
AN APPLICATION OF PARALLEL AND DISTRIBUTED COMPUTING 

METHODS TO APPROXIMATE PATTERN MATCHING 

OF GENETIC REGULATORY MOTIFS 

 

 

by 

 

TUSHAR KUMAR JAYANTILAL

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

August 2006 

 



 

 

 

 

 

 

 

 

Copyright © by Tushar Kumar Jayantilal 

All Rights Reserved 

 

 

 



ACKNOWLEDGEMENTS 
 

I would like to thank my advisor, Dr. Nikola Stojanovic, for his continual 

support and guidance, which helped me a lot to achieve my career goal.  Under his 

supervision, I learned the various intricacies involved in conducting research and also 

ways to tackle them.  I can strongly state that this work became possible only because 

of his constant motivation.  I would also like to express my gratitude to Dr. Esther 

Betrán, who made this collaborative research work possible by providing the data set 

and also valuable Genetics information, in order to carry out this research.  I would also 

like to thank David Levine, for providing support while working with high-speed 

computing environment.  I am sincerely thankful to them for serving on my committee.   

I thank Dr. Bahram Khalili, for his valuable advising through out my degree.  I 

would also like to thank Dr. Gautam Das, for providing some algorithmic support.  I 

would like to express my appreciation to all the members of Bioinformatics lab, my 

friends and other loved ones for their support. 

I want to appreciate the continuous encouragement and love from my family, 

due to which this work got executed.  Finally, I want to thank the Almighty, for making 

everything possible and helping me at every stage of my life. 

This work was partially supported by the Department of Computer Science, at 

The University of Texas, Arlington. 

July 19, 2006 

 iii



ABSTRACT 

 

AN APPLICATION OF PARALLEL AND DISTRIBUTED COMPUTING 

METHODS TO APPROXIMATE PATTERN MATCHING 

OF GENETIC REGULATORY MOTIFS 

 

 

Publication No. ______ 

 

Tushar Kumar Jayantilal, M.S. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Nikola Stojanovic 

Bioinformatics is a relatively new scientific field concerned with providing 

computational means and support to research in molecular biology and genetics.  It 

draws from many different areas of computer science, including database theory, 

algorithm design and analysis, and artificial intelligence, to name just a few.  In many 

applications, such as one described in this thesis, a biologist is interested in locating a 

particular pattern, or sequence motif, in a given string or set of strings over the four-

letter DNA alphabet.   

 iv



In this thesis we present an efficient approach to locating promoter and other 

regulatory sequences in entire genomes or in specific target areas.  Promoters are short 

conserved sequences located upstream of the genes they regulate, and they have an 

essential role in driving the expression of the genes.  However, in higher organisms 

promoter sequences are very diverse, and their motifs can feature substantial sequence 

variation, including character (chemical base) substitutions, insertions and deletions.  

We were thus interested in designing methods for the efficient search for approximate 

matches of the target sequences to putative promoter consensus.  To achieve this goal 

we have used a combination of classic pattern-matching algorithms and high 

performance computing, parallelizing the search over a number of processors.        

We have used these methods in the genome-wide search for a 14-base promoter 

element in the genome of the fruit fly Drosophila melanogaster, postulated to have a 

role in the testis-specific expression of the genes it controls.  The list of testis-specific 

genes has been provided by our collaborator from the UTA Department of Biology, and 

we have obtained the raw sequence and other genetic data from Flybase, a public 

database maintained by a consortium of Drosophila researchers.  Although the number 

of genes we were interested in was moderate, 791, the number of exact patterns 

approximately matching the 14 base consensus was very large, approximately 38,000.  

This problem has thus guided the design of the methods we describe in this thesis.   

 v



TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS....................................................................................... iii 
 
ABSTRACT .............................................................................................................. iv 
 
LIST OF ILLUSTRATIONS..................................................................................... viii 
 
LIST OF TABLES..................................................................................................... x 
 
Chapter 
 
 1. INTRODUCTION………………………………………………………….        1 
 
  1.1 Pattern matching and classical pattern matching algorithms .................. 8 
 
    1.1.1 Naïve approach ....................................................................... 8 
 
    1.1.2 Classical algorithms ................................................................. 9 
 
    1.1.3 Latest developments ................................................................ 15 
 
  1.2 Parallel and Distributed Computing (PDC)............................................. 18 
 
  1.3 Applications of PDC in bioinformatics ................................................... 20 
              
            1.4 PDC cluster at UTA ……………………………………………………      21 
  
 2.  METHODS…………………………………………………………………      23 
 
  2.1 The problem statement …………………………………………………  23 
 
            2.2 Approaches to the problem ……………………………………………..     24 
   
            2.3 Parallelization of the approaches …………………………….................     25 
 
            2.4 Algorithms in detail …………………………………………………….     28 

 vi



                  2.4.1 Technical details about the algorithms .....................................     28 
 
    2.4.2 Motif properties .......................................................................     37 
  
 3.  RESULTS.....................................................................................................      52 
 
  3.1 Description of the problem ...................................................................... 52 
 
  3.2 Data source………………………………………………………………    56 
 
  3.3 Input data set ……………………………………………………………    57 
 
            3.4 Results ……………………………………………………..................... 61 
 
 4.  DISCUSSION……………………………………………………………....     70 
    
  4.1 Algorithmic improvements……………………………………………..     70 
 
  4.2 Possible extensions of the described methods to  
                  solve other problems …………………………………………………...     72 
              
REFERENCES……………………. .........................................................................     74 
 
BIOGRAPHICAL INFORMATION……………………………………………….     79 

 vii



 

LIST OF ILLUSTRATIONS 

Figure Page 
 
 1.1 Central Dogma of Molecular Biology.............................................................  2 
 
 1.2 Typical promoter locations relative to genes ..................................................  5 
 

1.3 Construction of a lexicographic tree for 2 patterns 
sharing a common prefix ……………………………………………………. 14 

  
2.1 Design of our distributed system for parallelization  ………………………...26 

 
2.2 Clustering approach ………………………………………………………….36 

 
2.3 Sample automata 1…………………………………………………………... 40 

 
2.4 Sample automata 2…………………………………………………………... 41 

 
2.5 Sample clustered tree 1……………………………………………………… 43 

 
2.6 Finite State Machine (FSM) for the sample  
        clustered tree 1………………………………………………………………..44 

 
2.7 Way of cutting FSM shown in Figure 2.6,  
        by making a cut at level 2 ..………………………………………………….. 45 

 
2.8 Way of cutting FSM shown in Figure 2.6,  
        by making a cut at level1………………...………………………..…………. 45 

 
2.9 Sample clustered tree 2……………………………………………………… 47 

 
2.10 Splitting of sample clustered tree 2………………………………………….. 47 

 
2.11 After splitting the sample clustered tree 2…………………………………… 48 

 viii



 

 
2.12 Cuts proving the Lemma 3.…………………………………………………... 49 

 
2.13 Sample clustered tree 3………………………………………………………..50 
 
3.1 Inclusion of mismatches and gaps in the core 
        14-base promoter…………………………………….………………………. 53 
 
3.2 Positions of approximate matches to the putative 
        promoter……………………………………………………………………….65 
 
4.1  Common automaton construction 
        scenario…………………………………........................................................ 70 
 
4.2  Reduction of size of the automaton while  

 constructing……………………………………………………………….....  71 
 

     4.3   Automaton after improvement ……………………………………………… 72 
 

 ix



 

LIST OF TABLES 

 
Table  Page 
 
 2.1 Comparison of Naïve with Automaton Approach .......................................... .27 

 2.2   Total Number of States …………………………............................................33 
 
2.3   Significant Reduction in the Size of Automaton …………………………….33 
 
2.4   Results Proving Lemma 2....………………………………………………….42 
 
3.1   Information about the Genes Screen Shot 1 …………………………………58 
 
3.2   Information about the Genes Screen Shot 2 …………………………………59 
 
3.3   Classification of Genes Based on the Extracted Information ………………..60 
 
3.4   Classification of Category 1 Genes................................................................. 61 
 
3.5   Results for the Entire Genome and Genes of Interest ……………………….62 
 
3.6   Classification of Reduced Hits ………………………………………………63 
 
3.7   List of Genes Containing an Approximate Match to  

the Putative Promoter in the Target Region (-200, +50)……….…………….64 
 
3.8   Control Set of Genes …………………………………………………………67 

 
3.9   Results for the Control Set of Genes ………………………………………...68 

 x



 

CHAPTER 1 

INTRODUCTION 

 

Every living species is composed of cells and it can be classified as a eukaryote 

or a prokaryote, depending on whether its cells contain nucleus or not.  Each of these 

cells contain deoxyribonucleic acid (DNA), which specifies genetic instructions for the 

biological development.  DNA is a long polymer of nucleotides (Adenine, Cytosine, 

Guanine, Thymine), some of which, the protein-coding genes, encode for amino acid 

sequences which form proteins [7].  DNA is often referred to as the molecule of 

heredity as it is responsible for the propagation of all inherited traits, such as hair color 

or disease susceptibility.   

DNA is transcribed into RNA (ribonucleic acid) by enzymes called RNA 

polymerases.  Similar to DNA, RNA is also a long polymer of nucleotide bases 

(Adenine, Cytosine, Guanine, Uracil) and serves as a template for the synthesis of 

proteins.  This process of transformation from DNA into RNA is called transcription.  

RNA is a single-stranded molecule whereas DNA is a double-stranded molecule, coiled 

in a helix.  There are various types of RNA such as messenger RNA (mRNA), transfer 

RNA (tRNA) and ribosomal RNA (rRNA), classified on the basis of their biological 

role.  After DNA is transformed into RNA, splicing of RNA is performed (in 

eukaryotes), resulting in mRNA.  

 1



 

Finally, mRNAs are translated into proteins, which are responsible for most 

functions performed by the cell.  Proteins are composed of long chains of amino acids, 

which are formed as a result of reading triplets or codons (three nucleotides together 

form a single codon) and the formation of peptide bonds between them. This process 

takes place in the ribosomes.  There are 20 amino acids and the conversion process from 

mRNA to a chain of amino acids is called translation.  Both processes together, 

transcription and translation, form the basis of the Central Dogma of Molecular Biology 

which describes the flow of information from DNA to proteins. 

 

DNA 

                                                                                     Transcription 

RNA 

                                                                                      Translation 

                                            Protein 

Figure 1.1 Central Dogma of Molecular Biology (Source: MIT, 
http://web.mit.edu/esgbio/www/dogma/dogma.html) 

 

Bioinformatics is an inter-disciplinary field, between computer science, 

mathematics, statistics, biochemistry, molecular biology and genetics.  It came into 

existence due to the rapid growth in the research of genetics, which led to huge amounts 

of data making it extremely difficult to perform further analysis manually.  Hence the 

biologists needed computational support for interpreting their experiments.  In computer 

science, bioinformatics incorporates concepts from various sub-fields, like algorithm 
 2



 

theory, artificial intelligence, data mining and database theory.  Some of the typical 

bioinformatics tasks include analyzing the DNA sequence using a specific algorithm, 

finding out the similarity between two sequences, predicting genes, developing 

visualization tools in order to study protein folding, etc.  For these purposes there have 

been many tools developed, such as BLAST [35], GENSCAN [10] or DALI [21].  

Bioinformatics also plays a significant role in drugs discovery.   

There are some significant motifs (short patterns), which play important role in 

regulating genes, such as promoters, enhancers, or silencers.  A promoter is a short 

conserved motif, which is located upstream of the gene, responsible for driving its 

expression (i.e. controlling the amount and appearance of the functional products of a 

gene).  Based on the classification of species, promoters can also be differentiated into 

prokaryotic and eukaryotic.   

A prokaryotic promoter consists of two short sequences, located at positions -10 

and -35 with respect to the start of the gene.  The first one is responsible for starting 

transcription and the presence of the second one increases the transcription rate.  

