comparable time frame as SVM. Though 
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Subdue was able to learn larger concepts, its time complexity was dependent on the 

amount of irrelevant information associated with the concept to be learned. More the 

number of irrelevant information in the dataset, the more was the exploration of the 

hypothesis space. We also observed that Subdue’s performance degraded as compared 

to SVM, while learning concepts and datasets involving noise.  

In our experimentation with datasets with background knowledge for the 

mutagenesis data, we observed that Subdue was incapable of making the optimal use of 

background knowledge in various forms. Subdue was not able to improve its 

performance when background knowledge was introduced in the form of learning a 

chemical compound directly. However, background knowledge in term of a ‘Hub’ node, 

which connected to all the atoms and bonds of the data, provided a significant 

performance improvement for Subdue. This can also mean that background knowledge 

in form of connecting ‘HUB’ node can help learn disconnected concepts. 

To summarize this section, we have seen that SVM has outperformed Subdue in 

terms of time and accuracy in most of the cases. 

 

5.3 Artificial Domain Experiments

Our next aim is to look more deeply into artificial datasets, trying to find 

various scenarios in which each of the systems will be able to outperform each other. To 

understand how a ‘HUB’ node was able to help Subdue improve its performance, we 

will take into consideration one scenario wherein the concept to be learned is 

disconnected. Figure 5.25 shows an example of such a dataset taken into consideration 
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without background knowledge. All the nodes except the concept nodes  are labeled ‘V’ 

and all the edges are labeled ‘E’. 

Figure 5.25 Disconnected Concepts Domain. 

 

Our aim is to learn the disconnected concept C. Note that the node C represents 

a part of the actual disconnected concept to be learned. Our aim is to observe how a 

‘HUB’ node can be used to guide the system in reaching the disconnected concept 

efficiently. We considered 10 positive and 10 negative training examples. Figure 5.26 

shows an example of the dataset with ‘HUB’ as background knowledge. All the nodes 

except the concept nodes are labeled ‘V’ and all the edges are labeled ‘E’. The nodes 

colored black indicate the knowledge about the concept to be learned. Let us assume 
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that the vertices v1 and v2 are part of the disconnected concept to be learned. They 

imply the background knowledge we have about the concept to be learned. They can 

also be a part of the remaining graph, as shown by vertices v3 and v4. We will 

introduce the ‘HUB’ node over these vertices to guide the systems in learning the 

disconnected concept.  

Figure 5.26 Disconnected Concepts Domain with ‘HUB’ Node as Background 
Knowledge.  
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The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit (default) 

3. – iterations = 2. 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

Table 5.11 Disconnected Concept Domain with ‘HUB’ Node. 
Background 
knowledge 

(HUB Node) 

Subdue 
accuracy 

(training set) 

 
subdue 

time* (sec) 

SVM 
accuracy 

(training set) 

 
svm  

time* (sec) 
NO 100.00% 300.2 100.00% 0.37 
YES 100.00% 63.84 100.00% 0.43 

(* - Training time + Testing time) 

Figure 5.27 and figure 5.28 show the concepts learned by Subdue in the case of 

above datasets with and without the ‘HUB’ node as background knowledge 

respectively. 

Figure 5.27 Concept learned with ‘HUB’ Node as Background Knowledge. 
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Figure 5.28: Concept learned without ‘HUB’ Node as Background Knowledge. 

From figure 5.27 and figure 5.28 we observe that the concept learned by Subdue 

is large in the case of the dataset with the disconnected concept and no background 

knowledge as compared to dataset with disconnected concept and ‘HUB’ node as 

background knowledge. From table 5.11, we observe that the training and testing time 

involved in the case of the dataset without the ‘HUB’ node is more than in the case of 

dataset with the ‘HUB’ node. This implies that a larger hypothesis space is explored in 

order to learn a larger concept as shown in figure 5.28. The introduction of  the ‘HUB’ 

node helps Subdue in searching for the optimal concept with less exploration of the 

hypothesis space. Thus we can conclude that, in the case of learning a disconnected 

concept, background knowledge in the form of a guiding ‘HUB’ node can improve 

Subdue’s time efficiency. One overhead of introducing background knowledge in this 

form is the preprocessing of the input dataset. An explicit knowledge of the concept to 

be learned is required before introducing the ‘HUB’ node. 

We will now analyze the performance of both systems in domains containing 

negations of concepts. To begin with, let us consider the dataset wherein the positive 

examples contain concepts that are a negation of the concepts in the negative examples 
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as shown in figure 5.29.  In this dataset we are basically trying to learn ¬(square concept 

AND  triangle concept) which is equivalent in learning ¬(square concept) OR ¬(triangle 

concept). We know that Subdue is incapable of learning concepts from such a scenario, 

as the concepts to be learned are in both positive and negative examples. We will try to 

observe how SVM performs in a situation. 

Figure 5.29 Dataset with Negated Concepts. 

We have considered 10 positive and 10 negative examples in this dataset. From 

the 10 positive examples, 5 contained the concept triangle while the remaining 5 

contained the square concept. We will try to analyze the performance of both search-

based and kernel-based approach in such a scenario. 

 

The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit (default) 

3. – iterations = 2. 
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The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

Table 5.12 Dataset with Negated Concepts. 
systems training set 

accuracy 
tIME 
(SEC) 

Subdue 50.00% 0.01 
SVM 100.00% 0.05 

Figure 5.30 Concepts Learned. 

From figure 5.30 we can observe that as predicted Subdue is incapable of 

learning the triangle concept or the square concept. Figure 5.30 indicates that Subdue is 

capable of distinguishing the positive and negative examples only by just one vertex. 

