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ABSTRACT

EVADING EXISTING STEPPING STONE DETECTION METHODS USING

BUFFERING

Publication No.

Madhu Venkateshaiah, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Matthew K. Wright

Network based intrusions have become a serious treat to the users of the internet.

To gain anonymity and complicate their their apprehension, attackers launch attacks not

from their own systems but from previously compromised systems called stepping stones.

Attackers do this by establishing a chain of connections using protocols like Telnet or

SSH. The stepping stones could be located in different autonomous domains or even in

different countries. This makes it very difficult to trace an attack back to its origin.

The owner(administrator) of the compromised system is not even aware of the fact that

attacks are being launched from his computer. But for an external observer, the attacks

seem to originate from the stepping stone(compromised system), which may lead to the

prosecution of the owner of the system. So it is important for administrators to detect if

a system on their network is being used as a stepping stone.

An effective way to detect stepping stones is by comparing of incoming and outgoing

connections in a network to find correlations. Content based correlation is not effective

because of the use of encrypted communication protocols like SSH. So we have to turn

v



to other aspects of connections/traffic for correlation. The use of timing characteristics

of traffic for correlation has been explored and many Passive 2.3.1 and Active 2.3.2

approaches to correlate connections have been proposed. The attacker can attempt to

break correlation between traffic streams by delaying and dropping packets and adding

dummy packets(chaff) to the streams. Though earlier approaches to stepping stone

detection do address these issues to a certain extent, they make certain assumptions

about the capabilities of the attacker that does not reflect reality and give rise to a weak

attacker model.

For the sake of simplicity, earlier approaches ignore the fact that an attacker can

add dummy packets (chaff) to a traffic stream. But in reality, an attacker might have

total control over all the stepping stones on the connection chain. This makes it easier

for the attacker to install rogue applications on the stepping stone or even modify the

operating system. In this scenario, an attacker can modify applications to use cover traffic

and introduce delays to make the incoming and outgoing streams look very different thus

making correlation very hard. The attacker can also use constant rate cover traffic to

break correlation.

We loosen some assumptions made by earlier researchers and assume that an at-

tacker can add cover traffic to traffic streams. We propose a simple buffering technique

that could be used by an attacker on a stepping stone to evade or severely degrade de-

tection. In our technique, packets are buffered, selectively dropped and chaff packets

are added to generate constant rate traffic. To test our technique we need a correlation

scheme that can correlate constant rate streams. Wang, Chen, and Jajodia [9] proposed

a watermark based correlation scheme to track VoIP calls on the internet. This scheme

is designed to correlate constant rate traffic streams like VoIP. To test the effectiveness

of our technique to evade detection, we choose this scheme for our simulations and show

that our buffering technique can successfully evade detection.
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CHAPTER 1

INTRODUCTION

1.1 Stepping stones

Hackers attack computers to compromise security and gain control of systems,

compromise privacy or to create a disruption so as to deny or degrade access to legitimate

users. It is being increasing recognized that detecting and preventing such attacks is an

important requirement of computer systems. With the emergence of computer networks

and the Internet, the problem of detection has been compounded. The biggest advantage

of the Internet from an attackers perspective is that he can be located anywhere in the

world and launch an attack on a system located at any other part of the world. To further

compound the problem of detection the attackers can launch attacks indirectly by relaying

their attack through a chain of intermediate (previously compromised) systems called

stepping stones. The attacker does this by constructing a chain of interactive connection

using protocols like Telnet or SSH. The commands that the attacker types on his local

terminal are relayed through the stepping stones until they reach the victim. This gives

the attackers a certain a level of anonymity, and makes it hard for an investigator to

traceback the attack to its origin.

1.2 Stepping stone detection

The fact that stepping stones maybe in different administrative domains or coun-

tries, further increases the difficulty of tracing the attack to the point of origin. The

problem of detecting stepping stones in not only important to an investigator but also

1
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to network/security administrators. Detecting stepping stones has many benefits for the

administrators of networks:

• To flag suspicious activity

• To avoid prosecution incase a break-in is detected as having come from their local

site

• To detect insider attack that are relayed through external hosts

Since the attacker is sending attack traffic to a stepping stone and the stepping stone is

just relaying (forwarding) it to an external host, the stepping stone detection problem

boils down to finding an outgoing connection with the same characteristics as an incoming

connection or vice-versa. An intuitive approach to solve this problem would be to compare

the contents of the incoming and outgoing packets in a network to find packets with the

same content. But the development of encrypted communication protocols like SSH,

have made this approach ineffective. So we need to use other characteristics of the traffic

like timing characteristics to detect stepping stones. One of the promising approaches to

solve the detection problem is Active Perturbation (see Section [2.3.2]). In this approach,

timing based watermarks are embedded into incoming connections and the outgoing

connections are searched for these watermarks.