Eukaryotic promoters are very difficult to characterize because they are variable, lie 

somewhere in the upstream region of their genes and there may be other regulatory 

elements near the transcription start site.  These elements bind proteins called 

transcription factors [12] which are involved in the formation of the transcriptional 

complex.  Promoters are important because many diseases like asthma, cancer and 

heart disease have been associated with the malfunction of promoter elements 

[http://en.wikipedia.org/wiki/promoter].  
 3



 

The process of translation of mRNA into proteins starts from the start codon 

(AUG), generally located downstream to the ribosome attachment site and extends until 

the stop codon (one of UGA, UAA, UAG) is encountered, usually before the end of 

mRNA.  The regions which do not  get translated are called untranslated regions 

(UTRs) and can be classified into 5’ UTR and 3’ UTR, depending upon their location, 

whether it is located near the 5’ (upstream) end or 3’ (downstream) of the gene 

transcript.  While searching for a promoter, upstream of the gene, rather than just its 

protein-coding part, we have to make sure that we account for the 5’ UTR region; 

otherwise we may still be looking for a promoter within the gene itself.  However, 

studies [18] have concluded that it is possible for a promoter to be present within +50 

bases into the gene.  In consequence, we have assumed that a promoter is typically 

present anywhere within +50 bases with respect to the start of the gene to -200 bases 

[18] in the upstream region (in order to make sure that we do not miss any hit, in our 

study we actually considered up to -1000 bases).  Figure 1.2 below shows a typical 

layout of a gene with respect to these features.  However, a gene can have multiple 

transcription starts depending on its number of transcripts.  

 

 

 

 

 

 4



 

Promoter usually lies in 
this region 

 

SOG, EOG ---- Start and End of Gene 
SOT, EOT ---- Start and End of Transcription 
SOT, EOT ---- Start and End of Translation 

 
Figure 1.2 Typical promoter locations relative to genes 

 

Tissue-specific promoters, as the name implies, are responsible for controlling 

the gene expression in a specific tissue.  One example is a promoter determining the 

expression specifically in testis, thus active only in the male germ line.  Significant 

attention is often given to these genes, because their analysis provides valuable 

information about development, general physiology and infertility. 

            Tissue-specific gene expression in higher eukaryotes can be accomplished by 

the recruitment of cell type-specific transcription factors to distinct promoter/enhancer 

sequences [2]. The binding of specific transcription factors allows for the interaction 

with the general transcription initiation machinery at the core promoter and leads to 

transcriptional activation. The tissue-specific expression of the Drosophila β2 tubulin 

gene is accomplished by the action of a 14-base activator element [18]. The β2 tubulin 

gene encodes a tissue-specific β2 tubulin variant which is exclusively used during 

3’ 

SOG, 
SOT SOT EOT

EOG, 
EOT 

5’ -200 +50 

3’UTR 
5’UTR 

 5



 

spermatogenesis [2]. The promoter sequence responsible for tissue-specific gene 

activation is confined to the 14-base activator element [18]. 

In the last three decades, the genetic approach has become one of the most 

powerful tools for elucidating biological mechanisms.  It allows researchers to compare 

wild type with mutant phenotypes and to identify new genes involved in controlling a 

biological process, thus determining their functions in the organism [2].  Genes which 

control important functions are identified by mutations that cause defects in those 

functions [http://darwin.nap.edu/books/0309070864/html/151.html].  These genes are 

then mapped, cloned and identified at the molecular level so that the proteins they 

encode can be studied using methods of biochemistry and cell biology.  This approach 

has proven to be useful, not only for basic research in model organisms but also for 

medical research on heritable human diseases. 

There are several reasons behind carrying out the research on model organisms 

such as fruit flies or worms.  Some of them are:  

 1. Research on humans and other primates is expensive and limited by 

ethical considerations. This is not true in other model organisms that share a lot 

of human genetic features because of their common evolutionary origin. The 

conservation of genetic structure and function has become the cornerstone of 

modern developmental biology, forming the basis for the usefulness of model 

organisms in understanding human developmental mechanisms. 

 2. Most model organisms are relatively small and hence easy to maintain 

in large populations in the laboratory. 
 6



 

 3. Many model organisms have short generation times, which allow for 

rapid analysis of breeding experiments. 

            One of the most widely used model organisms for conducting research is 

Drosophila melanogaster, which is the common fruit fly, found worldwide.  It has a 

genome of size approximately 180 MB, containing 13,600 genes distributed on 4 

chromosomes (X, 2, 3, and 4) 

[http://www.ornl.gov/sci/techresources/Human_genome/faq/compgen.shtml].  The 

study of the fly has been instrumental in many fundamental discoveries in eukaryotic 

genetics, such as linkage, gene mapping, recombination frequency, and chromosomal 

aberrations.  These all made Drosophila a key organism for genetic analysis.  One of the 

most useful outcomes of the genetic analysis of D. melanogaster development has been 

the identification of developmental pathways conserved in most organisms. 

            We were particularly interested in the 14-base activator element [18], 

responsible for deriving male specific gene expression in Drosophila.  We started with a 

list of 791 target genes [23] and the task was to determine these which have this 

particular 14-base motif located in their upstream regions.  We classified the set of 

genes into various categories based on the information extracted, such as the length of 

5’ UTR or genes having multiple mRNAs.  Although we first looked at this as an exact 

pattern-matching problem, in our application we extended this to allowing 2 

mismatches, 1 insertion and 1 deletion in the 14-base motif.  This created a large list of 

exact motifs, which we needed to look for.  For this purpose, we used the classical Aho-

Corasick algorithm.  
 7



 

            In the remaining sections of this chapter, we describe the pattern matching 

problem in general, some classical algorithms for solving it, introduce parallel and 

distributed computing (PDC), the applications of PDC in bioinformatics and finally the 

setup of the cluster at the University of Texas at Arlington.  

 

1.1 Pattern matching and classical pattern matching algorithms 

Pattern matching problem is one of the most common problems in computer 

science today.  This is mainly due to its large list of applications, such as text-editing, 

security, cryptography, web search engines, and in many others.  Due to its significance, 

there has been a rapid growth in developing algorithms in order to deal with the pattern 

matching problem and we now have algorithms which can solve this problem in a very 

short time.  In some applications, there was a need to relax the exact-matching criteria 

and allow some mismatches.  This type of matching procedure is called approximate 

pattern matching. 

 

1.1.1 Naïve approach 

             Naïve approach is a straightforward method for locating a pattern within the 

string of text.  It involves many comparisons and thus takes more time when compared 

to other approaches.  It starts comparing each character of the pattern, left to right with 

the corresponding character in the text and then shifts the sliding window by one [39].  

If the length of the pattern is m and the length of the text is n, then solving the pattern 

 8



 

matching problem using this approach will take time O(mn).  It can be useful when the 

text is short so that the time for pattern matching is negligible. 

 

1.1.2 Classical algorithms 

            The main drawback of the brute-force (naïve) algorithm is the number of 

character comparisons performed.  Many algorithms have been developed in order to 

overcome this drawback, preprocessing either the text or the pattern before starting to 

match them.  Some of the most commonly employed algorithms for solving the pattern 

matching problem are Rabin Karp algorithm [32], Knuth-Morris-Pratt algorithm [11], 

Boyer Moore algorithm [34], and Aho-Corasick algorithm [4].  The following sub-

sections will describe the important features of these algorithms, including a few others 

which have been developed more recently.  

 

               1.1.2.1 Rabin-Karp algorithm 

             Rabin-Karp algorithm [32] employs hashing for matching a pattern within a 

text.  It is not widely used for single pattern matching, but proves to be effective for 

multiple patterns.  The reason is in that it often runs in worst-case time which is same as 

the running time of naïve algorithm (O(nm)).  It speeds up the testing of the equality of 

the pattern to the substrings in the text by using a hash function, instead of skipping the 

characters in the text.  In its preprocessing phase it computes a hash function for every 

pattern we are searching for and then looks for substrings in the text with the same hash 

value.  The efficiency of this algorithm is largely dependent on the hash function, 
 9



 

because if the hash values computed for different patterns are the same and there is a 

match in the text then we have to verify which pattern has matched, thus adding to the 

total search time.  The hash values of the substrings within the text itself should be 

computed efficiently.  This can be done by the rolling hash function, which treats every 

substring as a number in some base.  For example, if the substring is “AC” and the base 

is 4 (corresponding to 4 DNA letters), the hash value of the substring would be 0 * 41 + 

1 * 40 = 1 (assuming values of A as 0, C as 1, G as 2 and T as 3). 

The advantage of using this representation is in that it is possible to compute 

the hash value of the next substring from the previous one by doing only a constant 

number of operations, independent of the substrings’ lengths.  For example, suppose the 

text is “ACCA” and we are searching for a pattern of length 2.  We can compute the 

hash value of substring “CA” from the hash value of previous substring “AC”.  This is 

done by subtracting the number added for the first ‘A’ of “AC”i.e. 0 * 41 (0 is the value 

of ‘A’ and 4 is the base), multiplying by the base and adding for the last ‘A’ of the 

substring “CA”, which results in a new hash value of 4. 

 

  1.1.2.2 Knuth-Morris-Pratt algorithm 

            Knuth-Morris-Pratt algorithm [11] employs preprocessing of the pattern, hence 

resulting in the reduction of the number of comparisons required, which is a bottle-neck 

for the naïve approach.  KMP is a linear-time algorithm.  It executes in two stages – 

preprocessing and searching.  In the first stage (preprocessing), a failure function is 

computed for every character position in the pattern.  Whenever there is a failure while 
 10



 

matching the pattern, the value computed by the failure function for that character 

position is invoked.  Hence shifting of the pattern is performed based on that value.  The 

preprocessing stage takes time O(m).  

             The search stage starts scanning the text from left-to-right and aligns the pattern 

against a substring of text until either the entire pattern is exhausted (a match to the 

pattern is found in the text) or until a mismatch occurs at some position i of the pattern 

and k of text.  In the latter case, the pattern is shifted right by i-failure function value for 

position i (longest possible prefix matching the text before the mismatch).  The 

algorithm reduces the number of comparisons required by making shifts larger than one.  

The preprocessing stage of the KMP algorithm takes O(m) time.  The matching itself 

takes O(n) where n is the size of the text.  Hence the total time complexity of KMP is 

O(m), under the assumption that m >> n.  

 

   1.1.2.3 Boyer-Moore algorithm 

              Boyer-Moore algorithm [34] also employs preprocessing of the pattern.  It is 

the most widely used algorithm for solving the pattern matching problem.  The main 

reason for its popularity is in that it usually runs in sub-linear time. 

              BM employs three rules for matching the pattern: scanning the text from right-

to-left, bad character shift rule and good suffix shift rule. 

              Similar to the KMP algorithm, Boyer-Moore also consists of two stages – 

preprocessing and searching.  In the preprocessing stage it calculates the failure 

function, using the above two shift rules.  If a mismatch occurs at some position with 
 11



 

character as y of the pattern and x of the text while aligning them from right-to-left, and 

we have computed the right-most position of x in the pattern, then we can shift the 

pattern to the right so that the rightmost x in the pattern is aligned with the mismatched 

x of the text.  Since any shorter shift would result in an immediate mismatch, the longer 

shift is correct and it will not shift past an occurrence of the pattern in the text.  

Moreover, if x never occurs in the pattern, then we can shift pattern completely past the 

point of mismatch in text.  In these cases, some characters of the text will never be 

examined and the method will run in sub-linear time [39].  However, the above rule is 

not useful when the mismatching character from the text occurs in the pattern to the 

right of the mismatch point.  This situation is common when the alphabet is small and 

the text contains many similar, but not exact substrings, as it is typical in DNA 

sequences.  Consequently, the bad character shift rule was further extended, so that it 

shifts the pattern by finding the closest matching character position to the left of current 

mismatch position in the pattern. 

