
FPGA PROTOTYPING FOR FAST AND EFFICIENT

VERIFICATION OF ASIC H.264 DECODER

by

BASAVARAJ MUDIGOUDAR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006

 ii

ACKNOWLEDGEMENTS

I am grateful to my advisor Dr. K. R. Rao for his continued encouragement and

guidance throughout this thesis. Sincere thanks to UTA, my Alma Mater, for

recognizing my aptitude and giving me an opportunity to pursue my master’s studies

under the guidance of noble faculty and for providing me with all the required resources

and environment to excel.

I would also like to mention my gratitude to Dr. Pankaj Topiwala, president of

FastVDO, for the support and trust he has shown in me to carry out this work and for all

the resources provided at FastVDO facility. I am also grateful to Mr. Srinath Bagal and

the entire ASIC team at FastVDO, without their cooperation this thesis would not be

complete. Thanks to all my colleagues at FastVDO for all their help and cooperation in

completion of this thesis.

Finally, I would like to take this opportunity to thank my family who has always

supported me in my endeavors, without whom it would not have been possible to come

this far.

April 17, 2006

 iii

ABSTRACT

FPGA PROTOTYPING FOR FAST AND EFFICIENT

VERIFICATION OF ASIC H.264 DECODER

Publication No. ______

Basavaraj Mudigoudar, MS

The University of Texas at Arlington, 2006

Supervising Professor: Dr. K. R. Rao

To improve compression efficiency, recent video compression standards such as

H.264 use complex algorithms and various modes that demand more computational

power. Consumer electronics industry requires a low power, compact and cost-effective

implementation of video codec for most of the products. ASIC implementation of these

video codecs is a logical choice to meet these requirements. Functional verification of

an ASIC implementation consumes a major part of design cycle time and lot of

resources. Because of large design, various modes and options, functional verification

of an ASIC H.264 video codec is a challenging, resource intensive and time consuming

 iv

process. In this thesis an FPGA prototyping based functional verification technique has

been suggested as fast and efficient alternative for functional verification of ASIC video

codec. An FPGA prototyping of H.264 video codec has been performed for functional

verification of ASIC video codec. Advantages and limitations have been elaborated

with experimental results.

Keywords: H.264, AVC, MPEG-4 part 10, Functional verification, FPGA,

ASIC Prototyping.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

ABSTRACT ..iii

LIST OF ILLUSTRATIONS..vii

LIST OF TABLES...viii

ACRONYMS AND ABBREVIATIONS.. ix

Chapter

1 INTRODUCTION ... 1

1.1 Thesis outline.. 2

2 OVERVIEW OF H.264 AND ASIC IMPLEMENTATION .. 3

2.1 Overview of H.264 ... 4

2.1.1 Profiles and levels.. 5

2.1.2 Video decoding process... 9

2.2 ASIC implementation ... 13

2.2.1 Hardware Description Language ... 14

2.2.2 ASIC design process.. 15

2.3 Summary... 16

3 FUNCTIONAL VERIFICATION OF ASIC DESIGN... 17

3.1 Functional verification.. 17

3.2 Verification by software simulation ... 19

3.2.1 Advantages and limitations of logic simulation .. 20

 vi

3.3 Emulation based verification .. 24

3.3.1 Advantages and limitations of emulation .. 26

3.4 FPGA prototyping based verification... 28

3.5 Summary... 29

4 FPGA PROTOTYPING AND FUNCTIONAL VERIFICATION 30

4.1 FPGA .. 31

4.2 Prototyping board ... 33

4.3 Prototyping based verification strategy .. 36

4.3.1 Results.. 37

4.3.2 Advantages and limitations.. 39

4.4 Summary... 41

5 CONCLUSIONS AND FUTURE RESEARCH ... 42

5.1 Conclusions... 42

5.2 Future research.. 44

REFERENCES ... 45

BIBLIOGRAPHICAL INFORMATION.……………………………………...............51

 vii

LIST OF ILLUSTRATIONS

Figure... Page

2- 1: H.264 encoder block diagram .. 4

2- 2: Specific coding parts of the profiles in H.264.. 5

2- 3: Functional Block diagram of an H.264 decoder .. 10

2- 4: Pictorial representation of intra prediction modes in H.264 12

2- 5: ASIC modules of H.264 decoder core..15

3- 1: ASIC design process .. 18

3- 2: Emulation based verification process... 25

4- 1: Prototyping board used for verifying ASIC H.264 decoder................................... 35

4- 2: Display card used with prototyping board for displaying decoded video.............. 35

4- 3: Average verification time for 4CIF sequence .. 38

4- 4: Average verification time for CIF sequence .. 38

4- 5: Average verification time for QCIF sequence ... 39

 viii

LIST OF TABLES

Table Page

2-1: Level specifications in H.264.. 9

3- 1: Gate count and simulation time of H.264 modules.. 23

3- 2: Simulation time of an ASIC H.264 decoder and memory requirements 23

5- 1: Feature comparison of proposed technique with existing techniques.................... 43

 ix

ACRONYMS AND ABBREVIATIONS

ASIC: Application specific Integrated circuits

AVC: Advanced Video Coding

CABAC: Context-based Adaptive Binary Arithmetic Coding

CAVLC: Context-based Adaptive Variable Length Coding

DCT: Discrete Cosine Transform

DSP: Digital Signal Processors

DUT: Design Under Test

DVD: Digital Versatile Disc

EDA: Electronic Design Automation

FPGA: Field Programmable Gate Arrays

HD: High Definition

HDL: Hardware Description Language

IEC: International Engineering Consortium

ISO: International Standards Organization

ITU: International Telecommunication Union

JVT: Joint Video Team

MPEG: Moving Picture Experts Group

NALU: Network Abstraction Layer Unit

 x

RTL: Register Transfer Logic

VCEG: Video Coding Experts Group

VHDL: VHSIC Hardware Description Language

VHSIC: Very High Speed Integrated Circuits

VLC: Variable Length Coding

VLSI: Very Large Scale Integration

 1

 CHAPTER 1

1 INTRODUCTION

Recent video compression standards such as MPEG-4 part 10 [1]/ H.264 [2] use

advanced algorithms, various modes and profiles to give better compression efficiency.

Adversely, these advanced techniques have increased the complexity of the

compression process and demand more computational power. Conventional DSP based

devices do not have enough processing power to handle the complexity of the

algorithms at higher resolutions and the consumer electronics industry needs a low

power, compact and cost-effective implementation of the video codec. ASIC

implementation of the video codec is one of the logical choices to meet these

requirements. It is an industry statistic that functional verification takes around 70% of

ASIC design cycle time and requires lot of resources [3]. Because of large design,

various modes and profiles, functional verification of an ASIC H.264 video codec is a

challenging, resource intensive and time consuming process. In this thesis an FPGA

prototyping based functional verification technique is suggested as a fast and efficient

alternative for functional verification of ASIC video codec. An FPGA prototyping of

H.264 video codec is performed and an extensive study is done on FPGA prototyping

based functional verification of ASIC video codec. Advantages and disadvantages are

elaborated with experimental results.

 2

1.1 Thesis outline

Chapter 2 gives an overview of the H.264 standard and explains the ASIC

implementation of the standard. Coding algorithms used in H.264 and ASIC design

process are briefed.

Chapter 3 explores the ASIC verification techniques commonly used in the

industry and discusses the advantages and disadvantages. Common methodologies and

practices are introduced with emphasis to FPGA based prototyping.

In Chapter 4 FPGA prototyping of an ASIC video codec is presented. This

chapter also discusses FPGA prototyping boards and their useful features.

Methodologies used for verification of ASIC H.264 decoder are presented.

Chapter 5 outlines the results and advantages of FPGA prototyping based

verification of an ASIC video codec. Results presented show the improvements

achieved using the suggested techniques. Conclusions and future research interests are

suggested.

