
EVOLVING MODULAR PROGRAMS BY EXTRACTING REUSABLE

FUNCTIONS USING SIGNIFICANCE TESTING

by

ANTHONY OREN LOEPPERT

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2005



Copyright c© by ANTHONY OREN LOEPPERT 2005

All Rights Reserved



ACKNOWLEDGEMENTS

I’d like to thank my parents and wife for encouraging and supporting me to start

and complete my thesis. My advisor, Dr. Huber, of course, provided much patience and

advice during this project.

December 9, 2005

iii



ABSTRACT

EVOLVING MODULAR PROGRAMS BY EXTRACTING REUSABLE FUNCTIONS

USING SIGNIFICANCE TESTING

Publication No.

ANTHONY OREN LOEPPERT, M.S.C.S.

The University of Texas at Arlington, 2005

Supervising Professor: Manfred Huber

Genetic programming is an automatic programming method that uses biologically

inspired methods to evolve programs. Genetic programming, and evolutionary methods

in general, are useful for problem domains in which a method for constructing solutions

is either not known or infeasible, but a method for rating solutions exists. In order

to address more complex problem domains, techniques exist to extract functions (mod-

ules) automatically during a GP search. This work describes a method to identify useful

automatically extracted functions from a GP search to assist subsequent GP searches

within the same problem domain, using significance testing. Functions classified as ben-

eficial augment the programmer supplied function set and accelerate the learning rate,

by seeding the initial population of a subsequent GP search.
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CHAPTER 1

OVERVIEW AND MOTIVATION

1.1 Motivation for Automatic Programming

“Due to the rise in complexity demanded and the fact that technological

advances in hardware of the last decade have far outstripped those in software

technology, the software component of a computing system currently accounts

for more than 70% of the total cost; and this figure is on the rise. Meanwhile it

is projected that the trend in demand for ever more, and ever more complex,

systems will not (and cannot) be matched with a corresponding increase in

the number of competent personnel needed to produce them using traditional

technology (and its expected extensions). The implication is that, unless

significant break-throughs are made in the area of software technology, we

may expect a serious crisis in the next decade.”[1]

Though the work quoted above was published in 1977, the statement (specifics

regarding the estimated percentage of software cost relative to a total product cost aside

) rings true today. In fact, it’s probably more relevant now, given the proliferation of

embedded microprocessors in our environment and our increasing reliance on technology,

as compared with almost 30 years ago.

1.2 What is Automatic Programming?

Gray[2] describes automatic programming, a “holy grail”1 of computer science,

as an interface that allows easy program description which is both compilable and can

1Pessimistic readers might interpret this as “fool’s errand”.

1
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describe all possible programs. Gray indicates a good measure of “easy” as an effort

several orders of magnitude less than what is currently needed. Using Gray’s defini-

tion, one accustomed to programming in machine code could rightly call a high-level

language compiler automatic programming. However, by automatic programming, we

mean something more than straightforward abstractions that have occurred in program-

ming: flipping physical switches to machine code to assembly to the variety of high-level

languages.

Attempting to rigorously define automatic programming is approximately the same

task as defining artificial intelligence, but the word “automatic” implies a collaboration

between a computer system and human program to produce programs to produce a

design specific enough for conventional compilers, assemblers, etc. to take over and

produce a program. Merely speeding up the process of programming should not be the

only property of an automatic programming system. It should also enable the human

programmer to produce products he or she could not have produced with conventional

tools. Ultimately, the definition is a slippery one, but we have some idea of what an

automatic programming system should be.

1.3 It worked for Nature

While there are many different methods of automatic programming, genetic pro-

gramming looks toward nature for inspiration. Genetic programming applies simplified

models of biological evolution to program construction. The motivation is rather simple:

biological evolution has produced novel problem solvers, so perhaps we can successfully

employ the process in a digital environment.
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1.4 Evolving Programs

Evolving programs is challenging because the “solution” is the product of a non-

deterministic simulation governed by the complex interactions of the genetic and selection

operators guided by the supplied fitness function. The evolution process may produce

unexpected and/or disappointing results due to subtle interactions of all the pieces com-

posing a GA that cannot be anticipated prior to initiating the search process.