              The extended bad character shift rule enables larger shifts and it is highly 

effective in practice, particularly for English text, but it proves to be less effective for 

small alphabets.  Hence this brought a need to introduce another mechanism called the 

good suffix shift rule.  The good suffix rule finds out the suffix of the pattern matched so 

far in the text whenever there is a mismatch such that the characters before both suffixes 

are not the same [13].  The extended bad character shift rule and the good suffix shift 

rule form the basis of the preprocessing stage, which runs in time O(m), where m is the 

length of the pattern. 
 12



 

              In the search stage Boyer-Moore starts aligning the pattern with the text from 

right-to-left.  When a mismatch occurs, the shifting rules together compute the failure 

function for each character position of the pattern and the pattern is appropriately 

shifted to the left.  This stage takes time O(n), where n is the length of the text.  

Typically, it runs in sub-linear time and the worst-case running time is O(m), under the 

assumption that m >> n.  There were numerous extensions of the basic Boyer-Moore 

algorithm, such as these of Sunday [15] and Horspool [33]. 

 

   1.1.2.4 Aho-Corasick algorithm 

             Aho-Corasick algorithm [4] was developed to facilitate bibliographic searches, 

simultaneously looking for several patterns in a possibly very long text.  It also runs in 

linear time.  It combines the ideas of KMP with finite state machines (FSM) [13] and it 

consists of two phases – constructing a finite state machine for the given set of patterns 

and then using the machine to process the string.   

             In the first phase, the algorithm constructs a finite state automaton using the set 

of patterns, based on a lexicographic tree.  The number of its states depends on the 

length of the common prefix in the patterns.  For example, suppose that the patterns are 

ACGT and ACGA.  Then the algorithm constructs the following tree for the given 

patterns: 

 

 

 
 13



 

 
Figure 1.3 Construction of a lexicographic tree for 2 patterns sharing a common prefix. 
 

It creates a node for every character in each pattern, as long as the character does not 

extend an already formed prefix. In Figure 1.3, the algorithm creates node for the initial 

state marked as 0 and then creates a node for every character in pattern1 (ACGT).  In 

Figure 1.3, we have labeled each node with the characters of the pattern(s) read so far, 

although in practice only terminal nodes (these corresponding to the pattern ends) are 

labeled.  While reading the characters of pattern2 (ACGA), it follows the same path up 

to node 3, because the first three letters of pattern2 are same as in pattern1 (ACG), and 

finally on reading ‘T’ it branches out and forms a new node (node 5).  Here ACG is the 

longest prefix shared between the two patterns. 

             In an extension from the lexicographic tree to a finite state automaton, the Aho-

Corasick algorithm computes failure functions, which return a link to a node or state for 

a particular input at some particular state. The failure links are determined for each state 

in the automaton.  In the second phase, the text that is to be searched is parsed using the 

automaton constructed in phase1.  A goto function returns a link to the next node on 

 14



 

reading an input character, when it is in some particular state.  This function is called 

repeatedly during the parsing.  When on reading some input the goto function fails to 

return a node, then the failure function is invoked.  The algorithm also uses an output 

function for reporting matches and handling special cases of embedded patterns.   

              Typically, the Aho-Corasick algorithm runs in linear time O(l + n), where l is 

the combined length of all patterns and n is the length of the text.  This algorithm has 

wide applications in many fields due to its high speed and capability of matching 

multiple patterns. 

 

1.1.3 Latest developments               

              Most of the recently developed algorithms for the pattern-matching problem 

are based on a combination of a few classical algorithms like KMP or Boyer-Moore.  

Since these algorithms combine their ideas, they make them more efficient and faster.  

In the following subsections, we describe some of the latest algorithms. 

 

    1.1.3.1 A simple fast hybrid pattern-matching algorithm 

              The simple fast hybrid pattern-matching algorithm developed by Franek, 

Jennings and Smyth [17] is a simple algorithm which combines the ideas of KMP, BM 

and Sunday algorithms.  It proves to be very effective for alphabet sizes of 8 or more.   

The main ideas of the algorithm are to perform Boyer-Moore shifts, whenever there is a 

mismatch, and do KMP matching as long as there is no mismatch.  This significantly 

reduces the required number of comparisons.  Typically, this algorithm does 3n – 2m 
 15



 

comparisons in most cases, which is fewer than the number of comparisons done by 

other algorithms.  It is generally about 10% faster than algorithms like BM-Sunday 

(Boyer-Moore Sunday) [15] or Reverse Colussi [20].  

 

    1.1.3.2 String-pattern matching algorithm using partitioning and hashing 

 This algorithm, developed by Sun Kim [37], substantially differs from other 

algorithms used for solving the pattern-matching problem.  It partitions the text to be 

searched into segments of input pattern length (further referred to as l) and then looks 

for the occurrence of the pattern (further referred to as p), using a hashing scheme.  It 

does not take into account the shift length (i.e. shifting the pattern based on some 

preprocessing).  The basic idea is to partition the text into segments si of length l from 

left to right and then assume that if the last character in si does not appear in p, then p 

cannot occur in si, so we can skip it.  If the last character of si occurs in p, then it starts 

aligning p and si and verifies the occurrences of p according to the alignment.  The 

alignments for each character of p are implemented efficiently using a hashing scheme.  

This algorithm proves to be efficient and significantly faster than Sunday’s [15] and 

Horspool’s [33] extension of Boyer-Moore algorithm [34]. 

 

    1.1.3.3 SID_GT algorithm 

 SID_GT algorithm, developed by Oommen and Loke [6], received its name 

based on its capability to handle Substitutions, Insertions and Deletions (SID), and also 

Generalized Transpositions (GT; permits the transposed symbols to be subsequently 
 16



 

substituted).  This algorithm takes into account the concept of edit distance (minimal 

number of transformations required to convert one string into other).  It computes 

distances based on the properties of the two strings (i.e. prefixes of two strings) and 

calculates a set of five elementary edit distances defined using some elementary 

functions.  This computation is performed recursively.  This algorithm is significantly 

faster than other algorithms of this kind like Wagner & Fisher algorithm [30] and 

Lowrance & Wagner algorithm [28, 29] for handling errors in a string while matching.   

 

1.1.3.4 Algorithm for string matching with k mismatches 

 Several algorithms have been developed to handle the problem of inexact 

matching with at most k mismatches.  In particular, the algorithm developed by Amir, 

Lewenstein and Porat [1] finds all locations where the pattern has at most k errors and 

proves to be faster than other earlier algorithms.  This algorithm performs in two stages 

– the marking stage and the verification stage.  In the marking stage it identifies the 

potential starts of the pattern, and does a crude pruning of the potential candidates.  It 

also uses a counting argument which shows the number of potential candidates left.  In 

the verification stage it verifies which of the potential candidates are indeed a pattern 

occurrence.  It runs in O(n kk log ) time. 

 

         

 

 17



 

 1.2 Parallel and Distributed Computing (PDC)  

Parallel computing refers to the simultaneous execution of the same task (i.e. 

copying/duplicating a single task into many copies) on multiple processors with some 

coordination between them, in order to obtain the results much faster.  A parallel 

computing system is a computer with more than one processor sharing memory.  There 

are various ways to classify parallel computers, but the major one is based on the 

memory architectures [8].  Based on this criterion, they can be classified into shared 

memory parallel computers and distributed memory computers. 

A shared memory parallel computer contains multiple processors sharing a 

global memory with all processors connected to a bus which acts as a medium for 

communications.  A distributed memory parallel computer also contains multiple 

processors, but each processor has its own local memory.  There is no global memory 

address space shared between them.   

The processors in a parallel computer may communicate in a number of ways 

through a shared memory, a shared bus, a crossbar switch, or an interconnected 

network.  Various architectures of parallel computers include multiprocessing, 

computer cluster, grid computing and distributed computing.  However, a system of n 

processors is generally less efficient than one n-times faster processor.  Parallel 

computing proves to be very effective for those tasks which require computation that 

can be easily divided into sub-tasks. 

Distributed computing is one of the most common approaches to parallel 

computing.  In distributed computing, two or more computers communicating over a 
 18



 

network are assigned a common task.  The interaction between the computers in a 

distributed computing environment is very important and various types of 

communication protocols are used.  Another important factor to be considered is the 

ability to exchange the application software between computers. 

Some of the advantages of a distributed system are openness (each subsystem is 

continually open to interaction with other systems) and scalability (each subsystem can 

be scaled or altered according to the change in the number of users or resources) [8].  

Disadvantages of using a distributed system are in that troubleshooting becomes very 

difficult, because one has to establish the connection to each remote node for analyzing 

the problem, and in that programming them can be quite difficult. 

Distributed computing differs from a computer cluster, which consists of 

multiple stand-alone machines acting in parallel across a local high speed network. 

Unlike the computers in a distributed system, these machines are very tightly coupled 

[8].  A cluster exclusively runs group tasks whereas distributed computing facility does 

not.  Very often, computers which are widely separated geographically can be a part of 

a distributed system, whereas in a cluster all the machines are physically close, often in 

the same room.   

Grid computing is an example of a very large distributed computing system.  A 

grid consists of many isolated clusters connected by means of a large network (such as 

the Internet).  A grid computing environment is typically used to solve problems which 

cannot be solved by any single installation in a reasonable time.  

 
 19



 

          1.3 Applications of PDC in bioinformatics  

Most of the work in bioinformatics involves substantial computation because of 

the large genome sizes and the complexity of biological structures, processes and 

interactions.  Even though a single machine can usually handle these computations, it 

takes a long time to obtain the results.  So there is always a need to find alternative 

means of achieving speed.  For example, when one wants to find the occurrences of a 

large number of patterns in the complete genome of Drosophila, which is of size 180 

MB, then it will take many hours using the naïve approach to pattern matching (O(nm)).   

One can easily argue that the naïve approach should be avoided.  Even after the 

replacement of the naïve approach by a more efficient algorithm, it may still take 

unacceptably long to obtain the results.  Hence this problem can be alleviated by using 

multiple machines. 

With rapid developments in the field of computer science, there are many 

applications of PDC.  Some of the distributed computing projects carried out in 

bioinformatics are: 

 1. Predictor@home - Initiated to predict the protein structures from the 

sequences using BOINC (Berkeley Open Infrastructure for Network Computing). The 

major goal of the project is testing and evaluating of new algorithms to predict protein 

structures [http://predictor.scripps.edu/]. 

 2. Rosetta@home - This project is also aimed at protein structure 

prediction, which often results in the hang-up of a single machine 

[http://boinc.bakerlab.org/rosetta/].   
 20



 

 3. PrimeGrid - initiated for testing an implementation of BOINC in Perl 

[http://www.primegrid.com/].              

             Using powerful parallel computing tools can lead to significant breakthroughs 

in deciphering genomes, understanding genetic disease, designing customized drug 

therapies, and understanding evolution.  Generally, the data sets are large and the 

computation involved is complex, thus taking substantial time for producing the results.  

Therefore the need to change the nature of the program from sequential to parallel, in 

order to speed up the execution. 

             The application of PDC has quickened the biological discovery process to a 

great extent.  One can easily argue that parallel and distributed computing have totally 

changed the view of bioinformatics.    

 

          1.4 PDC cluster at UTA  

             The Distributed and Parallel Computing Cluster (DPCC) at UTA was 

established in 2004, funded by NSF [http://www-hep.uta.edu/~mcguigan/dpcc].  The 

main goal was to facilitate collaborative research which requires large scale storage, 

high speed access and mega processing.   It contains 194 processors and large shareable 

high speed storage (100’s of Terabytes).  Out of 97 machines, 81 are used as worker 

nodes, 2 are used as interactive nodes, 10 are used as IDE based RAID servers and the 

remaining 4 support Fibre Channel SAN.  Each worker node consists of Dual Xeon 

Processors, either at 2.4 GHZ or 2.6 GHZ, 2 GB RAM, IDE storage of size either 60 

GB or 80 GB and have Redhat Linux installed. 
 21



 

 22

Some of the previous bioinformatics work performed on DPCC includes:         

  1. Pseudogene detection system based on a high-performance 

computing platforms such as cluster and grid.  This system enables the user to 

detect pseudogenes by providing the parameters used in the process.  The initial 

steps in the system involve substantial processing, which benefits from the use 

of cluster and grid [5]. 

