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ABSTRACT 

 

FPGA PROTOTYPING FOR FAST AND EFFICIENT 

VERIFICATION OF ASIC H.264 DECODER 

 

Publication No. ______ 

 

Basavaraj Mudigoudar, MS 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Dr. K. R. Rao  

 

To improve compression efficiency, recent video compression standards such as 

H.264 use complex algorithms and various modes that demand more computational 

power. Consumer electronics industry requires a low power, compact and cost-effective 

implementation of video codec for most of the products. ASIC implementation of these 

video codecs is a logical choice to meet these requirements. Functional verification of 

an ASIC implementation consumes a major part of design cycle time and lot of 

resources. Because of large design, various modes and options, functional verification 

of an ASIC H.264 video codec is a challenging, resource intensive and time consuming 



 iv 

process. In this thesis an FPGA prototyping based functional verification technique has 

been suggested as fast and efficient alternative for functional verification of ASIC video 

codec. An FPGA prototyping of H.264 video codec has been performed for functional 

verification of ASIC video codec. Advantages and limitations have been elaborated 

with experimental results. 

Keywords: H.264, AVC, MPEG-4 part 10, Functional verification, FPGA, 

ASIC Prototyping.  
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  CHAPTER 1 

1 INTRODUCTION 

 

Recent video compression standards such as MPEG-4 part 10 [1]/ H.264 [2] use 

advanced algorithms, various modes and profiles to give better compression efficiency. 

Adversely, these advanced techniques have increased the complexity of the 

compression process and demand more computational power. Conventional DSP based 

devices do not have enough processing power to handle the complexity of the 

algorithms at higher resolutions and the consumer electronics industry needs a low 

power, compact and cost-effective implementation of the video codec. ASIC 

implementation of the video codec is one of the logical choices to meet these 

requirements. It is an industry statistic that functional verification takes around 70% of 

ASIC design cycle time and requires lot of resources [3]. Because of large design, 

various modes and profiles, functional verification of an ASIC H.264 video codec is a 

challenging, resource intensive and time consuming process. In this thesis an FPGA 

prototyping based functional verification technique is suggested as a fast and efficient 

alternative for functional verification of ASIC video codec. An FPGA prototyping of 

H.264 video codec is performed and an extensive study is done on FPGA prototyping 

based functional verification of ASIC video codec. Advantages and disadvantages are 

elaborated with experimental results. 
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1.1  Thesis outline 

Chapter 2 gives an overview of the H.264 standard and explains the ASIC 

implementation of the standard. Coding algorithms used in H.264 and ASIC design 

process are briefed. 

Chapter 3 explores the ASIC verification techniques commonly used in the 

industry and discusses the advantages and disadvantages. Common methodologies and 

practices are introduced with emphasis to FPGA based prototyping. 

In Chapter 4 FPGA prototyping of an ASIC video codec is presented. This 

chapter also discusses FPGA prototyping boards and their useful features.  

Methodologies used for verification of ASIC H.264 decoder are presented. 

Chapter 5 outlines the results and advantages of FPGA prototyping based 

verification of an ASIC video codec. Results presented show the improvements 

achieved using the suggested techniques. Conclusions and future research interests are 

suggested.   
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CHAPTER 2 

2 OVERVIEW OF H.264 AND ASIC IMPLEMENTATION 

 

MPEG-4 part 10 or H.264 is the next generation video codec jointly developed 

by MPEG of ISO/IEC and VCEG of ITU-T [4]. The Joint Video Team (JVT) released 

the first draft of H.264, also known as Advanced Video Coding (AVC), in May 2003 

[2] [5]. Juxtaposed to previous video compression standards such as MPEG-2 [6], 

MPEG-4 part 2 [7], H.264 also uses hybrid block based video compression techniques 

such as transformation for reduction of spatial correlation, quantization for bit-rate 

control, motion compensated prediction for reduction of temporal correlation and 

entropy coding for reduction in statistical correlation [4]. However, H.264 incorporates 

advanced algorithms and techniques to enhance coding performance over the previous 

standards and it gives better coding efficiency over MPEG-2 by as much as 3:1 in some 

key applications [8]. Improved coding efficiency comes with the added cost of 

complexity in the encoding and decoding processes. H.264 utilizes some methods like 

multiplier-free integer transforms and simple integer based shift and add arithmetic that 

are ASIC friendly and reduce implementation complexity. Applications like digital 

video set-top box, handheld devices and HD-DVD players require portable, low power 

ASIC video decoders. ASIC implementation of H.264 decoder is a challenge because of 

complex algorithms and various modes. Functional verification of the ASIC H.264 
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decoder is more complicated and generating test patterns to verify all modes and corner 

cases is difficult. This chapter gives an overview of H.264, its ASIC implementation 

and explores verification challenges. 

 

2.1  Overview of H.264 

H.264 standard has been well segregated into profiles and levels to meet the 

requirements of various video related applications. The encoding process can be 

represented by Figure 2-1 [4]. 

 

Figure 2- 1: H.264 encoder block diagram [4] 

H.264 uses integer DCT, quantization and intra prediction techniques to reduce 

spatial correlation. Integer DCT is employed to reduce implementation complexity and 

avoid encoder decoder mismatch. Temporal redundancy is reduced by motion 

estimation based inter prediction techniques. Compression efficiency and visual quality 

are enhanced by using various block sizes and up to quarter pixel accuracy for motion 
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estimation. Statistical redundancy is minimized using variable length coding (VLC). 

Advanced coding techniques such as exponential Golomb encoding, Context-based 

Adaptive VLC (CAVLC) and Context-based Adaptive Binary Arithmetic Coding 

(CABAC) are employed to increase compression efficiency. Coding of video is done 

one frame/picture at a time and each picture is divided into one or more slices. A slice is 

the smallest completely decodable element in an H.264 video stream. Each slice is a 

sequence of macroblocks with each macroblock consisting of 16X16 pixels. Encoded 

slice data and other required information for decoding a slice are packed into a Network 

Abstraction Layer Unit (NALU). A sequence of these NALU makes a H.264 video 

stream. Overview of the standard and algorithms are presented in the following 

sections.  