1.3 Contribution

Earlier active perturbation approaches to stepping stone detection(see Section [2.3.2])

make certain assumptions about the what the attacker can do on the stepping stone:

• The attacker does not use cover traffic

• Though the attacker can introduce perturbations by adding delays, the maximum

delay that the attacker can add is bounded

• When the attacker adds huge delays on the stepping stone, such delays can be

detected as anomalies
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These assumptions lead to weak attacker model that does not reflect reality. In reality, the

attacker has total control over the stepping stones. So he can change the configuration of

the system and install rogue applications. In our work we loosen some of the assumptions

made by earlier approaches. Our contribution is a simple technique that an attacker can

use on the stepping stone to evade detection. Our technique uses buffering of incoming

packets, selective dropping and adding chaff to generate traffic that has very different

characteristics than the incoming traffic. We finally show that with very little buffering

delay, packet drops and chaff our technique is effective in severely degrading detection.

1.4 Thesis Organization

In Chapter 2, we discuss the background concepts and related work to justify the

design decisions explained in our description of the system. In Chapter 3, we present our

proposed buffering technique in detail. In Chapter 4, we explain the simulation setup and

aspects of the system that we tested. Section 4.5 presents the results of the simulations

and their interpretation. Chapter 5 concludes with ideas for future work.



CHAPTER 2

BACKGROUND

In this chapter we formally define a stepping stone and present some background

on the techniques that have been used to detect stepping stones. We also introduce

some attacks on stepping stone detection and some possible defence against them. The

terminology used in this document are also introduced in this chapter.

2.1 Stepping Stone

When a person logs into one computer and from there logs into another computer

and so on to perhaps a number of computers, we refer to the sequence of logins as a

connection chain [1]. Any intermediate host on a connection chain is called a stepping

stone. Any two connections that are part of a connection chain are called a connection

pair. The connections that appear earlier in the connection chain are said to be upstream

connections to those that appear later on in the chain. Similarly, the connections that

appear later on in the chain are said to be downstream connections to those that appear

earlier on in the chain. Upstream connections are closer to the attacker. Generally in the

Internet connection chains are formed by network attackers by using terminal emulation

programs like telnet and SSH. The stepping stones thus formed are called interactive

stepping stones since the attacker types in commands and waits for a response. Though

it is possible for a computer program to create a connection chain, we limit the scope of

our research to interactive stepping stones.

4
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2.2 Traceback

Intruders use long chains of connections through stepping stones to attack their

targets. The stepping stones through which the attacker relays his/her connections may

be located in different countries and in networks operated by different network operators.

This obscures the identity of the attackers and gives them a certain level of anonymity.

Tracing an intruder to the origin of the attack requires that we follow the connection

chain and examine each host on the chain to determine its predecessor in the chain. To

further complicate traceback, attackers usually delete logs on stepping stones. Since the

stepping stones could be in different countries, it takes a lot of time and effort to get the

governments and network operators of the countries to cooperate in the investigation.

Many approaches the solve the tracing problem have been proposed and can be broadly

classified into categories:

• Host-based

• Network-based

Host-based approaches [2] [3] setup and use some kind of tracing components at each

host. The major drawback of these host-based systems is that the system would fail

if the system is not used on a particular host or has been modified by an attacker.

It also requires that all autonomous systems in the internet use a particular tracing

mechanism on all hosts. On the other hand, network-based approaches [1] [4] [5] require

that some tracing component be setup in the network infrastructure. The advantage of

this approach is that it does not require the participation of monitored hosts nor does it

place the trust on monitored hosts. All network based tracing mechanisms use correlation

of network connections to trace the intruder to the origin of the attack. From now on we

only focus on network based approaches.
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2.3 Stepping Stone Detection

Stepping stone detection can be defined as a process of observing all incoming and

out going connections in a network and determining which ones are a part of a connection

chain. This problem is closely related to the problem of traceback or tracing intruders

through the internet by following the connection chain. In both the above applications,

the fundamental underlying problem is to compare and analyze two connections and

determine if there is any correlation between them. This problem has been studied by

number of researchers and solutions have been proposed. Two main approaches proposed

to detect stepping stones are:

• Passive Monitoring

• Active Perturbation

2.3.1 Passive Monitoring

Passive monitoring is an approach where the characteristics of traffic streams are

analyzed to construct correlations between them. The interactive stepping stone problem

was first formulated and studied by Staniford and Heberlein [1]. They proposed a con-

tent based algorithm that creats thumbprints of streams and compares them, looking for

good matches. The problem with this approach is that it is content based and assumes

that the traffic is un-encrypted. Zhang and Paxson [4] were the first to propose a scheme

to correlate traffic across stepping stones even if the traffic is encrypted by the stepping

stone. The method is based on correlation of the ends of OFF periods (or equivalently

the beginnings of ON periods) of interactive traffic, rather than the connection contents.

Since this method only uses the timing information of packets it can be applied to en-

crypted traffic. Yoda and Etoh [5] proposed a deviation-based approach for correlation

of streams. They define the minimum average delay gap between the packet streams of

two TCP connections as the deviation. The deviation based approach considers both
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the packet timing characteristics and their TCP sequence numbers. It does not require

clock synchronization and is able to correlate connections observed at different points of

network. Wang, Reeves and Wu [6] address the problem of correlation by a scheme based

on inter-packet timing characteristics. While timing-based correlation approaches have

the advantage that they are simple and do not disturb normal traffic, they are vulnerable

to countermeasures by the attacker. The attacker can perturb the timing characteristics

of connections by selectively or randomly delaying packets at the stepping stone [7]. This

kind of perturbation adversely affects the effectiveness of timing-based correlation.

