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ABSTRACT

OBSERVER SYNTHESIS FOR LINEAR/NONLINEAR DYNAMICAL SYSTEMS

SUBJECT TO MEASUREMENT DELAYS

Publication No.

Praveen C. Muralidhar, MS

The University of Texas at Arlington, 2006

Co-Supervising Professors: Kai-Shing Yeung, Kamesh Subbarao

In this research, problems associated with communication delays on the stability

of formation of a group of unmanned vehicles is examined and solution to this problem

is proposed. Ideally, it is required that the information transfer between the vehicles

participating in a cooperative task be available immediately. But, in reality, there is

always a delay between the instants at which the information is transmitted by one

vehicle and the instant at which it is received by the other vehicles in the formation.

A state observer is used to estimate the time delayed signal. The observer consists

of two dynamic systems connected in cascade. The delayed output signal is used to

estimate the current states using this cascade observer. The reconstruction of the states

is done at several sub-intervals within the delay window.

Two types of time delays profiles are considered for analysis. Initially, the delays

are assumed to be known constants. Next, the assumption is relaxed to study the effects

of known time varying delays are examined. In both the cases, the structure of the

state observer remains unchanged. The analysis is done for both continuous-time and

discrete-time linear time invariant systems and continuous-time nonlinear system. The
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state observer, in each of these cases is an guarantees either asymptotic or exponential

while convergence to the true states.
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CHAPTER 1

INTRODUCTION

Measurement delays in dynamical systems are ubiquitous. Multiple systems per-

forming a common task often experience a delay in receiving the measurement due to the

basic fact that they are physically separated from each other and the measurement from

one system has to travel this distance to reach the second system. However if the delay

was only due to the distance, it would be of very small magnitude. But owing to the

uncertainties in the communication channel, there are several factors which contribute

to a significant increase in delay magnitude.

This scenario can be experienced in a various biological, ecological and engineering

systems. In this research the effects of such delay on engineering systems is analyzed.

Specifically, in the cases of multiple dynamical systems performing a common task. A

state observer to estimate the current states from the delayed measurements is proposed.

In the succeeding sections, a brief mathematical descriptions of state observers and

time delay systems are presented.

1.1 State Observers

State observer is a device that estimates the unknown states of a dynamical system.

It utilizes the system model and measurements of the system inputs and outputs for

the estimation process. The system model may be represented either by a differential

equation (continuous time systems) or by a difference equation (discrete time systems).

Three main quantitative state observers are: Luenberger observer[1], adaptive observer[2]

and Kalman [3] filter.

1
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In the deterministic case, when no random noise is present, the Luenberger observer

and its extensions are used for time-invariant systems with known parameters. When the

parameters of the system are unknown or time varying, an adaptive observer is used. The

adaptive observer, in addition to estimating the system states, is also used to estimate

the unknown system parameters. The corresponding observer for a stochastic system

containing additive noise processes, with known/unknown parameters, is a stochastic

observer with a structure attributed to Kalman. Kalman filter is a recursive estimator.

If the system parameters are unknown, the filter can be used to estimate these along

with system states.

In this research, the dynamical systems under consideration are of the deterministic

type.

1.1.1 Observability and Observers

Consider a deterministic linear system

ẋ(t) = Ax(t) + Bu(t) (1.1)

y(t) = Cx(t) (1.2)

where x(t) ∈ Rn is the state vector. u(t) ∈ Rp is the system input. A, B, C are the

constant matrices with appropriate dimensions. y(t) ∈ Rq is the system output. The

initial conditions for the systems is specified as

x(0) = x0 (1.3)

System (1.1)-(1.2) is said to be observable if at any time t, the state x(t) can be

determined from the input sequence u(s) and the output y(s), 0 < s < t. x(t) can be

determined if the initial state x0 and the inputs are known. Hence, observability can

equivalently be defined as the problem of finding the initial states from the given input-

output measurements. If the initial states cannot be determined from the given sequence

of inputs and output measurements, then the system is not observable.
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Any linear system of the form (1.1)-(1.2) can be tested for observability by con-

structing the observability matrix

O =




C

CA

...

CAn−1




(1.4)

If the matrix O is of full rank, then the pair (C,A) is observable. However, if

Rank(O) < n, then the system is not observable. This implies that some of the states

cannot be determined from the input-output sequences. In this research we consider

systems that are completely observable, i.e, Rank(O) = n.

Several unstable systems can generally be stabilized by using stabilizing control

laws to place the system poles at desired locations. The inputs to the controller are the

state measurements. But, in many systems, all the state may not be measurable. In

this case, with the knowledge of the initial state, the state trajectory, can in principle

be determined if (C,A) is observable. However, the procedure involves integration and

inversion of a matrix which is ill-conditioned. An alternative, more robust and practical

approach to estimate the states. The states can be estimated using a state observer.

1.2 Luenberger Observers for Linear and Nonlinear Dynamical Systems

The state observer for estimating the unknown states of a deterministic linear

system was first proposed by Luenberger [1] in 1971.

The equation for the Luenberger observer, in addition to the system dynamics,

contains a term that corrects the current state estimates by an amount proportional to

the prediction error: the estimation of the current output minus the actual measurement.

Inclusion of this correction ensures stability and convergence of the observer even when

the system being observed is unstable.
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For the system (1.1)-(1.2) the observer is of the form

˙̂x = Ax̂ + Bu(t) + L(y − ŷ), x̂(0) = x̂0 (1.5)

ŷ = Cx̂ (1.6)

where x̂0 is arbitrarily chosen. The error in estimation is defined as

e(t) = x(t)− x̂(t) (1.7)

The error dynamics is given by

ė = (A−LC)e(t), e(0) = x0 − x̂0 (1.8)

If all the eigenvalues of matrix A − LC is chosen to lie in the left half s − plane, then

regardless of e(0), e(t) → 0 as t → ∞ exponentially and accurate state estimates are

obtained.

Similarly, the concept for state observers can be extended to nonlinear deterministic

continuous time systems. But the design process is far more complicated than the linear

systems. Several algorithms have been proposed to realize a stable nonlinear observer.

The earliest nonlinear observer designs by Krener and Isidori (Ref. [4]-[5]) were

based on a set of conditions to linearize the observation error.

One of the most complete nonlinear observer design was proposed by Gauthier et al.

[6]. In this observer design, the concept of global nonlinear coordinate changes is used to

realize the observer and it guarantees global convergence for uniformly observable inputs.

The existence of a global nonlinear coordinate change implies uniform observability of

the system. Later, in 1993, Ciccarella et. al. [7] proposed several improvements to the

observer design by Gauthier et. al. to achieve global asymptotic stability of the observer

system.

The observer design based on the work by Ciccarella et al. [7] is as follows
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For a nonlinear systems of type,

ẋ(t) = f(x(t)) + g(x(t),u(t)) (1.9)

y(t) = h(x(t)) (1.10)

where x(t) ∈ Rn, u(t) ∈ Rp in the system input, y ∈ Rm is the system output and the

vector functions f , g, h are C∞, the dynamics of the state observer is

˙̂x(t) = f(x̂(t)) + g(x̂(t),u(t)) + Q−1(x̂(t))K(y(t)− ŷ(t)) (1.11)

ŷ = h(x̂(t))) (1.12)

where Q(x̂(t)) is the observability matrix defined as

Q(x̂(t)) =
dφ(x)

dx
(1.13)

φ(x) =




h(x)

Lfh(x)

...

Ln−1
f h(x)




(1.14)

φ(x) defines the global change of coordinates. Lfh(x) denotes the Lie derivative of

the function h along f and Lk
fh(x) denotes the kth order repeated Lie derivative of the

function h along f .

In the linear case, h(x) = Cx and f(x) = Ax and matrix (1.14) reduces to the

observability matrix defined in (1.4).

The theory of state observers can similarly be extended to discrete linear and

nonlinear systems. The first step in discrete observer realization is the discretization of

the system dynamics followed by the observer design in the discrete domain.

1.3 Time Delay Systems

The field of time-delay systems had its origin in the 18th century [8] and has

received substantial attention since then. Investigation into the stability of delay differ-
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ential equations and hence time-delay systems, was pioneered by the likes of Bellman

[9], Nyquist, Chebotarev and Pontryagin and more recently by Hale [10]. In the last two

decades, the advances in numerical methods and control theory, especially the robust and

adaptive control theories have had a considerable impact on the field. Efficient numerical

algorithms to solve linear matrix inequalities (LMI) and robust stability analysis tech-

niques of uncertain polynomials have enabled researchers to solve the stability problems

associated with time-delay systems.

The concept of time-delay is used in biological, ecological and engineering systems.

The time-delay systems are also referred to as hereditary systems, systems with after-

effects, systems with time-lag and infinite dimensional systems.

Delay can occur in the system dynamics, the control input or the system output.

Irrespective of which part of the system is affected by delays, the evolution of a time-

delay system depends both on the present state and also its history. In general, this

dependence can be represented by a functional differential equations. In particular, the

differential-difference equations are best suited to describe a time-delay system.

1.3.1 Functional Differential Equations

Consider a simple linear functional differential equation of the form

ẋ(t) = f(x(t), x(t−∆)) (1.15)

where x(t) ∈ Rn are the system states, f : Rn×C → Rn and ∆ is the delay magnitude.

Eq. (1.15) suggests and that the the derivative of the states at any instant t, is a function

of both the states at the current time t and the previous values of the x(t).

To propagate the system states beyond the time t = 0, ẋ(0) has to calculated. This

implies that the values of x(t) at t = 0 and t = −∆ are needed. This is because, the

solution of (1.15) at any instant t is

x(t) = exp (A(t−∆)) x(0) (1.16)
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Similarly, to calculate ẋ at t = ξ, 0 ≤ ξ ≤ ∆, both x(ξ) and x(ξ −∆) are needed.

But x(ξ − ∆) cannot be generated as a solution of Eq. (1.15) since −∆ ≤ ξ − ∆ < 0.

Hence for the solution to be uniquely defined, the value of x(t) has to be completely

defined in the interval in the interval −∆ ≤ t ≤ 0. This is the initial condition of the

system, specified as

x(0) = φ(t), t ∈ [−∆, 0] (1.17)

Once the initial conditions are well defined, the system can be propagated from t = 0

using the differential equation (1.15).

As stated earlier, the evolution of time delay systems depends both on the present

state and also its history, similar to the functional differential equations. Hence, any time

delay systems can be aptly described by a functional differential equation.

Equations of the type (1.15) are referred to as retarded functional differential equa-

tion (RFDE). Ordinary differential equations are a special class of the RFDE. In an

RFDE the delay variable does not appear in the highest order derivative term. If it does

appear, then it is a functional differential equation of the neutral type. For example,

ẋ(t) + 3x(t−∆) + x(t) = 0 (1.18)

is an RFDE. While,

ẋ + 3ẋ(t−∆) + x(t)− x(t−∆) = 0 (1.19)

is a neutral functional differential equation (NFDE).

1.3.2 Stability of Time-Delay Systems

Stability is an important factor for time-delay systems, since delays can be a major

source of instability in an otherwise stable process. Hence, it is necessary to compensate

for time delays. The most common method of compensation is the realization of a

controller to stabilize the system. Some of the common methods for the compensation of

fixed time-delay include the recursive response method, state-augmented compensation
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method, controllability based stabilization method, the Smith predictor method and the

Padé approximation method. All the techniques are applicable to any control algorithm

to be used for controlled design.

In the case of linear systems, two important methods are: Padé approximation

[11] of the delay and Smith predictor [12] based control. Both the methods are transfer

function based approach. The two methods are briefly explained below:

Padé approximation: Control systems with time-delays are difficult to analyze

and simulate. One of the reasons is that a closed-loop control system with delays is in

fact an infinite dimensional system, i.e. it has infinite number of poles. It is also difficult

to determine all the system poles. One of the most widely recommended remedies to

overcome this difficulty is the Padé approximation method to compensate for the delay.

Consider the following model-matching problem for a transfer function

G(s) = e−tdsG0(s) (1.20)

where G0(s) is the proper stable rational transfer function and e−tds is the pure delay

term. G(s) is approximated by a transfer function

Ĝ(s) = e−tdsG0(s) (1.21)

The same input is applied to both the systems as shown in Fig. (1.1). Then by

comparing the two outputs, the unknown transfer function Ĝ(s) can be determined.

This implies that the term Pd(s) has to be matched with the delay term e−tds. This

is accomplished by expanding e−tds a matching series expansion of a rational function

whose numerator is a polynomial of degree p and denominator is a polynomial of degree

q as follows

e−tds = Pd(s) =
Nd(s)

Dd(s)
=

∑n
k=0(−1)kckt

k
ds

k

∑n
k=0 cktkds

k
(1.22)

The coefficients are

ck =
(2n− k)!n!

2n!k!(n− k)!
, k = 0, 1, . . . , n (1.23)
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G0(s)

G0(s)e-tds

Pd(s)

u(t) Error

-

+

G(s)

G(s)
^

Figure 1.1 Model-matching Problem using Padé approximation method.

After obtaining the approximated transfer function of the system, Ĝ(s), it can be used

for designing the controller for time delay systems.

The number of terms in the expansion of the numerator and denominator polyno-

mials depends on the accuracy of the systems. If the term Pd(s) has to be very close to

e−tds, then n is very large. Also, as time delay td increases, n should be increased to keep

the level of the approximation error fixed.

Smith Predictor: Smith predictor is a predictive model-based control scheme

that requires state prediction. It was suggested to design controllers to stabilize factory

processes with long transport delays, for example catalytic crackers and steel mills, but

the idea can be generalized to all control processes that have long loop delays.

Fig. (1.2) shows the block diagram of a process with delay and Fig. (1.3) the Smith

predictor.

The development of Smith predictor is based on the knowledge of the process model.

The first step in designing the controller for the delayed process is to design a suitable

predictive controller when the system is free of delay.

The process is composed of the delay-free stable rational transfer function G0(s)

and a pure time delay term e−tds. w(t) is a reference input for the system. The Smith
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+

−

w(t)
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Controller
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Delay
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Figure 1.2 Block Diagram of a Time Delayed Process.

+

−

w(t)
y(t)G0(s)C e-tds

Controller

Delay free
  Process

Delay

Process

e-tds
−

+

+
error

    Smith
 Controller

Dead Time
Compensator+

Figure 1.3 Block Diagram of the Smith Predictor.

controller incorporates the system model, thus allowing for the prediction of the system

variables, and then the controller is designed as though the system is delay free.

The predictor consists of two internal feedback loops, the Smith controller and a

dead time compensator. The Smith controller includes the dynamic model of the process,

G0(s) but excludes all transport delays; the other includes both G0(s) and the delays.

Since the transport delays are excluded from the first model, it can be a high-gain,

low-delay, negative feedback loop. If this model is accurate, and the plant performance

reliable, this loop can provide near optimal control of the plant.
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The Smith predictor is very popular and widely used in the process control systems.

The main advantage is that the delay time is removed from the closed loop system.

But, the disadvantages outweigh the advantages. Primary ones include sensitivity

to process model mismatch, difficulty in coping with disturbances, and too simplified

process model. Also, the implementation of an analog predictor is complicated. However,

its discrete equivalent can be easily implemented in practice.

Several modifications to the original Smith predictor have been proposed, including

a predictor for nonlinear systems and adaptive versions.

1.4 Stability Analysis of Time Delay System

Stability analysis of time delay system often reveals the range of delay magnitudes

that could be tolerated by the dynamic system without becoming unstable. For delays

associated with system states and inputs, a controller can be implemented to stabilize

the system.

As noted in the previous section, an open loop system cannot be stabilized using a

Smith predictor. But, with the advances in robust and adaptive control methodologies,

several elegant stability analysis were introduced. Controllers based on backstepping and

sliding modes have been used to stabilize time-delay systems.

The widely used stability analyses are the Lyapunov theorems and extensions

namely, Lyapunov-Krasovskii (LK) theorem and Razumikhin theorem. The numeri-

cal method techniques like the LMI coupled with the Lyapunov based theorems are also

useful for stability analysis of these systems. The following two theorems are quoted

verbatim from [8]

Lyapunov-Krasovskii Theorem: Suppose f : R× C → Rn in (1.15) maps R×
(bounded sets of C) into a bounded sets in Rn and that u, v, w : R̄+ → R̄+ are continuous

nondecreasing functions , where additionally u(s) and v(s) are positive for s > 0, and
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u(0) = v(0) = 0. If there exists a continuous differentiable functional V : R × C → Rn

such that

u(‖φ(0)‖) ≤ V (t, φ) ≤ v(‖φ‖c) (1.24)

and

V̇ (t, φ) ≤ −w(‖φ(0)‖) (1.25)

then trivial solution of (1.15) is uniformly stable. If w(s) > 0 for s > 0, then it is

uniformly asymptotically stable. If in addition, lims→∞ u(s) = ∞, then it is globally

asymptotically stable.