  2. REPCLASS, an automated tool for the classification of 

repeats, based on various characteristics exhibited by transposable elements.  It 

utilizes the power of cluster computing to quickly classify repeats in entire 

genomes.  It generates the final classification based on outputs of various stages, 

which may result in combined evidence for the classification [25].  



 

 23

CHAPTER 2 

METHODS 

In this chapter we describe the problem statement, the various approaches which 

we took to tackle the problem and our use of parallel and distributed computing to make 

these approaches more efficient. 

 
2.1 The problem statement 

With a very few exceptions, almost all motif finding problems in bioinformatics 

rely on approximate pattern matching.  This is because of the nature of the chemical 

interactions taking place between DNAs, RNAs and proteins, where there is usually 

some variety permitted in the consensus sequences of the binding sites.  In particular, 

individual gene promoter sequences can substantially vary from their consensus, 

allowing for a limited number of insertions, deletions and substitutions.  

The primary problem we attempted to solve was that of finding the putative 

promoter sequences similar to one described in the literature, and matching these 

sequences to the position of genes known to be co-expressed with the gene driven by 

the original promoter.  Promoter sites are targets for binding by RNA polymerase, and 

other elements of the transcription initiation complex.  In eukaryotes they can have very 

diverse sequences and even when a promoter is a target to essentially same 

transcriptional complex its sequence can show a substantial variation from the 

consensus. 



 

 24

In our analysis we have limited the number of substitutions to no more than 2, 

and allowed up to 1 insertion or deletion in the consensus, but no combinations of 

insertions and deletions.  The motivation for this limit was in that a greater variety 

would lead to too many possible targets, and consequently poor specificity.  Although 

the consensus itself may not be known, one can use the experimentally confirmed 

promoter sequence to approximate it. 

  

2.2 Approaches to the problem  

One possible way of dealing with an approximate pattern-matching problem is 

to generate the list of all motifs which would have a match with the original pattern, and 

then attempt to match them exactly.  An exact match with a member of this set would 

then automatically be an approximate match to the original pattern.  When working with 

such set, a naïve approach would perform poorly.  This is because the mismatches, 

insertion and deletion can occur at any position in the pattern and thus generate a large 

set to process.  For example, assume the pattern is ACG.  Including 1mismatch in it will 

create set ACG and CCG, GCG, TCG (mismatch at the first position), AAG, AGG, 

ATG (mismatch at the second position), ACA, ACC, ACT (mismatch at the third 

position).  Similarly, the set can be extended for 2 mismatches, 1 insertion and 1 

deletion. 

Our first concern was the time necessary for obtaining the results.  We 

considered a number of classical algorithms for replacing the naïve approach to pattern 

matching and used Aho-Corasick method because we were looking for a list of patterns, 



 

 25

and because of its linear running time.  Our work was directed by a specific search for 

near-occurrences of a 14 base long testis-specific promoter in the genome of Drosophila 

melanogaster [18].  We have thus generated a set of 38,783 patterns we could search for 

exactly, and constructed an automaton accommodating all these patterns.  However, 

although the size of this automaton was manageable even on a desktop machine, we 

considered the explosion in the number of states to be a major problem.  In the general 

case, one may work with a substantially larger consensus, possibly permitting for more 

substitutions and/or indels.  In consequence, one of our goals was to devise methods for 

optimally dividing the full automaton into smaller parts, which could also be separately 

matched using several CPUs. 

       

2.3 Parallelization of the approaches  

In a parallel approach to pattern matching, one divides the system into many 

sub-systems (small problems), and then distribute each of these sub-problems to a 

processor, connected in a cluster.  In our application, each of these sub-problems was 

submitted as a separate job on the cluster using PBS commands (Portable Batch 

System) and the output of each job was stored in a common directory.  A shell script 

was written for the execution of each job and submitted using a qsub command.  The 

first, and the most straightforward division of our problem into separate tasks involved 

the separation of the entire Drosophila genome into its 6 constituent chromosomal arms, 

and submitting the complete automaton (encapsulating all patterns) along with a 

chromosomal arm to a separate processor.  The overall design and the flow of 



 

information from one step to another in a distributed system using this approach are 

shown in Figure 2.1 below: 

  

 26

 

  START 

STEP2 referred to the hits obtained in the entire Drosophila genome. STEP3 referred 
to the hits obtained near the given list of genes, further described in the Results 

section 
 

Figure 2.1 Design of our distributed system for parallelization.   
 

Node 3- 
for 
chrom 
2R 

 Original 
pattern 

   STEP1 

STEP2 

Patterns 
generated 

STEP2 STEP2 STEP2 STEP2 STEP2 

Orig. 
hits 

STEP3 STEP3 STEP3 STEP3 STEP3 STEP3 

Node 2- 
for 
chrom 
2L 

Node 4- 
for 
chrom 
3L 

Node 5- 
for 
chrom 
3R 

     Reduced hits for each chromosome under consideration 
Node 1- 
for 
chrom X 

Node 6- 
for 
chrom 4 



 

 27

As expected, the distributing of the jobs led to a substantial speedup in 

computation.  The time taken was dependent on the longest job executing, among all 

jobs submitted to the cluster.  However, after the distributing our implementation of 

Aho-Corasick algorithm was taking approximately1.5 hours compared to 4 taken by the 

naïve approach.  So we divided the system into even smaller steps, which could run in 

parallel.  Initially, we created only six different units, but latter on we continued 

dividing it, often coupled with the division of the complete automaton to smaller ones 

comprising subsets of all patterns.  The smaller automata also led to a reduced number 

of hits, and thus reduced overhead in actions done for each hit (these actions being 

distributed in this case). 

After all optimizations it took just minutes to produce the results.  Hence the 

overall performance of the system was substantially improved (about 50-fold) by 

efficiently implementing Aho-Corasick algorithm and using cluster computing.  Table 

2.1 below shows the overall comparison between the times taken for each of the 

approaches, including the naïve method we used in order to measure the performance 

gain. 

Table 2.1 Comparison of Naïve with Automaton Approach 
Approach Environment Time Taken 

Naïve UNIX 18 hours, 45 minutes 

Naïve CLUSTER (6-WAY) 3 hours, 48 minutes 

Finite State Automaton CLUSTER (6-WAY) 1 hour, 30 minutes 

Finite State Automaton CLUSTER (30-WAY) 20 minutes 



 

 28

 

As we shall describe in more detail later, we have intersected the list of motif 

matches in the entire Drosophila genome with the list of target genes we were interested 

in, and this process was the final step in our computation. 

 

2.4 Algorithms in detail  

2.4.1. Technical details about the algorithms 

          Our system employs four algorithms for identifying all the occurrences of a large 

list of motifs in the complete genome of a species, generated from a given motif and 

then filtering out the hits obtained according to the given list of genes.   The following 

sections describe the each of these algorithms in detail. 

 

                    2.4.1.1 Algorithm for generating patterns 

              This algorithm is employed for generating all patterns, from a single motif, by 

taking into consideration substitutions, insertion and deletion of any character from the 

DNA alphabet, consisting of 4 letters (A, C, G, T).   

              The algorithm can generate patterns from a template of any length, for each of 

the following cases: 

1. Up to 2 mismatches in the pattern, 

2. 1 insertion in the pattern, 

3. 1 deletion in the pattern, 

4. Including both mismatches and insertion in the pattern and 



 

 29

5. Including both mismatches and deletion in the pattern. 

Based on the user’s choice, it can generate patterns accordingly.  The core part is shown 

in Algorithm 2.1 below:  

 
                                Algorithm 2.1: Generation of Patterns 
 
Generate-patterns (choice, pattern p, plength) 
If choice is 1 then 
    If number of mismatch =1 then 
        For pos = 1 to plength do 
              Foreach c in [A, C, G, T] do 
                     Replace the character at pos by c; 
    Else if number of mismatch =2 then 
         For pos = 1 to plength do 
              Foreach c in [A, C, G, T] do 
                     Replace the character at pos by c; 
                            For pos1 = pos + 1 to plength do 
                                  Foreach d in [A, C, G, T] do 
                                        Replace the character at pos1 by d; 
Else if choice is 2 then 
     For pos = 1 to plength do 
           Foreach c in [A, C, G, T] do 
                  Insert c at pos; 
Else if choice is 3 then 
     For pos = 1 to plength do 
           Delete the character at pos; 
Else If choice is 4 then 
     If number of mismatch =1 then 
         For pos = 1 to plength do 
               Foreach c in [A, C, G, T] do 
                     Replace the character at pos by c; 
     Else if number of mismatch =2 then 
          For pos = 1 to plength do 
               Foreach c in [A, C, G, T] do 
                     Replace the character at pos by c; 
                            For pos1 = pos + 1 to plength do 
                                  Foreach d in [A, C, G, T] do 
                                        Replace the character at pos1 by d; 
     Foreach pi in [p1, p2, p3…….pn] do 
           For pos = 1 to pilength do 



 

 30

                 Foreach c in [A, C, G, T] do 
                       Insert c at pos; 
Else If choice is 5 then 
     If number of mismatch =1 then 
         For pos = 1 to plength do 
               Foreach c in [A, C, G, T] do 
                     Replace the character at pos by c; 
     Else if number of mismatch =2 then 
          For pos = 1 to plength do 
               Foreach c in [A, C, G, T] do 
                     Replace the character at pos by c; 
                            For pos1 = pos + 1 to plength do 
                                  Foreach d in [A, C, G, T] do 
                                        Replace the character at pos1 by d; 
     Foreach pi in [p1, p2, p3…….pn] do 
           For pos = 1 to pilength do 
                 Foreach c in [A, C, G, T] do 
                       Delete the character at pos; 
 
In cases 4 and 5, this method first generates all patterns including mismatches and then 

includes insertion or deletion in these patterns.         

                 

                    2.4.1.2 Algorithm for matching patterns 

              The core of our approach is an implementation of the Aho-Corasick algorithm 

for matching a list of motifs against the genome.     

The Aho-Corasick algorithm has already been described in section 1.1.2.4. It is 

a dictionary-matching algorithm which locates elements of a finite set of patterns (the 

"dictionary") in an input text. It matches all patterns at once, so the complexity of the 

algorithm is linear in the size of the patterns plus the size of the search string.  As 

mentioned earlier, the algorithm consists of two phases – constructing a keyword tree 

(i.e. an automaton from the set of patterns and parsing the string through the automaton 



 

 31

constructed in the previous phase.  The detailed description of these phases is given in 

Algorithm 2.2 below: 

 
 
                                Algorithm 2.2: Aho-Corasick Algorithm 
 

Phase 1 – Construction of automaton from the list of patterns 
Construct-automaton ([p1, p2……….pn]) 
Begin with a root node; 
Foreach character c in p1 do 
      Add an edge and a node; 
Foreach pi in [p1, p2……….pn] do 
      Starts at the root; follow the path labeled by characters of pi;

        If the path ends before pi then 
            Continue it by adding new edges and nodes for all the remaining 

characters of pi;
             Store identifier i of pi at the terminal node of the path; 
Foreach node v, except the root, with a label l (v) do 
      Find a node v’, such that l (v’) = longest proper suffix of l (v), computed by 

trying nodes labeled by shorter and shorter suffixes of l(u), where u is the parent of v 
such that l(v) = l(u) c;  

 
Phase 2 – Lookup of the automaton constructed 
Lookup ( ) 
Starts from the root; 
Foreach character c in the given string s do 
      Follow the path labeled by characters of any pi as long as possible; if not 

makes a transition based on the failure link for that node; 
        If the path leads to a node with an identifier i then  
            pi is found in s; 
         

 

                    2.4.1.3 Algorithm for arranging patterns 

              Using the Algorithm 2.2 we found the hits in the entire genome of Drosophila.  