Another challenge for evolutionary programming is producing solutions that gener-

alize. Ideally, running solution program Prog, evolved against problem set A, on problem

set B may result in less than stellar performance, even if A and B are in the same prob-

lem domain. Evolved solutions are often specific to the environment they evolved from.

This problem, however, is not specific to evolutionary programming and is often called

over fitting.

Even if end solutions within a problem domain do not generalize, it could be ad-

vantageous to use some of the output, in the form of program fragments, of previous

evolutionary searches to aid subsequent searches within the same problem domain. This,

ideally, would speed up the evolutionary process since the search need not start from a

completely random state, instead leveraging previous related searches. Identifying these

beneficial program fragments is the focus of this thesis.

1.5 Document Overview

Chapter 2 introduces genetic algorithms and explains some of the necessary inputs

to a GA and Chapter 3 describes the application of GA to automatic programming. Then

some related work regarding beneficial function identification is discussed in Chapter 4.

Chapter 5 presents the method we propose to identify program fragments that will benefit

subsequent evolutionary searches. Chapters 6 describes the problem domain used in
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experimentation and Chapter 7 shows the results. Chapter 8 offers some closing remarks

and suggestions for future work.



CHAPTER 2

INTRODUCTION TO GENETIC ALGORITHMS

2.1 What is a genetic algorithm?

A genetic algorithm is a heuristic search mechanism that applies the principles of

biological evolution, such as survival of the fittest, towards problem solving. A genetic

algorithm maintains a set of possible solutions (individuals) to the given problem called a

population, where the initial population is typically random. A genetic algorithm search

is broken into stages called generations, where applying genetic operators to members of

the current population produce a new population. Individuals are ranked according to

a fitness value produced by running a user supplied fitness function on each individual

in the population. Individuals are sampled from the population, usually according to

some probability proportional to its fitness, to reproduce and create the next generation.

The GA typically runs until an ideal individual is found or a maximum generation is

reached.[3]

2.2 Representation

When approaching a new problem with a genetic algorithm, a decision regarding

candidate solution representation is necessary. This is simply a description of what a

solution will look like. GA representations can be binary strings or made up of a more

complex alphabet and have a fixed length. These are often referred to as chromosomes.

Each chromosome contains a number of genes coding different traits or values. Figure 2.1

is an example representation using the binary alphabet, where there are two chromosomes

for each individual with three genes on each chromosome. The decision could have been

5
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to have one chromosome with six genes instead and depending on the crossover routine,

this may or may not subtly impact the GA search. As stated before, there are many

choices of representation encoding [4] and most GA implementations have fixed length

chromosomes, though there is interest in resizing chromosome length during runtime [5].

For the GA examples in this chapter, we will use a simple binary encoding with fixed

length chromosomes. I n d i v i d u a l 1C h r o m o s o m e 1X0 0 1 Y1 0 0 Z1 1 1 C h r o m o s o m e 2A0 1 1 B1 0 1 C1 1 1
Figure 2.1. A simple layout of an individual with two chromosomes, each containing
three genes.

2.3 Operators

A genetic algorithm applies crossover and mutation operators to individuals in a

population to produce new individuals. Figures 2.2 and 2.3 show two simple crossover

operators; one and two point crossovers.

Crossover operator choice is typically governed by the particular problem domain,

or more precisely the particular representation for the specific problem, and is a dom-

inant factor in guiding a GA search. Depending on the specifics of the representation,

simple one or two point crossovers may slow down evolution by splicing two individuals

together in a way that sabotages the search. The traveling salesman problem (TSP) is

a common benchmark test for GA crossover methods and Katayama[6] explores some

of the performance numbers for a variety crossover operators applied to the TSP. While



7I n d i v i d u a l 1C h r o m o s o m e 1X0 0 1 Y 1 0 0 Z 1 1 1 C h r o m o s o m e 2A0 1 1 B 1 / 0 1 C 1 1 1 I n d i v i d u a l 2C h r o m o s o m e 1X1 0 1 Y1 1 1 Z0 1 0 C h r o m o s o m e 2A1 1 0 B0 1 0 1 C0 0 1
C r o s s o v e r

I n d i v i d u a l 3C h r o m o s o m e 1X0 0 1 Y 1 0 0 Z 1 1 1 C h r o m o s o m e 2A0 1 1 B 1 0 1 C0 0 1 I n d i v i d u a l 4C h r o m o s o m e 1X1 0 1 Y1 1 1 Z0 1 0 C h r o m o s o m e 2A1 1 0 B0 0 1 C 1 1 1
Figure 2.2. This is an example of a single point crossover of two individuals producing
two offspring. The dash in the B gene of the parents marks the crossover point.

such comparisons can be useful guides, there isn’t a universal crossover that will perform

well in all circumstances, and many of the crossover methods are specifically tailored to

graph theory. Similarly, there isn’t a universal encoding scheme that will work optimally

for all domains.