Razumikhin Theorem: Suppose f : R × C → Rn in (1.15) maps R× (bounded

sets of C) into a bounded sets in Rn and that u, v, w : R̄+ → R̄+ are continuous non-

decreasing functions , where additionally u(s) and v(s) are positive for s > 0, and

u(0) = v(0) = 0, v strictly increasing. If there exists a continuous differentiable functional

V : R× C → Rn such that

u(‖x‖) ≤ V (t, φ) ≤ v(‖x‖c), for t ∈ R and x ∈ Rn (1.26)

and

V̇ (t, φ) ≤ −w(‖φ(0)‖),wheneverV (t + θ, x(t + θ)) ≤ V (t, x(t)) (1.27)

for θ ∈ [−∆, 0], then system is uniformly stable.

If, in addition, w(s) > 0 for s > 0, and there exits a continuous nondecreasing function

p(s) > s for s > 0 such that condition (1.28) is strengthened to

V̇ (t, φ) ≤ −w(‖φ(0)‖),wheneverV (t + θ, x(t + θ)) ≤ pV (t, x(t)) (1.28)

for θ ∈ [−∆, 0], then system (1.15) is uniformly asymptotically stable.

f in addition, lims→∞ u(s) = ∞, then the system (1.15) is globally asymptotically

stable.

Ref. [8] cites detailed proofs of the two theorems.
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The two theorems are widely used in the stability analysis of state and input delays.

[13],[14],[15],[16].

1.5 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 describes in detail

the Motivation behind the development the time delay observer and a description of the

observer proposed be Germani et al. [17]. In chapter 3 the time delay observer analysis

for linear systems is considered. First the results of the work by Germani [18] for constant

delays is extended to a discrete linear system with constant output delays. Then, the

effects of time varying delays on both continuous time and discrete time systems is

considered. Simulation results for all the cases are presented. Chapter 4 introduces the

concept of time delay observer for nonlinear continuous time systems. An alternate result

for constant output delay problem is first derived. This is an improvement of the result

proposed by Germani, since it account for the observer gain as a function of delay. Next,

the effects of time varying delay on nonlinear systems is analyzed and the simulation

results are presented. Finally Chapter 5 briefly states the conclusions from this research

work and possible avenues for future work.



CHAPTER 2

RESEARCH MOTIVATION

The fundamental motivation for this research are the problems associated with co-

operative control of multiple unmanned aerial vehicles (UAV) due to delays in information

flow.

Over the last two decades, cooperative control of multiple vehicles has received

substantial amount of attention from the research community. Multiple vehicles per-

forming a common task greatly improves the results, since the task can be equally shared

amongst the participating vehicles and it can be completed in a shorter duration as com-

pared to a single vehicle performing the same task. The application areas of cooperative

control of multiple vehicles are several ranging from robot teams, micro-robot swarming,

unmanned ground vehicles, unmanned aerial vehicles as well as micro-satellite clusters

(Refs. [19], [20], [21], [22]). Significant developments in control techniques for single

vehicles, computation methods, communication capabilities and miniaturization of tech-

nologies have further boosted the efforts in exploiting the features of multiple vehicle

performing common tasks. The environments in which these vehicles operate can be

highly unstructured.

In scenarios with multiple vehicles performing a common task, they may be required

to maintain a certain formation. The reason for this is to optimize the performance of the

vehicles, subject to several constraints including limited fuel, low bandwidth communica-

tion, limited time to complete the task etc. Also, moving in a fixed formation will solve

the problems of collisions of the vehicles within the groups. Two of the widely used for-

mation control approaches are the “leader-follower” techniques and the “virtual leader”

techniques. In the former method, one out of all the participating vehicles is assigned as

14
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the leader of the group. While, in the latter approach there is only a fictitious leader.

It can be recognized that the formation control of cooperating vehicles depends heavily

on information flow between the participating vehicles. This information flow may be

subject to uncertainties and transmission delays. In an interconnected dynamical sys-

tem the behavior of the participating systems depends not only on the individual vehicle

dynamics, but also on the nature of the interconnections. Therefore, it is important to

study the stability and performance of such systems [23] and the effect of influences that

alter the nature of these interconnections.

The unmanned aerial vehicle (UAV) cooperative control with information flow con-

straints problems was studied by Luo[24] and Fax and Murray[25]. In [24], three different

situations of inter-vehicular communication were investigated. The communication be-

tween vehicles was represented as a sequence of impulses, a bandwidth-limited signal,

and a range-limited signal respectively. The information flow constraints between the

vehicles was posed as a series of generalized optimal control problems, by considering

the communicated information as one of the control inputs to the UAV. In the work

by Fax and Murray, ideas from graph theory and system theory were used to develop

information exchange strategies to improve formation stability and consequently achieve

better performance that is robust to changes in communication topology. The authors

also a consider a wide range of inter-vehicular connection possibilities.

In this succeeding section, we look at a cooperative control in an AHS environment

and how communication delays between the vehicles can cause serious problems.

2.1 Problem Description

An example of multiple vehicle control is the study on the effects of communication

delays on string stability on automated highway systems (AHS)[26]. AHS was proposed

to improve the efficiency on highways by reducing severe traffic congestion. In this

scheme, the string of vehicles plying on the highways are automated and controlled to
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Figure 2.1 String of automated vehicles moving at a safe intervehicular spacing.

move at a spacing that is much closer than is safe for human drivers as shown in Fig.

(2.1). To maintain the fixed constant spacing, each vehicle in the string has to transmit

its position information to other vehicles. It was observed that when delays [26] crept

into the communication, the string system became unstable with vehicles moving much

closer to each other than the prescribed spacing. The ultimate effect was collision of the

vehicles.

In most of these cases, the problem due to delays were tried to overcome by using

a stabilizing controller within each vehicle. The instability was fixed by prescribing the

maximum and minimum tolerable delay values and tuning the controller to cater to the

problems created by the delay.

However in this thesis, instead of addressing the issue using a controller, the delay

problems are addressed using the concept of state reconstruction of the present state

using the delayed information.
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2.2 Time Delay Observer

The concept of using a state observer to estimate the current states form a delayed

outputs is fairly new. One of the earliest contributions in this direction include observers

for nonlinear systems with delays in the output which are linearizable by additive output

injection [27]. Another significant work is the observer design proposed by Germani

et al. [17]-[18] The attractive feature of the observer design proposed by Germani et

al. is that the states are reconstructed at different time-delay instants within the delay

window. Hence, theoretically, as the delay magnitude increases the current states can

be estimated with zero observation error just by increasing the number of systems in

the observer chain. For a linear system they have proved that an observer with just two

systems in the chain is sufficient to estimate the current states for any delay magnitude,

assuming it to be known.

The concept of chain-observers [28] was first proposed by the same authors for

the design of state observers for nonlinear system without any delays. In this work,

Germani and others have presented a state observer design algorithm based on the drift-

observability property. This property refers to the observability of the system for zero

input. The observer constructed based on this property has an interesting chain-like

structure. This concept has been extended by them for estimating the states from delayed

output measurements.

One of the main problems in [17]-[18] is that the observer gain is arbitrarily selected

to stabilize the system, without any relation to the delay magnitude. In [29], Kazantzis

and Wright have proposed a nonlinear observer with a state-dependent gain. The gain is

computed from the solution of a system of first-order singular partial differential equations

(PDEs). The observer retains the same chain structure as proposed by Germani.

Since we have used the same concept as proposed by Germani et al. [17], a brief

overview of their work from Ref. [17] is presented, for nonlinear systems.
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The single-input single-output (SISO) nonlinear systems considered for observation

are of the type

ẋ(t) = f(x(t)) + g(x(t))u(t) t ≥ ∆, x(−∆) = x̄ (2.1)

ȳ(t) = h(x(t−∆)) (2.2)

where x(t) ∈ Rn, u(t) ∈ R the vector functions f , g, h are C∞. The undelayed output

is represented as y(t) = h(x(t)). and ∆ > 0 is a known constant measurement delay.

For system (2.1)-(2.2) a square map, z = Φ(x), is defined as

Φ(x) =




h(x)

Lfh(x)

...

Ln−1
f h(x)




(2.3)

where Lfh(x) denotes the Lie derivative of the function h along f and Lk
fh(x) denotes

the kth order repeated Lie derivative of the function h along f .

The Jacobian, Q(x), of the map Φ(x) and the Jacobian, Q−1(x), of the the inverse

map Φ−1(x) are defined as

Q(x) =
∂Φ(x)

∂x
(2.4)

Q−1(x) =
∂Φ−1(z)

∂z

∣∣∣∣
z=Φ(x)

(2.5)

The non-linear system (2.1)-(2.2) can be represented in the new co-ordinate system

as:

ż(t) = Anz(t) + H̃(z(t), u(t)), t ≥ ∆, z(−∆1) = Φ(x̄) (2.6)

ȳ(t) = Cnz(t−∆) t ≥ 0 (2.7)

where

H̃(z(t), u(t)) = H̃(x(t), u(t))|x=Φ−1(z) (2.8)

H̃(x(t), u(t)) = BnL
n
fh(x) + Q(x)g(x)u(t) (2.9)
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Matrices An, Bn, Cn are the Brunowski triple of order n.

The following assumptions are made about system (2.1)-(2.2).

H1: The system Eqs.(2.1)-(2.2) has a uniform observation relative degree equal to n (n

is the dimension of vector x), i.e,

∀x ∈ Rn LgL
k
fh(x) = 0, k = 0, 1, . . . , n− 2

∃x ∈ Rn LgL
n−1
f h(x) 6= 0 (2.10)

H2: System Eqs.(2.1)-(2.2) is globally drift observable and the diffeomorphism z = Φ(x)

and its inverse x = Φ−1(z) are globally Lipschitz in Rn, i.e.,

‖Φ(x1)−Φ(x2)‖ ≤ γΦ‖x1 − x2‖, ∀x1,x2 ∈ Rn (2.11)

‖Φ−1(z1)−Φ−1(z2)‖ ≤ γΦ−1‖z1 − z2‖, ∀z1,z2 ∈ Rn (2.12)

Under assumption 2, the Jacobian matrices Q(x) and Q−1(x) are non-singular in Rn.

H3: The vector function H̃(z(t), u(t)) is globally uniformly Lipschitz with respect to z,

and the Lipschitz coefficient γ eH is a non- decreasing function of |u|, i.e,

‖H̃(z1, u)− H̃(z2, u)‖ ≤ γ eH(|u|)‖z1 − z2‖ (2.13)

Lemma X[17]: Consider a function s(t) ≤ 0, t ∈ [−δ, +∞), with δ ≤ 0, such that

∫ 0

−δ

s(τ)dτ < +∞, (2.14)

s(t) ≤ µ exp(ᾱt) + γ

∫ t

t−δ

s(τ)dτ, t ≥ 0 (2.15)

where ᾱ,γ, µ are positive real.

If γδ < 1 then there exists a positive α < ᾱ such that

s(t) < µ̄ exp(−αt), t ≥ 0 (2.16)
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where

µ̄ =
exp(αδ)

1− c

(
µ + γ

∫ t

t−δ

s(τ)dτ

)
(2.17)

c =
γ

α
(exp(αδ)− 1) < 1 (2.18)

The proposed Chain Observer for system (2.1)-(2.2) has the following structure:

˙̂x0(t) = f(x̂0(t)) + g(x̂0(t))u0(t) + Q−1(x̂0(t))K(ȳ(t)− h(x̂0(t))) (2.19)

˙̂xj(t) = f(x̂j(t)) + g(x̂j(t))uj(t) + Q−1(x̂j(t))

{
exp(An

∆

m
j)K(ȳ(t)− h(x̂0(t)))

+

j−1∑
i=0

exp(An
∆

m
(i− j))

(
H(x̂i(t), ui(t))−H(x̂i+1

(
t− ∆

m

)
, ui(t))

)}
,

j = 1, 2, . . . ,m (2.20)

The initial conditions are:

˙̂x0(0) = x̂(−∆) (2.21)

˙̂xj(τ) = x̂

(
τ −∆ +

j

m
∆

)
τ ∈

[
−∆

m
, 0

]
, j = 1, 2, ..., m (2.22)

where m is the length of the chain observer i.e, the chain consists of m + 1 observer

systems. x̂(τ) ∈ [−∆, 0] is any a priori estimate of the state. The variable x̂j(τ) is

an estimate of the delayed state x(t − ∆ + j
m

∆), denoted also as xj(t). These ‘m+1’

cascaded systems form the links in the “chain observer”.

2.2.1 Chain Observer Stability

Theorem 7: For systems (2.1)-(2.2), assume that hypothesis H2, H3 are satisfied.

Take a positive real, ũM and an integer m such that the Lipschitz coefficient of function

H̃(z, u) defined in Eq (2.13) and the delay ∆ are such that

γ eH(ũM)‖ exp(An
∆

m
)‖∆

m
< 1 (2.23)

then there exists a positive α, a positive uM ≤ ũM , and a gain vector K for the observer

such that if |u(t)| ≤ uM for t ≥ −∆, then

‖x(t)− x̂m(t)‖ ≤ ν exp(−αt) (2.24)
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where ν depends on the estimation error in [−∆, 0] as:

ν = ν1 ‖ x(−∆)− x̂m(−∆) ‖ +ν2

∫ 0

−∆

‖ x(τ)− x̂m(τ) ‖ dτ (2.25)

where ν1 and ν2 are suitable positive constants.

If assumption H1 also holds, then bound uM on |u(t)| can be equal to ũM , given by Eq.

(2.23).

The detailed proof of the theorem is reported in Ref. [17]. But, some of the

important steps in the stability analysis are as follows:

• The stability of the observer is proved first in the z-coordinates. Hence an expression

for the observer equations in the z-coordinates is

˙̂z0(t) = Anẑ0(t) + H̃(ẑ0(t), u0(t)) + K(ȳ(t)−Cnẑ0(t)) t ≥ 0 (2.26)

ẑj(t) = exp(An
∆

m
)ẑj−1(t) +

∫ t

t−∆
m

eAn(t−τ)H̃(ẑj(τ), uj(τ))dτ, j = 1, . . . , m(2.27)

ẑ0(0) = Φ(x̂(−∆)) (2.28)

ẑj(τ) = Φ

(
x̂

(
τ −∆ +

j

m
∆

))
τ ∈

[
−∆

m
, 0

]
, j = 1, 2, . . . , m (2.29)

• The observation error in z-coordinates is

ez,j(t) = zj(t)− ẑj(t) (2.30)

Using Lemma XS and Eq. (2.23) the observation error at j = m is shown to be

‖ez,m(t)‖ ≤ µ̃m exp(−αt) (2.31)

This proves exponential convergence of the observer in the z-coordinates. Using

assumption H2 it follows:

‖x(t)− x̂m(t)‖ ≤ ν̃e−αt (2.32)

with

ν̃ = γΦγΦ−1

(
λmµ0‖x(−∆)− x̂0(t)‖+ γ eH(uM)

m∑
j=1

λm−j

∫ 0

−∆
m

‖xj(τ)− x̂j(τ)‖dτ

)

(2.33)
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and

ν1 = γΦγΦ−1µ0 (2.34)

ν2 = γΦγΦ−1γ eH(uM) (2.35)

µ0 defines the rate of error decay at the zeroth observer and hence the proof.

2.2.2 Advantages and Disadvantages of the Chain Observer

The main advantage of the chain observer is that, if the three assumptions H1, H2, H3,

are satisfied, an exponentially stable observer can be realized. The length, m, of the chain

depends on the delay magnitude as given by Eq. (2.23). It can be easily simplified to

observe states of a linear system with delayed outputs[18].

However, the main problem in this design is the assumption that delay is a known

constant. If the system output is time stamped, the clock information can be extracted to

ascertain the exact value of the delay. But, given the uncertainties in the communication

channel, it can almost be guaranteed that the delay will not be a constant at all instants.

Hence it is feasible to assume that the delay is a time-varying quantity.

Second, for a nonlinear system, theoretically infinite number of observers can be

used in the chain to estimate the states for any delay magnitude. In this case, the

estimation process itself would take considerable amount of time to estimate the current

states. But in the case of cooperative control or string stability problems, where the

estimated states have to be used for control, the amount of time available for the observer

to estimate the states will be limited. Hence, a long chain of observer is not a practical

situation. Hence, in this thesis we assume that the length of the chain is limited to two:

the zeroth and the first observer.