 3

CHAPTER 2

2 OVERVIEW OF H.264 AND ASIC IMPLEMENTATION

MPEG-4 part 10 or H.264 is the next generation video codec jointly developed

by MPEG of ISO/IEC and VCEG of ITU-T [4]. The Joint Video Team (JVT) released

the first draft of H.264, also known as Advanced Video Coding (AVC), in May 2003

[2] [5]. Juxtaposed to previous video compression standards such as MPEG-2 [6],

MPEG-4 part 2 [7], H.264 also uses hybrid block based video compression techniques

such as transformation for reduction of spatial correlation, quantization for bit-rate

control, motion compensated prediction for reduction of temporal correlation and

entropy coding for reduction in statistical correlation [4]. However, H.264 incorporates

advanced algorithms and techniques to enhance coding performance over the previous

standards and it gives better coding efficiency over MPEG-2 by as much as 3:1 in some

key applications [8]. Improved coding efficiency comes with the added cost of

complexity in the encoding and decoding processes. H.264 utilizes some methods like

multiplier-free integer transforms and simple integer based shift and add arithmetic that

are ASIC friendly and reduce implementation complexity. Applications like digital

video set-top box, handheld devices and HD-DVD players require portable, low power

ASIC video decoders. ASIC implementation of H.264 decoder is a challenge because of

complex algorithms and various modes. Functional verification of the ASIC H.264

 4

decoder is more complicated and generating test patterns to verify all modes and corner

cases is difficult. This chapter gives an overview of H.264, its ASIC implementation

and explores verification challenges.

2.1 Overview of H.264

H.264 standard has been well segregated into profiles and levels to meet the

requirements of various video related applications. The encoding process can be

represented by Figure 2-1 [4].

Figure 2- 1: H.264 encoder block diagram [4]

H.264 uses integer DCT, quantization and intra prediction techniques to reduce

spatial correlation. Integer DCT is employed to reduce implementation complexity and

avoid encoder decoder mismatch. Temporal redundancy is reduced by motion

estimation based inter prediction techniques. Compression efficiency and visual quality

are enhanced by using various block sizes and up to quarter pixel accuracy for motion

 5

estimation. Statistical redundancy is minimized using variable length coding (VLC).

Advanced coding techniques such as exponential Golomb encoding, Context-based

Adaptive VLC (CAVLC) and Context-based Adaptive Binary Arithmetic Coding

(CABAC) are employed to increase compression efficiency. Coding of video is done

one frame/picture at a time and each picture is divided into one or more slices. A slice is

the smallest completely decodable element in an H.264 video stream. Each slice is a

sequence of macroblocks with each macroblock consisting of 16X16 pixels. Encoded

slice data and other required information for decoding a slice are packed into a Network

Abstraction Layer Unit (NALU). A sequence of these NALU makes a H.264 video

stream. Overview of the standard and algorithms are presented in the following

sections.

2.1.1 Profiles and levels

H.264 defines seven profiles that address different video related applications

from low bandwidth networks to digital cinema. All profiles in H.264 have some

common coding parts and some specific coding parts as shown in Figure 2-2 [4].

Figure 2- 2: Specific coding parts of the profiles in H.264 [4]

 6

Some common features to all profiles are:

1. Intra-coded slices (I slice): These slices are coded using prediction only

from decoded samples within the same slice.

2. Predictive-coded slices (P slice): These slices are coded using inter-

prediction from previously decoded reference pictures. Sample values of

each block are predicted using one motion vector and reference index.

3. 4X4 modified integer DCT

4. CAVLC for entropy encoding

5. Exponential Golomb encoding for headers and associated slice data

2.1.1.1 Baseline Profile

Baseline profile mainly addresses the real time video applications such as video

conferencing, video phone and incorporates tools that help in error resilience. Simpler

algorithms are used in prediction to keep the decoding process less complex and less

memory intensive. Some salient features are:

1. I and P slice only.

2. Only CAVLC based entropy encoding.

3. Flexible Macroblock Ordering (FMO), macroblocks need not be presented

to the decoder in raster scan order.

4. Arbitrary Slice Ordering (ASO), slices need not be presented to the decoder

in raster scan order.

 7

5. Redundant Slice, coded slice data of the previously coded slice at same or

different coding rate.

First two make the decoding process simple and the later three help to achieve

error resilience.

2.1.1.2 Main Profile

Features in main profile are designed to best suit the digital storage media,

television broadcasting and set-top box applications. It uses more sophisticated

prediction and entropy coding techniques and eliminates error resilience tools. Some

important features are:

1. I, P and B slices are supported. B slices (Bi-directionally predictive-coded

slices) are slices coded using inter-prediction from previously decoded

reference pictures using at most 2 motion vectors and reference indices.

2. Both CAVLC and CABAC based entropy coding is supported.

3. Weighted prediction, a technique of scaling the samples of motion-

compensated prediction data by a weighting factor can be used to give better

prediction for fading scenes.

2.1.1.3 Extended profile

Extended profile caters to the needs of multimedia services over internet like

streaming video and video on demand. This profile uses the error resilience tools from

baseline and prediction tools from main profile and adds more features like data

 8

partitioning and switching slices that are best suited for streaming applications. Some

significant features are:

1. I, P and B slices are supported.

2. Weighted prediction is supported

3. All error resilience tools, FMO, ASO and redundant slices are supported

4. Switching I and P slices (SI, SP Slices) are introduced for efficient

switching between video streams.

2.1.1.4 High profiles

H.264 also defines four high profiles [8] which are more sophisticated and cater

applications involving high quality and high resolution video such as studio editing,

content distribution, post processing and digital cinema. All high profiles have some

common and some specific coding tools and features. Common features of high profile

include:

1. All main profile features such as I, P and B slices, weighted prediction and

CABAC.

2. Adaptive transform block size. Both 4X4 and 8X8 block sizes are supported

3. Perceptual quantization matrices to improve subjective quality

 Additionally, High 10 profile supports pixel bit-depths up to 10 bits. High 4:2:2

profile supports 4:2:2 chroma sampling and up to 10 bits per pixel. Advanced 4:4:4

profile supports 4:4:4 chroma sampling and up to 12 bits per pixel.

 9

2.1.1.5 Levels

For all profiles, level specifies the limitation on frame size (number of

macroblocks per frame), frame rate, memory allocations, bit rates, motion vector search

range and minimum compression ratio. Table 2-1 [2] details the level specifications

Table 2-1: Level specifications in H.264 [2]

2.1.2 Video decoding process

H.264 standard gives the bit stream syntax and details the decoding process and

algorithm, to decode a coded video stream. For the encoder, it specifies bit stream

syntax, normative and informative guidelines to generate a compliant encoded

 10

sequence. The decoding process can be understood with the help of a block diagram

shown in Figure 2-3. Important algorithms are briefly explained in the following

sections with emphasis on baseline profile decoding.

Figure 2- 3: Functional Block diagram of an H.264 decoder

2.1.2.1 Entropy decoding

In Baseline profile H.264 uses CAVLC based entropy coding for slice data

encoding and exponential Golomb coding for syntax elements and header information

[9]. Role of the bit stream parser or the entropy decoding block is

1. To identify NALU start headers.

2. Decode parameter sets and update relevant decoder parameters.

3. Decode slice header information and update syntax element parameters.

4. Perform CAVLC based variable length decoding. Inputs to this process are

bits from slice data and maximum number of non-zero transform coefficient

levels in a 4X4 block. Output of this process is 4X4 block of transform

coefficient levels.

Entropy
Decoding

Inverse
Transform

De-blocking
Filter

Intra/Inter
selection

Intra
prediction

+

Inter prediction
(motion

compensation)

Frame
Buffer

Video out
YUV4:2:0

H.264 NALU
IN

 11

5. Perform inverse zigzag scan ordering of data to recover transformed residual

block.