This supports our results in table 5.12, where we observe that Subdue is not able to do a 

good classification. SVM on the other hand gives a 100% training set classification 

accuracy. 

We further modify the testing dataset by removing all the square concepts. The 

new testing dataset contains 10 positive examples with the triangle concept and 10 

negative examples with both triangle and square concept as shown in figure 5.29. 
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Table 5.13 Positive Examples – Triangle Concepts & Negative Examples – Triangle 
Concept AND Square Concept. 

systems training set 
accuracy 

tIME 
(SEC) 

Subdue 50.00% 0.01 
SVM 100.00% 0.05 

Similarly, we modify the testing dataset, by removing all the triangle concepts. 

The new testing dataset contains 10 positive examples with the square concept and 10 

negative examples with  both triangle and square concept as shown in figure 5.29. 

Table 5.14 Positive Examples – Square Concepts & Negative Examples – Triangle 
Concept AND Square Concept. 

systems training set 
accuracy 

tIME 
(SEC) 

Subdue 50.00% 0.01 
SVM 100.00% 0.05 

From table 5.13 and table 5.14, we observe that SVM is able to maintain a 

100% accuracy as compared to Subdue which is incapable of learning in a scenario 

wherein the concepts to be learned are negations. However, the 100% classification 

accuracy by SVM indicates that it is unaffected by the presence of such negated 

concepts. This supports our claim that SVM does not learn any specific concept. All 

that matters is the match between the given graphs which can result in a mapping. 

We will now try to look into a dataset opposite to the one used in the previous 

experiment. We consider 10 positive example consisting of ‘the square concept and the 

pentagon concept’ and the negative examples consisting of 5 examples with the square 

concept and 5 examples with the pentagon concept. In this dataset we are basically 
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trying to learn (square concept AND  pentagon concept). Figure 5.31 shows the setup of 

the dataset.  

Figure 5.31 Dataset with ANDed Concepts. 

The parameters set for Subdue are as follows: 

1. – eval  = 3 (Set cover.) 

2. – limit (default) 

3. – iterations = 2. 

The parameters set for SVM are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

Table 5.15 Dataset with ANDed Concepts. 
systems training set 

accuracy 
tIME 
(SEC) 

Subdue 100.00% 0.05 
SVM 100.00% 0.07 
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From table 5.15, we can observe that both systems are capable giving good 

classification.  The substructures learned by Subdue are shown in figure 5.32. 

Figure 5.32 Concepts Learned. 

Both Subdue and SVM are able to give good performance in classifying the 

given dataset. Subdue is able to learn the optimal concept efficiently thus giving good 

classification performance. In this section we can thus conclude that, Subdue has shown 

poor performance in case of datasets consisting of learning negated concepts where 

SVM have proved its efficiency. 

In our next experiment, we will look into the clique problem. The dataset 

consists of 10 positive examples with a graph with 6 vertices and containing a 

maximum clique of size 4 and negative examples consisting of a partial clique. Figure 

5.33 shows the setup of the dataset. 
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Figure 5.33 Clique Problem. 

Table 5.16 Clique Problem 
systems training set 

accuracy 
tIME 
(SEC) 

Subdue 100.00% 0.02 
SVM 100.00% 0.07 

Figure 5.34 Substructures Learned. 

The concepts learned by Subdue are shown in figure 5.34.  From table 5.16 and 

figure 5.34 we observe that Subdue is able to learn and classify the clique problem 

correctly. SVM too has been able to show good performance in the clique problem 

domain. 
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5.4 Graph Kernel – Inexact Graph Match Kernel

In the follow experiment we will consider the possibility of using Subdue’s 

inexact graph matcher as a kernel function. As discussed in chapter 3, Inexact Graph 

Match tries to compute the cost involved in transforming a given graph G1 into graph 

G2. Thus the Inexact Graph Match computes a cost based on the similarity of the input 

graphs G1 and G2. The cost is less if G1 is more similar to G2. If G1 and G2 are the same, 

then the cost is zero. Similarly, in the worst case, if G1 and G2 are completely different, 

then the maximum cost involved can be given as – 

 Cost = |V1 | + |E1| + |V2| + |E2|

Where, |V1| = number of vertices in G1.

|E1| = number of edges in G1.

|V2| = number of vertices in G2.

|E2 |= number of edges in G2.

This property of Inexact Graph Match makes it a potential candidate for a graph 

kernel.  As discussed in chapter 3, the inexact graph match is continuous in the range [0, 

|V1 | + |E1| + |V2| + |E2|]. Also for a given pair of graphs G1 and G2, K (G1, G2) = K (G2,

G1).  The inexact graph match satisfies the property of being positive definite. We ran 

Support Vector Machine with Inexact Graph Match as a graph kernel on both artificial 

datasets and the Mutagenesis datasets. 

In this set of experiment, as the base system used is the same, i.e., SVM, our 

main aim is to study the kernels evaluated by SVM with both Random Tree Graph 

Kernel and Inexact Graph Match Kernel. For artificial data, we have considered the 
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same dataset as discussed in the simple ring domain experiment (figure 5.1). We have 

considered a dataset of 10 positive and 10 negative examples.  

The parameters set for SVM with inexact graph match and random tree as graph 

kernels, are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 

Table 5.17 Graph Kernels results for simple Ring Domain 
Graph 

Kernels 
kernels 

evaluated 
support vectors training set 

accuracy 
time 

(SEC) 
Random 

Tree 
 

512 
 

10 
 

100.00% 
 

0.59 
Inexact 
Graph 
Match 

 
554 

 
15 

 
100.00% 

 
1.63 

We then applied SVM with both random graph kernel and inexact graph match 

kernel to the mutagenesis data. The mutagenesis data under consideration consisted of 

simple atoms and bonds as shown in figure 4.3. In this case too, we concentrate on 

evaluating the kernel performance with both random tree graph kernel and inexact 

graph match graph kernel. 

