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ABSTRACT

AUTOMATIC CONTENT ANALYSIS OF ENDOSCOPY VIDEO

(ENDOSCOPIC MULTIMEDIA INFORMATION SYSTEM)

Publication No.

Sae Hwang, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Hua-mei Chen & JungHwan Oh

Advances in video technology are being incorporated into today’s healthcare prac-

tice. For example, various types of endoscopes are used for colonoscopy, upper gas-

trointestinal endoscopy, enteroscopy, bronchoscopy, cystoscopy, laparoscopy, and some

minimal invasive surgeries (i.e., video endoscopic neurosurgery). These endoscopes come

in various sizes, but all have a tiny video camera at the tip of the endoscopes. During

an endoscopic procedure, the tiny video camera generates a video signal of the interior

of the human organ, for example, the internal mucosa of the colon. The video data are

displayed on a monitor for real-time analysis by the physician. Diagnosis, biopsy and

therapeutic operations can be performed during the procedure. We define endoscopy

videos as digital videos captured during endoscopic procedures.

Despite a large body of knowledge in medical image analysis, endoscopy videos are

not systematically captured for real-time or post-procedure reviews and analyses. No

hardware and software tools have been developed to capture, analyze, and provide user-

friendly and efficient access to important content on such videos. To address this problem,

v



a project has been proposed to develop an Endoscopic Multimedia Information

System (EMIS) which captures high quality endoscopy videos, analyzes the captured

videos for important contents, and provides efficient access to these contents.

In this dissertation, we focus on the automatic analysis techniques of endoscopy

videos for important contents by presenting (1) object & frame recognition, (2) multi-

level endoscopy video segmentation and (3) application for endoscopy video analysis

(Measurement of Endoscopy Quality). To analyze the contents of endoscopy videos,

we first propose three object & frame recognition algorithm: Endoscopy Video Frame

Classification, Lumen Identification and Polyp Detection.

The problem of segmenting visual data into smaller chunks is a basic problem

in multimedia analysis, and its solution helps in problems such as video indexing and

retrieval. However, traditional video segmentation techniques are not suitable for seg-

menting endoscopy video because endoscopy videos are generated by a single camera

operation without shot, which makes it difficult to manage and analyze them. To ad-

dress this problem, I propose a novel algorithm of multi-level segmentation for endoscopy

video, which represents the semantic structure of endoscopy video: Video, Phase, Piece,

and Objective Shot.

Based on the information obtained by object & frame recognition and multi-level

endoscopy video segmentation, we develop software tool to measure the quality of en-

doscopic procedure. The development of software tool will directly benefit endoscopic

research, education, and training: especially for the research-based advanced training of

students in graduate and undergraduate programs in medical informatics.
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CHAPTER 1

INTRODUCTION

Advances in video technology are being incorporated into today’s healthcare prac-

tices. Various types of endoscopes are used for colonoscopy, upper gastrointestinal en-

doscopy, enteroscopy, bronchoscopy, cystoscopy, laparoscopy, wireless capsule endoscopy,

and some minimal invasive surgeries (i.e., video endoscopic neurosurgery). These endo-

scopes come in various sizes, but all have a tiny video camera at the tip of the endoscopes.

During an endoscopic procedure, the tiny video camera generates a video signal of the

interior of the human organ, which is displayed on a monitor for real-time analysis by the

physician. We define endoscopy videos as digital videos captured during endoscopic

procedures.

Colonoscopy is an important screening tool for colorectal cancer. In the US, col-

orectal cancer is the second leading cause of all cancer deaths behind lung cancer [1]. As

the name implies, colorectal cancers are malignant tumors that develop in the colon and

rectum. The survival rate is higher if the cancer is found and treated early before metas-

tasis to lymph nodes or other organs occurs. The colon is a hollow, muscular tube about

6 feet long, as illustrated in Figure 1.1. A normal colon consists of six parts: cecum

with appendix, ascending colon, transverse colon, descending colon, sigmoid and rectum.

Colonoscopy allows for inspection of the entire colon and provides the ability to perform

a number of therapeutic operations such as polyp removal during a single procedure. A

colonoscopic procedure consists of two phases: insertion phase and withdrawal phase.

During the insertion phase, a flexible endoscope (a flexible tube with a tiny video camera

at the tip) is advanced under direct vision via the anus into the rectum and then grad-

1
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Figure 1.1. The colon endoscopic segments: 1-cecum, 2-ascending colon, 3-transverse
colon, 4- descending colon, 5-sigmoid, 6-rectum clip.

ually into the most proximal part of the colon or the terminal ileum. In the withdrawal

phase, the endoscope is gradually withdrawn [2, 3, 4]. The purpose of the insertion phase

is to reach the end of colon (cecum or terminal ileum).Careful mucosa inspection and

diagnostic or therapeutic interventions such as biopsy, polyp removal, etc., are performed

in the withdrawal phase. Video data of colonoscopy are not routinely captured in the

current practice. They typically have many out-of-focus frames. We call an out-of-focus

frame a non-informative frame. The non-informative frames are usually generated due

to two main reasons: too-close (or too-far) focus into (from) the mucosa of colon or for-

eign substances (i.e., stool, cleansing agent, air bubbles, etc.) covering camera lens or

rapidly moving through the intracolonic space. This is because current endoscopes are

equipped with a single, wide-angle lens that cannot be focused. Sharpness, brightness,

and contrast of the video frames depend on the endoscopist’s skills.

Colonoscopy is performed over 14 million times a year. Although colonoscopy has

become the preferred screening modality for prevention of colorectal cancer, recent data

suggest that there is a significant miss-rate for the detection of even large polyps and
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cancers [5, 6, 7]. The miss-rate varies among endoscopists and it is known that the

miss-rate is correlated with the level of the experience of an endoscopist defined as years

performing the procedure. However, there is no measurement method to evaluate the

endoscopist’s skill and the quality of colonoscopic procedure. In general, the quality of a

colonoscopic procedure can be evaluated in terms of the screening time of the withdrawal

phase and the recognizability of a colonoscopy video of the withdrawal phase. Current

American Society for Gastrointestinal Endoscopy (ASGE) guideline suggests that on

average the withdrawal phase during a screening colonoscopy lasts a minimum of 6-10

minutes.

Despite the popularity of endoscopes and the promising evolution of image pro-

cessing technology, there is very few research working on the novel solutions to analyze

colonoscopy videos for important contents. In this dissertation, we focus on the automatic

analysis techniques of endoscopy videos for important contents by presenting (1) three

object & frame recognition (i.e. endoscopy video frame classification, lumen identifica-

tion and polyp detection), (2) multi-level medical video segmentation and (3) application

for medical video analysis (Measurement of Endoscopy Quality). The contributions of

my dissertation can be presented as follows:

• Endoscopy Video Frame Classification: to distinguish non-informative frames from

informative frames in endoscopy videos

– Typically, a reference image is required to decide the quality (i.e., informative

and non-informative) of an image. However, reference images are not available

for a specific patient (each patient and each colon is unique). We propose two

techniques that are able to evaluate the quality of an image without a reference

image.

– Since we do not use any domain knowledge of the video, the proposed tech-

nique is domain independent. Hence, it can be used for other medical videos
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such as upper gastrointestinal endoscopy, enteroscopy, bronchoscopy, cystoscopy,

and laparoscopy.

• Lumen Identification: to recognize lumen region in a frame and distinguish lumen-

view frames from wall-view frames in endoscopy videos

– The problem of deciding whether an image contains the distant colon lumen

or not has not been investigated. A wall view occurs as a result of a close

inspection of the colon wall whereas the lumen view indicates a more global

inspection where more than one side of the colonic wall is within the field of

vision. We propose a new lumen identification algorithm to decide whether

an image has the colon lumen or not based on the bilateral convex shape of

lumen

• Polyp Detection: to detect various sizes of polyps

– We develop a new shape-based polyp detection method. Unlike the case in

texture feature analysis, our method does not require system training which

is very time consuming.

– In articles dealing with CT Colography, general edge detection methods (Sobel

edge detection, Canny edge detection, etc.) can be used because the bound-

ary between colon wall and lumen is clear. However, they are not applicable

for colonoscopy video images since the images have very complicated edges.

Instead of edge detection, we use a marker-controlled watershed region seg-

mentation which provides relatively clear edge information.

– We propose new techniques to distinguish ellipses of polyp regions from those

of non-polyp regions by matching curve direction, curvature, edge distance

and intensity.

– We develop a new method to segment colonoscopy videos into smaller parts

by utilizing the mutual information based image registration technique. Each
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part is a new type of semantic unit called polyp shot. The polyp shot detection

method detects missed polyp frames by comparing the polyp candidate frames

with their adjacent frames and determines the boundaries of polyp shots.

• Multi-level Medical Video Segmentation: to segment medical video representing

the semantic structure of medical video using domain knowledge

– Medical videos are usually generated by a single camera operation without

shot. Thus, traditional video segmentation techniques cannot be applied to

medical videos. To address this problem, we propose a new video segmentation

technique to segment a colonoscopy video into phase, piece and object shot.

Based on the analysis of camera motions, a colonoscopy video is segmented

into insertion and withdrawal phases. Each phase is segmented into several

pieces using our endoscopy video frame classification technique. Each piece

can be decomposed into several kinds of shots based on human perception

understanding the video contents such as endoscope movement and important

objects. Objective shots are constructed by considering the spatio-temporal

relationship within a video

• Application for Medical Video Analysis (Measurement of Endoscopy Quality): to

produce objective measures of quality for colonoscopic procedures

– We are the first to investigate an automatic measurement method that gener-

ates a number of objective metrics to evaluate the endoscopist’s skill and the

quality of colonoscopic procedures. Our metrics are developed based on exper-

tise of a domain expert. No prior research has investigated objective quality

measurement methods for colonoscopy or other endoscopic procedures.

The remainder of this paper is organized as follows. In Chapter 2, we present the

background of this project. In Chapter 3, two techniques for endoscopy video frame

classification (Edge-based and Clustering-based), are introduced in Section 3.1 and Sec-
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tion 3.2, respectively. We discuss our experimental results in Section 3.3. In Chapter

4, we present the technique of the lumen identification. The lumen image identification

and the lumen property determination are discussed in Section 4.1 and 4.2, respectively.

We discuss our experimental results in Section 4.3. In Chapter 5, we present the polyp

detection technique. The gradient magnitude construction is discussed in Section 5.1.

The region segmentation based on the marker-controlled watershed algorithm in Section

5.2 and the polyp candidate selection is discussed in Section 5.3. In Section 5.4, we

present the technique that generates polyp shots. We discuss our experimental results in

Section 5.5. In Chapter 6, we present the technique of the multi-level endoscopy video

segmentation. The camera motion estimation technique is presented in Section 6.1. The

phase and motion shot segmentation technique based on camera motion estimation is

presented in Section 6.2. We discuss our experimental results in Section 6.3. In Chapter

7, we present the technique of the measurement of endoscopy quality. In Section 7.1, we

present the formal definitions of the quality metrics. We discuss our experimental results

in Section 7.2.



CHAPTER 2

BACKGROUND

In this chapter, we discuss some previous works related with endoscopy and we

present an overview of a project, Endoscopic Multimedia Information System

(EMIS), to capture high quality endoscopy videos, analyze the captured videos for

important contents, and provide efficient access to these contents.

2.1 Related Works

Despite intensive research in medical imaging in recent years, research on image

analysis for colonoscopy videos has been minimal. Microrobotic endoscopy [8, 9, 10] fo-

cuses on identifying lumen boundary given that the image is known to have the lumen.

Khan [8] proposed to use an N-level quadtree-based pyramid structure to find the most

homogenous large dark region. Kumar et al. [9] proposed a global thresholding tech-

nique and differential region-growing to segment the lumen region. Tian et al. proposed

APT-Iris that utilizes the relative darkness of the lumen [10]. Analysis of microscopic

images from biopsies of tissues are described in [11, 12, 13]. However, microscopic images

are different from endoscopic image. Computer-based approaches for the discrimination

of gastric polyps have been proposed based on texture-feature. Color Wavelet Covari-

ance generating a set of 72 texture features was proposed in [14]. The polyp detection

techniques using the texture spectrum and Neural Network Classifier was proposed in

[15]. More recently, the effectiveness of four different texture feature methods such as

Texture Spectrum, Texture Spectrum with Color Histogram, Local Binary Pattern and

Color Wavelet Covariance for detecting polyps was compared in [16]. Polyp detection in

7
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CT colonography has received tremendous attention [17, 18, 19, 20]. CT colonography

(CTC) or virtual colonoscopy is an emerging technology for acquisition and viewing of

CT data sets created from an air-distended colon with helical CT scanners. CTC is a

promising modality for screening for colorectal cancer. CTC is non-invasive and is per-

formed without sedation; however, it also has disadvantages, making it not ready for

practical screening. Poor bowl preparation or excess fluid remain in the bowl can result

in false positives (retained stools are thought as polyps). Accuracy for polyp detection

reported in the literature is varied significantly and there are safety concerns regarding

to the cumulative exposure of patients to radiation with repeated surveillance [21]. The

detection of flat and small polyps is still problematic. Nevertheless, the success in CTC

is expected to drive up the demand for colonoscopy since polyps identified with CTC will

require a subsequent colonoscopic procedure to remove them.

2.2 Endoscopic Multimedia Information System

Even though endoscopy has become very popular throughout the world, no hard-

ware and software tools have been developed to capture, analyze, and provide user-

friendly and efficient access to important content on such videos. To address this problem,

a project has been proposed to develop an Endoscopic Multimedia Information

System (EMIS) which captures high quality endoscopy videos, analyzes the captured

videos for important contents, and provides efficient access to these contents. The EMIS

team consists of University of Texas at Arlington (UTA), University of North Texas

(UNT), Iowa State University (ISU), and Mayo Clinic Rochester (Mayo).

The development of software tool will directly benefit endoscopic research, edu-

cation, and training: especially for the research-based advanced training of students in

graduate and undergraduate programs in medical informatics.



CHAPTER 3

ENDOSCOPY VIDEO FRAME CLASSIFICATION

There are a significant number of out-of-focus frames in colonoscopy videos since

current endoscopes are equipped with a single, wide-angle lens that cannot be focused.

We define an out-of-focus frame as a non-informative frame (Figure 3.1) and an

in-focus frame as an informative frame (Figure 3.2). The non-informative frames

are usually generated due to two main reasons: too-close (or too-far) focus into (from)

the mucosa of colon (the first two images in Figure 3.1) or foreign substances (i.e., stool,

cleansing agent, air bubbles, etc.) covering camera lens or rapidly moving through the

intracolonic space (the last two images in Figure 3.1). We call the procedure that distin-

guishes non-informative frames from informative frames in endoscopy videos Endoscopy

Video Frame Classification in this paper. We propose two new techniques to dis-

tinguish non-informative frames from informative frames based on the detected edges,

and Discrete Fourier Transform (DFT) with clustering, respectively. The edge-based ap-

proach is relatively simple and easy to implement, but sensitive to the selected threshold

values. The DFT with clustering approach addresses the drawbacks of the edge-based

approach, and provides more robust and accurate results.