2.1.2.2 Inverse transform

H.264 uses modified 4X4 integer DCT to avoid mismatch in encoder and

decoder [10]. Scaling multiplication of transformation is integrated into the quantization

process [10]. H.264 further exploits correlation in 16 DC values of the transformed

macroblock by applying 4X4 Hadamard transform on Luma DC coefficients and 2X2

Hadamard transform on Chroma DC components [11]. Input to this block is entropy

decoded and inverse zigzag scanned macroblocks and output of this block is inverse

quantized and inverse transformed macroblocks. Inverse transform block has to perform

1. Inverse quantization

2. Inverse Hadamard transform for luma and chroma DC coefficients.

3. Inverse DCT of 4X4 blocks.

2.1.2.3 Intra prediction

H.264 exploits spatial correlation in intra coded macroblocks with intra-

prediction techniques. Inputs to this process are reconstructed macroblocks, intra

prediction modes of current macroblock and previously decoded neighboring

macroblocks. Output of this block is constructed samples prior to de-blocking filter.

H.264 uses 9 modes of intra-prediction on 4X4 blocks and 8X8 blocks and 4 modes on

 12

16X16 blocks. The modes and their prediction type are pictorially represented in Figure

2-4 [12].

Figure 2- 4: Pictorial representation of intra prediction modes in H.264 [12]

2.1.2.4 Inter prediction

Inter prediction is used to take advantage of temporal redundancy in video data.

In general, a large partition size is appropriate for homogeneous areas of the frame and

small partition size is beneficial for areas with more details [4]. H.264 gives provision

to use block sizes ranging from 16X16 up to 4X4. Sub-pixel motion compensation, with

added complexity, outperforms integer-pixel motion compensation in terms of

compression efficiency [13]. H.264 supports up to quarter pixel accuracy of motion

compensation. Half-pixels and quarter-pixels are derived from full-pixels using 6-tap

 13

FIR and bi-linear filters. Inputs to this block are motion vectors and reconstructed

residual data. Output of this block is a predicted macroblock.

2.1.2.5 De-blocking filter

To reduce the blocking artifacts introduced by block-based transform, inter and

intra predictions and quantization, H.264 employs an adaptive and optional in loop de-

blocking filter. De-blocking filter has significant impact on visual quality improvement

[14]. Filtering is applied adaptively along the 4X4 block edges. Input to this block is a

completely reconstructed macroblock, boundary strength and quantization parameters.

Outputs of this block are the final reconstructed macroblocks.

2.2 ASIC implementation

With the advent of digital video and audio and supporting technologies like flat

panel displays and compact speakers, multimedia based consumer products have

become very popular. Digital multimedia is now part of all personal entertainment

systems, car entertainment systems, TV broadcasting, video conferencing, video on

demand and mobile TV to name a few. Key feature of digital video is its compression

technology like H.264, because of which storage and transfer are compact and cost

effective. All the end-user products inevitably require a cost effective decompression

solution that is compact in size and consumes less power. Low power, low cost digital

signal processors do not have enough processing power to decode complex algorithms

used in H.264 [12]. These requirements and volume of the consumer electronics market

 14

encourage ASIC implementation of H.264 decoder. Following sections give an

overview of the ASIC implementation of H.264 decoder.

2.2.1 Hardware Description Language

VHDL and Verilog are the two commonly used Hardware Description

Languages (HDL) in the VLSI industry. In this thesis, VHDL is used for implementing

the ASIC H.264 decoder core. VHDL stands for VHSIC Hardware Description

Language. VHSIC is itself an abbreviation for Very High Speed Integrated Circuits, an

initiative funded by the United States Department of Defense in the 1980s that led to the

creation of VHDL [15]. VHDL was the original and first hardware description language

to be standardized by the IEEE, through the IEEE 1076 [16] standard in 1988. An

additional standard, the IEEE 1164 [17], was later added to introduce a multi-valued

logic system in 1993. The IEEE 1076 was further revised in 2000 and the current

revision was updated in 2002 [18]. A hardware design can be implemented using

VHDL in a descriptive structure and the code can be used for hardware simulation and

synthesis. Benefits of using VHDL are:

1. VHDL is a standard

2. It is a technology or vendor independent language

3. It is easily portable and reusable

4. Modular level design and system integration are easy

5. It is supported by both FPGA vendors and ASIC foundries for fabrication

 15

2.2.2 ASIC design process

Goal of the ASIC H.264 decoder design is to achieve real-time decoding (up to

30 frames per second) of H.264 compressed high definition (HD) video of resolution up

to 1280X720 (720p) with an operating frequency less than 100 MHz. Guidelines for the

design process are:

1. Compliance to the standard

2. Complete hardware implementation

3. Target or platform independent implementation

4. Common code base for ASIC and FPGA prototyping

H.264 standard was thoroughly studied to understand the requirements and

specifications of the standard. The decoder design is split into modules and each module

represents a block in Figure 2-5. Modules are instantiated as components in the decoder

and required interconnects are made between the modules to pass data and control

signals. Decoder design employs a pipelined architecture to makes use of concurrency

in operation of an ASIC. Each module processes one macroblock at a time independent

Intra

prediction

Interconnect

Inter

prediction

Entropy

decoding

Inverse

Transform
De-blocking

filter

Memory

Mgmt.
Ref. Picture

Mgmt.

Display

Buf. Mgmt.

 Output

video

Input

stream

Figure 2- 5: ASIC modules of H.264 decoder core

 16

of the other modules. Functional description of most of the modules is described in

section 2.1.2. Each module gets the data and other parameters for processing from input

memory buffers and stores its processed data and parameters in output memory buffers.

Memory allocations and read and write requests of each module are handled by memory

management module. It performs proper allocations and arbitration of requests and

provides single memory interface. Reference picture management module works closely

with inter-prediction to provide the required reference picture and to store decoded

frames that can be used as reference pictures in future. Display buffer management

module outputs the decoded frames in display order.

Design process involves understanding the specifications of H.264 baseline

profile decoder, partitioning the design into modules, coding of individual modules in

VHDL and testing for proper functionality. Individual modules were simulated with test

vectors passed from the test-benches and verified with expected values. Functionally

verified modules were integrated and interconnected to form the decoder. H.264

compressed bit stream was passed as test vector to simulate and functionally verify the

decoder.

2.3 Summary

In this chapter, overview of H.264 video coding standard was presented and

compression algorithms employed were briefly explained in sub-sections of 2.1.

Sections of 2.2 elaborated on need for ASIC H.264 video decoder and also discussed

the design process employed. Functional verification methodologies and FPGA

prototyping based functional verification are discussed in the following chapter.

 17

CHAPTER 3

3 FUNCTIONAL VERIFICATION OF ASIC DESIGN

With increases in complexity and gate count of an ASIC design, functional

verification has become one of the greatest concerns of design engineers. Verification

has also become a serious bottleneck in the VLSI design process. In [19], Dhodhi et al.

estimate that functional verification takes 50-60 % of time and efforts of design teams.

VLSI design methodologies that take into account verification issues in the early phase

of design and utilize state-of-the-art techniques have become a necessity. With

technology changing more often than ever, time to market has become crucial for all

design houses and manufacturing companies. Sections in this chapter present functional

verification techniques currently in practice in the industry and discuss their advantages

and limitations. In this chapter, FPGA prototyping based functional verification is

introduced as a fast and efficient alternative for functional verification.