 

The parameters set for SVM with inexact graph match and random tree as graph 

kernels, are as follows: 

1. – t = 4 (Graph kernel.) 

2. – u = 1(default). 
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Table 5.18 Graph Kernels results for Mutagenesis Domain 
Graph 

Kernels 
kernels 

evaluated 
support vectors training set 

accuracy 
time 

(SEC) 
Random 

Tree 
 

671 
 

18 
 

87.50% 
 

3.6 
Inexact 
Graph 
Match 

 
944 

 
20 

 
85.00% 

 
6.38 

In table 5.17 we observe that both the kernels have shown 100% classification 

in the ring domain experiment. The evaluating factors here are the number of kernels 

evaluated and the support vectors. We observe that the number of kernels and support 

vectors evaluated in the case of the random tree graph kernel are less compared to 

inexact graph match kernel. A similar observation is seen in table 5.18, where we 

observe that the accuracy of the inexact graph match kernel is less than the random tree 

graph kernel. The time complexity of the inexact graph match kernel is due to the root 

algorithm, which implements a graph isomorphism approach. For more information on 

inexact graph match algorithm and time complexity refer chapter 3. More number of 

kernels evaluated implies more optimization required by SVM to achieve the desired 

default threshold. This default threshold is set in the root algorithm of SVM source code 

and can be changed manually at runtime. In our set of experiments we have maintained 

the default threshold. More about the threshold definition and characteristics can be 

found at http://svmlight.joachims.org/. However, due to its ability to compute the cost 

involved in transforming a given graph G1 into graph G2 and satisfying the basic 

properties of a kernel as discussed in section 3.4, inexact graph match stands as a 

candidate graph kernel. From the above experiment we observe that the implementation 
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of inexact graph match as a graph kernel increases the time complexity of SVM as 

compared to random tree graph kernel. From this we can conclude that one of the major 

reasons for the large time complexity of Subdue as compared to SVM is the use of the  

inexact graph match. The random tree graph kernel approach is a more efficient way of 

calculating cost as compared to inexact graph match. 

 

5.5 Summary

In this chapter we have looked into various artificial domain problems and 

evaluated the performance of the systems. Initially we considered the ring domain and 

tree domain. We evaluated the systems on these domains with of noise introduced in the 

dataset as irrelevant information and as concepts irregularities. We evaluated the 

systems on structurally large and structurally complex concepts.  

We experimented with systems on real-world data – the Mutagenesis domain. 

We observed the systems performance on variation of the Mutagenesis data. We 

observed the effect of removing the additional information involved in the dataset on 

the classification accuracy and time. We analyzed the performance of the systems with 

introduction of background knowledge. We introduce background knowledge as a 

‘HUB’ node connecting all the atoms and bonds. This approach was introduced to try to 

learn disconnected concepts if any.  

We then performed a series of experiments on various artificial datasets 

involving various domains. We experimented with some complex domains such as the 
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clique problems and disconnected concepts. We also studied the effect of background 

knowledge as used in the Mutagenesis domain.  

Finally we introduced Subdue’s inexact graph match as a potential graph kernel. 

We performed experiments in both artificial and real-world domain understanding the 

functioning of both random tree graph kernel and inexact graph match as graph kernel. 

We analyzed the kernels based on the support vectors and kernels evaluated and 

the accuracy achieved. In case of both artificial domains and real-world domains the 

random tree graph kernel performed better than the inexact graph match graph kernel in 

terms of classification accuracy and time. 

From the complete experimentations we performed, we observed that SVM 

outperformed Subdue in almost all domain taken into consideration.  Subdue has shown 

strong potential in case of domains with background knowledge. An in-depth study in 

this direction can help Subdue achieve better performance. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this research we have evaluated and analyzed the functioning of search-based 

and kernel-based systems fro supervised learning from graphs. Our candidate for a 

search-based system is Subdue and for kernel-based is Support Vector Machine with 

graph kernel. We have implemented the Random Tree Graph Kernel as a graph kernel 

to operate with SVM. The goal is to evaluate the performance of these systems based on 

performance metrics such as classification accuracy and time complexity. From a 

theoretical perspective, a search-based approach explores through the hypothesis space 

searching for candidate hypotheses for classification. Subdue as a search-based system 

generates candidate subgraphs.  Subgraphs are generated, expanded and evaluated as 

more examples are explored. The hypothesis space consists of these substructures. 

Subdue generates candidate hypotheses from the examples it is learning to classify. The 

main reason behind Subdue’s time complexity is the application of graph isomorphism 

approach in its core algorithm. The inexact graph match implemented by Subdue 

includes additional complexity thus increasing the computational time involved.  From 

the set of artificial domain and real-world domain experiments we have observed that, 

though Subdue is capable of learning larger concepts, it is incapable of learning large 

concepts in a comparable time frame with SVM. This gives SVM an advantage over 

Subdue for implementation in real-world situation where the data is dynamic and 

changing. Subdue has also failed to achieve good performance in case of datasets 
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involving noise. Noise was added in two ways. In first case we added noise in the 

dataset as irrelevant nodes. In second method, noise was added as irregularities in the 

concept to be learned. In both the cases we observed that Subdue failed to learn the 

desired concept and hence gave a comparatively poor performance. In artificial and 

real-world domains we experimented with various situations analyzing the performance 

of the systems. We observed that in most of the cases SVM with graph kernel 

outperformed Subdue in terms of both accuracy and time. 