Figure 3.1. Examples of Non-Informative Frames.

9
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Figure 3.2. Examples of Informative Frames.

The output of endoscopy video frame classification provides information (i.e., frames

that are informative) that will be used for further automatic or semi-automatic computer-

aided diagnosis (CAD). It can reduce the number of images to be viewed by a physician

and to be analyzed by a CAD system.

3.1 Edge-based Frame Classification

There are existing techniques [22, 23, 24, 25, 26, 27, 28] to handle out-of-focus

images using image restoration. However, these existing techniques are not applicable

to endoscopy video frames because these techniques need a reference image to compute

the quality of the test image, and as already stated we only have test images. In this

section, we propose a technique to distinguish non-informative frames from informative

ones based on a property of isolated edge pixels.

We detect the edges from each frame using Canny Edge Detector [29]. Canny Edge

Detector first smoothes an image to eliminate noise based on the Gaussian model and

then tracks along the local maxima of the gradient magnitudes (edge strengths) of an

image and sets to zero all pixels that are not actually the local maxima, which is known

as non-maximal suppression. These two processes generate a single thin line for each edge

when an image contains clear edge information and generate many isolated pixels when

an image does not contain any clear edge information. Examples of the edge detection
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results are shown in Figure 3.3, in which Figure 3.3 (b) and (c) are the images generated

from applying the Canny Edge Detector on the image in Figure 3.3 (a). Figure 3.3 (f)

and (g) show images generated from the image in Figure 3.3 (e). The parameters for

the edge detector to generate images (b) and (f) are the same, but different from those

used to generate images (c) and (g). As shown in this figure, the edge lines of the non-

informative images are blurry and those of the informative images are clear regardless

of the parameters used. The blurry lines occur due to discontinuity of the edge pixels

constituting a line as seen in Figures 3.3 (d) and (h). Hence, to distinguish the blurry

lines from the clear ones, we defined two terms, isolated pixel (IP) and isolated pixel

ratio (IPR), for a frame as follows. An IP is an isolated edge pixel (edge pixel that is

not connected to any other edge pixels) in a frame. We computed IPR as the percentage

of the number of isolated edge pixels to the total number of edge pixels in the frame.

IPR =
Number of isolated pixels (IPs)

Total number of pixels
× 100(%) (3.1)

The frame with the value of IPR greater than a certain threshold is declared a non-

informative frame. Otherwise, the frame is considered an informative frame. However,

there are some ambiguous images that can be either informative or non-informative

according to the threshold value as seen in Figure 3.4 (a). This is because some images

may have some parts that are blurry and other parts that are clear. For instance, in a

tangential view along the mucosa, only some parts of the image will be clear. To handle

these ambiguous images and optimize overall non-informative frame detection accuracy,

we propose a two-step approach.

• Step 1: We classify frames into three categories: informative frames, non-informative

frames and ambiguous frames using two very obvious thresholds for IPR, which are

called the upper-threshold (THU) and the lower-threshold (THL). In other words,
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(a)
 (b)
 (c)
 (d)


(e)
 (f)


Blurry


Clear


(g)
 (h)


Figure 3.3. (a) Non-informative Image, (b) and (c) Edges detected from (a), (d) Details
of Blurry Edge, (e) Informative Image, (f) and (g) Edges detected from (e), (h) Details
of Clear Edge.

if an IPR of an image is larger than the upper-threshold value (THU), the im-

age is classified as non-informative. If an IPR of an image is smaller than the

lower-threshold value (THL), the image is classified as informative. If an IPR of

an image is between upper-threshold and lower-threshold, the image is classified as

ambiguous, and we proceed to Step 2.

• Step 2: An ambiguous frame is divided into a number (64 in our case) of blocks as

seen in Figure 3.4 (b). First, each block is classified as empty or non-empty block.

An empty block has no pixels. A non-empty block is classified into a clear or blurry

block again. For block classification, we use only the lower-threshold value. If a

frame has more informative blocks than non-informative ones, then it is classified

as an informative frame.
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(a)
 (b)


Figure 3.4. (a) Ambiguous Frame, (b) Edge detected from (a) with 64 Blocks.

3.2 Clustering-based Frame Classification

The edge-based informative frame classification algorithm shows good performance

results. However, there is a major drawback in this approach, which is that the per-

formance of our edge-based technique is susceptible to the appropriate values of various

parameters (i.e., sigma, high, low, etc.) in the edge detection algorithm, and the upper

and lower thresholds in Step 1 and Step 2 of Section 3.1. To address this, we investigate

a new approach based on Discrete Fourier Transform (DFT), texture analysis and data

clustering. Figure 3.5 shows the framework of the proposed algorithm.

3.2.1 Feature Extraction

The basic idea used to detect informative frames comes from Discrete Fourier Trans-

form (DFT) and texture analysis of its frequency spectrum. The process of DFT for a 2D

image is that first, an image such as Figure 3.6 (a) or Figure 3.7 (a) is converted into the

grayscale image, and then the grayscale image is transformed using the Fourier Transform

[30, 31, 32, 33, 34]. The frequency spectrum, 2D plot of the magnitude of the Fourier

Transform, is constructed using the coefficients of the Fourier Transform of a grayscale

image. The frequency spectrum shows the frequency distribution of an image (Figure 3.6
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Figure 3.5. Framework of Informative and Non-Informative Frame Classification.

(b) or Figure 3.7 (b)). Based on the contents of the image, the frequency spectrums

generate different patterns. It is usually impossible to make direct associations between

specific components of an image and its transform. However, some general statements

can be made about the relationship between the frequency components of the Fourier

transform and spatial characteristics of an image. Typically, high frequencies hold the

information of fluctuations of edges and boundaries, and low frequencies correspond to

the slowly varying components of an image. The non-informative frame (Figure 3.6 (a))

has no clear object information except the 4 strong edges at the corners of an image

running approximately at ±45◦ so its Fourier spectrum (Figure 3.6 (b)) shows prominent

components along the ±45◦ directions that correspond to the 4 corners of an image.

Compared to the non-informative frame, the informative frame (Figure 3.7 (a)) has a lot

of clear edge information so its spectrum (Figure 3.7 (b)) of the informative frame does
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not show prominent components along the ±45◦ directions because it has a wider range

of bandwidth from low to high frequencies.

(b)
(a)


Figure 3.6. (a) Non-Informative Frame, (b) Frequency Spectrum of (a).

(b)
(a)


Figure 3.7. (a) Informative Frame, (b) Frequency Spectrum of (a).

3.2.2 Texture Analysis

The texture analysis is applied on the frequency spectrum image, which is a 2D

plot of the magnitude, in order to find the pattern difference between the informative and

the non-informative frames. The most well known statistical approach toward texture



16

analysis is the gray level co-occurrence matrix (GLCM) [35, 12, 36, 37, 38, 39, 40]. The co-

occurrence matrix contains the elements that are the counts of the number of pixel pairs

for specific brightness levels, when separated by some distance (or displacement) at some

relative inclination. To construct the co-occurrence matrix for this texture analysis, we

set up a window (matrix) of size equal to the size of the frequency spectrum image itself,

a displacement to 1, and a relative inclination to 0. The original investigation into the

texture features based on the co-occurrence matrix was pioneered by Haralick et al [35].

They defined 14 texture features. However, only some features among 14 texture features

are in wide use in many applications [38, 39]. For our experiments, seven texture features

(Entropy, Contrast, Correlation, Homogeneity, Dissimilarity, Angular Second Moment,

and Energy) are extracted as follows [40].

Entropy:
∑

i

∑
j

P (i, j) · log P (i, j) (3.2)

Contrast:
∑

i

∑
j

(i, j)2 · P (i, j) (3.3)

Correlation:
∑

i

∑
j

(i− µx) · (j − µy) · P (i, j)

σxσy

(3.4)

Homogeneity:
∑

i

∑
j

P (i, j)

1− | i− j | (3.5)

Dissimilarity:
∑

i

∑
j

P (i, j)· | i− j | (3.6)

Angular Second Moment (ASM):
∑

i

∑
j

P (i, j)2 (3.7)

Energy:
√

ASM (3.8)

where P (i, j) is the probability of a certain value in the co-occurrence matrix, µx =

∑
i

∑
j i · P (i, j) , µy =

∑
i

∑
j j · P (i, j) , σx =

√∑
i

∑
j(i− µx)2 · P (i, j) and σy =

√∑
i

∑
j(j − µy)2 · P (i, j). The extracted seven texture features are used to distinguish
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the non-informative from the informative frames in the colonoscopy video using K-means

clustering algorithm.

3.2.3 Clustering-based Classification

The K-means method is a well-known partitioning method, and is commonly used

[41, 42, 43, 44, 45, 46]. The K-means method clusters data objects into K subsets using

a certain distance function, where data objects in the same cluster are similar to one

another but data objects in other clusters are dissimilar. Figure 3.8 describes the K-

means clustering algorithm when a data object (Xi) consists of p dimensional features (

i.e., Xi = {x1
i , x

2
i , · · · , xp

i }).

K-Means Algorithm

1. Initialization - randomly choose K points C1, C2, · · · , Ck as initial centroids, where
an initial centroid(Cj) is
Cj = {c1

j , c
2
j , · · · , cp

j}
2. Repeat

(a) For i=1 to n (n = the total number of data objects)

compute distance dj(Xi) =
√

(x1
i − c1

j)
2 + (x2

i − c2
j)

2 + · · ·+ (xp
i − cp

j)
2

assign Xi to cluster Dj∗ where j∗ = min(d1(Xi), d2(Xi), · · · , dk(Xi))
(b) Compute the new centroid (Cj) for each cluster Dj, j = 1, 2, · · · , k

Cj = 1
|Dj |

∑
Xi∈Dj

Xi =

(∑
x1

i

|Dj| ,

∑
x2

i

|Dj| , · · · ,

∑
xp

i

|Dj|
)

where |Dj| is the number of data objects in cluster Dj

(c) Exit, if the centroids no longer move

Figure 3.8. K-means Clustering Algorithm.

For our purpose, it is natural to set up the initial number of clusters to 2 (k = 2)

and cluster the frames into two groups. One represents the informative frame group, and

the other represents the non-informative frame group. We call this approach a one-step
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K-means clustering scheme. Even though the one-step K-means clustering scheme distin-

guishes the informative frame from the non-informative frame very well, we investigate

whether a larger number of initial clusters (k) can further increase its overall accuracy.

There are frames in which some parts are clear, but other parts are blurry. As before,

we call these frames ambiguous frames. Figures 3.9, 3.10 and 3.11 show three types of

frames (Non-informative, Informative and Ambiguous).

Figure 3.9. Examples of Non-Informative Frames.

Figure 3.10. Examples of Informative Frames.

Figure 3.11. Examples of Ambiguous Frames.
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Analogous to the edge-based method, we next develop a two-step K-means clus-

tering scheme to distinguish the informative frames from non-informative frames. In the

first clustering step, we set the initial number of clusters to 3 (k = 3) in order to cluster

frames into three groups: informative frames, non-informative frames, and ambiguous

frames. The frames detected as ambiguous from the first step are used in the next clus-

tering step. In the second clustering step, we set up the number of clusters to 2 (k = 2) in

order to further divide the ambiguous frames into two groups that consist of informative

frames and non-informative frames. Finally all frames are clustered into two groups, ei-

ther the informative frame or the non-informative frame groups. Our experiment results

show that the two-step K-means clustering scheme is better than the one-step K-means

clustering scheme.

3.3 Experimental Results

Our experiments assess the performances of the two proposed techniques for edge-

based and clustering-based classification. To verify the effectiveness of our proposed

algorithms, four traditional performance metrics [41] such as precision, sensitivity (recall),

specificity, and accuracy, are measured in our experiments. Those four performance

metrics are described as follows.

Table 3.1. Four Data Classification for Performance Metrics

Predicted as Positive Predicted as Negative
Actually Positive TP FN
Actually Negative FP TN
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Precision =
Number of correct positive Predictions

Number of Predictions
=

TP

TP + FP

Recall =
Number of Correct Positive Predictions

Number of Positives
=

TP

TP + FN

Specificity =
Number of Correct Negative Predictions

Number of Negative
=

TN

FP + TN

Accuracy =
Number of Correct Predictions

Number of Predictions
=

TP + TN

TP + TN + FP + FN

We note that the resolutions of the original images are 391 x 375 and 571 x 451.

However, odd lines (or even lines) in both horizontal and vertical directions are removed,

and the images are resized from 391 x 375 to 195 x 187 and 571 x 451 to 285 x 225 to

reduce degradation by interlacing.

3.3.1 Evaluation of Edge-based Frame Classification

To distinguish informative frames from non-informative frames using the proposed

edge-based method, we need to decide the upper-threshold (THU) and the lower-threshold

(THL) values as mentioned in Section 3.1. We examined two sample data sets, each of

which contains 2000 frames, to determine the thresholds. The size of the frames in the

first set is 285x225 pixels and that of the second set is 195x187 pixels. Each frame of the

data sets is classified into one of the three categories (informative frame, non-informative

frame and ambiguous frame) manually based on the quality of the images. The results

of this manual classification for the two sample data sets can be seen in Table 3.2 as

follows.

The IPR value for each frame in the two data sets is computed. The Minimum,

Maximum, Average and Median values of IPR for each category of the data sets are

shown in Tables 3.3 and 3.4. For illustration purpose, the distribution of the IPR values

of 2000 frames is presented in Figure 3.12 and 3.12. As seen in Tables 3.3 and 3.4,

most of the informative frames have the low IPR values such that the average IPR of
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Table 3.2. Manual Classification of Two Sample Data Sets

Set 1 (285 x 225) Set 2 (195 x 187)
# of informative frames 1479 1157
# of non-informative frames 258 646
# of ambiguous frames 263 197
Total 2000 2000

informative frames is around 1%, and the maximum IPR of informative frames is less

than 5%. In contrast, the ambiguous frames and the non-informative frames have higher

IPR values such that the average IPR of non-informative frames is around 6 to 7%, and

the average IPR of ambiguous frames is around 3 to 5%.

Table 3.3. Statistics of Data Set 1 (285 x 225)

IPR
 (%)
 Informative (
 IPR
)
 Non-informative (
 IPR
)
 Ambiguous (
 IPR
)


Minimum
 0.016
 1.725
 0.460


Maximum
 4.926
 10.451
 9.155


Average
 0.849
 7.291
 4.615


Median
 0.541
 7.455
 4.387


Table 3.4. Statistics of Data Set 2 (195 x 187)

IPR
 (%)
 Informative (
 IPR
)
 Non-informative (
 IPR
)
 Ambiguous (
 IPR
)


Minimum
 0.000
 0.222
 0.133


Maximum
 4.930
 12.130
 7.821


Average
 0.753
 5.982
 3.137


Median
 0.401
 6.538
 3.000
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Figure 3.12. Distribution of IPR of Data Set 1.
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Figure 3.13. Distribution of IPR of Data Set 2.
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Figure 3.14. Accumulated Ratios of Informative Frames, Non-informative Frame and
Ambiguous Frames for Data Set 1 (left) and Data Set 2 (right).