3.1 Functional verification

Engineering design process is not complete without the verification of the

design. Verification is a process of checking whether the design meets the specifications

for which it was designed. Verification of an ASIC can be broadly classified into timing

verification and functional verification. In timing verification, design is tested against

the timing requirements of the system such as frequency of operation, meeting set-up

 18

and hold times etc. Functional verification is a process in which, logical or functional

correctness of a digital circuit is verified [20]. In functional verification response or

output of the digital circuit is matched against its expected output for a particular set of

stimuli or inputs. ASIC design process can be represented with the flow diagram shown

in Figure 3-1.

Figure 3- 1: ASIC design process

Coding and functional verification is an iterative process where verification

consumes most of the time as the design has to be verified thoroughly even for minor

modifications or corrections made in the code. Efforts involved and the time consumed

Design specification

Design partitioning

Coding of modules

Functional verification

System level integration

Functional verification

Results

Results

Design complete

Incorrect

Correct

Correct

Incorrect

 19

at system level verification are the highest and are of major concern [20]. Two most

important components of functional verification are speed of functional execution and

design controllability and observability. There are various tools and techniques that are

currently in practice in the industry that are categorized under Electronic Design

Automation (EDA) [21].

3.2 Verification by software simulation

In software simulation based verification, the HDL code of the digital logic is

simulated by the simulation software. Logic simulation is the primary tool used for

verifying the logical correctness of a hardware design. In many cases, logic simulation

is the first activity performed in the process of taking a hardware design from concept to

realization. Test-bench can be written around the design under test (DUT) and inputs

can be passed to the DUT through the test-bench. VHDL provides synthesizable and

non-synthesizable constructs. Test-bench can use constructs like file I/O and pre-

defined patterns to generate inputs to the DUT. The outputs are automatically verified

and reported using report or assert statements. Outputs can also be written to a file with

file I/O for manual or automated verification. Simulation software compiles the DUT

and uses the test vectors provided by test-bench to simulate the design. Simulation

software also keeps track of all the signals and ports in the design and their transition at

the change of the clock or inputs and writes it to a waveform database. Waveform

viewer software is used to analyze the performance of the digital design and understand

the cause or source of the error if any. Passing the simulation test can reasonably assure

 20

the logical correctness of the design, for the cases that have been tested in the

simulation.

3.2.1 Advantages and limitations of logic simulation

Logic simulation comes with following advantages

1. Simulation is completely generic and any hardware design can be

simulated.

2. Setup is simple, quick and easy

3. Highest level of controllability and observability

4. Designer gets complete feedback of the verification process

5. Direct interaction with the design with minimum abstraction, there is no

layer of translation to obscure the behavior of the design

6. Changes in every signal or port can be observed for every change in the

input during and after the verification process through waveforms.

7. No additional hardaware cost or porting efforts.

The ease of software simulation based verification comes with an overhead of

simulation time which increases with the complextiy of the design. As discussed in [3,

22, 23, 24], time consumed in simulating a digital design is a major drawback of

simulation based verification. The time required to verify the design is proportional to

the maturity of the design. Early in the design process at module level verification,

incorrect functionalities are usually found quickly and easily through simulation. As the

design matures, it takes longer to find the errors. Simulation time largely varies

 21

depending on the software used, computer configuration and coding style. In [22],

Tschäche and Sieh as an example, estimate the simulation execution time per gate as 2.9

ms. These estimations are for verification of a simple 2 input NAND gate. Further in

[25], Baker and Mahmood present a generalized mathematical model for time of unit

delay simulation shown in (3-1) which is derived from Bailey’s mathematical model

[26].

()()∑
−

=

∗+∗=
1

0

, 1
n

i

iius edepthE βτ (3-1)

where

us ,τ - Time of unit delay simulation

 E - Evaluation time per level

iβ - Simulation dependency graph for an input event

ie - Input event

 n - Number of input events

For simple designs all possible input cases can be exhaustively passed through

the design and the output can be verified. As the complexity of the ASIC design

increases depth of simulation dependency graph increases and also the number of input

events increases drastically. With the increase in design size, generating and testing all

possible test vectors becomes difficult and time consuming. For larger designs not only

the exhaustiveness of input test vectors but also the order in which they are passed

decides the behavior of the logic thus making the list of exhaustive test vectors

infinitely long. Especially, when the designs include signal processing algorithms like

video processing with various conditional modes and functionality the order of test

vectors passed is crucial. For instance a third frame predicted using the second frame

 22

cannot be decoded until the first two frames are completely decoded. Also testing the

individual modules exhaustively is not possible because of the dependency involved. In

H.264, decoding of current macroblock requires decoded data from previous

macroblocks and previous modules in fixed order. For instance, to perform inter-

prediction on a particular macroblock, motion vectors of neighboring macroblocks and

data from previous frame are required. Writing test-bench codes to generate such input

patterns is very time consuming and sometimes the code volume of the test-bench is

more than the design code itself [20].

Apart from being time consuming, simulation based verification also has other

drawbacks. Simulation can take an inordinately large amount of computing resources,

as it typically uses a single processor to reproduce the behavior of many (perhaps

millions of) parallel hardware processes. Also memory requirements of simulation tool

increase with the complexity of the design and become prominent when the design and

test-bench have bigger memory instantiations. For instance, simulation tool reports

insufficient memory for decoding a high definition sequence with a resolution of

1280X720. Some experiments were performed to measure the performance of

simulation tool. NC-VHDL simulation software [27] from Cadence Design Systems

was used on a Pentium 4 system running at 3.2 GHz with 1GB of DDR2 primary

memory. Table 3-1 lists the gate count of some modules in H.264 decoder and the

average number of clocks required to complete the processing of one macroblock. Last

column lists the average time taken by the simulator to simulate the design. The inverse

transform module running at 50 MHz in real-time would require 65 µs to process a

 23

block, but a simulator takes 1.14 seconds. Despite simulator being more than 17,000

times slower than real-time, 1 second of simulation time is acceptable for the ease,

controllability and observability the simulation tool provides for the designer. These

features are more important during the initial design process.

Table 3- 1: Gate count and simulation time of H.264 modules

SL.

No.

H.264 decoder

Module

Gate count

(K)

Avg. no. of

clocks per

macro-block

Avg.

Simulation

time (s)

1 Inverse transform 95.57 3280 1.14

2 Intra prediction 99.43 3268 1.3

3 De-blocking 87.24 3093 1.1

4 Inter prediction 170.31 3025 1.4

Table 3- 2: Simulation time of an ASIC H.264 decoder and memory requirements

Table 3-2 lists the average number of clocks required for the H.264 decoder to

decode compressed streams of different frame resolutions. Columns 4 and 5 list the

average simulation time and the system memory used by the simulator to simulate the

H.264 decoder with approximatley 500 K gate count. Simulator on an average takes 342

seconds to decode one frame of a CIF resolution sequence. At 30 frames per second the

simulator would take approximately 11 and ½ hour to simulate decoding of 4 seconds

SL.

No.

Frame resolution

of the sequences

decoded

Avg. no. of

clocks per

frame

Avg.

simulation

time

Avg. Memory

utilization

(MB)

1 QCIF (176X144) 279848 1 min,10 sec 946

2 CIF (352X288) 978958 5 min, 42 sec 938

3 4CIF (704X576) 4054708 27 min,50 sec 1089

 24

of a CIF sequence and more than two days to simulate decoding of a 4CIF sequence.

Such long delays make simulation based verification inappropriate for thorough

functional verification of ASIC H.264 decoder.

Considering both the advantages and disadvantages of logic simulation, it is a

good tool for verifying the correctness of a hardware design and is a tool of choice for

module level verification and verification of small designs. But it has major drawbacks

for verification of large complex design like video codec.

3.3 Emulation based verification

Emulation based verification is a faster verification tool compared to software

simulation based verfication. In [28], Nguyen and Thill discuss the advantages of using

emulation based verification over software simulation based functional verification. In

[29] Walters highlights the impractical limitations of simulation based verification and

proposes emulation based verification as an alternative for thorough verification of

ASIC designs. Typically, emulation based verfication tools come with a hardware

accelerator card that helps to speed-up simulation and a software program that

interfaces the card and the software simulation tools. The hardware accelerator card has

one or more programmable devices and a set of fixed interfaces. The software takes the

HDL code of DUT and partitions it to fit into the programmable devices on the card.