A mutation operation (see Figure 2.4), applied with some, usually small, probabil-

ity, is also integral to a GA by allowing the search to explore search space outside the

crossover-only space and also helps keep the population diverse. Novel structure discov-

ered randomly, that benefits the search by increasing the fitness of individuals containing

the mutation, will propagate through the population. Disadvantageous mutations will

disappear as the GA search progresses since it will lower the fitness of individuals that

contain it, thus lowering their chance of reproducing.



8I n d i v i d u a l 1C h r o m o s o m e 1X0 0 1 Y 1 0 0 ZI 1 1 1 C h r o m o s o m e 2A0 1 1 B 1 M 0 1 C 1 1 1 I n d i v i d u a l 2C h r o m o s o m e 1X1 0 1 Y1 1 1 ZM 0 1 0 C h r o m o s o m e 2A1 1 0 B0 O 0 1 C0 0 1
2 p t C r o s s o v e r

I n d i v i d u a l 3C h r o m o s o m e 1X0 0 1 Y 1 0 0 Z0 1 0 C h r o m o s o m e 2A1 1 0 B0 0 1 C 1 1 1 I n d i v i d u a l 4C h r o m o s o m e 1X1 0 1 Y1 1 1 Z 1 1 1 C h r o m o s o m e 2A0 1 1 B 1 0 1 C0 0 1
Figure 2.3. This is an example of a two point crossover of two individuals producing two
offspring. The dash in the Z and B genes of the parents mark the crossover points.

The crossover and mutation operators have values pc and pm associated with them,

respectively that represent the probabilities that an operation will be applied. Choos-

ing effective values for pc and pm is likely a matter of trial and error in preliminary

experimentations, but typically pc ≫ pm, where 0.75 ≤ pc ≤ 1.0 and 0.0 < pm ≤ 0.1.

2.4 Fitness Function

Genetic algorithms require a programmer supplied scoring mechanism for rating

and ranking an individual’s performance within the population. This scoring mechanism

is specific to the problem at hand and guides the GA search. It is the heuristic that the

probabilistic operations are based on.
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I n d i v i d u a l 2C h r o m o s o m e 1X0 0 1 Y1 0 0 Z1 1 1 C h r o m o s o m e 2A0 1 0 B1 0 1 C1 1 1

I n d i v i d u a l 1C h r o m o s o m e 1X0 0 1 Y1 0 0 Z1 1 1 C h r o m o s o m e 2A0 1 1 B1 0 1 C1 1 1
M u t a t e

Figure 2.4. The bold italicized bit in gene A from the top individual is randomly chosen
and flipped to create a new individual.

2.5 Selection

Choosing which individuals reproduce from the current generation’s population is

the job of the selection mechanism. A selection method choice affects a GA search in the

following way, illustrated by this extreme example. Imagine two otherwise identical GA

searches, one utilizing some fitness proportionate1 selection method and the other utiliz-

ing uniform selection2. The fitness proportionate selection method will bias subsequent

populations to resemble the best individuals, and the average fitness of the population

and the fitness of the best individual will likely converge. This represents a loss of genetic

diversity and the search stagnates, which is fine if an ideal individual is found, but oth-

erwise undesirable. Conversely, the search using uniform selection would likely maintain

a large diversity but improve little from the initial random state in terms of the best

individual’s fitness and the population’s average fitness, which is also undesirable. So

1Individuals are selected for reproduction in proportion to their fitness.
2Individuals are sampled uniformly from the population for reproduction, ignoring fitness.
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a selection method should, when applied to the given problem, should balance selective

pressure with diversity preservation. The liberal application of the mutation operator

can also reintroduce diversity.