Figure 3.14 shows the accumulated ratios of the number of informative frames,

non-informative frames and ambiguous frames of each data set based on IPR values. As

shown in this figure, the IPR values of all informative frames are less than 5%. However,

the IPR values of all non-informative and ambiguous frames are distributed over a wide

range (from less than 1% to more than 12%). Therefore, we select the two threshold

values as follows.

• The candidates for the lower-threshold (THL) value should be less than 5% because

all informative frames have the IPR values less than 5%. The intuitive criterion for

the THL is that the portion of detected informative frames by the selected THL

should be greater than that of the detected non-informative and ambiguous frames.

This comparison can be done by computing the difference between the ratio of the

number of informative frames and the ratio of the number of non-informative and

ambiguous frames. The difference (DIPR) for an IPR value, i, is calculated as

follows.

DIPR
i = CRi − (BRi + ARi)
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where CRi is the ratio of the number of informative frames, BRi is the ratio of the

number of non-informative frames, and ARi is the ratio of the number of ambiguous

frames at IPR i. The subtraction works here since each value is a ratio which is

not an absolute but a relative value. The results for the IPR 1, 2, 3, 4 and 5% are

illustrated in Table 3.5. In our experiment, IPR 1, 2 and 3% are selected as THL

values since the differences (DIPR) of the three are much larger than those of the

others.

Table 3.5. Results of Differential Calculation for Low Threshold

IPR DIPR of Set 1 DIPR of Set 2 Average DIPR

<1 0.699 0.554 0.6265
<2 0.831 0.442 0.6365
<3 0.825 0.299 0.5620
<4 0.576 0.097 0.3365
<5 0.314 -0.170 0.0720

• The candidates for the upper-threshold (THU) value should be selected greater

than or equal to 5 % because all informative frames have the IPR values less than

5 %. Since we already determined the lower-threshold (THL) values as 1, 2, or 3

%, we ran experiments with different pairs of THU and THL values such as 5, 6, 7,

and 8 for THU and 1, 2 and 3 for THL to determine the optimal THU value. The

results are shown in Figure 3.15. As seen in the figure, there is little change in the

number of frames detected as informative even if THU values are changing from

5 to 8. For example, in the first graph, about 1450 and 1330 frames are detected

as informative frames when THL is 1 for the sample dataset 1 and 2 respectively,

irrespective of THU values, which are ranged from 5 to 8. In the second graph,

about 1600 and 1440 frames are detected as informative frames when THL is 2,
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and about 1680 and 1520 frames are detected as informative frames when THL is

3 in the third graph for the sample dataset 1 and 2 respectively.

 


Figure 3.15. Detected Informative Frames based on Different Pairs of Thresholds.

Using a set of threshold values determined above (1, 2 and 3 for THL , and 5, 6, 7,

and 8 for THU ), we have run our edge-based non-informative frame detection algorithm.

The overall results for the precision and the recall are summarized in Table 3.6 compared

with several combinations of the low-threshold (THL) from 1 to 3 and the upper-threshold

(THU) from 5 to 8. The ‘Average’ in Table 3.6 is an average value of the precision and

sensitivity. As seen in the table, the results are very good, and the accuracy does not

vary much with the threshold values.

We applied our edge-based technique to the two colonoscopy video test sets. The

actual video frame rate of our colonoscopy video is 30 frames per second. However, we

extracted frames at the rate of 1 frame per second because the evaluation is performed on

individual frames so the extraction rate will not become a performance degrading factor.



26

Table 3.6. Precision and Sensitivity based on Several Combinations of Thresholds

Thresholds

Precision
 Sensitivity
 Average


Test Set 1


Precision
 Sensitivity
 Average


Test Set 2


TH

L

=1, 
TH


U

=5


TH

L

=2, 
TH


U

=5


TH

L

=3, 
TH


U

=5


TH

L

=1, 
TH


U

=6


TH

L

=2, 
TH


U

=6


TH

L

=3, 
TH


U

=6


TH

L

=1, 
TH


U

=7


TH

L

=2, 
TH


U

=7


TH

L

=3, 
TH


U

=7


TH

L

=1, 
TH


U

=8


TH

L

=2, 
TH


U

=8


TH

L

=3, 
TH


U

=8


1.000


0.979


0.949


1.000


0.976


0.934


1.000


0.976


0.932


1.000


0.975


0.930


0.936


1.000


1.000


0.936


1.000


1.000


0.936


1.000


1.000


0.936


1.000


1.000


0.968


0.989


0.974


0.968


0.988


0.967


0.968


0.988


0.966


0.968


0.987


0.966


0.916


0.898


0.869


0.915


0.897


0.859


0.915


0.897


0.857


0.915


0.897


0.856


0.965


0.996


1.000


0.965


0.996


1.000


0.965


0.996


1.000


0.965


0.996


1.000


0.940


0.947


0.934


0.940


0.946


0.929


0.940


0.946


0.928


0.940


0.947


0.928


The total length of videos in our test set is about 15 minutes and the test set consists of

923 frames. There are two different resolutions (285 x 225 and 195 x 187pixels) in our

videos. The details about our test video set can be found in Table 3.7.

Table 3.7. Test Set of Videos

Video ID Video Length (min) Total # of Frames Resolution
Colon-1 10 627 285 x 225
Colon-2 5 296 195 x 187
Total 15 923

Figure 3.16 shows the experimental results of our edge-based non-informative frame

classification technique. The results indicate the proposed technique is acceptable achiev-

ing over 88% for four different performance metrics (i.e. precision, sensitivity, specificity,

and accuracy).
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Performance of Edge-based Technique


0.84

0.86

0.88


0.9

0.92

0.94


Precision
 Sensitivity
 Specificity
 Accuracy


Figure 3.16. Performance of Edge-based Technique.

3.3.2 Evaluation of Clustering-based Frame Classification

Next, we studied the performance of each of the seven texture features and com-

pared the performance of the one-step and the two-step clustering schemes. And, we

examined how effectively the specular reflection detection technique could increase the

performance of the clustering-based classification technique. The data set used in this

section is the same test video (two colonoscopies) set described in Table 3.7 of Section

3.3.1. First, we examined the individual performance of each of the seven texture features

to see if there is a dominant texture feature distinguishing non-informative frames from

informative frames. We also present the performance of all seven features used together.

Figure 3.17 shows each performance metric of the one-step clustering scheme and Fig-

ure 3.18 shows each performance metric of the two-step clustering scheme. The labels

in the x-coordinate represent the name of texture features and the label of ‘7 Features’

means that all seven features are used together. ‘Colon-1’ and ‘Colon-2’ in the legend

indicate the video ID, and ‘Ave’ in the legend means the average performance metrics of

two colonoscopy videos. Figure 3.17 and Figure 3.18 show that the performance of all

seven features used together is better than performances of individual texture features

for both the one-step and the two-step clustering schemes. We note that the two-step
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clustering scheme provides better results than the one-step clustering scheme and that

the combined use of all seven features optimizes the results.
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Sensitivity of One-Step Clustering Scheme


0.7


0.8


0.9


1


A
S

M


C
o
n

t
r
a


s
t


C
o
r

r
e


l
a

t
i
o


n


D
i
s

s
i
m


i
l
a

r
i
t


y


E
n
t

r
o


p
y



E
n
e

r
g


y


U
n
i

f
o

r
m


i
t
y



7
 

F
e
a


t
u

r
e


s


Colon-1
 Colon-2
 Ave


(b)

Specificity of One-Step Clustering Scheme
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Accuracy of One-Step Clustering Scheme
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Figure 3.17. Effectiveness of Different Texture Features on Performance of One Step
Clustering Scheme. (a) Precision, (b) Sensitivity, (c) Specificity, (d) Accuracy .
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Precision of Two-Step Clustering Scheme
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Sensitivity of Two-Step Clustering Scheme
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Specificity of Two-Step Clustering Scheme
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(c)


Accuracy of Two-Step Clustering Scheme
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Figure 3.18. Effectiveness of Different Texture Features on Performance of Two Step
Clustering Scheme. (a) Precision, (b) Sensitivity, (c) Specificity, (d) Accuracy .



CHAPTER 4

LUMEN IDENTIFICATION

Lumen identification is used to derive the metric to evaluate mucosa inspection

during the withdrawal phase. A lumen view is defined as an informative frame that

contains the colon lumen whereas an informative frame without the colon lumen is called

a wall view. A wall view occurs as a result of a close inspection of the colon wall whereas

the lumen view indicates a more global inspection where more than one side of the colonic

wall is within the field of vision. The problem of deciding whether an image contains the

distant colon lumen or not has not been investigated in the literature. The most related

research effort determines the colon lumen boundary given an image with the colon lumen

for microrobotic endoscopy in [10]. We propose lumen identification technique based on

bilateral convex shape of lumen using the following steps (Figure 4.1). In step 1, we

identify whether a frame is an informative frame or not using our endoscopy video frame

classification technique. In step 2, for each informative frame, we identify whether the

frame have the colon lumen or not. In step 3, we determine the lumen properties (size

and location) for each frame with the colon lumen.

Non-informative

Frame Detection


Informative 

Frames


Lumen Image

Identification


Informative 

Frames with lumen


Lumen

Property


Determination


Colonoscopy

Video


Figure 4.1. Framework of Lumen Identification.

30
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4.1 Lumen Image Identification

After we filter out the non-informative frames, we identify whether the frame have

the colon lumen or not. The colon lumen is relatively darker (R1 in Figure 4.2 (b)) and

there is more than one bilateral convex colon wall around the colon lumen. The intensity

difference between consecutive colon walls is small. We design our technique based on

this observation. Our technique utilizes the algorithm in [47] to determine whether a

planar region is convex or concave. Region R is considered convex if and only if for any

pair of points p and q in R, the line segment connecting p and q, is completely in R;

otherwise, the region is considered concave. Our technique works as follows.

1. Segment the image using JSEG [48] and filter out all the regions whose size is less

than a pre-defined size threshold t1. This is to eliminate regions that are too small

and unlikely to be the distant colon lumen.

2. Let r1 represent the region with the lowest pixel intensity initially. If the intensity

of r1 is greater than another intensity threshold t2 or r1 is concave, declare that

this image is a wall view (no colon lumen). Otherwise, we check for two colon walls

surrounding the colon lumen as follows.

Step 1: Let r2 be the closest neighboring concave region of r1. Compare the

intensity difference between r1 and r2. If the difference is larger than the

intensity difference threshold t3, declare that this image is a wall view and the

algorithm terminates. Otherwise, proceed to Step 2.

Step 2: Let r1 denote the region r2 and proceed to Step 1 if this is the first time

Step 2 is executed. Otherwise, declare that the image is a lumen view and the

algorithm terminates.

Note that we repeat the two steps twice to check that at least two colon walls are

seen together with the colon lumen before we declare that the image is a lumen

view.
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Figure 4.2 (a) shows an original image with the colon lumen almost in the center.

Figure 4.2 (b) depicts the segmented image with the important regions, R1, R2, and R3

labeled. For ease of visualization, we generate Figure 4.2 (c) by masking small regions

and neighboring convex regions with black pixels. Figure 4.2 (c) shows only R1, R2, and

R3. Region R1 is the convex region with the smallest intensity, representing the distant

colon lumen. R2 is the concave region close to R1, representing a segment of the colon

wall. Considering R1 and R2 together, we see a bilateral convex colon wall. R3 is another

concave region close to R2, representing another segment of the colon wall.

(a) original image (b) segmented image (c) filtered image

R1

R2

R3

R1

R2

R3

Figure 4.2. Images processed during lumen identification.

4.2 Lumen Property Determination

In this section, we determine the lumen properties (size and location) for each

frame with the colon lumen. Fist, we select the initial lumen region using the Otsu’s

thresholding algorithm. After then, we obtained the elliptical lumen region using ellipse

fitting method.
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4.2.1 Initial Lumen Region Selection using Otsu Thresholding

We apply the Otsu’s thresholding algorithm iteratively like in the APT-Iris tech-

nique [10]. We stop at the iteration when Equation (4.1) is satisfied.

σ2
B(j) ≤ αµT (4.1)

where α is a pre-defined constant; µT is the average pixel value of the input image; and

σ2
B(j) is computed using Equation (4.2), representing the weighted difference between the

average pixel values of the two classes (T0 and T1) at the iteration j.

σ2
B(j) = ω0ω1(µ1 − µ0)

2 (4.2)

where µ0 =
µt

ω0

and µ1 =
µT − µt

ω1

For each iteration, ω0 represents the ratio of the pixels in class T0 to the total number of

pixels in the input image, and ω1 = 1 − ω0. The weighted means of the pixel values of

the classes T0 and T1 are µ0 and µ1, respectively. They are computed from µt denoting

the average pixel value of all the pixels in class T0 in this iteration. Figure 4.3 (a) shows

the original lumen image and Figure 4.3 (b) shows the initial lumen region obtained the

above method.

(a)
 (b)


Figure 4.3. (a) Lumen Image, (b) Initial Lumen Region based on Otsu Thresholding.
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4.2.2 Ellipse Fitting

Using the boundary of the initial lumen region, we generate the ellipses using the

ellipse fitting method. An ellipse is be described by a second order polynomial [49] as

follows:

Fa(x) = x · a = ax2 + bxy + cy2 + dx + ey + f = 0 (4.3)

with an equality ellipse-specific constraint

4ac− b2 = 1 (4.4)

where a = [a, b, c, d, e, f ]T is a set of coefficients in the ellipse, and x = [x2, xy, y2, x, y, 1]

for (x, y) which is a set of coordinates of points lying on it. The polynomial Fa(x) is

called the algebraic distance of the point (x, y) to the given conic. The fitting of an

ellipse to a set of points (xi, yi), i = 1, · · · , N could be obtained by minimizing the sum

of squared algebraic distances of the points considering Equation (4.4) as follows:

min
a

ΣN
i=1F (xi, yi)

2 = min
a

ΣN
i=1(xi · a)2 (4.5)

We can obtain a set of coefficients (a) by solving Equation (4.5) using the least square

fitting method which was proposed in [49] as follows.

The ellipse-specific fitting problem (Equation (4.5)) can be formulated in the matrix

form as

min
a
‖ Da ‖2 subject to aTCa = 1 (4.6)

where the matrix D is

D =




x2
1 x1y1 y2

1 x1 y1 1

...
...

...
...

...
...

x2
i xiyi y2

i xi yi 1

...
...

...
...