Also signals and/or ports that need to be monitored are taken as input from the user and

extra logic to monitor them is programmed on to the accelerator card. Once the card is

ready, inputs are taken from the test-bench through the simulation software and passed

 25

on to the card. The ouputs produced on the ports being monitored are sent back from the

accelerator card to the simulation software. These signals or ports can then be analyzed

automatically or manually. The emulation tools make use of the program language

interface (PLI) constructs of verilog or foreign language interface (FLI) constructs of

VHDL to interact with the test-bench which are in verilog or VHDL. Some emulation

tools use custom languages to generate test-benches. The emulation based verfication

process is represented in Figure 3-2.

Figure 3- 2: Emulation based verification process

Many EDA tool vendors provide emulation based verification tools as a faster

alternative to simulation based verification. An emulation tool like VStationPRO from

Mentor Graphics coporation [30] or Palladium from Cadence Design Systems Inc [31]

Design specification

Design partitioning

VHDL Coding

Emulation environment

Design partitioning

Programming

accelerator

Results

Design complete

Correct

Incorrect

Monitor signals

User inputs for

signal monitoring

 26

provides 100-10,000X faster performance compared to software simulation. These

emulation platforms are scalable and can verify more than 100 million gates at speeds

500 – 2000 kHz. Today, automated and advanced emulation tools are available to the

designers. The emulation environment is kept at a level of abstraction to the user and

the software gives an easy interface for verifying the DUT. The emulation software

takes the RTL and test-bench of the DUT, automatically partitions the DUT and

programs the accelrator to provide all the data required by the test bench for

verification. It uses PLI and FLI constructs to interact and exchange data with the

accelerator and the simulaiton software. The designer can access and monitor the

requested signals and the test-bench can automatically verify the results against the

expected values.

3.3.1 Advantages and limitations of emulation

Emulation based verification has following advantages

1. Verification is 100 to 10000 times faster than simulation.

2. Emulation gives controllability and observability with certain level of

abstraction

3. Partial to complete feedback from the verification process

4. Changes in desired signals or ports can be observed for every change in the

input during and after the verification process through the waveforms.

5. Can simulate multi-million gate ASIC design.

6. Emulators are scalable and have various standard interfaces and built-in bus

functional models (BFM)

 27

Speed improvement in verification through emulation comes with an overhead

of extra cost for the emulator hardware and design time. Hardware emulation platforms

can cost up to a million dollars [32] and can run only at a speed of 1 or 2 MHz. This

speed is 100 to 1000 times faster than simulation but still too slow for some applications

like video processing. The speed of operation and the number of ports or signals that

can be observed reduces with the increase in the design complexity. Increase in design

complexity also increases the time required by compiler tools to partition the design and

generate programmable code for the devices on the accelerator card. Learning curve in

understanding the accelerator platform and its capabalities is usually long. If the

emulation platform uses its own language and syntax structure, modification of the

design and test-bench becomes an overhead. Accelerator platforms are more generic in

nature having wide varitey of interfaces and IP cores and not customized for specific

designs making them expensive. Also the emulator platforms do not run real time and

cannot generate proper signals to time sensitive devices like memory contollers or video

screens. So the interfaces cannot be verified in real-time.

Considering the advantages and disadvantages, emulation based verification is a

faster alternative compared to software simulation but it is very expensive. Also the

speeds achieved do not give real-time performance and are much slower than expected

for many applications. ASIC designs like video codec require faster and cost-effective

verification tecniques to reduce time to market and design cost.

 28

3.4 FPGA prototyping based verification

Field programmable gate array (FPGA) is a semiconductor device containing

programmable logic blocks and programmable switches that interconnect the logic

blocks. Also, FPGA are reconfigurable [33]. These features of FPGA allow them to be

used for any application and quick prototyping. ASIC designs are generally time

consuming and are not cost effective for small designs and low volume production.

FPGAs were introduced as an alternative to ASIC to shorten the time to market and

overcome huge production cost of ASIC for small designs. As the gate density on the

FPGA increased, they were quickly adopted into emulation based verification tools to

significantly enhance the speed of simulation based verification techniques. FPGAs are

also used to prototype a fully verified ASIC design for system level co-verification on

custom designed boards before going for actual fabrication [3]. Many approaches and

techniques for system level hardware software co-verification using FPGA have been

suggested in [34,35,36].

With the increased use of FPGA for prototyping of an ASIC, many vendors now

provide custom off the shelf boards with application specific interfaces for rapid

prototyping. The cost of these boards mainly depends on the density of the FPGA and

the interfaces present and vary from few hundred dollars to several thousand dollars.

Current FPGA technology can accommodate very large complex designs and can run up

to speeds of 500 MHz [37]. These rapid prototyping boards with appropriate FPGA and

interfaces can run ASIC designs in real-time. Speed of operation and low cost make

them a better alternative for verification as compared to simulation or emulation based

 29

verification. In this thesis an approach of incorporating FPGA prototyping into the

ASIC design process for faster design verification of ASIC H.264 decoder is adopted

and developed. Chapter 4 elaborates the FPGA prototyping based verification process

and its advantages and limitations over earlier techniques.

3.5 Summary

In this chapter, functional verification of ASIC design is discussed and the

techniques currently in practice in the industry are presented. The limitations of

simulation based verification and emulation based verification for verifying ASIC

H.264 decoders are discussed. To overcome time consumed by simulation software and

expenses of emulation techniques, FPGA prototyping based verification is suggested as

a faster and low cost alternative. The following chapter will elaborate on how FPGA

prototyping is used for verification of ASIC H.264 video codec and the gains of this

technique.

 30

CHAPTER 4

4 FPGA PROTOTYPING AND FUNCTIONAL VERIFICATION

Since its introduction in mid 1980s [38], FPGA technology has advanced many

folds and today it makes use of the best VLSI technology available to provide high

capacity high performance programmable devices. State of the art FPGAs are the

largest integrated circuits manufactured [39]. The reconfigurability of FPGA has made

them a faster and economical choice for prototyping and system level testing and

verification. Also, custom off the shelf prototyping boards with desired interfaces are

easily available and are cost effective. Design verification time can be significantly

reduced if we make use of FPGA prototyping boards earlier in the ASIC design process

for functional verification. This technique gives substantial increase in speed over

simulation and emulation based verifications and is a low cost alternative. In this

chapter, FPGA, prototyping boards and their selection criteria are discussed.

Verification strategy employed and the improvements achieved in terms of performance

are presented. Also, merits and demerits of FPGA prototyping based verification are

highlighted and new approaches are suggested.

 31

4.1 FPGA

FPGA [33] contain programmable logic cells and programmable switches that

interconnect the logic cells. FPGA are reconfigurable and can be used to prototype any

ASIC design. FPGA come with different capacities and programmable functional

blocks. Criteria for selecting a right FPGA that best suits for the design to be prototyped

include

1. Capacity of the FPGA. Each configurable logic cell in the FPGA can be

programmed to replicate the actual gates in the ASIC design. Depending on

the design logic, a logic cell can be completely utilized, partially utilized or

just used for routing purposes. Considering all this, the FPGA with enough

logic cells to accommodate the design should be selected.

2. Speed of operation. Speed of operation is critical to get the best or expected

real time performance from the prototype. The operating frequency of

individual programming blocks and the interconnect delay play an important

role to decide the frequency of operation of the prototype.

3. Logic resources. Depending on the complexity of the design, the FPGA

should have enough functional logic blocks such as memory, clock dividers,

DSP blocks, multipliers, comparators, arithmetic blocks and input/output

ports.