Even though the size of the automaton constructed was large, a single machine was able 

to handle our problem.  However, one can easily argue a scenario where a single 



 

 32

machine would fail, due to large automaton size.  In that case we have to divide the 

single automaton into a number of smaller ones which can be handled by a computer, 

even though this would result in introducing additional states.   

              In one of our tests we have divided our automaton constructed from 38,783 

patterns into 5 smaller automata and distributed them to separate processors.  We were 

still concerned about the size of each of the newly formed automata, due to the 

additional states.  We have therefore developed an algorithm which reduces this 

additional number of states.  Basically, the algorithm arranges all patters in such a way 

that similar ones appear in a group, based on the length of their common prefix.  This 

strategy tends to reduce the total size of the automata.  The core method is shown in 

Algorithm 2.3 below: 

                              
                  Algorithm 2.3: Arranging a List of Patterns 
 
Arrange-patterns ([p1, p2……….pn], pat-size) 
Copy p1 to the output file; 
l = pat-size; 
Pre = p1 of l; 
While (l > 0) do 
       Foreach pi in [p1, p2……….pn] do 
             Pre1 = pi of l;  
             j = compare (pre, pre1); 
             If j = match then 
                 Copy pi to the output file;              
l = l-1; 
 

One needs to be careful in the initial determination of a common prefix between 

the patterns.  In our particular case, we knew that all patterns were derived from a 14-

base pattern (ATCGTAGTAGCCTA) [18], so we looked at the variants of this 14-base 



 

 33

motif as a common prefix, each of length 13.  Table 2.2 below shows the total number 

of states obtained after adding the states from each of the automata, before and after 

arranging the patterns. 

 
 
 

Table 2.2 Total Number of States 
Scenario No. of states in the automata 

Before the arrangement of patterns 153395 

After the arrangement of patterns 140693 

 

Table 2.2 does not show significant reduction in the size of the automata.  The reason 

behind this is in that most of the patterns generated were already partially arranged.  In 

order to confirm this, we have randomly shuffled all 38,783 patterns in a file and 

constructed the automata using this order.  We then arranged the patterns using the 

Algorithm 2.3 and constructed the automata after arranging and suitably dividing the 

set.  Table 2.3 below shows the significant difference between the two, in terms of the 

size of the constructed automata. 

 

Table 2.3 Significant Reduction in the Size of Automata 
Scenario No. of states in the automata 

Random Placement of patterns 256786 

After Arrangement of patterns 140693 

 



 

 34

                    2.4.1.4 Algorithm for filtering out the hits 

              Using the previously described algorithms we have obtained the hits for the 

patterns in the complete Drosophila genome.  But the problem was to find out the hits 

of these patterns in the upstream regions of genes from the given list.  So we now 

incorporated an algorithm which discards all hits not found in the considered regions, 

taken from the upstream (-1000 bases) to the downstream flanks (+1000 bases) of all 

the genes of interest.  The core method is shown in the Algorithm 2.4 below: 

 
                                Algorithm 2.4: Filtering the Hits Obtained in the Entire Genome 
 
Foreach hit h in the hits file do 
      Foreach gene g in the genes file do 
          regionstart = genestart - 1000; 
          regionend = geneend + 1000; 
          If (h > = regionstart) and (h <= regionend) then 
                Copy g to the output file; 
                Copy h to the output file; 
           
Since we have divided the entire Drosophila genome to individual chromosomes to be 

separately matched, we have also divided the given list of genes based on their 

chromosomal locations and used these sub-lists in Algorithm 2.4.  

               

                    2.4.1.5 Clustering approach 

              By using a composite automaton we have improved the efficiency of the 

overall system.  Most modern computers have large memory, so the size of constructed 

automaton should rarely be an issue.  However, in a few exceptional cases we have to 

divide the automaton so that its size can be efficiently handled.   



 

 35

              Now let us assume that the memory of a system is not sufficient to handle the 

current size of the automaton constructed from our 38,783 patterns and that we know 

the size s of an automaton which can be handled in memory.  We thus have to divide 

this automaton into a number of small automata, each of size less than or equal to s.  We 

also need to perform this division efficiently, so that it results in a minimal number of 

additional states.  This means that we have to arrange the patterns by some method.  We 

describe an approach which can solve this problem below.   

               This approach uses hierarchical clustering, with a slight difference.  We start 

with clustering the patterns based on the computed distances between them.  The 

distance metric is computed as the difference between the pattern lengths and the length 

of its longest common prefix.  For example, the distance between “ATAGATCATG” 

and “ATACATCATG” would be 7, but the distance between “ATAGATCATG” and 

“ATAGATCCAT” would be only 3.  We then form a matrix representing the distance 

of each motif from every other motif in the list.  Like in the hierarchical clustering, we 

can group these patterns based on the distance.  But unlike hierarchical clustering where 

a node can have only two children, in this case we can have any number of children 

branching from a single node, and the level at which a node is formed represents the 

difference in prefix sizes between the motifs.  For example, suppose we have the 

following motifs – AGATC, AGTAC, ATTAC, ATTCC and ATTGC.  Figure 2.2 

below shows the clustering of these motifs: 

 



 

Cluster3

Cluster2

Cluster1

 36

 ATTAC ATTCC ATTGC AGATC AGTAC 

Figure 2.2 Clustering approach 
 

In Figure 2.2, Cluster1 indicates distance of 2 between the motifs, Cluster2 indicates 

distance of 3 between the motifs and Cluster3 represents distance of 4.   

               While constructing the clustered tree, we keep track of the maximal number of 

states at each of the formed nodes.  So when we divide the tree by cutting off a branch, 

in order to obtain smaller size automata, it provides information about the size of the 

result.  This provides an efficient way of dividing the automaton when the overall size is 

too large and we know the size that can be handled by the memory.   

               There are some issues which need to be addressed before this method can be 

implemented.  One of them is that a distance can be calculated only for strings of the 

same length, but in our case all motifs are not of same length (they are of lengths 13, 14 

or 15).  So we need to make some changes in the core distance metric to suit our needs, 



 

by substituting the length of the motifs with their maximum, even if it may lead to 

artifacts, such as having identical strings at a distance greater than 0.   

 

2.4.2 Motif properties 

           Lemma 1: Suppose we have a motif of length m and we allow up to 2 

mismatches, 1 insertion and 1 deletion in it.  The maximal total number of motifs which 

can be derived in this way can be obtained by adding the counts from the cases below. 

Case 1: Original pattern 

Maximal number of patterns = 1, without any substitutions, insertion or deletion. 

Case 2: Allowing 1 mismatch in the original pattern 

Maximal number of patterns generated = 3m. 

Case 3: Allowing 2 mismatches in the original pattern 

Maximal number of patterns generated = 9/2 *m (m-1). 

Case 4: Allowing 1 insertion in the original pattern 

Maximal number of patterns generated = 4(m-1). 

Case 5: Allowing 1 insertion and 1 mismatch in the original pattern 

Maximal number of patterns generated = 12m (m -1)  

Case 6: Allowing 1 insertion and 2 mismatches in the original pattern 

Maximal number of patterns generated = 18m ((m-1)2) 

Case 7: Allowing 1 deletion in the original pattern 

Maximal number of patterns generated = m 

Case 8: Allowing 1 deletion and 1 mismatch in the original pattern 
 37



 

 38

Maximal number of patterns generated = 3(m2) 

Case 9: Allowing 1 deletion and 2 mismatches in the original pattern 

Maximal number of patterns generated = 9/2 *(m2) (m-1) 

           Proof: Case 1 is straightforward.  In Case 2, we can allow 1 mismatch, which 

can occur at any position within the motif and this mismatch can be one of the three 

remaining letters.  Thus the maximal number of patterns generated is 3m. 

In Case 3, we can allow 2 mismatches and they can occur at any positions in the motif.  

Again, the mismatches can be any one of the three remaining letters.  Therefore, we 

have to consider the combinations of the positions at which these two mismatches can 

occur and for each combination, we can have 9 different motifs.  Thus the maximal 

number of patterns generated is mC2 * 9, where mC2 = (m (m-1))/2 is the number of 

possible combinations of positions. 

In Case 4, we can allow 1 insertion at any position in the original pattern and the 

insertion can be one of the four letters [A, C, G or T].  There are m-1 possible insertion 

positions, so the maximal number of patterns is 4(m-1).  In practice some of these 

patterns would be identical, depending on the exact motif composition; however we are 

here concerned with the maximal possible number only. 

In Case 5, we can allow 1 mismatch and 1 insertion in the pattern.  The count is thus 

resulting from the multiplication of Case 2 and Case 4. 

In Case 6, we can allow 2 mismatches and 1 insertion in the pattern.  Similar to Case 5, 

we first generate all the patterns by allowing only mismatches and then include 



 

insertion in those patterns.  Hence the maximal number of patterns generated is 9/2 m 

(m-1) * 4 (m-1) = 18m ((m-1) 2). 

In Case 7, we can allow 1 deletion, which can occur at any position in the given motif.  

Hence maximal number of patterns generated is m. 

In Case 8, we can allow 1 mismatch and 1 deletion in the pattern.  Here we first 

generate all the patterns by allowing only 1 mismatch and then include 1 deletion in all 

the previously generated patterns.  Hence the maximal number of patterns can be 

generated by multiplying the counts from cases 2 and 7. 

In Case 9, we can allow 2 mismatches and 1deletion in the pattern.  Similar to Case 8, 

we first generate all patterns by allowing mismatches and then include deletion in all 

those patterns.  Hence the maximal number of patterns can be generated by multiplying 

the counts from cases 3 and 7. 

                                                                                                                  □  

           Lemma 2: When an automaton A of size N is divided into k smaller automata, 

A1, A2, …..,Ak, each of size N1, N2, …,Nk, respectively, then N∑
=

k

i 1
i>N.  

           Proof: The sum of the sizes of A1 through Ak cannot be smaller than N, since 

they cumulatively need to have all states necessary to parse all patterns processed by A.  

Each pattern starts from the root node, so each of Ai needs to incorporate a sub-tree 

starting from the root, and all sub-trees must be incorporated in some Ai.  It follows that 

N∑
=

k

i 1
i>=N.  

 39



 

We now show that it cannot be that ∑ N
=

k

i 1
i=N.  If any Ai and Aj share a path 

from the root (all their patterns having the same prefix) then they must repeat the states 

along that path, and other automata Al, l not equal to i, j, must still contain all other 

paths.  If no Ai and Aj share a path from the root (i.e. no two automata track patterns 

with same prefixes) then each of Al must replicate the root itself, leading to 

N∑
=

k

i 1
i=N+k-1. 

                                                                                                          □    

We illustrate Lemma 2 with the following example.  Suppose we have two 

patterns, ACTA and ACTG, then the automaton constructed from these two patterns 

looks like 

 

Figure 2.3 Sample automata 1 
 

The size of the automata shown in Figure 2.3, N = 6.  Now if we build two separate 

automata, one for each motif, as shown in Figure 2.4 below: 

 40



 

 

Figure 2.4 Sample automata 2 
 

The size of the first automaton is N1 = 5 and of the second one is N2 = 5, so N1 + N2 = 5 

+ 5 = 10 > N.  When splitting an automaton into 2, the number of states is increased by 

1 + length of the common prefix (between the motifs tracked by the automaton) 

In this example, the common prefix between the two motifs is ACT, hence its length is 

3, so 1 + 3 = 4, which is the difference between (N1+ N2) and N. 