...
...

x2
N xNyN y2

N xN yN 1




(4.7)
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and the constraint matrix C expressing the constraint in Equation (4.4) is

C =




0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(4.8)

The minimization problem of Equation (4.6) can be solved by a quadratically constrained

least square minimization proposed in [50]. By applying the Lagrange multipliers (λ),

we get the following conditions for the optimal solution a

Sa = λCa

aTCa = 1
(4.9)

where S is the scatter matrix of the size 6x6

S = DTD

=




Sx4 Sx3y Sx2y2 Sx3 Sx2y Sx2

Sx3y Sx2y2 Sxy3 Sx2y Sxy2 Sxy

Sx2y2 Sxy3 Sy4 Sxy2 Sy3 Sy2

Sx3 Sx2y Sxy2 Sx2 Sxy Sx

Sx2y Sxy2 Sy3 Sxy Sy2 Sy

Sx2 Sxy Sy2 Sx Sy S1




(4.10)

Due to the special structures of matrices S and C, we can decomposed the matrices as

follows. First, the matrix D can be decomposed into its quadratic and linear parts:

D = (D1D2) (4.11)
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where

D1 =




x2
1 x1y1 y2

1

...
...

...

x2
i xiyi y2

i

...
...

...

x2
N xNyN y2

N




,D2 =




x1 y1 1

...
...

...

xi yi 1

...
...

...

xN yN 1




(4.12)

The matrix C and matrix S can be split as follows:

C =




C1 0

0 0


 and S =




S1 S2

ST
2 S3


 (4.13)

where

C1 =




0 0 2

0 −1 0

2 0 0




and





S1 = DT
1 D1

S2 = DT
1 D2

S3 = DT
2 D2

Finally, we split the vector of coefficients a into

a =




a1

a2


 where a1 =




a

b

c




and a2 =




d

e

f




(4.14)

Based on these decompositions, Equation (4.9) can be rewritten as



S1 S2

ST
2 S3


 ·




a1

a2


 = λ ·




C1 0

0 0


 ·




a1

a2


 (4.15)

which is equivalent to the following equations



S1a1 + S2a2 = λC1a1

ST
2 a1 + S3a2 = 0

(4.16)

Regarding all the decomposition steps, Equation (4.9) can be reduced as follows.

Ma1 = λC1a1

aT
1 C1a1 = 1

(4.17)
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where M=C−1
1 (S1 − S2S

−1
3 ST

2 ) is the reduced scatter matrix of the size 3x3. Equation

(4.17) is solved by using generalized eigenvectors such that

‖ Ma1 ‖2= aT
1 MTMa1 = λ (4.18)

There are up to three real solutions (λj, aj
1), but we can find one solution by looking

for the eigenvector ak
1 corresponding to the minimal positive eigenvalue λk. Using the

solution of a1, we can get a2 because a2 = −S−1
3 ST

2 a1. Finally, we can get all coefficients

in a using Equation (4.14). Figure 4.4 (a) and (b) are from Figure 4.3 (a) and (b)

respectively. Figure 4.4 (c) shows the boundary of Figure 4.4 (b) and Figure 4.4 (d) the

shows the detected ellipse for lumen region.

(a)
 (b)
 (c)
 (d)


Figure 4.4. (a) Lumen Image, (b) Initial Lumen Region, (c) Boundary of (b), and (d)
Lumen Ellipse .

4.3 Experimental Results

In this section, we evaluate the effectiveness of the lumen identification algorithm.

We test 3 colonoscopy videos and total number of frame is 3270 frames. The details

are shown in (Table 4.1). The column “ID” represents the unique id number for each

colonoscopy video, and the column “Total Frames” represents the total number of frames

for each video. The column “Lumen view” represents the number of frames which have

lumen regions and the column “Wall view” represents the number of frames which do not
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have lumen regions for each video. This test set dose not contain any non-informative

frames and one frame (instead of 30 frames/sec) is extracted per second for the evaluation.

Table 4.1. Test Set for Lumen Identification

ID Total Frames Lumen view Wall view
009 1160 913 247
017 784 594 190
024 1573 1098 475

The parameters used in this evaluation includes the size threshold of 1500 pixels, the

intensity threshold of 128, and the intensity difference threshold of 175. The experiment

results are presented in Table 4.2. Column “S” represents the number of actual lumen

frames we manually determined; column “T” represents the number of detected lumen

frames; and column “C” represents the number of correctly detected lumen frames. Two

performance metrics, recall and precision, are used. Table 4.2 shows high recall and

precision for our proposed algorithm.

Table 4.2. Effectiveness of Lumen Identification

ID S T C Precision(C
T
) Recall (C

S
)

009 913 921 840 0.912 0.921
017 594 611 564 0.923 0.950
024 1098 1467 1297 0.884 0.908
Ave 0.907 0.926



CHAPTER 5

POLYP DETECTION

One of the most important tasks during the colonoscopy is to find polyps and

early cancers. For computer-based detection of polyps of the stomach and colon, several

techniques have been proposed using texture features [14, 15, 16, 51]. For instance, color

wavelet covariance was used to generate a set of 72 texture features [14]. Using 180

training and 1200 testing images, the effectiveness of the color wavelet covariance was

evaluated for the following questions: 1) which texture features among the 72 texture

features are the most (or least) correlated with the presence of polyps, 2) what is the

optimal color space, and 3) what is the effective window size? A polyp detection technique

using Texture Spectrum and Neural Network classifier method has also been proposed

[15]. However, a very limited number of images (54 abnormal images and 12 normal

images) was tested in this study. More recently, the effectiveness of four different texture

feature methods such as Texture Spectrum, Texture Spectrum with Color Histogram,

Local Binary Pattern and Color Wavelet Covariance for detecting polyps were compared

[16]. In this study, the Gaussian kernel Support Vector Machine (SVM) with 10-fold cross

validation was used for the comparison of several texture features within 1000 selected

images.

A major limitation of the above methods is that they depend on texture analysis

with a fixed size window, and rely on their own training set of images for accuracy. Since

even a single polyp can have different relative sizes and color features depending on the

viewing position and distance of the camera from the polyp, it is not practical to use

a fixed size window for texture analysis. For instance, Figure 5.1 shows an example of

39
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a single polyp with apparent different sizes due to the different viewing position and

distance between camera and polyp. For this reason, it is difficult to detect various sizes

of polyps with one fixed window size.

(a)
 (b)
Same Polyp


Figure 5.1. Same Polyp with Different Sizes: (a) ID-4920, and (b) ID-4995.

The other problem related to fixed-size window texture analysis is over-reflected

areas in some polyps. An over-reflected area is seen when the light bundle hits wet mucosa

surface perpendicular to the viewing direction, and is reflected straight back to the camera

in the head of the endoscope. Such reflection significantly affects the texture analysis

since an over-reflected area does not have the original surface information; some polyps

display these areas, but others do not. An example of this can be seen in Figure 5.2.

Figure 5.2 (a) shows an image of a polyp with an over-reflected area; Figure 5.2 (b) shows

a window without and Figure 5.2 (c) shows a window with the over-reflected area in this

polyp.

To overcome the above problems, we here propose a new technique that uses shape

rather than texture. As seen in Figure 5.3, the shapes of polyps are 3D spherical or
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(a)
 (b)
 (c)


Over-reflected Area


Figure 5.2. Over-reflected Area Problem: (a) Original Image, (b) A Window without
Over-reflected Area in the Same Polyp, and (c) A Window with Over-reflected Area in
the Same Polyp .

hemispherical forms in most cases so that polyps are represented as elliptical shapes in

2D images.

The method of detecting polyps using the elliptical shape has been proposed for

CT colography [19, 20]. Figure 5.4 shows the general process of polyp detection methods

using the elliptical shape. First, the edge lines are generated by thresholding the gra-

dient magnitude of a CT image (Figure 5.4 (b)). Then, a line separating the maximal

curvatures is detected (Figure 5.4 (c)). Using the detected curve line, the most similar

ellipse is detected (Figure 5.4 (d)), and it is characterized by computing several curva-

tures. However, the polyp detection method for CT colography cannot be applied to

colonoscopy images due to the following reasons.

• Unlike CT colography where X-ray density is the key discriminating factor, colonoscopy

has to rely on color, relative difference of reflected light and shadowing as discrimi-

nating factors that result in detectable edges. And unlike CT colography where 3D

reconstruction is readily achieved without loss of resolution, especially using the

new 64-slice CT scanners, endoscopy at present has to rely on 2D information.
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Figure 5.3. Examples of Polyp Shape .

• CT images are very different from colonoscopy images (Compare Figures 5.4 (a)

and 5.5 (a)). In CT images, the colon wall can be easily separated from the lumen

area (high contrast ratio) and a clear curve of the polyp protruding into the lumen

typically exists (see Figure 5.4 (b)). However, as seen in Figure 5.5 (b), colonoscopy

images contain more complicated edge lines so it is more difficult to group the edge

lines that define a polyp.

• In CT images, general edge detection methods (Sobel edge detection, Canny edge

detection, etc.) can be used because the boundary between colon wall and lumen

is clear. For colonoscopy images we need a different method to obtain clear edges.

• As long as polyps are not flat, it is easy to segment polyp edges from the detected

edge lines in CT images because 1) the edge line in a CT image is simple and 2)

polyps in a CT image most often protrude from the colon wall into the lumen (Fig-

ure 5.4). The edge line in colonoscopy images is very complex and the assumption

of the protuberance of polyp toward the lumen is not always true (flat lesions) or
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appreciated at common angles of view (Figure 5.5). To segment polyp edges from

detected edge lines, we need to use a different region segmentation method.

(a)
 (b)
 (c)
 (d)


Figure 5.4. (a) Original CT Image, (b) Edge Line of (a), (c) Maximum Curve Separation
from (b), and (d) Ellipse Detection.

(a)
 (c)
 (d)
(b)


Figure 5.5. (a) Original Colonoscopy Image, (b) Edge Line of (a), (c) Segmented Regions
of (a), and (d) Desirable Edges of Polyp.

In this paper, we propose a polyp region detection method based on the elliptical

shape of polyps. Figure 5.6 shows the procedure of our proposed method.

First, a gradient magnitude is constructed using the matched filter method to

get clear edge information. This gradient magnitude is used to generate the strong

edge map based on the thresholding method and it is also used as the relief function

of the watershed algorithm in the region segmentation step. In step 2, an image is
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Gradient Magnitude

Construction


Region
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Input Video


Polyp Shot

Detection


Polyp Shot


Figure 5.6. Polyp Detection Method.

segmented into several regions based on the marker-controlled watershed algorithm. In

step 3, ellipses are detected using the ellipse fitting method using the information from

the region segmentation and the strong edge. Among all detected ellipses, we select

several ellipses which may represent polyps by the polyp candidate selection technique.

Finally, the polyp shot detection step detects the missed polyp frames and determines the

boundaries of polyp shots by utilizing an image registration technique. We note that the

purpose of the ‘polyp candidate’ selection in Section 5.3 is to reduce the number of false

polyp frames (i.e. the frames which are actually non-polyp frames but detected as polyp

frames by the system) by finding the very obvious polyp as the polyp candidate. Base

on the selected polyp candidate as seeds, the polyp shot detection technique discovers

the missed polyp frames by comparing the polyp candidate frames with the remaining

frames.

5.1 Gradient Magnitude Construction

To obtain clear edge information, a robust image gradient needs to be computed.

Depending on the view point, many objects will have low contrast boundaries in colonoscopy

video frames. To obtain robust gradient information, we use a matched filter method be-

cause this method can efficiently detect subtle as well as clear boundaries. The matched

filter method has been used successfully to detect object boundaries within the retina
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to define blood vessels [52, 53]. The matched filter method finds the maximum response

among a family of filters. Figure 5.1 shows the basic idea of the matched filter method

(i.e. a set of filter family is applied to a pixel (p) and find a filter with the maximum

response value among a set of filters).

{
}
 x


y


A family of filters

Maximum

response


P


 


Figure 5.7. Matched Filtering.

Due to the characteristics of colonoscopy videos, there are many types of noise

in the original frames that create edges. Examples of edge producing noises are light

reflection and stool. Therefore it is necessary to reduce as much as possible the various

noises in order to prevent false edge detection when the matched filter method is applied.

To reduce noises while preserving the object boundaries, a median filter is applied because

it performs well at removing noises and introduces very little blurring of edges [33]. To

reduce the noises while preserving the object boundaries, a non-linear filter is applied

because it performs well at removing noises from an image and causes blurring of edges

very little [33]. We utilize a non-linear filter (i.e., median filter) for noise removal, and a

noise reduced image (Ī) will be computed as follows

Ī(x, y) = I(x, y) ? MF (5.1)
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where I is the original image, MF is a median filter and ? represents an ordering opera-

tion.

After reducing the noises, the matched filter method is applied to a noise-reduced

image. The matched filter method needs to have a set of proper filters. We use the second

derivative of two-dimensional Gaussian (GD2) as a set of filters because GD2 has two

main advantages. First, even though it is known that GD2 is sensitive to noises, we have

found that GD2 shows better performance than the first derivative of Gaussian (GD1)

in detecting edges in colonoscopy images. This is due to the fact that GD2 can detect

more detail edge information. The other advantage is that the line filter using GD2 can

take into account the direction of an edge so it works better when the boundaries are

indistinct. A two-dimensional isotropic Gaussian function is defined as

Gσ(x, y) =
1√
2πσ

· exp(−x2 + y2

2σ2
) (5.2)

The second derivative of two-dimensional Gaussian function along the x-axis is given by

G2
σ(x, y) =

∂2Gσ(x, y)

∂x2
=

x2 − σ2

σ4
Gσ(x, y) (5.3)

By rotating the second derivative of Gaussian, a family of the second derivative of Gaus-

sian along different orientations θ(0 ≤ θ < π) can be generated as

G2
σ,θ(x, y) = G2

σ(x′, y′) (5.4)

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

The gradient magnitude (GM) along the orientation θ, GM(x, y, θ), is defined as [33]:

GM(x, y, θ) = Ī(x, y) ∗G2
σ,θ(x, y) (5.5)
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where Ī is a noise-reduced image and * represents convolution. Equation (5.5) is defined

for the gray level images but our colonoscopy images are in color, therefore, we extend

it to color space. The gradient magnitude for a color image (GMC) can be defined as:

GMC = max(GMR, GMG, GMB) (5.6)

where GMR, GMG, and GMB are the gradient magnitudes for three color bands (R, G,

B), respectively.

Using the gradient magnitudes, the strong edge information is obtained using the

threshholidng method as follows. Let p be a pixel of the gradient magnitude (GMc). Then

the strong edge map (B) can be obtaining by assigning ’1’ if p is larger than a certain

threshold (THeg), otherwise ’0’ is assigned. Figure 5.8 (a) shows the noise reduced image.

Figure 5.8 (a) shows the color gradient map of (a) and Figure 5.8 (c) shows the strong

edge obtained from (b).

(c)
(b)
(a)


Figure 5.8. (a) Noise Reduced Image (Ī), (b) Gradient Magnitude of Color Image (GMC),
and (c) Strong Edge (B) .

5.2 Region Segmentation

In this section, we propose a region segmentation method based on the marker-

controlled watershed algorithm. Despite the popular usage of the watershed algorithm
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in the literature of the image segmentation field, the selection of the initial marks is still

open problems. In this section, we propose a novel mark selection method using the

strong edge information.