2.3.2 Active perturbation

A promising defense against the problem of random timing perturbation by an

attacker is active perturbation. In this approach, an incoming connection is perturbed

by inducing a packet loss or delay and the outgoing connections are checked to see if the

perturbation is echoed in them. Since the attacker does not know what the perturbation

is, he/she will not be able to effectively degrade correlation by random perturbation.

Wang and Reeves [8] proposed the first active watermark-based correlation method that

is designed to be robust against random timing perturbation. In this scheme, a unique

delay-based watermark is embedded into a traffic flow by slightly adjusting the timing

of selected packets in the flow. The watermarked flow can be uniquely identified and

thus correlated with other flows in the connection chain. We provide further details on

this correlation scheme in Section 2.3.2.1. Wang, Chen, and Jajodia adapted the above

watermarking technique to track VoIP calls on the Internet [9]. We provide further

details of VoIP tracking in Section 2.3.3.Since VoIP streams have more stringent real-

time constraints than TCP, [8] can not be directly used to correlate VoIP streams.
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2.3.2.1 Watermark-based correlation

The objective of watermark-based correlation is to make the correlation of con-

nections robust against random timing perturbations introduced by the attacker. The

process of watermarking consists of two complementary processes:

• Embedding the watermark

• Decoding the watermark

A watermark is basically a unique binary string. The process of embedding one bit of

the watermark consists of changing some property of a traffic flow such that the change

represents watermark bit.

In the technique proposed by Wang and Reeves [8], the packets that are watermarked

are randomly chosen and paired to obtain inter-packet delays (IPDs). A watermark is

embedded by manipulation of these IPDs. The IPD between two packets pa and pb is

ipd(a,b) = tb − ta, where pb is transmitted later than pa and ta and tb are timestamps

of pa and pb, respectively. IPDs are quantized for robustness. Given a quantization

step S, the quantization function q(ipd, S) rounds off ipd/S to the nearest integer. To

embed one watermark bit w(0 or 1), ipd is slightly increased (by delaying the second

packet by a small amount) so that the watermarked IPD, denoted as ipdW , satisfies

the condition q(ipdW , S)mod2 = w. This means ipdW is even multiples of S when 0 is

embedded, and odd multiples of S when 1 is embedded. The watermark decoding function

is d(ipd, S) = q(ipd, S)mod2. To make the scheme robust against random perturbations,

multiple IPDs are used to embed one bit. In their paper the authors make the following

assumptions:

1. While the attacker can add extra delay to any or all packets of an outgoing flow of

the stepping stone, the maximum delay that he can introduce is bounded

2. The attacker does not know which packets are being watermarked
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3. The component that decodes watermarks in traffic flows knows which packets have

been watermarked

2.3.3 Tracking VoIP calls

In VoIP tracking, the objective is to determine who called a particular person or

whom a person called. The problem boils down to finding correlations between the VoIP

flows of the caller and the callee. This is similar to the Traceback and stepping stone

detection problem where a set of connections need to be correlated. With the emergence

of P2P VoIP applications like Skype [10] that offer end-to-end encryption and could be

routed through low latency anonymous networks like TOR [11], content based approaches

are not effective. Wang, chen, and Jajodia propose a watermark based technique to track

VoIP calls [9]. In this technique the packets that are watermarked are chosen randomly.

The chosen packets are delayed by a fixed amount. This delay is called the watermarking

delay. Since the attacker has no way of knowing the watermarking delay and which

packets are delayed, random perturbations by the attacker are not effective. For the sake

of completeness of this report, we provide the basic concept of this watermarking scheme

below. The reader can refer the original paper [9] for further details of the scheme:

Given any packet flow P1, ..., Pn with time stamps t1, ..., tn respectively (ti < tj for

1 ≤ i < j ≤ n), 2r distinct packets denoted as Pz1, ..., Pz2r(1 ≤ zk ≤ n − d for 1 ≤
k ≤ 2r) are independently and randomly selected. Here r denotes the redundancy.

For each of these packets, a packet at a distance d is chosen to create 2r packet pairs:

< Pzk; Pzk+di > (d ≥ 1, k = 1, ..., 2r). The IPD (Inter-Packet Delay) is calculated for

each of these 2r pairs < Pzk+d, Pzk > as:

ipdzk = tzk+d − tzk, (k = 1, .., 2r)

Since all the packets are chosen independently, the IPDs are independent and identically

distributed(iid). These 2r IPDs are randomly divided into 2 distinct groups of equal size.
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Let ipd1,k and ipd2,k (k = 1, ..., r) denote the IPDs in group 1 and group 2 respectively.

Let Yk =
(ipd1,k−ipd2,k)

2
(k = 1, .., r)

Let the average of r Yk’s be represented as: Y = 1
r

r∑
k=1

Yk.