Third, in the observer stability analysis, the maximum delay that can be tolerated

by the observer does not seem to have any relation to the chosen observer gain. We re-
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derive the stability conditions for the nonlinear observer establishing a relation between

the delay magnitude and the chosen observer gain K.

Finally, in all their works, Germani et al. have assumed only continuous time

systems. The concept of the time delay observer is extended to estimate delayed outputs

from a discrete-time linear systems.

Summarizing, the following are the contributions of our research:

• Observer analysis for both continuous and discrete time linear systems for both

constant known delays and time varying known delays.

• Observer analysis for continuous time nonlinear systems for both constant known

delays and time varying known delays and an equation establishing a relation be-

tween the delay magnitude and the observer gain.



CHAPTER 3

STATE OBSERVERS FOR LINEAR TIME INVARIANT SYSTEMS
WITH DELAYED OUTPUTS

The state space model of the general class of continuous-time single-input single-

output (SISO) linear time invariant (LTI) systems considered for observation is

ẋ(t) = Ax(t) + Bu(t) t ≥ ∆, x(−∆) = x̄ (3.1)

ȳ(t) = Cx(t−∆) (3.2)

where ∆ > 0 is the measurement delay. x(t) ∈ Rn is the state vector. u(t) ∈ R is the

system input. A and B are the constant matrices with appropriate dimensions.The un-

delayed output is represented as y(t) = Cx(t). Though the observer theory is developed

for SISO systems, it can easily be extended to multiple-input multiple-output (MIMO)

systems by using system matrices of appropriate dimensions.

Similarly, for discrete-time systems, a parallel theory can be extended to estimate

the delayed outputs using a discrete chain-observer. The discrete-time equivalent of the

continuous-time system is

x(k + 1) = Φx(k) + Γu(k) (3.3)

ȳ(k) = Cx(k − n) (3.4)

where n > 0 is the delay interval. Φ and Γ are constant matrices, Φ = exp(AT ) and

Γ =
∫ t

t0
exp(Aτ)Bu(τ)dt. T is the sampling interval.

The general structure of the chain observer, as explained in Chapter 2, consists of

two systems referred to as: the zeroth observer and the first observer. The zeroth observer

estimates the states at the delayed instant i.e, at t − ∆ (or k − n for discrete system)

and the first observer estimates the states at the current instant. The inputs to the

24
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zeroth observer are the delayed measurements from the actual system and the delayed

control inputs. Using these measurements the zeroth observer estimates the states at

the delayed time instant. The inputs to the first observer are the observed states from

the zeroth observer along with the delayed measurements and current control inputs.

The estimated states from the zeroth observer are then propagated forward by the first

observer to obtain the states at the current instant. Thus, current state estimates are

obtained from the delayed measurements.

3.1 Observer Stability Analysis

The stability analysis is a two-step process. First, the stability of the zeroth ob-

server is proven and then the stability of first observer is analyzed. The stability analysis

reveals accuracy of the estimated states to the actual states. This accuracy is specified

by the observation error vector. If the magnitude of error vector is close to zero, it im-

plies that the estimated states follow the true states closely. If the error magnitude is

significant, then it implies that the observer states have not converged to the true states.

The observer stability is analyzed for two cases:

• Constant Delay, i.e ∆ (n for discrete systems) is a known constant.

• Time-varying Delays. In this case, the delay profile is also assumed to be known,

owing to the fact that the system outputs are time stamped.

3.2 Case 1: Constant Delays

3.2.1 Continuous-time LTI systems

The theory of chain observers for continuous-time LTI systems was proposed by

Germani et al. [18]. In this section, the design process is explained in detail.
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The chain observer dynamics for estimating the delayed measurement is

˙̂x(t−∆) = Ax̂(t−∆) + Bu(t−∆) + K(ȳ(t)−Cx̂(t−∆)) (3.5)

˙̂x1(t) = Ax̂1(t) + Bu(t) + exp(A∆)K(ȳ(t)−Cx̂1(t)) (3.6)

The variable x̂(t − ∆) denotes the estimate of the states at a time t − ∆ and variable

x̂1, the estimate of the states at the current time t. The observer states are initialized as

follows

x̂(t−∆)|t=0 = x̂(−∆) (3.7)

x̂1(0) = x̂(0) (3.8)

The gain vector K is chosen such that stable eigen values are assigned to the matrix

A−KC.

3.2.1.1 Stability analysis of the zeroth observer

The observation error is defined as

η0(t) = x(t−∆)− x̂(t−∆) (3.9)

where x(t−∆) are the system states at t−∆. The time derivative of η0(t) is

η̇0(t) = ẋ(t−∆)− ˙̂x(t−∆)

η̇0(t) = {Ax(t−∆) + Bu(t−∆)} − {Ax̂(t−∆) + Bu(t−∆) + K(ȳ(t)−Cx̂(t−∆))}

η̇0(t) = (A−KC)(x(t−∆)− x̂(t−∆))

η̇0(t) = Amη0(t) (3.10)

where Am = A−KC is Hurwitz. The solution of Eq. (3.10) is

η0(t) = exp(Amt)η0(0) (3.11)

This proves exponential convergence of the delayed state estimates.
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3.2.1.2 Stability analysis of the first observer

The observation error is defined as

η1(t) = x(t)− x̂1(t) (3.12)

The expression for x̂1(t) can be given as

x̂1(t) = exp(A∆))x̂(t−∆) +

∫ t

t−∆

exp(A(t− τ))Bu(τ)dτ (3.13)

Eq. (3.13) can be verified by differentiating x̂1(t),

˙̂x1(t) = exp(A∆) ˙̂x(t−∆)

+A

∫ t

t−∆

exp(A(t− τ))Bu(τ)dτ + Bu(t)− exp(A(t− τ))Bu(t−∆)(3.14)

From Eq. (3.13),
∫ t

t−∆
exp(A(t − τ))Bu(τ)dτ = x̂1(t) − exp(A∆)x̂(t −∆). Sub-

stituting for the integral,

˙̂x1(t) = exp(A∆) ˙̂x(t−∆) + A {x̂1(t)− exp(A∆)x̂(t−∆)}

+Bu(t)− exp(A(t− τ)}Bu(t−∆)

= Ax̂1(t) + Bu(t) + exp(A∆)){ ˙̂x(t−∆)−Ax̂(t−∆) + Bu(t−∆)}

(3.15)

From Eq. (3.5), ˙̂x(t−∆)−Ax̂(t−∆) + Bu(t−∆) = K(ȳ −Cx̂(t−∆)). Using

this result, (3.15) can be re-written as

˙̂x1(t) = Ax̂1(t) + Bu(t) + K(ȳ −Cx̂(t−∆)) (3.16)

which is the expression for observer 1. Similarly, state x(t) can be written as

x(t) = exp(A∆))x(t−∆) +

∫ t

t−∆

exp(A(t− τ))Bu(τ)dτ (3.17)

Subtracting Eq. (3.13) from (3.17)

η1(t) = exp(A∆)η0(t) (3.18)
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This proves exponential convergence to zero of the observation error. It is a very

interesting result, since convergence is guaranteed for any delay ∆, as long as it is known

and constant. The convergence results change significantly when the delay is not a

constant. The implications of a time varying ∆ on the observer stability is discussed in

later sections.

3.2.1.3 Simulation Results

The performance of the observer is examined for a string stability problem[26].

The system consists of a string of automated vehicles traveling at highway speeds with

very small intervehicular spacings. Currently, with human drivers, the throughput on

highways is 2000 vehicles per lane per hour on a given highway. But, studies have shown

that [30] that maintaining such a formation increases the throughput to more than 6000

vehicles per lane per hour on a given highway.

The safety of the platoon depends heavily on the timely communication between

the vehicles. Fig. (2.1) shows a typical scenario with intervehicular communication.

Any delays in information exchange could potentially lead to disastrous situations, like

collisions between the vehicles.

For simulation, three vehicles with identical dynamics moving along a straight line

is considered. The control strategy is to maintain a constant spacing with respect to the

lead vehicle in the formation. It is assumed that two vehicles which are following the

lead vehicle are within the communication range Rlead of the lead vehicle. The position

information from the lead vehicle in the platoon is transmitted to all the preceding

vehicles. The control law for each of the the preceding vehicles is designed using the

position of the lead vehicle and its own position. This enables the vehicles to align

themselves and hence maintain a constant distance between each other and also from the

lead vehicle.
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Figure 3.1 Constant spacing strategy using the lead vehicle’s position information

Due to physical separation between the vehicles and low bandwidth communication

channels, the output of the lead vehicle is transmitted to other vehicles after a delay.

The further away the vehicle in the platoon, greater is the delay magnitude. Fig. (3.1)

represents the constant spacing strategy based on the position information from the lead

vehicle.

In the Fig. (3.1), it can be seen that both vehicles 2 and 3 are within the commu-

nication range of the lead vehicle. Hence, they can receive the information from the lead

vehicle. However, one of the issues that is not addressed here is the possibility of the

vehicles going out of this communication range, in which case, a different kind of spacing

strategy needs to be developed to maintain constant separation.

The dynamics of the vehicles used for simulation is

ẋi(t) = vi(t) (3.19)

v̇i(t) = ui(t) (3.20)

where xi(t) is the position of the i − th vehicle. vi(t) is the velocity and ui(t) is the

control input.



30

Defining the states of the system as

x(t) = [x1 x2]
T = [xi vi]

T (3.21)

The state space representation is

ẋ =




0 1

0 0


 x(t) +




0

1


 u(t) (3.22)

ȳ(t) =

[
1 0

]
x(t−∆) (3.23)

ȳ(t) is the delayed output from the lead vehicle. Since vehicles 2 and 3 track the position

of the lead vehicle. The control law for each of the vehicles is based on the position error

calculated with respect to the lead vehicle. The error vector is defined as

e = x1 − xi, i = 2, 3 (3.24)

A desired tracking error dynamics is prescribed as

ë + 2ζωnė + ω2
ne = 0 (3.25)

Substituting the values for ë, ė and e and simplifying for the input ui,

ui = u1 − 2ζωnė− ω2
ne, i = 2, 3 (3.26)

At vehicles 2 and 3, only delayed position information from the lead vehicle is

available. The current position information is estimated using the chain observer. The

initial conditions for the vehicles and the observer are

xlead(0) =




600

10


 , xvehicle2(0) =




500

10


 , xvehicle3(0) =




400

10


 (3.27)

x̂0(τ) =




600

10


 , x̂1(0) =




600

10


 , τ ∈ [−∆, 0] (3.28)
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Figure 3.2 Positions of the three vehicles

The gain matrix K is chosen such that the eigen values of the matrix A −KC are at

−10 and −20 respectively. The position from lead vehicle arrives at vehicle 2 after a

delay of ∆1 = 0.1 sec and at vehicle 3 after a delay of ∆2 = 0.3 sec.

The control law is implemented to maintain the vehicle 2 at a distance of 20m from

the lead vehicle and vehicle 3 at 40m from the lead vehicle. The simulation results are

shown below

Fig. (3.2) shows the evolution of the position vector with time of the three vehicles.

Fig. (3.3) is the plot of the error in position between the lead vehicles and the preceding

vehicles. From the two plots it can be observed that the vehicles have successfully

implemented the control laws. In a very short time, they have reached the steady state

positions ie., 20 m and 30 m respectively for vehicles 2 and 3 from the lead vehicles.

This is possible due to the estimation of current position information from the delayed

outputs by the chain observer.

The observation error vectors for the two vehicles are as shown in Figs. (3.4) and

(3.4) respectively. Similar observer dynamics are used in vehicles 2 and 3. From the two

plots it can be seen that the observer performance is expected. In spite of the large initial
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Figure 3.3 Error in position

condition errors, the observer is able to converge to the steady state values quickly and

hence the control law using the estimated states is accurate.

Fig. (3.6) shows the control inputs to vehicle 2 and 3 respectively. The control

inputs to the two vehicles is the acceleration profiles of the two vehicles. The accelera-

tion profile of the two vehicles is similar. Starting at very large initial position errors,

the two vehicles accelerate to move closer to the lead vehicles. But, overshoots in the

dynamic response of the system cause the vehicles to move closer than the prescribed

spacing. Hence, the control law is triggered again to decelerate the vehicles and reach

the prescribed steady state conditions.

3.2.2 Discrete-time LTI systems

In this section, the chain observer theory is extended to discrete LTI system with

delayed outputs.
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Figure 3.4 Observation Error in states of the Chain Observer at System 2

The structure of the time-delay observer is similar to that used for continuous-time

systems. The observer equations are

x̂(k − n + 1) = Φx̂(k − n) + Γu(k − n) + κ(ȳ(k)−Cx̂(k − n)) (3.29)

x̂1(k + 1) = Φx̂1(k) + Γu(k) + Φnκ(ȳ(k)−Cx̂(k − n)) (3.30)

where x̂(k − n) is an estimate of the state at the instant k − n and x̂1(k) is an estimate

of the state at k. κ is the gain matrix, which is chosen such that the eigen values of

Φ− κC lie within the unit circle. The observer states are initialized as follows

x̂(k − n)|k=0 = x̂(−n) (3.31)

x̂1(0) = x̂(0) (3.32)
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Figure 3.5 Observation Error in states of the Chain Observer at System 3

3.2.2.1 Stability analysis of the zeroth observer

The estimation errors are defined as:

η0(k + 1) = x(k − n + 1)− x̂(k − n + 1)

η0(k + 1) = Φx(k − n) + Γu(k − n)− {Φx̂(k − n) + Γu(k − n) + κ(ȳ(k)−Cx̂(k − n))}

η0(k + 1) = (Φ− κC)(x(k − n)− x̂(k − n))

η0(k + 1) = Φmη0(k) (3.33)

Since the matrix Φm = Φ − κC is Schur stable, the error dynamics are exponentially

stable.

3.2.2.2 Stability analysis of the first observer

The observation error for the first observer is defined as

η1(k + 1) = x(k + 1)− x̂(k + 1)

η1(k + 1) = Φx(k) + Γu(k)− {Φx̂1(k) + Γu(k) + Φnκ(ȳ(k)−Cx̂(k − n))}

η1(k + 1) = Φη1(k)−ΦnκCη0(k) (3.34)
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Figure 3.6 Control inputs of Vehicles 2 and 3 respectively.

Form the definition of state transition matrix,

η1(k) = Φnη0(k) (3.35)

Using this property and substituting for η1(k) in Eq.(3.89),

η1(k + 1) = Φ.Φnη0(k)−ΦnκCη0(k)

η1(k + 1) = Φn[Φ− κC]η0(k) (3.36)

Using Eq.(3.33),

η1(k + 1) = Φnη0(k + 1) (3.37)

The error dynamics of the zeroth observer is shown to be exponentially stable.

Additionally, if Φ is also stable, i.e, its eigen values lie within the unit circle, then the

term Φn, serves as a simple scaling factor to the exponentially decaying η0(k + 1). This

proves the exponential stability of observer 1.
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3.2.2.3 Simulation Results

The performance of the observer is again examined for a string stability problem [26]

for discrete-time systems. The situation used for simulation is similar to that explained

in Section (3.2.1.3). The string consists of three vehicles, a lead and two predecessors as

shown in Fir. (3.1). It is also assumed that the two followers always remain within the

communication range of the lead vehicle.

The discrete equivalent of the continuous-time state space model of the vehicles is

obtained by using the c2d function in MATLAB. The sampling interval is 0.25 sec.

x(k) =




1 0.25

0 1


 x(k − 1) +




0.03125

0.25


 u(k) (3.38)

ȳ(k) =

[
1 0

]
x(k − n) (3.39)

ȳ(k) is the delayed output of the lead vehicle. As in the previous case, three

vehicles with identical dynamics traveling along a straight line with constant spacing are

simulated. Vehicles 2 and 3 track the position of the lead vehicle. The error vector is

defined as

ex(k) = x1(k)− xi(k), i = 2, 3 (3.40)

The desired tracking error dynamics valent controller Eq. (3.26). The prescribed

control law is

ui(k) = ulead(k)− k1(x2,i(k)− x2,lead)(k)− k2e(k), i = 2, 3 (3.41)

The initial conditions for the vehicles and the observer are

xlead(0) =




600

10


 , xvehicle2(0) =




500

10


 , xvehicle3(0) =




400

10


 (3.42)

x̂0(τ) =




600

10


 , x̂1(0) =




600

10


 , τ ∈ [−∆, 0] (3.43)
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Figure 3.7 Positions of the three vehicles

The gain matrix κ is chosen such that the eigen values of the matrix Φ− κC are

at 0.9 and 0.5 respectively. The position information from the lead vehicle arrives at

vehicle 2 after a delay of n = 2 sample and at vehicle 3 after a delay of n = 3 samples.