SVM’s better performance is due to the fact that SVM does not learn any 

particular concept to classify the data. On the contrary, the graph kernel just tries to find 

the most common factor between any two given graphs. In our case, this factor is 

provided by the random tree graph kernel. The main idea behind the random tree graph 

kernel is to traverse the given two graphs in such a way that the maximum depth in both 

graphs can be achieved. The calculated cost factor is then used to map the two graphs 

into a higher-dimensional feature space. Due to this nature of the graph kernel, SVM is 

not affected much by the noise in the dataset or the number of features involved. Thus 

for a good classification, the better the kernel involved, the better is the match cost 

computed and the better is the mapping done. The resulting higher-dimensional feature 

space is hence a well-spaced feature space. A good mapping results in a simple linear 

hyperplane. In most of the datasets we considered, we observe that the random tree 

graph kernel is able to map the given graphs into a well-spaced feature space, thus 

achieving a good classification. The time complexity in case of SVM is due to the SMO 

algorithm included in the basic SVM algorithm. The main aim while generating a good 
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hyperplane is to solve a Quadratic Problem. The SMO as discussed in [36], gives an 

efficient way of solving such QPs in linear time frame. Also, as the number of features 

involved with each input example reduces, the complexity of the feature space reduces, 

thus reducing the computational time involved. 

From out experiment involving use of inexact graph match as a potential graph 

kernel, we observer that the introduction of inexact graph match as a substitute for 

random tree graph kernel increases the time complexity of SVM by a larger margin. 

Hence we can conclude that though inexact graph match is an efficient way of 

calculating the graph match cost, is not efficient in a comparable time frame with 

random tree graph kernel. 

From an experimental perspective we observe that SVM has outperformed 

Subdue in almost all considered artificial and real-world domains. Even though 

Subdue’s inexact graph match proves a good candidate for a graph kernel the main 

drawback is the time complexity involved which prevents it from being applied in 

practical use. We also observed that Subdue showed strong potential in domains with 

particular background knowledge. An in-depth look into this category can help 

understand the various aspects that Subdue can utilize to enhance performance.  There 

are various other ways background knowledge can be embedded in datasets. In our 

experimentation we have taken into consideration two approaches. Broader looks into 

the implementation of background knowledge to guide Subdue to understand and learn 

better concepts are a key to enhancing Subdues performance. To improve the time 

complexity of Subdue the root algorithm need to introduce some additional heuristics. 
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Subdue is a general purpose knowledge discovery and learning system. A heuristic that 

would help Subdue work more efficiently with certain kinds of data can reduce the 

learning time  involved with Subdue as a classifier. Subdue implements a greedy search 

technique to search the hypothesis space for potential concepts. One heuristic can be 

implementing a proper use of background knowledge. Background knowledge should 

be provided either implicitly to the system at runtime or explicitly through the dataset. 

Another kind of heuristic can be implemented in the case of domains wherein we have 

some idea of the concepts to be learned. In such a case weight can be assigned to nodes 

and edges giving them more importance than the others. This can guide Subdue 

internally to learn the desired concept in a much simpler way. 

As additional future work, we would like to investigate why SVM with random 

tree graph kernel performs better than Subdue algorithmically. We would like to 

investigate the way a feature space is generated by SVM and how classification is done 

in more detail. We would like to investigate how SVM learns a particular concept and 

the role of the kernel function in the mapping of the input space to the feature space. We 

will also experiment with more datasets analyzing the performance of the systems. We 

will also compare various other graph kernels with the implemented random tree graph 

kernel and evaluate their performance.  A good future approach will be implementation 

of random tree graph kernel as a substitute for the inexact graph match function in 

Subdue. From our experimentation with both inexact graph match and random tree walk 

as graph kernels with SVM, we observed that the main drawback with inexact graph 

match is its time complexity. Besides this, random tree graph kernel has proved to be a 
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considerable graph matching approach. We would hence like to implement random tree 

graph kernel or other such graph kernels with lower matching accuracy as a substitute 

for the inexact graph match function and analyze the performance of Subdue.  

 



113

APPENDIX A 
 

GRAPH REPRESENTATION OF MUTAGENESIS DATA USED BY SUBDUE AND 
SUPPORT VECTOR MACHINE
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A.1: SUBDUE REPRESENTATION: MUTAGENESIS DATA - ATOMS, BONDS, 