Considering the worst case, when both the patterns in the above example are different, 

still the number of states increases by 1 (length of the common prefix is 0).  Another 

important observation is, when we have an automaton made from patterns sharing long 

prefixes, then splitting it into small automata results in a higher number of new states 

compared to the automata constructed from patterns sharing shorter prefixes. 

           In order to further illustrate Lemma 2, we took one of the finite state machines 

obtained after arranging the patterns and divided into five equal sets, then constructed a 

machine for each set of patterns.  The number of states in the original finite state 

 41



 

 42

machine was 16981.  Table 2.4 below shows the results after dividing this finite state 

machine into 5 smaller machines. 

Table 2.4 Results Proving Lemma 2 
Finite State Machine no. No. of states

                1 1972 

                2 3150 

                3 3877 

                4 5029 

                5 4855 

             Total 18883 

 

           Corollary: Cuts at the higher levels in a clustered tree always result in minimal 

number of additional states in the newly formed automata. 

           Proof: The higher levels in our clustered tree correspond to shorter common 

prefixes and from Lemma 2 it follows that shorter common prefixes would lead to a 

smaller number of additional states. 

                                                                                                                     □    

           The results stated above form a theoretical basis for our division of a large 

automaton into smaller ones.  In order to divide a large automaton we should cluster all 

the motifs first and then use the clustering for the division.  By Lemma 2, the division 

of a single automaton into multiple automata would result in additional states.  Suppose 



 

we have four different motifs, AC, AG, GT and GA.  We cluster all the motifs.  The 

clustered tree is shown in Figure 2.5 below: 

 

 

 

 

 

 

 43

 

1

C 

Figure 2.5 Sample clustered tree 1
 

A finite state machine built from the clustered tree in Figure

below: 

 

Level 
 

 2.5 is shown i
Level 2
 
A
 AG
  GT
 GA
Level 0
n Figure 2.6 



 

 44

            Figure 2.6 Finite State Machine (FSM) for the sample clustered tree 1 
 

Now if we want to divide the above automaton into two, then one can cut the automaton 

in various ways depending upon the combinations of the edges.  Some of the ways in 

which the cuts can be made in the FSM shown in Figure 2.6 are shown in figures 2.7 

and 2.8.  In these figures, if a cut is made on the edge connecting level1 and level2, then 

we say that it is made at level2 and when a cut is made on the edge connecting level0 

and leve1, then it is a level1 cut. 

 

A

T 

C A

G

G

   Level 0    Level 1 Level 2 

0 1 2 

3 

4 5 

6 



 

 45

If we denote the number of cuts by n and the level at which cut i has been made by Li, 

then we can generalize a formula for finding the number of extra states. 

 

Figure 2.7 Way of cutting FSM shown in Figure 2.6, by making a cut at level 2 
 

 

Figure 2.8 Way of cutting FSM shown in Figure 2.6, by making a cut at level 1 
 

 

A

T 

C A

G

G

   Level 0    Level 1 Level 2 

0 1 2 

3 

4 5 

6 

A

T 

C A

G

G

   Level 0    Level 1 Level 2 

0 1 2 

3 

4 5 

6 



 

No. of extra states = ∑
=

i

Using (2.1), we can compute the number of extra states for each of the cases described 

above. 

i 1
i

For Figure 2.8, No. of extra states = 1 (Level 1 cut). 

Hence a cut at higher levels always results in the minimal number of additional states. 

 tree which will result in automata 

e 

tered tree inorder to obtain minimum number of additional states.  

n

i 1
L         (2.1) 

For Figure 2.7, No. of extra states = ∑
n

L  = 2 (Level 2 cut). 
=

           Lemma 3: The number of cuts in a clustered

with the minimal number of additional states depends on the number of children th

root node possesses. 

           Proof: Based on Lemma 2 and its corollary, the cuts should be made at the 

higher levels in a clus

Suppose we have a clustered tree shown in Figure 2.9 below: 

 

 46



 

                 Root node 
Level 0

Level 1 

Level 2

 

Figure 2.9 Sample clustered tree 2 
 

Now if we divide it, as shown in Figure 2.10 below:  

                 Root node 
Level 0

Level 1 

Level 2

 

Figure 2.10 Splitting of sample clustered tree 2 
 

 47



 

Then we have three small automata (the number of automata is equal to the number of 

children of root node) as shown in Figure 2.11 below: 

 

Level 0 

Level 1 

Level 2
 

Figure 2.11 After splitting the sample clustered tree 2 
 

Now using (2.1), no. of additional states is given as 

1 + 1 + 1 = 3 

All other attempts of cutting the tree in more than 3 would only result in more 

additional states as shown in Figure 2.12 below: 

 

 48



 

                 Root node 
Level 0

Level 1 

Level 2

 

Figure 2.12 Cuts proving the Lemma 3 
 

Using (2.1), no. of extra states after performing the cuts shown in Figure 2.12 is given 

as 1 + 1 + 1 + 2 = 5. 

Hence once can conclude that the number of cuts should be equal to the number of 

children the root node possess, in order to obtain automata with the minimal number of 

additional states. 

                                                                                                                     □  

 Given the size k of an automaton which can be handled by a computer, the problem is 

to divide a single large automaton in such a way that all smaller automata contain no 

more than k states with a minimal number of cuts made. 

 This problem is essentially the bin packing problem, which is NP-hard [24].  In the bin 

packing problem, objects of different volumes must be packed into a finite number of 

 49
bins of capacity V in a way that minimizes the number of bins used.  There is no 



 

 50

 all the new automata are of 

size no 

 

 

 Figure 2.13, the leaf nodes (level 2) are the motifs and the nodes at higher levels 

algorithm up-to-date which can provide an optimal solution for this problem in every 

case.  There are only approximation algorithms available.   

We need to divide the automaton in such way that

more than k, containing patterns of different lengths and this should be done 

with a minimal number of cuts.  For example, one such tree is shown in Figure 2.13 

below: 

 

Figure 2.13 Sample clustered tree 3 

                 Root node 
Level 0

In

represent the clusters.  In this example, we assumed that the motifs which form clusters 

at level 1 share a common prefix of length 1 and at level 0 they share a common prefix 

of length 0.  Each node in the tree shown in Figure 2.13 is labeled with the number of 

states based on the length of motifs and common prefixes between them.  This approach 

Level 1 

Level 2

   m1 m2

  n1=m1+m2-1 

m3

   
m4

m6m5

  n2=m4+m5+m6-2 

 n1+n2+m3



 

of labeling the nodes provides information such as the number of states which will be 

resulting, if a cut is made at that instant in the tree.  Based on this clustered tree, we can 

form an automaton and its size will be n1+n2+m3, with variables as in Figure 2.13.  Now 

let us assume that a computer cannot handle an automaton of this size.  We need to 

divide the tree in order to form smaller automata, so that each one can be handled and 

for that we need to make many cuts.  So, based on the Lemma 2, we should try to make 

cuts at level1 (the edges connecting level 0 with level 1).  If we cannot achieve the 

minimal sizes doing this, then we need to keep dividing, and this leads to an NP-hard 

combinatorial problem.  One can argue that shifting a sub-tree from one branch to 

another can solve this, but this is not true.  This is because whenever we perform the 

shifting of branches, it would result in a sub-optimal assignment. 

 51



 

CHAPTER 3 

RESULTS 

 

In this chapter, we shall describe the applications of our algorithms in detail, the 

source (Flybase) from which we extracted additional information, the input data set of 

genes and our results. 

 

3.1 Description of the problem 

It is common that a biologist is interested in a particular region of a genome and 

conducts various experiments in the laboratory, in order to analyze the region and 

determine its role.  One of our collaborators, a biologist from UTA, is conducting 

research on male-specific genes of Drosophila melanogaster and she was interested in 

knowing how often these genes use a 14-base motif [18] that was determined to play an 

essential role in expressing those genes in the male germ line. 

           Our collaborator also prepared a list of genes which were the potential candidates 

for being driven by the 14-base pattern in the upstream region.  This list was obtained 

from [23]. The list also contained FlyBase [40, 41, 31] IDs for each of these genes, 

which helped us to extract additional information required for processing.  The 

significance of this motif is in that it has been experimentally shown to drive the 

 52



 

expression of testis-specific genes in the male germ line.  The exact sequence of this 

motif is ATCGTAGTAGCCTA. 

           Our task was to develop computational tools, described in Chapter 2, which 

efficiently find all occurrences of this 14-base motif in the upstream regions of the 

genes present in the list.  Various studies [18, 14] have also shown that the slight 

variants of this 14-base motif drive the expression of testis-specific genes in different 

Drosophila species.  Figure 3.1 below explains this: 

 

(i)   (Source: F.Michiels et al., 1989 [18] ) 
 

 

(ii) (Source: Nurminsky et al., Nature, 1998) 
 

Figure 3.1 Inclusion of mismatches and gaps in the core 14-base promoter 
 

In Figure 3.1 (i), the motif which drives the expression of testis-specific genes in 

Drosophila melanogaster, also drives the expression in Drosophila hydei, but with two 

mismatches at positions -47 and -41.  Hence the study concluded that this 14-base motif 

can have up to two mismatches without loosing its promoter capacity.  Another study 

conducted at Harvard University [14] showed that this motif can also feature a gap.  In 

 53



 

Figure 3.1 (ii) variants of this motif which drive the expression of β2 tubulin and Sdic 

genes are shown.  The ‘*’ symbol denotes the same character in both motifs and a dot in 

the motif for β2 tubulin gene denotes a gap.  The motif which drives the expression of 

Sdic gene includes two mismatches and an insertion.  These studies encouraged us to 

look for the 14-base motif, with 2 mismatches, 1 insertion (gap) and 1 deletion in it.  

Since we can have 1-base insertion, we also allowed 1-base deletion.   

We illustrate this with another example.  Suppose ACTG is the given pattern of 

interest, and we allow up to 2 mismatches, 1 insertion and 1 deletion in this pattern. 

Then the following patterns can be derived: 

1. 1 mismatch in ACTG – CCTG, GCTG, TCTG (mismatch at position 1), AATG, 

AGTG, ATTG (mismatch at position 2), ACAG, ACCG, ACGG (mismatch at 

position 3), ACTA, ACTC, ACTT (mismatch at position 4) 

2. 2 mismatches in ACTG – AATG, AGTG, ATTG, CATG, CCTG, CGTG, 

CTTG, GATG, GCTG, GGTG, GTTG, TATG, TCTG, TGTG, TTTG (1 

mismatch at position 1 fixed and the other occur at position 2), ACAG, ACCG, 

ACGG, CCAG, CCCG, CCGG, CCTG, GCAG, GCCG, GCGG, GCTG, 

TCAG, TCCG, TCGG, TCTG (1 mismatch at position 1 fixed and the other 

occur at position 3), ACTA, ACTC, ACTT, CCTA, CCTC, CCTG, CCTT, 

GCTA, GCTC, GCTG, GCTT, TCTA, TCTC, TCTG, TCTT (1 mismatch at 

position 1 fixed and the other at position 4), AAAG, AACG, AAGG, AATG, 

ACAG, ACCG, ACGG, AGAG, AGCG, AGGG, AGTG, ATAG, ATCG, 

ATGG, ATTG (1 mismatch at position 2 fixed and the other occur at position 
 54



 

3), AATA, AATC, AATG, AATT, ACTA, ACTC, ACTT, AGTA, AGTC, 

AGTG, AGTT, ATTA, ATTC, ATTG, ATTT (1 mismatch at position 2 fixed 

and the other occur at position 4), ACAA, ACAC, ACAG, ACAT, ACCA, 

ACCC, ACCG, ACCT, ACGA, ACGC, ACGG, ACGT, ACTA, ACTC, ACTT 

(1 mismatch as position 3 fixed and the other occur at position 4). 