5.2.1 Watershed Algorithm

Region segmentation is a fundamental step in image analysis. It should yield a

partitioning of an image into disjoint regions. The segmentation process can rely on

the uniformity of the feature within the regions or on the edge evidence. As seen in

Figure 5.9, a typical polyp consists of different color values (or intensity values) that in

part depend on the relative distance between the polyp surface and the light source. This

distance varies because the shape of a polyp is 3D sphericity. Thus, a polyp could be

recognized by its edge evidence not by the region uniformity. However, depending on the

light condition and viewing position, only some parts of a polyp boundary have strong

edge information and others have weak edge information.

Intensity Distribution

of polyp


255


0


(a)
 (b)


Figure 5.9. (a) Polyp Image, and 3D Intensity Value Plot of (a).

Based on these observations, we use the marker-controlled watershed algorithm for

polyp segmentation because it has some advantages [54, 55]: the watershed algorithm



49

has been proven powerful for contour detection as well as region segmentation because

the watershed lines always correspond to the most significant edges between markers.

Thus, the watershed algorithm is not affected by lower-contrast edges due to noises. In

addition, even if there are no strong edges between the markers, the watershed algorithm

always detects a contour in an area. Of importance, it can handle the gap between broken

edges properly, and place the boundaries at the most significant edges.

The watershed algorithm uses a topological relief function representing edge ev-

idence as input. For the relief function, we use the gradient magnitude based on the

matched filter method obtained in Section 5.1. By viewing this function as a mountain

landscape, object boundaries are determined as watershed lines. The watershed algo-

rithm selects small number of markers as the initial seeds. The segmentation result is

directly related with the number and the position of the markers. Most of segmentation

algorithms based on watershed transform [56, 57, 58] select the markers by computing

the significant local minima or local maxima of the gradient magnitude. Using the se-

lected markers, the watershed transform is performed. As the relief goes deeper into the

water, the regions surrounding the seeds become flooded, that is, the catchment basins

are constructed. When two or more regions merged to a point, a dam (i.e. watershed

line) is raised. Eventually, the whole image will be partitioned into catchment basins

which are bordered by the watershed lines. The number of catchment basins cannot be

different from the number of seeds.

5.2.1.1 Marker Selection

The quality of region segmentation results is determined by the proper number of

marks (i.e. one mark for one polyp) because the number of segmented regions should be

the same as the number of seeds.
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The shapes of polyps are 3D spherical or hemispherical forms so the geometric

elevation level (i.e. light intensity) of a polyp is higher than the surrounding regions

in colonoscopy images. Using this characteristic, we select regions which have higher

intensity values than surrounding regions as initial markers by using the morphologi-

cal operation called regional maxima [59]. Before applying the regional maxima to the

original image, we need to reduce the effect from unreliable high intensity pixels. The

effect from unreliable high intensity pixels can be reduced by utilizing the morphologi-

cal reconstruction operation [59]. The morphological reconstruction, ρI(J), is defined as

follows:

ρI(J) =
∨
n≥1

δ
(n)
I (J) (5.7)

where δ
(n)
I is the grayscale geodesic dilation of size n, J is the marker image and I is the

mask image. Both J and I are identical in size and J ≤ I (i.e. a pixel value in J is

less than or equal to the corresponding pixel value in I). The geodesic dilation of size n

(δ
(n)
I ) is defined as follows:

δ
(n)
I = δ

(1)
I ◦ δ

(1)
I ◦ · · · ◦ δ

(1)
I︸ ︷︷ ︸

n times

(J) (5.8)

And, the geodesic dilation of size 1 (δ
(1)
I ) is defined as follows:

δ
(1)
I = (J ⊕B) ∧ I (5.9)

where ∧ stands for the pointwise minimum and J ⊕ B is the dilation of J by the 3 × 3

structuring element B.

Based on the definition of the reconstruction operation, we propose two sequen-

tial operations (‘opening-by-reconstruction’ followed by ‘closing-by-reconstruction’) to

remove unreliable pixels as follows:

opening-by-reconstruction: Ior = ρI(I ª S)

closing-by-reconstruction: Iorcr = ρI′or
(I ′or ⊕ S)

(5.10)
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where ªS is the erosion by the element S and ⊕S is the dilation by the element S. We use

the 5×5 disk element for S. I ′or stands for the complement image of Ior. The complement

image (I ′or) can be calculated by subtracting each pixel value of Ior from the maximum

pixel value of Ior. Then, the markers are selected by finding regional maxima of Iorcr. A

regional maximum is a connected component set of pixels with the value t whose external

boundary pixels are strictly smaller than t. Formally, the regional maximum (M) of Iorcr

can be defined as [59]:

Regional Maximum (M) at level t ⇐⇒ M connected and


∀p ∈ M Iorcr(p) = t

δ
(1)
M \M Iorcr(p) < t

(5.11)

where \ is the set difference operation.

However, this technique generates too many markers causing an over-segmentation

for colonoscopy image. As seen in Figure 5.10, there are two marks (M6 and M15) on a

polyp region, which results in wrong segmentation dividing a polyp into two regions.
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Figure 5.10. Initial Marks .
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To prevent this over-segmentation problem, the marks M6 and M15 need to be

merged as one mark. The mark merging method are proposed based on the following

two observations: (1) the marks on the same polyp are not far from one anther and

(2) there is no strong edge information between the marks if the marks are obtained at

the same polyp. For instance, Figure 5.11 (a) shows that M7, M8 and M15 are located

within a certain searching distance (THr) from M6, so they could be merged as one

mark. However as seen in Figure 5.11 (b), there are strong edge information between

M6 and M7, and between M6 and M8. In contrast, there is no strong edge information

between M6 and M15. Thus, these two marks are connected as one mark by drawing a

line between M6 and M15.

M
8


M

7


M

6


M
15


Strong edges

between marks


No strong edges

between marks


(a)
 (b)


Figure 5.11. (a) Searching Area, (b)Marker Merging .

Using this method, the initial 25 marks are reduced in 9 marks as seen in Fig-

ure 5.12.
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Figure 5.12. (a) Initial Markers, (b) Merged Markers .

5.3 Polyp Candidate Selection

In this section, we propose the polyp candidate selection method based on the

elliptical shape of polyps.

5.3.1 Ellipse Fitting

Using the edges in each segmented region, we generate the ellipses using the ellipse

fitting method. First, the binary edge map is constructed for each segmented region by

defining the binary edge map (Bi) of the region i is the strong edge (B) in the region i.

For instance, Figure 5.13 (b) is the strong edge information (B) presented in Section 5.1

, and Figure 5.13 (c) is the binary edge map (B3) for the region 3.

Using the binary edge map of each region, we will find the best ellipse using the

least square fitting method, which is explained in Section 4.2.2. Figure 5.14 (a) and (b)

are from Figure 5.13 (a) and (b) respectively. Figure 5.14 (c) shows the detected ellipse

for each region using the above algorithm. We note that ellipses are not detected for

the regions 1 (R1), 2 (R2), 5 (R5), 6 (R6), 7 (R7), and 8 (R8) because there is no edge

information in the binary edge maps corresponding to these regions.
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Figure 5.13. (a) Segmented Regions, (b) Strong Edge, and (c) Binary Edge Map of
Region 3 .
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Figure 5.14. (a) Segmented Regions, (b) Binary Edge Map, and (c) Detected Ellipses .

Among the detected ellipses, we need to select the ellipses which have a possibility

to represent polyps, and remove the ellipses which are not polyps. In this section, we

propose three filtering methods: filtering by curve direction and semimajor-semiminor

ratio, filtering by edge distance, and filtering by intensity value. After filtering out the

irrelevant ellipses by the proposed method, we declare a frame as a polyp candidate frame

if it has any remaining ellipses.

5.3.2 Filtering by Curve Direction and Semimajor-Semiminor Ratio

Different edge shapes can generate similar ellipse. For instance, Figure 5.15 (a)

shows two different edge maps in which the upper edge map is obtained from a polyp
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frame and the lower edge map is obtained from a non-polyp frame. As seen in Figure 5.15

(b), the same ellipses can be generated from two different frames. Thus, we need to

compare edge shape in edge map with that in ellipse to distinguish the polyp ellipses

from the non-polyp ellipses. Figure 5.15 (c) shows the best fitting parabolas obtained

using the parts A and C of Figure 5.15 (a), which are indicated with red rectangles.

Figure 5.15 (d) shows the best fitting parabolas obtained using the parts A and C of

Figure 5.15 (b), which are indicated with blue rectangles. The arrows in Figure 5.15 (c)

and (d) represent the direction of parabolas. If an ellipse is generated from a polyp, the

direction of the parabola from any part of ellipse and the direction of the parabola from

the corresponding part of edges are same (the top images of Figure 5.15 (c) and (d)). In

contrast, if there is a ceratin part in which the direction of the parabola from an ellipse

and the direction of the parabola from the corresponding edges are different (the bottom

image of Figure 5.15 (c) and (d)), then the ellipse is not generated from a polyp.

Based on this observation, we propose to divide edges into four parts and calculate

the curve information for each part as follows. The ellipse represented in Equation (4.3)

can be expressed as follows:

(x′ − cx)
2

a2
+

(y′ − cy)
2

b2
= 1 (5.12)




x′

y′


 =




cos θ − sin θ

sin θ cos θ







x

y




where (x, y) are coordinates of points, a is the length of the semimajor axis, b is the

length of the semiminor axis, and (cx, cy) is the center point of the ellipse. As seen in

Figure 5.16 (a), two foci (F1 and F2) can be easily calculated because a2 = b2 + c2.

Illustrated in Figure 5.16 (b), we divide an ellipse into four parts based on the two foci

points (F1 and F2): (1)-upper side of the line between F1 and F2, (2)-right side of F2,

(3)-lower side of the line between F1 and F2, and (4)-left side of F1. By selecting the
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Figure 5.15. (a) Binary Edge Maps, (b) Detected Ellipses from (a), (c) Parabolas gener-
ated from Parts A and C in (a), and (d) Parabolas generated from A and C in (b).

edges in the corresponding parts, we can divide the edges into four parts. We call a part

i of an ellipse as a dismembered-ellipse (Ei) shown in Figure 5.16 (c), and a part i of

edges as a dismembered-edge set (Bi) shown in Figure 5.16 (d).

For each dismembered-edge set (Bi, i = 1, · · · , 4) , we compute the curve direction

and the max curvature by detecting a parabola using the polynomial curve fitting method.

The second order polynomial of a parabola is same as the second order polynomial of an

ellipse (Equation (4.3)) but it has a different constraint (b2 − 4ac = 0). It is known that

the second order polynomial of a parabola cannot be solved using the least square fitting

because the constraint of a parabola is b2−4ac = 0 [60]. Therefore, we use another curve

model for a parabola as follows [60]:

f(x) = α + βx + γx2 (5.13)
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Figure 5.16. (a) Ellipse, (b) Ellipse with Four Part, (c) Dismembered-Ellipse, and (d)
Dismembered-Edge Set .

Equation (5.13) can model a parabola only if the directrix of a parabola is parallel

to the x-axis described in Figure 5.17 (a). We have to rotate a dismembered-edge set

(Bi) if Bi is not in the proper position. We define θ (0 < θ ≤ π) as the counterclockwise

angle from the x-axis to the major axis of an ellipse described in Figure 5.17 (b).

directrix


F


(a)
 (b)


Figure 5.17. (a) Parabola parallel to x-axis, and (b) Counterclockwise Angle .

Based on θ, we can place each dismembered-edge set (Bi) to fit Equation (5.13) by

rotating each dismembered-edge set (Bi, i = 1, · · · , 4) by θ + π(i−1)
2

. Figure 5.18 (b), (c),

(d) and (e) show the rotated Bi by θ, θ + π
2
, θ + 2π

2
and θ + 3π

2
, and the fitted parabola

f i for the corresponding Bi, respectively.
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Figure 5.18. (a) Original Edge, (b) Rotated by θ, (c) Rotated by θ + π
2
, (d) Rotated by

θ + 2π
2

, and (e) Rotated by θ + 3π
2

.

After rotating a dismembered-edge set (Bi), we can calculate the coefficients (α, β

and γ) of Equation (5.13) as follows. Given a set of pixels (p(xi, yi), i = 1, · · · , n) be-

longing to a dismembered-edge set (Bi), the coefficients of the second degree parabola

can be obtained when the least square error (LSE) is minimized.

LSE =
n∑

i=1

[yi − f(xi)]
2 =

n∑
i=1

[yi − (α + βxi + γx2
i )]

2 (5.14)

The condition for LSE to be minimized is the first derivatives of LSE to zero such as:

∂LSE

∂α
= 2

n∑
i=1

[yi − (α + βxi + γx2
i )] = 0

∂LSE

∂β
= 2

n∑
i=1

xi[yi − (α + βxi + γx2
i )] = 0 (5.15)

∂LSE

∂γ
= 2

n∑
i=1

x2
i [yi − (α + βxi + γx2

i )] = 0

∂LSE

∂α
= 0,

∂LSE

∂β
= 0,

∂LSE

∂γ
= 0 (5.16)

By minimizing the above equations, we can get the coefficients as follows:




α

β

γ




=




n∑
i=1

1
n∑

i=1

xi

n∑
i=1

x2
i

n∑
i=1

xi

n∑
i=1

x2
i

n∑
i=1

x3
i

n∑
i=1

x2
i

n∑
i=1

x3
i

n∑
i=1

x4
i




−1 


n∑
i=1

yi

n∑
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

(5.17)
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By applying the above polynomial curve fitting method to four dismembered-edge sets

(Bi, i = 1, · · · , 4) , we can obtain up to four curves: f 1, f 2, f 3 and f 4.

In addition, typical polyps have a certain ranges of semimajor-semiminor ratio (a
b
).

Based on the coefficients of parabolas and the semimajor-semiminor ratio, an ellipse (E)

is declared as a polyp candidate if an ellipse satisfy both of the following two conditions.

Otherwise, it is not a polyp and filtered out.

• Condition 1: If each dismembered-edge set is a part of a polyp, the coefficient γi

of a parabola f i should be larger than zero because the direction of f i is turned up

(see Figure 5.18). So, if there is a γi (i = 1, · · · , 4) which is less than or equal to

zero, the ellipse is not a polyp candidate.

• Condition 2: If semimajor-semiminor ratio (a
b
) be a certain range (1 ≤ a

b
≤ THk1),

then the ellipse is a polyp candidate. Otherwise, it is filtered out. We use 3 for

THk1.

5.3.3 Filtering by Lumen

After filtering out the ellipses by the curve direction and semimajor-semiminor

ratio, we examine the remaining ellipses by their color. As seen in Figure 5.19, a shape

of lumen is an elliptical shape and it is detected along with strong edges.

(c)
(b)
(a)


Figure 5.19. (a) Original Edge, (b) Binary Edge Map, and (c) Detected Ellipse .
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Lumen areas are easily misclassified as polyps. Even though a lumen is similar to

a polyp in shape, it is different from in color (intensity) because a lumen is relatively

darker, and a polyp is the relatively brighter. Using the lumen identification technique

presented in Chapter 4, we filter out an ellipse if it is in the lumen region.