Bäck[7] discusses the concept of takeover times, which is an attempt to quantify the

selective pressure of a selection method. Takeover times are essentially an estimation in

the number of generations it would take for an initial population to become entirely made

up of copies of an ideal individual placed in the first population. The smaller a takeover

time the more aggressive selection pressure generated by a given selection method.

Some common selection methods include the roulette wheel (a fitness proportion-

ate selection scheme) and linear rank selection. Roulette wheel assigns a probability in

proportion to an individual’s fitness value, so the larger the raw fitness value, the higher

the probability an individual will be chosen. Linear rank selection sorts the population

according to fitness but the probability an individual will be sampled from the popula-

tion is not directly related to its raw fitness value, but to a probability value mapped

to its sorted position. A fitness proportionate selection method would allow a best in-

dividual that is relatively far from the next best’s fitness to dominate the search, the

rank selection tempers premature convergence by not allowing a small number of highly

fit individuals from dominating the reproduction cycle[8]. Thus it is surprising that, in

[7], Bäck experimentally found that linear ranking had a higher selective pressure than

proportional selection, as linear ranking is designed to lower selection pressure, at least

when the fitness variance is high.

2.6 Putting all the pieces together

The first step in applying a genetic algorithm to a problem starts with choosing

the candidate solution representation as well as designing a fitness function that will rate

candidate solutions. Once the representation is chosen the genetic operators must be
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designed, taking care that the crossover routine does not destroy representation syntax

when combining parents to form offspring. The GA randomly initializes by creating a

random population then begins the cycle of applying the genetic operators to produce

new individuals from existing ones. Figure 2.5 illustrates a simple GA.

Pop← randomIndividuals(popSize) {Initialize the GA search}
setF itness(Pop) {Run the fitness function on each individual}
while Popbest not ideal and gen < maxGen do

gen← gen + 1
NextPop← {}
numOffspring ← 0
while numOffspring < popSize do

parent1 ← selection(Pop)
parent2 ← selection(Pop)
if randFrom0To1() <= pc then

offspring ← crossover(parent1, parent2)
else

offspring1 ← parent1
offspring2 ← parent2

end if
if randFrom0To1() <= pm then

offspring1 ← mutate(offspring1)
end if
if randFrom0To1() <= pm then

offspring2 ← mutate(offspring2)
end if
NextPop← NextPop ∪ offspring

numOffspring← numOffspring + 2
end while
Pop← NextPop

setF itness(Pop)
end while

Figure 2.5. A Simple GA.



CHAPTER 3

OVERVIEW OF GENETIC PROGRAMMING

Genetic programming (GP)[9] is a type of genetic algorithm. It’s the application of

GA to the field of automatic programming. Figure 3.1 shows the flow of a simple GP algo-

rithm. The main differentiating feature of genetic programming versus a standard genetic

algorithm is the solution representation[10]. In GP, the individuals must be executed,

literally, as the individuals are programs. In a standard GA, individuals are typically

parameters to a program. GP representation often a tree structure corresponding to a

parse tree, rather than a bit string.

3.1 Primitive Functions

GP needs a set of terminal (no parameters) and non-terminal (with parameters)

functions with which to construct individuals. These are programmer-supplied functions

that will bound the limits of the GP search. Individuals will never be able to perform

functionality beyond the capabilities of the primitive function set, so including many

different primitive functions is beneficial. On the other hand, including functions not

necessary to solve the problem at hand can retard a GP search since the search space of

possible programs becomes larger. In practice, it is something of an art, or much trial

and error, to choose proper function sets for efficient GP searches of particular problem

domains.

12
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Y e s

Figure 3.1. A simple GP algorithm..

3.2 Operators

Genetic operators must correspond to the encoding choice made, thus crossover

and mutation for GP are tree operations (unless a more elaborate GP representation

is chosen) rather than string operations for GA. Figures 3.2 and 3.3 show examples of

crossover and mutation operations on individuals of the Lights Off problem domain (see

section 6).

3.3 Scalability

Standard GP doesn’t provide any facilities for encapsulating programs structures.

The hand written equivalent would be to write a large program that consists only of

a main function. Human programmers quickly discover the usefulness of creating and
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Figure 3.2. An example of a simple one point crossover between two parents resulting in
two offspring..

calling functions if the goal is writing a program of non-trivial complexity. If GP is to

be able to address complex problems, it too needs a method to create modules using

the primitive function set. There are two common methods for evolving hierarchical

programs.
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Figure 3.3. An example of a GP mutation..