The control law is implemented to maintain the vehicle 2 at a distance of 25 m

from the lead vehicle and vehicle 3 at 50 m from the lead vehicle. The simulation results

are shown below

Fig. (3.7) shows the evolution of the positions of the three vehicles with time. Fig.

(3.8) shows the error in position. Initial error in positions of the two vehicles is 100 m

and 200 m respectively. But with application of the control input, the vehicles reach the

steady state conditions of 25 m and 50 m respectively.

The observation errors in the two states of both the vehicles is plotted in Fig. (3.9)

and (3.9) respectively. The performance of the discrete chain observer is similar to its

continuous-time counterpart. The chain observer is able to track the actual states accu-

rately and hence the observation error decays to zero quickly from the initial condition

errors, as shown in the two plots.
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Figure 3.8 Error in position

Fig. (3.11) is the plot the control inputs to vehicle 2 and 3 respectively. The

performance of the string is similar to that in the continuous case. Both the vehicles

converge and maintain the prescribed spacing from the lead vehicle.

3.3 Case 2: Time-varying Delays

3.3.1 Continuous-time LTI systems

In this section, the observer theory is proposed for the case when the measurement

delay, ∆ is a function of time, i.e, its magnitude varies randomly with time. The range

of delays is 0 < ∆(t) ≤ ∆̃, ∆̃ is the upper bound on all the delays. The output delay is

piecewise constant, i.e, the value ∆i is a constant in the interval (ti−1, ti). For the next

interval (ti, ti+1), it assumes a different value. ∆ti is the width of the interval over which

∆i is a constant i.e, ∆ti = ti − ti−1. The delay profile is assumed to be known at the

observer.
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Figure 3.9 Observation Error in states of the Chain Observer at System 2

3.3.1.1 Chain observer of state estimation of output delayed LTI systems

Motivated by a construction similar to the one in Ref. [18], the following structure

for the observer dynamics is proposed for estimating the states using the delayed output

measurements

˙̂x(t−∆) = Ax̂(t−∆) + Bu(t−∆) + K(ȳ(t)−Cx̂(t−∆)) (3.44)

˙̂x1(t) = Ax̂1(t) + Bu(t) + exp(A∆(t))K(ȳ(t)−Cx̂(t−∆)) (3.45)

The variable x̂(t − ∆) denotes the estimate of the states at a time t − ∆ and variable

x̂, the estimate of the states at the current time t. The observer states are initialized as

follows

x̂(t−∆)|t=0 = x̂(−∆1) (3.46)

x̂1(0) = x̂(0) (3.47)

∆1 is the output delay magnitude in the interval t0 ≤ t < t1.

The observer dynamics in Eq. (3.44) is denoted as the zeroth observer and the

dynamics in Eq. (3.45) as the first observer.
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Figure 3.10 Observation Error in states of the Chain Observer at System 3

3.3.1.2 Stability analysis of the zeroth observer

In this section, the effects of the change in the delay at specific instants of time on

the observer error dynamics is analyzed.

First, the observation error is defined as

η0(t) = x(t−∆)− x̂(t−∆) (3.48)

The time derivative of η0(t) in the interval over which the delay is a constant is

η̇0(t) = ẋ(t−∆)− ˙̂x(t−∆) (3.49)

η̇0(t) = Ax(t−∆) + Bu(t−∆)− {Ax̂(t−∆) + Bu(t−∆) + KCη0(t)}

η̇0(t) = Amη0(t) (3.50)

Note, Am = A−KC is Hurwitz.

Next, the error in observation due to changes in the delay magnitude is analyzed.

• At t = t1 the zeroth observer estimates the states at the instant t1 −∆1, while the

first observer estimates the states at t1.

• At the same instant, the output delay changes to a new value, say ∆2.
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Figure 3.11 Control inputs of Vehicles 2 and 3 respectively.

• This implies that the zeroth observer would now have to start estimating the states

from t1−∆2. This is due to the fact that, with the change in ∆, the initial condition

for the zeroth observer changes correspondingly for the interval over which this new

delay value remains a constant i.e, at t = 0, the initial condition for the zeroth

observer is x̂(−∆1) in the interval [0, t1] and with the change in delay at t = t1,

the initial condition for the zeroth observer is x̂(t1 −∆2) in the interval [t1, t2].

• The estimated values for this interval [t1, t2] need not be specified explicitly because

it is available from the output of first observer.

• The zeroth observer now starts estimating the states as though the they are prop-

agating from t1 with an initial condition starting from t−∆2.

• Hence there is a finite “jump” in the observer states from t1−∆1 to t1−∆2. This

contributes to the error in the observation which is equal to x̂(t1−∆2)−x̂(t1−∆1).
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Differentiating x̂(t1 −∆2)− x̂(t1 −∆1) and substituting the observer dynamics,

˙̂x(t1 −∆2)− ˙̂x(t1 −∆1) = Ax̂(t1 −∆2) + Bu(t1 −∆2) + K(ȳ(t1)−Cx̂(t1 −∆2))

−{Ax̂(t1 −∆1) + Bu(t1 −∆1) + K(ȳ(t1)−Cx̂(t1 −∆1))}
˙̂x(t1 −∆2)− ˙̂x(t1 −∆1) = (A−KC)(x̂(t1 −∆2)− x̂(t1 −∆1)) + B(u(t1 −∆2)− u(t1 −∆1))

˙̂x(t1 −∆2)− ˙̂x(t1 −∆1) = Amδx̂1(t) + Bδu1(t) (3.51)

Generalizing Eq.(3.51), at any instant t = ti, when the magnitude of the output delay

changes, the error in observer due to the “jump” in initial conditions can be expressed

as

˙̂x(ti −∆i+1)− ˙̂x(ti −∆i) = Amδx̂i(t) + Bδui(t) (3.52)

where ∆i is the delay in the interval ti−1 ≤ t < ti and ∆i+1 is the delay in the next interval

ti ≤ t < ti+1. δx̂i(t) = x̂(ti −∆i+1)− x̂(ti −∆i) and δui(t) = u(ti −∆i+1)− u(ti −∆i).

However, this error exists assuming that the observer 1 has not yet converged to the true

states at t = ti −∆i+1.

Substituting Eq. (3.52) in Eq.(3.49), for any t = ti and simplifying,

η̇0(ti) = Amη0(ti) + Amδx̂i(t) + Bδui(t) (3.53)

Therefore, the observation error dynamics can be written as

η̇0(t) =





Amη0(t) + Amδx̂i(t) + Bδui(t), at t > ti

Amη0(t) for t ∈ [ti−1, ti)

(3.54)

The delay profile assumed at the observer is shown in Fig.(3.12).

Next, a general expression for η0(t) for any instant t = tN , N = 0, 1, 2, . . . ,∞ at

which the delay magnitude changes is derived. The procedure is as follows:
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Figure 3.12 Profile of time-varying delay.

The solution of the dynamic equation (3.54) at t = t1 is

η0(t1) = exp(Am(t1 − 0))η0(0) +

∫ t1

0

exp(Am(t1 − s)) {Amδx̂1(s) + Bδu1(s)} ds

‖η0(t1)‖ ≤ ‖ exp(Am∆t1)η0(0)‖+

∥∥∥∥
∫ t1

0

exp(Am(t1 − s)) {Amδx̂1(s) + Bδu1(s)} ds

∥∥∥∥

‖η0(t1)‖ ≤ ‖ exp(Am∆t1)‖.‖η0(0)‖+

∥∥∥∥
∫ t1

0

exp(Am(t1 − s)) {Amδx̂1(s) + Bδu1(s)} ds

∥∥∥∥
(3.55)

Since Am is Hurwitz, we have ‖ exp(Amt)‖ = exp(−mt).

Denoting δ̄1 =
∥∥∥
∫ t1
0

exp(Am(t1 − s)) {Amδx̂1(s) + Bδu1(s)} ds
∥∥∥, (3.55) can be re-

written as

‖η0(t1)‖ ≤ exp (−m∆t1) ‖η0(0)‖+ δ̄1 (3.56)

Next, at t = t2, the error vector is given as

η0(t2) = exp(Am∆t2)η0(t1) +

∫ t2

t1

exp(Am(t2 − s)) {Amδx̂2(s) + Bδu2(s)} ds

‖η0(t2)‖ ≤ ‖ exp(Am∆t2)η0(t1)‖+

∥∥∥∥
∫ t2

t1

exp(Am(t2 − s)) {Amδx̂2(s) + Bδu2(s)} ds

∥∥∥∥
‖η0(t2)‖ ≤ exp(−m∆t2)‖η0(t1)‖+ δ̄2 (3.57)
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Substituting for ‖η0(t1)‖ from (3.56), we get

‖η0(t2)‖ ≤ exp(−m∆t2) exp {−m∆t1} ‖η0(0)‖+ exp(−m∆t2)δ̄1 + δ̄2

‖η0(t2)‖ ≤ exp (−m(∆t1 + ∆t2)) ‖η0(0)‖+ exp(−m∆t2)δ̄1 + δ̄2 (3.58)

where δ̄2 =
∥∥∥
∫ t2

t1
exp(Am(t2 − s)) {Amδx̂2(s) + Bδu2(s)} ds

∥∥∥

Proceeding further, the error vector at t = t3 is

η0(t3) = exp (Am∆t3) η0(t2) +

∫ t3

t2

exp(Am(t3 − s)) {Amδx̂3(s) + Bδu3(s)} ds

‖η0(t3)‖ ≤ exp (−m∆t3) ‖η0(t2)‖+ δ̄3

‖η0(t3)‖ ≤ exp (−m∆t3)
{
exp (−m(∆t1 + ∆t2)) ‖η0(0)‖+ exp (−m∆t2) δ̄1 + δ̄2

}
+ δ̄3

‖η0(t3)‖ ≤ exp (−m (∆t1 + ∆t2 + ∆t3)) ‖η0(0)‖+ exp (−m(∆t2 + ∆t3)) δ̄1

+ exp (−m∆t3) δ̄2 + δ̄3 (3.59)

Continuing as above, the error vector at any instant t = tN can be written as

‖η0(tN)‖ ≤ exp

(
−m

N∑
i=1

∆ti

)
‖η0(0)‖+

N−1∑
j=1

exp

(
−m

N∑
i=j+1

∆ti

)
δ̄j + δ̄N

(3.60)

where δ̄i =
∥∥∥
∫ ti

ti−1
exp(Am(ti − s)) {Amδx̂i(s) + Bδui(s)} ds

∥∥∥ , i = 1, 2, . . . , N .

Remark 1: In the Eq. (3.60), the term δ̄i represents the error in observation due

to the delay variations. This error is multiplied by an exponential term, which decay

to zero and hence as t → ∞, these cumulative delays also decay to zero. If the delay

changes very fast, i.e, ∆ti is very small, then the cumulative error due the delay changes

will be larger, since the time available for the multiplying exponentials will be smaller.

Similarly, if the delay changes at a very slow rate, then the then the cumulative error as

time increases will be of smaller magnitude and the observer will be able to track the

system states much better.
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Remark 2: From (3.60), it can be seen that at any t = tN , there will be a residual

non-decaying error term δ̄N . This implies that the observation will not be equal to zero,

but a finite non-zero value given by the magnitude of the term δ̄N . It also implies that

the observation error can be expected to lie in a residual set of magnitude defined by the

error term δ̄N . The residuals at t = tN due to earlier delay changes may have decayed to

zero due to the multiplying exponential term.

Remark 3: In (3.60), if there were no delay changes, i.e the measurement delay

was a constant over the entire time horizon, then there would be no residual errors, ie.

δ̄i = 0. and (3.60) reduces to

‖η0(tN)‖ ≤ exp (−mtN) ‖η0(0)‖ (3.61)

which is the expression for observation error with constant delays.

Remark 4: If all the delays intervals were of equal width, i.e ∆ti = ∆tj, i 6= j,

then the observation error at t = tN is given as

‖η0(tN)‖ ≤ exp (−mN∆t) ‖η0(0)‖+
N∑

j=1

exp (−m(N − j)∆t) δ̄j (3.62)

3.3.1.3 Stability analysis of the first observer

Using the state transition matrix, the system state at t i.e, x1(t) can be written as

x1(t) = exp(A∆(t))x0(t) +

∫ t

t−∆(t)

exp(A(t− s))Bu(s)ds (3.63)

Similarly, the observer states estimating the system states at t can be expressed as:

x̂1(t) = exp(A∆(t))x̂0(t) +

∫ t

t−∆(t)

exp(A(t− s))Bu(s)ds (3.64)

Subtracting Eq. (3.64) from Eq. (3.63) we obtain,

η1(t) = exp(A∆(t))η0(t) (3.65)
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Next, a general expression for the observation error η1(t) at any t = ti, i =

1, 2, . . . , N is derived as follows:

At t = t1, Eq. (3.65) can be written as

‖η1(t1)‖ ≤ ‖ exp(A∆(t))‖.‖η0(t)‖ (3.66)

Substituting for ‖η0(t)‖,

‖η1(t1)‖ ≤ α1{exp (−m∆t1) ‖η0(0)‖+ δ̄1}

‖η1(t1)‖ ≤ α1 exp {−m∆t1) ‖η0(0)‖+ α1δ̄1 (3.67)

where ‖ exp(A∆1)‖ ≤ α1. Similarly, at t = t2, the observation error is

‖η1(t2)‖ ≤ α2{exp (−m(∆t1 + ∆t2)) ‖η0(0)‖+ exp (−m∆t2) δ̄1 + δ̄2}

‖η1(t2)‖ ≤ α2 exp (−m(∆t1 + ∆t2)) ‖η0(0)‖+ α2 exp(m1∆1)δ̄1 + α2δ̄2

(3.68)

where ‖ exp(A∆2)‖ ≤ α2. Hence a general expression for the observation error at

any instant t = tN is

‖η1(tN)‖ ≤ αN exp

(
−m

N∑
i=1

∆ti

)
‖η0(0)‖+ αN

N−1∑
j=1

exp

(
−m

N∑
i=j+1

∆ti

)
δ̄j + αN δ̄N

(3.69)

where ‖ exp(A∆N)‖ ≤ αN . (3.69) implies that there will be a finite non-zero

observation error at any instant t = tN . This is the error that occurs in the zeroth

observer due to the delay changes. Additionally, in observer 1, each of these residual

error is multiplied by a scaling constant ‖ exp(A∆i)‖ ≤ αi, i = 1, 2, . . . , N . For a

non-Hurwitz matrix A, each αi will amplify the residual error further.

If matrix A is Hurwitz, ‖ exp(A∆N)‖ = ‖ exp(−m1∆N)‖, which is an exponentially

decaying quantity. Thus, in this case the estimated states will be closer to the true states.

Note, m1 is the smallest eigen value of A,
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Figure 3.13 Delay profile of the measurement delay available at vehicle 2.

3.3.1.4 Simulation Results

The string system with a lead vehicle transmitting its position information to the

two follower vehicles is the scenario considered for simulation. This is similar to the

example considered in Section 3.2.1.3.

The main difference is that delay is no longer a constant but time-varying. It is

assumed that delay of the output available at vehicle 2 changes at every 7 sec and the

delay of the output at vehicle 3 changes at every 5 sec. The delay profiles are as shown

in Figs. (3.13) and (3.14). In both the cases, ∆ ∈ [0.1, 1].

The error control law and the initial condition for the vehicles and the observer is

similar to that used in Sec. 3.2.1.3. The control law aims to position the two following

vehicles at a distance of 20 m and 50 m from the lead vehicle. The simulation results are

shown below

Fig. (3.15) shows the evolution of the positions of the three vehicles with time. Fig.

(3.16) is the plot of error in position. There is a significant change in the steady state value

of the position error vector. Due to constant changes in delays, the observer dynamics
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Figure 3.14 Delay profile of the measurement delay available at vehicle 3.

is always perturbed, which in turn causes the change in the control law. Supporting the

theory developed for the observer estimating the output with time-varying delay, there

is always a residual in the observation error. This fact can also be observed from the

observation error plots shown in Figs. (3.17) and (3.18).

Fig. (3.19) is the plot of control input to the two vehicles. In the constant delay

case, once the steady state was reached by the control, it remained a constant for the

rest of the time horizon. But, the constant change in delay causes the chain observer

to update its response based on the delay magnitude. This is reflected as a change in

position of the vehicles which are perturbed from their steady state conditions. Since the

control law aims to maintain the vehicles at the prescribed spacing, it causes the vehicle

to accelerate or decelerate, thus trying to maintain the constant spacing. But due to the

residual errors in observation, it can never meet its goal and there is constant error. From

Fig. (3.16) it can be seen that vehicle 2 is at a distance of 30 m from the lead vehicle

and vehicle 3 is at a distance slightly greater than the prescribed 50 m separation.
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Figure 3.15 Positions of the three vehicles

Thus, the simulation suggests that this control scheme of constant spacing is not

very effective in the time varying case. Hence, an a more robust control law is needed to

maintain the constant spacing in the presence of time varying delays.