5.3.4 Filtering by Edge Distance

After filtering out the ellipses by two filtering methods, we evaluate the remaining

ellipses with another polyp characteristic. Even though the entire boundary of polyp

has not strong edge information, some parts of polyp boundary must have strong edge

information along the detected ellipse. Figure 5.20 (a) shows the typical patterns of

strong edges of polyps in the colonoscopy image.

Polyp Boundary


Strong Edge


(a)
 (b)


(1)

(2)

(3)


(6)

(5)


(4)


Figure 5.20. (a) Strong Edge Pattern of Polyp, and (b) Ellipse with Six Parts .

To characterize the above polyp edge patterns, we divide an ellipse into six parts

as seen in Figure 5.20 (b) so we have six dismembered-ellipses (Ei, i = 1, ·, 6) and

dismembered-edge sets (Bi, i = 1, ·, 6). By modifying the hausdorff distance [61], we
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define the edge distance (ED) as the sum of the distance between a dismembered ellipse

(Ei) and the corresponding dismembered edge set (Bi) as follows:

EDi = ED(Ei, Bi) =
∑

a∈Ei

min
b∈Bi

d(a, b) (5.18)

where a and b are points of Ei and Bi respectively, and d(a, b) is the Euclidian distance

between a and b. ED measures how much a dismembered edge set is (dis)similar to

the corresponding dismembered ellipse. The edge distance ED is asymmetric such as

ED(Ei, Bi) 6= ED(Bi, Ei), therefore, it can find if there are strong edges along the

detected ellipse. Based on the edge distance (ED), an ellipse (E) is declared as a polyp

candidate if either of the following conditions is satisfied. Otherwise, it is not a polyp.

• Condition 3: If there are strong edges close to an ellipse boundary in parts (2)

and (3), or in parts (5) and (6), then the ellipse is a polyp candidate. It can be

formulated as follows:

min(ED(2,3), ED(5,6)) ≤ THζ

• Condition 4: If there are strong edges close to an ellipse boundary in parts (1) and

(2), or in parts (1) and (6), or in parts (3) and (4), or in parts (4) and (5), then

the ellipse is a polyp candidate. It can be formulated as follows:

min(ED(1,2), ED(1,6), ED(3,4), ED(4,5)) ≤ THξ

where ED(u,v) = ED(u) + ED(v).

5.4 Polyp Shot Detection

In this section, we propose the polyp shot detection method based on image regis-

tration to detect the missed polyp frames and determine the boundaries of polyp shots

by comparing the polyp candidate frames with their adjacent frames.
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For a polyp candidate frame, its adjacent frame is registered based on the mutual

information method [62]. Given two frames A (a polyp candidate frame) and B (its

adjacent frame), the definition of the Mutual Information MI(A,B) of these frames is:

MI(A,B) = H(A) + H(B)−H(A,B) (5.19)

where H(A) and H(B) are the entropies of the frames A and B, and H(A,B) is their

joint entropy. The definitions of these entropies are:

H(A) = −
∑

a

PA(a) · log PA(a) (5.20)

H(B) = −
∑

b

PB(b) · log PB(b) (5.21)

H(A,B) = −
∑

a,b

PA,B(a, b) · log PA,B(a, b) (5.22)

where PA(a) =
∑

b

PA,B(a, b) and PB(b) =
∑

b

PA,B(a, b) are the probabilities of his-

tograms. PA,B(a, b) = h(a,b)∑

a,b

h(a, b)
is the joint probability and h is a joint histogram for

the frame pair.

The MI registration criterion states that the highest value of the MI can be obtained

when the frame pair is geometrically aligned through a geometric transformation (T ).

We use the rigid body transformation as our geometric transformation (T ) and use the

simplex method [62] to maximize the mutual information measure under the rigid body

transformation. We note that we convert the color images into the gray-level images

before the image registration is performed. Figure 5.21 (a) is a polyp candidate frame (A),

and Figure 5.21 (b) is an adjacent frame (B). Figure 5.21 (c) is obtained by registering

the adjacent frame (B) into the polyp candidate frame (A). Figure 5.21 (d) and (e) are

the corresponding binary edge map of Figure 5.21 (a) and (b), respectively. Figure 5.21

(f) is obtained by transforming Figure 5.21 (e) using the same parameters of Figure 5.21

(c)
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(a)
 (b)
 (c)


(d)
 (e)
 (f)


E
A
 E
B


Figure 5.21. (a) Polyp Candidate Frame (A), (b) Adjacent Frame (B), (c) Registered
Adjacent Frame (B), (d) Binary Edge Map of (a), (e) Binary Edge Map of (b), and (f)
Registered Adjacent Binary Edge Map.

After two frames (A and B) are registered, two edge sets (EA and EB) are generated

by selecting the edge pixels within the ellipse of polyp candidate frame (A) and the

registered adjacent frame (B). To examine if EA and EB have the similar edge pattern,

we measure the distance (Dist) between EA and EB as follows:

Dist(EA, EB) = max(ED(EA, EB), ED(EB, EA)) (5.23)

where ED is the edge distance which is defined in Section 5.3.4. If the Dist(EA, EB) is

less than a certain threshold THη, a polyp candidate frame(A) and its adjacent frame

(B) have a same polyp. Otherwise, there is no polyp in the adjacent frame (B). As seen

in Figure 5.22, a polyp shot is detected with four steps as follows:

• Step 1: Let Ai be a polyp candidate frame i and Aj be its left adjacent frame

(j = i − 1). The registered adjacent frame Aj is generated using the mutual
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information based image registration, and make two edge sets (EAi
and EAj

) within

an ellipse.

• Step 2: Measure a distance (Dist) between EAi
and EAj

. If Dist(EAi
, EAj

) < THη,

set i = i − 1 to replace Ai with Aj, and set j = j − 1 to select the left adjacent

frame of Aj for new Aj. Using the new assigned Ai and Aj, repeat Step 1. If

Dist(EAi
, EAj

) ≥ THη, the left-side boundary of a polyp shot is declared and move

to Step 3.

• Step 3: Repeat the same procedure in Step 1 and Step 2 to detect the right-side

boundary of a polyp shot with the different adjacent frame (i.e. Aj, (j = i + 1)).

• Step 4: Count the number of polyp candidate frames in a shot. If the number of

the polyp candidate frames is larger than a certain threshold (THτ ), the shot is

declared as a polyp shot.

Polyp Shot


Polyp Candidate Frames


Figure 5.22. Process of Polyp Shot Detection.

5.5 Experimental Result

In this section, we assess the effectiveness of the proposed polyp detection technique.

There are several threshold values in the marker selection, filtering by edge distance and
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polyp shot detection. First, we show how to select the proper threshold values. After

than, we evaluate the polyp detection algorithm with three colonoscopy videos.

5.5.1 Evaluation of Marker Selection

Our polyp detection algorithm uses the results of the region segmentation based

on the watershed algorithm. The quality of the watershed algorithm is directly related

with the number of markers. Only one marker should be selected a polyp. We propose

the marker selection technique in Section 5.2.1.1 and there are two thresholds: threshold

for the strong edge construction (THeg) and threshold for the searching distance (THr).

We tested the marker selection technique using 400 polyps which is randomly selected.

Table 5.1 shows the experimental results of our marker selection technique with different

(THeg) values. The first column (THeg) represents the threshold to construct the strong

edge map (B), and the second column shows the number of correctly selected polyp

markers (i.e. a polyp has only one marker). The correct ratio is obtained by the number

of correctly selected polyp markers divided by the total number of polyps (i.e. 400

polyps). This experiment is performed when the searching distance is 15 (THr = 15).

Table 5.1 shows that we can select polyp markers correctly with very high accuracy (over

95%) when we use THeg = 1.1.

Table 5.2 shows the experimental results of our marker selection technique with dif-

ferent searching distance (THr) values. The first column (THr) represents the threshold

of the searching distance, and the second column shows the number of correctly selected

polyp markers (i.e. a polyp has only one marker). The correct ratio is obtained by the

number of correctly selected polyp markers divided by the total number of polyps (i.e.

400 polyps). This experiment is performed when THeg = 1.1, and Table 5.1 shows that

most of polyp markers can be correctly selected with THr = 15.
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Table 5.1. Result of Polyp Maker Selection with Different THeg

THeg # of Correct Polyp Marker Correct Ratio
0.1 97 0.242
0.2 132 0.330
0.3 155 0.388
0.4 192 0.482
0.5 225 0.563
0.6 292 0.731
0.7 310 0.776
0.8 347 0.868
0.9 382 0.955
1.0 382 0.957
1.1 383 0.958
1.2 354 0.887
1.3 322 0.807
1.4 314 0.786
1.5 299 0.749

5.5.2 Evaluation of Filtering by Edge Distance

There are two thresholds related with the edge distance: THζ of Condition 3 and

THξ of Condition 4 in Section 5.3.4. In this section, we shows how to select these two

thresholds. For this experiment, we extract the entire frames of a colonoscopy video with

15 frames-per-second rate. The duration of the colonoscopy video is 5 minutes so we have

8,621 frames which consists of 815 polyp frames and 7,806 normal frames. The polyp

Table 5.2. Result of Polyp Maker Selection with Different THr

THr # of Correct Marker Frames Correct Ratio
5 279 0.698
10 333 0.833
15 383 0.958
20 379 0.949
25 340 0.850
30 323 0.808
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frame represents a frame containing polyps, and the normal frame represents a frame in

which no polyp is included. Table 5.3 shows the detail of our data set.

Table 5.3. Test Set

Class of Frame # of Frame Frame Size (Pixel)
Polyp Frames 815 195x187

Normal Frames 7806 195x187

Figure 5.23 shows that the four performance metrics of the polyp detection based

on THζ and THξ, in which the x-axis represents the threshold values and the y-axis

represents the values from 0 to 1. Figure 5.23 (a) shows the performance metrics of the

polyp detection when only THζ is used regarding different threshold values, and it shows

the gradual increase in the sensitivity and the steep decrease in three other metrics after

THζ = 7. Figure 5.23 (b) shows the performance metrics of the polyp detection when

only THξ is used regarding different threshold values, and it shows the gradual increase

in the sensitivity and the steep decrease in three other metrics after THξ = 4.
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Figure 5.23. (a) Performance Metrics based on Different THζ , (b) Performance Metrics
based on Different THξ.
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By evaluating filtering by edge distance with several combinations of THζ and

THξ, we can obtain the best result (i.e. highest accuracy) when THζ = 6 and THξ = 3.

Figure 5.24 shows the four performance metrics of filtering by edge distance when we use

THζ = 6 and THξ = 3.
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Figure 5.24. Performance Metrics with THζ and THξ.

5.5.3 Evaluation of Polyp Shot Distance

For the polyp shot detection in Section 5.4, we use Dist which mainly affects the

quality of the polyp shot detection. In this section, we shows how to select the threshold

of Dist using the same data set of the previous section (Table 5.3).

Table 5.4 shows the four performance metrics of the polyp detection based on

different Dist. We can obtain the highest accuracy when Dist = 250.

5.5.4 Evaluation of Polyp Detection

For this experiment, we extract the three colonoscopy video with 15 frames-per-

second rate. We have total 85,520 frames which consists of 6,748 polyp frames and 78,772
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Table 5.4. Performance Metrics of Polyp Shot Detection with Different Dist

Dist Precision Senstivity Specificity Accuracy
50 0.774 0.787 0.976 0.958
100 0.771 0.811 0.974 0.959
150 0.776 0.856 0.974 0.963
200 0.766 0.919 0.970 0.965
250 0.764 0.941 0.969 0.967
300 0.664 0.954 0.949 0.950
350 0.474 0.961 0.888 0.895
400 0.388 0.971 0.840 0.853
450 0.326 0.979 0.789 0.807
500 0.260 0.985 0.707 0.734

normal frames. The polyp frame represents a frame containing polyps, and the normal

frame represents a frame in which no polyp is included. Table 5.5 shows the detail of our

data set.

Table 5.5. Test Set

Video ID # of Polyp Frames # of Normal Frames Total # of Frames
10 3366 22331 25697
102 1186 19731 20917
114 2196 36710 38906

Total 6748 78772 85520

Table 5.6 shows the experimental results of our polyp detection technique. The

performance metrics in Row ”Without Shot” have been obtained by only our polyp

candidate selection technique in Section 5.3, and the performance metrics in Row “With

Shot” have been obtained by our polyp candidate selection technique followed by our

polyp shot detection in Section 5.4. The performance metrics using the texture-based

polyp detection method proposed in [16] are presented in Row “Texture” for comparison.
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For the texture-based polyp detection method, we extract Color Covariance features using

the 32x32 window size. We use Support Vector machine method in WEKA [42] for the

classification.

Even though the precision, specificity and accuracy of “Without Shot” is similar

to those of “With Shot”, the sensitivity (recall) of “With Shot”(84%) is much higher

than the sensitivity of “Without Shot”(74%) because the polyp shot detection method

in Section 5.4 can find the missed polyp frames by comparing the initial polyp candidate

frames to the adjacent frames. Table 5.6 shows that our proposed technique outperforms

the texture-based method.

Table 5.6. Performance Metrics of Polyp Detection

Without Shot


With Shot


Texture


Precision
 Sensitivity
 Specificity
 Accuracy


010


0.671
 0.720
 0.975
 0.958


0.685
 0.803
 0.974
 0.962


0.210
 0.732
 0.807
 0.802


Without Shot


With Shot


Texture


102


0.600
 0.835
 0.975
 0.969


0.601
 0.908
 0.973
 0.970


0.210
 0.747
 0.875
 0.870


Without Shot


With Shot


Texture


114


0.630
 0.692
 0.984
 0.973


0.645
 0.825
 0.982
 0.976


0.719
 0.868
 0.863


Without Shot


With Shot


Texture


Ave


0.634
 0.749
 0.978
 0.967


0.643
 0.845
 0.976
 0.969


0.199
 0.732
 0.850
 0.845


0.176


Table 5.7 shows the number of polyp shots, the number of correctly-detected polyp

shots, the number of falsely-detected polyp shots, and the number of missed polyp shots.

Falsely-detected polyp shots represents the shots which do not have any actual polyp but
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detected as having polyps by our algorithm. Missed polyp shots are the actual polyp

shots but not detected. Among 93 polyp shots, 13 shots are missed and 27 incorrect

shots are detected.

Table 5.7. Result of Polyp Shot Detection

ID Polyp Shots Correctly-detected Falsely-detected Missed
10 35 40 4 9
102 21 23 3 5
114 37 44 6 13

Total 93 107 13 27

We present some examples of polyps which are detected by our algorithm in Fig-

ure 5.25. The images at the top are the original polyp images, the images in the middle

are the binary edge maps, and the images at the bottom are the detected polyp regions.

Figure 5.25. Top: Original Polyp Image, Middle: Binary Edge Map, and Bottom: De-
tected Polyp.