4. Synthesis and implementation tools. Synthesis tools compile and translate

the design written in VHDL code into FPGA specific code. Implementation

tools perform the place and route operation to fit the logic into the FPGA

 32

and choose appropriate logic cells to replicate the functionality. Efficient

synthesis and implementation tools make best use of the logic resources on

the FPGA and help to provide best speed performance.

5. IP cores and interface logic. The performance of the prototype can be

improved if the FPGA vendors provide optimized implementation of

commonly used cores like memory modules, memory controllers, clock

dividers, and standard bus interfaces specific to the FPGA. It will also

reduce design and verification time of these modules.

All these factors are considered and Virtex-4LX100 [40] FPGA from Xilinx Inc.

[41] is used to prototype the ASIC H.264 decoder. The logic blocks in a Virtex-4 FPGA

can operate at frequencies up to 500 MHz [42]. Virtex-4LX100 has 100,000 logic cells

and assuming typical gate count as mentioned in [43] to be 12 per logic cell, it can hold

up to a million ASIC gates. Virtex-4 FPGA offer DSP specific blocks that are high

performance versatile arithmetic units. These can also be configured as counters, shift

registers and accumulators [42]. Virtex-4LX100 provides 4,320 Kbits of block RAM

and high performance external memory interface [40]. Xilinx also provides Integrated

Synthesis Environment (ISE) tool [44], which performs synthesis and implementation.

ISE also comes with core generator tool that can be used to generate standard IP cores

like memory modules, interfaces and DSP blocks optimized for the specific FPGA.

Considering all the advantages Virtex-4LX100 is the best choice to prototype H.264

decoder design.

 33

4.2 Prototyping board

The important criteria for choosing an appropriate board for prototyping an

ASIC design are

1. Interfaces present on the board. Whether the board has all the required

interfaces and expandability to add more functionality is an important

requirement for prototyping. For video decoder designs, the board should

have interface to support streaming of the compressed video sequence, fast

and sufficient memory to store decoded frame data and other intermediate

data. Other important interface required is the display interface to display

decoded frames on to the monitor.

2. Reusability for other projects. The board should not be an obsolete design

and should have advanced peripheral devices and interfaces that can be used

for other related projects. This will divide the burden of cost of the board

among other projects.

3. Cost of the board. Cost of the board is an overhead to the project design

cost. The design of the board should have well balance of general features

for reusability and project specific features for cost effectiveness and

optimized performance.

4. Learning time. Time required for understanding and learning the peripheral

interfaces and associated software of the board is an overhead on project

design time. Boards with simple and well defined standard interfaces require

 34

less time to learn. Also if proper reference designs and software with

appropriate drivers are supplied by board vendors, it reduces learning time.

5. Software and hardware requirements. Any additional software or hardware

design other than those provided by board vendors consumes lots of time

and resource. Especially designing customized hardware consumes lots of

time and such design should be avoided.

6. Data transfer rate. This requirement is more specific to verification than

prototyping. To monitor any signals or values at any modules, data needs to

be transferred to the computer for automated or manual verification. Data

transfer rate decides the performance of the prototype and the number of

signals or ports that can be monitored.

The prototyping board chosen considering all the above factors is the

DN8000K10PCI [45] board from the Dini Group [46]. The DN8000K10PCI board can

host up to 2 Virtex-4LX100 or Virtex-4LX200 and a Virtex-4FX60 or Virtex-4FX100

Xilinx FPGAs. The board provides two slots of DDR2 memory with addressing

capacity of up to 4GB in each slot for large data storage and fast access. The board has

serial port, PCI port [47] and USB port [48] for data exchange and monitoring from a

computer. The board also provides programmable clocks to generate clock signals for

desired frequency of operation. Board also has two 200-pin expansion connectors to

connect daughter cards or other peripheral hardware. The board is supplied with PCI

core implementation, USB drivers, relevant software, connecting cables and reference

designs. Dini group also offer Digital Video Interface (DVI) daughter-card [49] that

 35

connects to the expansion connector of DN8000K10PCI and provides display

interfaces. The DN800K10PCI and DVI card pair meets all the requirements for

verifying and prototyping the ASIC H.264 decoder and the solution is cost effective.

Figure 4-1 shows the DN8000K10PCI card used for prototyping ASIC H.264 decoder

and Figure 4-2 shows the DVI daughter-card used for displaying the decoded video.

Figure 4- 1: Prototyping board used for verifying ASIC H.264 decoder [45]

Figure 4- 2: Display card used with prototyping board for displaying decoded video [49]

 36

4.3 Prototyping based verification strategy

To overcome the huge delay in simulation based verification, FPGA prototyping

based verification technique is used. After completion of module level coding and

verification for handshake and data arrival at module level using simulation tool, the

modules were integrated to form the complete H.264 decoder core. While initial

simulations were performed on the integrated core to check interoperability between

modules, the core was also prepared for prototyping on the FPGA for real-time

verification. As individual modules were already verified for handshakes between

modules, output generated from each module for a set of inputs given by the previous

module verified for functional correctness.

To reduce verification overhead on prototyping performance and to improve

observability, proper interface logic was inserted in the memory controller module to

tap decoded frame data going to the memory. This data was transferred to the computer

through USB port for monitoring and analysis. With this logic, data could be analyzed

at the frame level only and did not give much insight about the source of the problem.

To improve observability and controllability, the above technique was modified to

monitor specific module, switch inputs were used to select the module whose data needs

to be tapped. Using this technique it was possible to verify individual modules. Video

sequences that did not pass the frame level tests were passed through module level tests.

Data from each individual module was tapped and verified. Input data available for each

erroneous module was used to simulate the module and identify the error. This helped

 37

to reduce transfer of redundant data which delays verification process and also reduced

the amount of data that needs monitoring and analysis. Module level tapping helped to

achieve faster verification and avoided frame level simulations.

To automate the verification process, simple software programs were written to

capture data transferred from the board and to compare it with the expected values

generated from H.264 reference software [50, 51]. The data that generated errors were

manually analyzed and the error source was debugged. For complex errors, simulation

was performed on modules with identified error cases to analyze the error and the bugs

were fixed by modifying the code. To further improve controllability and observability

switches were used to control frame-by-frame decoding. This helped to keep track of

frame numbers that produced errors and made verification easy. Decoded frames were

displayed on the monitor to track visual artifacts and quick verification of various video

sequences. The proposed technique helped to quickly verify the decoder design, almost

in real-time, for different video sequences with various levels, modes, frame resolutions

and bit rates. Once the functional verification of the design was complete, H.264

decoder was available for real-time system level prototyping with minimal

modifications saving lots of design time.

4.3.1 Results

Charts in Figures 4-3, 4-4, 4-5 show the gains of proposed technique over the

simulation and emulation based verification. Figure 4-3 shows the average verification

time taken by each of the techniques to verify 50 frames of a 4CIF sequence.

 38

Average verification time (4CIF sequence)

0.01

0.1

1

10

100

1000

10000

100000

1 5 9 13 17 21 25 29 33 37 41 45 49

Frames

S
e
c
o
n
d
s

Simulation Emulation (@ 1MHz) FPGA prototyping (proposed)

Figure 4- 3: Average verification time for 4CIF sequence

Average verification time (CIF sequence)

0.01

0.1

1

10

100

1000

10000

100000

1 5 9 13 17 21 25 29 33 37 41 45 49

Frames

S
e
c
o
n
d
s

Simulation Emulation (@ 1MHz) FPGA prototyping (proposed)

Figure 4- 4: Average verification time for CIF sequence

 39

Average verification time (QCIF sequence)

0.001

0.01

0.1

1

10

100

1000

10000

1 5 9 13 17 21 25 29 33 37 41 45 49

Frames

S
e
c
o
n
d
s

Simulation Emulation (@1MHz) FPGA prototyping (proposed)

Figure 4- 5: Average verification time for QCIF sequence

Figure 4-4 and Figure 4-5 shows average verification time taken by simulation,

emulation and proposed technique for CIF and QCIF sequences respectively. In all the

cases we can observe that the proposed technique performs 15000 to 20000 times faster

than simulation based verification and at least 50 times better than the emulation based

verification.