3.3.2 Discrete LTI systems

In this section, the discrete chain observer theory is extended to cases when the

delay n, is a function of time, i.e, its magnitude varies randomly with time and 0 < n ≤ N .

N is the upper bound on all the delays. n is a piecewise constant, i.e, the value ni is a

constant in the interval (ki−1, ki). For the next interval (ki, ki+1), it assumes a different

value. The width of each time interval (ki − ki−1), ∀i = 1 . . . L, is assumed to of size

pi. The output measurements are assumed to be time stamped. This timing information

can be extracted at the observer, which helps in ascertaining the value of the delay.

The dynamics of the chain observer is

x̂(k − n + 1) = Φx̂(k − n) + Γu(k − n) + κ(ȳ(k)−Cx̂(k − n)) (3.70)

x̂1(k + 1) = Φx̂1(k) + Γu(k) + Φn(k)κ(ȳ(k)−Cx̂(k − n)) (3.71)
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Figure 3.16 Error in position

where x̂(k − n) is an estimate of the state at the instant k − n and x̂1(k) is an estimate

of the state at k. κ is the gain matrix, which is chosen such that the eigen values of

Φ− κC lie within the unit circle.

The observer states are initialized as follows

x̂(k − n)|k=0 = x̂(−n1) (3.72)

x̂1(0) = x̂(0) (3.73)

n1 is the output delay magnitude in the interval 0 ≤ k < k1.

3.3.2.1 Stability analysis of the zeroth observer

In this section, the effects of the change in the delay at specific instants of time on

the observer error dynamics is analyzed.



51

0 5 10 15 20

0

200

400

600

800

Time (sec)

O
bs

er
va

tio
n 

E
rr

or
 in

 P
os

iti
on

0 5 10 15 20
−50

0

50

100

Time (sec)

O
bs

er
va

tio
n 

E
rr

or
 in

 V
el

oc
ity

Figure 3.17 Observation Error in states of the Chain Observer at System 2

The observation error is defined as

η0(k + 1) = x(k − n + 1)− x̂(k − n + 1) (3.74)

η0(k + 1) = Φx(k − n) + Γu(k − n)−Φx̂(k − n)− Γu(k − n)− κ(ȳ(k)−Cx̂(k − n))

η0(k + 1) = (Φ− κC)(x(k − n)− x̂(k − n))

η0(k + 1) = Φmη0(k) (3.75)

Next, the error in estimation due to change in delay is examined. As explained

in the Section (3.3.1.2) the error in observation is due to the changing delay. At each

k = k1, the delay changes from ni to a random value ni+1. Hence the zeroth observer

which started estimating the states with an initial condition −n1, has to estimate states

as though the initial condition is ti − ni+1. Thus, a change in delay translates to a shift

in the initial condition for the zeroth observer.

However, the state values at the “new” initial condition can be obtained from the

output of the first observer. For example, at k = ki, the zeroth observer which was

previously estimating states at the delayed instant k1 − n1 has to “jump” to the instant

k1 − n2 and propagate its dynamics forward from this new time instant. The difference
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Figure 3.18 Observation Error in states of the Chain Observer at System 3

in magnitude at k = k1 is x̂(k1 − n2 + 1) − x̂(k1 − n1 + 1). Substituting the observer

dynamics and simplifying,

x̂(k1 − n2 + 1)− x̂(k1 − n1 + 1) = Φx̂(k1 − n2) + Γu(k1 − n2) + κ(ȳ(k)−Cx̂(k1 − n2))

− (Φx̂(k1 − n1) + Γu(k1 − n1) + κ (ȳ(k)−Cx̂(k1 − n1)))

x̂(k1 − n1 + 1) = x̂(k1 − n2 + 1)−Φmδx̂1 − Γδu1 (3.76)

where Φm = Φ − κC is Schur stable. δx̂1 = x̂(k1 − n2) − x̂(k1 − n1) and δu1 =

u(k1 − n2)− u(k1 − n1).

Generalizing Eq. (3.76), the error in observation due the “jump” in initial condition

at any instant k = ki is

x̂(ki − ni + 1) = x̂(ki − ni+1 + 1)−Φmδx̂i − Γδui (3.77)

Substituting Eq. (3.77) in Eq. (3.74), the observation error dynamics at k = ki is

given as

η0(ki + 1) = Φmη0(ki) + Φmδx̂i + Γδui (3.78)
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Figure 3.19 Control inputs of Vehicles 2 and 3 respectively.

Defining δ̄i = Φmδx̂i + Γδui, Eq. (3.78) can be rewritten as

η0(ki + 1) = Φmη0(ki) + δ̄i (3.79)

Hence, the observation error dynamics can be written as

η0(k + 1) =





Φmη0(k) + δ̄i, at k > ki

Φmη0(k) for k ∈ [ki−1, ki)

(3.80)

The delay profile for a discrete LTI system with delayed outputs is shown in

Fig.(3.20).

Next, a general expression for the observation error dynamics at any instant kL, L =

0, 1, . . . ,∞ is derived.

At k = k1, the error equation is

η0(k1 + 1) = Φmη0(k1) + δ̄1 (3.81)

Using the method of back substitution, the equation for error at k1 in terms of the

initial error vector is

η0(k1 + 1) = Φ(p1+1)
m η0(0) + δ̄1 (3.82)
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Propagating the error vector in the interval k1 ≤ k < k2, the observation error at

k = k2 is

η0(k2 + 1) = Φmη0(k2) + δ̄2

η0(k2 + 1) = Φp2
mη0(k1) + δ̄2 (3.83)

Substituting for η0(k1 + 1) from Eq. (3.84),

η0(k2 + 1) = Φ(p1+p2+1)
m η0(0) + Φp2

m δ̄1 + δ̄2 (3.84)

Continuing further, the equation for observation error at k = k3 is

η0(k3 + 1) = Φmη0(k3) + δ̄3

η0(k3 + 1) = Φ(p1+p2+p3+1)
m η0(0) + Φ(p2+p3)

m δ̄1 + Φp3
m δ̄2 + δ̄3 (3.85)

Therefore, a general equation for the error vector at any instant k = kL, L =

1, 2, . . . ,∞ is given as

η0(kL + 1) = Φ
(
PL

i=1 pi+1)
m η0(0) +

L−1∑
i=1

Φ
(
PL

j=i+1 pi)
m δ̄i + δ̄L (3.86)

Remark 1: Eq. (3.86) is similar to its continuous-time counterpart. It implies

that at any instant k = KL, there is a finite residual error due to the shift in initial

condition. The magnitude of the error depends on the magnitude of the change in delay.
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Remark 2: If there was no change in delay, then each δ̄i = 0 and Eq. (3.86)

reduces to

η0(kL + 1) = Φ(p+1)
m η0(0) (3.87)

which is the error equation due to constant delay.

Remark 3: If all the p’s were of equal intervals, i.e, pi = pj, ∀i 6= j, the observation

error equation is given as

η0(kL + 1) = Φ(L.p+1)
m η0(0) +

L−1∑
i=1

Φ((L−j)p)}
m δ̄i (3.88)

3.3.2.2 Stability analysis of the first observer

The observation errors for the first observer is defined as:

η1(k + 1) = x(k + 1)− x̂(k + 1)

η1(k + 1) = Φx(k) + Γu(k)−Φx̂(k)− Γu(k)−Φnκ(ȳ(k)−Cx̂)

η1(k + 1) = Φη1(k)−ΦnκCη0(k) (3.89)

Form the definition of state transition matrix, we have

η1(k) = Φnη0(k) (3.90)

Using this property and substituting for η1(k) in Eq.(3.89),

η1(k + 1) = ΦΦnη0(k)−ΦnκCη0(k)

η1(k + 1) = Φn[Φ− κC]η0(k)

η1(k + 1) = Φnη0(k + 1) (3.91)

Next, a general expression for the observation error at the first observer for any

k = kL, when the delay changes, is derived.

At k = k1, η1(k + 1) is given as

η1(k1 + 1) = Φn1η0(k1 + 1) (3.92)



56

Substituting for η0(k1 + 1) and simplifying,

η1(k1 + 1) = Φn1Φ(p1+1)
m η0(0) + Φn1 δ̄1 (3.93)

Similarly the error at k = k2 is

η1(k1 + 1) = Φn2Φ(p1+p2+1)
m η0(0) + Φn2Φp2

m δ̄1 + Φn2 δ̄2 (3.94)

Hence, a general expression for η1 at k = kL is

η0(kL + 1) = ΦnLΦ
(
PL

i=1 pi+1)
m η0(0) + ΦnL

L−1∑
i=1

Φ
(
PL

j=i+1 pi)
m δ̄i + ΦnL δ̄L (3.95)

In Eq. (3.95), the term ΦnL serves as an amplification factor for the error vector if

Φ is not Hurwitz. Alternately, a Hurwitz Φ decays exponentially to zero. This implies

that the residual error will also decay to zero and hence the observation error in this case

is smaller compared to the case when Φ is not Hurwitz.

3.3.2.3 Simulation Results

The example used for simulation is the same string stability problem in the presence

of communication delays explained in the previous sections. The discrete version of the

string stability problem for the time-varying delays is simulated. The sampling interval

used for conversion of continuous-time system to its discrete equivalent is 0.25 sec. The

system state space representation is converted from continuous-time to discrete-time

representation using the c2d function in MATLAB.

The measurement delays are assumed to vary over constant intervals of time. The

intervals p used for simulation is p = 10 samples for vehicle 2 and p = 15 samples at

vehicle 3. In both the cases, the minimum delay is 1 sample and the maximum delay

interval is 4 samples. The delay profiles are as shown in Figs. (3.21) and (3.22).

The control law used is the sampled version of Eq. (3.26) and the initial condition

for the vehicles and the observer is similar to that used in Sec. 3.2.1.3. The control law
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Figure 3.21 Delay profile of the measurement delay available at vehicle 2.

aims to position the two following vehicles at a distance of 20 m and 50 m from the lead

vehicle. The simulation results are shown below

Fig. (3.23) shows the evolution of the positions of the three vehicles with time.

Fig. (3.24) is the plot of error in position. There is a significant change in the steady

state value of the position error vector. The position errors do not settle down at a

constant value. From Fig. (3.24) it can be seen that vehicle 2 is at a distance of 30 m

from the lead vehicle and vehicle 3 is at a distance slightly greater than the prescribed

50 m separation.

This behavior is due to constant changes in delays. The observer dynamics is

always perturbed, which in turn causes the change in the control law. Supporting the

theory developed, it can be noticed from Figs. (3.25) and (3.26) that there is always a

residual error in the observation.

Fig. (3.27) is the plot of control input to the two vehicles. In the constant delay

case, once the steady state was reached, no control effort was required further to steer

the vehicles. But, the constant change in delay causes the chain observer to update its

response based on the delay magnitude. This is reflected as a change in position of the
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Figure 3.22 Delay profile of the measurement delay available at vehicle 3.

vehicles which are perturbed from their steady state conditions. Since the control law

aims to maintain the vehicles at the prescribed spacing, it causes the vehicle to accelerate

or decelerate, thus trying to maintain the constant spacing. But due to the residual errors

in observation, it can never meet its goal and there is constant error.
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Figure 3.23 Positions of the three vehicles
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Figure 3.24 Error in position
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Figure 3.25 Observation Error in states of the Chain Observer at System 2
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Figure 3.26 Observation Error in states of the Chain Observer at System 3
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CHAPTER 4

STATE OBSERVERS FOR NONLINEAR SYSTEMS WITH DELAYED
OUTPUTS

The state space model of the general class of continuous-time single-input single-

output (SISO) nonlinear systems considered for observation is

ẋ(t) = f(x(t)) + g(x(t))u(t) t ≥ ∆, x(−∆) = x̄ (4.1)

ȳ(t) = h(x(t−∆)) (4.2)

where ∆ > 0 is the measurement delay. where x(t) ∈ Rn is the state vector, u(t) ∈ R the

input and the vector functions f , g, h are C∞. The undelayed output is represented as

y(t) = h(x(t)).

The chain observer is implemented in the same reference coordinate in which the

nonlinear system is defined. However, for stability analysis a nonlinear coordinate trans-

formation (diffeomorphism) [17] is applied to the system model and the observer equation

and the resulting set of equations are in the linear perturbed form. The stability results

obtained in the transformed coordinates are then translated back to the original coordi-

nate system. The process of coordinate change is as follows:

For system (4.1)-(4.2) a square map, z = Φ(x), is defined as

z = Φ(x) =




h(x)

Lfh(x)

...

Ln−1
f h(x)




(4.3)

where Lfh(x) denotes the Lie derivative of the function h along f and Lk
fh(x) denotes

the kth order repeated Lie derivative of the function h along f .

62
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The Jacobian, Q(x), of the map Φ(x) and the Jacobian, Q−1(x), of the the inverse

map Φ−1(x) are defined as

Q(x) =
∂Φ(x)

∂x
(4.4)

Q−1(x) =
∂Φ−1(z)

∂z
|z=Φ(x) (4.5)

Using definition (4.3), the non-linear system (4.1)-(4.2) can be represented in the

new co-ordinate system as

ż(t) = Anz(t) + H̃(z(t), u(t)), t ≥ ∆, z(−∆) = Φ(x̄) (4.6)

ȳ(t) = Cnz(t−∆) t ≥ 0 (4.7)

where

H̃(z(t), u(t)) = H̃(x(t), u(t))
∣∣∣
x=Φ−1(z)

(4.8)

H̃(x(t), u(t)) = BnL
n
fh(x) + Q(x)g(x)u(t) (4.9)

Matrices An, Bn and Cn are the Brunowski triple of order n defined as

An =




0(n−1)×1 In−1

0 01×(n−1)


 Bn =




0(n−1)×1

1


 Cn =

[
1 01×(n−1)

]
(4.10)

In−1 is the identity matrix of dimension n− 1× n− 1.

Eq. (4.6)-(4.7) is the linear perturbed form of Eq. (4.1)-(4.2). In Eq. (4.6), the

term Anz(t) is the linear part and the term H̃(z(t), u(t)) is the nonlinear perturbation.

The following assumptions are made about system (4.1)-(4.2).

Assumption 1 The system (4.1)-(4.2) has a uniform observation relative degree equal

to n (n is the dimension of vector x), i.e,

∀x ∈ Rn LgL
k
fh(x) = 0, k = 0, 1, . . . , n− 2

∃x ∈ Rn LgL
n−1
f h(x) 6= 0 (4.11)
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Assumption 2 System (4.1)-(4.2) is globally drift observable and the diffeomorphism

z = Φ(x) and its inverse x = Φ−1(z) are globally Lipschitz in Rn, i.e.,

‖Φ(x1)−Φ(x2)‖ ≤ γΦ‖x1 − x2‖, ∀x1,x2 ∈ Rn (4.12)

‖Φ−1(z1)−Φ−1(z2)‖ ≤ γΦ−1‖z1 − z2‖, ∀z1,z2 ∈ Rn (4.13)

Under assumption 2, the Jacobian matrices Q(x) and Q−1(x) are non-singular in

Rn.

Assumption 3 The vector function H̃(z(t), u(t)) is globally uniformly Lipschitz with

respect to z, and the Lipschitz coefficient γ eH is a non-decreasing function of |u|, i.e,

‖H̃(z1, u)− H̃(z2,u)‖ ≤ γ eH(|u|)‖z1 − z2‖ (4.14)

4.1 Multiple-input Multiple-output (MIMO) Systems

Eq. (4.3) defines the diffeomorphism (nonlinear coordinate change) for SISO sys-

tems. However, for a MIMO systems the equations are modified as explained below

[31]

The general state-space representation of MIMO nonlinear systems is

ẋ(t) = f(x(t)) + G(x(t))u(t) t ≥ ∆, x(−∆) = x̄ (4.15)

ȳ(t) = H(x(t−∆)), t ≥ 0 (4.16)

where ∆ > 0 is the measurement delay, x(t) ∈ Rn, U (t) ∈ Rp, y(t) ∈ Rq, ( p ≥ q), the

vector functions f , G, H are C∞, the term H(t) can be written as [h1(x) h2(x) . . . hq(x)]

The undelayed output is represented as y(t) = H(x(t)). The three assumptions men-

tioned in the case of SISO systems are modified as follows for the MIMO systems
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Assumption 1: The system (4.15)-(4.16) has a global observation relative degree

equal to
∑p

k=1 rk = n, (n is the dimension of vector x, r = [r1 . . . rq]), i.e,

∀x ∈ Ωr, LGLj
fHi(x) = 0 j = 0, 1, . . . , ri − 2 (4.17)

∃x ∈ Ωr : LGLri−1
f Hi(x) 6= 0 (4.18)

Under this assumption, in an open set Ωr ∈ Rn, Eq.(4.3) is accordingly modified

as

Φ(x) =




h1(x)

...