Here Y represents the average of a group of normalized IPD differences and is symmet-

rically centered around 0. Increasing or decreasing Y by an amount a > 0 will shift its

distribution to the left or right so that Y will be more likely be negative or positive. This

property is used to embed watermark bits into the traffic stream. To embed a bit 0, Y

is decreased by a and for a bit 1, Y is increased by a.

2.4 Anonymity

Anonymity can be defined as a state of being indistinguishable from other mem-

bers of a set. In recent times, anonymity has become synonymous to protecting one’s

online privacy. Though at the first glance the problems of anonymity and stepping stone

detection seem different they are closely related. The approaches to provide anonymity

can be used to evade stepping stone detection. While stepping stone detection tries to

find correlations between traffic streams, anonymity tries to evade correlation. Our work

has drawn inspiration in part by some techniques used in anonymity.

One of the goals of Anonymous communication systems is to achieve sender-receiver un-

linkability. Anonymous communication systems try to achieve Anonymity by the use of

Mixes. A Mix is a network node that relays traffic and tries to hide the correspondence

between its incoming and outgoing messages. They try to achieve this by using a vari-

ety of techniques like transforming the messages cryptographically, batching or delaying

messages and injecting ”dummy” messages. Communication is routed through a series of

mixes to achieve Sender-Receiver unlinkability. A number of attacks on mix based sys-

tems have been published [12, 13, 14, 15, 16]. Traffic analysis which is one such attacks,

deals with the analysis of meta data associated with data - the sender, the receiver, the
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time and the length of messages to extract information about the communication con-

tents and information about the identities of the parties of communication.

Danezis [17] presents an attack based on traffic analysis on connection-based mixed net-

works functioning in continuous mode. The attack tries to break anonymity of such mixes

by tracing streams of messages through the network. It uses signal detection techniques

to compare a traffic pattern extracted from the stream that is being tracked with all the

links in the network. A degree of similarity with the traced input is assigned to each

link. This is used to infer information about the end points and intermediate nodes on

the communication path.

Levine et al. [18] study the weaknesses in low-latency mix-based systems like Onion Rout-

ing [11]. They show that when two are more mixes are controlled by an attacker, the

attacker can study the timings of messages moving through the system to find correlations

and might be able to determine if the mixes he controls are on the same communication

path. They also propose a novel defense against such timing analysis attacks called de-

fensive dropping. With defensive dropping the initiator of a communication constructs

extra dummy packets such that an intermediate mix(node) in the communication path

is instructed to drop the packet. If these defensive drops are placed randomly and fre-

quently in the packet stream, the correlation between the timing information seen by the

mixes controlled by the attacker would be reduced.



CHAPTER 3

SYSTEM DESCRIPTION

To show that the attacker can use the techniques used by low latency anonymous

systems to reduce or totally break correlation between traffic flows, we propose an algo-

rithm that the attacker can use on the stepping stone to buffer packets and add dummy

traffic. As explained in the earlier sections, the attacker has total control over the stepping

stone. So he can modify the application or the TCP/IP stack to implement the buffering

algorithm. In the next section we explain the overall architecture of our system.

3.1 Overview

As we describe in Chapter 2, for stepping stone detection or traceback to be success-

ful, traffic flows need to be correlated. The correlation can be passive or active. Both of

these approaches rely on the timing characteristics of traffic flows. As described in earlier

sections, an attacker can evade detection by randomly perturbing the timing character-

istics of the connection. Active perturbation based approaches like watermarking were

proposed to overcome this problem [8]. For the sake of simplicity ,earlier watermarking

based approaches have ignored the fact that the attacker controls both the end points

of communication and also the intermediate nodes on the path. This gives the attacker

much more freedom than assumed by previous work in this area. In this study we show

that by selectively buffering and adding dummy traffic, it is possible to break the cor-

relation between traffic flows and thus make watermarking based correlation ineffective.

Previous works have assumed that attacker perturbations using huge delays can cause

high jitter that can be detected as unusual traffic patterns [19]. We propose a way for

12
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Figure 3.1 Stepping stone

the attacker to perturb traffic without excessive delay, with reduced jitter, and without

exhibiting ”unusual” traffic patterns.

Consider an attacker who is using a compromised system in a network as a stepping

stone to launch an attack on the target system in another network. For simplicity, let

us assume that there is only one stepping stone. i.e. the attacker is relaying the attack

through only one compromised system as shown in Figure 3.1.

Let us call the person who is trying to detect the stepping stone the observer. The

observer’s objective is to detect that an incoming connection is being relayed through

the stepping stone to a host outside the network. The observer does this by embedding

a timing-based watermark into all the connections coming into the network and tries to

detect if any of the outgoing connections contain the watermark that he embedded. The

attacker’s objective is to evade detection by the observer by distorting the watermark to

an extent that it is hard to detect. The attacker can do this by buffering packets and

adding dummy packets to generate a constant rate traffic stream. Since all the timing

information is lost, the observer will not be able to detect the watermark. We believe

that the same techniques can be applied to evading traceback and tracking of VoIP calls.
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For the purpose of our study, we make the following assumptions:

• The attacker has complete control on the system that he is using to attack and all

the intermediate systems in the connection chain. Thus he can modify the system

or use rogue applications on any of these systems

• The observer does not know if there is a stepping stone in his network

• The attacker does not know which packets are watermarked but the observer does

• The attacker does not know what the watermarking delay is

3.2 Connection profiling

The attacker’s objective is to remove all timing information from the traffic stream

by generating constant rate traffic. To do this he needs to know the delay characteristics

of the network. The attacker profiles the network connection between his host and the

stepping stone.Before establishing the connection chain to launch his attack, the attacker

sends a stream of packets from his system at a specific rate to the stepping stone. On the

stepping stone, the attacker records the arrival time of these packets and calculates the

inter-packet delays(IPDs) and standard deviation of the IPDs. He does this to collect

information about the delay characteristics of the connection. The attacker combines

this information with his knowledge of the traffic rate to arrive at the expected arrival

time of packets.