ATOM TYPE, BOND TYPE, ELEMENTS AND CHARGES 

XP 
v 1 atom 
v 2 atom 
v 3 atom 
v 4 atom 
v 5 atom 
v 6 atom 
v 7 atom 
v 8 atom 
v 9 atom 
v 10 atom 
v 11 atom 
v 12 atom 
v 13 atom 
v 14 atom 
v 15 atom 
v 16 atom 
v 17 atom 
v 18 atom 
v 19 atom 
v 20 atom 
v 21 atom 
v 22 atom 
v 23 atom 
v 24 atom 
v 25 atom 
v 26 atom 
v 27 atom 
v 28 atom 
v 29 atom 
v 30 atom 
v 31 c
v 32 c
v 33 c
v 34 c
v 35 c
v 36 c
v 37 h
v 38 h
v 39 c
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v 40 c
v 41 c
v 42 c
v 43 h
v 44 h
v 45 c
v 46 c
v 47 c
v 48 h
v 49 h
v 50 c
v 51 c
v 52 c
v 53 h
v 54 h
v 55 n
v 56 o
v 57 o
v 58 n
v 59 h
v 60 h
v 61 22
v 62 22
v 63 27
v 64 27
v 65 27
v 66 22
v 67 3
v 68 3
v 69 27
v 70 27
v 71 22
v 72 22
v 73 3
v 74 3
v 75 22
v 76 22
v 77 27
v 78 3
v 79 3
v 80 22
v 81 22
v 82 22
v 83 3
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v 84 3
v 85 38
v 86 40
v 87 40
v 88 32
v 89 1
v 90 1
v 91 -0.111 
v 92 -0.111 
v 93 0.019 
v 94 -0.081 
v 95 0.019 
v 96 -0.111 
v 97 0.149 
v 98 0.15
v 99 -0.081 
v 100 0.019 
v 101 -0.111 
v 102 -0.111 
v 103 0.15 
v 104 0.15 
v 105 -0.111 
v 106 -0.111 
v 107 0.019 
v 108 0.149 
v 109 0.149 
v 110 -0.111 
v 111 -0.111 
v 112 -0.111 
v 113 0.15 
v 114 0.149 
v 115 0.82 
v 116 -0.38 
v 117 -0.38 
v 118 -0.76 
v 119 0.35 
v 120 0.35 
v 121 bond 
v 122 bond 
v 123 bond 
v 124 bond 
v 125 bond 
v 126 bond 
v 127 bond 
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v 128 bond 
v 129 bond 
v 130 bond 
v 131 bond 
v 132 bond 
v 133 bond 
v 134 bond 
v 135 bond 
v 136 bond 
v 137 bond 
v 138 bond 
v 139 bond 
v 140 bond 
v 141 bond 
v 142 bond 
v 143 bond 
v 144 bond 
v 145 bond 
v 146 bond 
v 147 bond 
v 148 bond 
v 149 bond 
v 150 bond 
v 151 bond 
v 152 bond 
v 153 bond 
v 154 7
v 155 7
v 156 7
v 157 7
v 158 7
v 159 7
v 160 1
v 161 1
v 162 7
v 163 7
v 164 7
v 165 7
v 166 7
v 167 1
v 168 1
v 169 7
v 170 7
v 171 7
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v 172 7
v 173 1
v 174 1
v 175 7
v 176 7
v 177 7
v 178 7
v 179 1
v 180 1
v 181 1
v 182 2
v 183 2
v 184 1
v 185 1
v 186 1
d 1 31 element 
d 1 61 atom_type 
d 1 91 charge 
d 2 32 element 
d 2 62 atom_type 
d 2 92 charge 
d 3 33 element 
d 3 63 atom_type 
d 3 93 charge 
d 4 34 element 
d 4 64 atom_type 
d 4 94 charge 
d 5 35 element 
d 5 65 atom_type 
d 5 95 charge 
d 6 36 element 
d 6 66 atom_type 
d 6 96 charge 
d 7 37 element 
d 7 67 atom_type 
d 7 97 charge 
d 8 38 element 
d 8 68 atom_type 
d 8 98 charge 
d 9 39 element 
d 9 69 atom_type 
d 9 99 charge 
d 10 40 element 
d 10 70 atom_type 
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d 10 100 charge 
d 11 41 element 
d 11 71 atom_type 
d 11 101 charge 
d 12 42 element 
d 12 72 atom_type 
d 12 102 charge 
d 13 43 element 
d 13 73 atom_type 
d 13 103 charge 
d 14 44 element 
d 14 74 atom_type 
d 14 104 charge 
d 15 45 element 
d 15 75 atom_type 
d 15 105 charge 
d 16 46 element 
d 16 76 atom_type 
d 16 106 charge 
d 17 47 element 
d 17 77 atom_type 
d 17 107 charge 
d 18 48 element 
d 18 78 atom_type 
d 18 108 charge 
d 19 49 element 
d 19 79 atom_type 
d 19 109 charge 
d 20 50 element 
d 20 80 atom_type 
d 20 110 charge 
d 21 51 element 
d 21 81 atom_type 
d 21 111 charge 
d 22 52 element 
d 22 82 atom_type 
d 22 112 charge 
d 23 53 element 
d 23 83 atom_type 
d 23 113 charge 
d 24 54 element 
d 24 84 atom_type 
d 24 114 charge 
d 25 55 element 
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d 25 85 atom_type 
d 25 115 charge 
d 26 56 element 
d 26 86 atom_type 
d 26 116 charge 
d 27 57 element 
d 27 87 atom_type 
d 27 117 charge 
d 28 58 element 
d 28 88 atom_type 
d 28 118 charge 
d 29 59 element 
d 29 89 atom_type 
d 29 119 charge 
d 30 60 element 
d 30 90 atom_type 
d 30 120 charge 
d 121 154 bond_type 
d 122 155 bond_type 
d 123 156 bond_type 
d 124 157 bond_type 
d 125 158 bond_type 
d 126 159 bond_type 
d 127 160 bond_type 
d 128 161 bond_type 
d 129 162 bond_type 
d 130 163 bond_type 
d 131 164 bond_type 
d 132 165 bond_type 
d 133 166 bond_type 
d 134 167 bond_type 
d 135 168 bond_type 
d 136 169 bond_type 
d 137 170 bond_type 
d 138 171 bond_type 
d 139 172 bond_type 
d 140 173 bond_type 
d 141 174 bond_type 
d 142 175 bond_type 
d 143 176 bond_type 
d 144 177 bond_type 
d 145 178 bond_type 
d 146 179 bond_type 
d 147 180 bond_type 
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d 148 181 bond_type 
d 149 182 bond_type 
d 150 183 bond_type 
d 151 184 bond_type 
d 152 185 bond_type 
d 153 186 bond_type 
d 1 121 connect 
d 121 2 connect 
d 2 122 connect 
d 122 3 connect 
d 3 123 connect 
d 123 4 connect 
d 4 124 connect 
d 124 5 connect 
d 5 125 connect 
d 125 6 connect 
d 6 126 connect 
d 126 1 connect 
d 1 127 connect 
d 127 7 connect 
d 2 128 connect 
d 128 8 connect 
d 4 129 connect 
d 129 9 connect 
d 9 130 connect 
d 130 10 connect 
d 10 131 connect 
d 131 11 connect 
d 11 132 connect 
d 132 12 connect 
d 12 133 connect 
d 133 5 connect 
d 11 134 connect 
d 134 13 connect 
d 12 135 connect 
d 135 14 connect 
d 3 136 connect 
d 136 15 connect 
d 15 137 connect 
d 137 16 connect 
d 16 138 connect 
d 138 17 connect 
d 17 139 connect 
d 139 9 connect 
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d 15 140 connect 
d 140 18 connect 
d 16 141 connect 
d 141 19 connect 
d 17 142 connect 
d 142 20 connect 
d 20 143 connect 
d 143 21 connect 
d 21 144 connect 
d 144 22 connect 
d 22 145 connect 
d 145 10 connect 
d 20 146 connect 
d 146 23 connect 
d 21 147 connect 
d 147 24 connect 
d 25 148 connect 
d 148 6 connect 
d 26 149 connect 
d 149 25 connect 
d 27 150 connect 
d 150 25 connect 
d 22 151 connect 
d 151 28 connect 
d 28 152 connect 
d 152 29 connect 
d 28 153 connect 
d 153 30 connect 