CHAPTER 6

MULTI-LEVEL ENDOSCOPY VIDEO SEGMENTATION

The problem of segmenting visual data into smaller chunks is a basic problem

in multimedia analysis, and its solution helps in problems such as video indexing and

retrieval. Early video database systems segment video into shots, and extract key frames

from each shot to represent it. Such systems have been criticized for not conveying

much semantics because they only employ low-level image features to model and index

video data, which may cause semantically unrelated data to be close only because they

may be similar in terms of their low-level features. More recent approaches construct

scene, higher-level abstractions than shots, by grouping a certain number of adjacent

shots based on the detected shot pattern. However, these scene segmentation techniques

are not suitable for segmenting endoscopy video because endoscopy videos are usually

generated by a single camera operation without shot, which makes it difficult to manage

and analyze them. In this dissertation, we propose a novel algorithm of multi-level

segmentation for endoscopy video, which represents the semantic structure of medical

video: Video, Phase, Piece, and Objective shot as depicted in Figure 6.1.
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Figure 6.1. Multi-level Segmentation for Endoscopy Video .
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Each level of endoscopy video segmentation can be defined as follows:

• Phase: An endoscopic procedure consists of two phases: an insertion phase and a

withdrawal phase. During the insertion phase, a flexible endoscope (a flexible tube

with a tiny video camera at the tip) is advanced into the most proximal part of the

colon or the terminal ileum. In the withdrawal phase, the endoscope is gradually

withdrawn. The purpose of the insertion phase is to reach the cecum or the terminal

ileum. Careful mucosa inspection and diagnostic or therapeutic interventions are

performed in the withdrawal phase.

• Piece: Current endoscopes are equipped with a single, wide-angle lens, and do not

have any camera operation function such as zoom-in, zoom-out and auto focusing.

Because of these limitations, a significant number of out-of-focus frames (i.e. non-

informative frame) are included. By removing non-informative frames, a phase can

be decomposed into a number of pieces.

• Objective Shot: A piece can be decomposed into several kinds of shots based on

human perception understanding the video contents such as endoscope movement

and important objects (i.e. lumen and polyp). Objective shots are constructed by

considering the spatio-temporal relationship within a video.

In this chaper, we propose the phase segmentation and the motion shot segmen-

tation technique based on the camera motion estimation as follows. We first detect and

discard non-informative frames from the videos, which is presented in Chapter 3. Second,

we estimate the camera motions to find a boundary between insertion and withdrawal

phases. The insertion phase does not always consist of continuous forward camera mo-

tions. The withdrawal phase does not always consist of continuous backward camera

motions since the endoscopist constantly moves a camera back and forth to obtain op-

timal views to inspect the interesting regions such as polyps, cancers, terminal ileum,

crowfoot with appendix, ileo-cecal valve, etc. Hence, either phase has an arbitrary num-
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ber and combination of forward and backward camera motions while the dominant cam-

era motions of insertion and withdrawal phases are forward and backward, respectively.

Third, we segment a colonoscopy video based on the camera motions such as forward and

backward, which are called oral direction and anal direction respectively as described in

Figure 6.2. We define a camera motion shot as a sequence of consecutive frames with

a single direction of camera motion. A camera motion shot can be either an oral shot

which represents the camera motion from the anus to the terminal ileum (forward camera

motion) or an anal shot which represents the camera motion from terminal ileum to anus

(backward camera motion). By accumulating the values of camera motions in the oral

and anal shots in an entire video, and finding a peak value, we can locate the end of

insertion phase.

Insertion Phase
 Withdrawal Phase


Anal Direction

Oral Direction


Non-Informative Frames


Figure 6.2. Camera Motions in a Colonoscopy Video.
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6.1 Camera Motion Estimation

In this section, we present the camera motions (especially, backward camera move-

ment and forward camera movement) based on the affine model in compressed MPEG

videos since the provided colonoscopy videos are in MPEG format. After motion vectors

are extracted and their outliers are filtered, the camera motions are estimated using the

affine model.

6.1.1 Motion Vector Extraction

The motion vectors are extracted directly from the compressed MPEG stream. In

MPEG, there are three types of frames: I-frame, P-frame and B-frame. The I-frames are

intra coded (i.e. they are encoded without any reference to other frames). The P-frames

are encoded based on forward prediction from the previous I-frame or P-frame, and the

B-frames are encoded both forward and backward predictions from the previous/next

I-frame or P-frame. P-frames and B-frames are referred to as inter coded frames. Only

the motion vectors from P-frames are processed in our approach for two reasons. First,

usually every third and fifth frame in our MPEG videos is a P-frame, and thus, the

temporal resolution is sufficient for our case. Second, both the prediction direction and

the temporal distance of motion vectors in B-frames do not exhibit useful patterns for our

purposes. Each P-frame consists of a number of macroblocks as shown in Figure 6.3 and

each macroblock is associated with a motion vector (mv). The motion vector (mv) which

represents the displacement of macroblock between two consecutive frames is extracted

from a pair of consecutive frames.These motion vectors are already present in the video

because the MPEG videos are encoded using these motion vectors so we need to extract

this motion vector for all the macroblocks in the frames. This can save a significant

computation.
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N

M

Figure 6.3. A Frame and its Macroblocks.

6.1.2 Motion Vector Filtering

To deal with motion vectors that may not be relevant, various outlier removal

algorithms have been proposed. One of them is a heuristic method [63], but it is more

useful for special cases. A smoothing filter has been used in [64] to handle the general

case, but erroneous outliers remain in the motion vector field. We apply a more reliable

method presented in [65] on every macroblock to detect the outlier motion vectors. This

method consists of two main steps named smooth change and neighborhood. A motion

vector (mv) is declared as an outlier if both the steps declare it as an outlier (see the

examples in Figure 6.4). All detected outliers motion vectors are then removed. The two

steps for outlier detection are explained as follows.

• Smooth change: The central mv is compared to each average of four pairs of op-

posite neighbors. If the distance between the average mv of each pair and the

central mv is less than a certain threshold, it is considered as a supporting pair.

In Figure 6.4 (a), pairs 1 and 3 are supporting pairs so the number of supporting

pairs is 2. If the number of supporting pairs is below a threshold, the central mv
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is declared as an outlier. For our experiments, we use a value 3 for the threshold

of supporting pairs.

• Neighborhood: A neighborhood motion vector supports the central mv if it lies

within a tolerance angle (see Figure 6.4 (b)). If the number of supporting vec-

tors is below a threshold, then the central mv is declared as an outlier. For our

experiments, we use a value 4 for the threshold of supporting vectors.

(1)


(1)


(2)
 (3)


(4)

(4)


(3)
 (2)


(b)
(a)


Figure 6.4. Patterns for Motion Vectors Filtering: (a) Smooth Change and (b) Neigh-
borhood.

6.1.3 Camera Motion Estimation

In this section, we discuss the camera motion estimation in compressed MPEG

video. A pattern-based approach [66] estimates camera motions based on the analysis of

motion vector fields by matching motion vector fields with predefined models in Hough

space. Different camera motions will be recognized by comparing the computed results

with the prior known patterns. However, such predefined pattern-based approaches are

noise sensitive and computationally intensive. In addition, they do not estimate the

magnitudes of camera motions. More robust camera motion estimation methods based
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on mathematical models such as affine flow, planar surface flow, general optical flow, etc.,

have been presented [67, 68, 69]. The affine model is known to be more resilient to noise,

sparse motion vector fields, and representing all basic types of camera motions. As seen

in Figure 6.5, seven camera motions can be defined as follows.

Tracking : translation along X axis;

Booming : translation along Y axis;

Dolling : translation along Z axis;

Tilting : rotation along X axis;

Panning : rotation along Y axis;

Rolling : rotation along Z axis;

Zooming : change of the focal length (f);

All seven camera motions can be expressed in the affine model as follows.



u

v


 =




azoom
1 broll

1

−broll
2 azoom
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



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x

y


 +



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
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+
1

z





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adolly
1 0

0 adolly
2







x

y


 +




ctrack

dboom





 (6.1)

where (u, v) is the motion vector of a macroblock located at position (x, y) of each frame,

z is the depth of the real world, azoom
1 , broll

1 , azoom
2 , broll

2 , cpan, dtilt, adolly
1 , adolly

2 , ctrack and

dboom are scalar coefficients concerned with camera motions. Since the endoscopes do not

have zoom-in and zoom-out functions, azoom
1 =0 and azoom

2 =0. So Equation (1) can be

rewritten as follows.


u

v


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

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1

z
broll
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2
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Figure 6.5. 3D Camera Motion Model.

Let

a1 = cpan +
ctrack

z
, a2 =

adolly
1

z
, a3 = broll

1

a4 = dtilt +
dboom

z
, a5 = −broll

2 , a6 =
adolly

2

z
.

Equation (2) can then be rewritten as follows.




u

v


 =




a2 a3

a5 a6







x

y


 +




a1

a4


 (6.3)

Given the motion vectors, we calculate the parameter values {a1, a2, a3, a4, a5, a6}
using the Least Square Fitting method. Let û and v̂ be the estimated motion vectors,
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then the distance between the estimated motion vector (û, v̂) and the extracted motion

vector (u, v) is

Dist =
∑

x

∑
y

[(û− u)2 + (v̂ − v)2]

=
∑

x

∑
y

[(û− (a1 + a2x + a3y))2 + (v̂ − (a4 + a5x + a6y))2]

The parameter values are obtained when Dist is minimized and the condition for Dist

to be minimized is the first derivative of Dist to 0 such as

∂Dist

∂a1

= 0,
∂Dist

∂a2

= 0,
∂Dist

∂a3

= 0,
∂Dist

∂a4

= 0,
∂Dist

∂a5

= 0,
∂Dist

∂a6

= 0

By solving the above equations, we can get the parameter values as follows.
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Even though the parameter values {a1, a2, a3, a4, a5, a6} are related with camera

motions, we can obtain more reliable camera motions such as Dolling Camera Motion

(DCM), Rolling Camera Motion (RCM), Horizontal Camera Motion (HCM=Panning+

Tracking), and Vertical Camera Motion (V CM=Tilting+Booming) as follows.

DCM =
1

2
(a2 + a6), HCM = a1, RCM =

1

2
(a3 − a5), V CM = a4
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Among the four camera motions, the dolling camera motion (DCM) will mainly be exam-

ined because the dolling camera motion is directly related to the forward and backward

camera movement. The positive DCM value means forward movement and the negative

DCM value means backward movement.

6.2 Phase and Motion Shot Segmentation

Using the dolling camera motion (DCM), we can easily segment a colonoscopy

video into a number of shots, each of which consists of the frames with the same camera

motion (oral shot or anal shot). However, the phase segmentation needs more steps

because all frames in the insertion phase are not oral direction frames, and all frames

in the withdrawal phase are not anal direction frames. Even though, all frames do not

have the same directional camera movements in each phase, the insertion phase consists

of a large number of oral shots (oral direction frames) and a small number of anal shots

(anal direction frames), and the withdrawal phase consists of a large number of anal shots

(anal direction frames) and a small number of oral shots (oral direction frames). Using

these characteristics of colonoscopy videos, we propose the following video segmentation

method.

1. Non-informative frame filtration step removes non-informative frames.

2. Camera motion estimation step calculates four camera motions (Dolling Cam-

era Motion (DCM), Rolling Camera Motion (RCM), Horizontal Camera Motion

(HCM), and Vertical Camera Motion (V CM)) for the informative frames.

3. Unreliable DCM value filtration step filters out unreliable DCM values as

follows.

• If there are few motion vectors (mv) between two consecutive frames, an

abrupt change exists between them and the estimated camera motions are not

correct. We remove this type of errors by assigning DCM = 0 if the number



82

of motion vectors is less than a certain threshold value (mv < THη). In our

experiments, we use a value 10 for THη.

• The DCM tends to have an incorrect value when other camera motions such

as Horizontal Camera Motion (HCM) or Vertical Camera Motion (V CM)

have bigger values compared with DCM . To reduce this type of errors, we

assign DCM = 0 if the ratio of the magnitudes of HCM and V CM to DCM

(
√

HCM2+V CM2

DCM
) is larger than a certain threshold (THζ). In our experiments,

we use a value 1500 for THζ .

• Temporal information is utilized to filter out incorrect DCMs. It is highly

likely that any oral or anal shots have more than two frames (we are using

30 frames/second rate videos). Therefore, we assign DCM = 0 if the number

of consecutive frames with the same direction is less than a certain threshold

(THδ). In our experiments, we use a value 2 for THδ.

4. Shot boundary detection step detects shot boundaries of a colonoscopy video

based on camera movements. As seen in Figure 6.6 (a), a colonoscopy video can

be decomposed into a number of pieces (P1, P2, · · · , Pi, · · · ) by the non-informative

frame filtration. Each piece consists of a number of frames with three different

kinds of DCM values: frames with positive DCM values, frames with negative

DCM values and frames with DCM=0. Using the DCM values of frames in a

piece (Pi), we detect shot boundaries as follows.

(a) Let Pi have n numbers of frames (F i
1, F

i
2, · · · , F i

n) and let the DCM values of

these frames be DCM i
1,

DCM i
2, · · · , DCM i

n. We consider two frames at a time: F i
p and F i

q . Initially,

we set p=1 and q=2.
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(b) Check if the DCM value of F i
p is zero (DCM i

p = 0). If DCM i
p = 0, increment

p and q by 1 (p = p + 1 and q = q + 1) until the DCM value of F i
p is not zero

(i.e., forward movement or backward movement exists.)

(c) Compare the DCM value of F i
p (DCM i

p) with the DCM value of F i
q (DCM i

q)

until F i
q is the last frame of Pi (q = n) as follows.

• If DCM i
p×DCM i

q > 0, increment p and q by 1 (p = p+1 and q = q +1).

• If DCM i
q = 0, increase q by 1 (q = q + 1).

• If DCM i
p × DCM i

q < 0, a shot boundary is detected between F i
q−1 and

F i
q . Two frames (F i

p and F i
q) are reset such as p = q and q = q + 1.

Figure 6.6 (b) shows an example of the detected shot boundaries using the

above process.

Non-Informative Frames

P2P1 Pi...... ... ... ...

0 0 - - - - 0 - - - 0+++ - - - 00 - - - - - +++0

(a)

(b)

DCM value is zero0: +: -:Positive DCM value Negative DCM value

Detected Shot Boundaries

Figure 6.6. Example of Shot Boundary Detection.
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5. Phase boundary detection step detects the boundary between the insertion

phase and the withdrawal phase using the accumulated DCM . When we add up

all DCM values, the accumulated DCM value will increase until the end of the

insertion phase because most of the frames in the insertion phase have forward

movements (i.e., positive DCM values). However, the accumulated DCM value

will decrease during the withdrawal phase because most of the frames in the with-

drawal phase have the backward movement (i.e., negative DCM values). For this

reason, the boundary frame between the insertion phase and the withdrawal phase

has the highest accumulated DCM values.

Figure 6.7 shows an example of video segmentation obtained using our shot and

phase segmentation method.

Colonoscopy Video

Non-Informative Frame Filtration

Video Segmentation

Insertion Phase Withdrawal Phase

Oral Shot Anal Shot Non-Informative Frames

Figure 6.7. Example of Video Segmentation.
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6.3 Experimental Results

In this section, we report our experimental results using videos we produced in

a control environment and real colonoscopy videos. The produced videos are used for

evaluation of the performance of the camera motion estimation since the ground truth

of camera motions in these videos are easy to determine. The data set of colonoscopy

videos is used to evaluate the quality metrics.

