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ABSTRACT 

 

LOW PHASE NOISE VOLTAGE-CONTROLLED  

OSCILLATOR DESIGN 

 

Publication No. ______ 
 

Zhipeng Zhu, PhD. 
 

The University of Texas at Arlington, 2005 
 

Supervising Professor:  Ronald L. Carter  

 

Two kinds of voltage-controlled oscillators (VCO) − active inductor based VCO 

and LC cross-coupled VCO − are studied in this work. Although the phase noise 

performance is not competitive, the proposed active inductor based VCO provide an 

alternative method to VCO design with very small chip area and large tuning range. The 

measurement shows a test oscillator based on active inductor topology successfully 

oscillates near 530MHz band. 
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The phase noise of the widely used LC cross-coupled VCO is extensively 

investigated in this work. Under the widely used power dissipation and chip area 

constraints, a novel optimization procedure in LC oscillator design centered on a new 

inductance selection criterion is proposed. This optimization procedure is based on a 

physical phase noise model. From it, several closed-form expressions are derived to 

describe the phase noise generated in the LC oscillators, which indicate that the phase 

noise is proportional to the L2⋅gL3 factor. The minimum value of this factor for an area-

limited spiral inductor is proven to monotonically decrease with increasing inductance, 

suggesting a larger inductance is helpful to reduce the phase noise in LC VCO design. 

The validity of the optimization procedure is proven by simulations. Two test chips are 

designed and measured. 
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CHAPTER 1 

INTRODUCTION 

 

The explosive growth of today’s telecommunication market has brought an 

increasing demand for high performance, low cost, low power consumption radio-

frequency integrated circuits (RFICs). Tremendous effort has been reported to integrate 

all radio-frequency (RF) blocks, including the low-noise amplifier (LNA), mixer, 

intermediate frequency (IF) filter, local oscillator (LO) and power amplifier (PA) into a 

single chip [1]-[8]. Among all these RF blocks, the design on voltage-controlled 

oscillators (VCOs), which generate the LO carrier signal, is a major challenge and thus 

has received the most attention in recent years, as evidenced by the large number of 

publications [9]-[15]. The LOs are usually a frequency-synthesizer based on a phase-

locked loop (PLL) as depicted in the Fig 1.1, in which the output oscillation signal is 

provided by a VCO. Due to the ever-increasing demand for bandwidth in 

communications, very stringent requirements are placed on the spectral purity of LOs, 

making the VCO design a critical sub-circuit to the overall system performance. 

Reference
Frequency %N Low-pass

Filter VCO

%M

Phase
Detectorfr fo=M*(fr/N)

 
Figure 1.1 Block diagram of PLL-based frequency synthesizers 
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The phase noise is widely used to characterize the spectral purity (or frequency 

stability) of an oscillator. Although ring oscillators are more compact, the inductance-

capacitance cross-coupled oscillators (LC oscillators) provide better phase noise 

performance at radio frequencies. This work focuses on the phase noise performance of 

LC oscillators. 

In LC oscillators, the on-chip passive inductors are critical components. It is 

well known that a high quality factor (Q factor) tank can effectively improve the noise 

performance of the oscillators. However, due to several energy loss mechanisms of the 

on-chip passive inductor, the Q factors of the on-chip inductors as well as the overall Q

factor of the tank are primarily limited by the given processing technology. Hence, 

many Q improvement methods require additional process steps, which may be 

impractical for circuit designers. Besides directly increasing the Q of the inductors, it 

will be shown the inductance selection also has significant impact on the phase noise 

performance. In this work, a new inductance selection criterion is proposed based on the 

investigation of the area-limited spiral inductors. According to this new inductance 

selection criterion, a novel optimization design procedure is presented for both bipolar 

and CMOS LC oscillators. 

1.1 Organization

Chapter 2 gives a brief introduction to the oscillator and phase noise. It presents 

two models to explain the oscillation start-up mechanism. Basic noise sources in the 

active and passive elements are introduced and the phase noise of the oscillators is 
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defined. The negative consequences of the phase noise are illustrated in both the 

receiver and transmit paths.  

Chapter 3 investigates the oscillator designs based on active inductors. The 

implementation of the active inductors using the gyrator topology is first introduced, 

followed by several oscillators designed by using active inductors. Although these 

circuits oscillate successfully, the study shows that their phase noise performance is 

relatively poor, making them inadequate for low-noise applications. 

Chapter 4 focuses on the on-chip passive inductor design. The layout and 

structure of the inductors are introduced. Since the parasitic effects are critical to the 

inductors, their physical mechanisms are presented. Two modeling approaches, 

segmented model and compact model, are discussed in detail. To increase the accuracy, 

the parameters of the compact model are also extracted from simulation data by an 

extraction procedure. Very good consistency has been observed between the simulation 

and the models. 

Chapter 5 reviews several phase noise models in detail, including the empirical 

Leeson’s model, linear time-invariant model, linear time-variant model, non-linear 

time-invariant model and numerical model. These models explain the phase noise 

generation mechanism and provide helpful design insights to reduce the phase noise. 

The benefits and disadvantages of each phase model are compared. 

For the LC oscillators, several phase noise improvement techniques are 

summarized in Chapter 6. The phase noise generation mechanisms, especially the 
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flicker noise up-conversion mechanisms, are presented. The topologies and trade-offs of 

these techniques are studied in detail. 

Chapter 7 presents a new optimization procedure in low-noise LC oscillator 

design. A simplified, physical phase noise model is introduced first. Then the phase 

noise generated by the LC oscillators is expressed by several closed-form equations. 

These equations indicate that the phase noise is proportional to L2⋅gL3, where gL is the 

effective parallel conductance of the inductor. The simulation shows that the L2⋅gL3

factor is reduced monotonically with the increase of the inductance, suggesting a larger 

inductance may result in better phase noise performance. Based on this inductance 

selection criterion, a new optimization procedure is proposed for both bipolar and 

CMOS LC oscillators. 

In chapter 8, the layout and measurement of two oscillators – one active 

inductor based oscillator and one LC oscillator designed using the optimization 

procedure – are presented. 

A summary of the results and suggestions of future work are given in Chapter 9. 
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CHAPTER 2 

OSCILLATOR AND PHASE NOISE FUNDAMENTALS 

 

Any practical oscillator has fluctuations in both the amplitude and the phase. 

Such fluctuations are caused by both the internal noise generated by passive and active 

devices and the external interference coupled from the power supply or substrate.  The 

amplitude noise is usually less important in comparison with the phase noise for 

oscillators, since it is suppressed by the intrinsic nonlinear nature of oscillators. Hence, 

the amplitude fluctuations will die away after a period of time in oscillators. On the 

other hand, the phase noise will be accumulated, resulting in the severe performance 

degradation of the system where the oscillator is used. Therefore, wireless 

communication systems usually impose strict specifications on the phase noise 

performance. 

Internal noise will be the focus of this dissertation. In this chapter, the 

fundaments of the oscillator and the phase noise are presented. 

2.1 Oscillator Fundamentals

As an integral part of many electronic systems, oscillators are widely used in 

many applications ranging form clock generation in microprocessors to frequency 

synthesis in cellular phones. Note that even if the required working frequency is 
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constant, the oscillation frequency usually has to be tunable to overcome the 

imperfections in the fabrication process. 

2.1.1 Categorization of VCOs 

The voltage signal is widely used as the frequency control signal of the 

oscillators. Such a circuit is called the voltage-controlled oscillator (VCO). VCOs can 

be categorized by method of oscillation into resonator-based oscillators and waveform-

based oscillators [16], as illustrated in Fig. 2.1. The output signal of resonator-based 

oscillators is sinusoidal while the waveform-based oscillators usually generate square or 

triangular wave. Primary examples of two categories are the LC oscillator and the ring 

oscillator, respectively. Each type has different ways of performing frequency tuning. 

For example, the current steering technique is used in ring oscillators and the variable 

capacitors (or varactors) are used for LC oscillators. According to the difference in the 

tuning circuits, the resonator-based oscillators can be further classified into RC circuits, 

switched-capacitor (SC) circuits, LC circuits and crystal oscillators. 

Oscillators

Resonator-based Waveform-based

RC
Oscillators

SC
Oscillators

LC
Oscillators

Crystal
Oscillators

Relaxation
Oscillators

Ring
Oscillators  

Figure 2.1 Classification of VCOs 
 

In terms of integrability, ring oscillators are desirable in a VLSI environment. 

However, the LC oscillators usually provide better phase noise performance in 
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comparison with the ring oscillators at radio frequencies. In some application, their 

performance is even comparable with the crystal oscillators, which has the best phase 

noise quality. Relaxation VCOs are usually not a good choice for high frequency 

application due to the huge amount of phase noise introduced as a result of positive 

feedback. Since the LC oscillators provide very attractive low-noise performance, LC 

oscillators are the major topic in this dissertation. 

2.1.2 Feedback Model of Oscillators 

Although oscillators are nonlinear in nature, they are usually viewed as a linear 

time-invariant feedback system as shown in Fig 2.2. In the s-domain, the transfer 

function of this negative feedback system is given by 

)()(1
)()( sFsA

sAsV
V

in

out
+= . (2.1) 

A(s)

F(s)

Vin(s) Vout(s)

Figure 2.2 Block diagram of negative feedback systems 
 

If the loop gain A(s)F(s) is equal to –1 at a specific frequency ω0, the closed-

loop gain of (2.1) approaches infinity. Under this condition, the feedback becomes 

positive and the system trends to be unstable. Separating the magnitude and the phase of 

A(s)F(s), the well-known “Barkhausen criteria” are obtained for the oscillation start-up 

1)()( 00 ≥ωω jFjA , (2.2) 
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°=∠ 180)()( 00 ωω jFjA . (2.3) 

To guarantee the effective “regeneration” of the input signal, the magnitude of 

the loop gain has to be greater than unity (usually choose 2~3 in practical oscillators). 

The “input signal” here may be generated by any noise or fluctuation in oscillators. 

Note that Barkhausen criteria are necessary but not sufficient for oscillation [17]. 

2.1.3 Negative Resistance Model of Oscillators 

-Rp

t

Iin Cp RpLp

Vout

t

Iin Cp RpLp

Vout

-Rp

Cp RpLp Active
Circuit

(a) (b)

(c)  
Figure 2.3 Negative resistance model (a) oscillation decays in a RLC tank (b) negative 

resistance compensates the energy loss and (c) negative resistance model 
 

It is convenient to apply the feedback model to some types of oscillators such as 

ring oscillators. However, for resonator-based oscillators, an alternative view providing 

more insight into the oscillation phenomenon employs the concept of “negative 

resistance”. The resonator can be equivalent to a parallel RLC tank circuit as shown in 

Fig 2.3 (a), where Rp captures the energy loss inevitable in any practical system. If the 

tank is stimulated by a current impulse, the tank responds with a decaying oscillatory 

behavior due to Rp. Now suppose a resistor equal to – Rp is placed in parallel with Rp

and the experiment is repeated (Fig. 2.3(b)). Since Rp // (−Rp) = ∞, the tank oscillates at 
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ω0 indefinitely. Thus, if a one-port circuit exhibiting a negative resistance is placed in 

parallel with a tank, the combination may oscillate. Such a topology is called as 

negative resistance model (Fig. 2.3(c)). 

L L

C

I

gm1V2 gm2V1

V2V1

Vx Ix

Figure 2.4 Negative resistance provided by cross-coupled transistors in LC oscillators 
 

Active circuit can provide the negative resistance required in the negative 

resistance model. In the LC oscillator, the cross-couple transistors can be modeled as 

the small signal equivalent circuit depicted in Fig 2.4, where the 2nd order effects are 

neglected. If a voltage source is applied to the input, the following voltage and current 

equations can be derived 

Vx = V2 − V1, (2.4) 

Ix = gm2⋅V1= − gm1⋅V2. (2.5) 

Therefore, Vx is given by 





 +−=−=

21
12

11
mm

xx ggIVVV . (2.6) 

If two transistors are identical, then the negative resistance is 
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mx

x
gI

V 2−= . (2.7) 

This negative resistance will compensate the energy loss in the tank if Rp ≤ 2/gm

and the oscillation can sustain in the LC oscillator. 

2.2 Phase Noise Fundamentals

2.2.1 Noise Sources in Passive and Active Devices 

2.2.1.1 Thermal Noise 

Thermal noise is generated by the random thermal motion of the electrons and is 

unaffected by the presence or absence of DC current, since typical electron drift 

velocities in a conductor are much less than electron thermal velocities. In a resistor R,

thermal noise can be represented by a series noise voltage with the spectral density of 

kTRf
V 4

2
=∆ (2.8) 

where T is the absolute temperature. Thermal noise is present in any linear passive 

resistor. In bipolar devices, the parasitic spreading resistors such as Rb can generate the 

thermal noise. For MOSFETs, the resistance of the channel also generates thermal noise 

with the spectral density given by 

mgkTf
V /43

22
⋅=∆ (2.9) 

where gm is the conductance of the channel. Note that the term 2/3 is accurate only for 

the long channel device and should be replaced by a larger value for submicron 

MOSFETs [18]. 
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2.2.1.2 Shot Noise 

Shot noise is associated with a DC current and is presented in diodes, CMOS 

and bipolar devices. It is the fluctuation of the DC current and usually is modeled as a 

noise current source with the spectral density of 

qIf
I 2

2
=∆ . (2.10) 

For example, the spectral density of the shot noise associated with the collector DC 

current in a bipolar transistor is given by 

CqIf
I 2

2
=∆ . (2.11) 

2.2.1.3 Flicker Noise 

Flicker noise is found in all active devices as well as in some discrete passive 

elements such as carbon resisters. It is mainly caused by traps associated with 

contamination and crystal defects. The flicker noise is also called as 1/f noise because it 

displays a spectral density of the form 

b

a

f
IKf

I
1

2
=∆ (2.12) 

where I is the DC current, K1, a and b are constants. If b = 1 in (2.12), the spectral 

density has a 1/f frequency dependence as shown in Fig. 2.5. Obviously, the flicker 

noise is most significant at low frequency. Note that MOSFETs usually generate more 

flicker noise in comparison with the bipolar counterpart. 
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Figure 2.5 Spectral density of flicker noise versus frequency 
 

Two other types of noise sources, the burst noise (also called as popcorn noise) 

and avalanche noise are also found the electronic systems. However, their effects on the 

phase noise of oscillators are neglected in this dissertation. 

2.2.2 Definition of Phase Noise 

For an ideal oscillator, the output can be expressed as Vout(t) = V0 cos[ω0t + φ0], 

where amplitude V0, the frequency ω0, and the phase reference φ0 are constants. In the 

frequency domain, the one-side spectrum of such an oscillation signal is an impulse at 

ω0 as shown in Fig 2.6 (a). As a comparison, the typical spectrum of the practical 

oscillators is illustrated in Fig 2.6 (b). It has power around harmonics of ω0 if the 

oscillation waveform is not sinusoidal. More important, due to the existence of the noise 

generated by active and passive elements, the spectrum of a practical oscillator has 

sidebands close to and its harmonics, resulting in the fluctuation in oscillation 

frequency. These sidebands are generally referred as phase noise sidebands. 
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Figure 2.6 Spectrum of an ideal (a) and a practical oscillator (b) 

 

The phase noise describes the fluctuation of the oscillation frequency. Many 

ways of quantifying a signal’s frequency instabilities have been put forward [19], but it 

is usually characterized in terms of the single sideband noise spectral density. It has 

units of decibels below the carrier per hertz (dBc/Hz) and it is defined as 

{ } ( )


 ∆+⋅=∆
carrier

sideband
P

HzPL 1,log10 0 ωωω (2.13) 

where Psideband(ω0+∆ω, 1Hz) represents the single side-band power at a frequency offset 

of ∆ω from the carrier with a measurement bandwidth of 1Hz as visualized in Fig 2.7. 

Note that the above definition includes the effect of both amplitude and phase 

fluctuations. 

ω0ω ω∆

1 Hz
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nsi
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Figure 2.7 Definition of phase noise 
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The advantage of this parameter is its ease of measurement. Its disadvantage is 

that it shows the sum of both amplitude and phase variations. However, it is important 

to know the amplitude and phase noise separately because they behave differently in the 

circuit. For instance, the effect of amplitude noise is reduced by the intrinsic amplitude 

limiting mechanism in oscillators and can be practically eliminated by the application of 

a limiter to the output signal, while the phase noise cannot be reduced in the same 

manner. Therefore, in most applications, the phase noise of the oscillators is dominated 

by the phase noise, which will be investigated in the following chapters. 

2.2.3 Destructive Effects of Phase Noise 

The destructive effect of phase noise can be best seen in the front-end of a 

super-heterodyne radio transceiver. Fig. 2.8 (a) illustrates a typical front-end block 

diagram, in which the receiver consists of a LNA, a band-pass filter and a down-

conversion mixer and the transmitter comprises an up-conversion mixer, a band-pass 

filter and a power amplifier. The LO that provides the carrier signal for both mixers is 

embedded in a frequency synthesizer (see Fig 1.). If the LO is noisy, both the down-

converted and up-converted signals are corrupted, as depicted in Fig. 2.8 (b) and (c). 

Note that a large interferer in an adjacent channel may accompany the wanted signal 

according to Fig. 2.8 (b). When two signals are mixed with the LO output exhibiting 

finite phase noise, the down-converted band consists of two overlapping spectra, with 

the want signal suffering from significant noise due to tail of the interferer. This effect 

is called “reciprocal mixing”[20]. 
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Shown in Fig. 2.8 (c), the effect of phase noise on the transmit path is slightly 

different. Suppose a noiseless receiver is to detect a weak signal at ω2 while a powerful, 

nearby transmitter generates a signal at ω1 with substantial phase noise. Then, the 

wanted signal is corrupted by the phase noise tail of the transmitter. 

Band-Pass
Filter

Duplexer Frequency Synthesizer
(Local Oscillator)

Band-Pass
Filter

ω

0ω

ω

ω

Wanted
Signal

LO

Down-converted
Signal

Unwanted
Signal

ω

0ω

ω

ω

Baseband
Signal of

Transmitter
A

LO of
Transmitter

A

Sent out  Signal
of Transmitter A

0

Wanted Signal
of Receiver B

0

Low-Noise
Amplifier

Power
Amplifier

(a)

(b) (c)  
Figure 2.8 Destructive effect of phase noise on typical wireless transceivers (a) Block 

diagram of wireless transceivers (b) Effect of phase noise on receive path and (c) Effect 
of phase noise on transmit path 

 

Note the channel spacing in modern wireless communication systems can be as 

small as a few tens of kilohertz while the carrier frequency may be several hundreds 

megahertz or even several gigahertz. Therefore, the output spectrum of the LO must be 
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extremely sharp. For example, in a GSM system, the phase noise power per unit 

bandwidth must be about 118dB below the carrier power (-138dBc/Hz) at an offset of 

200kHz [21]. Such stringent requirements impose a great challenge in low-noise 

oscillator design.  

2.3 Summary

Fundamental knowledge of oscillators and phase noise was presented in this 

chapter. The physical mechanism of oscillation was investigated from two oscillator 

models – the feedback model and the negative resistance model. Several types of noise 

in both active and passive devices were introduced. The phase noise definition and its 

destructive effects on wireless communication systems were briefly discussed. 
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CHAPTER 3 

ACTIVE INDUCTOR BASED OSCILLATORS 

 

It will be shown in the next chapter that the integrated passive inductor usually 

has poor Q factor and occupies large chip area. The reliability is also questionable 

especially if the extra process steps are used to increase the Q factor. On the other hand, 

the functionality of the passive inductors can be emulated by the active component to 

obtain a more reliable and cost-effective design. In the chapter, the active inductor 

based oscillators will be investigated. 

3.1 Gyrators

A gyrator [22] provides the most direct means of simulating a passive inductor. 

As depicted in Fig 3.1, it consists of an anti-parallel connection of two 

transconductances. If a capacitor, C1, is connected to one port of the gyrator, the input 

impedance seen from the other port is given by 

GM1

-GM2

C1

Figure 3.1 Gyrator topology 
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21

1

mm
in GG

CjZ ω= . (3.1) 

Therefore, the topology in Fig 3.1 is equivalent to an inductor with inductance of 

C1/(Gm1⋅Gm2). 

The simplest active inductor based on a gyrator topology is shown in Fig 3.2 

[23]. In this circuit, the anti-parallel connection of two transconductances is realized by 

two MOSFETs configured as the common-source (M1) amplifier and the source 

follower (M2). The parasitic capacitance attached on the node A forms the 

corresponding C1 in Fig 3.1. Using TSMC0.25µm model file (see appendix 1), the 

equivalent inductance defined as Im[Zin]/ω is simulated and plotted in Fig 3.3 (a). This 

result suggests that the circuit successfully emulates a 5.34nH inductor if the frequency 

is lower than 3GHz. At higher frequency, however, the circuit becomes capacitive due 

to the parasitics. 

 
VDD=2.5V

I2=1mA

I1=1mA

M1(20/0.3)

M2(20/0.3)
Cgs

A

Figure 3.2 A simple gyrator in MOS implementation 
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One of the benefits of the active inductors is their tuning capability. As shown 

in Fig. 3.3 (b), the inductance of the circuit is tuned form 5.34nH to 10.7nH simply by 

decreasing the bias current I1 from 1mA to 200µA. Hence, the oscillators based on the 

active inductors can achieve wide tuning range with simple tuning circuitry. 

 
(a)                                                                          (b) 

Figure 3.3 Equivalent inductance of the circuit in Fig. 3.2 (a) with 1mA bias current and 
(b) with 200µA, 400µA, …, 1mA bias current 

 

The quality factor is one of the most critical parameters to characterize inductors 

and it will be frequently used in this dissertation. The most fundamental definition of 

the Q factor is 

 . (3.2) 

The above definition does not specify what stores or dissipates the energy. For 

an inductor, only the energy stored in the magnetic field is of interest. Therefore, the 

nominator is equal to the difference between peak magnetic and electric energy. In the 

LC oscillators, the LC tank is usually represented by a parallel RLC circuit. In this case, 

it can be shown that the Q factor can be expressed as [24] 
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⋅= π2Q peak magnetic energy - peak magnetic energy
energy loss in one oscillation cycle  

)Re(
)Im(1

2

0 Z
Z

L
Rp =









−⋅= ω
ω

ω (3.3) 

where Rp and L are the equivalent parallel resistance and inductance, respectively, ω0 is 

the resonance frequency, and Z is the impedance seen at one terminal of the inductor 

while the other is grounded. This definition will be followed in the dissertation for both 

active and passive inductors. However, although it is extensively used, this definition is 

only applicable at low frequency where the circuit or device is inductive. In addition, 

for active inductor, there is no magnetic energy stored. 
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Figure 3.4 Q factor of the circuit in Fig. 3.2 with 1mA bias current 
 

According to the definition of (3.3), the Q factor of the simplest active inductor 

is plotted in figure 3.4. Note that although the Q factor in this case is only slight larger 

than 3, very large Q factor (several hundred or even higher [25]) are achievable for the 
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active inductors. This feature makes the active inductors an attractive solution in active 

filter design [23], [26]-[28]. 

3.2 Oscillators Based on Active Inductors

Two oscillators based on the active inductor topology are investigated. In the 

first oscillator, the active inductor replaces the inductor in a LC oscillator. The second 

oscillator is implemented by the active inductor directly. The bipolar transistors are 

used in both designs. 