2.1.1  Profiles and levels  

H.264 defines seven profiles that address different video related applications 

from low bandwidth networks to digital cinema. All profiles in H.264 have some 

common coding parts and some specific coding parts as shown in Figure 2-2 [4]. 

 

Figure 2- 2: Specific coding parts of the profiles in H.264 [4] 
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Some common features to all profiles are: 

1. Intra-coded slices (I slice): These slices are coded using prediction only 

from decoded samples within the same slice. 

2. Predictive-coded slices (P slice): These slices are coded using inter-

prediction from previously decoded reference pictures. Sample values of 

each block are predicted using one motion vector and reference index. 

3. 4X4 modified integer DCT 

4. CAVLC for entropy encoding 

5. Exponential Golomb encoding for headers and associated slice data 

 

2.1.1.1  Baseline Profile 

Baseline profile mainly addresses the real time video applications such as video 

conferencing, video phone and incorporates tools that help in error resilience. Simpler 

algorithms are used in prediction to keep the decoding process less complex and less 

memory intensive. Some salient features are: 

1. I and P slice only. 

2. Only CAVLC based entropy encoding. 

3. Flexible Macroblock Ordering (FMO), macroblocks need not be presented 

to the decoder in raster scan order. 

4. Arbitrary Slice Ordering (ASO), slices need not be presented to the decoder 

in raster scan order. 
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5. Redundant Slice, coded slice data of the previously coded slice at same or 

different coding rate. 

First two make the decoding process simple and the later three help to achieve 

error resilience. 

 

2.1.1.2  Main Profile 

Features in main profile are designed to best suit the digital storage media, 

television broadcasting and set-top box applications. It uses more sophisticated 

prediction and entropy coding techniques and eliminates error resilience tools. Some 

important features are: 

1. I, P and B slices are supported. B slices (Bi-directionally predictive-coded 

slices) are slices coded using inter-prediction from previously decoded 

reference pictures using at most 2 motion vectors and reference indices. 

2. Both CAVLC and CABAC based entropy coding is supported. 

3. Weighted prediction, a technique of scaling the samples of motion-

compensated prediction data by a weighting factor can be used to give better 

prediction for fading scenes. 

 

2.1.1.3  Extended profile 

Extended profile caters to the needs of multimedia services over internet like 

streaming video and video on demand. This profile uses the error resilience tools from 

baseline and prediction tools from main profile and adds more features like data 
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partitioning and switching slices that are best suited for streaming applications. Some 

significant features are: 

1. I, P and B slices are supported. 

2. Weighted prediction is supported 

3. All error resilience tools, FMO, ASO and redundant slices are supported 

4. Switching I and P slices (SI, SP Slices) are introduced for efficient 

switching between video streams. 

 

2.1.1.4  High profiles 

H.264 also defines four high profiles [8] which are more sophisticated and cater 

applications involving high quality and high resolution video such as studio editing, 

content distribution, post processing and digital cinema. All high profiles have some 

common and some specific coding tools and features. Common features of high profile 

include:  

1. All main profile features such as I, P and B slices, weighted prediction and 

CABAC. 

2. Adaptive transform block size. Both 4X4 and 8X8 block sizes are supported 

3. Perceptual quantization matrices to improve subjective quality 

 Additionally, High 10 profile supports pixel bit-depths up to 10 bits. High 4:2:2 

profile supports 4:2:2 chroma sampling and up to 10 bits per pixel. Advanced 4:4:4 

profile supports 4:4:4 chroma sampling and up to 12 bits per pixel. 
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2.1.1.5  Levels 

For all profiles, level specifies the limitation on frame size (number of 

macroblocks per frame), frame rate, memory allocations, bit rates, motion vector search 

range and minimum compression ratio. Table 2-1 [2] details the level specifications 

Table 2-1: Level specifications in H.264 [2] 

 
 

 

2.1.2  Video decoding process 

H.264 standard gives the bit stream syntax and details the decoding process and 

algorithm, to decode a coded video stream. For the encoder, it specifies bit stream 

syntax, normative and informative guidelines to generate a compliant encoded 
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sequence. The decoding process can be understood with the help of a block diagram 

shown in Figure 2-3. Important algorithms are briefly explained in the following 

sections with emphasis on baseline profile decoding. 

 

Figure 2- 3: Functional Block diagram of an H.264 decoder 

 

2.1.2.1  Entropy decoding 

In Baseline profile H.264 uses CAVLC based entropy coding for slice data 

encoding and exponential Golomb coding for syntax elements and header information 

[9]. Role of the bit stream parser or the entropy decoding block is 

1. To identify NALU start headers. 

2. Decode parameter sets and update relevant decoder parameters. 

3. Decode slice header information and update syntax element parameters. 

4. Perform CAVLC based variable length decoding. Inputs to this process are 

bits from slice data and maximum number of non-zero transform coefficient 

levels in a 4X4 block. Output of this process is 4X4 block of transform 

coefficient levels. 
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5. Perform inverse zigzag scan ordering of data to recover transformed residual 

block. 

 

2.1.2.2  Inverse transform 

H.264 uses modified 4X4 integer DCT to avoid mismatch in encoder and 

decoder [10]. Scaling multiplication of transformation is integrated into the quantization 

process [10]. H.264 further exploits correlation in 16 DC values of the transformed 

macroblock by applying 4X4 Hadamard transform on Luma DC coefficients and 2X2 

Hadamard transform on Chroma DC components [11]. Input to this block is entropy 

decoded and inverse zigzag scanned macroblocks and output of this block is inverse 

quantized and inverse transformed macroblocks. Inverse transform block has to perform 

1. Inverse quantization 

2. Inverse Hadamard transform for luma and chroma DC coefficients. 

3. Inverse DCT of 4X4 blocks. 

 

2.1.2.3  Intra prediction 

H.264 exploits spatial correlation in intra coded macroblocks with intra-

prediction techniques. Inputs to this process are reconstructed macroblocks, intra 

prediction modes of current macroblock and previously decoded neighboring 

macroblocks. Output of this block is constructed samples prior to de-blocking filter. 