3.3.1 Automatically Defined Functions

Evolving modular programs seems to be a key ingredient to successfully tackling

problems of high complexity with evolutionary programming techniques. Automatically

Defined Functions (ADFs) [11][12] is one method of evolving modular solutions to prob-

lems. ADFs are functions that can be called from other ADFs or the main function of

an individual. The number of ADFs, their prototypes, and sets of functions visible to

each ADF are decided prior to the GP search by the programmer though the function

body of each ADF is evolved. Each individual within the population has the same ADFs

visible to it, though each can have different bodies for each ADF. Figure 3.4 shows an

example of an individual with two ADFs. This method allows knowledge to be supplied

by the programmer via constraints on the structure individuals, thus constraining the

GP search space. A potential draw back is the program must be partially designed by a

programmer. Presumably the programmer doesn’t know how to implement the solution

to the problem since he is using an evolutionary method to discover the solution. Poorly



16

chosen ADFs may inadvertently introduce constraints that impede the GP search rather

than aid it. I n d i v i d u a lA D F 1 A D F 2 M a i nB o d y o fA D F 1 I FB o d y o fA D F 2A N D C o n d A D F 1A D F 2A r g 1 A r g 2 T h e n E l s eA r g 1 A r g 1 A r g 2
Figure 3.4. This shows an individual consisting of two ADFs and the main program. The
function sets and argument lists for each ADF are declared globally, but the body of an
ADF is local to an individual, and evolves along with the main program..

3.3.2 Module Acquisition

Another method for evolving modular solutions, called GLiB[13] or Module Ac-

quisition1, simply randomly extracts functions from the population. A random point in

an individual is selected as the root of the new module and all program structure below

this point, up to some maximum depth, is encapsulated2 within the module. If there

are branches beyond the maximum depth of the module, they become parameters to the

module. This has the advantage that no knowledge is needed regarding end program

structure, as is implicitly required by ADFs. This can be especially useful if the pro-

1This is also referred to as encapsulation.
2This is also referred to as a compression operation.
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grammer his no intuitive sense of how to construct the ADF constraints for the problem

domain at hand. See Figure 3.5 for an example.

I fM o v e P l a yO r
N EC o r n e r

C o n dI s O nM o v e
T h e n E l s e

S o u t h
E a s tA r g 1L o cD i r L o c I sV a l i dA r g 2N WC o r n e rL o c D i r P l a y

S WC o r n e rM o v eW e s t
L o c L o cD i r L o c

L o c
S WC o r n e rL o c

(a)

N EC o r n e rM o v eS o u t h D i r L o c N WC o r n e r S WC o r n e rM o v eW e s t D i r L o cA r g 1 A r g 2 A r g 3L o cF u n c1
(b)

Figure 3.5. (a) shows a program fragment before a function extraction. (b) shows the
result of a function extraction rooted at the If statement with a maximum depth of 3.

3.4 Purpose

Section 3.3 introduces the importance of modules for evolving hierarchical pro-

grams. The next logical step in benefiting from modularity is reuse of modules on new

problems or tasks, thus capitalizing on previous computational effort to speed the cur-

rent GP search. To discover which modules should be extracted from a GP search to be

reused, one must rate them to sort out the most beneficial ones. Unfortunately, assigning

a fitness value to a piece of an individual is not a trivial task. This thesis describes a

method that identifies randomly selected modules3, created using the GLiB method, that

are good candidates for reuse by estimating their worth using a statistical significance

3Modules are also referred to as functions. The terms are used interchangeably in this thesis.
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test. Functions identified as worthy for sharing are then added to the primitive function

set for a subsequent GP search on a different problem within the same domain.



CHAPTER 4

RELATED WORK

Here we show different methods to assign fitness measures to functions either

evolved in (ADFs) or extracted from (Module Acquisition) a GP search. The various

works have different implementations details and problem domains, but we focus on how

functions are built and subsequently identified as beneficial.