3.2.1 Embedded Active Inductor into LC Oscillator 

The active inductor depicted in Fig 3.2 is single-ended. However, floating 

inductors are desirable in both oscillator and filter designs. Such a floating active 

inductor is shown in Fig 3.5 (a) [28]. In this active inductor implementation, two active 

inductors consisting of Q1, Q2, Q3 and Q4, Q5, Q6 are combined together to form a 

floating active inductor. For each active inductor, the anti-parallel connection of two 

transconductances is implemented by combining a common-collector common-base 

configuration (Q1, Q2) with a common-emitter stage (Q3). For a quick understanding of 

the circuit operation, assume the bipolar transistors are modeled by gm and cπ only. By 

applying a test voltage v1 at the input port, a feedback current if = gm⋅v1/2 is generated 

which charges up cπ3. This in turn creates an input current, i1 = v1⋅ gm2/(s⋅2cπ3), where all 

transistors are assumed to have the same transconductance, gm1 = gm2 = gm3 = gm. From 

this expression of i1, the input impedance can be calculated as 
2

3 /2 min gcsZ π⋅⋅≈ . (3.4) 
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Note that the idealized input impedance is purely inductive. It is similar to the ideal 

gyrator’s input impedance given by (3.1). 

VB

VCC=2.5V

II II

2I 2I

2I

Q1 Q2

Q3 Q6

Q4Q5

πr2 πr2
2/πc 2/πc

L L

v1

if

i1

(a) (b)

Figure 3.5 A floating active inductor (a) and its passive counterpart (b) 
 

If rπ is also taken into account, the more detail analysis reveals that the input 

impedance is give by 

2
3

2
3

3
2/

2
m

in gccsrcs
csZ +⋅⋅⋅+⋅
⋅⋅=

ππππ
π , (3.5) 

where gm1 = gm2 = gm3 = gm, cπ is the base-charging capacitance for Q1 and Q2, cπ3 is the 

base-charging capacitance of Q3, rπ is the input resistance of Q1 and Q2. The first term 

beginning from the left-hand side of the denominator contributes an equivalent 

resistance and the second term indicates a very high frequency self-resonance resulted 

by capacitive components, while the last term corresponds to an inductor. Hence, (3.5) 



23

suggests the active inductor in Fig. 3.5 (a) can be modeled by a parallel RLC circuit as 

shown in Fig. 3.5 (b). 

The above analysis is proven by the small signal simulation results provided in 

Fig 3.6. The resistance and reactance of the input impedance of the active inductor in 

Fig 3.5 (a) are plotted in Fig 3.6 (left and right, respectively). A generic bipolar model 

file is used in this simulation (see appendix 2). The power supply is 3V and the bias 

voltage at the base of Q2 and Q5 is VB = 1.6V. All current sources in Fig. 3.5 are realized 

by the simple current mirrors with I = 1.3mA (not shown in Fig. 3.5). As a comparison, 

the resistance and reactance of the passive counterpart as depicted in Fig 3.7 are plotted 

in Fig. 3.6. In the equivalent passive circuit, two small resistors capturing the base 

spreading resistance are added. Very good consistencies are observed in the simulation 

results. Note that the resistance becomes negative near the frequency of 800MHz, 

suggesting that the active inductor becomes unstable.  
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Figure 3.6 Resistance (left) and reactance (right) of the input impedance of the active 
inductor in Fig. 3.15 (a) 
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Figure 3.7 The equivalent RLC circuit for active inductor in Fig. 3.5 (a) 

 

This active inductor is then embedded into an LC oscillator as shown in Fig. 3.8 

(a) [29]. Since the active inductor is equivalent to a RLC circuit, it is used as a resonator 

directly in order to achieve the maximum oscillation frequency. Two resistors, RC

(=3.3kΩ), act as the load of the cross-coupled transistors and provide the DC operation 

point for the devices. The power supply is 3V and the tail current is 0.85mA which is 

realized by a simple current mirror (not shown in the figure). The completed schematic 

of the active inductor is illustrated in Fig 3.8 (b). Note that the bias current of the active 

inductor is tunable by controlling the voltage of input node, fctrl. According to the 

previous analysis, the bias currents change the gm of the transistors. Accordingly, the 

inductance is changed and the oscillation frequency is tunable. 

Such an active-inductor-based LC oscillator is successfully oscillates at 

frequency of 465MHz, as evidenced by the transient simulation result depicted in Fig. 

3.9 (a). The amplitude of the differential output signal is about 180mV. Note that 

although the equivalent RLC tank circuit has a resonating frequency about 822MHz, the 

actual oscillation frequency is much lower due to the parasitic capacitance at the node 

V1 and V2 and the nonlinear large signal characteristic of the oscillator. 
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Figure 3.8 A LC VCO based on active inductor in Fig 3.5 (a) 

 

(a) (b)  
Figure 3.9 The waveform (a) and phase noise (b) of the oscillator in Fig 3.8 

 

The oscillator’s phase noise is obtained by the Advanced Design System (ADS) 

Harmonic Balance simulation, and the result is shown in Fig. 3.8 (b). The oscillator 

exhibits a –92.49dBc phase noise at the offset frequency of 1MHz. This noise 

performance is relatively poor in comparison with the LC oscillator realized by the 

passive inductors. Note that the phase noise also depends on the selection of RC and fctrl 

voltage. Such dependence is illustrated in Fig. 3.10. However, for certain bias currents, 

the minimum phase noise at 1MHz offset is limited to about –92~–91dBc for this active 

inductor based oscillator. 
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Figure 3.10 The phase noise at 1MHz offset as a function of RC and fctrl voltage 
 

Finally, the oscillation frequency and the phase noise (at 1MHz offset) as a 

function of the control voltage are plotted in the Fig. 3.11 (RC = 3.3kΩ). This oscillator 

exhibits 157% tuning range when control voltage sweeps from 2.1V to 3V, which is 

very wide. The gain of the VCO is Kv ≈ 540MHz/V. On the other hand, a relatively 

large phase noise variation (near 10dB) in the tuning range is observed. 

Another drawback of this oscillator is the power dissipation. For instance, the 

overall power dissipation is 36mW if the control voltage is chosen as 3V. However, the 

active inductor consumes 28.2mW, which is nearly 78.3% of the total power 

dissipation. 
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Figure 3.11 Oscillation frequency and phase noise as a function of the control voltage 
 

3.2.2 Active Inductor Acts as an Oscillator 

The simulation result in Fig. 3.6 shows that the input resistance of the active 

inductor is negative. This result seems to be opposite the conclusion in equation (3.5), 

where the resistance in the RLC circuit is equal to rπ. The contradiction can be 

explained by taking the base spreading resistance rb into account. If the bipolar 

transistor is modeled by both cπ, rπ, gm and rb, the small signal equivalent circuit of the 

active inductor can be obtained as shown in Fig. 3.12, where only the single-ended 

inductor that consists of Q1, Q2 and Q3 is included. 
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Figure 3.12 Small signal model of the active inductor in Fig 3.5 (a) 
 

With the help of the small signal model, the input impedance Zin is given by 
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where iii CrZ πππ //= (i =1, 2 and 3). If the transistors are identical and are biased by the 

same current, gm = gmi and Zπ = Zπi are valid. Hence, (3.6) is simplified to 
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Obviously, the real part of the input impedance is negative if gm is large enough. 

Therefore, according to the negative resistance model discussed in Chapter 2, such a 

circuit can “generates” energy and thus may oscillate, suggesting the active inductor can 

act as an oscillator directly with the proper bias. 

Based on this idea, a single-ended oscillator is designed as depicted in Fig 3.13. 

The simulated output signal and its phase noise are plotted in Fig 3.14 (a) and (b), 

respectively. As it has been expected, the oscillation successfully started up. The circuit 

consumes less power (29.5mW), but oscillates at higher frequency (538.9MHz) due to 
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the simpler design. However, the phase noise performance has no significant 

improvement in comparison with the previous one. A VCO based on this topology was 

fabricated and the measurement results are provide in Chapter 8. 
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Figure 3.13 Make the active inductor as an oscillator directly 

 

(a) (b)
Figure 3.14 Waveform (a) and phase noise (b) of the oscillator in Fig 3.13 
 

3.3 Pros and Cons of the Active Inductor Based Oscillators

As demonstrated in the previous design, the active inductor based oscillators 

usually have very large tuning range due to the tuning capability of the active inductors. 
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Since the inductance is controlled by bias current, the tuning circuitry is easy to be 

implemented, making the active inductor suitable to VCOs design. On the other hand, 

the inductance of the integrated passive inductors is constant. 

The active inductor based oscillators is realized only by the transistors and 

capacitors (if necessary). Hence, it is possible to achieve very compact designs in term 

of the chip area. On the contrary, the passive inductors are usually very large, 

significantly increasing the cost of the chip. In addition, the active inductors are 

insensitive to fabrication process. Therefore, they provide better reliability especially if 

the extra process steps are utilized in the passive inductor fabrication. 

However, the phase noise performance of the active inductor based oscillators is 

relatively poor due to the lack of the narrow band tank circuit. Note that noise generated 

by the active devices in the active inductors significantly deteriorates the phase noise 

even if the inductor has a very high Q factor. The transistors in the active inductor also 

increase the power dissipation of the oscillator. According to (3.1), the inductance is in 

reversely proportional to gm, resulting in higher power dissipation at higher frequency. 

In some cases, the power consumed by the active inductors is even dominating.  

In summary, although the active inductors provide some benefits such as tuning 

capability and compact chip area, the excessive noise and power dissipation limit its 

application in oscillator design especially at radio frequencies. 
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CHAPTER 4 

ON-CHIP PASSIVE INDUCTORS 

 

The passive devices such as inductors, capacitors, resistors and transformers are 

traditionally considered playing a minor role in comparison with active devices. 

However, they are actually very critical parts in today’s RFICs. At low frequency, 

designers usually emulate the functionality of passive devices with active components 

to make their design more reliable and cost-effective as demonstrated in the last chapter. 

This method is generally not applicable at radio frequency. For example, the oscillators 

based on the active inductors generate unacceptable phase noise.  

The passive capacitors and resistors are relatively easy to integrate in 

comparison with the passive planar inductors. However, the inductors are widely used 

in almost all fundamental building blocks of RF circuits, including oscillators, LNA, 

filters, transforms and matching circuitry. Their quality significantly affects the 

performance of the overall system. For the integrated inductors, the capacitive and the 

electromagnetic coupling between individual passive component and the low resistivity 

substrate used for latch-up suppression degrade their Q factor. For example, given the 

commonly used metal thicknesses in the typical CMOS technology, the Q for inductors 

<10nH inductor on a low resistivity substrate is limited to below six [30]. 
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The rest of the dissertation will focus on the LC oscillator based on the passive 

integrated inductors and its phase noise performance. This kind of oscillator provides a 

very competitive phase noise performance when working at the radio frequency due to 

the narrow band tank. The passive inductor plays a decisive role in the LC oscillator 

performance, especially the phase noise performance. Hence, its characteristics will be 

investigated in this chapter in detail. 

4.1 Introduction of On-chip Inductors

4.1.1 Structure and Layout 

The on-chip passive inductors are implemented by a series of transmission lines 

with the spiral layout. Since they are extensively used in today’s RFICs, their 

fabrication, characteristic, simulation and optimization gain tremendous research 

interest in the past twenty years [31]-[34].  

A 3-D view of a typical model CMOS technology chip obtained by the scanning 

electron microscope technology is shown in Fig. 4.1 (a) [35], and its cross-section view 

is illustrated in Fig. 4.1 (b). For the typical CMOS technologies, there are usually 4~5 

(or even more) metal layers made by aluminum, copper or metal alloys. Note that the 

highest metal layer is usually thicker in comparison with other metal layer, which is 

suitable to fabricate the passive devices, especially the spiral inductors, since it provides 

higher conductivity. Besides the metal layers, one or two polysilicon layers may be 

include as the conducting layers. Between two conducting layers, the oxide layers are 

utilized to isolate them electrically. The substrate is fabricated by doped silicon 
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material. Finally, a “glass” or “passivation” layer, protecting the surface against 

damages caused by mechanical handling and dicing, covers the chips. 

Field Oxide
Poly1

M1

M2

M3

M4

M5

Passivation layer

SubstrateActive region

(a) (b)  
Figure 4.1 Typical modern CMOS process (a) 3D view and (b) cross-section 

 

The layout of the spiral inductors can be square, polygon or circular as 

illustrated in Fig. 4.2 (a) to (c), respectively. Among them, the square spiral inductors 

are most widely used due to its simplicity. The processing technology limits the usage 

of the circular inductors. However, the characteristic difference is negligible between 

the circular inductors and the polygon inductors if the number of the polygon sides is 

large enough (i.e. ≥16). The planar layouts are usually described by the following 

parameters: (i) number of turns, n, (ii) width of metal line, w, (iii) space of metal line, s,

(iv) external, internal and average diameter, dout, din and davg = 0.5⋅(dout + din), 

respectively and (v) number of sides, N, for the polygon inductors. Note that the two 

ports of these inductors are not symmetrical. Therefore, if the fully differential inductor 

is required in the circuit, two inductors are used (Fig. 4.2 (d)). Another method is to 

adopt the fully symmetrical layout as shown in Fig. 4.2 (e).  
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(a) (b) (c)

(d) (e)

Figure 4.2 Typical layouts of the spiral inductors (a) square spiral inductor (b) hexagon 
spiral inductor (c) circular spiral inductor (d) symmetrical inductor by using two square 

spiral inductors and (e) symmetrical square spiral inductor 
 

The inductance of the spiral inductors is primarily determined by the planar 

layout. On the other hand, the parasitic capacitors and resistors that are critical to the 

quality of the inductors are determined by both the planar layout and the vertical 

structure. To implement the spiral inductors on chip, at least two metal layers are 

required. Hence, the vertical structure for commonly used spiral inductors can be 

simplified as shown in Fig. 4.3, where the underpass metal line is connected with the 

external circuitry. Since increasing the distance between the spiral and substrate is 

propitious to minimize the parasitic capacitance, the spirals are always fabricated by the 

top metal layer, which is also thicker than others in almost all processes. If the 

conductivity of the top layer is not large enough to reduce the metal loss, several metal 
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layers can be stacked together as shown in Fig. 4.4 (a) [34]. However, this solution 

increases the parasitic capacitance between metal lines and thus degrades the maximum 

operation frequency of the inductors. On the contrary, if the inductance is not sufficient 

by using only one metal layer, the metal layers below it can be utilized to fabricate the 

spirals and several spiral layouts can be connected in series to save the chip area as 

illustrated in Fig. 4.4 (b) [36]-[37]. Obviously, the parasitic capacitance is also 

increased in this design. 
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Figure 4.3 Cross-section of the two layer spiral inductors 
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SiO2

Port1

Port2

Substrate
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Port2

(a) (b)  
Figure 4.4 Cross-section of two stacked spiral inductors with two metal layers in 

parallel (a) and in series (b) 
 

4.1.2 Inductance and Resonance Frequency 

The inductance is the principle quantity that measures performance of an 

inductor. While an ideal inductor exhibits a constant inductance value for all 
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frequencies, a spiral inductor usually exhibits an inductance value resemble to the 

function of frequency depicted in Fig. 4.5. There are three distinct regions in this plot. 

Region A comprises the useful band of operation of an integrated inductor. Inside this 

region, the inductance value remains relatively constant and the passive element can be 

securely used. Region B is the transition region in which inductance value becomes 

negative with a zero crossing, which is called the self-resonance frequency of the 

inductor. Beyond this critical frequency point, the passive element starts performing as 

a capacitor. In region C, the integrated element exhibits capacitive behavior and the 

quality-factor value is almost zero, making it practically useless. 
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Figure 4.5 Distinct operational regions of a typical spiral inductor 
 

4.2 Spiral Inductor Modeling

Accurately modeling a spiral inductor is still a challenging problem and attracts 

a lot of research work [38]-[42]. There are two ways to model the spiral inductors. In 
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the first way, the spiral inductor is divided into several segments and each segment is 

modeled separately. Then, by taking into account the coupling effects among the 

segments, the overall inductors’ characteristics are obtained. This method is accurate 

but complicated and hard to embed into a SPICE-like simulator. On the other hand, the 

spiral inductors can be approximated by the compact models such as the π circuit. 

These simple models are easy to integrate into the circuit simulator.  

4.2.1 Parasitic Effects 

The key to accurate modeling is the ability to identify the relevant parasitics and 

their effects. Since an inductor is intended for storing magnetic energy only, the 

inevitable resistance and capacitance in a real inductor are considered as parasitics and 

thus resulting in energy loss. For the on-chip inductor, the parasitic effects include: 

(i) Energy loss inside the nonzero-resistivity metal lines, which is from current 

flowing through the spiral inductor itself and includes both ohmic and eddy-current 

loss. For a single metal line, the DC current is uniformly distributed inside the 

conductor and the ohmic loss is independent to frequency. However, as the frequency 

goes up, the skin effect limits the depth of the current penetrating into the metal, making 

the depth comparable to or even smaller than the cross-section dimensions of metal 

lines. Therefore, the ohmic loss of metal line is a function of frequency. In addition to 

the skin effect, the magnetic field generated by neighboring lines further changes the 

current distribution and results in a higher current density at the edges of the metal lines 

(the eddy-current loss). This effect is depicted in Fig. 4.6 and is called as proximity 
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effect. It has a greater impact than the skin effect on the increase of the resistance and 

degradation of Q in today’s spiral inductor design. 

Figure 4.6 Current distribution in a spiral inductor caused by the proximity effect [43] 
 

(ii) Ohmic loss in the conductive substrate, which is due to the displacement 

current conducted through the metal-to-substrate capacitance. 

(iii) Loss due to the eddy current in the underlying substrate, induced by the 

penetration of the magnetic field into the conductive silicon. For typical CMOS 

technology, the resistivity of the substrate is small in order to prevent the latch-up. 

Hence, this loss may be significant if the substrate resistivity is small (<10Ω⋅cm).  

4.2.2 Segmented Models 

In a segmented model, the spiral inductor is divided into a set of sections. Such 

an approach was originated by Greenhouse [44] and then refined by others [45]. For 

example, each side of a square inductor can be modeled by an equivalent π circuit as 

depicted in Fig. 4.7 [46]. The analytical expressions of the elements in this equivalent 

circuit are summarized in table 4.1. For instance, the self-inductance of a given metal 
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line can be computed by (1), where l, w and h are the length, width and thickness. The 

metal loss of this line is calculated by (2), where Rsh is the sheet resistance. The 

capacitance between the metal line and the substrate is obtained by (3). The mutual 

inductance contributes the primary inductance of the spiral inductance. Equations (4) to 

(10) describe the method to calculate the mutual inductance between two metal lines 

with arbitrary position. Equations (11), (12) and (13) are the expressions to calculate the 

parasitic resistance of capacitance formed by the substrate loss. 
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Figure 4.7 Equivalent two-port circuit for one side of the square spiral inductor 

 

The circular inductors can be modeled by the similar way. In this case, a circular 

inductor is considered as several metal line rings connected in series as depicted in Fig. 

4.8 (a) [34]. Each ring can be viewed as a two-port network with a specific impedance 

matrix. The overall 2×2 impedance matrix of the spiral inductor is found by connecting 

the outputs 1, …, N – 1 to the inputs 2, …, N, respectively. The coupling effect between 

rings can be expressed by a matrix, Z, which can be solved by the field equations in the 

disconnected system of rings. 
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Table 4.1 Equations of the elements in Fig. 4.7 
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(a) (b)  
Figure 4.8 Concentric-ring model of a circular spiral inductor (a) Approximate a spiral 

by a set of rings and (b) Concentric-ring model 
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Although the segmented approach leads to more accurate results, its complexity 

limits its application in the circuit simulators. In fact, the compact models discussed in 

the following section are more widely used. 

4.2.3 Compact Models 

4.2.3.1 Nine Elements Lumped πModel 

If the total metal line length is smaller than the operational waveform, it is 

convenient to model the whole inductor by a lumped, compact model. The basic 

compact model of the spiral inductors consists of nine elements as illustrated in Fig. 4.9 

[41]. The inductance and resistance of the spiral and underpass are represented by the 

series inductance, Ls, and the series resistance, Rs, respectively. The overlap between the 

spiral and the underpass allows direct capacitive coupling between the two terminals of 

the inductor. This feed-through path is modeled by the series capacitance, Cs. The oxide 

capacitance between the spiral and the silicon substrate is modeled by Cox. The 

capacitance and resistance of the silicon substrate are modeled by Csub and Rsub. The 

characteristics of the elements are investigated in the rest of the section. 

Ls

Rsi Csi

Cox

Rsi Csi

Cox

Rs

Cs

Figure 4.9 Nine elements lumped πmodel 
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(i). Series Inductance Ls

As the primary parameter, the inductance of the spiral inductor received 

extensively study. Jenei proposed a physics-based, close-formed expression [47]. 

According to his theory, the inductance of a square inductor can be written as 
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where w, t are the line width and thickness respectively, n is the number of turns, d+ and 

l are the average distance and total length of metal lines that are given by 
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respectively, where s is the space of metal lines, Ni is the integer part of n and din is the 

inner diameter of the spiral inductor. However, the validity of these equations is still in 

question.  

Nowadays, the most widely used method for inductance calculation is still based 

on segmentation, in which the self-inductance of a segment is first computed and then 

the overall inductance is calculated by summing both the self-inductance and the mutual 

inductance between all segments. This approach is followed in many publications [40] 

[48] [49]. Generally speaking, the inductance is difficult to write as an analytical, close-

formed expression. 
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On the other hand, the empirical equations based on curve-fitting techniques are 

usually used in practical inductor designs due to their simplicity. For example, Wheeler 

presented an empirical expression as follows [50] 

ρµ
2

2

01 1 K
dnKL avg

+= (4.4) 

where ρ is the fill ratio defined as (dout – din)/( dout + din), n is the number of turns, K1

and K2 are two empirical constants. For different inductor shapes, the values of K1 and 

K2 are listed in Table 4.2 

Mohan also proposed an empirical, monomial expression for the spiral 

inductance [51], which is given by 
54321 αααααγ sndwdL avgouts = ,                                                                                 (4.5)

where γ, α1, α2, α3, α4 and α5 are constants obtained by fitting the simulation and 

measurement data (see Table 4.2). By comparing the inductance obtained from ADS 

Momentum simulation and this expression, it was found the typical error is only a few 

percent over a very broad design space (see Table 4.3).

Table 4.2 Coefficients for Wheeler and Mohan expressions 
 Wheeler Mohan 

Layout K1 K2 γ α1 α2 α3 α4 α5

Square 2.34 2.75 1.62×10-3 -1.21 -0.147 2.40 1.78 -0.030 
Hexagonal 2.33 3.82 1.28×10-3 -1.24 -0.174 2.47 1.77 -0.049 
Octagonal 2.25 3.55 1.33×10-3 -1.21 -0.163 2.43 1.75 -0.049 

Variations in processing may cause more errors in the inductances. Hence, these 

curve-fitting models are accurate enough for the practical spiral inductor design. The 
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monomial expression is especially useful in the inductor optimization problem 

discussed in Chapter 7.