 

A.2: SVM REPRESENTATION: MUTAGENESIS DATA - ATOMS, BONDS, 

ATOM TYPE, BOND TYPE, ELEMENTS AND CHARGES 

1 1:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1 9:1 10:1 11:1 12:1 13:1 14:1 15:1 16:1 17:1 18:1 19:1 
20:1 21:1 22:1 23:1 24:1 25:1 26:1 27:1 28:1 29:1 30:1 31:2 32:2 33:2 34:2 35:2 36:2 
37:3 38:3 39:2 40:2 41:2 42:2 43:3 44:3 45:2 46:2 47:2 48:3 49:3 50:2 51:2 52:2 53:3 
54:3 55:4 56:5 57:5 58:4 59:3 60:3 61:6 62:6 63:7 64:7 65:7 66:6 67:8 68:8 69:7 70:7 
71:6 72:6 73:8 74:8 75:6 76:6 77:7 78:8 79:8 80:6 81:6 82:6 83:8 84:8 85:9 86:10 87:10 
88:11 89:12 90:12 91:13 92:13 93:14 94:15 95:14 96:13 97:16 98:17 99:15 100:14 
101:13 102:13 103:17 104:17 105:13 106:13 107:14 108:16 109:16 110:13 111:13 
112:13 113:17 114:16 115:18 116:19 117:19 118:20 119:21 120:21 121:22 122:22 
123:22 124:22 125:22 126:22 127:22 128:22 129:22 130:22 131:22 132:22 133:22 
134:22 135:22 136:22 137:22 138:22 139:22 140:22 141:22 142:22 143:22 144:22 
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145:22 146:22 147:22 148:22 149:22 150:22 151:22 152:22 153:22 154:23 155:23 
156:23 157:23 158:23 159:23 160:12 161:12 162:23 163:23 164:23 165:23 166:23 
167:12 168:12 169:23 170:23 171:23 172:23 173:12 174:12 175:23 176:23 177:23 
178:23 179:12 180:12 181:12 182:24 183:24 184:12 185:12 186:12 # |1| ( 2113.601318 
) [ 1 atom ]  [ 2 atom ]  [ 3 atom ]  [ 4 atom ]  [ 5 atom ]  [ 6 atom ]  [ 7 atom ]  [ 8 atom 
] [ 9 atom ]  [ 10 atom ]  [ 11 atom ]  [ 12 atom ]  [ 13 atom ]  [ 14 atom ]  [ 15 atom ]  [ 
16 atom ]  [ 17 atom ]  [ 18 atom ]  [ 19 atom ]  [ 20 atom ]  [ 21 atom ]  [ 22 atom ]  [ 
23 atom ]  [ 24 atom ]  [ 25 atom ]  [ 26 atom ]  [ 27 atom ]  [ 28 atom ]  [ 29 atom ]  [ 
30 atom ]  [ 31 c ]  [ 32 c ]  [ 33 c ]  [ 34 c ]  [ 35 c ]  [ 36 c ]  [ 37 h ]  [ 38 h ]  [ 39 c ]  [ 
40 c ]  [ 41 c ]  [ 42 c ]  [ 43 h ]  [ 44 h ]  [ 45 c ]  [ 46 c ]  [ 47 c ]  [ 48 h ]  [ 49 h ]  [ 50 
c ] [ 51 c ] [ 52 c ] [ 53 h ] [ 54 h ] [ 55 n ] [ 56 o ] [ 57 o ] [ 58 n ] [ 59 h ]  [ 60 h ]  
[ 61 22 ] [ 62 22 ] [ 63 27 ] [ 64 27 ] [ 65 27 ] [ 66 22 ] [ 67 3 ] [ 68 3 ] [ 69 27 ] [
70 27 ]  [ 71 22 ]  [ 72 22 ]  [ 73 3 ]  [ 74 3 ]  [ 75 22 ]  [ 76 22 ]  [ 77 27 ]  [ 78 3 ]  [ 79 
3 ] [ 80 22 ] [ 81 22 ] [ 82 22 ] [ 83 3 ] [ 84 3 ] [ 85 38 ] [ 86 40 ] [ 87 40 ]  [ 88 32 ]  
[ 89 1 ] [ 90 1 ] [ 91 -0.111 ]  [ 92 -0.111 ]  [ 93 0.019 ]  [ 94 -0.081 ]  [ 95 0.019 ]  [ 96 
-0.111 ]  [ 97 0.149 ]  [ 98 0.15 ]  [ 99 -0.081 ]  [ 100 0.019 ]  [ 101 -0.111 ]  [ 102 -
0.111 ]  [ 103 0.15 ]  [ 104 0.15 ]  [ 105 -0.111 ]  [ 106 -0.111 ]  [ 107 0.019 ]  [ 108 
0.149 ]  [ 109 0.149 ]  [ 110 -0.111 ]  [ 111 -0.111 ]  [ 112 -0.111 ]  [ 113 0.15 ]  [ 114 
0.149 ]  [ 115 0.82 ]  [ 116 -0.38 ]  [ 117 -0.38 ]  [ 118 -0.76 ]  [ 119 0.35 ]  [ 120 0.35 ]  
[ 121 bond ] [ 122 bond ] [ 123 bond ]  [ 124 bond ]  [ 125 bond ]  [ 126 bond ]  [ 127 
bond ]  [ 128 bond ]  [ 129 bond ]  [ 130 bond ]  [ 131 bond ]  [ 132 bond ]  [ 133 bond ]  
[ 134 bond ] [ 135 bond ] [ 136 bond ]  [ 137 bond ]  [ 138 bond ]  [ 139 bond ]  [ 140 
bond ]  [ 141 bond ]  [ 142 bond ]  [ 143 bond ]  [ 144 bond ]  [ 145 bond ]  [ 146 bond ]  
[ 147 bond ] [ 148 bond ] [ 149 bond ]  [ 150 bond ]  [ 151 bond ]  [ 152 bond ]  [ 153 
bond ]  [ 154 7 ]  [ 155 7 ]  [ 156 7 ]  [ 157 7 ]  [ 158 7 ]  [ 159 7 ]  [ 160 1 ]  [ 161 1 ]  [ 
162 7 ]  [ 163 7 ]  [ 164 7 ]  [ 165 7 ]  [ 166 7 ]  [ 167 1 ]  [ 168 1 ]  [ 169 7 ]  [ 170 7 ]  [ 
171 7 ]  [ 172 7 ]  [ 173 1 ]  [ 174 1 ]  [ 175 7 ]  [ 176 7 ]  [ 177 7 ]  [ 178 7 ]  [ 179 1 ]  [ 
180 1 ]  [ 181 1 ]  [ 182 2 ]  [ 183 2 ]  [ 184 1 ]  [ 185 1 ]  [ 186 1 ]  < d 1 31 element >  
< d 1 61 atom_type >  < d 1 91 charge >  < d 2 32 element >  < d 2 62 atom_type >  < d 
2 92 charge >  < d 3 33 element >  < d 3 63 atom_type >  < d 3 93 charge >  < d 4 34 
element >  < d 4 64 atom_type >  < d 4 94 charge >  < d 5 35 element >  < d 5 65 
atom_type >  < d 5 95 charge >  < d 6 36 element >  < d 6 66 atom_type >  < d 6 96 