4.3.2 Advantages and limitations

FPGA prototyping based verification gives significant advantages in terms of

speed compared to simulation and emulation based verifications. The functional

verification can be performed almost real-time. FPGA prototyping based verification is

also a significantly low cost alternative compared to emulation based verification and

 40

also helps to reduce the design time. Also, the decoded sequences can be visually

inspected for correctness. This technique also helps to test the interface logic like

memory controller and display interface at system level in real-time which is not

possible through simulation.

Unmatched performance in speed and cost effectiveness of prototyping based

functional verification comes with some limitations. This technique gives lesser

observability compared to simulation tools. Though the end results of each module can

be easily tapped and monitored, signals within the module cannot be monitored to

identify the source of the error. In other words, this technique can quickly identify the

problem but does not give much insight to resolve the same. In some cases simulations

have to be run on identified problem areas of the design to further resolve them.

Another drawback of this technique is the recompilation time. Synthesis and

implementation tools take long time to recompile the modified code, typically two

hours in case of H.264 decoder, which make the technique less useful in the initial

stages of the design. This technique is well-suited to verify ASIC designs that perform

block based data processing with limited data ports, as the output results can be easily

tapped for monitoring without much design changes or modifications. The same

technique becomes a design overhead or comparatively slower to verify designs that

require monitoring lot of data or signals at every clock. Any problems caused due to

improper handshakes between the modules are hard to identify.

 41

4.4 Summary

In this chapter, FPGA and prototyping boards are introduced. Criteria to select

the FPGA and prototyping board for prototyping and verifying an ASIC design are

discussed. FPGA prototyping based functional verification is proposed and its

advantages and limitations are discussed. Section 4.3 explains the verification technique

employed and proves that FPGA prototyping based functional verification helps to

reduce the functional verification time and the overall design time significantly and is a

better alternative compared to simulation and emulation based verifications with some

limitations. The following chapter summarizes the work and presents comparative

results. Future research interests are discussed in brief.

42

CHAPTER 5

5 CONCLUSIONS AND FUTURE RESEARCH

In this thesis, functional verification of ASIC H.264 decoder is discussed. The

limitations of existing techniques, such as simulation and emulation based verification,

to verify complex designs like video codec are highlighted. FPGA prototyping based

functional verification is suggested as a faster and economical alternative. In this

concluding chapter, advantages of the proposed techniques are summarized and

comparison with existing techniques is show. Finally, future research interests and

extensions to this work are discussed.

5.1 Conclusions

Robustness and proper functioning of an engineering design can be assured only

by proper testing and thorough functional verification. For ASIC H.264 decoder design,

thorough functional verification is possible only by verifying the design for long video

sequences with various encoding levels, modes, frame resolutions and bit-rates. With

the limitations in speed of operation to simulate ASIC H.264 decoder as discussed in

chapter 3, simulation technique becomes a bottle neck and consumes lot of design time.

Thorough verification is not possible through simulation tool as it would take two days

just to simulate 120 frames of a 4CIF sequence. Although emulation based verification

is a faster alternative compared to simulation, it cannot give real-time performance.

43

Also emulation tools are expensive and take longer learning time. Also the compilation

time after every design change is more. To overcome limitations of both the existing

techniques, proposed FPGA prototyping based verification technique makes use of

custom off the shelf FPGA prototyping boards that are inexpensive compared to

emulation tools and perform significantly faster than both emulation and simulation

based verification techniques. This technique is ideal for designs like H.264 decoder [4]

which do block based data processing. Table 5-1 compares the proposed technique

against existing verification techniques.

Table 5- 1: Feature comparison of proposed technique with existing techniques

SL.

NO.

Feature Simulation

based

verification

Emulation based

verification

FPGA prototyping

based verification

(proposed)

1 Controllability Excellent Moderate Moderate

2 Observability Highest Moderate Least

3. Speed of operation Slowest Moderate Real time

4. Cost Inexpensive Very expensive Inexpensive

5. Compilation time Low High High

6. Verification with

real hardware

NO Partial Yes

7. Thorough

verification

Not possible Possible Practical

8. Verification of

interfaces

Not possible Partially

possible

Possible

44

Looking at the comparison (Table 5-1) we can conclude that proposed technique

is a significantly faster and cost effective alternative compared to existing verification

techniques. Proposed technique can save a lot of design time and project costs if

properly used and adopted well within the ASIC design process. This technique can

give real time performance and can also verify interface logic at hardware level. With

real time performance thorough verification is possible making the design robust for

ASIC fabrication.

5.2 Future research

 Any new technique has scope for improvements. With the technology

advancing faster than ever, newer interfaces can be used to monitor signals in the

FPGA. Also, interfaces with fast data rates can be tried to transfer more data from the

design for analysis and monitoring. Automated techniques can be developed to capture

and monitor data. Also tools can be added to present the data to the designer in a

convenient way to debug the problem. Software interfaces can be developed to interact

with the design in the FPGA and to monitor the performance of the design modules.

45

REFERENCES

[1] MPEG-4 : ISO/IEC JTC1/SC29 14496-10: Information technology - Coding

of audio-visual objects - Part 10: Advanced Video Coding, ISO/IEC, 2005

[2] H.264: International Telecommunication Union, Recommendation ITU-T

H.264: Advanced Video Coding for Generic Audiovisual Services, ITU-T, 2003

[3] Synplicity Inc., “ASIC Prototyping Using Off-the-Shelf FPGA Boards”,

white paper, Jan 2006. http://www.techonline.com/pdf/pavillions/synplicity/synplicity_

prototyping.pdf

[4] K. Kwon, A.Tamhankar and K.R.Rao, “Overview of MPEG-4 Part 10”.

Journal of Visual Communication and Image Representation, Vol. 17, Issue 2, pp. 186-

216, Apr 2006.

[5] ITU-T website for H.264 standard, http://www.itu.int/rec/T-REC-H.264/en,

Apr 2006.

[6] MPEG-2: ISO/IEC JTC1/SC29/WG11 and ITU-T, ISO/IEC 13818-2:

Information Technology - Generic Coding of Moving Pictures and Associated Audio

Information: Video, ISO/IEC and ITU-T, 1994

[7] MPEG-4: ISO/IEC JTCI/SC29/WG11, ISO/IEC 14 496:2000-2: Information

Technology-Coding of Audio-Visual Objects-Part 2: Visual, ISO/IEC, 2000.

46

[8] G. Sullivan, P. Topiwala and A. Luthra, “The H.264/AVC advanced video

coding standard: overview and introduction to the fidelity range extensions”. SPIE

Conference on Applications of Digital Image Processing XXVII, vol. 5558, pp 53-57,

2004.

[9] I. Amer, W. Badawy, and G. Jullien, “Towards MPEG-4 part 10 system on

chip: a VLSI prototype for context-based adaptive variable length coding (CAVLC)”

IEEE workshop on signal processing systems, pp. 275-279, Oct 2004.

[10] H Lin et al., “Combined 2-D transform and quantization architectures for

H.264 video coders”, IEEE international symposium on circuits and systems, vol. 2, pp.

1802 – 1805, May 2005.

[11] A. Puri, X. Chen and A. Luthra, “Video coding using the H.264/MPEG-4

AVC compression standard”, Signal Processing: Image Communication, vol. 19, issue

9, pp. 793-849, Oct 2004.