3. 1 insertion in ACTG – AACTG, CACTG, GACTG, TACTG (insertion at 

position 1), AACTG, ACCTG, AGCTG, ATCTG (insertion at position 2), 

ACATG, ACCTG, ACGTG, ACTTG (insertion at position 3), ACTAG, 

ACTCG, ACTGG, ACTTG (insertion at position 4). 

4. 1 deletion in ACTG – CTG (deletion at position 1), ATG (deletion at position 

2), ACG (deletion at position 3), ACT (deletion at position 4). 

5. 1 mismatch and 1 insertion in ACTG – first generate all patterns shown in 1 and 

then include 1 insertion (similar to 3). 

6. 2 mismatches and 1 insertion in ACTG – first generate all the patterns shown in 

2 and then include 1 insertion (similar to 3). 

7. 1 mismatch and 1 deletion in ACTG – generate all patterns shown in 1 and then 

include 1 deletion (similar to 4). 

8. 2 mismatches and 1 deletion in ACTG – generate all patterns shown in 2 and 

then include 1 deletion (similar to 4). 

Many of these patterns (such as CCTG, GCTG or TCTG) are repeated.  Even 

after eliminating the duplicates, which were necessary in case of naïve approach to 

pattern matching (for sanity check), the number of patterns was still very large.  The 
 55



 

task was to find an efficient algorithm, which can easily handle them.  This algorithm 

has already been described in Chapter 2.   

 

3.2 Data source 

In order to perform the matching, we needed to obtain additional information 

about each of the genes in the list [23] provided by our collaborator.  In particular, we 

had to extract the upstream regions of these genes, as precisely as possible.  Since our 

initial list contained Flybase IDs for each gene, we have decided to use FlyBase 

[http://www.flybase.org/] as our source of additional information.  Flybase is one of the 

most popular Drosophila repositories, and it contains sequences deposited by scientists 

from all over the world.  It is maintained by a consortium of Drosophila researchers 

located at Harvard University, Cambridge University (UK), Indiana University and the 

National Center for Biotechnology Information (NCBI), USA.  It contains the complete 

genome sequence of Drosophila and it is updated whenever new genes are found and 

annotated.   

Flybase contains information about the genes, the expression and properties of 

transcripts and proteins, functions of gene products, chromosomal aberrations, genomic 

clones, etc.  It incorporates various visualization tools, which provides different views 

of the genomic regions.  One can access the information stored in Flybase by providing 

a Flybase ID, gene name, chromosomal location, or other keywords associated with the 

item of interest.  One can easily retrieve a particular region of the genome by providing 

its start and end, for instance. 
 56



 

In our study, we needed the upstream regions to check for the occurrence of a 

14-base motif we were interested in.  As mentioned earlier, in order to extract the 

upstream region of a gene, we need to know its start and end, transcription and 

translation data, number of mRNAs, length of its 5’ UTR and its orientation (either 

original or complementary strand).  The upstream (regulatory) region of a gene lies 

immediately before its 5’ UTR.  Using Flybase, we could obtain all this information.  

 

3.3 Input data set 

Our collaborator has provided a list of putative target genes for our analysis, but 

we still needed to extend it.  Two screen shots of our extended list are shown in Table 

3.1 and Table 3.2 below (Table 3.2 is the continuation of Table 3.1). 

 57



 

 
 
 

In Table 3.1, the “Status” column provides information whether the gene was 

found in Flybase or not, and if the upstream region could not have been uniquely 

located, the reason for that. 

 58



 

 

 

In Table 3.2, the column “Information about Location” describes the location of 

the gene along with positions of mRNA and CDS (Coding Sequence, or the translated 

sequence). 

Based on the above information for each gene, we classified them into different 

categories such as these having more than one mRNA, genes with no 5’ UTR recorded, 

 59



 

or genes not found in Flybase.  A screen shot of the classification summary is shown in 

Table 3.3 below: 

Table 3.3 Classification of Genes Based on the Extracted Information 

 

However, the gene-by-gene approach worked poorly.  Not only that it was 

labor-intensive, but it was also problematic.  For example, the problem with the second 

category in Figure 3.3 was in that since there was no 5’ UTR recorded we could not 

correctly locate the upstream region.  All the genes in category 3 had more than one 

mRNA and hence more than one recorded 5’ UTR.  This led to an ambiguous situation 

about which 5’ UTR should be taken into consideration for determining the upstream 

region.  Genes in category 4 had conflicting Flybase IDs.  Genes in category 5 

immediately start after another gene, due to which it was not possible to extract their 

upstream regions.  Genes in category 6 were not found in Flybase.  Category 7 

represented genes with multiple entries.  Genes in category 8 were found, but had no 

exact sequence definition.   

Looking at the category 1 genes we could divide them into three types based on 

the length of the upstream region which could have been extracted (without coliding 

 60



 

with another gene).  These categories were (1.3) less than or equal to 100bp, (1.2) 

between 100 -1000bp and (1.1) 1000bp.    This classification of category 1 genes is 

shown in Table 3.4 below. 

Table 3.4 Classification of Category 1 Genes 
Category Name Number of 

genes 

1 Upstream sequence extracted 543 

1.1 Genes having clear upstream region of length 1000bases 363 

1.2 Genes having clear upstream region of length between 

100-1000bases 

150 

1.3 Genes having clear upstream region of length up to 

100bases 

30 

 

 

3.4 Results 

In order to avoid extracting the upstream region for every gene in the given list 

and avoid the problems described in the previous section, we looked at the complete 

genome of Drosophila.  We divided the file containing the genome into 6 smaller files, 

one for each chromosomal arm of Drosophila.  We also classified the given list of genes 

into six categories based upon the chromosomes on which they were located.  Table 3.5 

below shows the results obtained for X chromosomal arm of Drosophila (original hits) 

and also for the genes from our list which are located on the X chromosomal arm 

 61



 

(reduced hits were obtained from the original hits, by considering the region from -1000 

bases upstream to +1000 bases downstream).  

Table 3.5 Results for the Entire Genome and Genes of Interest 

 

We have obtained the results for the remaining 5 chromosomal arms of 

Drosophila in the same way.  The number of patterns under consideration was 38,783 

and the number of genes involved was 755.  The total number of hits in the entire 

genome was 7957 (original hits).  The number of hits found in the vicinity of 755 genes 

was 277 (reduced hits). 

 62



 

We further classified these 277 hits into four categories, depending on their 

location.  These categories were: 

1. Category 1 – hits which were found in the broader upstream region (-1000 to -

200 bases, with respect to the start of the gene). 

2. Category 2 – hits which were found in the putative promoter region (-200 to +50 

bases). 

3. Category 3 – hits which were found within the gene (gene start – gene end). 

4. Category 4 – hits which were found in the downstream region of the gene 

(between the gene end and +1000 bases downstream). 

A screen shot of this categorization is shown in Table 3.6 below. 

Table 3.6 Classification of Reduced Hits 

 

 63



 

 

We were primarily interested in the category 2 hits (-200bases to +50bases 

relative to the gene start), because a promoter should be very close to the Transcription 

Start Site (TSS).  Moreover, studies have shown that the promoter becomes less active 

with the increase in its distance from the TSS.  The list of genes which belong to 

category 2 hits is shown in Table 3.7 below, and the exact positions of the matches we 

have found in this category are shown in Figure 3.2. 

 

Table 3.7 List of Genes Containing an Approximate Match to the Putative 
Promoter in the Target Region (-200, +50). 

 

 64



 

 

 

 

Figure 3.2 Positions of approximate matches to the putative promoter. 

 65



 

In order to check whether these hits were significant we have calculated the 

expected number of hits in the entire genome and near the genes of interest for our 

study.  The rough estimates, based on the naïve model of equal base probabilities, are as 

follows.  Total number of patterns generated = 38,783.  These patterns can be divided 

into three categories based on their lengths.  They are:  

Number of patterns of length 13 = 7952 

Number of patterns of length 14 = 905 

Number of patterns of length 15 = 29926 

The expected number of hits in the entire genome can be obtained by adding the 

expected number of hits obtained in each of these categories.  The total amount of 

sequence considered (a large fraction of the entire Drosophila genome) was 

118,357,599 bases.  The total expected number of hits for all patterns of length 13 was 

thus 7952 * (1 / 413) * 118357599 = 14025; for patterns of length 14 it was 905 * (1 / 

414) * 118357599 =399; and for patterns of length 15 it was 29926 * (1 / 415) * 

118357599 = 3299.  Hence, the total number of hits in the entire considered part of 

Drosophila genome was 17723.  However, the number of hits which we have observed 

for all patterns in the entire sequence was only 7957.  Although this may appear 

paradoxical, the genome of Drosophila is biased towards some patterns, due to which 

the total number of observed hits is heavily skewed depending on the A-T content of the 

patterns.  Because of this phenomenon, we have used our actual number of hits in order 

to estimate the likelihood of having a chance one near the genes of interest.  Denoting 

the total length of all neighborhoods of genes from our list by N, and the expected 
 66



 

number of hits in this region by X, we get 118357599/7957 = N/X, with N was 

approximately 3549731.  It follows that X should be around 239.  The number of hits 

we observed near our genes of interest was 277.  Using the same formula, we calculated 

the expected the number of hits within the upstream regions of 22 genes where we had a 

category 2 hit, and it was around 15.  However, we have observed 30 hits, which is 

twice the expected number.  This provides a strong indication that the 14-base motif of 

interest has a functional (i.e. non-random) association with our genes of interest, due to 

which it has been seen more often than expected.  In order to confirm this, we have 

generated a control set of genes.  It consisted of 250 genes, which we selected randomly 

from the Drosophila melanogaster genome.  A screen shot showing these genes is 

shown in Table 3.8 below: 

Table 3.8 Control Set of Genes 

 

 67



 

Using this information, we have considered the control set of genes instead of the 

original list.  We filtered out the hits which did not fall in the region, 1000 bases 

(upstream) to +1000 (downstream) with respect to the orientation of each of the genes 

in our control set.  The number of hits observed now was 264, which was again more 

than the expected number.  However, we were interested only in category 2 hits (+50 to 

-200 bases), so we further filtered the hits which did not fall in this category.  Table 3.9 

below shows the genes, based on the hits in this category. 

Table 3.9 Results for the Control Set of Genes 

 

The observed number was 3, and it was much smaller than expected.  This indicates that 

there indeed exists a non-random bias within our genes of interest. 

           One can argue that if a gene in the control set overlaps or has some influence on 

a gene in the original list, it would not provide a good measure.  In order to address this 

issue, we calculated the percentage of expected overlap below, as 

(Number of genes in the given list / Total number of genes in Drosophila genome) * 

100 = (791 / 13600) * 100 = 5.81% 

Hence there is a relatively small possibility that a gene from the control set overlaps or 

has an influence on a gene from the original list. 

           In order to confirm that the Drosophila genome is biased towards some patterns, 

we have done a cross check by considering seven sample patterns, each of length 14 

 68



 

bases and repeated the whole process of determining the hits in the entire genome.  The 

results are shown below: 

1. ATTTAAGATATTAC (AT rich pattern) has been found 54576 times. 

2. CCCAGGGCCTGGGC (GC rich pattern) has been found 7857 times. 

3. ATGCGGTACCATTC (A, C, G, T evenly distributed) has been found 9079 

times. 

4. CGATTCGTTACGTT (3 CpG islands) has been found 15030 times. 

5. ATCGTTAAGGCCTA (1 CpG island) has been found 7796 times. 

6. TATTCATCGTAAAG (5 A’s, 5 T’s and remaining C, G) has been found 

18229 times. 

7. TATTTAATAAATTA (No C, G in the pattern) has been found = 166537 

times. 

The goal of this experimentation was to confirm the bias in the number of hits, genome-

wide, depending on the pattern’s A and T content. 

From the above results it is clear that the genome of Drosophila melanogaster is 

more biased to A’s and T’s, compared to G’s and C’s.  This comes as no surprise, as it 

is well known that the genome of Drosophila melanogaster consists of 60% AT and 

40% GC [9].  In the test cases above most sequence was intergenic, which is especially 

AT rich.     