charge >  < d 7 37 element >  < d 7 67 atom_type >  < d 7 97 charge >  < d 8 38 element 
> < d 8 68 atom_type >  < d 8 98 charge >  < d 9 39 element >  < d 9 69 atom_type >  
< d 9 99 charge >  < d 10 40 element >  < d 10 70 atom_type >  < d 10 100 charge >  < 
d 11 41 element >  < d 11 71 atom_type >  < d 11 101 charge >  < d 12 42 element >  < 
d 12 72 atom_type >  < d 12 102 charge >  < d 13 43 element >  < d 13 73 atom_type >  
< d 13 103 charge >  < d 14 44 element >  < d 14 74 atom_type >  < d 14 104 charge >  
< d 15 45 element >  < d 15 75 atom_type >  < d 15 105 charge >  < d 16 46 element >  
< d 16 76 atom_type >  < d 16 106 charge >  < d 17 47 element >  < d 17 77 atom_type 
> < d 17 107 charge >  < d 18 48 element >  < d 18 78 atom_type >  < d 18 108 charge 
> < d 19 49 element >  < d 19 79 atom_type >  < d 19 109 charge >  < d 20 50 element 
> < d 20 80 atom_type >  < d 20 110 charge >  < d 21 51 element >  < d 21 81 
atom_type >  < d 21 111 charge >  < d 22 52 element >  < d 22 82 atom_type >  < d 22 
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112 charge >  < d 23 53 element >  < d 23 83 atom_type >  < d 23 113 charge >  < d 24 
54 element >  < d 24 84 atom_type >  < d 24 114 charge >  < d 25 55 element >  < d 25 
85 atom_type >  < d 25 115 charge >  < d 26 56 element >  < d 26 86 atom_type >  < d 
26 116 charge >  < d 27 57 element >  < d 27 87 atom_type >  < d 27 117 charge >  < d 
28 58 element >  < d 28 88 atom_type >  < d 28 118 charge >  < d 29 59 element >  < d 
29 89 atom_type >  < d 29 119 charge >  < d 30 60 element >  < d 30 90 atom_type >  < 
d 30 120 charge >  < d 121 154 bond_type >  < d 122 155 bond_type >  < d 123 156 
bond_type >  < d 124 157 bond_type >  < d 125 158 bond_type >  < d 126 159 
bond_type >  < d 127 160 bond_type >  < d 128 161 bond_type >  < d 129 162 
bond_type >  < d 130 163 bond_type >  < d 131 164 bond_type >  < d 132 165 
bond_type >  < d 133 166 bond_type >  < d 134 167 bond_type >  < d 135 168 
bond_type >  < d 136 169 bond_type >  < d 137 170 bond_type >  < d 138 171 
bond_type >  < d 139 172 bond_type >  < d 140 173 bond_type >  < d 141 174 
bond_type >  < d 142 175 bond_type >  < d 143 176 bond_type >  < d 144 177 
bond_type >  < d 145 178 bond_type >  < d 146 179 bond_type >  < d 147 180 
bond_type >  < d 148 181 bond_type >  < d 149 182 bond_type >  < d 150 183 
bond_type >  < d 151 184 bond_type >  < d 152 185 bond_type >  < d 153 186 
bond_type >  < d 1 121 connect >  < d 121 2 connect >  < d 2 122 connect >  < d 122 3 
connect >  < d 3 123 connect >  < d 123 4 connect >  < d 4 124 connect >  < d 124 5 
connect >  < d 5 125 connect >  < d 125 6 connect >  < d 6 126 connect >  < d 126 1 
connect >  < d 1 127 connect >  < d 127 7 connect >  < d 2 128 connect >  < d 128 8 
connect >  < d 4 129 connect >  < d 129 9 connect >  < d 9 130 connect >  < d 130 10 
connect >  < d 10 131 connect >  < d 131 11 connect >  < d 11 132 connect >  < d 132 
12 connect >  < d 12 133 connect >  < d 133 5 connect >  < d 11 134 connect >  < d 134 
13 connect >  < d 12 135 connect >  < d 135 14 connect >  < d 3 136 connect >  < d 136 
15 connect >  < d 15 137 connect >  < d 137 16 connect >  < d 16 138 connect >  < d 
138 17 connect >  < d 17 139 connect >  < d 139 9 connect >  < d 15 140 connect >  < d 
140 18 connect >  < d 16 141 connect >  < d 141 19 connect >  < d 17 142 connect >  < 
d 142 20 connect >  < d 20 143 connect >  < d 143 21 connect >  < d 21 144 connect >  
< d 144 22 connect >  < d 22 145 connect >  < d 145 10 connect >  < d 20 146 connect 
> < d 146 23 connect >  < d 21 147 connect >  < d 147 24 connect >  < d 25 148 
connect >  < d 148 6 connect >  < d 26 149 connect >  < d 149 25 connect >  < d 27 150 
connect >  < d 150 25 connect >  < d 22 151 connect >  < d 151 28 connect >  < d 28 
152 connect >  < d 152 29 connect >  < d 28 153 connect >  < d 153 30 connect > 
 