6.3.1 Evaluation of Camera Motion Estimation

The effectiveness of our video segmentation and related quality metrics depends on

the accuracy of the estimated camera motions. To evaluate the camera motion estimation

technique, we produced six videos tracing the same distance of a long corridor without

zoom-in and zoom-out camera motions, which resemble the contents of colonoscopy video.

Each of them has different content(s) based on camera motion, and the details are shown

in Table 6.1.

Table 6.1. Test Set I: Produced Videos

ID Contents # of Frames
Video1 Fast Forward 275
Video2 Slow Forward 617
Video3 Fast Backward 265
Video4 Slow Backward 548
Video5 Forward-Backward-Forward 833
Video6 Backward-Forward-Backward 788

The column “ID” in Table 6.1 represents the unique ID for each video, and the

column “Contents” represents the content of each video. For example, “Fast Forward”

means that the video was recorded with only forward camera movement with relatively

high speed, and “Slow Backward” means that the video was recorded with only back-
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ward camera movement with relatively low speed. “Forward-Backward-Forward” and

“Backward-Forward-Backward” indicate the order of camera movements in each video.

Figure 6.8 shows some examples of Video1. We note that 30 frames are extracted per

second in our experiments.

 


#1

 


#98

 


#203

 


#275


...
 ...
 ...


Figure 6.8. Examples of Fast Forward Camera Movement.

Table 6.2 shows the error rate of the detected camera motion. The error rate (ER)

can be estimated by the number of frames in which their motions are incorrectly detected

divided by the total number of frames as follows.

ER =
Number of Incorrect Motion Frames

Total Frames
∗ 100(%)

Table 6.2. Error Rate of Camera Motion Detection

ID ERNOR EROR
Video1 5.80 1.45
Video2 10.46 0.65
Video3 18.46 1.54
Video4 14.60 0.73
Video5 8.65 1.44
Video6 9.64 1.02
Total 10.74 1.09
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In Table 6.2, the label “NOR” means no outlier removal whereas “OR” means

outlier removal. The column “ER-NOR” in Table 6.2 represents the error rate of the

detected camera motions without outlier removal. The column “ER-OR” represents the

error rate of the detected camera motions with outlier removal. The results show that

our outlier removal method significantly increases the performance of the camera motion

detection by reducing the average error rate (ER) from 10.74% to 1.09%.

We can also verify the accuracy of the detected camera motion by accumulating the

Dolling Camera Motion (DCM) values. Figure 6.9 shows the plot of the accumulated

DCM values of six different videos. All six videos were recorded with the same physical

distance of moving so the last frames of six videos have very similar magnitude DCM

values around 1.7 regardless of the speed of the movement in each video. Also, we can

detect the boundaries between the forward camera movement, and the backward camera

movement by calculating the local maxima of the accumulated DCM values, and the

boundaries between the backward camera movement and the forward camera movement

by calculating the local minima, respectively. The arrows in the two images at the

bottom of Figure 6.9 indicate the local maxima and local minima where the direction of

the camera movements changed.

6.3.2 Evaluation of Phase and Motion Shot Segmentation

In this section, we evaluate the effectiveness of our quality metrics with real colonoscopy

videos. The total videos in our test set last about 2 hours and 18 minutes, and consist

of 249,759 frames (30 frames/sec.). The details are shown in Table 6.3. The column

“ID” represents the unique id number for each colonoscopy video, and the column “Total

Frames” represents the total number of frames for each video.

First, we report the effectiveness of our non-informative frame filtration and the

experiment results are presented in Table 6.4. Column “S” represents the number of ac-
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Table 6.3. Test Set II: Colonoscopy Videos

ID Duration (minute) Total Frames
100 20 36434
110 15 27659
117 18 33014
148 24 43436
170 20 35599
175 19 33883
180 22 39734

tual non-informative frames we manually determined; column “T” represents the number

of detected non-informative frames; and column “C” represents the number of correctly

detected non-informative frames. The average precision and recall are 0.953 and 0.958,

respectively.

Table 6.4. Effectiveness of Non-Informative Frame Filtration

ID S T C Precision (C
T
) Recall (C

S
)

100 23099 23392 22267 0.952 0.964
110 12719 12542 12146 0.968 0.955
117 18587 18262 17562 0.962 0.945
148 23063 23166 22091 0.953 0.957
170 18894 19167 18183 0.948 0.962
175 15612 15885 15110 0.951 0.967
180 17834 18040 17024 0.943 0.954
Ave - - - 0.953 0.958

Table 6.5 shows the performance of the shot segmentation technique based on cam-

era motions. Column “S” represents the number of actual shot boundaries we manually

determined, column “T” represents the number of detected shot boundaries and column

“C” represents the number of correctly detected shot boundaries. Table 6.5 shows the

precisions and recalls for our shot segmentation techniques, which are very promising.



89

Table 6.5. Effectiveness of Shot Detection

ID S T C Precision(C
T
) Recall(C

S
)

100 536 574 461 0.803 0.860
110 535 558 470 0.842 0.878
117 434 444 384 0.864 0.884
148 427 487 383 0.786 0.897
170 559 609 501 0.823 0.896
175 395 443 332 0.749 0.841
180 517 557 441 0.792 0.853

Average - - - 0.809 0.873

Using our video segmentation technique, we can detect the boundary between the

end of the insertion phase and the beginning of the withdrawal phase, which in the

vast majority of cases is characterized by the presence of terminal ileum, crowfoot with

appendix or ileo-cecal valve. However, it is not easy to verify whether the detected frame

is correct or not without the overview around the frame with highest accumulated DCM

value. For this reason, we evaluate the phase detection algorithm using the following

criterion:

• Criterion of Phase Detection: the phase detection correctly detect the phase bound-

ary if there is the end of a colon (i.e. terminal ileum, crowfoot with appendix or

ileo-cecal valve) 30 seconds before and after the detected boundary frame.

We tested the phase segmentation algorithm based on the above criterion using seven

colonoscopy videos in Table 6.3, and our phase segmentation algorithm have satisfied the

criterion with seven colonoscopy videos. Figure 6.10 shows the accumulated DCM plots

of three test videos depicting how our phase segmentation technique correctly finds the

boundary between the end of insertion phase and the start of the withdrawal phase uti-

lizing the accumulated DCM . Three colon images are presented below the accumulated

DCM plot. The first image is the frame with the highest accumulated DCM value, and
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the second and third images are images of frames obtained 1000 or 2000 frames after the

first frame, respectively. The frame with the highest accumulated DCM value shows the

very proximal of the colon for each colonoscopy video.
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Figure 6.9. Effectiveness of Accumulated DCM .
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Figure 6.10. Phase Segmentation of Colonoscopy Videos.



CHAPTER 7

MEASUREMENT OF ENDOSCOPY QUALITY

Although colonoscopy has become the preferred screening modality for prevention

of colorectal cancer, recent data suggest that there is a significant miss-rate for the detec-

tion of even large polyps and cancers [5, 6, 7]. The miss-rate varies among endoscopists

and it may be related to the experience of the endoscopist and the location of the lesion

in the colon. Even though the demand for quality control in colonoscopic procedures

has been gaining force, there is no study related to this have been done thus far. In

general, the quality of a colonoscopic procedure can be evaluated in terms of time of the

withdrawal phase and thoroughness of inspection of the colon mucosa. Current American

Society for Gastrointestinal Endoscopy guidelines suggest that on average the withdrawal

phase during a screening colonoscopy should last a minimum of 6-10 minutes. The main

purpose of this chapter is to develop new objective metrics from automatic analysis of a

colonoscopy video to evaluate the endoscopist’s skill and the quality of colonoscopy. Our

invention on this automatic quality measurement system has been selected by American

College of Gastroenterology (ACG) for ACG Governors Award for Excellence in Clinical

Research in 2006.

7.1 Quality Metrics

In this section, we investigate the five objective metrics to evaluate the endoscopist’s

skill and the quality of colonoscopy. The information to calculate the quality metrics are

obtained from our multi-level endoscopy video segmentation techniques as depicted in

93
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Figure 7.1. We note that the superscript of each metric represents the phase ID (i.e., O

for insertion phase and A for withdrawal phase)

Endoscopy Video


Insertion Phase


Withdrawal Phase


Video


Phase


Piece


Objective

Shot


Metric 1:


Metric 2:


Metric 3:


Metric 4:


Metric 5:


Motion Shots


Lumen Shots


Figure 7.1. Overview of Quality Measure .

• Metric 1: The purpose of the insertion phase is to reach the proximal end of the

colon. The insertion time (IT ) can be measured as follows:

IT =
NFO

Frame Extraction Rate

where NFO represents the number of frames in the insertion phase.

• Metric 2: The withdrawal time (WT ) is the duration of the withdrawal phase.

We calculate WT as follows.

WT =
NFA

Frame Extraction Rate

where NFA represents the number of frames in the withdrawal phase.

• Metric 3: Even though the duration of the withdrawal phase is long, we cannot

say that the quality of the colonoscopy is good if a colonoscopy has a lot of non-

informative frames in the withdrawal phase. By adding up the duration of only the
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informative frames in the withdrawal phase, we can obtain the clear withdrawal

time (CWT ) and the clear withdrawal ratio (CWR) computed as follows:

CWT =
NIFA

Frame Extraction Rate
, CWR =

CWT

WT

where NIFA represents the number of informative frames in the withdrawal phase.

• Metric 4: During the withdrawal phase, an endoscopist may move a camera back

and forth to examine suspicious regions. This movement may be an indicator of

quality, as the endoscopist is trying to verify that an area is indeed free of lesions on

multiple inspections. These movements can be estimated by measuring the number

of camera motion changes in the withdrawal phase (NCMC), and the ratio of the

number of camera motion changes to the clear withdrawal time (RCMC) as follows.

NCMC = NSA, RCMC =
NCMC

CWT

where NSA represents the number of oral and anal shots in the withdrawal phase.

• Metric 5: We measure the wall-lumen inspection ratio (WLIR) to see whether the

endoscopist has appropriate ratio of both close inspections and global inspections

in which the colon lumen is seen. We also measure the wall inspection fraction

(WIF ) to reveal the fraction of the clear withdrawal time spent on examining the

colon walls very closely.

WLIR =
NWVA

NLVA

WIF =
NWVA

NIFA

where NWVA represents the number of the wall view frames in the withdrawal phase

and NLVA represents the number of the lumen view frames in the withdrawal phase.
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7.2 Quality Metric Report

We calculate the five metrics for the seven videos using the information obtained

from the multi-level endoscopy video segmentation (Table 7.1). Column “NF” represents

the number of frames; column “NIF” represents the number of informative frames; and

column “NS” represents the number of shots. The superscript of each column represents

the phase ID (i.e., O for insertion phase and A for withdrawal phase).

Table 7.1. Information of Colonoscopy Videos

ID


100


110


117


148


170


175


180


23534


8771


13694


27855


25286


18583


27043


12900


18888


19320


15581


7676


15300


12691


7427


12836


11748


9130


7114


9363


8477


147


262


186


219


202


207


201


1853


4147


3467


2465


1594


2277


2219


5574


8689


8281


6665


5520


7086


6258


NF
O
 NF
A
 NIF
A
 NS
A
 NWV
A
 NLV
 A


Insertion Phase
 Withdrawal Phase


The generated quality metrics from automatic analysis of videos in Table 7.1 are

shown in Table 7.2.

• Metric 1: We compute the insertion time IT = NFO/30 because we extract 30

frames per second for our experiments. The results are summarized in the second

column of Table 7.2. The colonoscopy video 110 has a short insertion time (about 5

minutes) and colonoscopy video 148 has a long insertion time (about 15 minutes).

Many foreign substances such as stool were found during the insertion phase of

colonoscopy video 148 so it was more difficult for the endoscopist to reach the

proximal end of the colon. Therefore, it has a bigger IT value.
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• Metric 2: The withdrawal time (WT ) is computed as WT = NFA/30. Current

American Society for Gastrointestinal Endoscopy guideline suggests that on average

the withdrawal time should last a minimum of 6-10 minutes. The colonoscopy

video 170 has slightly shorter withdrawal time (i.e. 5 minutes 50 seconds) than this

guideline. The details are listed in the third column of Table 7.2.

• Metric 3: We measure the clear withdrawal time as CWT = NIFA/30 and the

ratio of the clear withdrawal time to the withdrawal time (CWR = CWT/WT ).

The colonoscopy video 170 also has shortest clear withdrawal time (i.e. 3 minutes

57 seconds) among seven colonoscopy videos. However, the colonoscopy video 170

consists of more clear frames than other videos because it has the highest ratio of

the clear withdrawal time to the entire withdrawal time (CWR=0.692). The with-

drawal time of colonoscopy video 117 is a little bit longer than that of colonoscopy

video 110, but the clear withdrawal time of colonoscopy video 110 is longer than

that of colonoscopy video 117. The details are found in the forth and fifth columns

of Table 7.2.

• Metric 4: We measure the number of the camera motion changes (NCMC = NSA)

and the ratio of the number of the camera motion changes to the clear withdrawal

time (RCMC = NCMC/CWT ). There are some regions in colonoscopy video

110 and 180 that the endoscopist apparently can not see well so the endoscopist

frequently moves a camera back and forth to examine these regions in order to

get the best possible view. Colonoscopy video 180 has bigger values of NCMC

and RCMC than the other videos so we can expect that the colonoscopy video

180 represents a colon that is different from the other two colons, and may contain

more angulations or haustrae which require more efforts in order to achieve optimal
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mucosal inspection. The details are presented in the sixth and seventh columns of

Table 7.2.

• Metric 5: We measure wall-lumen inspection ratio (WLIR = NWVA/NLVA) and

the wall inspection fraction (WIF = NWLA/NIFA). Colonoscopy video 110 has

bigger values of WLIR and WIF than the other videos so we can expect that the

colonoscopy video 110 shows more colon mucosa frames than the other videos. The

details are presented in the eighth and ninth columns of Table 7.2.

Table 7.2. Automated Quality Metrics

WT

(min:sec)


CWT

(min:sec)


CWR
 NCMC
 RCMC
 WLIR
 WIF
IT

(min:sec)


ID


100
 13:4
 7:10
 4:7
 0.576
 147
 0.594
 0.332
 0.250


110
 4:52
 10:29
 7:7
 0.680
 262
 0.612
 0.477
 0.323


117
 7:36
 10:44
 6:31
 0.608
 186
 0.475
 0.419
 0.295


148
 15:28
 8:39
 5:4
 0.586
 219
 0.422
 0.370
 0.270


170
 14:2
 5:50
 3:57
 0.692
 202
 0.577
 0.289
 0.224


175
 10:19
 8:30
 5:12
 0.612
 207
 0.406
 0.321
 0.243


180
 15:1
 7:3
 4:42
 0.668
 201
 0.686
 0.355
 0.262
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