H.264 uses 9 modes of intra-prediction on 4X4 blocks and 8X8 blocks and 4 modes on 
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16X16 blocks. The modes and their prediction type are pictorially represented in Figure 

2-4 [12]. 

 

Figure 2- 4: Pictorial representation of intra prediction modes in H.264 [12] 

 

2.1.2.4  Inter prediction 

Inter prediction is used to take advantage of temporal redundancy in video data. 

In general, a large partition size is appropriate for homogeneous areas of the frame and 

small partition size is beneficial for areas with more details [4]. H.264 gives provision 

to use block sizes ranging from 16X16 up to 4X4. Sub-pixel motion compensation, with 

added complexity, outperforms integer-pixel motion compensation in terms of 

compression efficiency [13]. H.264 supports up to quarter pixel accuracy of motion 

compensation. Half-pixels and quarter-pixels are derived from full-pixels using 6-tap 
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FIR and bi-linear filters. Inputs to this block are motion vectors and reconstructed 

residual data. Output of this block is a predicted macroblock. 

 

2.1.2.5  De-blocking filter 

To reduce the blocking artifacts introduced by block-based transform, inter and 

intra predictions and quantization, H.264 employs an adaptive and optional in loop de-

blocking filter. De-blocking filter has significant impact on visual quality improvement 

[14]. Filtering is applied adaptively along the 4X4 block edges. Input to this block is a 

completely reconstructed macroblock, boundary strength and quantization parameters. 

Outputs of this block are the final reconstructed macroblocks. 

 

2.2  ASIC implementation 

With the advent of digital video and audio and supporting technologies like flat 

panel displays and compact speakers, multimedia based consumer products have 

become very popular. Digital multimedia is now part of all personal entertainment 

systems, car entertainment systems, TV broadcasting, video conferencing, video on 

demand and mobile TV to name a few. Key feature of digital video is its compression 

technology like H.264, because of which storage and transfer are compact and cost 

effective. All the end-user products inevitably require a cost effective decompression 

solution that is compact in size and consumes less power. Low power, low cost digital 

signal processors do not have enough processing power to decode complex algorithms 

used in H.264 [12]. These requirements and volume of the consumer electronics market 
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encourage ASIC implementation of H.264 decoder. Following sections give an 

overview of the ASIC implementation of H.264 decoder. 

 

2.2.1  Hardware Description Language 

VHDL and Verilog are the two commonly used Hardware Description 

Languages (HDL) in the VLSI industry. In this thesis, VHDL is used for implementing 

the ASIC H.264 decoder core. VHDL stands for VHSIC Hardware Description 

Language. VHSIC is itself an abbreviation for Very High Speed Integrated Circuits, an 

initiative funded by the United States Department of Defense in the 1980s that led to the 

creation of VHDL [15]. VHDL was the original and first hardware description language 

to be standardized by the IEEE, through the IEEE 1076 [16] standard in 1988. An 

additional standard, the IEEE 1164 [17], was later added to introduce a multi-valued 

logic system in 1993. The IEEE 1076 was further revised in 2000 and the current 

revision was updated in 2002 [18]. A hardware design can be implemented using 

VHDL in a descriptive structure and the code can be used for hardware simulation and 

synthesis. Benefits of using VHDL are: 

1. VHDL is a standard 

2. It is a technology or vendor independent language 

3. It is easily portable and reusable 

4. Modular level design and system integration are easy 

5. It is supported by both FPGA vendors and ASIC foundries for fabrication 
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2.2.2  ASIC design process 

Goal of the ASIC H.264 decoder design is to achieve real-time decoding (up to 

30 frames per second) of H.264 compressed high definition (HD) video of resolution up 

to 1280X720 (720p) with an operating frequency less than 100 MHz. Guidelines for the 

design process are: 

1. Compliance to the standard 

2. Complete hardware implementation 

3. Target or platform independent implementation 

4. Common code base for ASIC and FPGA prototyping 

H.264 standard was thoroughly studied to understand the requirements and 

specifications of the standard. The decoder design is split into modules and each module 

represents a block in Figure 2-5. Modules are instantiated as components in the decoder 

and required interconnects are made between the modules to pass data and control 

signals. Decoder design employs a pipelined architecture to makes use of concurrency 

in operation of an ASIC. Each module processes one macroblock at a time independent 
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of the other modules. Functional description of most of the modules is described in 

section 2.1.2. Each module gets the data and other parameters for processing from input 

memory buffers and stores its processed data and parameters in output memory buffers. 

Memory allocations and read and write requests of each module are handled by memory 

management module. It performs proper allocations and arbitration of requests and 

provides single memory interface. Reference picture management module works closely 

with inter-prediction to provide the required reference picture and to store decoded 

frames that can be used as reference pictures in future. Display buffer management 

module outputs the decoded frames in display order.  

Design process involves understanding the specifications of H.264 baseline 

profile decoder, partitioning the design into modules, coding of individual modules in 

VHDL and testing for proper functionality. Individual modules were simulated with test 

vectors passed from the test-benches and verified with expected values. Functionally 

verified modules were integrated and interconnected to form the decoder. H.264 

compressed bit stream was passed as test vector to simulate and functionally verify the 

decoder. 

2.3  Summary 

In this chapter, overview of H.264 video coding standard was presented and 

compression algorithms employed were briefly explained in sub-sections of 2.1. 

Sections of 2.2 elaborated on need for ASIC H.264 video decoder and also discussed 

the design process employed. Functional verification methodologies and FPGA 

prototyping based functional verification are discussed in the following chapter.  
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CHAPTER 3 

3 FUNCTIONAL VERIFICATION OF ASIC DESIGN 

 

With increases in complexity and gate count of an ASIC design, functional 

verification has become one of the greatest concerns of design engineers. Verification 

has also become a serious bottleneck in the VLSI design process. In [19], Dhodhi et al. 

estimate that functional verification takes 50-60 % of time and efforts of design teams. 