Given a packet stream P1, ..., Pn being sent at a rate r and received on the stepping

stone with time stamps t1, ..., tn respectively (ti < tj for 1 ≤ i < j ≤ n), we define the

inter-packet delay (IPD) between Pk+1 and Pk as:

ipdk = tk+1 − tk, (k = 1, ..., n − 1)

Since the attacker already knows the traffic rate r at the source, he knows the mean

inter-packet delay ipd = 1/r. He calculates the IPD standard deviation as:
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σ =

√√√√ 1
n−1

(n−1)∑
i=1

(ipdi − ipd)2

Since the attacker sends packets at a constant rate, he can expect that the IPDs are

normally distributed around the mean when the packets arrive at the stepping stone.

According to the empirical rule for normal distribution, the attacker can deduce that :

• 68.27% of the packets will arrive within 1 standard deviation of the mean

• 95.45% of the packets will arrive within 2 standard deviations of the mean

• 99.73% of the packets will arrive within 3 standard deviations of the mean

3.3 Evading detection

In this section we describe our technique using which the attacker can evade de-

tection by the observer. Once the attacker has profiled the connection he establishes the

connection chain through the stepping stone(s) to the target host and starts the attack.

When the attack packets arrive at the gateway, the observer embeds a watermark as

explained in Section 2.3.3. Since the attacker does not know which packets have been

watermarked, he has to act without this knowledge. The attacker knows at what rate

he is sending traffic and he can calculate the standard deviation on inter-packet delay as

explained in Section 3.2. To evade detection by generating a constant rate traffic stream,

the attacker needs to buffer(delay) packets that arrive early and drop packets when they

arrive late. To achieve this, the attacker divides the time-line starting at the arrival of

the first packet into time slots. The length of each slot is 1 ipd = 1/r which is the mean

inter-packet delay (IPD) at the source of the traffic. Each packet is expected to arrive in

its respective slot. But the packets may arrive earlier or later than expected (due to the

internet and watermarking delays encountered by packets) as illustrated in Figure 3.2.

So the attacker needs to have a tolerance margin for each slot to decide if the packet

arrived in its respective slot or not. The tolerance is a configurable parameter that the
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Figure 3.2 Traffic time-line

attacker can adjust based on the standard deviation of the IPDs. Since the IPDs are

normally distributed over the mean, using the empirical rule for normal distribution, the

attacker knows that around 95% of the packets arrive within two standard deviations of

the mean. So the attacker can set the tolerance level to, for example 2σ. This would

also be the maximum buffering delay B. If a packet arrives early, the packet is delayed

till the end of the slot. If a packet arrives late, i.e. after the end of its slot, a dummy

packet is sent in place of the actual packet. When the delayed packet finally arrives, it is

buffered(queued) till the end of the next available slot and then sent. Some packets may

arrive very late (For ex. after two slots) immediately followed by packets that arrive in

time. This could lead to multiple packets being queued in the buffer and have a cascading

effect on the buffering delays thus affecting the quality of the connection. The attacker

can eliminate the problem of cascading delays by dropping packets that arrive very late.

Since the attacker knows that almost all the packets would arrive within 4σ of the mean,

at any given point of time, there would be a maximum of 2 packets in the buffer(queue).

If there are are more than 2 packets in the buffer, the attacker drops the first packet

(which presumably arrived very late) and sends the next packet in the buffer. The entire

process can be summarized by the following algorithm:

1. When the first packet arrives, delay the packet by the maximum buffering delay
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2. From the time the first packet was sent, trigger an event at intervals of duration

ipd

3. From the second packet onwards, buffer the packets that arrive before an event is

triggered

4. When an event is triggered:

• if there is no packet in the buffer, send a dummy packet

• if there are more than 2 packets in the buffer, drop the first packet and send

the second packet

• if there are less than or equal to two packets in the buffer, send the first packet

in the buffer

3.4 Watermark detection and observer counterattack

Since the buffering algorithm generates a constant rate traffic stream, all timing

information of the traffic flow is lost. In effect this totally removes the watermark that

was previously embedded. We performed some experiments to show the effect of buffering

on watermark detection. The results are presented in Section 4.5. The observer in an

effort to make it harder for the attacker to evade detection, can increase the watermarking

delays. Increasing the watermarking delay makes the detection scheme more robust. This

would also increase the jitter in the stepping stone connection. To work against this, the

attacker has to buffer packets for a longer duration and would have to drop more packets,

thus degrading the quality of his own connection. It should be noted that increasing the

watermarking delay does affect connection quality. Since the observer needs to watermark

all incoming connections, an increase in watermarking delay would not only affect the

connection being used by the attacker, but all other incoming connection in the network.

we performed simulations to determine the the resilience of the buffering technique to

increased watermarking delays and the results are presented in Section 4.5.