(ii). Series Resistance Rs

By taking into account the skin effect, the series resistance Rs can be expressed 

as a frequency dependent function as follows 

)1( δδσ ts ew
lR −−= (4.6) 

where σ is the metal conductivity, t is the metal line thickness, l is the total length of 

metal lines and δ is the skin depth given by

ωσµδ
0

2= . (4.7) 

(iii). Series Capacitance Cs

The capacitance, Cs, models the parasitic capacitive coupling between input and 

output ports of the inductors. This capacitance allows the signal to flow directly from 

the input to output without passing through the spiral inductor. Based on the structure of 

the inductors, both the crosstalk between adjacent turns and the overlap between the 

spiral and underpass contribute to Cs. However, since the adjacent turns are almost equi-

potential, the effect of the crosstalk capacitance is negligible. The effect of overlap 

capacitance is dominant in Cs. Therefore, for most practical inductors, it is sufficient to 

model Cs as the sum of all overlap capacitances, which is given by 
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where n is number of overlaps, w is the spiral line width and toxM1-M2 is the oxide 

thickness between the spiral and the underpass (see Fig 4.3). 

(iv). Oxide Capacitance Cox 

The capacitance, Cox, models the capacitance between the spiral and the 

substrate, which is the most important parasitic capacitance in the spiral inductors. 

Since the lateral dimension of the spiral inductor is much larger than the thickness of 

the oxide layer, Cox can be approximated by a parallel plate capacitor. Thus the 

capacitance is evenly separated by two capacitors in the πmodel, which is given by 

ox

ox
ox tlwC ε⋅⋅= 5.0 .                                                                                           (4.9) 

There is a more accurate way to estimate Cox obtained from microstrip theory 

[52]. According to this theory, Cox can be calculated by 
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where the effective permittivity εeff is given by 
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and function F(tox,w) is given by 
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The second method is used to calculate Cox in this work. 

(v). Substrate Resistance Rsi 
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The physical origin of Rsi is the loss caused by the silicon conductivity which is 

predominately determined by the majority carrier concentration. It can be expressed as 

lwGR
sub

si
2= (4.13) 

where Gsub it the conductance per unit area of the silicon substrate. This parameter can 

be obtained by measurement. On the other hand, Rsi also can be computed by the 

following expression [53] 
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where KC is a constant obtained by curve-fitting, which is 
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the value, ξ, is determined by the vertical structure of the inductor given by 

sisi tlwtA // ==ξ (4.16) 

where tsi is the thickness of the silicon substrate. This method is adopted in this work. 

(vi). Substrate Resistance Csi 

The parameter, Csi, models the high-frequency capacitive effects occurring in 

the semiconductor. Similar to the oxide capacitance Cox, Csi can be written as 

subsi ClwC ⋅⋅= 5.0 (4.17) 

where Csub is the capacitance per unit area of the silicon substrate which can be obtained 

by measurement. The value for Csi can also be computed from the structure of the spiral 

inductors. According to [54], Csi can be calculated by 
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),(/5.0 sieffosi twFlC ⋅⋅= εε (4.18) 

where εeff is the effective permittivity given by 
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ε’ and fc (the critical frequency) in (4.19) is given by 
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and the speed of light c. F(w,tsi) in (4.18) and (4.22) is a function determined by the 

vertical structure of the spiral inductors 
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The equations from (4.18) to (4.23) are used to calculated Csi in this work. 

Although all components have clear physical meaning in this nine-element 

model, and their values can be obtained from analytical expressions determined by the 

lateral layout and vertical structure of the spiral inductors, this compact model neglects 

the proximate effect and the eddy current, resulting in overly optimistic performance 

predictions. 
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4.2.3.2 Improved πModels 

Because of the limitation of the simple π model, many improved π circuits are 

proposed. Figure 4.10 (a) is one of the improved π model in which the eddy current in 

the substrate is taken into account by adding several mutual inductors [55]. 

A more complicated double-π model proposed by Cao is illustrated in Fig 4.10 

(b) [56]. In this model, the skin effect is modeled by one additional RL branch 

paralleled to the DC resistance R0. The RL branch captures the effect of different current 

densities in metal lines. The single-π model is extended to the double-π topology to 

account for the capacitive coupling between metal lines, which is modeled by Cc and is 

neglected in the simple π model. The proximity effect between metal lines is modeled 

by the mutual inductance as depicted. Finally, the eddy current loss in the substrate is 

captured by the resistors Rsc. By these arrangements, all major parasitic effects in 

typical spiral inductors are taken into account. 
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Figure 4.10 Two improved πmodels (a) taking the substrate eddy current into account 
and (b) taking both the substrate eddy current and proximity effect into account 
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In LC VCO design, the tuning frequency is relatively small. The transition 

region and the capacitive region as illustrated in Fig 4.5 are useless in this case. 

Therefore, a simple nine elements πmodel is sufficient. 

4.3 Spiral Inductor Simulation and πModel Parameters Extraction

4.3.1 Spiral Inductor Simulation 

There are many software tools that support the simulation of the on-chip spiral 

inductors. They can be categorized to two types. The first is an electromagnetic field 

solver such as Maxwell. These tools are usually called full-wave 3D solvers. The 

second is a partial-element-equivalent-circuit-based solver such as ASITIC [43] and 

ADS Momentum [57]. These simulators are called as 2.5D solvers sometimes. The 

former solvers are more accurate but time consuming while the latter are faster. The 

ADS Momentum program was used in this research to characterize the spiral inductors. 

A typical square spiral inductor depicted in Fig. 4.11 is simulated by ADS 

Momentum. The spiral is a three-turn, 200µm×200µm square inductor. The metal line 

width is 18µm with a conductor spacing of 2µm. A 108µm underpass metal line is used 

to connect the center to the external circuit. A 13µm×13µm via connects the spiral to 

the underpass. The conductivity of the metal is 2.67×107S/m. 

For simplicity, the top “glass” layer is neglected and the metal2 layer is exposed 

to open air directly. The conductivity of the substrate is 20 S/m. The bottom of the 

substrate is grounded. In simulation, the Port1 and Port2 (connect with underpass and 

spiral respectively) are terminated by two 50 Ω loads. 
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Figure 4.11 Lateral layout (left) and vertical structure (right) of the spiral inductor 
 

The inductance and the quality factor as a function of the frequency of this 

spiral inductor are plotted in the Fig. 4.12 (left and right respectively), where the 

inductance is defined as 

( )
f

YLs π2
/1Im 12−= (4.24) 

and the quality factor is defined by (3.3), i.e. 
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YQ = (4.25) 

where, Y11 and Y12 are Y-parameters of the spiral inductor. The simulation shows that 

the inductance at low frequency is 1.74nH. As expected, the inductance at high 

frequency becomes negative, representing a capacitive region as depicted in Fig. 4.5. 

For this specific inductor, the self-resonate frequency is close to 20GHz. Also the 

maximum Q factor in the inductive region is limited to 4 because of the losses occurring 

in the metal lines and substrate. 
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Figure 4.12 Inductance (left) and quality factor (right) of the simulated inductor 
 

4.3.2 Model Parameters Extraction 

The parameters in the simple π model can be extracted from the simulation or 

measurement results to improve the modeling accuracy. In the nine elements π model, 

the conductance of two shunt branches, Yshunt1(ω) and Yshunt2(ω), and the impedance of 

the series branch, Zseries(ω), satisfy the following expressions 

Yshunt1(ω) = Y11(ω) + Y12(ω) (4.26) 

Yshunt2(ω) = Y22(ω) + Y12(ω) (4.27) 
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1)(

12 ωω YZ series −= . (4.28) 

For the series branch in the πmodel, Zseries(ω) is given by 

s
ssseries CjLjRYZ ωωωω 1//][)(
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12
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Since the low frequency characteristics is determined only by Rs and Ls while 

the high frequency characteristics is dominated by Cs, Rs, Ls and Cs can be extracted 

using the following expressions 
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[ ] frequencyhighs YC ωω)(Im 12−= . (4.32) 

For the shunt branch in the πmodel, the conductance, Yshunt1(ω), is given by 
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1
sisioxshunt CjGCjY ωωω ++= . (4.33) 

If ω is small enough (Gsi1>>ωCsi1), the image part of 1/Yshunt1(ω) is primarily 

determined by the first term at the right side of (4.33). Hence, Cox1 can be obtained by 

[ ] frequencylowshuntox YC ωω)(Im 11 = . (4.34) 

The rest two parameters, Csi1 and Rsi1, cannot be directly extracted from low 

frequency or high frequency data. However, the Cauchy’s method reported in [58] can 

be applied to (4.33) to obtain the best-fitted Csi1 and Rsi1. Cox2 and Csi2 and Rsi2 in 

another shunt branch can be extracted by the same method. 

4.3.3 Compare Model with Simulation Results 

To simulate the spiral inductors, a mesh will be generated according to the 

smallest wavelength in ADS Momentum. If the wavelength is small (high frequency), 

the density of the mesh is high, resulting in a very long simulation time. To avoid this 

problem, Cs is directly estimated by (4.8), which is 39.5fF in this case. Note that Cs has 

little effect at low frequency. This inductance value will be used in both the extracted 

model and the calculated model. 
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The parameters in the model are first calculated by the analytical methods 

introduced previously. Mohan’s empirical model (4.5) is applied to estimate Ls. The 

other parameters, Rs, Cs, Cox, Rsi and Csi, are computed by (4.6), (4.8), (4.10), (4.14) and 

(4.18), respectively. Note that the underpass line is neglected in the calculation. The 

component values are listed in Table 4.3. The extraction procedure is also applied to the 

simulation data. The corresponding values are listed in the same table. Comparing the 

inductance value obtained by the two methods, the error is found to be very small 

(1.6%). This result also validates Mohan’s empirical model. 

 
Table 4.3 Components’ value obtained from analytical calculation and extraction 

Component Ls (nH) Rs (Ω) Cs (fF) Cox1 (fF) Csi1 (fF) Rsi1 (Ω) Cox2 (fF) Csi2 (fF) Rsi2 (Ω)

Analytical 1.764 4.778 39.47 226.6 55.55 381.2 226.6 55.55 381.2 

Extraction 1.736 4.912 39.47 220.1 71.03 261.4 209.3 73.18 291.5 

In Fig 4.13, four functions, L11, R11, L12 and R12, are compared to evaluate the 

consistency between the model (analytical and extracted) and the simulation results. 

These four functions are defined by: 

)()()(
1

1111
11

ωωωω LjRY += (4.35) 

)()()(
1

1212
12

ωωωω LjRY += . (4.36) 

In Fig 4.13, the functions obtained from the simulation are illustrated as 

discontinuous markers while the functions achieved from the extraction parameters and 

analytical expressions are plotted by the solid and dotted lines, respectively. At high 
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frequency, both the analytical model and the extracted model become inaccurate since 

the eddy current loss and the proximity effect are not included in this model. In 

addition, the dimension of the inductor is comparable to the wavelength (i.e. the total 

length is about 1.8mm while the wavelength is 1.5cm for 20GHz), making the lump 

model lose its accuracy. However, it can be concluded that the data obtained from two 

models matches the simulation results very well in the inductive region (less than 

8GHz). Therefore, the spiral inductors in the LC oscillator can be represented by this 

simple πmodel accurately.  
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Figure 4.13 Comparison the analytical and extracted model with the simulation results  
 

The Q factors defined by (4.25) are plotted in Fig 4.14. Very good consistency 

is achieved between both cases in the inductive region. However, the Q obtained from 

extracted model, the analytical model is more optimistic by 32% maximum. 
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Figure 4.14 Q factors obtained from simulation data, extracted and analytical model 
 

4.4 Techniques to Improve Q Factor

The Q factor is the critical parameter to the on-chip spiral inductors. Since the Q

factor of the varactors is usually much larger than the spiral inductors’ Q in typical 

processes, the overall Q factor of an LC tank circuit is primarily determined by the 

spiral inductor. Therefore, improving its Q factor can effectively reduce the phase noise 

in oscillators. 

The techniques to improve the Q factor can be divided into two categories: (1) 

process dependent methods and (2) process independent methods. In the first approach, 

the standard processes are modified to achieve higher Q factors. For example, to 

suppress the eddy current in the substrate, the conductivity of the substrate is reduced in 

[59] to increase the Q factor. Similarly, a thick isolation layer formed by the porous 
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silicon is inserted between the spiral inductor and the substrate in [30], decreasing the 

parasitic capacitance and reducing the loss caused by the substrate. Recently, by using 

Micro-Electro-Mechanical (MEM) technology, a spiral inductor can be suspended to 

achieve very competitive Q factors [60]. For circuit designers, however, these methods 

are impractical because they need additional processing steps supported by the 

foundries. 

The patterned ground shields (PGS) technique is now widely used to improve 

the performance of the spiral inductor without extra processing steps [24]. In this 

technique, a patterned ground layer is inserted between the spiral inductor and the 

substrate. The pattern of this layer is radialized as illustrated in Fig 4.15 (a). The ground 

strips are made by polysilicon layer or metal layer while the slots are used to isolate the 

adjacent strips. Obviously, the slots act as an open circuit to cut off the path of the 

induced eddy current since they are orthogonal to the metal lines of the spiral. Hence, 

the eddy current loss in the substrate is suppressed and a 33% Q improvement is 

achieved in [24]. Besides this function, the shield also prevents both the noise coupling 

from the substrate and the crosstalk between the inductor and the adjacent devices. 

To suppress the proximity effect, a single metal line can be separated to several 

thinner metal lines in parallel as shown in Fig 4.15 (b). As illustrated in Fig. 4.6, the 

proximity effect increases the current density near the edges of metal lines, boosting the 

resistivity of the metal lines and thus decreasing the Q factor. However, by using the 

multi-paths arrangement, the current is more evenly distributed in metal lines and Q

value is preserved. 



57

ground strips slots between
strips

(a) (b)  
Figure 4.15 Two methods to improve Q factor (a) patterned ground shield and (b) multi-

path metal lines 
 

4.5 Summary

The design, modeling and simulation of the spiral inductors were investigated in 

this chapter in detail. Their typical lateral layout and vertical structure of integrated 

inductors were first introduced. Then, the parasitic effects were summarized. Based on 

these parasitic effects, two modeling approaches – segmented model and compact 

model – were introduced. For the widely used compact π model, the analytical 

expressions for each component were given. A spiral inductor with typical layout and 

structure was simulated by ADS Momentum. Its π model was obtained by both the 

analytical expressions and the extraction procedure. Very good consistency was found 

between the models and the simulation results in the inductive region, indicating the 

effectiveness of the π model. Finally, several techniques to improve the Q factor of the 

spiral inductors were discussed. 
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CHAPTER 5 

PHASE NOISE MODELS 

 

Phase noise performance is a critical specification for VCOs. The phase noise 

models describe the phase noise generation mechanism in oscillators. With the help of 

these models, the phase noise can be estimated before the oscillators are fabricated. The 

models also provide the design trade-offs and insights, which are very valuable for 

circuit designers.  

Several phase noise models, including the Leeson’s empirical model, classical 

linear time-invariant model, Hajimiri’s linear time-variant model, Samori’s non-linear 

time-invariant model, and Kaertner and Demir’s numerical model, will be presented and 

investigated in this chapter in detail.  

5.1 Empirical Phase Noise Model – Leeson’s Model

Figure 5.1 approximately illustrates a typical measurement result of the phase 

noise generated by an oscillator. At a small offset frequency, the phase noise decreases 

with the increase of the cube of the offset frequency (i.e. the slope is –30dB/dec). The 

slope changes to –20dB/dec above a corner-frequency, 31 fω∆ . The phase noise plot 

finally becomes flat at a large offset frequency. This noise floor is determined by the 

active devices noise floor or the instrumentation used in measurement. 
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Figure 5.1 Typical plot of the phase noise of an oscillator versus offset from carrier 
 

D. B. Leeson [61] proposed an empirical phase noise model to describe the 

phase noise plot depicted in Fig. 5.1. According to this model, the phase noise generated 

by an oscillator can be expressed as: 
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where ω0 is the oscillation frequency, ∆ω is the frequency offset at which the phase 

noise is defined, T is the absolute temperature, k is the Boltzmann’s constant, Ps is 

carrier power, QL is the loaded Q factor of the tank. The parameter F (often called the 

excess noise number) is an empirical parameter which can only be found from fitting 

the measurement data. Also, this model asserts that the corner frequency between the 

1/f3 and 1/f2 region is precisely equal to the 1/f corner frequency of the device noise. 

However, measurements frequently show this equality does not exist. Therefore, this 

parameter is usually a fitting parameter too. 
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In summary, the Leeson’s model cannot be used to predict the phase noise 

generated by an oscillator because it has two empirical parameters which have to be 

obtained from measurement. Also, it does not describe the mechanism of the phase 

noise generation and thus provides little design insight. More accurate phase models are 

necessary to investigate the phase noise. In this chapter, four other phase noise models 

will be introduced and the advantages and disadvantages of each will be summarized. 

5.2 Linear Tine-Invariant (LTI) Model

An oscillator can usually be approximately modeled as a linear system. Two 

linear models, one based on the negative feedback system and the other one based on 

the one-port negative resistance network, have been introduced in Chapter 2.  It is 

convenient to model an LC cross-coupled oscillator as a one-port negative resistance 

model as shown in Fig. 5.2. In this model, the transconductance of the active circuit, 

Gm, must compensate for the loss caused by parasitic resistance Rp in the tank. If the 

loop is broken at the cross point and the circuit is considered as a linear feedback 

system, it is easy to show that the open-loop transfer function for this basic oscillator is: 

LCsRsL
sLGsT

p
mloop 2/1)( ++= . (5.2) 

The imaginary part of the loop transfer function is equal to 

[ ] ( )( )2222

2

/)1(
1)(Im

p
mloop RLLC

LCLGT ωω
ωωω +−
−= . (5.3) 

If the imaginary part of the loop transfer function is zero and the open-loop gain 

is greater than one, the system will oscillate at the frequency given by 
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LC
1

0 =ω , (5.4) 

and Gm will compensate the energy loss in the tank, which means 

pm RG /1≤ . (5.5) 

GM
L C Rp

2
ni

VOUT

Figure 5.2 One-port negative resistance oscillator with noise current in the tank 
 

5.2.1 Tank Noise 

The parasitic of the tank is simply modeled as a parallel resistor in Fig. 5.2. The 

thermal noise it generates is modeled as a noise current, 2
ni , paralleled with the tank as 

shown in the same figure. The thermal noise introduces the phase noise at the output of 

the oscillator. In the LTI model, oscillators are viewed as LTI systems. To investigate 

phase noise of the basic oscillator in Fig. 5.2, the transfer function from the noise 

current to the output voltage in closed-loop operation is derived, which is 

( )
2
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, /11)(
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Rpnoise . (5.6) 

Assume Gm=1/Rp, it can be shown that the transfer function at small offset 

frequency ∆ω approximately equals [62] 
2

02
, 2

1)( 
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ωω C

L
jT Rpnoise . (5.7) 
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Note that Tnoise,Rp is the equivalent impedance of the tank at the frequency 

ω0±∆ω. Accordingly, the one-side spectral density of the output noise voltage is 

22
0

2
02

, 24)( LkTgV pgpon ωω
ωω ⋅



∆⋅=∆ (5.8) 

where gp is the conductance, i.e. gp=1/Rp. The noise voltage described here actually 

includes both the amplitude noise (AM noise) and the phase noise (PM noise). If the 

oscillator employs an automatic gain control (AGC) circuit, the AM noise will be 

removed for frequency offset less than the AGC bandwidth. In addition, the nonlinearity 

of the oscillators determines the oscillation amplitude and it can be viewed as an 

internal AGC mechanism in oscillators. Therefore, even when there exists AM noise, it 

will die away with time and thus has little effect on output phase noise. According to 

the energy equi-partition theorem, neglecting the AM noise results in a factor 0.5 

multiplied to (5.8). So, the spectral density of the noise voltage is 

22
0

2
02

, 22)( LkTgV pgpon ωω
ωω ⋅



∆⋅=∆ . (5.9) 

Note that in practical circuits this phase noise reduction factor will be 

somewhere between 0.5 to 1. In the frequency domain, (5.9) means that the noise power 

spectral density will be shaped by the noise transfer function of (5.7) as shown in Fig. 

5.3. 
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Figure 5.3 Noise shaping in oscillators 

 

Practical tanks may have more parasitic elements as shown in Fig. 5.4, where 

the parasitic series resistance of the inductor and capacitor, Rl and Rc, are taken into 

account respectively. In this case, if an effective series resistance, Reff, is defined as 

22
0

1
CRRRR

p
cleff ω++= , (5.10) 

it can be shown that the spectral density of the output noise voltage is [62] 
2

02
, 22)( 



∆⋅=∆ ω
ωω effgpon kTRV . (5.11) 

Accordingly, to compensate for the loss of this tank, Gm of the active element 

has been changed to 

Gm = Reff ⋅ (ω0C)2. (5.12) 

L C Rp

VOUT
RcRl

Figure 5.4 Tank circuit includes the series parasitic resistance Rl and Rc
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5.2.2 Active Element Noise 

The active elements in the oscillator also introduce noise. This noise can be 

modeled by an output noise current, 2
,Gmni , as 

mGmGmn GFkTi ⋅⋅= 42
, , (5.13) 

where FGm is the noise factor of the amplifier. Using (5.12) and applying the same 

procedure, the spectral density of the output noise voltage generated by Gm is given by 
2

02
, 22)( 



∆⋅⋅=∆ ω
ωω GmeffGmon FkTRV . (5.14) 

Nonlinear oscillators usually have a different noise factor compared with the 

linear noise factor FGm. Therefore, a factor α is multiplied to FGm to represent the 

amount of noise the actual noisy amplifier generates in excess of an ideal noisy 

amplifier. By defining A as α⋅FGm, the (5.14) becomes 
2

02
, 22)( 



∆⋅⋅=∆ ω
ωω AkTRV effGmon . (5.15) 

The overall one-side spectral density of the noise is given by 
2

02
2)1(2)( 



∆⋅+⋅=∆ ω
ωω AkTRV effon . (5.16) 

For a sine-wave oscillation with the amplitude of V0, the phase noise of the 

oscillator at the offset of ∆ω is given by 

( ) 2
0

2
0 2)1(4 
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kTRL eff . (5.17) 



65

This equation represents the phase noise of LC oscillators predicted by the LTI 

model. Note that a similar method can also be applied to other types of oscillators such 

as ring oscillators [20].  

5.2.3 Limitation of the LTI Phase Noise Model 

The LTI phase noise model successfully explains why the phase noise decreases 

with a slope of –20dB/dec for the additive noise. This classical, simple theory can be 

applied to different kinds of oscillators and provides an acceptable estimation in some 

designs. For example, only 4dB error between the theoretical calculation and 

measurement of a ring oscillator is reported in [20]. It also points out two ways to 

reduce the phase noise according to equation (5.17) – to reduce the effective resistance 

Reff and to increase the oscillation amplitude. However, due to the nonlinear nature of 

the oscillators, the LTI model is not able to explain many effects in oscillators’ phase 

noise. For example, it cannot explain the 1/f3 region resulting from by the flicker noise. 

Experiments also reveal that the device noise at high frequencies can be folded into the 

carrier band and contributes to output phase noise (also called multiplicative noise).  