VLSI design methodologies that take into account verification issues in the early phase 

of design and utilize state-of-the-art techniques have become a necessity. With 

technology changing more often than ever, time to market has become crucial for all 

design houses and manufacturing companies. Sections in this chapter present functional 

verification techniques currently in practice in the industry and discuss their advantages 

and limitations. In this chapter, FPGA prototyping based functional verification is 

introduced as a fast and efficient alternative for functional verification.  

3.1  Functional verification 

Engineering design process is not complete without the verification of the 

design. Verification is a process of checking whether the design meets the specifications 

for which it was designed. Verification of an ASIC can be broadly classified into timing 

verification and functional verification. In timing verification, design is tested against 

the timing requirements of the system such as frequency of operation, meeting set-up 
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and hold times etc. Functional verification is a process in which, logical or functional 

correctness of a digital circuit is verified [20]. In functional verification response or 

output of the digital circuit is matched against its expected output for a particular set of 

stimuli or inputs. ASIC design process can be represented with the flow diagram shown 

in Figure 3-1. 

 

 

Figure 3- 1: ASIC design process 

 

Coding and functional verification is an iterative process where verification 

consumes most of the time as the design has to be verified thoroughly even for minor 

modifications or corrections made in the code. Efforts involved and the time consumed 
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at system level verification are the highest and are of major concern [20]. Two most 

important components of functional verification are speed of functional execution and 

design controllability and observability. There are various tools and techniques that are 

currently in practice in the industry that are categorized under Electronic Design 

Automation (EDA) [21]. 

 

3.2  Verification by software simulation  

In software simulation based verification, the HDL code of the digital logic is 

simulated by the simulation software. Logic simulation is the primary tool used for 

verifying the logical correctness of a hardware design. In many cases, logic simulation 

is the first activity performed in the process of taking a hardware design from concept to 

realization. Test-bench can be written around the design under test (DUT) and inputs 

can be passed to the DUT through the test-bench. VHDL provides synthesizable and 

non-synthesizable constructs. Test-bench can use constructs like file I/O and pre-

defined patterns to generate inputs to the DUT. The outputs are automatically verified 

and reported using report or assert statements. Outputs can also be written to a file with 

file I/O for manual or automated verification. Simulation software compiles the DUT 

and uses the test vectors provided by test-bench to simulate the design. Simulation 

software also keeps track of all the signals and ports in the design and their transition at 

the change of the clock or inputs and writes it to a waveform database. Waveform 

viewer software is used to analyze the performance of the digital design and understand 

the cause or source of the error if any. Passing the simulation test can reasonably assure 
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the logical correctness of the design, for the cases that have been tested in the 

simulation. 

 

3.2.1 Advantages and limitations of logic simulation 

Logic simulation comes with following advantages  

1. Simulation is completely generic and any hardware design can be 

simulated. 

2. Setup is simple, quick and easy  

3. Highest level of controllability and observability 

4. Designer gets complete feedback of the verification process 

5. Direct interaction with the design with minimum abstraction, there is no 

layer of translation to obscure the behavior of the design 

6. Changes in every signal or port can be observed for every change in the 

input during and after the verification process through waveforms. 

7. No additional hardaware cost or porting efforts. 

The ease of software simulation based verification comes with an overhead of 

simulation time which increases with the complextiy of the design. As discussed in [3, 

22, 23, 24], time consumed in simulating a digital design is a major drawback of 

simulation based verification. The time required to verify the design is proportional to 

the maturity of the design. Early in the design process at module level verification, 

incorrect functionalities are usually found quickly and easily through simulation. As the 

design matures, it takes longer to find the errors. Simulation time largely varies 
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depending on the software used, computer configuration and coding style. In [22], 

Tschäche and Sieh as an example, estimate the simulation execution time per gate as 2.9 

ms. These estimations are for verification of a simple 2 input NAND gate. Further in 

[25], Baker and Mahmood present a generalized mathematical model for time of unit 

delay simulation shown in (3-1) which is derived from Bailey’s mathematical model 

[26]. 

( )( )∑
−

=

∗+∗=
1

0

, 1
n

i

iius edepthE βτ      (3-1) 

where 

us ,τ  - Time of unit delay simulation  

  E - Evaluation time per level 

iβ  - Simulation dependency graph for an input event 

ie  - Input event 

 n - Number of input events 

For simple designs all possible input cases can be exhaustively passed through 

the design and the output can be verified. As the complexity of the ASIC design 

increases depth of simulation dependency graph increases and also the number of input 

events increases drastically. With the increase in design size, generating and testing all 

possible test vectors becomes difficult and time consuming. For larger designs not only 

the exhaustiveness of input test vectors but also the order in which they are passed 

decides the behavior of the logic thus making the list of exhaustive test vectors 

infinitely long. Especially, when the designs include signal processing algorithms like 

video processing with various conditional modes and functionality the order of test 

vectors passed is crucial. For instance a third frame predicted using the second frame 
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cannot be decoded until the first two frames are completely decoded. Also testing the 

individual modules exhaustively is not possible because of the dependency involved. In 

H.264, decoding of current macroblock requires decoded data from previous 

macroblocks and previous modules in fixed order. For instance, to perform inter-

prediction on a particular macroblock, motion vectors of neighboring macroblocks and 

data from previous frame are required. Writing test-bench codes to generate such input 

patterns is very time consuming and sometimes the code volume of the test-bench is 

more than the design code itself [20]. 