 

 

 69



 

CHAPTER 4 

DISCUSSION 

 

In this chapter, we discuss some of the possible improvements which can be 

made to our algorithms, possible extensions of the described methods to solve other 

similar problems in bioinformatics or computer science in general. 

  

4.1 Algorithmic improvements 

The overall performance of the existing algorithm is good, but it can still be 

improved.  Most of the times while constructing the automaton we come across 

situations like this 

 

 

 

 

Figure 4.1 Common automaton construction scenario 

 70



 

Where the patterns share common prefix (AA in the above example) and a common 

suffix (GTA in the above example).  In this case, a single character difference leads to 

many new states.  In terms of bioinformatics, one can relate this difference to an SNP.  

Instead of making a transition to state 8 on reading G we can make a transition to state 4 

again and whenever a hit is found at state 6 (which contains both patterns as labels), we 

backtrack to see whether it included state 7 in the pathway.  If it does, then we can say 

that pattern 2 is found or else pattern 1 is found.  A schematic representation of this is 

shown in Figure 4.2. 

 

Figure 4.2 Reduction of size of the automaton while constructing 
 

             The above concept changes the automaton and makes it smaller when compared 

to the one constructed previously (in Figure 4.1).  The searching stage of the Aho-

Corasick algorithm would remain similar.  After the application of this concept the 

automaton would look like one shown in Figure 4.3. 

 

A TG

GA A C T A 

T

1 0 1 2 3 4 5 6 

7 8 9 10 

 71



 

A A C G T A 

 

Figure 4.3 Automaton after improvement 
 
 

The number of states in this example got reduced from 11 to 8.  Even though it looks 

small in this short example, we are sure that if we would be able to apply this concept in 

our case the number of states would get reduced significantly.   

             Another possible improvement to the algorithm can be made by replacing the 

clustering scheme, in order to locate patterns with common long prefixes more 

efficiently.  

 

4.2 Possible extensions of the described methods to solve other problems 

             The methods described in this thesis can be applied to many problems in 

bioinformatics and also to other problems in general computing.  Generating all 

possible patterns from a given consensus can be applied to any pattern of interest and it 

can be of any length.  Further, it can also be extended to handle more mismatches, 

insertions and deletions.  Since substitutions, insertions and deletions are common in 

DNA sequences, the method described in this thesis can be of interest. 

7

G

T

1 0 1 2 3 4 5 6 

7 

 72



 

 73

             The method of reducing duplicates is non-trivial, but it can solve many 

problems where a duplication needs to be avoided.  The Aho-Corasick algorithm can be 

applied for matching other patterns of interest, like the enhancers, silencers or other 

regulatory motifs.  It can also be applied to extending the find feature of Microsoft 

Word, Notepad, etc. so that multiple patterns can be simultaneously located in the 

opened document, instead of just one at a time. 

             Our system on the whole can also be applied to amino acid sequences, by 

replacing the four letter DNA alphabet with the 20 letters of amino acids alphabet and 

incorporating the additional complexities of handling mismatches, such as these 

introduced by PAM [22] and BLOSUM [36] matrices.  If one has more free processors, 

the distributed system described in this thesis can easily be extended to any number of 

them.  This can be achieved by further division of the original jobs.  One just has to 

write a few more shell scripts, depending on the number of available processors.     

              A GUI (Graphical User Interface) can be added to our system, possibly web-

based, which would take a motif as user input and perform all other operations in the 

background.  The hits can be redisplayed as shown in Figure 3.2. 

              With many more applications and extensions of these methods possible, we can 

conclude that the overall system can be useful for various types of research, not only in 

bioinformatics, but also in the general scientific world.  

              

   



  

REFERENCES 

 

1. A. Amir, M. Lewenstein and E. Porat, Faster algorithms for string matching with 

k mismatches, In proceedings of 11th Association for Computing Machinery – 

SIAM Symposium on Discrete Algorithms (SODA), 794-803, 2000.  

2. A. Santel, J. Kaufmann, R. Hyland and R. Renkawitz-Pohl, The initiator element 

of the Drosophila ß2 tubulin gene core promoter contributes to gene expression in 

vivo but is not required for male germ-cell specific expression, Nucleic Acids 

Research, 28(6): 1439-1446, 2000. 

3. A.K. Jain, R.P.W. Duin, and J. Mao, Statistical pattern recognition: A review, 

IEEE Transactions on Pattern Analysis and machine Intelligence, 22(1): 4-37, 

2000.  

4. A.V. Aho and M.J. Corasick, Efficient String Matching: An Aid to Bibliographic 

Search, Journal of the Association for Computing Machinery, 18(6): 333-340, 

1975. 

5. A. Vaidya, A Pseudogene Detection System Based on a High-Performance 

Computing Platform, Master’s Thesis, UT Arlington, 2005. 

6. B.J. Oommen and R.k.S.Loke, Pattern recognition of strings containing 

traditional and generalized transposition errors, In Proceedings of the IEEE 

International Conference on Systems, Man and Cybernetics, 2: 1154-1159, 1995.  

7. B. Lewin, Genes VIII, Prentice-Hall, Inc., 2004. 

8. B. Parhmi, Introduction to Parallel Processing, Plenum Press, 1992. 

 74



  

9. B.T. Wakimoto, Doubling the Rewards: Testis ESTs for Drosophila Gene 

Discovery and Spermatogenesis Expression Profile Analysis, Genome Research, 

10(12): 1841-1842, 2000. 

10.  C. Burge and S. Karlin, Prediction of complete gene structures in human  

genomic DNA, Journal of Molecular Biology, 268: 78-94, 1997. 

11.  D.E. Knuth, J.H. Morris, and V.R. Pratt, Fast pattern matching in strings. 

SIAM Journal of Computing, 6: 323-350, 1977. 

12.  D. Casey, Primer on Molecular Genetics, DOE Human Genome program, 1992 

13.  D. Gusfield, Algorithms on strings, trees, and sequences: computer science and 

computational biology, Cambridge University Press, 1997.  

14.  DI Nurminsky, MV Nurminskaya, De Aguiar, DL Hartl, Selective sweep of a 

newly evolved sperm-specific gene in Drosophila, Nature, 396(6711): 572-575, 

1998. 

15.  D.M. Sunday, A very fast substring search algorithm, Journal of the 

Association for Computing Machinery, 33(8): 132-142, 1990. 

16.  D.W. Mount, Bioinformatics: Sequence and Genome Analysis, Cold Spring 

Harbor Laboratory Press, 2001. 

17.  F. Franek, C.G. Jennings and B. Smyth. A Simple Fast Hybrid Pattern-

Matching Algorithm, In the proceedings of 16th Annual Symposium on 

Combinatorial Pattern Matching, LNCS 3537, Springer-Verlag, 288-297, 2005.   

18.  F. Michiels, A. Gasch, B. Kaltschmidt and R. Renkawitz-Pohl, A 14 bp 

promoter element directs the testis specificity of the Drosophila β2 tubulin gene, 

Journal of European Molecular Biology (EMBO), 8(5): 1559-1565, 1989. 

 75



  

19.  G. Navarro. A Guided Tour to Approximate String Matching, Journal of the 

Association for Computing Machinery Computing Surveys, 33(1): 31-88, 2001. 

20.  L. Colussi, Fastest pattern matching in strings, Journal of Algorithms, 16(2): 

163-189, 1994. 

21.  L. Holm and C.C. Sander, Touring protein fold space with Dali/FSSP, Nucleic 

Acids Research, 26: 316-319, 1998. 

22.  M.O. Dayhoff and R.V. Eck (Eds.), Atlas of Protein Sequence and Structure, 

Natl. Biomed. Res. Found., 3: 33. 

23.  M. Parisi, R. Nuttall, P. Edwards, J. Minor, D. Naiman, J. Lu, M. Doctolero, M. 

Vainer, C. Chan, J. Malley, S. Eastman and B. Oliver,  A survey of ovary-,testis-, 

and soma-biased gene expression in Drosophila melanogaster adults, Genome 

Biology, 5: R40, 2004. 

24.  M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the 

Theory of NP-Completeness, W.H. Freeman, 1979. 

25.  N. Ranganathan, REPCLASS: Cluster and Grid Enabled Automatic 

Classification of Transposable Elements Identified DE NOVO in Genome 

Sequences, Master’s Thesis, UT Arlington, 2005. 

26.  P.A. Pevzner, Computational Molecular Biology: An Algorithmic Approach, 

The MIT Press, 2000. 

27.  R. Durbin, S. Eddy, A. Krogh and G. Mitchison, Biological sequence analysis, 

Cambridge University Press, 1998. 

28.  R. Lowrance and R.A. Wagner, An extension of the string-to-string correction 

problem, Journal of Association for Computing Machinery, 177-183, 1975. 

 76



  

29.  R.A. Wagner, On the complexity of the extended string-to-string correction 

problem, In proceedings of 7th Association for Computing Machinery 

Symposium on Theory of Computing, 218-223, 1975. 

30.  R.A. Wagner and M.J. Fisher, The string to string correction problem, Journal 

of  Association for Computing Machinery, 21: 168-173, 1974. 

31.  R.A. Drysdale, M.A. Crosby and The FlyBase Consortium, FlyBase: genes and 

gene models, Nucleic Acids Research, 33: D390-D395, 2005. 

32.  R.M. Karp and M.O. Rabin, Efficient randomized pattern-matching algorithms, 

IBM Journal of Research and Development, 31(2): 249 – 260, 1987. 

33.  R.N. Horspool, Practical fast searching in strings, Software – Practice & 

Experience, 10(6): 501-506, 1980. 

34.  R.S. Boyer and J.S. Moore, A fast string searching algorithm, Communications 

of the ACM, 20(10): 762–772, 1977. 

35.  SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman, Basic local alignment 

search tool, Journal of Molecular Biology, 215: 403-410, 1990. 

36.  S Henikoff and JG Henikoff, Amino acid substitution matrices from protein 

blocks, In Proceedings of the National Academy of Science USA, 89(22): 

10915-10919, 1992. 

37.  S. Kim. A New String Pattern-Matching Algorithm Using Partitioning and 

Hashing Efficiently, Association for Computing Machinery Journal of 

Experimental Algorithms, 4: 2, 1999. 

38.  S. Wu and U. Manber, A Fast Algorithm For Multi-Pattern Searching, 

Technical Report, TR-94-17, University of Arizona, 1993.    

 77



  

39.  T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to      

Algorithms, Second Edition, MIT press and McGraw-Hill, 2001. 

40. The FlyBase Consortium, The FlyBase database of the Drosophila genome 

projects and community literature, Nucleic Acids Research, 27: 85-88, 1999. 

41.  The FlyBase Consortium, The FlyBase database of the Drosophila genome  

projects and community literature, Nucleic Acids Research, 31: 172-175, 2003. 
 

 78



  

BIOGRAPHICAL INFORMATION 

 

Tushar Kumar Jayantilal joined The University of Texas at Arlington in the 

spring of 2004, for pursuing his M.S.  He started his research career in the field of 

bioinformatics from fall of 2004.  His research areas of interest are bioinformatics, 

algorithms, pattern recognition, data mining and high performance computing.  He 

received his Bachelor’s degree in Computer Science and Engineering from M.N.M Jain 

Engineering College, Chennai, India, affiliated to the University of Madras, Chennai, 

India.  He received his Master of Science degree in Computer Science and Engineering, 

in August, 2006.  His future plan is to start an industrial career, as a researcher for one 

of the nation’s leading companies, in the field of bioinformatics. 

 79


	In this chapter we describe the problem statement, the vario
	2.1 The problem statement
	2.2 Approaches to the problem
	2.3 Parallelization of the approaches
	2.4 Algorithms in detail