The LTI model cannot explain this phenomenon either. Furthermore, there is no 

analytical equation for the parameter A in (5.17) and therefore it is still an empirical 

parameter. In summary, this approach represents no fundamental improvement 

compared with the Leeson’s model. 

5.3 Linear Time-Variant Phase Noise Model – Hajimiri’s Model

In the LTI phase noise model, the responses of the oscillator to noise sources are 

approximated by LTI systems. However, all oscillators are essentially time-variant 
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systems. The voltage and current in an oscillator have to be changed periodically to 

produce the oscillation. Therefore, the LTI approximation is dubitable. Starting from the 

time-variant nature of the oscillators, Hajimiri proposed a novel, linear time-variant 

(LTV) phase noise model [63]-[64]. 

5.3.1 Linearity Assumption 
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Figure 5.5 Phase shift versus injected charge (b) for a Colpitts oscillator (a) 
 

The linearity assumption is still valid for oscillators if the noise is much smaller 

than the oscillation signal. Note that the linearity refers to the noise-to-phase transfer 

characteristics in oscillators. For example, if a current impulse is injected into a 60MHz 

Colpitts oscillator as shown in Fig. 5.5 (a) to mimic a noise source in the oscillator, the 

resulted phase shift obtain from HSPICE simulation is plotted in Fig. 5.5 (b). It can be 

concluded that the relationship is linear even for a relatively large phase shift (0.35 

radian or 20°). In practical oscillators, the noise is usually much smaller and the linear 
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noise-to-phase transfer characteristic is valid for almost all kinds of oscillators. Note 

that the injection timing is chosen at the zero crossing for all simulations. However, 

injecting the same current impulse at different times will cause different excess phase. 

This phenomenon is the basis of the Hajimiri’s LTV phase noise model. 

5.3.2 Impulse Sensitivity Function (ISF) 

The same perturbation occurring at different times will result in different phase 

shifts due to the time-variant nature of oscillators. Supposing a perturbation charge is 

injected into an ideal LC tank as shown in Fig. 5.6 (a), the oscillation amplitude will 

increase ∆V if the injection occurred at the peak (Fig. 5.6 (b)). Note that the zero 

crossing time is not changed in this case. In practical oscillators, this amplitude 

variation will disappear quickly due to their loss. So, the perturbation at the peak 

introduces little phase noise. On the contrary, if the same perturbation is injected at the 

zero crossing, it has no effect on the oscillation amplitude but generates a phase shift as 

shown in Fig. 5.6 (c). Although the time-dependence depicted in Fig. 5.6 is only 

demonstrated by an ideal LC circuit, a similar phenomenon happens in all oscillators. 
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Figure 5.6 Impulse injected into an ideal LC tank (a) at the peak (b) and the zero 

crossing (c) 
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Based on this time-variant characteristic and the linear assumption, the unit 

impulse response for excess phase of an oscillator can be expressed as 

)()(),(
max

0 ττωτφ −Γ= tuqth (5.18) 

where qmax is the maximum charge displacement on the node, and u(t) is the unit step 

function. The function Γ(x) is called the impulse sensitivity function (ISF). It is a 

dimensionless, frequency- and amplitude-independent periodic function with period of 

2π which describes how much phase shift results from applying a unit impulse at time t

= τ. The ISF is a function of the waveform, which in turn is governed by the 

nonlinearity and the topology of the oscillator. 

For a given the ISF, the output excess phase, φ(t), can be calculated using the 

superposition integral 

τττωτττφ φ diqditht t )()(1)(),()( 0
max
∫∫ ∞−

∞
∞− Γ== (5.19) 

where i(t) is the input noise current injected into the node. The periodic ISF can be 

expanded into a Fourier series 
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where θn is not important for random input noise and thus can be neglected. Substituting 

(5.20) into (5.19), the excess phase, φ(t), is given by 
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Using this equation, the excess phase φ(t) resulting from an arbitrary input 

current, i(t), can be computed if the Fourier coefficients of the ISF have been found. If 

the current is sinusoid (i(t) = In cos[(nω0 + ∆ω)t] with ∆ω<<ω0), the arguments of all 

the integrals in (5.21) are at frequencies higher than ω0 and are significantly attenuated 

by the averaging nature of the integration, except the term arising from the n-th integral. 

It can be shown that the excess phase generated by the integral can be approximated by 

( ) ( )
ω
ωφ ∆
∆≈

max2
sin

q
tcIt nn . (5.22) 

5.3.3 Phase-to-Voltage Transformation 

Figure 5.7 Block diagram of the LTV phase noise model 
 

To calculate the phase noise, the power spectral density (PSD) of the oscillator 

output voltage needs to be computed, which requires knowledge of how the output 

voltage relates to the excess phase variations. As shown in Fig. 5.7, the conversion of 

the device noise current to the output voltage is treated as the result of a cascade of two 

processes. The first LTV current-to-phase process has been discussed in section 5.3.2, 
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while the second system is a nonlinear phase modulation (PM) system which transforms 

the excess phase to output voltage. A PM cosine signal can be written as  

Vout(t) = V0 cos(ω0t + Vm sin∆ωt).                                                                 (5.23) 

It is well known that such a PM procedure results in two extra sidebands at the 

frequencies of ω0±∆ω (if Vm is small). Mathematically, Vout is given by 

])cos()[cos(2cos)( 00
0

00 ttVVtVtV m
out ωωωωω ∆+−∆−−= . (5.24) 

Therefore, for the excess phase generated by an injected current at nω0 + ∆ω,

the resulting two equal sidebands at ω0±∆ω have the sideband power relative to carrier 

given by 
2

max4)( 
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Now the injected single-tone current will be replaced by a noise current with a 

white power spectral density fin ∆/2 . Note that In represents the peak amplitude, hence, 

fiI nn ∆= /2/ 22 for a unit bandwidth. Also, an injected current at nω0−∆ω will result in 

the same two equal sidebands. Thus, (5.25) should be multiplied by a factor 2. Finally, 

the bandwidth of the injected white noise current is very wide, and the superposition for 

different n has to be applied. Based on this analysis, the output phase noise in dBc/Hz 

resulted by the white noise current is given by 
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According to Parseval’s relation, the summation term in (5.26) is given by 

∑ ∫∞
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where Γrms is the RMS value of the ISF. As a result, the phase noise is 
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Figure 5.8 Conversion of noise to phase fluctuations and phase-noise sidebands 
 

This equation represents the phase noise spectrum of an arbitrary oscillator in 

1/f2 region of the phase noise spectrum. In the frequency domain, this LTV model can 

be illustrated by Fig. 5.8. In the first LTV system, the white noise near the frequency is 

folded down to the near-DC frequency according to the Fourier coefficients. In the 

second phase-to-power transformation procedure, the low frequency noise is up 
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converted to the carrier band. Note that there exist significant differences between Fig. 

5.8 and Fig. 5.3. 

5.3.4 Corner Frequency and Cyclostationary Noise Sources 

5.3.4.1 Corner Frequency   

By using the LTV model, the relationship between the device 1/f corner and the 

phase noise 1/f3 corner can be found. Note that these two corner frequencies are usually 

assumed to be the same. However, the measurements frequently disaffirm such equality. 

The device noise spectrum in the flicker noise dominated portion can be denoted as 

ω
ω
∆⋅= f

nfn ii /122
/1, . (5.29) 

Following the same derivation, the phase noise resulting from the flicker noise 

is 
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Let (5.30) be equal to (5.26). The corner frequency can be solved as 

2
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Γ⋅=ωω . (5.31) 

This equation suggests that the 1/f3 phase noise corner depends not only on the 

device 1/f noise corner but also the Fourier coefficients of the ISF. Since the ISF is 

determined by the waveform, the first coefficient, c0, can be significantly reduced if 

certain symmetry properties exist in the waveform. Therefore, (5.31) points out that 

poor 1/f device noise need not imply poor close-in phase noise performance. 
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5.3.4.2 Cyclostationary Noise Sources 

Due to the periodic nature of the oscillations, the statistical properties of some 

random noise sources in oscillators may change with time. These sources are referred as 

cyclostationary noise sources. For example, if a MOS device is used in oscillators, its 

channel noise is cyclostationary because the noise power is modulated by the gate 

source overdrive voltage which varies with time periodically. There are other noise 

sources in the circuit whose statistical properties do not depend on time and the 

operation point of the circuit, and are therefore called as stationary noise sources. For 

instance, the thermal noise of a resistor is a stationary noise source. The LTV model 

provides a simple way to deal with cyclostationary noise sources. A white 

cyclostationary noise current, in(t), can be decomposed by 

( ) ( ) ( )ttiti nn 00 ωα⋅= (5.32) 

where in0(t) is a white stationary noise current and α(ω0t) is a deterministic periodic 

function describing the noise amplitude modulation. It has been normalized to 1 and can 

be derived easily from device noise characteristics and operation point. By this 

decomposition, an effective ISF can be expressed as 

( ) ( ) ( )xxxeff α⋅Γ=Γ . (5.33) 

Replacing the original ISF by this effective ISF in the previous derivation, the 

phase noise contributed by the cyclostationary noise sources in oscillators can be 

computed by (5.30) easily. 
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5.3.5 Comparison between Model Predictions and Simulations 

Two oscillators are studied to verify the effectiveness of the Hajimiri’s model. 

The first example is the CMOS Colpitts oscillator shown in Fig. 5.5 (a). The NMOS 

transistor is TSMC 0.25µm device whose model file was obtained from MOSIS website 

and is listed in Appendix 1. The channel thermal noise current is estimated by 

mn gkTfi γ42 =∆ with γ=2.5 for a short channel device [18]. In the SPICE simulator, the 

flicker noise of the MOS device is calculated by 

EF
effox

AF
ds

fn fLC
IKFfi ⋅
⋅=∆ 2

2
/1, . (5.34) 

In this model, FKN=1E-27, KFP=1E-28 and AF=EF=1. According to these 

parameters, the device 1/f corner frequency is computed and the result is 3.167MHz. 

The phase noise of this 60MHz MOS Colpitts oscillator was then calculated. 

The result is shown in Fig. 5.9. The oscillator was simulated by both SpectreRF and 

ADS. The phase noise as a function of the offset frequency from both programs was 

plotted in the same figure. The significant error in the 1/f3 region is observed. On the 

other hand, the phase noise in the 1/f2 region obtained from either SpectreRF or ADS 

matches theoretical computation well, especially between the theoretical prediction and 

the SpectreRF simulation result. Note that the simulations obtained from SpectreRF and 

ADS are not consistent either. For example, ADS simulation gave smaller phase noise 

in the 1/f2 region compared with the SpectreRF’s result. Actually, though some 

simulators have provided the functionality of phase noise simulation, obtaining accurate 
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prediction is still a challenging topic currently. The reliable phase noise usually has to 

be obtained by direct measurement. 

10
0

10
2

10
4

10
6

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20
A D S
S pec t reR F
Theore t ic a l

Theoretical

SpectreRF

ADS

Ph
as

eN
ois

e(
dB

c/H
z)

Offset from the carrier (Hz)  
Figure 5.9 Comparison of the phase noise of the 60MHz MOS Colpitts oscillator 

 

10
0

10
2

10
4

10
6

10
8

-200

-150

-100

-50

0

50

100
ADS

SpectreRF

Theoretical

3/1 fω
by LTV model

3/1 fω
by ADS

3/1 fω
by SpectreRF

4.8/0.6

2.4/0.6

2.5V

Ph
as

eN
ois

e(
dB

c/H
z) Theoretical

SpectreRF

ADS

Figure 5.10 A 5-stage CMOS ring oscillator (left) and its phase noise versus offset 
frequency plot (right) 



76

The ring oscillator was studied too. The ring oscillator under consideration 

consists of 5 inverters, and its oscillation frequency is 528MHz. The same TSMC 

0.25µm model file is used for transistors. In this case, it is found that the theoretical 

prediction is consistent with the SpectreRF simulation at both the 1/f2 and 1/f3 region as 

shown in Fig. 5.10. The 1/f3 corner frequency obtained by calculation and simulation 

are 1.26MHz and 1.67MHz, respectively. However, the ADS and SpectreRF simulation 

differs in the 1/f3 region, suggesting that accurate phase noise generated by oscillators 

has to be determined by measurement. 

5.3.6 Advantages and Disadvantages of the LTV Model 

The Hajimiri’s LTV phase model is a general model which can be applied to all 

kinds of oscillators. It even can be extended to estimate the phase noise of other circuits 

in which the operation point varies with time. By the definition of the ISF, the model 

closely relates the phase noise with the time-variant nature of the oscillator and provides 

a clear physical mechanism of phase noise generation. It also points out some design 

insight to improve the phase noise performance. For example, to reduce the close-in 

phase noise in oscillators, the oscillation waveform and thus the ISF waveform must be 

symmetric about a vertical axis to minimize the c0 according to (5.31). The measured 

phase noise and the model prediction were also consistent with each other according to 

reference [63]. 

The major difficulty of this model is obtaining the ISF, which is obviously the 

core of the model. Although three methods were mentioned in [63], the most reliable 

and accurate method is to inject a perturbation current and observe the phase response 
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of the oscillators as was done already in the previous two examples. However, to get an 

ISF with decent accuracy, many time domain simulations have to be performed. For 

instance, the same perturbation currents are injected into the Colpitts oscillator at 296 

different times in one period in the previous simulation. The simulation can 

automatically be done by most of the simulators by using a sweep function, but the 

required simulation time is relatively long. Furthermore, to observe their effect on 

excess phase, several oscillation periods after the injections have to be simulated to let 

the AM variation disappear. This requirement prolongs the simulation time. Finally, if 

these is no dominant noise source and the phase noise of the oscillators are excited by 

several noise sources at different nodes, several different ISFs need to be found using 

time domain simulation. These difficulties in finding ISF limit the application of the 

LTV model in practical oscillator phase noise analysis.  

5.4 Nonlinear Time-Invariant (NTI) Phase Noise Model – Samori’s Model

The assumption that the transistors of oscillators work in their linear region is 

usually not tenable. As mentioned before, the LTI phase model cannot explain the many 

nonlinear effects such as noise folding. Therefore, the nonlinearity in the oscillators 

should be taken into account in the phase noise model. 

Along with the maturity of the on-chip inductors, LC oscillators are widely used 

in RFIC designs due to their good phase noise performance, simple implementation and 

differential output. The phase noise of this type of oscillator became a very popular 

research topic. Samori proposed a nonlinear time-invariant (NTI) phase noise model for 

the LC oscillators [65]. This model explained how the device noise produces phase 
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noise by analyzing the nonlinearity of the conductance of the differential pair in LC 

oscillators. The model also provides a lot of very useful design insights and 

optimization rules to reduce the phase noise. 

5.4.1 Harmonic Transfer in Nonlinear System 

The output noise generated by a tank was calculated in the derivation of the LTI 

model (equation 5.8). It is well known that the Q factor of the tank is Q=ω0C/got where 

got is the equivalent parallel conductance of the tank given by 

sLsC
pLpCot gLg

Cggg 22
0

22
0 1

ω
ω +++≈ , (5.35) 

where the term gsC and gsL are the parasitic conductance in series with C and L,

respectively, gpC and gpL are the conductance in parallel to the same reactive elements, 

and ω0 is the oscillation frequency. By these definitions, the one-side spectral density of 

the output noise voltage can also be expressed as: 

2
02

,
1)( ω

ωω ∆=∆ QC
kTV goton . (5.36) 

Similar to the factor A in the LTI model of (5.15), all other noise voltages 

generated by active devices are taken into account by multiplying )(2
, ω∆gotonV by a 

factor, F. Therefore, the phase noise at offset ∆ω is given by: 

)1(12)( 2
0

2
0

FQC
kT

AL +∆=∆ ω
ωω , (5.37) 

where A0 is the amplitude of oscillation. Unlike the LTI model, the Samori’s 

model figures out a way to compute the factor F by taken into account the nonlinearity 
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of the differential pair in LC oscillators. Denoting the output current of the differential 

pair as I = I(V) and assuming a small single tone signal, Vl(t), at the frequency of ω0−∆ω
is superimposed on the carrier, Vo(t), with amplitude of A0, the output signal of the 

differential pair can be approximated as 

( ) ( ) )()()()(
)(

tVdV
dItVItVtVI l

tV
olo

o

+≈+ . (5.38) 

The dI/dV is the transconductance of the differential pair, i.e. g(V) = dI / dV. For 

LC oscillators, the g(Vo(t)) is an even function of the time with a fundamental frequency 

of 2ω0 as shown in Fig. 5.11. Thus, it can be expressed by the Fourier expansion 

( ) ∑+∞
−∞=

=
n

tnjn
o

oegtVg ω2)2()( (5.39) 

where the coefficients g(2n) are real. 
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The first term in (5.38) gives the output harmonics at ω0. It can be computed as 

dt
dVVgdt

dV
dV
dI

dt
dI )(== , (5.40) 

( ) ( ) dtdt
dVtVgtVItI o

ooo ∫== )()()( . (5.41) 

Substituting (5.39) into (5.41) and assuming a cosine oscillation waveform, 

Vo=A0⋅cos(ω0t), (5.41) leads to the current component at frequency ω0

)()()( )2()0( tVggtI oo −= . (5.42) 

Since both Io(t) and Vo(t) are signal with frequency of ω0, it is useful to adopt a 

phasor notation in derivation. Thus, (5.42) can be written as 

omeffoo VgVggI =−= )( )2()0( , (5.43) 

where gmeff is the effective transconductance which is precisely the ratio of 

oo VI / . The second term in the right-hand side of (5.38) gives the intermodulation tones 

at frequency nω0±∆ω. They can be expressed as [66]: 

∑∞+
−∞=

∆−−∆− ⋅



 +

n

tnjntjltjl oegeVeV ωωωωω 2)2()(
*

)( 00

22 . (5.44) 

This equation shows that the harmonic tone lV at ω0−∆ω generates two 

intermodulation terms: lI at ω0−∆ω, given by lVg )0( , and uI at ω0+∆ω, given by 

*)2(
lVg . Similar terms will be generated by an input harmonic tone uV at ω0+∆ω. By 

using a matrix representation, the intermodulation terms can be written as 
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It is well know in communication theory that a small tone superimposed on a 

carrier will create amplitude modulation (AM) and phase modulation (PM). If the a 

single tone, lV , is superimposed on a carrier, the resulting voltage signal, V(t), is given 

by 

[ ]ll tVtAtV φωωω +∆−+= )(cos)cos()( 000 . (5.46) 

Applying the phasor decomposition technique, this equation can be written 

approximately as 

[ ] ))(cos()(1)( 00 tttmAtV VV βω ++= , (5.47) 

where { }tj
lV eVtmA ω∆= *

0 Re)( and { }tj
lV eVtA ωβ ∆−= *

0 Im)( . By introducing the phasor 

representation, the AM and PM modulation indices, Vm and Vβ , are defined by 

{ }tj
VV emtm ω∆= Re)( and { }tj

VV et ωββ ∆= Im)( . For the tone, uV , at the frequency of 

ω0+∆ω, a similar relationship holds. The modulation indices can be expressed as 
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The intermodulation voltages are found by inverting the matrix. 
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Similarly, the output current can be expressed as 
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Form (5.45), (5.49) and (5.50), the following equation is obtained. 

00 0
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ββ , (5.51) 

where gam=g(0)+g(2) and gpm=g(0)−g(2)=geff. Note that these gam and gpm of a bipolar or a 

CMOS differential pair can be easily obtained. Fig. 5.12 shows gam and gpm computed 

numerically from the hyperbolic tangent and square trans-characteristics of bipolar 

devices and CMOS devices, respectively. The tail current is chosen as 1mA in both 

cases. For the CMOS pair, µnCox is 1.345×10-4 A/V2 and W/L is 10.  
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Figure 5.12 Dependence of AM and PM transconductance of a bipolar (left) and NMOS 
(right) pairs as a function of the amplitude of the input signal 

 

From this figure, it can be concluded that the noise is equally partitioned 

between amplitude noise and phase noise when the amplitude is small. However, when 

the oscillators enter the nonlinear region, the gam drops more quickly than gpm does. 
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Therefore, the noise sources generate more phase noise than amplitude noise in the 

nonlinear region. If an ideal hard limiter can approximate the pair, the current will be an 

ideal square and there is no AM noise. On the other hand, any change in the phase of 

the input waveform causes a time shift of the output transitions and generates the phase 

noise at the output. 

5.4.2 Phase Noise due to Differential Pair 

As mentioned in Chapter 2, the major device noise of a bipolar device includes 

the shot noise associated with collector and base currents, the thermal noise from the 

base spreading resistor and the flicker noise. For a MOSFET, the noise sources are the 

channel thermal noise and flicker noise. If the phase noise is measured in the 1/f2

region, the flicker noise is neglected. The noise which is modeled by the noise current 

parallel to device, such as the collector shot noise in BJTs and the channel thermal noise 

in MOSFETs, can be transformed to the input of the differential pair as noise voltages 

governed by 22 / mn GI [18].  The resulting double side noise voltage spectrum can be 

written as 2kTRb,eff, where Rb,eff is the effective base (or gate) spreading resistance that 

generates the equivalent noise voltage. Obviously, this noise is a wide-band white noise. 

The single-tone harmonic transfer theory discussed in 5.4.1 can be applied to it. Based 

on the same derivation, the matrix expression similar to (5.45) is obtained 
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This equation shows that only the noise voltages near the frequency of 

±(2n+1)ω0 will generate the noise current at ±(ω0±∆ω). The relative contribution to the 
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noise voltage is weighted by the Fourier coefficients, g(2n), of g(Vo(t)). Note that if the 

white noise has an equivalent bandwidth of Nω0 where n is successive numbers from 1 

to N/2, the overall output noise current will be the summation of all contributed noise 

voltages at different frequencies. 

A special case is to consider the pair as a hard limiter. The output current in this 

case is a square wave and the g(Vo(t)) is a train of δ functions at a frequency of 2 ω0.

The Fourier spectrum of g(Vo(t)) has an infinite number of terms given by 

2/)2()1( 0 ot
n gn ⋅−− ωωδ . Since noise voltage is multiplied in the time domain, the 

output noise current spectrum is obtained from the convolution between these functions 

and the wideband noise. Fig. 5.13 schematically shows the white noise spectrum with a 

bandwidth Nω0. The noise close to the frequency ±(2n+1)ω0, denoted by the dashed 

areas, will be folded within the tank bandwidth. Each folded replica is weighted by the 

corresponding g(2n) factor governed by (5.52). For example, the contribution to uI from 

*
3lV and uV3 is determined by g(4) and g(-2) respectively. The overall output noise current 

spectrum is the summation of all the corresponding folded noise terms as shown in Fig. 

5.13. For the hard limiter approximation, Samori showed that the F factor in (5.37) can 

be expressed as 

22 ,
NgRF oteffb= , (5.53) 

where got is calculated by (5.35). N defines the bandwidth of the noise by Nω0.
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Figure 5.13 Folding of the white noise spectrum at the input of the differential pair 
 

For practical differential pairs, (5.52) still holds. However, the F factor cannot 

be computed by the simple analytical expression like (5.53). As demonstrated in Fig. 

5.12, a numerical solution for g(2n) is easy to obtain based on the hyperbolic tangent and 

square law trans-characteristics for bipolar and CMOS differential pairs. Therefore, 

unlike the LTI phase noise model, the F factor can be numerically obtained in the 

Samori phase noise model. 