Apart from being time consuming, simulation based verification also has other 

drawbacks. Simulation can take an inordinately large amount of computing resources, 

as it typically uses a single processor to reproduce the behavior of many (perhaps 

millions of) parallel hardware processes. Also memory requirements of simulation tool 

increase with the complexity of the design and become prominent when the design and 

test-bench have bigger memory instantiations. For instance, simulation tool reports 

insufficient memory for decoding a high definition sequence with a resolution of 

1280X720. Some experiments were performed to measure the performance of 

simulation tool. NC-VHDL simulation software [27] from Cadence Design Systems 

was used on a Pentium 4 system running at 3.2 GHz with 1GB of DDR2 primary 

memory. Table 3-1 lists the gate count of some modules in H.264 decoder and the 

average number of clocks required to complete the processing of one macroblock. Last 

column lists the average time taken by the simulator to simulate the design. The inverse 

transform module running at 50 MHz in real-time would require 65 µs to process a 
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block, but a simulator takes 1.14 seconds. Despite simulator being more than 17,000 

times slower than real-time, 1 second of simulation time is acceptable for the ease, 

controllability and observability the simulation tool provides for the designer. These 

features are more important during the initial design process. 

Table 3- 1: Gate count and simulation time of H.264 modules 

SL. 

No. 

H.264 decoder 

Module 

Gate count 

(K) 

Avg. no. of 

clocks per 

macro-block 

Avg. 

Simulation 

time (s) 

1 Inverse transform 95.57 3280 1.14 

2 Intra prediction 99.43 3268 1.3 

3 De-blocking 87.24 3093 1.1 

4 Inter prediction 170.31 3025 1.4 

 

Table 3- 2: Simulation time of an ASIC H.264 decoder and memory requirements 

  

Table 3-2 lists the average number of clocks required for the H.264 decoder to 

decode compressed streams of different frame resolutions. Columns 4 and 5 list the 

average simulation time and the system memory used by the simulator to simulate the 

H.264 decoder with approximatley 500 K gate count. Simulator on an average takes 342 

seconds to decode one frame of a CIF resolution sequence. At 30 frames per second the 

simulator would take approximately 11 and ½ hour to simulate decoding of 4 seconds 

SL. 

No. 

Frame resolution 

of the sequences 

decoded 

Avg. no. of 

clocks per 

frame 

Avg. 

simulation 

time 

Avg. Memory 

utilization 

(MB) 

1 QCIF (176X144) 279848 1 min,10 sec 946 

2 CIF (352X288) 978958 5 min, 42 sec 938 

3 4CIF (704X576) 4054708 27 min,50 sec 1089 
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of a CIF sequence and more than two days to simulate decoding of a 4CIF sequence. 

Such long delays make simulation based verification inappropriate for thorough 

functional verification of ASIC H.264 decoder. 

Considering both the advantages and disadvantages of logic simulation, it is a 

good tool for verifying the correctness of a hardware design and is a tool of choice for 

module level verification and verification of small designs. But it has  major drawbacks 

for verification of large complex design like video codec. 

 

3.3  Emulation based verification 

Emulation based verification is a faster verification tool compared to software 

simulation based verfication. In [28], Nguyen and Thill discuss the advantages of using 

emulation based verification over software simulation based functional verification. In 

[29] Walters highlights the impractical limitations of simulation based verification and 

proposes emulation based verification as an alternative for thorough verification of 

ASIC designs. Typically, emulation based verfication tools come with a hardware 

accelerator card that helps to speed-up simulation and a software program that 

interfaces the card and the software simulation tools. The hardware accelerator card has 

one or more programmable devices and a set of fixed interfaces. The software takes the 

HDL code of DUT and partitions it to fit into the programmable devices on the card. 

Also signals and/or ports that need to be monitored are taken as input from the user and 

extra logic to monitor them is programmed on to the accelerator card. Once the card is 

ready, inputs are taken from the test-bench through the simulation software and passed 
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on to the card. The ouputs produced on the ports being monitored are sent back from the 

accelerator card to the simulation software. These signals or ports can then be analyzed 

automatically or manually. The emulation tools make use of the program language 

interface (PLI) constructs of verilog or foreign language interface (FLI) constructs of 

VHDL to interact with the test-bench which are in verilog or VHDL. Some emulation 

tools use custom languages to generate test-benches.  The emulation based verfication 

process is represented in Figure 3-2. 

 

Figure 3- 2: Emulation based verification process 

 

Many EDA tool vendors provide emulation based verification tools as a faster 

alternative to simulation based verification. An emulation tool like VStationPRO from 

Mentor Graphics coporation [30] or Palladium from Cadence Design Systems Inc [31] 
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provides 100-10,000X faster performance compared to software simulation. These 

emulation platforms are scalable and can verify more than 100 million gates at speeds 

500 – 2000 kHz. Today, automated and advanced emulation tools are available to the 

designers. The emulation environment is  kept at a level of abstraction to the user and 

the software gives an easy interface for verifying the DUT. The emulation software 

takes the RTL and test-bench of the DUT, automatically partitions the DUT and 

programs the accelrator to provide all the data required by the test bench for 

verification. It uses PLI and FLI constructs to interact and exchange data with the 

accelerator and the simulaiton software. The designer can access and monitor the 

requested signals and the test-bench can automatically verify the results against the 

expected values. 

3.3.1  Advantages and limitations of emulation 

Emulation based verification has following advantages  

1. Verification is 100 to 10000 times faster than simulation. 

2. Emulation gives controllability and observability with certain level of 

abstraction 

3. Partial to complete feedback from the verification process 

4. Changes in desired signals or ports can be observed for every change in the 

input during and after the verification process through the waveforms. 

5. Can simulate multi-million gate ASIC design. 

6. Emulators are scalable and have various standard interfaces and built-in bus 

functional models (BFM)  
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Speed improvement in verification through emulation comes with an overhead 

of extra cost for the emulator hardware and design time. Hardware emulation platforms 

can cost up to a million dollars [32] and can run only at a speed of 1 or 2 MHz. This 

speed is 100 to 1000 times faster than simulation but still too slow for some applications 

like video processing. The speed of operation and the number of ports or signals that 

can be observed reduces with the increase in the design complexity. Increase in design 

complexity also increases the time required by compiler tools to partition the design and 

generate programmable code for the devices on the accelerator card. Learning curve in 

understanding the accelerator platform and its capabalities is usually long. If the 

emulation platform uses its own language and syntax structure, modification of the 

design and test-bench becomes an overhead. Accelerator platforms are more generic in 

nature having wide varitey of interfaces and IP cores and not customized for specific 

designs making them expensive. Also the emulator platforms do not run real time and 

cannot generate proper signals to time sensitive devices like memory contollers or video 

screens. So the interfaces cannot be verified in real-time. 