CHAPTER 4

SIMULATIONS

Earlier, we have made an argument that the attacker can use cover traffic to gen-

erate constant rate traffic stream to evade correlation. We wanted to show that our

buffering technique can be effective even in this scenario. To demonstrate this, we need

a watermarking technique that is capable of correlating constant rate traffic streams.

The technique that comes closest to satisfying our requirements was proposed by Wang,

Chen, and Jajodia [9] to track VoIP calls. We chose this technique for our simulations.

Although, in this work, we only apply our buffering technique to constant rate traffic

streams, buffering can also effective for streams of other delay characteristics like inter-

active traffic generated by a user typing commands at a console. We intend to perform

experiments using other watermarking techniques for interactive stepping stones in our

future work.

We conducted a number of experiments to test the effectiveness of out technique to

evade of watermark detection. We also performed experiments to determine the affect

of different watermarking delays on the drop rates and amount of chaff. The system

was simulated in Java. Figure 4.1 shows the architecture of our experimental setup. We

describe each individual component of the system in the following sections.

4.1 Traffic generator

The traffic generator generates Internet traffic as well as attack traffic based on

a delay distribution. The delays simulate Internet packet delays. For our experiments

we used a normal distribution with a standard deviation of one fourth of the mean for

18



19

Figure 4.1 Experimental setup

Internet delays. The characteristics of the generated traffic, such as rate, average end-

to-end delay and packet loss can be controlled by configurable parameters. We chose

parameters that reflect realistic VoIP traffic on the internet. For each experiment we

generated 100 traffic flows at rate of 30 pkts/sec for a duration of 900 secs (15 mins).The

average end-to-end delay was set to 100ms and the drop rate was set to an average of

1%. This traffic is in the form of traffic logs.

4.2 Watermarking engine

The watermarking engine uses the watermarking technique proposed by Wang,

Chen, and Jajodia [9] to alter the inter arrival timing of packets that are generated by

the traffic generator.
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4.2.1 Watermark generator

The watermark generator generates unique watermarks with a specified hamming

distance. The distance is important to ensure low false positives. We chose a hamming

distance of 9 based on the best results of [9]. These watermarks are embedded into

traffic flows by the watermarking engine.

4.2.2 Parameter selection

The parameters used for the watermarking algorithm were chosen based on the

results obtained by Wang, Chen and Jajodia [9]. The parameters corresponding to their

best results were chosen. All the watermarks are 24 bits in size. The watermarks are

generated such that the minimum hamming distance between any two watermarks is 9.

Wang, Chen and Jajodia did some experiments to determine the optimal redundancy

factor to be used. They found that a redundancy factor of 25 yields a very low average

bit error rate. So for our project we chose to have a redundancy factor of 25. Having

a large redundancy makes the watermark robust against network jitters and results in a

low bit error rate. The delay introduced by the watermark has to be small in order to

make it difficult for the attacker to determine if his flow is watermarked. Wang, Chen and

Jajodia found that a watermarking delay of 3ms was sufficient to confuse the attacker

and achieve high true positive rate.

4.3 LAN delay simulator

The LAN delay simulator is treated as a black box in to which packets enter and

suffer a delay based on a delay model, shown in Figure 4.2, and go out of the network.

This basically simulates the network and processing delays that the packets encounter

before reaching the stepping stone and after leaving it.
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Figure 4.2 LAN delay model

4.3.1 LAN delay model

To obtain a model for delays in a Local Area Network(LAN), we performed some

experiments on the local area network of the University Of Texas at Arlington. Ping pack-

ets were sent to randomly chosen systems in the network and the round trip times(RTTs)

were recorded. 10 ping packets were sent to each of the 60 randomly chosen hosts. This

experiment was repeated on three different systems on the network. A cumulative distri-

bution function(CDF) was plotted with the RTTs collected as shown in Figure 4.2 and

curve fitting was used to obtain a function for the delay model.

4.4 Watermark decoder

The Watermark decoder acts as the egress monitor which checks outgoing traffic

flows for watermarks. It is assumed that there is coordination between the watermarking

engine and the decoder and the decoder knows which packets are watermarked. The
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watermark that is found is compared with all the embedded watermarks and analyzed

to determine false positives.

4.5 Results

In this section we present the results of the experiments we performed to test the

effectiveness of our proposed technique to evade watermark detection. We also conducted

experiments to determine the effect of watermarking delays on the buffering delay, drop

rate and the amount of chaff.