5.4.3 Phase Noise due to Tail Current Source 

When the oscillation amplitude is large (for example, 300-500mV for bipolar 

pairs), the pair is completely switched during most of the carrier period. In this case, the 

conducting transistor acts as a cascode device to the tail current source. In a linear 

circuit, it is well known that the cascode transistor contributes little noise. So, the phase 

noise generated by the differential pair is negligible during these times. On the other 
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hand, the phase noise generated by the tail current source progressively gains 

importance. 

If the hard limiter approximation is valid, the phase noise generated by the tail 

current source can again be calculated analytically. The tail current source noise, 

modeled as a noise current In, is delivered to the tank via an ideal switch. It is equivalent 

to multiplying the noise current by a square wave T(t) with a frequency ω0. An 

expression similar to (5.44) can be obtained 
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where T(2n+1) is the Fourier coefficients of the square wave. This equation governs the 

convolution in the spectral domain between the noise in the tail current source and the 

spectrum of T(t). The noise current tone uI and lI , at frequencies of ω0±∆ω, can be 

calculated as 
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Note that this equation shows that the output noise currents are due to the noise 

components around the even harmonics of ω0 in the tail current source. Using (5.55) 

and (5.50), AM and PM current current at ω0−∆ω can be expressed as 
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The equations (5.55) to (5.57) suggest: (i): the noise at (2n+1)ω0±∆ω are not 

folded within the bandwidth of the tank (5.55); (ii) the noise at ∆ω only contributes to 

AM noise (the first term in (5.56)) and (iii) the PM noise is contributed by the noise 

current at 2nω0±∆ω with n>0 (5.57). 

If the noise in the tail current source is white with the double-sided power 

spectral density Snt, then it satisfies ntn SI 42 = . The total phase noise spectral density 

results is 
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The resulting F factor in (5.37) is given by 

ot

nt
kTg
SF 8= . (5.59) 

For practical differential pairs, T(t) is not a strict square waveform. Although 

(5.54) and (5.55) are still valid, there is no analytical expression for amlI , and pmlI , as 

well as for the F factor. However, the convolution procedure is similar to Fig. 5.13 and 

thus the F factor can be numerically solved. Combining (5.53) and (5.59), the F factor 

for practical LC oscillators can be written as 

ot

nt
oteffb kTg

SgRF ση += ,2 ,                                                                               (5.60) 
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where the upper values for η and σ are N/2 and 1/8 as given by the hard limiter 

approximation. They may be used as a first order estimate of the F factor. An accurate F

factor for practical circuits has to be computed numerically. 

5.4.4 Advantages and Disadvantages of NTI Phase Noise Model 

 Samori’s NTI phase noise model systematically illustrates the noise generation 

mechanisms in LC oscillators from a spectral domain point of view. These mechanisms 

provide useful design insight into LC oscillators. For example, the phase noise 

generated by a biasing circuit, usually neglected, must be taken into account if the 

oscillation amplitude is relatively large. 

However, Samori’s model can only be applied to the differential pair based LC 

oscillators. Although the similar noise folding mechanism exists in all kinds of 

oscillators, there is no mathematical approach to estimate the phase noise based on this 

NTI model. Extending this theory to other oscillators may be an interesting research 

topic. Also, obtaining the F factor numerically for a practical differential pair is tedious. 

5.5 Kaertner and Demir’s Phase Noise Model

Kaertner [67] and Demir [68]-[70] developed two phase noise models for 

oscillators. Although their theories are different in definitions and derivations, they 

produce consistent results because two models are both based on perturbation theory 

and the stochastic process. These two models are more rigorous when compared with 

the previous four models. For example, the phase noise at the carrier frequency in 

Demir’s model is finite while it is infinite in Hajimiri’s LTV model. The completed 
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mathematical derivation of this model is out of the scope of this dissertation. The basic 

idea and the conclusion of the Demir’s phase noise model will be introduced briefly.  

For a given oscillator with a LC tank, if two independent state variables, voltage 

v(t) across the capacitor versus the current i(t) through the inductor are plotted, a closed 

trajectory with a period of T similar to the trajectory as shown in Fig. 5.14 is obtained. 

In general, the dynamics of an oscillator can be described by a system of different 

equations 

)(xfx =& , (5.61) 

where x is an n-dimensional state vector. If there is no noise sources (i.e. no 

perturbations) in oscillators, the system has a periodic solution xs(t), which forms a 

stable-limit cycle in the n-dimensional solution space as illustrated in Fig. 5.14. When 

the oscillator is perturbed, this periodicity is lost. For stable oscillators, however, the 

perturbed trajectory remains within a small band around the unperturbed trajectory as 

shown in the same figure. If there are p random noise sources, a small state-dependent 

perturbation term B(x)b(t) can be added to (5.61) where b(t) is a p-dimensional vector 

and B(x) is a n×p matrix. Hence, the perturbed system is described by 

)()()( tbxBxfx +=& . (5.62) 

 



90

x1

x2 Region containing trajectory of
perturbed oscillators

Limit cycle of unperturbed
oscillator

xs(t): unperturbed oscillator
at time t

y(t): orbital deviation due to
perturbation

:)())(( tyttxs ++α
perturbed oscillator at time t

:))(( ttxs α+
oscillator due to perturbation

Phase shift to unperturbed

Figure 5.14 Oscillator trajectories 
 

Demir proved that the solution, xs(t), for a perturbed system can be expressed by 

xs(t+α(t))+y(t), where (i) α(t) is a changing time shift, or phase deviation, in the 

periodic output of the unperturbed oscillator; (ii) y(t) is an additive component, which is 

called an orbital deviation, to the phase-shifted oscillator waveform. By this 

decomposition, a nonlinear differential equation for phase deviation, α(t), is derived. It 

can be expressed as 

( ) ( )( ) 0)0(),()()()(
1 =++= αααα tbttxBttvdt

td
s

T . (5.63) 

where v1(t) is a periodically time-varying vector called the Floquet vector [71]. If b(t)

are white, solving this equation and computing the noise spectrum by autocorrelation, 

the spectrum of the oscillator output  with white noise sources is given by 
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where Xn is the Fourier coefficients of the solution xs(t) for the unperturbed system. Xn

satisfies 
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ns tfjnXtx )2exp()( 0π . (5.65) 

c in (5.64) is a single scalar constant which is defined as 

( ) ( )( ) ( )( ) ( )∫= T
s
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0 11

1 τττττ . (5.66) 

From the output spectrum, phase noise can be found easily. The same procedure 

can also be extended to colored noise sources in oscillators, and similar results are 

obtained [70]. The author also developed a mathematical method to solve equation 

(5.63) and hence find the final phase noise of oscillators. 

Demir’s phase noise model is a unifying model which can be applied to any 

nonlinear oscillator (i.e. electrical, optical, mechanical and so on). It is very rigorous, 

but its results are difficult to use in the phase noise estimation by hand-calculations. It 

does not provide useful design insight either. On the other hand, this model, as well as 

the mathematical method the author proposed, are very useful in simulations. For 

example, the SpectreRF simulator uses a similar method in its PSS and PNoise 

simulation to find the phase noise of oscillators [72]. 

5.6 Summary

Five phase noise models –Leeson’s model, LTI model, LTV model, NTI model 

and Kaertner and Demir’s model – were discussed in this chapter. Leeson’d model is an 
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empirical model which cannot be used in predicting phase noise. The empirical 

constants in this model have to be obtained from measurements. By applying classical 

linear circuit theory, the LTI model gives an explanation of the –20dB slope in the 

phase noise plot. It also provides some design insight for suppressing phase noise. 

However, because of neglecting the nonlinearity in oscillators, the model represents no 

fundamental improvement comparing with the Leeson’s model. 

Both the LTV model and the NTI model view the oscillator as a nonlinear 

system. But they start out from different points of view. In the NTI model for LC 

oscillators, the transconductance of differential pair is considered as nonlinear directly. 

This nonlinearity folds the noise at different frequencies into the carrier band – a very 

similar procedure occurs in every mixer. On the other hand, the LTV model views the 

oscillator as a linear but time variant system to noise sources. If a linear system is time-

variant, it also can generate frequency components that do not exists in the input signal 

(the noise frequencies) [73] – noise-folding effect occurs in the NTI systems too. In 

other words, in the LTV model, the oscillator acts as a VCO and changing its operating 

frequency due to FM modulation caused by noise generated in the oscillator. In the NTI 

model, the phase noise comes from the small-signal mixing of noise due to the 

nonlinear behavior of the oscillator, where noise mixes with the oscillation signal and 

harmonics to generate sideband frequencies on either side of the oscillator signal. From 

this point of view, it can be concluded that these two models are two different ways of 

looking as the same problem. Note that the LTV model is a general model but the NTI 
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model discussed here is only for LC oscillators. However, the NTI model provides a lot 

of very useful design insights which lead to many phase noise suppression techniques. 

In the end, a unifying and more rigorous phase noise model – Kaertner and 

Demir’s model – was introduced briefly. This model is particularly suitable to 

simulators to compute the phase noise in oscillators.  
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CHAPTER 6 

TECHNIQUES FOR SUPPRESSING PHASE NOISE OF LC OSCILLATORS 

 

Although relaxation and ring oscillators are attractive from the standpoint of 

circuit integration, LC tuned oscillators are still the only reliable way to meet the very 

tight phase noise requirements imposed by today’s wireless communication systems. 

Thereofore, in the last years the interest for this solution has increased.  

A very useful phase noise model proposed by Samori has been introduced in 

chapter 5. In his model, the noise sources are assumed to be white. However, the flicker 

noise of the devices has significant contribution to the phase noise by the up-conversion 

mechanism. This effect is especially important to the CMOS oscillator and when the 

band spacing is small. Therefore, it received a lot of research recently [74]-[77]. In this 

chapter, the phase noise generation mechanisms for different noise sources will be 

summarized. Then several techniques to suppress the phase noise will be introduced. 

6.1 Phase Noise Generation in LC Oscillators

According to Samori’s phase noise model, the phase noise of LC oscillators can 

be expressed as 

)1(12)( 2
0

2
0

FQC
kT

AL +∆=∆ ω
ωω , (6.1) 

where A0 is the amplitude of oscillation. The first term of (6.1) describes the noise 

generated by the tank parasitic resistance while F is the noise-folding factor that 
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describes the phase noise generated by the nonlinear active devices. If the differential 

pair can be considered as a hard limiter and the noise can be assumed white, then the F

factor is given by 

22 ,
NgRF oteffb= , (6.2) 

where got is the effective parallel conductance of the tank, N defines the band width of 

the noise by Nω0 and Rb,eff is the effective noise resistance. Besides these two kinds of 

noise, there are three other noise sources in typical LC oscillators: (i) the flicker noise of 

the differential pair, (ii) the white noise generated by the tail current source and (iii) the 

flicker noise provide by the tail current source device. In this chapter, several 

techniques will be introduced to suppress these noise sources. However, equations (6.1) 

and (6.2) actually describe the intrinsic minimum phase noise that can be reached by the 

LC oscillator. 

The mechanism on how these noise sources cause the output phase noise will be 

summarized as follows. 

First, the thermal noise generated by the parasitic resistance of the tank will 

appear as predicted by the classical linear phase noise model. To reduce this noise, the 

parasitic resistance should be minimized. Hence, the Q factors need to be maximized 

for both the spiral inductors and varactors. However, as pointed out in Chapter 4, their 

values are primarily determined by the process technology.  

Second, the phase noise contributed by the white noise of the differential pair is 

described by Samori’s model. According to his theory, the noise voltages near the 
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frequency of ±(2n+1)ω0 will generate the noise current at ±(ω0±∆ω) and thus create the 

output phase noise by injecting the noise current into the tank.  

Third, the flicker noise of the differential pair contributes to the phase noise by a 

special up-conversion process [77]. If this flicker noise is only modeled as a near-DC 

noise voltage at the input of the transistor, it cannot account for the close-in phase noise 

because only the noise voltage near the frequency of ±(2n+1)ω0 contributes to the phase 

noise according to the Samori’s phase noise model. However, the flicker noise also 

modulates the second-order harmonic voltage waveform at the tail every half period, 

inducing a noisy current in the capacitor, Ctail, attached at the coupled sources (or the 

emitters for bipolar case) of the differential pair. It is equivalent to a noise current in the 

tail at the frequency of 2ω0. Therefore, after commutation through the differential pair, 

this noise current mixes down to the oscillation frequency as predicted by Samori’s 

model. Note that if the near-DC white noise cannot be ignored, it contributes to the 

phase noise by the same way. 

Fourth, the white noise in the tail current source leads to phase noise too. 

According to Samori’s model, the noise at (2n+1)ω0±∆ω has no effect on the phase 

noise but the noise at ∆ω contributes to AM noise and the noise at 2nω0±∆ω (n>0) 

directly generates the phase noise. Although the near-DC noise only results in AM noise 

at the output, this AM noise will modulate the effective capacitance of the varactors, 

converting AM to PM and generating phase noise [75] [76]. This procedure is called as 

AM-to-PM (or AM-to-FM) up-conversion. 
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Finally, the flicker noise in the tail current source also produces output phase 

noise. The tail current governs the amplitude in the current-limited regime. Therefore, 

the flicker noise in the tail current source will produce a low frequency random AM 

signal. Then the AM-to-PM up-conversion occurs and the flicker noise appears as the 

close-in phase noise. Note that this flicker noise is usually dominant compared with the 

low frequency white noise in the tail current source and thus very troublesome. 

The qualitative analysis listed above is helpful to explain the phase noise 

suppression techniques summarized in the next section. 

6.2 Phase Noise Suppressing Techniques

The white noise of the tank and the differential pair are intrinsic noise sources, 

and they cannot be removed or suppressed. On the other hand, the flicker noise form the 

differential pair and tail current source as well as the white noise of the tail current 

source may be effectively reduced by some techniques. These techniques include: (i) 

remove tail current source (ii) capacitive noise filtering in the tail current source, (iii) 

LC noise filtering, (iv) inductive control line, (v) inductive degeneration, (vi) decouple 

the common node by a capacitor, (vii) reduce VCO gain by switched capacitors (viii) 

differential control line. 

6.2.1 Remove Tail Current Source 

As pointed out by the Samori’s model, the tail current source contributes more 

phase noise when the oscillation amplitude is large. Therefore, removing the tail current 

source is helpful to get rid of the phase noise from the tail current source [76] [78]. A 
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possible topology without the tail current source is shown in Fig. 6.1 (a) and it does 

produce steady-state oscillation. 
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Figure 6.1 CMOS LC oscillators without (a) and with the tail current source (b) 

 

However, this topology has two drawbacks. First, the oscillator will work at the 

voltage-limited region with a high overdrive voltage for coupled devices, resulting in 

relatively large current in the oscillator. Increasing bias current in the voltage-limited 

region will degrade the phase noise performance. To alleviate the problem, the W/L

ratio has to be reduced for the smaller gm. But the flicker noise generated by the 

transistors is increased since the flicker noise is reversely proportional to the device 

area. Second, removing tail current source also reduces the impedance at the common-

mode point S, which actually reduces the resonator quality factor because of the load 
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effect [78]. At the zero differential oscillation voltage, two coupled transistors evenly 

share the tail current and both of them are in saturation. As the rising differential 

oscillation voltage crosses Vt, the Vgd of one MOSFET exceeds Vt, forcing it into the 

triode mode, and the Vgd of the other MOSFET falls below –Vt, driving it deeper into 

saturation. The rds of the device in the triode region decreases with the differential 

voltage and adds greater loss to the resonator because the current flowing through it is 

in-phase with the differential voltage. In the next half cycle, the same situation occurs to 

the other MOSFET. Hence, as the load of the resonator, the two transistors lower the 

average resonator quality factor. With a smaller resonator Q factor, the phase noise of 

the oscillator increases. On the other hand, if a current source with relatively large 

output impedance is inserted into node S (Fig. 6.1 (b)), the load impedance “seeing” by 

the sources of the MOSFETs is always high, resulting in negligible current through rds.

Hence, it preserves the Q factor of the resonator. Due to these disadvantages, the LC 

oscillator without tail current source usually needs to be carefully designed in order to 

obtain significant phase noise improvement as reported in [77]. 

6.2.2 Capacitive Noise Filtering at the Tail Current Source 

The white noise near the frequency 2nω0±∆ω (n>0) in the tail current source 

directly generates the phase noise according to Samori’s phase noise model. To 

suppress the phase noise originated by this noise source, a large capacitor, Ctail, can be 

inserted between the common mode node S and ground [74] [79], resulting in a 

capacitive noise filtering topology at the tail current source as depicted in Fig. 6.2. 
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Figure 6.2 Capacitive filtering at the tail current source 

 

The inserted Ctail functions as a low-pass filter that bypasses the noise at the 

frequency higher than 2ω0. At the same time, the voltage fluctuation at S is depressed. 

Hence, the modulation voltage resulting from the flicker noise of the differential pair at 

this point is alleviated, resulting in less AM-to-PM phase noise. However, Ctail 

decreases the impedance at S, potentially reducing the Q factor of the resonator and thus 

degrading the phase noise performance. Therefore, the Ctail value should be properly 

chosen. The cutoff frequency of the resulting low-pass filter should be greater than ω0

but less than 2ω0.

6.2.3 LC Noise Filtering 

The tail current source plays a twofold role in the LC oscillator: it provides the 

bias current, and it also inserts a high impedance in series with the switching MOSFETs 

of the differential pair. Reducing the impedance degrades the Q factor of the resonator 

and thus increases the phase noise, as mentioned in the above two methods. On the 
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other hand, it is well known that the common mode node of the differential pair is a 

“virtual-ground” point (low impedance point) for the differential signal. In any balanced 

circuit, odd harmonics circulate in a differential path, while even harmonics flow in a 

common-mode path [78], through the resonator capacitance and the switching 

MOSFETs to ground in this case. Therefore, strictly speaking, the current source need 

only provide high impedance to even harmonics. If the noise near the second-order 

harmonics is dominant, it suggests that a high impendence, narrow band circuit centered 

at 2ω0 can be added to the common mode point of the LC oscillator. The resulting LC 

noise-filtering oscillator is shown in Fig. 6.3 [78] [80]. In this oscillator, Ctail is used to 

short the high frequency (≥2ω0) noise to ground. Since it decreases the impedance of 

the node S1, an inductor L1 is inserted between the current source and the node S1. The 

inductance is chosen to resonate at 2ω0 in parallel with whatever capacitance is present 

at the node S1, i.e. C1. Hence, the impedance for second-order harmonics is raised, and 

the Q factor is preserved. The high impedance LC filter circuit also blocks the noise in 

the tail current source near the frequency of 2ω0. The L2 and C2 have the same function. 

The well designed LC noise filtering circuit can significantly improve the phase 

noise performance of the LC oscillator. However, the additional capacitors and 

inductors increase the chip area. The inductor design is always troublesome because 

they are apt to pick up noise from the substrate, a severe problem especially in mixed-

signal circuits. The shielding technique is helpful to reduce the noise coupled into the 

spiral inductors [24]. However, it also complicates the design process. 
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Figure 6.3 Oscillator with LC noise filter (a) and inductive control line (b) 
 

6.2.4 Inductive Control Line 

The Q factor of the resonator, as mentioned in the previous section, will be 

degraded if the common mode nodes S1 and S2 in the VCO have low impedance since 

the even harmonics will flow through the varactors to the control line, which is AC 

grounded. However, even if S1 and S2 have very high impedance, the control voltage Vx-

Vctrl and Vy-Vctrl are different except at the zero-crossing time, resulting in the difference 

in the instantaneous capacitance of the two varactors. Such an unbalance generates the 

even harmonics that flow through the varactors to AC ground, degrading the Q factor 

and increasing the phase noise at the output. 

The same LC noise filtering idea can be applied to the control line, leading to an 

inductive control line technique as shown in Fig. 6.3 (b). The inductance L3 and 

capacitor C3 should be tuned to resonate at the frequency 2ω0. The narrow band LC 
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circuit only suppresses the second-order harmonic and has no effect on low frequency 

signal. Hence, the f- Vctrl characteristic of the VCO is unchanged.  

6.2.5 Inductive Degeneration 
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Figure 6.4 Oscillator with LC filtering and a degeneration inductor 
 

The noise filtering techniques discussed in the previous sections focus on 

suppressing the high frequency noise in the tail current source. The low frequency 

noise, especially the flicker noise, can generate phase noise by the AM-to-PM up-

conversion process. A usually used method to reduce the flicker noise is to increase the 

size of the tail current source device. However, a larger device increases the parasitic 

capacitance at common node, resulting in a smaller Q factor of the resonator. 

To remove the low frequency noise in the tail current source, an off-chip large 

inductor can be added between the source of the tail transistor and the ground as shown 
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in Fig. 6.4 [81]. If the inductance is large enough, the degeneration inductor shunts the 

low frequency noise in the tail current source. Hence, the power of the noise current is 

reduced by the factor 21 flm Ljg ω+ , where gm is the transconductance of the tail 

transistor. The technique suppresses the noise in a frequency band that is limited 

upwards by the parasitic parallel capacitance of the inductor, and downwards by the 

inductance value (the larger the inductance, the lower the frequency limit). Since the 

inductor carries no high-frequency signals, the Q factor, self-resonance frequency, 

package parasitics and PCB layout are uncritical. 

6.2.6 Decouple the Common Node by a Capacitor 

Flicker noise of the differential pair can be modeled as a low frequency, 

fluctuating offset voltage V1/f that unbalances the differential pair. It is responsible for 

the noisy current in the capacitor attached at the common mode node S1 and S2 in Fig. 

6.4. After commutation, the fluctuation modulates the oscillation frequency and 

ultimately results in output phase noise. However, the balance may be restored by 

decoupling the source of differential pair with a capacitor Cc1 as depicted in Fig. 6.5 

[77]. If the value of Cc1 is properly designed, the voltage across Cc1 is able to effectively 

track the unbalance caused by the flicker noise voltage. Hence, the balance is restored 

and the up-conversion mechanism of the differential pair flicker noise is suppressed. 

However, the oscillator cannot start up if Cc1 is too small. On the other hand, if it is too 

large, the second-order harmonics will be dominant in the oscillator. The Cc2 in Fig. 6.5 

has the same function. 
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Figure 6.5 LC oscillator with the decouple capacitor 
 

6.2.7 Reduce VCO Gain Kv by Switched Capacitors 

In LC VCOs, the AM noise can be transferred to phase noise by modulating the 

effective capacitance of the varactors (AM-to-PM up-conversion). Obviously, more 

phase noise will be generated in this up-conversion process if the VCO has a larger gain 

Kv, which is determined by the sensitivity of the varactors. To alleviate the phase noise 

caused by such an up-conversion process, a smaller Kv is usually desirable in the 

modern VCO design. However, with the given power supply voltage, the smaller Kv

leads to the smaller frequency-tuning range. 

One way to resolve this conflict is by using the switched capacitor array as 

shown in Fig. 6.6 (a). In this design, the binary weighted capacitor array is made of 

Metal-Insulator-Metal (MIM) capacitors (with high Q) that can be selected by the 

MOSFETs switches. Cv is the varactor that can be tuned in a relatively small range. By 
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selecting MIM capacitors and tuning Cv, a set of f-Vtrcl curves with slopes Kv2 as shown 

in Fig. 6.6 (b) are obtained. In practical design, two consecutive tuning ranges should 

have enough overlaps to provide a continuous tuning range covering all desired 

frequencies. On the other hand, if only single varactor with a large tuning range is used 

in the oscillator, a higher VCO gain, Kv1, is required to cover the same frequency range. 