Considering the advantages and disadvantages, emulation based verification is a 

faster alternative compared to software simulation but it is very expensive. Also the 

speeds achieved do not give real-time performance and are much slower than expected 

for many applications. ASIC designs like video codec require faster and cost-effective 

verification tecniques to reduce time to market and design cost.  
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3.4  FPGA prototyping based verification 

Field programmable gate array (FPGA) is a semiconductor device containing 

programmable logic blocks and programmable switches that interconnect the logic 

blocks. Also, FPGA are reconfigurable [33].  These features of FPGA allow them to be 

used for any application and quick prototyping. ASIC designs are generally time 

consuming and are not cost effective for small designs and low volume production. 

FPGAs were introduced as an alternative to ASIC to shorten the time to market and 

overcome huge production cost of ASIC for small designs. As the gate density on the 

FPGA increased, they were quickly adopted into emulation based verification tools to 

significantly enhance the speed of simulation based verification techniques. FPGAs are 

also used to prototype a fully verified ASIC design for system level co-verification on 

custom designed boards before going for actual fabrication [3]. Many approaches and 

techniques for system level hardware software co-verification using FPGA have been 

suggested in [34,35,36]. 

With the increased use of FPGA for prototyping of an ASIC, many vendors now 

provide custom off the shelf boards with application specific interfaces for rapid 

prototyping. The cost of these boards mainly depends on the density of the FPGA and 

the interfaces present and vary from few hundred dollars to several thousand dollars. 

Current FPGA technology can accommodate very large complex designs and can run up 

to speeds of 500 MHz [37]. These rapid prototyping boards with appropriate FPGA and 

interfaces can run ASIC designs in real-time. Speed of operation and low cost make 

them a better alternative for verification as compared to simulation or emulation based 
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verification. In this thesis an approach of incorporating FPGA prototyping into the 

ASIC design process for faster design verification of ASIC H.264 decoder is adopted 

and developed. Chapter 4 elaborates the FPGA prototyping based verification process 

and its advantages and limitations over earlier techniques. 

3.5  Summary 

In this chapter, functional verification of ASIC design is discussed and the 

techniques currently in practice in the industry are presented. The limitations of 

simulation based verification and emulation based verification for verifying ASIC 

H.264 decoders are discussed. To overcome time consumed by simulation software and 

expenses of emulation techniques, FPGA prototyping based verification is suggested as 

a faster and low cost alternative. The following chapter will elaborate on how FPGA 

prototyping is used for verification of ASIC H.264 video codec and the gains of this 

technique. 
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CHAPTER 4 

4 FPGA PROTOTYPING AND FUNCTIONAL VERIFICATION 

 

Since its introduction in mid 1980s [38], FPGA technology has advanced many 

folds and today it makes use of the best VLSI technology available to provide high 

capacity high performance programmable devices. State of the art FPGAs are the 

largest integrated circuits manufactured [39]. The reconfigurability of FPGA has made 

them a faster and economical choice for prototyping and system level testing and 

verification. Also, custom off the shelf prototyping boards with desired interfaces are 

easily available and are cost effective. Design verification time can be significantly 

reduced if we make use of FPGA prototyping boards earlier in the ASIC design process 

for functional verification. This technique gives substantial increase in speed over 

simulation and emulation based verifications and is a low cost alternative. In this 

chapter, FPGA, prototyping boards and their selection criteria are discussed. 

Verification strategy employed and the improvements achieved in terms of performance 

are presented. Also, merits and demerits of FPGA prototyping based verification are 

highlighted and new approaches are suggested.  
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4.1  FPGA 

FPGA [33] contain programmable logic cells and programmable switches that 

interconnect the logic cells. FPGA are reconfigurable and can be used to prototype any 

ASIC design. FPGA come with different capacities and programmable functional 

blocks. Criteria for selecting a right FPGA that best suits for the design to be prototyped 

include 

1. Capacity of the FPGA. Each configurable logic cell in the FPGA can be 

programmed to replicate the actual gates in the ASIC design. Depending on 

the design logic, a logic cell can be completely utilized, partially utilized or 

just used for routing purposes. Considering all this, the FPGA with enough  

logic cells to accommodate the design should be selected. 

2. Speed of operation. Speed of operation is critical to get the best or expected 

real time performance from the prototype. The operating frequency of 

individual programming blocks and the interconnect delay play an important 

role to decide the frequency of operation of the prototype. 

3. Logic resources. Depending on the complexity of the design, the FPGA 

should have enough functional logic blocks such as memory, clock dividers, 

DSP blocks, multipliers, comparators, arithmetic blocks and input/output 

ports.  

4. Synthesis and implementation tools. Synthesis tools compile and translate 

the design written in VHDL code into FPGA specific code. Implementation 

tools perform the place and route operation to fit the logic into the FPGA 
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and choose appropriate logic cells to replicate the functionality. Efficient 

synthesis and implementation tools make best use of the logic resources on 

the FPGA and help to provide best speed performance. 

5. IP cores and interface logic. The performance of the prototype can be 

improved if the FPGA vendors provide optimized implementation of 

commonly used cores like memory modules, memory controllers, clock 

dividers, and standard bus interfaces specific to the FPGA. It will also 

reduce design and verification time of these modules. 

All these factors are considered and Virtex-4LX100 [40] FPGA from Xilinx Inc. 