[12] Y. Huang et al., “Analysis, fast algorithm, and VLSI architecture design for

H.264/AVC intra frame coder”, IEEE Transactions on circuits and systems for video

technology, vol. 15, No. 3, pp. 378-401, Mar 2005.

[13] I.E.G.Richardson, “H.264 and MPEG-4 Video Compression: Video Coding

for Next Generation Multimedia”, John Wiley & Sons, 2003.

[14] S.-C. Chang et al., “A Platform Based Bus-interleaved Architecture for De-

blocking Filter in H.264/MPEG-4 AVC”, IEEE Transactions on Consumer Electronics,

Vol. 51, No. 1, pp. 249-255, Feb 2005.

47

[15] V. A. Pedroni, “Circuit Design with VHDL”, ISBN 0-262-16224-5, MIT

press, 2004.

[16] IEEE Std 1076-1987: IEEE standard VHDL language reference manual,

Mar 1988.

[17] IEEE Std 1164-1993: IEEE standard multivalue logic system for VHDL

model interoperability (Std_ logic_ 1164), May 1993.

[18] IEEE Std 1076-2002 (Revision of IEEE Std 1076, 2002 Edn): IEEE

standard VHDL language reference manual, 2002.

[19] M. K. Dhodhi, I. Ahmad and S. Tariq, “Functional verification of multi-

million gates ASICs for designing communications networks: trends, tools and

techniques”, The Eleventh International Conference on Microelectronics, pp. 97-100,

Nov 1999.

[20] A. Randjic et al., “Complex ASICs verification with SystemC”, 23rd

International Conference on Microelectronics, pp. 671-674, May 2002.

[21] EDA Industry Working Groups, http://www.eda.org/, Apr 2006.

[22] O. Tschäche and V. Sieh, “ATOMS - A Tool for Automatic Optimization

of Gate Level VHDL Models for Simulation”, Proceedings of 8th European Simulation

Symposium, vol. II, Oct 1996.

[23] A. Hoffmann, T. Kogel and H. Meyr, “A framework for fast hardware-

software co-simulation”, IEEE Proceedings of Design, Automation and Test, pp. 760 –

764, Mar 2001.

48

[24] J. A. Rowson, “Hardware/Software Co-Simulation”, 31
st
 ACM/IEEE

Design Automation Conference, pp. 439 – 440, Jun 1994.

[25] W. I. Baker and A. Mahmood, “An analysis of parallel synchronous and

conservative asynchronous logic simulation schemes”, Proceedings of sixth IEEE

Symposium on Parallel and Distributed Processing, pp. 92 – 99, Oct 1994.

[26] M. L. Bailey, “A time-based model for investigating parallel logic-level

simulation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 11, issue 7, pp. 816 – 824, Jul 1992.

[27] Cadence Design systems, website for information on NC-VHDL simulator,

http://www.cadence.com/products/functional_ver/nc-vhdl/index.aspx, Apr 2006.

[28] H. N. Nguyen and M. Thill, “Design verification based on hardware

emulation”, Proceedings of Seventh IEEE International Workshop on Rapid System

Prototyping, pp. 2 – 4, Jun 1996.

[29] S. Walters, “Reprogrammable hardware emulation for ASICs makes

thorough design verification practical”, Thirty-Fourth IEEE Computer Society

International Conference: Intellectual Leverage, Digest of Papers, pp. 484 – 486, Mar

1989.

[30] Mentor Graphics Corporation, VStation Pro – emulation platform,

http://www.mentor.com/products/fv/emulation/vstation_pro/upload/vstation_pro.pdf,

Apr 2006.

[31] Cadence Design Systems Inc., Palladium series of accelerators/emulators,

http://www.cadence.com/datasheets/incisive_enterprise_palladium.pdf, Apr 2006.

49

[32] C. Chuang et al., “A snapshot method to provide full visibility for

functional debugging using FPGA”, IEEE Proceedings of 13th Asian Test Symposium,

pp. 164 – 169, Nov. 2004.

[33] S. Brown and J. Rose, “FPGA and CPLD architectures: a tutorial”, IEEE

Design & Test of Computers, vol. 13, issue 2, pp. 42 – 57, Summer 1996.

[34] P.-A. Hsiung, “Hardware-software timing coverification of concurrent

embedded real-time systems”, IEE Proceedings on Computers and Digital Techniques,

vol. 147, issue 2, pp. 83 – 92, Mar 2000.

[35] Y. Sungjoo et al., “Fast hardware-software coverification by optimistic

execution of real processor”, Proceedings of IEEE Conference and Exhibition on

Design, Automation and Test, pp. 663 – 668, Mar 2000.

[36] T.W. Albrecht et al., “HW/SW coverification performance estimation and

benchmark for a 24 embedded RISC core design”, Proceedings of IEEE Conference on

Design Automation, pp. 808 – 811, Jun 1998.

[37] Xilinx Inc., “Virtex-4 Family overview”, http://direct.xilinx.com/bvdocs/

publications/ds112.pdf, Feb. 2006.

[38] Xilinx Inc., “Important Dates in Xilinx history”, http://www.xilinx.com/

company/xilinxstory/timeline.htm, Apr 2006.

[39] S. Brown, “FPGA architectural research: a survey”, IEEE Design & Test of

Computers, vol. 13, Issue 4, pp. 9 – 15, Winter 1996.

[40] Xilinx Inc, “Virtex-4 Family overview”, http://direct.xilinx.com/bvdocs/

publications/ds112.pdf, Apr 2006.

50

[41] Xilinx Inc. website, http://www.xilinx.com/, Apr 2006.

[42] Xilinx Inc. white paper, “Achieving breakthrough performance in Virtex-4

FPGAs”, http://direct.xilinx.com/bvdocs/whitepapers/wp218.pdf, Apr 2006.

[43] Xilinx Inc., “Gate Count Capacity Metrics for FPGAs”,

http://direct.xilinx.com/bvdocs/appnotes/xapp059.pdf, Apr 2006.

[44] Xilinx Inc. ISE foundation, tool for synthesis and implementation,

http://www.xilinx.com/ise/logic_design_prod/foundation.htm, Apr 2006.

[45] The Dini Group, DN8000K10PCI Virtex4 Based ASIC Prototyping

Engine, http://www.dinigroup.com/DN8000k10pci.php, Apr 2006.

[46] The Dini Group website, http://www.dinigroup.com/, Apr 2006.

[47] Intel corporation, website for information on PCI, http://www.intel.com/

standards/case/case_pci.htm, Apr 2006.

[48] USB Implementers Forum, Inc., website for information on USB,

http://www.usb.org/, Apr 2006.

[49] The Dini group, Virtex-4 based Digital Video Interface (DVI) daughter-

card, http://www.dinigroup.com/dvidc.php, Apr 2006.

[50] ITU-T Recommendation H.264.2: Reference software for H.264 advanced

video coding, http://www.itu.int/rec/T-REC-H.264.2-200503-I/en, Mar 2005.

[51] Website for current version of H.264 reference software and software

documentation, http://iphome.hhi.de/suehring/tml/, Apr 2006.

51

BIOGRAPHICAL INFORMATION

Basavaraj Mudigoudar received his Bachelor of Engineering degree in

Electronics and communications engineering from Karnataka University, Dharwad,

India in October 2000. After working in the industry for three years developing ASIC

video and audio codecs like MPEG-4 and MPEG-1 part 3 (MP3), he pursued his

masters studies at University of Texas at Arlington. He was the member of digital

image processing research group guided by Dr. K. R. Rao. He received his M.S. degree

in Electrical engineering in May 2006 from Universtiy of Texas at Arlington. He

worked as intern and is also currently employed with FastVDO LLC, Columbia, MD.

His research interests are multimedia processing, ASIC implementation and FPGA

prototyping.