Lr1−1
f h1(x)

h2(x)

...

Lr2−1
f h2(x)

...

hr(x)

...

L
rq−1
f hq(x)




(4.19)

where Lfhi(x) denotes the Lie derivative of the function hi(x) along f and Lk
fhi(x)

denotes the k-th order repeated Lie derivative of the function hi(x) along f .

Assumption 2: System (4.15)-(4.16) is globally drift observable and the diffeo-

morphism z = Φ(x) and its inverse x = Φ−1(z) are globally Lipschitz in Rn, i.e.,

‖Φ(x1)−Φ(x2)‖ ≤ γΦ‖x1 − x2‖, ∀x1,x2 ∈ Rn (4.20)

‖Φ−1(z1)−Φ−1(z2)‖ ≤ γΦ−1‖z1 − z2‖, ∀z1,z2 ∈ Rn (4.21)

Under the Assumption 2, the Jacobian of the map Φ(x), denoted as Q(x), and the

Jacobian of the inverse map Φ−1(x), denoted as Q−1(x) are non-singular in Rn.
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From the definition of Φ(x), the following properties are obtained:

Q(x).f(x) = AnΦ(x) + BnL
n
fh(x), H(x(t)) = CnΦ(x) (4.22)

where (An, Bn,Cn) are block diagonal matrices defined as

An = diagn
i=1Ai, Bn = diagn

i=1Bi, Cn = diagn
i=1Ci (4.23)

The n triples (Aj,Bj,Cj) are the Brunowski matrices.

Aj =




0(j−1)×1 Ij−1

0 01×(j−1)


 , Bj =




0(j−1)×1

1


 , Cj =

[
1 01×(j−1)

]
(4.24)

Remark 1: The pair An,Cn is observable and the pair An,Bn is controllable.

Under assumption 1, z = Φ(x) defines a global change of coordinates. Differenti-

ating z = Φ(x) w.r.t t, and using Eq.(4.22), the nonlinear system equation in terms of

the z-coordinates is

ż(t) = Anz(t) + H̃(z(t),U (t)), t ≥ −∆, z(−∆) = Φ(x̄) (4.25)

ȳ(t) = Cnz(t−∆), t ≥ 0 (4.26)

where,

H̃(z(t), U (t)) = H(x(t),U (t))|x=Φ−1(z) (4.27)

H̃(x(t), U (t)) = Bn







Lr1
f h1(x)

Lr2
f h2(x)

...

L
rq

f hq(x)




+




LGLr1
f h1(x)

LGLr2
f h2(x)

...

LGL
rq

f hq(x)




U (t)




(4.28)

Assumption 3: The vector function H̃(z(t),U (t)) defined in Eq.(4.27) is globally uni-

formly Lipschitz with respect to z, and the Lipschitz coefficient γ eH is a non decreasing

function of |u(t)|, i.e,

‖H̃(z1, u)− H̃(z2, u)‖ ≤ γ eH(|u|)|z1 − z2‖, ∀z1,z2 ∈ Rn (4.29)

γ eH(|u|) = max{γ eH(|u1|),γ eH(|u2|), . . . , γ eH(|uq|)} (4.30)
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The stability analysis will be presented for a SISO nonlinear system. The same

proof can be extended to MIMO systems, by using the appropriate matrices as explained

above.

4.2 State Observer for Nonlinear SISO systems

A state observer for undelayed nonlinear system is[7]

˙̂x(t) = f(x̂(t)) + g(x̂(t))u(t) + Q−1(x̂(t))K(y(t)− h(x̂(t))) (4.31)

The exponential convergence to zero of the observation error is expressed as

‖x(t)− x̂(t)‖ ≤ µ exp(−αt)‖x(0)− x̂(0)‖ (4.32)

and is guaranteed by the following theorems:

Theorem 1: Consider system (4.1)-(4.2) with undelayed output y(t) = h(x(t)) under

assumptions 2 and 3. Then, for any positive α there exist a gain vector K for the observer

(4.31) and positive constants µ and uM such that if |u(t)| ≤ uM for t ≥ 0, then (4.32)

holds.

Theorem 2: Consider system (4.1)-(4.2) with undelayed output y(t) = h(x(t)), under

assumptions 1, 2 and 3. Assume that there exists uM such that |u(t)| ≤ uM , for t ≥ 0.

Then, for any positive α there exists a gain vector K for (4.32) holds.

Remark 2: In Theorems 1 and 2 the convergence of the observer (4.31) is implied

without the assumption of uniform observability [6], which is a much stronger assumption

than drift-observability (in uniformly observable systems all states are distinguishable

independently of input). On the other hand some a priori limitation on the input is

required. Theorem 2 states that if assumptions 1, 2 and 3 hold, then, for any given a

priori bound uM , on the inputs, an observer with any prescribed exponential convergence

rate µ can be found. If only assumptions 2 and 3 hold, as in Theorem 1, then the existence

of an exponential observer is guaranteed if the input amplitudes satisfies an upper bound
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(depending on the prescribed convergence rate µ). This happens because assumption 1

(global observation relative degree equal to n) implies uniform observability. For systems

that do not satisfy assumption 1 a condition excluding bad inputs (those that destroy

observability) is needed. The bound on the inputs amplitude given by Theorem 1 is

sufficient to exclude such bad inputs.

The time-delay observer theory is developed based on the theory of nonlinear ob-

servers for undelayed systems. In the subsequent sections, the observer dynamics and

stability analysis are presented for the following two cases:

• Output Measurements with Constant Known Delays.

• Output Measurements with Time-varying known delays

4.3 Case 1: Constant Delays

The theory of chain observers for nonlinear systems was proposed by Germani et

al. [17]. According to them, theoretically, an infinite number of systems in the chain

observer can be used to estimate the output with any delay magnitude. However, for

systems which requires faster response, this scheme would fail to give desired results

in a shorter time interval. Hence, in this thesis an observer chain with two systems is

considered. The systems are: zeroth observer and the first.

Unlike the linear case, the two observer system is not sufficient to estimate de-

layed signal of any delay magnitude. The relation between the delay magnitude and

the length of observer chain was derived by Germani et al.[17]. As stated in Chapter 2,

this relation seems to suggest that the gain matrix K, chosen to stabilize the observer

is completely unrelated to the delay magnitude. But, intuitive thinking would suggest

otherwise. Hence, the stability proof of the observer is reformulated in this section and

thereby obtaining an explicit relation between the delay magnitude and the observer

gain.
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The observer dynamics for systems with delayed output has the following structure

˙̂x(t−∆) = f(x̂(t−∆)) + g(x̂(t−∆))u(t−∆) + Q−1(x̂(t−∆))K (ȳ(t)− h(x̂(t−∆)))

(4.33)

˙̂x1(t) = f(x̂1(t)) + g(x̂1(t))u1(t) + Q−1(x̂1(t)){exp(An∆)K(ȳ(t)− h(x̂(t−∆)))

+ exp(An∆)(H(x̂(t−∆), u(t−∆))−H(x̂1(t−∆), u1(t−∆)))} (4.34)

The variable x̂(t−∆) is an estimate of the states at time t−∆ and variable x̂1 is

the estimate of the states at time t with the following initial conditions

x̂(t−∆)|t=0 = x̂(−∆) (4.35)

x̂1(τ) = x̂(τ), τ ∈ [−∆, 0] (4.36)

where x̂(τ) ∈ [−∆, 0] is any a priori estimate of the state.

4.3.1 Stability analysis of the zeroth observer

The observer (4.33) after applying the nonlinear change of coordinates (4.3) can be

expressed as

˙̂z(t−∆) = Anẑ(t−∆)+ H̃(ẑ(t−∆), u(t−∆))+K(ȳ(t)−Cnẑ(t−∆)) t ≥ 0 (4.37)

with initial condition

ẑ(t−∆)|t=0 = Φ(x̂(−∆)) (4.38)

Proof : The time derivative of ẑ(t−∆) = Φ(x̂(t−∆)) is

˙̂z(t−∆) =
∂Φ

∂x(t−∆)
˙̂x(t−∆)

= Q(x̂(t−∆))(f(x̂(t−∆)) + g(x̂(t−∆))u(t−∆)

+Q−1(x̂(t−∆))K(ȳ(t)− h(x̂(t−∆))))

= AnΦ(x̂(t−∆)) + BnL
n
fh(x̂(t−∆))

+Q(x̂(t−∆))g(x̂(t−∆))u(t−∆) + K (ȳ(t)− h(x̂(t−∆)))

= Anẑ(t−∆)(t) + H̃(ẑ(t−∆), u(t−∆)) + K(ȳ(t)−Cnẑ(t−∆))
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The observer stability is proved using the Lyapunov theorem.

The observation error is defined as:

ηz0(t) = z(t−∆)− ẑ(t−∆) (4.39)

The time derivative of Eq.(4.39) is

η̇z0(t) = ż(t−∆)− ˙̂z(t−∆)

η̇z0(t) = Anz(t−∆) + H̃(z(t−∆), u(t−∆))

−
(
Anẑ(t−∆) + H̃(ẑ(t−∆), u(t−∆)) + KCn(z(t−∆)− ẑ(t−∆))

)

η̇z0(t) = An(z(t−∆)− ẑ(t−∆))− H̃(ẑ(t−∆), u(t−∆)) + H̃(z(t−∆), u(t−∆))

−KCn(z(t−∆)− ẑ(t−∆))

η̇z0(t) = Anηz0(t) + η eH(z0, ẑ0, u0)−KCnηz0(t)

η̇z0(t) = Amηz0(t) + η eH(z0, ẑ0, u0) (4.40)

where,

η eH(z0, ẑ0, u0) = H̃(z(t−∆), u(t−∆))− H̃(ẑ(t−∆), u(t−∆)), Am = An −KCn

Next, consider a Lyapunov function of the form,

Vηz0
=

1

2
ηT

z0
Pηz0 (4.41)

where P is a positive definite symmetric matrix that satisfies the Lyapunov equa-

tion:

AT
mP + PAm = −Q (4.42)

for Q = QT > 0.

The time derivative of Vηz0
along error trajectory is

V̇ηz0
=

1

2
ηT

z0

(
PAm + AT

mP
)
ηz0 + ηT

z0
Pη eH(z0, ẑ0, u0)

‖V̇ηz0
‖ ≤ −1

2
‖ηT

z0
Qηz0‖+ ‖ηT

z0
‖.‖P ‖.γ eH(|u(t)|)‖z(t−∆)− ẑ(t−∆)‖

≤ −
(

1

2
λmin(Q)− λmax(P )γ eH(|u(t)|)

)
‖ηz0‖2 (4.43)
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Hence, the zeroth observer is exponentially stable for
(

1
2
λmin(Q)− λmax(P )γ eH(|u(t)|)) >

0

⇒ ‖ηz0‖ = µ0 exp(−α0t) (4.44)

4.3.2 Stability analysis of the first observer

For notational convenience, the following convention is used: z10 = z1(t−∆), ẑ10 =

ẑ1(t−∆) and u10 = u(t−∆).

Lemma 1: Using the nonlinear change of coordinates, observer 1 can be rewritten as

ẑ1(t) = exp(An∆)ẑ(t−∆) +

∫ t

t−∆

exp(An(t− τ))H̃(ẑ1(τ), u1(τ))dτ (4.45)

Proof of Lemma 1 is reported in the appendix.

Similarly, the nonlinear states can be represented as

z1(t) = exp(An∆)z(t−∆) +

∫ t

t−∆

exp(An(t− τ))H̃(z1(τ), u1(τ))dτ (4.46)

The observation error for is defined as

ηz1(t) = z1(t)− ẑ1(t) (4.47)

Substituting Eqs. (4.45) and (4.46),

ηz1(t) = exp(An∆)ηz0(t) +

∫ t

t−∆

exp(An(t− τ))
(
H̃(z1(τ), u1(τ))− H̃(ẑ1(τ), u1(τ))

)
dτ

(4.48)

The time derivative of ηz1(t) is

η̇z1(t) = exp(An∆)η̇z0(t) + An

∫ t

t−∆

exp(An(t− τ))
(
H̃(z1(τ), u1(τ))− H̃(ẑ1(τ), u1(τ))

)
dτ

+H̃(z1(t), u1(t))− H̃(ẑ1(t), u1(t))

− exp(An∆)
(
H̃(z1(t−∆), u1(t−∆))− H̃(ẑ1(t−∆), u1(t−∆))

)
(4.49)

From Eq.(4.48),
∫ t

t−∆

exp(An(t− τ))
(
H̃(z1(τ), u1(τ))− H̃(ẑ1(τ), u1(τ))

)
dτ = ηz1(t)− exp(An∆)ηz0(t)
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Substituting this result in Eq.(4.49),

η̇z1(t) = exp(An∆)η̇z0(t) + An (ηz1(t)− exp(An∆)ηz0(t)) + H̃(z1(t), u1(t))− H̃(ẑ1(t), u1(t))

+ exp(An∆)
(
H̃(z1(t−∆), u1(t−∆))− H̃(ẑ1(t−∆), u1(t−∆))

)
(4.50)

Substituting η̇z0(t) from Eq.(4.40) and rearranging,

η̇z1(t) = Anηz1(t) + exp(An∆)
(
Amηz0(t) + η eH(z0, ẑ0, u0)−Anηz0(t)

)

+η eH(z1(t), ẑ1(t), u1(t)) + exp(An∆)η eH(z10, ẑ10, u10)

= Anηz1(t) + exp(An∆)
(−KCnηz0(t) + η eH(z0(t), ẑ0(t), u0(t))

)

+η eH(z1(t), ẑ1(t), u1(t)) + exp(An∆)η eH(z10, ẑ10, u10) (4.51)

Adding and subtracting KCnηz1(t),

η̇z1(t) = Amηz1(t) + KCn(ηz1 − exp(An∆)ηz0(t)) + η eH(z1(t), ẑ1(t), u1(t))

+ exp(An∆)
{
η eH(z0(t), ẑ0(t), u0(t)) + η eH(z10, ẑ10, u10)

}

(4.52)

Substituting the term ηz1 − exp(An∆)ηz0(t) with the integral from (4.48),

η̇z1(t) = Amηz1(t) + KCn

(∫ t

t−∆

exp(An(t− τ))η eH(z1(τ), ẑ1(τ), u1(τ))dτ

)

+η eH(z1(t), ẑ1(t), u1(t)) + exp(An∆)
{
η eH(z0(t), ẑ0(t), u0(t)) + η eH(z10, ẑ10, u10)

}

(4.53)

The solution for ηz1(t) from Eq.(4.53) for t ≥ ∆ is given as

ηz1(t) = exp(Am(t−∆))ηz1(∆)

+

∫ t

∆

exp(Am(t− s))

(∫ s

s−∆

KCn exp(An(s− θ))η eH(z1(θ), ẑ1(θ), u1(θ))dθ

)
ds

+

∫ t

∆

exp(Am(t− s))η eH(z1(s), ẑ1(s), u1(s))ds

+

∫ t

∆

exp(Am(t− s)) exp(An∆)
{
η eH(z0(s), ẑ0(s), u0(s)) + η eH(z10(s), ẑ10(s), u10(s))

}
ds
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It follows that,

‖ηz1(t)‖ ≤ ‖ exp(Am(t−∆))ηz1(∆)‖

+

∥∥∥∥
∫ t

∆

exp(Am(t− s))

{∫ s

s−∆

KCn exp(An(s− θ))η eH(z1(θ), ẑ1(θ), u1(θ))dθ

}
ds

∥∥∥∥

+

∥∥∥∥
∫ t

∆

exp(Am(t− s))η eH(z1(s), ẑ1(s), u1(s))ds

∥∥∥∥

+

∥∥∥∥
∫ t

∆

exp(Am(t− s)) exp(An∆)
{
η eH(z0(s), ẑ0(s), u0(s))

+η eH(z10(s), ẑ10(s), u10(s))
}

ds
∥∥

Since matrix Am is Hurwitz, ‖ exp(Am(t−∆))‖ ≤ exp(−m(t−∆)), t ≥ ∆. Using this

result,

‖ηz1(t)‖ ≤ ε exp(−m(t−∆))

+

∫ t

∆

exp(−m(t− s))