125

APPENDIX B 
 

CONCEPTS LEARNED BY SUBDUE
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B.1 CONCEPTS LEARNED FROM DATASET CONSISTING OF PARTIAL 

CHARGE, ATOMS, BONDS, ATOM TYPE, BOND TYPE AND ELEMENT 

S
v 1 27

S
v 1 29

S
v 1 52

S
v 1 27

S
v 1 29

S
v 1 52

S
v 1 -0.152 
 
S
v 1 -0.093 
 
S
v 1 -0.142 
 
S
v 1 -0.148 
 
S
v 1 -0.191 
 
S
v 1 0.315

S
v 1 -0.132 
 
S
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v 1 -0.096 
 
S
v 1 -0.208 
 
S
v 1 0.146

S
v 1 0.315

S
v 1 -0.152 
 
S
v 1 0.011

S
v 1 -0.114 
 
S
v 1 -0.108 
 
S
v 1 atom 
v 2 29
v 3 bond
v 4 1
u 1 2 atom_type 
u 3 4 bond_type 
u 3 1 connect 
 
S
v 1 atom 
v 2 atom 
v 3 atom 
v 4 c
v 5 c
v 6 h
v 7 29
v 8 22
v 9 bond
v 10 bond 
v 11 bond 
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v 12 bond 
v 13 7
v 14 7
u 1 4 element 
u 1 7 atom_type 
u 2 5 element 
u 2 8 atom_type 
u 3 6 element 
u 9 13 bond_type 
u 10 14 bond_type 
u 9 1 connect 
u 1 10 connect 
u 10 2 connect 
u 2 11 connect 
u 11 3 connect 
u 1 12 connect 
 
S
v 1 atom  
v 2 atom 
v 3 atom 
v 4 atom 
v 5 atom 
v 6 atom 
v 7 c
v 8 c
v 9 c
v 10 n
v 11 o
v 12 22
v 13 22
v 14 22
v 15 38
v 16 40
v 17 -0.114 
v 18 -0.114 
v 19 0.817 
v 20 -0.384 
v 21 bond 
v 22 bond 
v 23 bond 
v 24 bond 
v 25 bond 
v 26 bond 
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v 27 bond 
v 28 bond 
v 29 bond 
v 30 7
v 31 7
v 32 7
v 33 1
u 2 7 element 
u 2 12 atom_type 
u 2 17 charge 
u 3 8 element 
u 3 13 atom_type 
u 3 18 charge 
u 4 9 element 
u 4 14 atom_type 
u 5 10 element 
u 5 15 atom_type 
u 5 19 charge 
u 6 11 element 
u 6 16 atom_type 
u 6 20 charge 
u 22 30 bond_type 
u 23 31 bond_type 
u 24 32 bond_type 
u 27 33 bond_type 
u 21 2 connect 
u 2 22 connect 
u 22 3 connect 
u 3 23 connect 
u 23 4 connect 
u 4 24 connect 
u 24 1 connect 
u 2 25 connect 
u 4 26 connect 
u 5 27 connect 
u 27 3 connect 
u 28 5 connect 
u 5 29 connect 
u 29 6 connect 
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