4.5.1 Watermark detection

For a detection scheme to be effective, it should not only have a high detection

rate but also a low false positive rate. A false positive can occur when the watermark

decoder erroneously finds a watermark in an un-watermarked flow or in a flow that has

a different watermark. We performed two sets of experiments to test the effectiveness of

our proposed technique to evade detection. For both sets ,we used 100 simulated traffic

flows generated as explained in Section 4.1. Our first set of experiments was to show

the effectiveness of the watermarking technique when there is no buffering done by the

attacker. This is an ideal case when the attacker is not perturbing any characteristics of

the traffic flows. To demonstrate the effectiveness of our proposed buffering technique

to evade detection, we conducted a second set of experiments where we assume that

the attacker is perturbing traffic flows that are being relayed through the stepping stone

by using the buffering technique. Figure 4.3 shows our results is the form of Receiver

operating characteristic(ROC) curves. An ROC curve is a graphical plot of the sensitivity

(fraction of true positives) vs. specificity (the fraction of false positives). As can be seen,

when buffering is not used, the detection rate is high with a low false positive rate. But

when buffering is used, the ROC curve becomes almost linear with a 45 degree gradient
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Figure 4.3 Effectiveness of buffering

indicating that the detection rate has reduced drastically and false positive rate has

increased. This also means that the detection rate can be increased only at the cost of

drastically increasing false positives.

4.5.2 Buffering delay

When the attacker uses buffering to evade detection, the observer may try to

counter it by increasing the watermarking delay. If the attacker has to maintain a con-

stant rate traffic stream, he would have to delay packets for a longer duration. We

performed a experiments to determine the effect of increased watermarking delays on the

buffering delay. Figure 4.4 shows that even when the watermarking delay is varied from

5ms to 50ms, the Average buffering delay only varies by less than 10ms. This shows that

with a slight increase in buffering delay an attacker would still be successful in evading

detection. The choice of the tolerance margin used by the buffering algorithm could have
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Figure 4.4 Average buffer delay w.r.t watermarking delay

an effect on the buffering delay. To determine this effect, we performed experiments by

varying the tolerance margin from 1 standard deviation to 3 standard deviations. As

seen in Figure 4.4, increasing the tolerance margin does not affect the buffering delay

much. This is counter-intuitive because in principle, as the tolerance margin increases,

one would expect the average buffering delay to increase. The average buffer delay re-

mains pretty much the same because as the tolerance margin increases, packets that

arrive late are sent in their respective slots rather than being buffered. So the packets

that arrive after a late packet do not have to wait for the late packet to be sent. In effect,

this reduces the average buffer delay.

4.5.3 Drop rate

Our next set of experiments were to determine the drop rates that we incur for

different watermarking delays. We varied the watermarking delays from 5ms to 50ms.
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Figure 4.5 Drop rate

Figure 4.5 shows that even for a watermarking delay of 50ms, the average drop rate is

very small (0.3%). This supports our argument that the watermark detection can be

severely degraded with our buffering technique with a very low drop rate. The choice of

the tolerance margin used by the buffering algorithm could have an effect on the drop

rate. To determine this effect we performed experiments by varying the tolerance margin

from 1 standard deviation to 3 standard deviations. As seen in Figure 4.5, increasing

the tolerance margin reduces the drop rate. The reason for this is that as the tolerance

margin increases, packets that arrive late are sent in their respective slots rather than

being buffered and eventually dropped.

4.5.4 Amount of chaff

Though the amount of chaff used by the attacker would considerably affect the

quality of the connection, it would still be desirable to determine the amount of chaff
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needed by the attacker to evade detection. We performed experiments to determine the

amount of chaff needed to counter different watermarking delays. Figure 4.6 shows that

the overall chaff rate is very low. Even with a watermarking delay of 50ms, the chaff rate

is only 1.4%. We also see that as the watermarking delay is varied from 5ms to 5ms, the

chaff rate only varies by about 0.15%. This further corroborates our argument that with

buffering and a very low amount of chaff the attacker can degrade watermark detection

severely.



CHAPTER 5

CONCLUSION

In this thesis we make arguments against some of the assumptions about the capa-

bilities of an attacker made by earlier approaches to stepping stone detection. We loosen

some of these assumptions and assume that an attacker is capable of adding delays and

cover traffic to his traffic streams on the stepping stone. We propose a simple buffering

technique that when used by an attacker on a stepping stone, is effective is in severely

degrading detection. Our technique involves buffering of packets and adding chaff to

generate constant rate traffic streams. We perform simulations using a watermark based

detection scheme [9] designed to detect correlations between constant rate traffic streams

and show that our technique is effective is evading detection even by this correlation

scheme.

5.1 Future Work

The criteria used to drop packets in our buffering algorithm can be improved further

by dropping packets more intelligently by using packet sequence numbers and keeping

track of the number of chaff packets sent. If the stepping stone knows that it has already

sent a chaff packet in place of a late packet, it can drop the late packet when it arrives and

thus reduce the buffering time of consequent packet. We believe that this modification can

reduce the average buffering delay by half. We also want to do an actual implementation

of our technique by modifying an SSH server and client to further demonstrate our

technique. The application of our buffering technique to the area of anonymity needs to

be explored.

27



REFERENCES

[1] S. Staniford-Chen and L. Heberlein, “Holding Intruders Accountable on the Inter-

net,” Proceedings of the 1995 IEEE Symposium on Security and Privacy, pp. 39–49,

1995.