Therefore, the VCO with the switched capacitors array can effectively suppress the 

AM-to-PM up-conversion phase noise. 
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Figure 6.6 LC oscillator with switching capacitors (a) and its f-Vtrcl curves (b) 

 

However, the switch resistance must be sufficiently low to not degrade the Q of 

capacitors. This implies the MOSFETs must have a large W/L ratio. However, large 

device size will result in significant parasitic capacitance that reduces the capacitance of 

the MIM capacitors even when the switches are off. Furthermore, switches also reduce 

the Q factor of the resonator, degrading the phase noise performance.  

6.2.8 Differential Control 

The single-end control line commonly used in LC VCOs is sensitive to the noise 

since the even harmonics flowing through the varactor will reduce the Q factor of the 
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resonator. This shortcoming can be overcome by the differential control widely used in 

ring oscillators [18]. Such a voltage-controlled capacitor is shown in Fig. 6.7 (a) [82] 

[83]. 
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Figure 6.7 Different control structure (a) and C-Vctrl characteristic (b) 

 

In this topology, the anode of Cp,1 and Cp,2 (Cp,1 = Cp,2) are connected with the 

positive control voltage Vctrl,p while the cathode of Cn,1 and Cn,2 (Cn,1 = Cn,2) are 

connected with the negative control voltage Vctrl,n. If the structures of the four varactors 

are identical, the complementary C-Vctrl characteristic as shown in Fig. 6.7 (b) will be 

obtained. The instantaneous capacitance for Cn,1 and Cp,1 are given by 

Cn,1 = C0 + kvar,n⋅((Vx + Vcm)– Vctrl,n),                                                               (6.3) 

Cp,1 = C0 – kvar,p⋅(Vctrl,p – (Vx + Vcm)),                                                              (6.4) 

respectively, where C0 is the capacitance at the zero bias voltage, kvar,n and kvar,p

are the sensitivity coefficients of the varactors, Vcm is the common-mode noise voltage 

in the oscillator. If the kvar,n and kvar,p are perfectly complementary, kvar = kvar,n = kvar,p,

the overall instantaneous capacitance C = Cn,1 + Cp,1 can be expressed as 

C = 2C0 + kvar ⋅( Vctrl,p – Vctrl,n).                                                                       (6.5) 
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This equation shows that the differential control technique effectively 

suppresses the common mode noise in the LC oscillator. Hence, it can reduce the phase 

noise resulting from flicker noise in the tail current source. 

6.3 Summary

The phase noise generation mechanisms were summarized in this chapter. The 

up-conversion mechanisms resulting from the flicker noise of tail current source and 

differential pair were analyzed qualitatively. Then, eight phase noise suppression 

techniques were introduced. By properly applying them, the phase noise caused by the 

high frequency noise in the tail current source, the flicker noise of the tail current source 

and differential pair may be removed or significantly reduced, leading to the phase 

noise performance of the LC oscillator approaching its intrinsic minimum value given 

by (6.1) and (6.2).  
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CHAPTER 7 

LC OSCILLATORS DESIGN OPTIMIZATION 

 

Several phase noise models have been discussed in chapter 5. They provide 

valuable insights in oscillator design. However, to minimize the phase noise, the circuit 

designer usually needs a simple procedure to reach the optimized phase noise. In this 

chapter, a simple physical phase model for the LC cross-coupled oscillator is 

introduced. Based on this model, several closed-form phase noise expressions are 

derived. These equations lead to a new inductance selection criterion. A new 

optimization procedure centered on the new inductance selection criterion is then 

proposed. For both bipolar and CMOS LC oscillators, the optimization procedure is 

visualized. Finally, to verify the effectiveness of the procedure, a bipolar oscillator is 

designed. The SpectreRF simulation shows the optimization procedure effectively 

reduces the phase noise generated by oscillators. 

7.1 Physical Phase Noise Model

A simple physical phase noise model has been proposed by H. Darabi and A. 

Abidi [84]. The model is initially used to estimate the phase noise in the mixer circuit, 

and then it is extended to calculate the phase noise generated in the LC oscillators [85]. 

Using this model, the phase noise can be expressed by the closed-form equations. 

Therefore, it is very useful for LC oscillators design. 
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7.1.1 Tank Noise 

The phase noise generated by the tank parasitic resistance has been derived in 

the LTI phase noise model discussed in Chapter 5. In that derivation, the tank was 

considered as a parallel RLC circuit with an inductor L, a capacitor C and a parasitic 

resistor Rp. In practical LC VCO design, the tank circuit is usually implemented by two 

inductors and two capacitors as depicted in Fig. 7.1. If their values are denoted as L/2 

and 2C respectively and the noise current is evenly separated into two noise sources 

with spectral density of 4kT⋅2gp (gp=1/Rp), that spectral density of the output noise 

voltage generated by two noise current sources is unchanged, which is 

22
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Therefore, for a sine-wave oscillation with the amplitude of V0, the phase noise 

resulting from parasitic gp is 
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In LC oscillators, the integrated inductors are implemented by the on-chip spiral 

inductors. As discussed in Chapter 4, the spiral inductors usually have poor Q factors. 

They limit the Q factor of the tank in most of the oscillator designs. Therefore, the 

inductors’ effective parasitic conductance provides a good approximation to gp. In this 

case, the effective conductance for each L/2 inductor is 2gp. This assumption is used in 

the derivation of this chapter. Note that the capacitors can also deteriorate the tank Q
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factor especially when switched capacitors are used to increase the frequency tuning 

range and reduce the gain of VCO (see Chpater VI). 
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Figure 7.1 A differential bipolar LC oscillator with all major noise sources 
 

7.1.2 Active Circuit Noise 

The noise generated by the cross-coupled transistors also contributes to the 

output phase noise and it is the dominant portion in the overall phase noise in most 

cases. For the LC oscillator implemented by bipolar devices, the phase noise comes 

from the shot noise associated with the collector and base DC current, the thermal noise 

of the base spreading resistor and the flicker noise of device. In a CMOS LC oscillator, 

the channel thermal noise and the device flicker noise contribute to the oscillator’s 

phase noise. Based on a simple physical phase noise model, several closedd-form 

equations will be derived to calculate the phase noise resulting from these noise sources. 

A bipolar LC oscillator depicted in Fig. 7.1 will be used as an example. 
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7.1.2.1 Phase Noise Generated by Base Spreading Resistance Rb
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Figure 7.2 Noise at the input of the pair modulates the instants of zero crossing (a) 

output waveform and noise voltage (b) noise modulated the instants of zero crossing (c) 
ideal output current and (d) noise current pulses 

 

The noise generated by Rb is modeled as a noise voltage with spectral density of 

bRbn kTRV 42
, = as shown in Fig. 7.1. If the oscillation amplitude is large enough (i.e. greater 

than 300 mV), during most of the carrier period the cross-coupled transistors are completely 

switched, with a single transistor of the pair conducting the current delivered by the tail current 

source. Thus the output current from the pair is ideally a square wave with a period of ω0.

However, as shown in the plot (a) of Fig. 7.2, the noise generated by Rb changes the 

zero crossing time of the oscillation waveform, making it depart from its ideal timing by 

a small random amount at each time. Accordingly, the resulting output current is not an 
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ideal square wave (plot (b)). This output current can be considered as a summation of 

two currents: (i) an ideal switched current with a period of ω0 (plot (c)) and (ii) a series 

of noise current pulses with a rate of 2ω0 (plot (d). Strictly speaking, the noise current pulse 

is not a period signal but a random signal). Note that the amplitude of the former is IT (tail 

current), while the amplitude of the latter is 2IT. The width of this noise current pluses depends 

on not only the voltage of the noise, RbnV , , but also the slope of the oscillation waveform, S.

Obviously, the pulse width ∆t can be expressed as 

S
Vt Rbn,=∆ . (7.3) 

Note that ∆t is a random variable. If the noise voltage is much smaller compared 

with the oscillation waveform, ∆t is much smaller compared to the period of the 

oscillation, T. Therefore, the width modulated current pulse can be treated as an 

amplitude modulated current pulse with a constant pulse width as shown in Fig. 7.3. 

The new amplitude modulated pulse has an accurate frequency of 2ω0, a constant pulse 

width of Ts and a random height of 
s

RbnT
T

V
S
I ,2 ⋅ modulated by noise voltage. For this 

periodic current pulse, the spectral density of the average noise current, 2
ni , in one cycle 

is 
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Figure 7.3 Approximate the pulse width modulated noise current by amplitude-

modulated noise current 
 

Assume the input voltage of the pair is changed ∆V in the duration of Ts, the 

output current of the pair will be switched from –IT to IT at the same time. Therefore, the 

slope, S, is ∆V /Ts and the transconductance of the pair, Gm, is 2IT/∆V. Accordingly, the 

pulse width of the amplitude modulated current pulse, Ts, is given by 

m

T
s GS

IT ⋅= 2 . (7.5) 

Substituting (7.5) into (7.4), the noise current can be expressed as 

2
,

2 22
Rbn

mT
n VS

GI
Ti ⋅⋅⋅= . (7.6) 

With the sine-wave oscillation amplitude of V0, S can be expressed as V0⋅ω0 at 

zero crossing time. The noise voltage and pair conductance are bRbn kTRV 42
, = and Gm =

S
V Rbn,2IT

TsT/2
s

RbnT
T

V
S
I ,2 ⋅
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gm/2 = Ic/(2⋅VT) = IT/(4⋅VT), respectively.  Substituting them into (7.6), the noise current 

is given by 

 
0

2
2 2

V
IqRi Tb

n ⋅= π , (7.7) 

where q is the charge of the electron. The spectral density of the output noise voltage at 

the small offset ∆ω can be calculated by multiplying 2
ni by the square of the tank 

impedance at ω0±∆ω. Note that for the tank circuit in Fig. 7.1, the impedance is 
2

02
, 2

2/
2
1)( 




∆⋅⋅=∆ ω
ωω C

L
jZ Rpnoise . (7.8) 

Hence the spectral density of output noise is given by 
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∆=∆ . (7.9) 

Two spreading resistors will generate the same noise in the output, but only half 

of the noise is phase noise. Therefore, the phase noise generated by the base spreading 

resistance of the LC oscillator can be expressed as 

22
0

2

3
0

2

2)( LV
IqRL oTb

Rb ωω
ω

πω 



∆=∆ . (7.10) 

7.1.2.2 Phase Noise Generated by Shot Noise of the Collector DC Current 

The shot noise associated with collector DC current is modeled as a noise 

current in Fig. 7.1. This noise current can be transformed to the input of the pair as a 

noise voltage. The equivalent noise voltage satisfies the relation 222 / mnn GIV = [18]. 

Note that a linear approximation is used in this case. According to this approximation, 
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the 2
,RbnV in (7.6) can be replaced by 2/2 mC GqI . By applying the same procedure, the 

closed-form expression for the phase noise generated by the shot noise associated with 

Ic is given by 

( ) 22
0

2
0

3
0 2

4 LV
kTIL T

Ic ωω
ω

πω ⋅



∆⋅=∆ . (7.11) 

Note that the noise generated by the two transistors is considered here. 

7.1.2.3 Phase Noise Generated by Other Noise Sources 

The shot noise associated with the base DC current, modeled as 2qIb in Fig. 7.1, 

can usually be neglected because it is much smaller than the collector current. By 

applying the techniques introduced in Chapter 6, the phase noise contributed by the 

differential pair flicker noise, the white noise in the tail current source and the flicker 

noise in the tail current source are assumed to be effectively suppressed. In other words, 

this study focuses on the phase noise limitation resulting from the white noise from the 

devices and the tank parasitic resistance in LC oscillators. Note that this is the minimum 

phase noise according to Samori’s phase noise model. 

7.1.3 Oscillation Amplitude 

When the LC oscillator oscillates at ω0, the reactance of the tank is zero. 

Therefore, the switched square wave output current only “sees” the resistant of Rp in the 

tank. The resulting output oscillation would be a square wave too. However, the tank is 

a narrow band circuit and all harmonics will be filtered out, resulting in a sine wave 

output. 
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For a square wave voltage signal with the amplitude of IT⋅Rp and frequency ω0,

its Fourier expansion is: 

L+⋅+⋅+= )5sin(5
4)3sin(3

4)sin(4)( 000 tRItRItRItV pTpTpT ωπωπωπ . (7.12) 

If all harmonics are completely removed, the oscillation amplitude will be 

4⋅IT⋅Rp/π. The conclusion is also true for the complementary topology, in which both N-

type and P-type transistors are used. For the LC oscillator in Fig. 7.1, the amplitude is 

V0 = 2⋅IT⋅Rp/π . (7.13) 

Substituting it into (7.2), (7.10) and (7.11), the closed-form equations that 

estimate the phase noise resulting from 2kTgp, 4kTRb, 2qIc are given by 
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respectively. Note that equation (7.13) is valid only if the oscillator works in the so-

called “current limit” region [79]. In this region, the oscillation amplitude increases with 

the increase of the tail current. Hence, the phase noise is reduced according to (7.14), 

(7.15) and (7.16). However, the power supply or other effects limit the maximum 

amplitude in every practical oscillator. For example, the maximum amplitude of the 

bipolar LC oscillator in Fig. 7.1 is set by the varactors’ maximum forward bias voltage 

(i.e. less than 600mV usually). In CMOS LC oscillators, the upper bound is usually 
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given by the power supply. After the oscillation amplitude reaches its maximum value, 

a further increase in the tail current cannot increase the amplitude. On the contrary, it 

increases the noise generated in the active devices and thus deteriorates the phase noise 

performance. 

7.1.4 Model Validation – a 100 MHz Oscillator 

L/2
2C

L/2
2C

Vbias

VCC

IT

Rs Rs
Inductors

Figure 7.4 An 100MHz bipolar LC oscillator 
 

To demonstrate the effectiveness of the model, a 100 MHz LC oscillator is 

designed and simulated by ADS. For simplicity, the inductor is modeled by an ideal 

inductor in series with a resistor as shown in Fig. 7.4. The Q factor of the inductor is 

fixed at 5 to make a fair comparison. Accordingly, the series resistance is changed to 

keep the Q constant. The parasitic conductance of the tank, gp, is calculated by 

gp=1/(2⋅Q2⋅Rs) [18], where Rs is the series resistance of L/2. In order to oscillate at about 

100MHz, the capacitance of the tank is tuned accordingly too (The actual oscillation 
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frequency may have a small error relative to 100MHz). The tail current is IT=2.94 mA 

and VCC=3 V. The base spreading resistor for this transistor is Rb=57 Ω. The phase noise 

is measured at ∆f=100 kHz. 

The results listed in Table 7.1 show that the simulation and the model 

calculation are consistent for both the oscillation amplitude and phase noise. The 

maximum error between the simulated and calculated amplitude is only 4%. The 

maximum phase noise error is only about 1.8dB. So, the simple, physical phase noise 

model can be used to estimate the phase noise generated by LC oscillators. 

 

Table 7.1 Comparison of oscillation amplitude and phase noise obtained by simulation 
and theoretical calculation 

L/2 (nH) 20 30 40 50 
Rs (Ω) 2.52 3.77 5.03 6.28 
2C (pF) 125 84 63 51 
Simulated f0 (MHz) 97.8 97.3 97.2 96.5 
Theoretical f0 (MHz) 100.7 100.3 100.3 99.7 
Simulated V0 (mV) 221 335 448 554 
Theoretical V0 (mV) 236 353 471 588 
Simulated phase noise from gp (dBc/Hz) -123.2 -125.0 -126.3 -127.2 
Theoretical phase noise from gp (dBc/Hz) -124.7 -126.5 -127.8 -128.9 
Simulated phase noise from Rb (dBc/Hz) -121.8 -123.8 -125.2 -126.2 
Theoretical phase noise from Rb (dBc/Hz) -122.6 -124.4 -125.7 -126.7 
Simulated phase noise from Ic (dBc/Hz) -126.2 -128.0 -129.2 -130.1 
Theoretical phase noise from Ic (dBc/Hz) -127.7 -129.5 -130.8 -131.9 

7.2 A New Inductance Selection Criterion

The spiral inductor design is critical to LC oscillator performance. Generally 

speaking, a higher Q spiral inductor will decrease the bandwidth of the tank and filter 
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more noise out, resulting in a lower overall phase noise. As discussed in Chapter 4, 

however, the maximum Q value is essentially limited by the process technology. From 

the designer’s standpoint, an optimization procedure is more important under such a Q

limitation. 

The spiral inductors are the largest components in most LC oscillators. 

Therefore, their area usually needs to be limited in a practical design. In the following 

discussion, the area of the spiral inductors is assumed to be constant to make a fair 

comparison between oscillators. The inductance selection criterion as well as the 

optimization procedure in LC oscillator design is based on this constraint. 

Depending on the geometry layout, the inductance of the area-fixed spiral 

inductors still varies a lot. As shown in [86], the inductance selection has great effect on 

the phase noise performance. Although, the maximum inductance is set by the parasitic 

capacitance, choosing an optimum inductance in terms to achieve the best phase noise 

performance is still unsolved and need to be studied carefully.  

The closed-form equations (7.14), (7.15) and (7.16) show that the phase noise 

for the given ω0 and ∆ω satisfies

tail

p
Rb I

LgL
23

)( ∝∆ω , (7.17) 

( ) ( ) 2

23
,

tail

p
gpIc I

LgLL ∝∆∆ ωω .                                                                            (7.18)

These two expressions prove the well-known trade-off between the phase noise 

and the power dissipation if the oscillator works in the current-limit region. More 
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important, they provide a value design insight – the phase noise is proportional to the 

product of L2 and gp

3. Therefore, a minimum product of L2 and gp

3 in the spiral inductor 

design will minimize the phase noise for a given tail current.

Usually, gp is approximately equal to the equivalent parallel conductance of a 

spiral inductor, gL, due to the poor Q of spiral inductors. To model the spiral inductor, 

the equivalent π circuit (Fig. 4.9) is commonly used. If one of two nodes of the π circuit 

is ac grounded, gp is given by 

( ) 22222

22

1 s

s

sioxsi

oxsi
Lp L

R
CCR

CRgg ωω
ω +++=≈ . (7.19) 

The ADS Momentum tool and the model parameter extraction method discussed 

in Chapter 4 are used to model typical on-chip spiral inductors. As one of the design 

constraints, the area of the square inductor is fixed at 400 µm×400 µm. The structure of 

the chip is illustrated in Fig 4.11 and the conductivity of the metal layer and substrate 

are identical to those values of the example in Chapter 4. The inductor is expected to 

work at the frequency of 900 MHz. Because the metal layer is relatively thin, the 

parasitic capacitance between the metal lines is negligible in this design. Therefore, a 

minimum metal line spacing, 2µm, is chosen for all the spiral inductors studied. In 

addition, the underpass is neglected too. Several sets of the spiral inductors with the 

metal line width from 25µm to 55µm are simulated. The gL is calculated using (7.19) by 

the π model parameters extracted from the simulated Y parameters. The results are 

shown in Fig. 7.5 and 7.6. 
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Figure 7.5 The Q factors of spiral inductors for s = 2 µm and various conductor widths, 
w, versus inductance 

 

Fig. 7.5 plots the Q factors of the simulated inductors. Each curve in this figure 

corresponds to a series of layouts with the given metal width but with a different 

number of turns. For example, seven Q values of the 30µm metal line width inductors

are plotted with the number of turns from 2 to 5 as shown in this figure. With the 

increase in the number of turns, the inductance increases accordingly. Also, the Q factor 

increases with the number of turns when the inductance is small. However, this trend is 

reversed when the inductance becomes large. Hence, there exists a maximum Q factor 

for each set of the inductors. For example, the maximum Q factor of the 30µm inductors

is 3.436 with the number of turns equal to 2.5. This conclusion is reasonable because 

increasing the metal line length near the center by increasing the number of turns has 

little effect in increasing the inductance but it does increase the parasitic series 

resistance of the inductor. Therefore, the Q factor deteriorates. This figure also shows 
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that the processing technology limitation on the maximum Q factor. In this case, the 

maximum Q factor is about 3.8 for this 400 µm×400 µm inductor at 900 MHz. 
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Figure 7.6 32
LgL ⋅ factor for s = 2 µm and various conductor widths, w, versus 

inductance 
 

Similar plots are obtained for the factor 32
LgL ⋅ of each inductor as depicted in 

Fig. 7.6. This factor decreases with the increase of inductance. However, it increases for 

a large number of turns, suggesting that a minimum value for 32
LgL ⋅ exists for each set 

of the inductors. Note that the optimum points for the Q factor and the 32
LgL ⋅ factor 

may occur at a different number of turns. For example, the smallest 32
LgL ⋅ factor 

(2.26×10-23 H2/Ω3) for the 30µm inductors corresponds to 4.5 turns, while the largest Q

factor is corresponds to a 2.5 turns inductor. 

L2 ⋅g
L3

(nH
2 /Ω3 )
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Figure 7.7 Simulated minimum L2⋅gL

3 and maximum QL versus the inductance L for an 
area-limited square spiral inductor

Figure 7.7 is obtained from the optimum QL and 32
LgL ⋅ factor shown in Fig. 7.5 

and 7.6 (An interpolation technique is used to smooth the data). The variation of the 

maximum QL is small for an area-fixed spiral inductor. The similar conclusion has been 

arrived in [86]. Another very important conclusion is that the minimum L2⋅gL

3 factor that 

an area-fixed inductor can reach monotonically decreases with the increase of the 

inductance. According to (7.17) and (7.18), it suggests that a large inductance spiral 

inductor is useful to reduce the phase noise generated in the LC oscillators.

The advantage of the spiral inductor with larger inductance is straightforward. 

Assuming gp ≈ gL is valid, decreasing gL (or correspondingly, increasing Rp) will boost 

the oscillation amplitude according to (7.13). According to Fig. 7.7, the maximum QL

has little variation in a relatively large inductance range, suggesting that dcp RR ∝  since 

Rp ≈ QL

2Rdc for QL>3. So, the relation 3223 / dcp RLLg ∝⋅ is approximately valid. For an 

area-limited spiral inductor, the inductance increase is obtained by increasing the line 
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length (narrow lines and/or more turns). Although inductance increase causes the phase 

noise to deteriorate proportionally to L2, the overall phase noise is improved because of 

the increase proportion to Rdc

3 at the same time. Therefore, although a maximum QL

inductor achieves the most effective noise attenuation, boosting the carrier power by 

increasing inductance results in more benefit in phase noise performance for an LC

oscillator designed with area-limited spiral inductors. Note that the conclusion is only 

valid when the LC oscillators work in the “current-limited” region.

According to the previous analysis, a novel inductance selection criterion –

choosing a large inductor value to minimize the 32
LgL ⋅ factor – should be used in the 

LC oscillator design to reach the best phase noise performance. Note that this is 

opposite to the conclusion reported in [86], in which the author suggests a smaller 

inductance leads to a better phase noise performance.

7.3 Phase Noise Optimization Procedure

7.3.1 Design Constraints 

There are several design constraints in practical LC VCO design and they are 

summarized in [86]. Similar design constraints are followed in the proposed 

optimization procedure.  