[41] is used to prototype the ASIC H.264 decoder. The logic blocks in a Virtex-4 FPGA 

can operate at frequencies up to 500 MHz [42]. Virtex-4LX100 has 100,000 logic cells 

and assuming typical gate count as mentioned in [43] to be 12 per logic cell, it can hold 

up to a million ASIC gates. Virtex-4 FPGA offer DSP specific blocks that are high 

performance versatile arithmetic units. These can also be configured as counters, shift 

registers and accumulators [42].  Virtex-4LX100 provides 4,320 Kbits of block RAM 

and high performance external memory interface [40]. Xilinx also provides Integrated 

Synthesis Environment (ISE) tool [44], which performs synthesis and implementation. 

ISE also comes with core generator tool that can be used to generate standard IP cores 

like memory modules, interfaces and DSP blocks optimized for the specific FPGA. 

Considering all the advantages Virtex-4LX100 is the best choice to prototype H.264 

decoder design. 
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4.2  Prototyping board 

The important criteria for choosing an appropriate board for prototyping an 

ASIC design are 

1. Interfaces present on the board. Whether the board has all the required 

interfaces and expandability to add more functionality is an important 

requirement for prototyping. For video decoder designs, the board should 

have interface to support streaming of the compressed video sequence, fast 

and sufficient memory to store decoded frame data and other intermediate 

data. Other important interface required is the display interface to display 

decoded frames on to the monitor.  

2. Reusability for other projects. The board should not be an obsolete design 

and should have advanced peripheral devices and interfaces that can be used 

for other related projects. This will divide the burden of cost of the board 

among other projects. 

3. Cost of the board. Cost of the board is an overhead to the project design 

cost. The design of the board should have well balance of general features 

for reusability and project specific features for cost effectiveness and 

optimized performance. 

4. Learning time. Time required for understanding and learning the peripheral 

interfaces and associated software of the board is an overhead on project 

design time. Boards with simple and well defined standard interfaces require 
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less time to learn. Also if proper reference designs and software with 

appropriate drivers are supplied by board vendors, it reduces learning time.  

5. Software and hardware requirements. Any additional software or hardware 

design other than those provided by board vendors consumes lots of time 

and resource. Especially designing customized hardware consumes lots of 

time and such design should be avoided. 

6. Data transfer rate. This requirement is more specific to verification than 

prototyping. To monitor any signals or values at any modules, data needs to 

be transferred to the computer for automated or manual verification. Data 

transfer rate decides the performance of the prototype and the number of 

signals or ports that can be monitored. 

The prototyping board chosen considering all the above factors is the 

DN8000K10PCI [45] board from the Dini Group [46]. The DN8000K10PCI board can 

host up to 2 Virtex-4LX100 or Virtex-4LX200 and a Virtex-4FX60 or Virtex-4FX100 

Xilinx FPGAs. The board provides two slots of DDR2 memory with addressing 

capacity of up to 4GB in each slot for large data storage and fast access. The board has 

serial port, PCI port [47] and USB port [48] for data exchange and monitoring from a 

computer. The board also provides programmable clocks to generate clock signals for 

desired frequency of operation. Board also has two 200-pin expansion connectors to 

connect daughter cards or other peripheral hardware. The board is supplied with PCI 

core implementation, USB drivers, relevant software, connecting cables and reference 

designs.  Dini group also offer Digital Video Interface (DVI) daughter-card [49] that 
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connects to the expansion connector of DN8000K10PCI and provides display 

interfaces. The DN800K10PCI and DVI card pair meets all the requirements for 

verifying and prototyping the ASIC H.264 decoder and the solution is cost effective. 

Figure 4-1 shows the DN8000K10PCI card used for prototyping ASIC H.264 decoder 

and Figure 4-2 shows the DVI daughter-card used for displaying the decoded video. 

 

Figure 4- 1: Prototyping board used for verifying ASIC H.264 decoder [45] 

 

 

 

Figure 4- 2: Display card used with prototyping board for displaying decoded video [49] 
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4.3  Prototyping based verification strategy 

To overcome the huge delay in simulation based verification, FPGA prototyping 

based verification technique is used. After completion of module level coding and 

verification for handshake and data arrival at module level using simulation tool, the 

modules were integrated to form the complete H.264 decoder core. While initial 

simulations were performed on the integrated core to check interoperability between 

modules, the core was also prepared for prototyping on the FPGA for real-time 

verification. As individual modules were already verified for handshakes between 

modules, output generated from each module for a set of inputs given by the previous 

module verified for functional correctness. 

To reduce verification overhead on prototyping performance and to improve 

observability, proper interface logic was inserted in the memory controller module to 

tap decoded frame data going to the memory. This data was transferred to the computer 

through USB port for monitoring and analysis. With this logic, data could be analyzed 

at the frame level only and did not give much insight about the source of the problem. 

To improve observability and controllability, the above technique was modified to 

monitor specific module, switch inputs were used to select the module whose data needs 

to be tapped. Using this technique it was possible to verify individual modules. Video 

sequences that did not pass the frame level tests were passed through module level tests. 

Data from each individual module was tapped and verified. Input data available for each 

erroneous module was used to simulate the module and identify the error. This helped 
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to reduce transfer of redundant data which delays verification process and also reduced 

the amount of data that needs monitoring and analysis. Module level tapping helped to 

achieve faster verification and avoided frame level simulations.  

To automate the verification process, simple software programs were written to 

capture data transferred from the board and to compare it with the expected values 

generated from H.264 reference software [50, 51]. The data that generated errors were 

manually analyzed and the error source was debugged. For complex errors, simulation 

was performed on modules with identified error cases to analyze the error and the bugs 

were fixed by modifying the code. To further improve controllability and observability 

switches were used to control frame-by-frame decoding. This helped to keep track of 

frame numbers that produced errors and made verification easy. Decoded frames were 

displayed on the monitor to track visual artifacts and quick verification of various video 

sequences. The proposed technique helped to quickly verify the decoder design, almost 

in real-time, for different video sequences with various levels, modes, frame resolutions 

and bit rates. Once the functional verification of the design was complete, H.264 

decoder was available for real-time system level prototyping with minimal 

modifications saving lots of design time. 