[2] H. Jung, H. Kim, Y. Seo, G. Choe, S. Min, C. Kim, and K. Koh, “Caller Identifi-

cation System in the Internet Environment,” Proceedings of 4th USENIX Security

Symposium, vol. 246, 1993.

[3] S. Snapp, J. Brentano, G. Dias, T. Goan, L. Heberlein, C. Ho, K. Levitt, B. Mukher-

jee, S. Smaha, T. Grance, et al., “DIDS (Distributed Intrusion Detection System)-

Motivation, Architecture, and an Early Prototype,” Proceedings of the 14th National

Computer Security Conference, pp. 167–176, 1991.

[4] Y. Zhang and V. Paxson, “Detecting stepping stones,” Proceedings of the

9th USENIX Security Symposium, pp. 171–184, 2000. [Online]. Available:

citeseer.ist.psu.edu/article/zhang00detecting.html

[5] K. Yoda and H. Etoh, “Finding a Connection Chain for Tracing Intruders,” F. Gup-

pens, Y. Deswarte, D. Gollmann and M. Waidner, editors, 6 thEuropean Symposium

on Research in Computer Security–ESORICS 2000 LNCS-1895, 2000.

[6] X. Wang, D. Reeves, and S. Wu, “Inter-packet delay-based correlation for

tracing encrypted connections through stepping stones,” 2002. [Online]. Available:

citeseer.ist.psu.edu/wang02interpacket.html

[7] D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Staniford,

“Multiscale stepping-stone detection: detecting pairs of jittered interactive

28



29

streams by exploiting maximum tolerable delay,” 2002. [Online]. Available:

citeseer.ist.psu.edu/donoho02multiscale.html

[8] X. Wang and D. Reeves, “Robust correlation of encrypted attack traffic through

stepping stones by manipulation of interpacket delays,” Proceedings of the 10th ACM

conference on Computer and communication security, pp. 20–29, 2003.

[9] X. Wang, S. Chen, and S. Jajodia, “Tracking anonymous peer-to-peer VoIP calls on

the internet,” Proceedings of the 12th ACM conference on Computer and communi-

cations security, pp. 81–91, 2005.

[10] “Skype - the global internet telephone company.” [Online]. Available:

http://www.skype.org

[11] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion

router,” in Proceedings of the 13th USENIX Security Symposium, August 2004.

[12] A. Back, I. Goldberg, and A. Shostack, “Freedom systems 2.1 security issues and

analysis,” Zero Knowledge Systems, Inc.,” White Paper, May 2001.

[13] M. Wright, M. Adler, B. N. Levine, and C. Shields, “An analysis of the degradation

of anonymous protocols,” in Proceedings of the Network and Distributed Security

Symposium - NDSS ’02. IEEE, February 2002.

[14] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “Towards an Analysis of Onion

Routing Security,” in Proceedings of Designing Privacy Enhancing Technologies:

Workshop on Design Issues in Anonymity and Unobservability, H. Federrath, Ed.

Springer-Verlag, LNCS 2009, July 2000, pp. 96–114.

[15] A. Serjantov, R. Dingledine, and P. Syverson, “From a trickle to a flood: Active

attacks on several mix types,” in Proceedings of Information Hiding Workshop (IH

2002), F. Petitcolas, Ed. Springer-Verlag, LNCS 2578, October 2002.

[16] O. Berthold, A. Pfitzmann, and R. Standtke, “The disadvantages of free MIX routes

and how to overcome them,” in Proceedings of Designing Privacy Enhancing Tech-



30

nologies: Workshop on Design Issues in Anonymity and Unobservability, H. Feder-

rath, Ed. Springer-Verlag, LNCS 2009, July 2000, pp. 30–45.

[17] G. Danezis, “The traffic analysis of continuous-time mixes,” in Proceedings of Pri-

vacy Enhancing Technologies workshop (PET 2004), ser. LNCS, vol. 3424, May

2004.

[18] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright, “Timing attacks in low-

latency mix-based systems,” in Proceedings of Financial Cryptography (FC ’04),

A. Juels, Ed. Springer-Verlag, LNCS 3110, February 2004.

[19] A. Blum, D. Song, and S. Venkataraman, “Detection of interactive stepping

stones: Algorithms and confidence bounds,” in Proceedings of the 7th

International Symposium on Recent Advances in Intrusion Detection(RAID ’04).

Springer-Verlag, LNCS 3224, Jan 2004, pp. 258 – 277. [Online]. Available:

citeseer.ist.psu.edu/698115.html

[20] N. Forrester, “Measuring performance and quality of packet voice systems,” Mo-

torola Computer Group, Tech. Rep., January 2003.



BIOGRAPHICAL STATEMENT

Madhu Venkateshaiah was born in Thimmanahalli, India, in 1978. He received his

B.E. degree from Mysore University, India, in Computer Science and Engineering in 2000,

his M.S. degree with a Thesis from The University of Texas at Arlington in 2006 in Com-

puter Science and Engineering. He has been part of the Information Security(iSEC) Lab

at UTA since its inception. His research interests include Network Security, Anonymity

and Privacy on the Internet.

31