{∫ s

s−∆

‖KCn exp(An(s− θ))‖γ eH(|u|)‖ηz1(θ)‖dθ

}
ds

+

∫ t

∆

exp(−m(t− s))γ eH(|u|)‖ηz1(s)‖ds

+

∫ t

∆

exp(−m(t− s))‖ exp(An∆)‖γ eH(|u|)‖ηz0(s)‖ds

+

∫ t

∆

exp(−m(t− s))‖ exp(An∆)‖γ eH(|u|)‖ηz1(s−∆)‖ds

(4.54)

where, ε = sup−∆≤t≤ ∆‖ηz1(t)‖

‖ηz1(t)‖ ≤ ε exp(−m(t−∆))

+

∫ t

∆

exp(−m(t− s))γ eH(|u|) ∆ ‖KCn exp(An∆)‖ sup
s−∆≤ξ≤s

‖ηz1(ξ)‖ds

+

∫ t

∆

exp(−m(t− s))γ eH(|u|) ‖ exp(An∆)‖µ0 exp(−α0s)ds

+

∫ t

∆

exp(−m(t− s))γ eH(|u|) (‖ηz1(s)‖+ ‖ exp(An∆)‖.‖ηz1(s−∆)‖) ds
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Evaluating the integral associated with the term µ0 exp(−α0s), the above can further be

simplified as,

‖ηz1(t)‖ ≤ ε exp(−m(t−∆))

+
γ eH(|u|) ‖ exp(An∆)‖µ0

m− α0

(exp(−α0t)− exp(−α0∆) exp(−m(t−∆)))

+

∫ t

∆

exp(−m(t− s))γ eH(|u|) ∆ ‖KCn exp(An∆)‖ sup
s−∆≤ξ≤s

‖ηz1(ξ)‖ds

+

∫ t

∆

exp(−m(t− s))γ eH(|u|) (‖ηz1(s)‖+ ‖ exp(An∆)‖.‖ηz1(s−∆)‖) ds

⇒ ‖ηz1(t)‖ ≤
(

ε− γ eH(|u|) ‖ exp(An∆)‖µ0

m− α0

exp(−α0∆)

)
exp(−m(t−∆))

+
γ eH(|u|) ‖ exp(An∆)‖µ0

m−α0

exp(−α0t)

+

∫ t

∆

exp(−m(t− s))γ eH(|u|) ∆ ‖KCn exp(An∆)‖ sup
s−∆≤ξ≤s

‖ηz1(ξ)‖ds

+

∫ t

∆

exp(−m(t− s))γ eH(|u|) (‖ηz1(s)‖+ ‖ exp(An∆)‖.‖ηz1(s−∆)‖) ds

Defining µ̄0 =
γ eH(|u|) ‖ exp(An∆)‖µ0

m−α0
exp(−α0∆), Ξ = γ eH(|u|) ‖KCn exp(An∆)‖, α =

γ eH(|u|), β = γ eH(|u|)‖ exp(An∆)‖ and ε0 = ε + µ̄0, the above inequality can be re-

written as,

‖ηz1(t)‖ ≤ ε0 exp(−m(t−∆)) + µ̄0 exp(−α0t) +

∫ t

∆

exp(−m(t− s))∆ Ξ sup
s−∆≤ξ≤s

‖ηz1(ξ)‖ds

+

∫ t

∆

exp(−m(t− s)) (α‖ηz1(s)‖+ β‖ηz1(s−∆)‖) ds

Let

r(t) = ε0 exp(−m(t−∆)) + µ̄0 exp(−α0t) +

∫ t

∆

exp(−m(t− s))∆ Ξ sup
s−∆≤ξ≤s

‖ηz1(ξ)‖ds

+

∫ t

∆

exp(−m(t− s)) (α‖ηz1(s)‖+ β‖ηz1(s−∆)‖) ds

Taking the time derivative of r(t) and adding and subtracting the term mµ̄0 exp(−α0t),

ṙ(t) = −mr(t)+∆Ξ sup
t−∆≤ξ≤t

‖ηz1(ξ)‖+α‖ηz1(s)‖+β‖ηz1(s−∆)‖+mµ̄0 exp(−α0t)−α0µ̄0 exp(−α0t)

(4.55)
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Using the comparison theorem [32], one obtains

‖ηz1(t)‖ ≤ ‖r(t)‖

Hence, the asymptotic stability of r(t) implies that of ηz1(t) and

supt−∆≤ω≤tηz1(ω) ≤ supt−∆≤ω≤tr(ω)

and

‖ηz1(t−∆)‖ ≤ r(t−∆) ≤ supt−∆≤ω≤tr(ω)

ṙ(t) ≤ −(m− α)r(t) + (∆Ξ + β)supt−∆≤ω≤tr(ω) + (m− α0)µ̄0 exp(−α0t) (4.56)

The asymptotic stability of the observer in z-coordinates implies the asymptotic stability

of the observer in normal coordinate system.

Lemma 2 (Halanay [33], Kolmanovskii and Nosov [34]). Let ṙ(t) ≤ −αr(t)+βsupt−∆≤ω≤tr(ω)

for t ≥ t0 and if α > β > 0, then there exists a ξ > 0 and a k > 0 such that

r(t) ≤ k exp(−ξ(t− t0)) for t ≥ t0.

A modification of Lemma 2 for the equations of type (4.56) is stated as follows:

Lemma 3: Let ṙ(t) ≤ −αr(t) + βsupt−∆≤ω≤tr(ω) + ϑ exp(−$t) for t ≥ t0 and if

α > β > 0, $ > 0 , then there exists a ξ > 0, k > 0 and a k0 > 0 such that r(t) ≤
k exp(−ξ(t− t0)) + k0{exp(−$(t− t0))− exp(−α(t− t0))} for t ≥ t0.

Applying Lemma 3 to (4.56),

m− α > ∆Ξ + β > 0, (m− α0)µ̄0 > 0 (4.57)

which is the condition in Lemma 3, then there exists a ξ > 0, k > 0 and a k0 > 0

such that r(t) ≤ k exp(−ξ(t − ∆)) + k0{exp(−α0(t − ∆)) − exp(−α(t − ∆))} and the

inequality holds for ηz1(t) similarly. In this inequality, k0 exp(−α0(t−∆)) is the quantity

associated with the zeroth observer which is already proved to be exponentially stable.

k0 exp(−α(t − ∆)) is also stable, since α = γ eH(|u|), is the Lipschitz constant of the
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system. By definition, the lowest value possible for a Lipschitz constant is zero, which

implies that k0 exp(−α(t−∆)) is also an exponentially decaying term.

ξ is the unique solution to the equation,

−ξ = −m + α + (β + ∆Ξ) exp(∆ξ) (4.58)

Consequently the observer error dynamics is asymptotically stable so long as the following

equation is satisfied.

−m + α + (β + ∆Ξ) < 0 (4.59)

Substituting the respective values of the variables above,

−m + γ eH(|u|) + γ eH(|u|)‖ exp(An∆)‖+ ∆‖KCn‖γ eH(|u|)‖ exp(An∆)‖ < 0

‖ exp(An∆)‖ (1 + ∆‖KCn‖) <
m

γ eH(|u|) − 1

Using, max |u| = UM ,⇒ γ eH(|u|) ≤ γUM
, thus the maximum amount of time-delay that

can be accommodated for a given γUM
is given by

‖ exp(An∆)‖ (1 + ∆‖KCn‖) <
m

γUM

− 1 (4.60)

For a solution to exist for the above nonlinear inequality, i.e. to accommodate finite

time delays in the output, m
γUM

> 1 and this in turn dictates the size of the minimum

eigenvalue of Am. Since Am = An −KCn. This in turn can be used to compute the

observer gain matrix, K.

4.3.3 Simulation Results

The formation control of spacecrafts is used as a simulation example for nonlinear

systems. The formation consists of two low-thrust spacecrafts, initially separated by an

angle of 900 as shown in Fig. (4.1) in the geostationary orbit. The formation is described

in earth centered coordinate frame. Both the spacecrafts are moving in the anti-clockwise
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Figure 4.1 Initial Positions of the two spacecrafts.

direction. The control is applied on the second spacecraft such that it aligns itself at a

450 angle from the spacecraft-1 at all times. The final formation to be achieved is shown

in Fig. (4.2).

The two spacecrafts are communicating with each other. To reach the required

formation, it is assumed that the spacecraft-1 transmits its position information. The

second satellite, which lies within the communication range of the first, uses this infor-

mation to orient its position accordingly. However, the output from the first spacecraft is

received after a delay. The time delay observer is used to estimate the current states from

the delayed measurements. The estimated states are then used to compute the control

effort required to maneuver the second spacecraft.

The spacecraft model used for observation is:

−̈→
R = − µ

R3

−→
R + u(t) (4.61)

where µ = 3.986× 105 and R = |−→R|. −→R is the position vector.
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Figure 4.2 Final formation to be achieved by controlling the position of the second space-
craft.

The system states are

x = [Rx Ry Rz Ṙx Ṙy Ṙz]
T (4.62)

State space representation of the spacecraft system is

ẋ(t) =




x4

x5

x6

−µx1

R3

−µx2

R3

−µx3

R3




+




0

0

0

ux

uy

uz




(4.63)

where R = (x2
1 + x2

2 + x2
3)

1/2
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The delayed output of the system is:

ȳ =
−→
R(t−∆) (4.64)

ȳ =




x1(t−∆)

x2(t−∆)

x3(t−∆)




(4.65)

The delay magnitude for all the outputs are assumed to be 0.5 sec. To construct

the chain observer, square map is defined as

z = Φ(x) = [x1 x4 x2 x5 x3 x6]
T (4.66)

The observation matrix Q(x) and the gain matrix K are

Q(x) =
∂Φ

∂x
=




1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1




K =




7 0 0

10 0 0

0 0.11 0

0 0.001 0

0 0 7

0 0 10




(4.67)

The initial conditions are:

Spacecraft− 1 =




0

7000

0

−√
µ
R

0

0




Spacecraft− 2 =




7000

0

0
√

µ
R

0

0




Observer =




0

7000

0

−√
µ
R

0

0




To compute the control input for spacecraft-2, the error vector is defined as:

e(t) = [x2 − x1 y2 − y1 z2 − z1]
T (4.68)
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Figure 4.3 Trajectories of the two spacecrafts.

where, x1,y1, z1 are the position vectors of spacecraft-1 and x2,y2,z2 are the position

vectors of spacecraft-2. Also,

ë =
−µ
−→
R2

R2

+ u2 −
{
−µ
−→
R1

R1

+ u1

}
(4.69)

The tracking error equation used for control is

ë + 2ζωnė + ω2
ne = 0 (4.70)

Substituting the values for ë, ė and e and simplifying,

u2 =
µ
−→
R2

R2

− µ
−→
R1

R1

+ u1 − 2ζωnė− ω2
ne (4.71)

The simulation results are shown below:

Fig. (4.3) is the plot of the trajectories of the two spacecrafts in the geostationary

orbit. The two spacecraft which started at an initial angular separation of 900 with

respect to the center of the earth, converge to maintain angular separation of 450 with

respect to the center of the earth. This is possible because the estimates obtained from

the chain observer is accurate and current state estimates of the spacecraft 1 is used
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Figure 4.4 Observation Error in Position along X-axis

to compute the control inputs for the second spacecrafts and not the delayed position

information from the first spacecraft.

Fig. (4.4), (4.5), (4.6) are the plots of observation error between the true states of

the chief spacecraft and the estimated states at the deputy spacecraft. The plots show

that the observer performance is good and the observation error decays to zero quickly.

In fact, the observation error in the z direction is zero throughout, since there spacecraft

movement is confined to the X − Y plane.

Fig. (4.7), (4.8), (4.9) are the plots of the three control inputs computed using the

current states of the deputy spacecraft and estimated states of the chief spacecraft from

the chain observer. Since, both are low thrust spacecrafts, the maximum thrust that can

be handled is assumed to be 1 × 10−5 N . Hence from the Figs. (4.7), (4.8) it can be

noted that the control input is saturated at this maximum value, to maintain the second

spacecraft at the desired position. Since, there is no movement in the z directions, the

control input is zero.
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Figure 4.5 Observation Error in Position along Y-axis

4.4 Case 2: Time-varying Delays

In this section, the effect of time-varying delays on the observer stability is analyzed.

The delay, as before, is modeled as a piecewise constant, varying at intervals of width

∆ti. ∆ti = ti+1 − ti.

The observer dynamics for systems with delayed output has the following structure

˙̂x(t−∆) = f(x̂(t−∆)) + g(x̂(t−∆))u(t−∆) + Q−1(x̂(t−∆))K(ȳ(t)− h(x̂(t−∆)))

(4.72)

˙̂x1(t) = f(x̂1(t)) + g(x̂1(t))u1(t) + Q−1(x̂1(t)) {exp(An∆(t))K (ȳ(t)− h(x̂0(t)))

+ exp(An∆(t)) (H(x̂(t−∆), u(t−∆))−H(x̂1(t−∆(t)), u1(t−∆)))}

(4.73)

The variable x̂(t−∆) is an estimate of the states at time t−∆(t) and variable x̂1

is the estimate of the states at time t with the following initial conditions

x̂(t−∆)|t=0 = x̂(−∆1) (4.74)

x̂1(τ) = x̂(τ), τ ∈ [−∆1, 0] (4.75)
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Figure 4.6 Observation Error in Position along Z-axis

where x̂(τ) ∈ [−∆1, 0] is any a priori estimate of the state. −∆1 is the delay

magnitude in t ∈ [0, t1].

4.4.1 Stability analysis of the zeroth observer

As explained earlier, the observer stability is proved in the z-coordinate system.

The observation error is defined as

ηz0(t) = z(t−∆)− ẑ(t−∆) (4.76)

Differentiating Eq. (4.76),

η̇z0(t) = ż(t−∆)− ˙̂z(t−∆) (4.77)

η̇z0(t) = Anz(t−∆) + H̃(z(t−∆), u(t−∆))

−(Anẑ(t−∆) + H̃(ẑ(t−∆), u(t−∆)) + KCn(z(t−∆)− ẑ(t−∆))}

η̇z0(t) = Amηz0(t) + η eH(z0, ẑ0, u0) (4.78)

Am = An − KCn is Hurwitz and η eH(z0, ẑ0, u0) = H̃(z(t − ∆), u(t − ∆)) − H̃(ẑ(t −
∆), u(t−∆)).
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Figure 4.7 Control input ux

As seen in the case of linear observer, the change in delay translates to a “jump”

in the initial condition for zeroth observer at the instant when the delay changes. This

“jump” at t = t1 is expressed as ẑ(t1 − ∆2) − ẑ(t1 − ∆1). ∆2 is the new value of the

delay at t1 and ∆1 is the delay magnitude before the change occurs. Differentiating

ẑ(t1 −∆2)− ẑ(t1 −∆1) and substituting the observer dynamics,

˙̂z(t1 −∆2)− ˙̂z(t1 −∆1) = Anẑ(t−∆2) + H̃(ẑ(t1 −∆2), u(t1 −∆2)) + K(ȳ(t)−Cnẑ(t−∆2))

−
{

Anẑ(t−∆1) + H̃(ẑ(t1 −∆1), u(t1 −∆1))

+K(ȳ(t)−Cnẑ(t−∆1))}
˙̂z(t1 −∆2)− ˙̂z(t1 −∆1) = (An −KCn)(ẑ(t−∆2)− ẑ(t−∆1))

+
{

H̃(ẑ(t1 −∆2), u(t1 −∆2))− H̃(ẑ(t1 −∆1), u(t1 −∆1))
}

˙̂z(t1 −∆1) = ˙̂z(t1 −∆2)−Amδẑ1(t)− δfH1(t) (4.79)

Generalizing Eq.(4.79), at any instant t = ti, when the magnitude of the output de-

lay changes, the error in observer due to the “jump” in initial conditions can be expressed

as

˙̂z(ti −∆i) = ˙̂z(ti −∆i+1)−Amδẑi(t)− δfHi(t) (4.80)
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Figure 4.8 Control input uy

where ∆i is the delay in the interval ti−1 ≤ t < ti and ∆i+1 is the delay in the next interval

ti ≤ t < ti+1. δẑi(t) = ẑ(ti − ∆i+1) − ẑ(ti − ∆i) and δfHi(t) = H̃(ẑ(ti − ∆i+1), u(ti −
∆i+1))− H̃(ẑ(ti −∆i), u(ti −∆i)).

Substituting Eq. (4.79) in Eq.(4.77), for any t = ti and simplifying,

η̇z0(ti) = Amηz0(ti) + η eH(z0, ẑ0, u0) + Amδẑi(t) + δfHi(t) (4.81)

Therefore, the observation error dynamics can be written as

η̇z0(t) =





Amηz0(ti) + η eH(z0, ẑ0, u0) + Amδẑi(t) + δfHi(t), at t > ti

Amηz0(t) + η eH(z0, ẑ0, u0) for t ∈ [ti−1, ti)

(4.82)

The delay profile assumed at the observer is shown in Fig.(4.10).