 

4.3.1 Results 

Charts in Figures 4-3, 4-4, 4-5 show the gains of proposed technique over the 

simulation and emulation based verification. Figure 4-3 shows the average verification 

time taken by each of the techniques to verify 50 frames of a 4CIF sequence.  
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Figure 4- 3: Average verification time for 4CIF sequence 
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Figure 4- 4: Average verification time for CIF sequence 
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Figure 4- 5: Average verification time for QCIF sequence 

 

Figure 4-4 and Figure 4-5 shows average verification time taken by simulation, 

emulation and proposed technique for CIF and QCIF sequences respectively. In all the 

cases we can observe that the proposed technique performs 15000 to 20000 times faster 

than simulation based verification and at least 50 times better than the emulation based 

verification. 

4.3.2 Advantages and limitations 

FPGA prototyping based verification gives significant advantages in terms of 

speed compared to simulation and emulation based verifications. The functional 

verification can be performed almost real-time. FPGA prototyping based verification is 

also a significantly low cost alternative compared to emulation based verification and 
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also helps to reduce the design time. Also, the decoded sequences can be visually 

inspected for correctness. This technique also helps to test the interface logic like 

memory controller and display interface at system level in real-time which is not 

possible through simulation. 

Unmatched performance in speed and cost effectiveness of prototyping based 

functional verification comes with some limitations. This technique gives lesser 

observability compared to simulation tools. Though the end results of each module can 

be easily tapped and monitored, signals within the module cannot be monitored to 

identify the source of the error. In other words, this technique can quickly identify the 

problem but does not give much insight to resolve the same. In some cases simulations 

have to be run on identified problem areas of the design to further resolve them. 

Another drawback of this technique is the recompilation time. Synthesis and 

implementation tools take long time to recompile the modified code, typically two 

hours in case of H.264 decoder, which make the technique less useful in the initial 

stages of the design. This technique is well-suited to verify ASIC designs that perform 

block based data processing with limited data ports, as the output results can be easily 

tapped for monitoring without much design changes or modifications. The same 

technique becomes a design overhead or comparatively slower to verify designs that 

require monitoring lot of data or signals at every clock. Any problems caused due to 

improper handshakes between the modules are hard to identify. 
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4.4  Summary 

In this chapter, FPGA and prototyping boards are introduced. Criteria to select 

the FPGA and prototyping board for prototyping and verifying an ASIC design are 

discussed. FPGA prototyping based functional verification is proposed and its 

advantages and limitations are discussed. Section 4.3 explains the verification technique 

employed and proves that FPGA prototyping based functional verification helps to 

reduce the functional verification time and the overall design time significantly and is a 

better alternative compared to simulation and emulation based verifications with some 

limitations. The following chapter summarizes the work and presents comparative 

results. Future research interests are discussed in brief.  
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CHAPTER 5 

5 CONCLUSIONS AND FUTURE RESEARCH 

In this thesis, functional verification of ASIC H.264 decoder is discussed. The 

limitations of existing techniques, such as simulation and emulation based verification, 

to verify complex designs like video codec are highlighted. FPGA prototyping based 

functional verification is suggested as a faster and economical alternative. In this 

concluding chapter, advantages of the proposed techniques are summarized and 

comparison with existing techniques is show. Finally, future research interests and 

extensions to this work are discussed. 

 

5.1  Conclusions 

Robustness and proper functioning of an engineering design can be assured only 

by proper testing and thorough functional verification. For ASIC H.264 decoder design, 

thorough functional verification is possible only by verifying the design for long video 

sequences with various encoding levels, modes, frame resolutions and bit-rates. With 

the limitations in speed of operation to simulate ASIC H.264 decoder as discussed in 

chapter 3, simulation technique becomes a bottle neck and consumes lot of design time. 

Thorough verification is not possible through simulation tool as it would take two days 

just to simulate 120 frames of a 4CIF sequence. Although emulation based verification 

is a faster alternative compared to simulation, it cannot give real-time performance. 
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Also emulation tools are expensive and take longer learning time. Also the compilation 

time after every design change is more. To overcome limitations of both the existing 

techniques, proposed FPGA prototyping based verification technique makes use of 

custom off the shelf FPGA prototyping boards that are inexpensive compared to 

emulation tools and perform significantly faster than both emulation and simulation 

based verification techniques. This technique is ideal for designs like H.264 decoder [4] 

which do block based data processing. Table 5-1 compares the proposed technique 

against existing verification techniques. 

Table 5- 1: Feature comparison of proposed technique with existing techniques 

SL. 

NO. 

Feature Simulation 

based 

verification 

Emulation based 

verification 

FPGA prototyping 

based verification 

(proposed) 

1 Controllability Excellent Moderate Moderate 

2 Observability  Highest Moderate Least 

3. Speed of operation Slowest Moderate Real time 

4. Cost Inexpensive Very expensive Inexpensive 

5. Compilation time Low High  High  

6. Verification with 

real hardware 

NO Partial Yes  

7. Thorough 

verification 

Not possible Possible  Practical 

8. Verification of 

interfaces 

Not possible Partially 

possible 

Possible  
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Looking at the comparison (Table 5-1) we can conclude that proposed technique 

is a significantly faster and cost effective alternative compared to existing verification 

techniques. Proposed technique can save a lot of design time and project costs if 

properly used and adopted well within the ASIC design process. This technique can 

give real time performance and can also verify interface logic at hardware level. With 

real time performance thorough verification is possible making the design robust for 

ASIC fabrication. 

 

5.2  Future research 

   Any new technique has scope for improvements. With the technology 

advancing faster than ever, newer interfaces can be used to monitor signals in the 

FPGA. Also, interfaces with fast data rates can be tried to transfer more data from the 

design for analysis and monitoring. Automated techniques can be developed to capture 

and monitor data. Also tools can be added to present the data to the designer in a 

convenient way to debug the problem. Software interfaces can be developed to interact 

with the design in the FPGA and to monitor the performance of the design modules.  
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