First, the maximum power constraint is imposed in the form of the maximum 

tail current drawn from a given supply voltage, i.e. 

IT ≤ Imax. (7.20) 

Second, the tuning range specification should be satisfied. It leads to 
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2
max

min
1
ω≤LC , (7.21) 

2
min

max
1
ω≤LC , (7.22) 

where ωmin and ωmax are the minimum and maximum frequency the oscillator should 

reach. 

Third, the oscillator should be able to start up properly. It requires 

Gm ≥ α⋅gtank, (7.23) 

where α is greater than 1, usually set to 2~3 to guarantee startup. 

Finally, the area occupied by spiral inductor should be fixed. The optimization 

procedure is also based on two assumptions: 

(i) The spiral inductor dominates the Q factor of the tank. Hence, gtank=gp≈gL always 

holds; 

(ii) The noise generated from the tail current source has been effectively removed by the 

techniques such as the noise filtering as introduced in Chapter 6. In addition, there is no 

noise coupled into the oscillator from the power supply, the control line of varactors and 

the substrate. 

 Based on these design constraints and assumptions, the optimization procedure 

for the bipolar and CMOS LC VCO are presented in the following sections. 

7.3.2 Optimization Procedure for Bipolar LC VCOs 

The topology in Fig. 7.1 is used as the example of the bipolar LC VCOs. If the 

oscillator works at 900MHz with 10% tuning range, fmax is (1+0.05)×900MHz=945MHz 
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and fmin is (1–0.05)×900 MHz=855 MHz. The transistor size in the bipolar technology 

cannot be chosen arbitrarily. Therefore, if the differential pair transistors are selected, 

the parasitic capacitance at the output node contributed by the transistors’ parasitic 

capacitance is a relatively constant value. Assuming this capacitance is 2pF, two curves 

can be obtained in the Cv-L plane according to (7.21) and (7.22) as depicted in Fig. 7.8, 

where Cv is the capacitance of varactors. In terms of the tuning range specification, the 

feasible design region is the area between these two curves. According to the new 

inductance selection criterion, the best phase noise performance comes from selecting 

inductance as large as possible (the value close to point A in Fig. 7.8) if the chip area 

constraint of the spiral inductor is imposed. Of course, a certain inductance margin 

should be reserved to obtain a robust design. Also, the tuning range of the varactor 

capacitance should not be too small to avoid a very large gain of the VCO, which 

usually results in the large phase noise coupled into the oscillator from the control lines 

in practical design. 
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Figure 7.8 Varactor capacitance versus inductance for a given tuning range requirement 
 

The other constraints will be applied to the bipolar LC VCO too. As pointed out 

by (7.17) and (7.18), a large bias current results in a better optimum phase noise. 

Therefore the IT should always be set to its maximum allowed value. Hence, the design 

constraint is tight and the Imax should be chosen as IT.

Regarding the startup constraint, a small gtank is useful to oscillation startup 

according to (7.23). Since gtank is approximated by gL of the spiral inductors, the gL

versus L of the spiral inductor is calculated by (7.19) and plotted in Fig. 7.9. The figure 

clearly suggests that a larger inductance also corresponds to a smaller gL. Hence, if a 

larger inductance is selected, it is easier start the oscillation. In other words, if the 

maximum allowed inductance cannot start up the oscillation, the Gm should be 
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increased, i.e. increasing Imax for this LC VCO. Hence, the power constraint has to be re-

considered to make the oscillator design possible. 
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Figure 7.9 gL for s = 2 µm and various conductor widths, w, versus inductance of the 

area-fixed spiral inductors 
 

There also exists another possibility – the amplitude is too large so that the 

oscillator enters the voltage-limited region. For the bipolar LC VCO, the maximum 

amplitude is usually limited by the bc junction of the coupled transistors, since forward 

biasing the bc junction will significantly deteriorate the phase noise performance. The 

capacitive and inductive coupling topologies shown in Fig. 7.10 can be applied to 

overcome this problem. If the amplitude is still too large after applying them (for 

example, the amplitude is limited by the varactors or the next stage requirements), IT

should be reduced to decrease the amplitude.
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Figure 7.10 Capacitive coupling (left) and inductive coupling (right) LC oscillators 
 

According to the previous analysis, an optimization procedure for bipolar LC 

VCOs under the design constraints is summarized as the follows:  

(i) use the maximum IT obtained from power dissipation specification.  

(ii) choose the largest inductance permitted according to the tuning region specification, 

varactor characteristics and design margin requirement. 

(iii) find the optimum layout for this inductance in terms of minimizing the L2⋅gL3

factor. The method to find the optimum layout will be discussed in section 7.3.4. 

(iv) from the IT and the gL of the inductor, estimate the oscillation amplitude. If the 

amplitude is so large that the bc junction of differential pair is at risk of being forward 

biased, use the capacitive and inductive coupling LC oscillators. 

(v) if the amplitude is still too large, reduce the IT to reduce the amplitude until the 

requirement is satisfied. 

Finally, it is noteworthy that the optimization procedure may only lead to a 

near-optimum design. The simulation always needs to be performed to reach the refined 

optimum design. 
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7.3.3 Optimization Procedure for CMOS LC VCOs 

The transistors size in the CMOS LC VCOs is adjustable. The W/L ratio of the 

device is closely related to some important parameters such as the transconductance of 

the differential pair and parasitic capacitance. Hence, it must be taken into account in 

the optimization procedure.
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Figure 7.11 (a) A CMOS LC oscillator and (b) its equivalent model

Fig. 7.11(a) shows a complementary CMOS LC VCO and its equivalent model. 

This topology will be chosen to design a 2.4GHz oscillator with 15% tuning range and 

optimized phase noise performance. The on-chip spiral inductors are modeled by a 

seven element π model, and it is equivalent to the parallel RLC circuit in the oscillator 

model with CL=Cs+Cp (Fig. 7.11(b)). The varactors are modeled as a series RC circuit 

where Rv describes the loss of the varactors. CNMOS and CPMOS are the total parasitic 

capacitance of the NMOS and PMOS transistors, respectively. gm and go are small signal 

transconductance and output conductance of the transistors, respectively. Although their 

values actually vary with the operating point of the transistors during the oscillation, the 
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values of gm and go when the voltage across the LC tank is zero will be used in order to 

facilitate the analytical expressions in the design optimization. Note that gm is negative 

to compensate the energy loss in the oscillator. From the above equivalent model, the 

following expressions can be obtained

2gtank = gon + gop + gv + gL,                                                                            (7.24)

2gactive = gmn + gmp,                                                                                         (7.25)

Ltank = 2L,                                                                                                       (7.26)

2Ctank = CNMOS + CPMOS + CL + Cv,                                                                (7.27)

where gtank, −gactive, Ltank and Ctank  are the tank loss, effective negative conductance, tank 

inductance and tank capacitance, respectively. In (7.24), gv is the effective parallel 

conductance of the varactors. It is given by

)(1 vv

v

v

v
v RC

C
Q

Cg ω
ωω == .                                                                               (7.28)

The varactor implemented by the MOS transistor usually has a much larger Q

factor compared with the Q of the spiral inductor. Qv = 20 is used in this design 

example. gL in (7.24) is the effective parallel conductance of the spiral inductor, it can 

be computed by

gL = 1/Rp + Rs/(Lω)2.                                                                                      (7.29)

The minimum gL as a function of the inductance for an area-limited spiral 

inductor is plotted in Fig. 7.12 (data obtained from [86]). The corresponding minimum 

L2⋅gL

3 factor is plotted at the same figure. Both of them decrease with the increase of 

inductance. 
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CMOS LC VCO

In equation (7.27), CNMOS and CPMOS are given by

CNMOS = Cgs,n + Cdb,n + 4Cgd,n,                                                                        (7.30)

CPMOS = Cgs,p + Cdb,p + 4Cgd,p,                                                                        (7.31)

respectively, where the factor 4 is due to the Miller effect.  CL in (7.27) is the total 

capacitance of the spiral inductor given by Cs+Cp. It is approximated by a constant 

capacitance 200fF in this design example. Regarding to the MOS varactor Cv, the ratio 

Cv,max/Cv,min is nearly a constant that is primarily determined by the underlying physics of 

the capacitors (i.e. the process). Hence, β = Cv,max/Cv,min = 2 is used in this design. gmn and 

gmp in (7.25) are set to equal. As pointed out in [63], such a symmetrical arrangement is 

helpful to suppress the close-in phase noise. Finally, the channel length Ln and Lp are set 

to the minimum allowed by the process technology to reduce the parasitic capacitance 
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and achieve the highest transconductance. In this TSMC 0.25µm technology, this 

minimum value is 300nm.

The same design constraints listed in section 7.3.1 are imposed on this CMOS 

LC VCO. Similar to the bipolar LC VCO design, the optimization procedure is 

visualized by Fig. 7.13 and 7.14. As mentioned previously, the power consumption 

constraint is tight and IT should be set to maximum current allowed.  If the inductor 

design is left to the next section, the only two variables in the design are the width of 

NMOS transistor, Wn, and the capacitance of varactor, Cv. All other parameters 

appearing in (7.24) to (7.31) can be obtained from Wn and Cv. Therefore, the x-axis and 

y-axis in Fig. 7.13 and 7.14 are Wn and Cv, respectively.
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Figure 7.13 Feasible design region of the CMOS LC VCO

For a given L, (7.21) can be written as

2
max

1
22 ω≤

+++⋅ vLNMOSPMOS CCCCL . (7.32) 
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This inequality leads to 

LNMOSPMOSv CCCLC −−−≤ 2
max

1
ω . (7.33) 

In (7.22), Cmax is obtained by setting Cv,max=βCv,min.. Hence it leads to s similar 

inequality as follows 





 −−−≥ LNMOSPMOSv CCCLC 2

max

11
ωβ . (7.34) 

If the equal signs are chosen in (7.33) and (7.34), the curves tr1 and tr2 will be 

obtained as shown in Fig. 7.13 respectively. In this example, the L is chosen as 2nH and 

β and CL is set to 2 and 200fF respectively as mentioned before. CNMOS and CPMOS

(including Cgs, Cdb and Cgd) are approximated by the well-known expressions [18]. If a 

point lies between the tr1 and tr2 curves in the Cv-Wn plane, it will satisfy the tuning 

range constraint. 

The start-up constraint corresponds to the following expression

gmn + gmp = 2gmn ≥ α⋅(gon + gop + gv + gL).                                                     (7.35)

To guarantee start-up, the minimum αmin is chosen as 3. gm and go can be easily 

calculated according to the device size and the tail current, which is the maximum 

allowed current (3mA in this case). From (7.35), gv can be solved. Then, using (7.28), 

the corresponding Cv curve as shown in Fig. 7.13 is obtained. If a point is located at the 

right of the curve, the corresponding α will be greater than 3 and the start-up constraint 

is satisfied. Therefore, the feasible design region is formed by the curves of tr1, tr2 and 

start-up curve as depicted in Fig. 7.13.
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Finally, the oscillator should work in the current-limited region in order to avoid 

wasting energy. In this region, the amplitude linearly grows with the tail current 

according to V=IT/gtank. The voltage supply for this oscillator is 2.5V. Thus, Vmax is 2.5V 

and gtank should be less than 4mA/2.5V=1.6mΩ-1. Combing (7.24) and (7.28), the 

regime-divider curve can be plotted. The area below this curve is the voltage-limited 

region in which the energy is wasted. The feasible design region should be always kept 

above this curve. Otherwise, the tail current should be reduced. Obviously, the feasible 

design region in Fig. 7.13 satisfies this requirement if L=2nH.

As pointed out before, the larger the inductor value, the better the phase noise 

performance if the inductor layout is properly designed. Hence, the inductance is 

increased to 3nH in the oscillator design and the tr1, tr2, start-up and regime-divider 

curves are plotted in Fig. 7.14 (the dotted curves). It can be concluded that both the 

region formed by tr1 and tr2 and the start-up curve are moved to the left according to 

this figure. However, an important finding is that the former is shifted faster than the 

latter. It suggests that the feasible design region will shrink into a point with the 

increase of the inductance, which corresponds to the optimum Cv-Wn pair. At the same 

time, the inductance reaches the maximum inductance. From Fig. 7.12, the minimum 

L2⋅gL

3 factor can be reached with the proper layout design. Therefore, the VCO with this 

inductance for its tank circuit will have the best phase noise performance according to 

the phase noise model.
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Figure 7.14 Feasible design region is shrunk by increasing the inductance

The effect of the regime-divider curve has to be considered too. As shown in the 

same figure, the curve is moved up when inductance increases and it crosses the 

feasible region formed by tr1, tr2 and start-up curves. Hence, the feasible design region 

without energy waste is further shrunk. If the curve lies above the feasible region 

formed by tr1, tr2 and start-up curves, the tail current has to be reduced.

The design optimization procedure for CMOS LC VCO can be summarized as 

follows. Set the tail current to the maximum current allowed by the power consumption 

specification. Pick an initial guess for the inductance value and obtain feasible design 

region on the Cv-Wn plane as shown in Fig. 7.13. If there are more than one feasible 

design points, increase the inductance and repeat until the feasible design area shrinks to 

a single point. The point corresponds to the optimum devices size and varactor 

capacitance. It also provides the optimum inductance value. If the point lies in the 
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voltage-limited region, the tail current should be reduced until the regime-divider line 

passes through the single feasible design point to avoid wasting power. In the end, the 

optimum inductor layout will be developed, which will be discussed in detail in the next 

section. Note that a certain design margin is always needed and thus the feasible design 

region may not be shrunk to a single point in a practical, robust circuit.

7.3.4 Spiral Inductor Layout Optimization 

The best phase noise performance requires using the spiral inductors with the 

maximum permitted inductance. After the inductance value is obtained from the 

optimization procedures, an optimum layout that leads to the minimum L2⋅gL

3 factor 

needs to be found. The simulation tools such as ADS and ASITIC are helpful in finding 

the optimum spiral layout. However, they can only obtain the near-optimum layout and 

are usually time-consuming. An algorithm called geometric programming is very 

efficient in solving this inductor synthesis problem [87].

7.3.4.1 The Geometric Programming Problem 

Let f be a real-valued function of n real, positive variables x1, x2, …, xn. The 

polynomial function has the form

nkkk
n

t

k
kn xxxcxxf ααα LL ∑

=
=

1
211

21),,( ,                                                              (7.36)

where cj ≥ 0 and αij ∈ R. If t = 1, f is called a monomial function.

A geometric programming problem has the standard form 

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, 2, …, m,
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gi(x) = 1, i = 1, 2, …, p,

xi > 0, i = 1, 2, …, n,                                                              (7.37)

where fi are polynomial functions and gi are monomial functions. 

If the spiral inductor optimization can be transformed to the geometric 

programming problem, it is changed to a pure mathematical problem. Hence, many 

classical algorithms, such as the interior-point method, can be applied to find the global 

optimum solution with great efficiency.

7.3.4.2 Polynomial Expressions for the πModel Parameters 

For a spiral inductor, its geometry can be characterize by the number of turns n, 

the metal line width w, the turn spacing s, the outer diameter dout and the average 

diameter davg = 0.5(dout + din). These five variables are not independent, but it will be 

convenient to consider this as a redundant set of variables. Also, the number of turns, n, 

is restricted to take values that are integer multiplies of 0.25, and w and s are usually 

integers limited by the process technology. However, these constraints are ignored in 

the optimization algorithm and the final layout is then obtained via rounding to the 

nearest number. Such an approximation will cause no significant error.

The π model is used to describe the spiral inductor. As demonstrated in Chapter 

4, this model is accurate as long as the assumption of a lumped model is valid 

(inductive region). In addition, the π model parameters are also computed according to 

the expressions given in that chapter. However, some of them are too complicated to be 

used in the optimization algorithm. The π model parameters will be expressed by the 

simple, approximate polynomial or monomial functions of the layout variables. 
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For the inductance Ls, Mohan’s data-fitting model [51] will be used, which is

54321 αααααγ sndwdL avgouts = .                                                                               (7.38)

The series resistance Rs, given by (4.6), is a monomial expression

wlkew
lR ts /)1( 1=−= − δδσ .                                                                        (7.39)

The spiral-substrate oxide capacitance, Cox, usually accounts for most of the 

inductor’s parasitic capacitance. It can be approximated by a monomial expression 

according to (4.9)

Cox = (εoxlw)/(2tox) = k2lw.                                                                             (7.40)

From (4.8), the series capacitance Cs can be written as a monomial expression 

Cs = (εoxnw2)/(tox,M1-M2) = k3nw2.                                                                    (7.41)

The substrate capacitance Csi can be expressed as the following monomial 

expression according to (4.17)

Csi = (Csublw)/2 = k4lw.                                                                                  (7.42)

The substrate resistance Rsi is also given by a monomial expression according to 

(4.13)

Rsi = 2/(Gsublw) = k5/(lw).                                                                              (7.43)

The nine element π model can be transformed to the seven elements π model as 

shown in Fig. 7.11. In this equivalent model, the shunt resistance Rp and shunt 

capacitance Cp are given by

[ ] )/()(1
622

2
lwkCR

CCRR
oxsi

oxsisi
p =++= ω

ω
,                                                          (7.44)
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++= ω
ω

,                                  (7.45)

respectively. Note that the constant k1 to k8 are dependent on the technology and 

frequency. Therefore, for the given technology and center frequency, after all the 

constants (γ, α1 to α5 and k1 to k8) are obtained, the optimum layout can be quickly 

achieved using geometric programming. For example, the typical design problem for 

LC oscillators design can be written as [87]

minimize L2⋅gL

3

subject to 2
maxmin, /1)( ω≤++ vps CCCL

1//)(1( max,minmax, ≤++− vvps CrCCCCr

Cv,min ≥ Cv,max/β                             (7.46)

where the constraints come from the frequency tuning range and varactor tuning range 

specifications.

7.4 Validate the Optimization Procedure by Two Bipolar LC VCO

Two 900MHz bipolar LC oscillators are designed to validate the optimization 

procedure. The tail current and inductor area are limited to 5 mA and 400 µm × 400 µm, 

respectively. Since only the phase noise will be compared, the frequency tuning range 

specification is ignored here. According to the widely accepted inductor selection 

criterion, the inductor layout that leads to the maximum achievable Q is chosen in one 

of the oscillator design. This maximum Q spiral inductor corresponds a 2.25 turns, 50 

µm line width spiral inductor with the highest QL = 3.752 at 900MHz. The inductance is 

Ldc = 2.07 nH. It corresponds to point A in Fig. 7.7. The second inductor is 8.80 nH 
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inductor corresponding to point B in the same figure. It is a 5.5 turns, 25 µm line width 

inductor with the minimum L2⋅gL

3 = 2.16×10-5 nH2/Ω3. The π model parameters for these 

two inductors are listed in Table 7.2. Note that QL ( = 2.827) of the second inductor is 

less than the maximum achievable QL for this inductance.

Table 7.2 Parameters of two spiral inductors
Parameters 1st inductor 2nd inductor Parameters 1st inductor 2nd inductor 
L (nH) 2.07 8.80 Rsi (Ω) 162 87 
Rs (Ω) 2.46 10.9 Csi (fF) 35 65 
Cs (fF) 228 140 QL @ 900 MHz 3.752 2.827 
Cox (fF) 841 985 gL (mΩ-1) 20.20 6.53 

The estimated amplitude of the 8.80 nH oscillator is about 1 V. Therefore, the 

capacitive coupling topology (Fig. 7.10 left) is employed for both oscillators. For 

VCC=3V, VBase = 2V is chosen to avoid the forward biasing bc junctions of devices. The 

oscillation frequency is tuned to 900 MHz for both circuits by setting 2C to 12.5 pF and 

1.65 pF, respectively. It is worth pointing out that the coupling capacitor (2 pF for both 

oscillators) should be large enough for proper start-up. Finally, to focus on the phase 

noise generated by the intrinsic noise sources, a noise filtering circuit (Fig. 7.10) is 

added to attenuate the phase noise from tail current source (Lf = 2nH and Cf = 2pF). 

SpectreRF was utilized to simulate the phase noise of the oscillators. The simulation 

result (Fig. 7.15) shows that the optimization procedure centered on the new inductance 

selection criterion results in a more than 3.6dB phase noise improvement.
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Figure 7.15 Simulated phase noise of two LC oscillators using spiral inductors with 
maximum QL and minimum L2⋅gL

3

7.5 Summary

A simple physical phase noise model was presented in this chapter. Based on 

this model, several closed-form equations were derived to describe the phase noise 

generated in the LC oscillators. The equations indicate that the phase noise is 

proportional to L2⋅gL3 factor. For an area-limited spiral inductor, the minimum L2⋅gL3

factor is found to be decreased with increasing inductance. This conclusion leads to a 

new inductance selection criterion in LC oscillator design, which is to minimize the 

L2⋅gL3 by choosing the inductance as large as possible. Centered on the new inductance 

selection criterion, an optimization procedures for both bipolar and CMOS LC VCO 

design under several widely used design constraints was proposed. Finally, the 

optimization procedure was validated by two oscillators utilizing the two inductors with 
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the maximum quality factor and minimum L2⋅gL3 factor. The simulation result illustrates 

the phase noise was effectively reduced in oscillators designed by the optimization 

procedure. 
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CHAPTER 8 

LAYOUT AND MEASUREMENTS 

 

The layout and measurement result of three oscillators are presented in this 

chapter. All circuits were fabricated by National Semiconductor’s Dielectric Isolated 

Bipolar Junction Transistor (DIBJT) process. The first oscillator is based on the active 

inductor topology discussed in Chapter 3. The second and third oscillators are low-

phase-phase noise LC oscillators working at the 900MHz band. Two oscillators have 

the same capacitive feedback topology as depicted in Fig. 7.10. The difference is that 

they use different fixed-area spiral inductors. The first LC oscillator uses an inductor 

obtained by the optimization procedure presented in Chapter 7 while the second 

oscillator applies an inductor with the maximum Q factor at 900 MHz. Accordingly, the 

capacitance of varactors are different for these two designs. 

8.1 Active Inductor Based Oscillator

8.1.1 Schematic and Layout 

The core of the oscillator is based on the active inductor topology shown in Fig 

3.13. The completed schematic is illustrated in Fig 8.1. The active inductor is single-

ended consisting of Q1 – Q3. No additional capacitor is used in the oscillator to achieve 

the maximum oscillation frequency. According to the analysis in Chapter 3, this 

topology can oscillate directly due to the negative resistance if biased properly. 
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Transistors Q4-Q13 are the self-bias circuit which provides the DC current to the core 

[88]. The transistors Q10-Q13 consist the start-up circuit for the bias circuit. In order to 

tune the oscillator frequency, the bias current of the active inductor should be able to be 

changed. In this design, the bias current for Q3 is controlled by the simple current mirror 

formed by Q14-Q15 and resistor R4. The port QCTRL is connected with a DC voltage 

source to bias Q2 at the active region. Finally, VCC is set to 3V. 