Next, a general expression for ηz0(t) for any instant t = tN , N = 0, 1, 2, . . . ,∞ at

which the delay magnitude changes, is derived. The procedure is as follows:
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The solution of the dynamic equation (4.82) at t = t1 is

ηz0(t1) = exp (Am (t1 − 0)) ηz0(0) +

∫ t1

0

exp (Am (t1 − s))
{
η eH(s) + Amδẑ1(s) + δfH1(s)

}
ds

‖ηz0(t1)‖ ≤ exp (−m∆t1) ‖ηz0(0)‖

+γ eH(|u|)M1

∫ t1

0

‖ηz0(s)‖ds +

∥∥∥∥
∫ t1

0

exp (Am (t1 − s))
{
Amδẑ1(s) + δfH1(s)

}
ds

∥∥∥∥
‖ηz0(t1)‖ ≤ exp (−m∆t1) ‖ηz0(0)‖+ γ eH(|u|)M1 sup

0≤s≤t1

‖ηz0(s)‖+ δ̄1 (4.83)

where
∫ t1
0
‖ exp (Am(t1 − s)) ‖ds ≤ M1 and

δ̄1 =
∥∥∥
∫ t1

0
exp (Am (t1 − s))

{
Amδẑ1(s) + δfH1(s)

}
ds

∥∥∥.

From assumption 4, γ eH(|u|) < 1
M1

. Hence, from (4.83),

sup
0≤s≤t1

‖ηz0(s)‖ ≤ 1

(1− γ eH(|u|)M1)
{exp (−m∆t1) ‖ηz0(0)‖+ δ̄1}

Therefore, (4.83) can be rewritten as

‖ηz0(t1)‖ ≤
1

(1− γ eHM1)
{exp (−m∆t1) ‖ηz0(0)‖+ δ̄1} (4.84)

Defining, 1
(1−γ eHM1)

= β1, the observation error at t = t1 is

‖ηz0(t1)‖ ≤ β1 exp (−m∆t1) ‖ηz0(0)‖+ β1δ̄1 (4.85)
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Next, at t = t2, the error vector is given as

ηz0(t2) = exp (Am (t2 − t1)) ηz0(t1) +

∫ t2

t1

exp (Am (t2 − s))
{
η eH(s) + Amδẑ2(s) + δfH2(s)

}
ds

⇒ ‖ηz0(t2)‖ ≤ β2 exp (−m∆t2) ‖ηz0(t1)‖+ β2δ̄2 (4.86)

Substituting for ‖ηz0(t1)‖ and simplifying,

‖ηz0(t2)‖ ≤ β1β2 exp (−m(∆t1 + ∆t2)) ‖ηz0(0)‖+ β1β2 exp (−m∆t2) δ̄1 + β2δ̄2 (4.87)

Continuing as above, the error vector at any instant t = tN can be written as

‖ηz0(tN)‖ ≤ β exp

(
−m

N∑
i=1

∆ti

)
‖ηz0(0)‖+

N−1∑
j=1

exp

(
−m

N∑
i=j+1

∆ti

)
βj δ̄j + βN δ̄N

(4.88)

where β = β1β2 . . . βN . βi = 1
(1−γ eHMi)

.
∫ ti

ti−1
‖ exp (Am(ti − s)) ‖ds ≤ Mi.

δ̄i =
∥∥∥
∫ ti

ti−1
exp(Am(ti − s))

{
Amδẑi(s) + δfHi(s)

}
ds

∥∥∥ , i = 1, 2, . . . , N .

The form of Eq.(4.88) is similar to the expression obtained in the linear case with

time-varying delays. This also suggests that due to time-varying delays, there will always

be a residual error in observation.
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Remark 1: Evaluating each Mi,

Mi =
1

m
(exp(−m(ti − ti−1))− 1) (4.89)

But ti − ti−1 = ∆ti. Therefore

Mi =
1

m
(exp(−m∆ti)− 1) (4.90)

The corresponding βi is

βi =
1

1− γ eH
m

(exp(−m∆ti)− 1)
(4.91)

Three possible values of ∆ti:

• ∆ti = 0 implies that the system is undelayed.

• ∆ti < 1 implies that the delay is changing at a very fast rate. In this case,

exp(−m∆ti) > 1. Assuming that m = 1, γ eH = 1, the denominator term in βi

will be less than 1. Hence βi > 1. Since this scales the δ̄i, it would amplify the

residual error term, which in turn increases the magnitude of observation error.

• ∆ti > 1 implies that the delay is changing at a relatively slower rate. In this case,

exp(−m∆ti) < 1. Assuming that m = 1, γ eH = 1, the denominator term in βi will

be greater than 1. Hence βi < 1 and therefore in this case, the scaling factor βi

attenuates the residual error which in turn reduces the observation error.

Remark 2: If each δ̄i = 0, (4.88) reduces to

‖ηz0(tN)‖ ≤ β exp (−mtN) ‖ηz0(0)‖ (4.92)

which is the expression for observation error for no changes in delay, i.e, the constant

delay case.

Remark 3: For equal intervals of time delay, (4.88) simplifies to

‖ηz0(tN)‖ ≤ β exp (−mN∆t) ‖ηz0(0)‖+
N∑

j=1

exp (−m(N − j)∆t) βj δ̄j (4.93)
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In this case, each Mi = 1
m

(exp(−m∆t) − 1) and βi = βj = β̃, i 6= j. Hence the

term β = β̃.β̃ . . . β̃ = β̃N . (4.93) can be rewritten as

‖ηz0(tN)‖ ≤ β̃N exp (−mN∆t) ‖ηz0(0)‖+
N∑

j=1

exp (−m(N − j)∆t) β̃N−j δ̄j (4.94)

4.4.2 Stability analysis of the first observer

The proof of stability of the first observer is similar to that described in the constant

delay case. If ∆̃ is the maximum measurement delay that can occur in the system, then

the observer gain can be computed for this value of delay using Eq. (4.60). However, the

observer response does change at the instants when the delay changes. This is can noted

from the following development:

From Eq. (4.48)

‖ηz1(t)‖ = ‖ exp(An∆(t))‖.‖ηz0(t)‖

+

∥∥∥∥
∫ t

t−∆

exp(An(t− τ))
(
H̃(z1(τ), u1(τ))− H̃(ẑ1(τ), u1(τ))

)
dτ

∥∥∥∥
‖ηz1(t)‖ = βz1‖ηz0(t)‖ (4.95)

where βz1 = α
1−γ eH(|u|)M ,

∫ t

t−∆
‖ exp(An(t− τ))‖ds ≤ M and α = ‖ exp(An∆(t))‖. Substi-

tuting the general expression for ‖ηz0(t)‖ from (4.94),

‖ηz1(t)‖ = βz1

(
β̃N exp (−mN∆t) ‖ηz0(0)‖+

N∑
j=1

exp (−m(N − j)∆t) β̃N−j δ̄j

)
(4.96)

It can be noted that value of α does not change with the change in the delay

magnitude because the eigen values of α = ‖ exp(An∆(t))‖ are always at 1, irrespective

of the delay magnitude. Hence the observer 1, faithfully propagates the states from

zeroth observer forward to the current instant and is scaled by the constant 1
1−γ eH(|u|)M .

4.4.3 Simulation Results

The example used for simulation is the formation control of spacecrafts explained in

Section (4.3.3). As explained earlier, the cooperative system consists of two spacecrafts



90

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (sec)

D
el

ay
, ∆

Figure 4.11 Profile of the measurement Delay.

orbiting the earth in the geostationary orbit. The cooperative control is applied to

maintain the two spacecrafts at an angular separation of 450. The initial positions of the

two spacecrafts and desired final formation geometry are as shown in Fig. (4.1) and (4.2)

respectively.

The information from the first spacecraft to the second is assumed to available after

a finite delay. However, the delay in this case, is a function of time. The delay profile

of the output from the first spacecraft is as shown in Fig. (4.11). It is assumed that all

the outputs are delayed by the same interval. The delay varies in the interval (0.05, 0.5)

and its magnitude changes randomly for every 500 seconds.

The spacecraft model and the initial conditions are as mentioned in Sec (4.3.3).

The simulation plots are as shown in the figures below.

Fig. (4.12) is the plot of the trajectories of the two spacecrafts. A closer look at

the trajectory of the second spacecraft’s trajectory reveals the effects of the time-varying

delay. It can be noted that it is not a perfectly circular orbit as compared to that of

the first spacecraft. Due to the variations in delay magnitude, it is constantly perturbed
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Figure 4.12 Trajectories of the two spacecraft

from its orbit. Hence, the second spacecraft does not exactly follow the path of first

spacecraft.

This effect can also be observed from Fig. (4.13) and (4.14), which are the plots of

observation error between the true states of the first spacecraft and the estimated states

at the second spacecraft. In both the plots, it can be seen that the observer dynamics

is constantly excited at every 500 sec. After accommodating this change in the delay in

its dynamics, the observer tries to catch up with the true states. Again after 500 sec,

another change in the delay magnitude cause the chain observer to account for the change

in delay. Since, the spacecrafts are in an equatorial orbit, there is no movement along

the z-direction and hence no error in observation.

Fig. (4.16), (4.17), (4.18) are the plots of the three control inputs computed using

the current states of the second spacecraft and estimated states of the first spacecraft
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Figure 4.13 Observation Error in Position along X-axis

from the chain observer. Since the maximum achievable control in limited to ±1× 10−5,

the control inputs remain saturated at this value in the X and Y directions.
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Figure 4.15 Observation Error in Position along Z-axis
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CHAPTER 5

CONCLUDING REMARKS

Studies involving multiple unmanned vehicles performing a common task have

shown that the results obtained are much better than using a single vehicle to per-

form this task. But, the multi-vehicle control is plagued by several problems and one

of the critical issues is the delays in communication between the participating vehicles.

Studies have further shown that this is a serious problem and delay is a potential source

of instability.

In this research one of the methods to overcome the instability problem is addressed.

The method suggested is to use a state observer to construct the current state information

from the delayed measurements. The observer has an interesting chain-like structure with

multiple systems in the chain performing the estimation process.

The stability analysis showed that for linear systems, the chain observer can provide

an exponential stability for the case when delay is known constant. However from a

practical point of view, the delays are generally not of constant magnitude for the entire

operation time. Owing to channel uncertainties, the delay magnitude does change with

time. Stability analysis in this case showed that the chain observer can guarantee only

asymptotic stability with a finite non-zero observation error. Based on the error tolerance

levels in the system, it was found that the residual observation error magnitude was fairly

small and did not pose serious threat to the system stability. The cooperative control

laws were implemented using the estimated states from the observer. The simulation

results showed that the control laws thus derived were stable and the performance of the

cooperative system was satisfactory.
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The results of the observer were then extended to nonlinear systems with delayed

measurements. Due to the complicated nature of the system in itself, it was found that

several assumptions were needed to implement a stable observer. These assumptions

also restricted the observer implementation to a certain class of nonlinear systems which

satisfied these assumptions. For nonlinear systems, the observer was able to provide

asymptotic stability for both constant and time-varying delays. As expected, in the

time-varying case, the observation error decays to a finite residual set.
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Lemma 1: Using the nonlinear change of coordinates, observer 1 can be rewritten

as

ẑ1(t) = exp(An∆)ẑ(t−∆) +

∫ t

t−∆

exp(An(t− τ))H̃(ẑ1(τ), u1(τ))dτ (A.1)

To prove this lemma, it is required to show that by differentiating Eq. (A.1) gives

back the expression obtained by transforming Equation for observer 1

Proof : Differentiating ẑ1(t) = Φ(x̂1(t)) w.r.t time and substituting for Φ(x̂1(t)),

˙̂z1(t) =
∂Φ

∂x1

˙̂x1(t)

= Q(x̂1(t))
{
f(x̂1(t)) + g(x̂1(t))u1(t) + Q−1(x̂1(t)) {exp(An∆)K(ȳ(t)− h(x̂(t−∆)))

exp(An∆)(H(x̂(t−∆), u(t−∆))−H(x̂1(t−∆), u1(t−∆)))}}

⇒ ˙̂z1(t) = Anz1(t) + H̃(ẑ1(t), u1(t)) + exp(An∆)K(ȳ(t)− h(x̂(t−∆)))

+ exp(An∆)(H̃(ẑ(t−∆), u(t−∆))− H̃(ẑ1(t−∆), u1(t−∆))) (A.2)

Now, it is sufficient to prove that by differentiating Eq. (A.1), Eq.(A.2) is obtained.

Differentiation of Eq. (A.1) gives,

˙̂z1(t) = exp(An∆) ˙̂z(t−∆) + An

∫ t

t−∆

exp(An(t− τ))H̃(ẑ(τ −∆), u(τ −∆))dτ

+H̃(ẑ1(t), u1(t))− exp(An∆)H̃(ẑ1(t−∆), u1(t−∆))

Substituting for the integral in the above equation with ẑ1(t)− exp(An∆)ẑ(t−∆) from

Eq. (A.1) and rearranging the terms,

˙̂z1(t) = Anẑ1(t) + H̃(ẑ1(t), u1(t)) + exp(An∆)( ˙̂z(t−∆)−Anẑ(t−∆))

− exp(An∆)H̃(ẑ1(t−∆), u1(t−∆))

Adding and subtracting exp(An∆)H̃(ẑ(t − ∆), u(t − ∆)) to the above equation and

rearranging,

˙̂z1(t) = Anẑ1(t) + H̃(ẑ1(t), u1(t))

+ exp(An∆)
{

˙̂z(t−∆)−Anẑ(t−∆)− H̃(ẑ(t−∆), u(t−∆))
}

+ exp(An∆)
{

H̃(ẑ(t−∆), u(t−∆)− H̃(ẑ1(t−∆), u1(t−∆)))
}

(A.3)
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Now, defining the variable sj(t) for j = 0, 1 as

sj(t) = ˙̂zj(t)−Anẑj(t)− H̃(ẑj(t), uj(t)) (A.4)

Eq. (A.3) can be written in the difference equation form, for j = 1, as

sj(t) = exp(An∆)sj−1(t) + exp(An∆)(H̃(ẑj−1(t), uj−1(t))− H̃(ẑj(t−∆), uj(t−∆)))

The zeroth observer in difference equation form can be written as

s0(t) = K(ȳ(t)−Cnẑ(t−∆)) (A.5)

Using standard equation for discrete time systems, the following equation is obtained

sj(t) = exp(An∆)s0(t) + exp(An∆)
(
H̃(ẑ(t−∆), u(t−∆))− H̃(ẑ1(t−∆), u1(t−∆))

)

Substituting the expressions for sj(t), j = 1 and s0(t) in the above equation,

˙̂z1(t) = Anẑ1(t)− H̃(ẑ1(t), u1(t)) + exp(An∆)K(ȳ(t)−Cnẑ(t−∆))

+ exp(An∆)
(
H̃(ẑ(t−∆), ui(t))− H̃(ẑ1(t−∆), u1(t−∆))

)
(A.6)

Hence equality between expressions Eq. (A.6) and Eq. (A.1) is proved
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Consider an equation of the form,

ṙ(t) = −αr(t) + βsupt−∆≤ω≤tr(ω) + ϑ exp(−$t) (B.1)

where, ϑ exp(−$t) is an exponentially decaying signal.

Denoting supt−∆≤ω≤tr(ω) as a constant λ, Eq. (B.1) can be rewritten as,

ṙ(t) = −αr(t) + βλ + ϑ exp(−$t) (B.2)

The solution of r(t) is given as

r(t) = exp(−α(t− t0))r(t0) +

∫ t

t0

exp(−α(t− τ)) (βλ + ϑ exp(−$τ)) dτ

r(t) = exp(−α(t− t0))r(t0) + βλ exp(−αt)

∫ t

t0

exp(ατ)dτ + ϑ exp(−αt)

∫ t

t0

exp((α−$)τ)dτ

(B.3)

Evaluating the two integrals and simplifying,

r(t) = exp(−α(t− t0))r(t0) +
βλ

α
exp(−αt){exp(αt)− exp(αt0)}

+
ϑ exp(−$t)

α−$
{exp(−$(t− t0))− exp(−α(t− t0))}

Using Lemma 2 (Halanay [33],Kolmanovskii and Nosov [34]), for any k > 0 and ξ > 0

the above equation can be rewritten as,

r(t) = k exp(−ξ(t− t0)) + k0{exp(−$(t− t0))− exp(−α(t− t0))} (B.4)

where k0 = ϑ exp(−$t)
α−$
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