Q1Q2

Q3

Q4Area=2

Q5Area=2

Q6

Q7 Q8 Q9

Q10

Q11

Q12

Q13 Q14Q15

R1=900 Ohm

R2=250 Ohm

R3=1 KOhm R4=1 KOhm

VCC

QCTRL VOUT

FCTRL

Start-up circuit Self-biasing VBE reference circuit Voltage-current converter circuit

Active
Inductor

Core

 
Figure 8.1 Schematic of the active inductor based oscillator 

 

The layout of the oscillator is shown in Fig. 8.2. The overall layout is very 

compact since there are no passive inductors. The whole oscillator circuit (without 

pads) only occupies 150µm×100µm chip area. 
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150um*100um

Figure 8.2 Layout of the oscillator based on the active inductor [108] 
 

8.1.2 Matching Circuit and Print Circuit Board Design 

The diagram of the measurement setup is illustrated in Fig. 8.3. Because there is 

no buffer stage in the VCO, the matching circuit is required in order to drive the 50 Ω
load of the spectrum analyzer. A L-matching circuit is utilized for this purpose [89]. 

Although the matching circuit only consists of L and C in Fig. 8.4 (a), parasitics from 

the bonding wire, pad, discrete components, and board are considered. For example, the 

parasitic of the discrete inductor and capacitor are modeled according their data sheets 

[90] [91]. The inductance of bonding wire is modeled by a 3nH inductor (Lb) while the 

pad parasitic capacitance is approximated by a 100 fF capacitor (Cp). The parasitic 

capacitances of metal lines on board are modeled by C1 and C2, respectively. The small 
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signal simulation shows this circuit has a center frequency around 1.5GHz (Fig. 8.4 

(b)), which is close to the VCO oscillation frequency [108]. 

VCO

Spectrum Analyzer

Vout

3V

Matching
Circuit

Figure 8.3 Measurement setup for active inductor based oscillator 
 

Lb=3nH

Cp=100fF C1=235fF

Rc=0.185 Cbk=39.1pF

C2=475fFC=330fF

Rl1=18.9Cl=45fF

Rl2=1.97 Rl3=0.5 L=19nH
RL=50

Discrete DC
Blocking Capacitor

Discrete Inductor

Z in

(a) (b)  
Figure 8.4 Matching circuit and its input impedance 

 

8.1.3 Measurement Results 

Figure 8.5 shows the testing structure. The fabricated chip uses the Dual In-line 

Package (DIP) and is mounted on the reverse side of the printed circuit board (PCB). 

The major specifications of the oscillator are listed in Table 8.1. The measured and 

simulated oscillation frequencies as a function of the control voltage are plotted in Fig 

8.6 (a). Note that the measured oscillation frequency is much lower compared with the 

simulated data. This difference is primarily caused by the DIP, which has relatively 

poor performance at high frequency. Also, the parasitic in PCB design has significant 
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effects on the oscillation frequency due to the lack of a buffer stage. Finally, the 

transistor parasitic capacitance was not extracted in the design phase because of a 

malfunction in the post-layout simulation. Although the oscillation frequency between 

the simulation and measurement is different, the tuning range in both cases is very close 

to each other (4.3% in measurement and 3.6% in simulation).  

To
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GND

VCC
Fctrl

Qctrl

Cbk

L

Figure 8.5 Photo of the testing structure for the active inductor based VCO 
 

Table 8.1 Specifications of the active inductor based oscillator 
Supply voltage 3 V 
Current 4.4 mA 
Center frequency 524.7 MHz 
Tuning range 513.3 MHz ~ 536.0 MHz (4.3%) 
Phase noise (simulated, Fctrl=1V) -83.92 dBc/Hz  @ 1 MHz 
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Figure 8.6 Oscillation frequency (a) and simulated phase noise (b) as a function of the 

control voltage 
 

The spectrum analyzer used in this measurement cannot measure the phase 

noise. The simulated phase noise is plotted in Fig 8.6 (b). As expected, the minimum 

phase noise at 1 MHz offset in the tuning range is only about –84 dBc/Hz. Hence, the 

active inductor based oscillator may not be used to those applications where the noise 

requirement is stringent.  

8.2 Two 900MHz LC Oscillators

8.2.1 Schematic and Layout 

The design of the LC oscillators obeys the constraints presented in Chapter 7. 

The tail current should be less than 5 mA and the spiral inductor area is fixed at 

400µm×400µm. Since only the phase noise performance is of interest, the tuning range 

constraint is neglected here. The varactor’s Q factor is assumed much better than the 

spiral inductor’s and the noise generated from the bias circuit is suppressed.  
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The completed schematics of the two oscillators are depicted in Fig. 8.7. To 

avoid forward biasing the bc junction of Q1 and Q2, the VCO core is implemented by 

the capacitive feedback LC oscillator topology in Fig. 7.10. The feedback capacitors 

Cfb1 and Cfb2 are chosen to be 1.7 pF, which is large enough to guarantee oscillation 

start-up. The base bias voltage of Q1 and Q2 is provided by the external voltage source 

Vb=2V and Rb1=Rb2=3KΩ. The inductors L1 and L2 in the first design are 5.5 turns, 

8.8nH inductors with the minimum L2gL3 factor, while they are 2.25 turns, 2.07 nH 

inductors with the maximum Q factor (Q=3.75) at 900 MHz in the second oscillator. 

The corresponding π models are obtained by extracting parameters from an ADS 

Momentum simulation result and are shown in Fig. 8.8 (a) and (b), respectively.  
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Figure 8.7 Overall schematic of the capacitive coupled LC oscillator 
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Figure 8.8 π models of the three spiral inductors (a) 8.8nH (b) 2.07nH and (c) 2.8nH 

 

The varactors are realized by the bc junction of the NPN device. The simulation 

shows that their minimum Q factor (measured at zero bias voltage) is greater than 19 at 

900 MHz. Hence, the assumption regarding the Q factor is valid.  By inserting a noise 

filtering circuit, which consists of Cf1, Lf1 and Ctail, the noise from the tail current source 

is effectively reduced. Therefore, the other assumption is also valid. Lf1 in the two 

oscillators is realized by the same 2.8 nH, 5 turns inductor with 175 µm×175 µm chip 

area. Its π model is shown in Fig. 8.8 (c). Ctail is a 2.8 pF capacitor which bypasses the 

high frequency noise from the tail current source. In order to drive the 50 Ω load, 

emitter follower buffer stages are added to the differential output of the oscillator core. 

Cbk1 and Cbk2 are 350 fF capacitors used for DC blocking. R1 to R4 are used to provide 

the base bias voltage for the emitter followers (R1=R3=10 kΩ and R2=R4=7 kΩ). Finally, 

the similar self-biasing circuit with the start-up circuit is designed. 
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Figure 8.9 Layout of the oscillator with 8.8nH inductor [108] 

 

The layouts of two oscillators are shown in Fig. 8.9 and 8.10, respectively. Both 

layouts occupy 1020 µm×1000 µm chip area. Note that larger capacitance is required in 

the second oscillator due to the smaller inductance in the tank. Therefore, two 6.8pF 

fixed capacitors are paralleled with the varactors in order to save the chip area as 

depicted Cfix in Fig. 8.10. 
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Figure 8.10 Layout of the oscillator with 2.07nH inductor [108] 
 

8.2.2 Measurement Results 

Due to the buffer stage, the 50 Ω load can be directly connected to the 

oscillator. The measurement setup is demonstrated in Fig. 8.11 and the testing structure 

is illustrated in Fig. 8.12. Two VCO chips use the same PCB as depicted in this figure. 

The fabricated chips use the DIP package and are mounted in the reverse side of the 

PCB. The measured and simulated oscillation frequencies as a function of the control 

voltage of the first 8.8 nH inductance VCO (UTA174) are plotted in Fig 8.13 (a). Note 

that the measured oscillation frequency is about 100 MHz lower than the simulated 

data. This difference is primarily caused by the DIP. Also, the transistor parasitic 
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capacitance was not extracted in the design phase because of a malfunction in the post-

layout simulation. It also contributes to this difference. Note that the tuning range of 

simulation and measurement is very close to each other (9% in measurement and 7% in 

simulation when the control voltage is from 0 to 2.5V). The phase noise measurement is 

not completed, but the simulated data is provided in Fig. 8.13 (b). 
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Figure 8.11 Measurement setup for two LC oscillators 
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Figure 8.12 Photo of the testing structure for the LC VCOs 



156

0 0.5 1 1.5 2 2.5
750

800

850

900

950

Control Voltage (V)

O
sc

ill
at

io
n 

F
re

qu
en

cy
 o

f 
U

T
A

17
4 

(M
H

z)

Measured

Simulated

(a) 

0 0.5 1 1.5 2 2.5
-102

-101.5

-101

-100.5

Control Voltage (V)

S
im

ul
at

ed
 P

ha
se

 N
oi

se
 @

 1
M

H
z 

O
ff

se
t 

(d
B

c/
H

z)

(b) 
Figure 8.13 Oscillation frequency (a) and simulated phase noise (b) as a function of the 

control voltage of UTA174 
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Figure 8.14 Oscillation frequency (a) and simulated phase noise (b) as a function of the 

control voltage of UTA179 
 

The oscillation frequency and the phase noise as a function of control voltage of 

the 2.07 nH inductance VCO (UTA179) are plotted in Fig. 8.14 (a) and (b). Note that 

the oscillation frequency is much lower compared with the measured oscillation 

frequency of UTA174. Since the inductor is only 2.07 nH in this VCO, the capacitance 

is much larger in order to make the two oscillators working near 900 MHz band for the 
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purpose of comparison. Although, two 6.8pF fixed capacitors are used, the second VCO 

still has more transistors acting as varactors. They contribute more parasitic 

capacitance, which is not included in the design phase due to the malfunction of the 

post-layout simulation. Hence, the oscillation frequency of the UTA179 should be 

lower than its counterpart UTA174. In addition, two wider underpass metal lines are 

used in the UTA179 to connect the external circuit to the center of the spiral inductors. 

These two lines also contribute parasitic capacitance, but they are neglected in the 

Momentum simulation. They further reduce the oscillation frequency of the UAT179. 

The tuning range is smaller than the simulated data due to these parasitic capacitances. 

The measured tuning range is only 1.7% while the design tuning range is about 5.7% 

when control voltage varies from 0 to 2.5V. The simulated phase noise of UTA179 is 

plotted in Fig 8.14(b). Note that the phase noise performance of the UTA174 is nearly 

3dB better compared with the UTA179. The specification of two oscillators are 

summarized in Table 8.2 

 

Table 8.2 Specification of two LC oscillators 
Specifications 8.8nH oscillator 2.07nH oscillator 
Power supply 3 V 3 V 

Power dissipated by VCO core 15 mW 15 mW 
Total power dissipation 48.1 mW 48.5 mW 

Tuning range 
(Vctrl = 0 − 2.5V) 

759.5 MHz ~  
832.0 MHz 

585.3 MHz ~  
595.58 MHz 

Simulated phase noise at 100kHz 
(fosc =900MHz) 

-101.671 dBc/Hz -98.442 dBc/Hz 

Simulated phase noise at 1MHz 
(fosc=900MHz) 

-121.844 dBc/Hz -118.458 dBc/Hz 
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When the control voltage is 2V, the simulated output of both oscillators is 

approximately 900 MHz. The phase noise versus offset frequency of the two oscillators 

is plotted in Fig. 8.15. Clearly, the 8.8 nH oscillator has a better phase noise 

performance at all offset frequencies, validating the optimization procedure proposed in 

Chapter 7. 
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Figure 8.15 Phase noises versus offset frequency of two oscillators 
 

Finally, the overall performance of the two oscillators is compared with 

published designs. A widely used figure of merit for VCOs is given by [12] 

( ) 2

2
0 1

QPLFOM
D ⋅⋅∆⋅



∆= ωω
ω (8.1) 

where PD is power dissipation of the VCO and Q is the quality factor of the tank. 

According to this formula and the simulated phase noise data, the FOM of the two 

oscillators are computed, and the results are listed in Table 8.3. The FOM of the 8.8 nH 
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oscillator is close to the published results although the bipolar process used is not 

designed for RF integrated circuits. 

 

Table 8.3 FOM of several bipolar Si/SiGe VCOs 
Reference Q f0

(GHz)
PD

(mW) 
L(∆ω)

(dBc/Hz) 
FOM 
(dB) 

[92] 9.3 2.4 50 -92@100kHz 143.2 
[93] ~9 1.55 21.6 -102@100kHz 153.4 
[94] ~9 1.5 28 -105@100kHz 160.1 
[95] ~13 3.6 1 -106@2MHz 148.8 
[11] ~4 1.96 32.4 -102@100kHz 160.7 
[96] 8 1.9 21.6 -123@600kHz 161.6 
[97] 16 0.8 4.3 -106@100kHz 153.6 
[98] <14 5.05 15 -98@100kHz 154.8 
[12] 8 2.56 14 -104@100kHz 162.6 

2.07nH oscillator of this work 3.75 0.9 15 -101.7@100kHz 154.3 
8.8nH oscillator of this work 2.83 0.9 15 -98.4@100kHz 160.0 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

The phase noise of the high-frequency VCOs is studied extensively in this work. 

In Chapter 3, the possibility of oscillator design based on the active inductor topology 

directly was demonstrated. Although, this type of VCO has relatively limited phase 

noise performance, it provides an alternative VCO design method. 

The low-phase-noise LC oscillator design was then investigated. To reach the 

minimum phase noise design, the integrated inductor design, which is the key for LC 

oscillators, was described. The existing phase noise models were presented and 

reviewed in Chapter 5. The flicker noise up-conversion mechanisms in LC oscillators 

were analyzed and several phase noise suppression techniques were introduced in 

Chapter 6. 

A novel optimization procedure in LC oscillator design centered on a new 

inductance selection criterion was proposed in Chapter 7, which was constrained by 

power dissipation and chip area. According to a simple physical phase noise model, 

several closed-form expressions were derived to describe the phase noise generated in 

the LC oscillators. The expressions indicate that the phase noise is proportional to L2⋅gL3

factor for the given bias current and oscillation frequency. If the integrated inductor has 

a fixed area, the minimum L2⋅gL3 was found to decrease monotonically with increasing 
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inductance by simulating a series of area-limited spiral inductors with different layouts. 

This conclusion leads to a new inductance selection criterion in LC oscillator design, 

choosing the inductance as large as possible to minimize the L2⋅gL3 factor. This result is 

opposite to Ham and Hajimiri’s conclusion [86], where they suggested the smaller 

inductance is better in terms of phase noise suppression. Two LC VCOs were designed 

and fabricated. One has a smaller inductance with maximum Q in its tank while the 

other uses a larger inductance with minimum L2⋅gL3 factor and lower Q in its tank. The 

simulation provided in Chapter 8 shows the phase noise of the latter oscillators is 

effectively reduced due to the optimization procedure. 

9.1 Recommendations for Future Work

The Samori’s phase noise model provides valuable design insights in LC 

oscillator design. However, this theory can be only applied to the topologies based on 

the differential pairs. The possibility to extend this NTI model to a general phase noise 

model which is suitable to other types of oscillators (Colpitts, ring and etc.) is a topic 

worth further investigation. 

Oscillator phase noise has received enormous investigations in recent years. On 

the other hand, the phase noise of other circuits may be also worthy of notice. For 

example, the frequency divider (prescaler) in PLLs contributes in-band phase noise, 

especially if a high division factor is used. Hence, its phase noise performance is 

important [99]. Also, the nonlinearity of a charge-pump may also fold the high-

frequency noise into the bandwidth of the PLLs [100]. Investigation of the possibility to 

apply the oscillators’ phase noise theories to these circuits is desirable.  
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The phase noise of PLLs and delay-locked loops (DLLs) is another promising 

research topic although it has been studied extensively in the past. In [101, Demir’s 

phase noise model has been further developed to predict the phase noise of PLLs in 

[101]. However, it is relatively complicated for hand calculation. Simple, accurate and 

insightful phase noise models are always valuable to PLL design. 

Beside the internal noise sources, the external noise sources, such as the 

substrate noise, also degrade the output phase noise. Research on this topic is still on its 

initial stages [102]-[105]. However, due to the importance to the mixed-signal circuit, it 

will attract more research in the near future. 
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APPENDIX A 
 

TMSC0.25µM TRANSISTOR MODEL FILES [106] 
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.MODEL CMOSN NMOS (                                LEVEL   = 49 
+VERSION = 3.1            TNOM    = 27             TOX     = 5.7E-9 
+XJ      = 1E-7           NCH     = 2.3549E17      VTH0    = 0.3731371 
+K1      = 0.4626989      K2      = 3.610998E-3    K3      = 1E-3 
+K3B     = 3.4473437      W0      = 1E-7           NLX     = 2.161822E-7 
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0 
+DVT0    = 0.465353       DVT1    = 0.4682776      DVT2    = -0.3600181 
+U0      = 291.8807271    UA      = -1.358982E-9   UB      = 2.600205E-18 
+UC      = 3.68755E-11    VSAT    = 1.453872E5     A0      = 1.7973899 
+AGS     = 0.3280843      B0      = -1.492756E-7   B1      = 5.826141E-7 
+KETA    = -7.07971E-3    A1      = 5.600633E-4    A2      = 0.4445546 
+RDSW    = 186.5665001    PRWG    = 0.5            PRWB    = -0.2 
+WR      = 1              WINT    = 0              LINT    = 0 
+XL      = 3E-8           XW      = -4E-8          DWG     = -1.627919E-8 
+DWB     = 2.793508E-9    VOFF    = -0.0951886     NFACTOR = 1.5570816 
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0 
+CDSCB   = 0              ETA0    = 4.389028E-3    ETAB    = 4.381099E-4 
+DSUB    = 0.0217698      PCLM    = 1.679854       PDIBLC1 = 0.4416943 
+PDIBLC2 = 2.720463E-3    PDIBLCB = -0.1           DROUT   = 0.7370237 
+PSCBE1  = 6.82413E8      PSCBE2  = 5E-10          PVAG    = 0 
+DELTA   = 0.01           RSH     = 4.6            MOBMOD  = 1 
+PRT     = 0              UTE     = -1.5           KT1     = -0.11 
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9 
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4 
+WL      = 0              WLN     = 1              WW      = 0 
+WWN     = 1              WWL     = 0              LL      = 0 
+LLN     = 1              LW      = 0              LWN     = 1 
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5 
+CGDO    = 5.72E-10       CGSO    = 5.72E-10       CGBO    = 1E-12 
+CJ      = 1.730461E-3    PB      = 0.9837155      MJ      = 0.4592833 
+CJSW    = 4.058445E-10   PBSW    = 0.99           MJSW    = 0.3212178 
+CJSWG   = 3.29E-10       PBSWG   = 0.99           MJSWG   = 0.3212178 
+CF      = 0              PVTH0   = -0.01          PRDSW   = -10 
+PK2     = 2.212933E-3    WKETA   = 7.871804E-3    LKETA   = -4.438935E-3    ) 
 

.MODEL CMOSP PMOS (                                LEVEL   = 49 
+VERSION = 3.1            TNOM    = 27             TOX     = 5.7E-9 
+XJ      = 1E-7           NCH     = 4.1589E17      VTH0    = -0.5502511 
+K1      = 0.6400201      K2      = -1.704113E-3   K3      = 0 
+K3B     = 15.9111313     W0      = 1E-6           NLX     = 1.607639E-9 
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0 
+DVT0    = 2.7644417      DVT1    = 0.8479803      DVT2    = -0.1546672 
+U0      = 105.2755214    UA      = 1.186284E-9    UB      = 1.176835E-21 
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+UC      = -1E-10         VSAT    = 2E5            A0      = 0.9791315 
+AGS     = 0.1953302      B0      = 1.093685E-6    B1      = 5E-6 
+KETA    = 0.0143725      A1      = 2.376941E-3    A2      = 0.3 
+RDSW    = 774.3628818    PRWG    = 0.5            PRWB    = -0.3137681 
+WR      = 1              WINT    = 0              LINT    = 3.367961E-8 
+XL      = 3E-8           XW      = -4E-8          DWG     = -4.703854E-8 
+DWB     = 4.628024E-9    VOFF    = -0.1352255     NFACTOR = 0.9595714 
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0 
+CDSCB   = 0              ETA0    = 0.9487547      ETAB    = -0.5 
+DSUB    = 1.327526       PCLM    = 1.2246157      PDIBLC1 = 4.978793E-3 
+PDIBLC2 = -1.067618E-8   PDIBLCB = -1E-3          DROUT   = 0.0589797 
+PSCBE1  = 6.155146E9     PSCBE2  = 5.00025E-10    PVAG    = 2.250493E-6 
+DELTA   = 0.01           RSH     = 3.4            MOBMOD  = 1 
+PRT     = 0              UTE     = -1.5           KT1     = -0.11 
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9 
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4 
+WL      = 0              WLN     = 1              WW      = 0 
+WWN     = 1              WWL     = 0              LL      = 0 
+LLN     = 1              LW      = 0              LWN     = 1 
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5 
+CGDO    = 6.76E-10       CGSO    = 6.76E-10       CGBO    = 1E-12 
+CJ      = 1.906078E-3    PB      = 0.99           MJ      = 0.4662316 
+CJSW    = 3.337172E-10   PBSW    = 0.6541995      MJSW    = 0.3130577 
+CJSWG   = 2.5E-10        PBSWG   = 0.6541995      MJSWG   = 0.3130577 
+CF      = 0              PVTH0   = 7.047217E-3    PRDSW   = 3.0435715 
+PK2     = 3.077599E-3    WKETA   = 0.033745       LKETA   = -9.457104E-3    ) 
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APPENDIX B 
 

BIPOLAR TRANSISTOR MODEL FILES [107]
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.MODEL QINN NPN 
+ IS =0.166F    BF =3.239E+02 NF =1.000E+00 VAF=84.6 
+ IKF=2.462E-02 ISE=2.956E-17 NE =1.197E+00 BR =3.719E+01 
+ NR =1.000E+00 VAR=1.696E+00 IKR=3.964E-02 ISC=1.835E-19 
+ NC =1.700E+00 RB =68        IRB=0.000E+00 RBM=15.1 
+ RC =2.645E+01 CJE=1.632E-13 VJE=7.973E-01 
+ MJE=4.950E-01 TF =1.948E-11 XTF=1.873E+01 VTF=2.825E+00 
+ ITF=5.955E-02 PTF=0.000E+00 CJC=1.720E-13 VJC=8.046E-01 
+ MJC=4.931E-01 XCJC=171M     TR =4.212E-10 CJS=629F 
+ MJS=0         KF =100F      AF =1.000E+00 
+ FC =9.765E-01 
 
.MODEL QINP PNP 
+ IS =0.166F    BF =7.165E+01 NF =1.000E+00 VAF=3.439E+01 
+ IKF=1.882E-02 ISE=6.380E-16 NE =1.366E+00 BR =1.833E+01 
+ NR =1.000E+00 VAR=1.805E+00 IKR=1.321E-01 ISC=3.666E-18 
+ NC =1.634E+00 RB =28.8      IRB=0.000E+00 RBM=7.6 
+ RC =3.739E+01 CJE=1.588E-13 VJE=7.975E-01 
+ MJE=5.000E-01 TF =3.156E-11 XTF=5.386E+00 VTF=2.713E+00 
+ ITF=5.084E-02 PTF=0.000E+00 CJC=2.725E-13 VJC=7.130E-01 
+ MJC=4.200E-01 XCJC=170M     TR =7.500E-11 CJS=515F 
+ MJS=0         KF =100F      AF =1.000E+00 FC =8.803E-01 
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