4.1 Building Good Functions

Creating modules from subtrees that occur frequently with a population seems like

a good step. After all, the idea of functions is to use them in multiple locations. If the

body of the function occurs at multiple locations, replacing the body structure with the

name of the function seems like a good simplification of the program. [14] compared

performance between selecting modules based on frequency of subtree occurrence and

random subtree selection and showed that random selection outperformed the frequency

selection strategy. This result is echoed in [15] in which a variety of module selection

heuristics were tried. The [15] found that selecting modules randomly resulted in high

performance consistently across problem domains. It should be noted that in this context,

“selection” refers to how the body of modules are created, not identifying which functions,

that have already been created, are useful. It also should be pointed out that selecting

random subtrees from individuals in the population is different from creating random

subtrees from a set of functions. The dynamics of a GP search have no effect on the

later.

19
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We end the discussion of selection heuristics here as the literature suggests that it is

difficult to do better than random selection, both in terms of overhead and performance,

without sacrificing problem domain independence. Random selection is use in all the

experiments conducted within this work.

4.2 Identifying Good Functions

The previous section discussed ways of creating functions that benefit a GP search.

In this section, we look at ways of identifying individual beneficial functions, after they

have been created. While the tasks are similar, the previous section focused on producing

functions that, in aggregate, increase performance by increasing the learning rate or

overall fitness or both. This section looks at ways to single out exceptional functions from

the set of created functions. This is important since, as stated in Section 3.1, introducing

non-beneficial functions into the primitive functions set will negatively impact a GP

search since each function expands the search space.

4.2.1 Separate Evaluation

In [16], a module is evaluated as if it were an individual in the population using

the standard fitness function. Thus, functions that solve more of the overall problem are

better functions. This is desirable because it requires no extra effort from the programmer

regarding GP setup. There is a potential pitfall to rating functions using the fitness

functions for individuals. Such a rating scheme disadvantages modules that are context

sensitive (i.e. they make little or no sense outside the context in which they are called)

and make little or no progress towards the overall solution as measured by the fitness

function but, for example, serve as a useful condition branch in an if statement. It is

possible the rating system would rank a large class of otherwise beneficial functions as

poor performers.
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4.2.2 Evolutionarily Viable

The frequency of a module within the population can be used to indicate its use-

fulness. [13] calls a function with sufficient1 occurrences evolutionarily viable, meaning

it proliferated throughout the population. This suggests that it positively contributes to

the solution.

4.2.3 Fitness of Individuals Containing the Module

[17] experimented with adding ADFs from the best individual from a GP search

to the function set of a subsequent GP search. Applying this methodology sped up

subsequent GP searches, measured in terms of the number of individuals evaluated,

within the even n-parity function2 problem domain. Using ADFs from 2-parity solutions

in a GP search for the even 6-parity problem decreased the needed number of evaluations

from 1,500,000 to 700,000. Using ADFs from the more complicated 3-parity problem

decreased needed evaluations from 1,500,000 to 400,000.

[18] is similar to [17] in that it extracts functions from the fittest individuals but

it performs this operation during a GP search every time a new best individual is found.

Functions are rated by summing the fitnesses of each individual containing it and dividing

it by the total number of calls to the function.

1What indicates sufficiency is subjective.
2The even n-parity problem attempts to construct a function that will output true if an even number

of n inputs are true.



CHAPTER 5

METHODOLOGY AND TOOLS

5.1 GP System

The focus of this thesis is to explore a domain independent method for identifying

exceptionally performing functions from all functions extracted in order to add them to

the primitive function set and speed subsequent GP searches on similar problems in the

same domain. We chose the GLiB method of function extraction to build our method

upon as it does not have the extra hierarchy requirement of the programmer.

The GP environment used to perform the experiments is a custom Java program

loosely modeled on [19]. Each individual in the population has its own tree structure of

function nodes that represent the individual’s program structure, where node children

represent arguments to a particular node. Each function node has a return type[20] as

well as a description of its required arguments and an evaluate method that will, as

needed, evaluate the node’s children to perform the specific task of the particular node.

If a function node needs information not provided by its children or by its own instance

variables, references to the problem environment it is executing in and the individual

it resides in are provided as parameters. Figure 5.1 shows the basic skeleton of every

function node in an individual’s program tree.

Encapsulating a subtree within an individual and replacing it with a stub has no

affect on the fitness of an individual. An individual, pre and post encapsulation performs

identically since the post encapsulation individual simply has a stub representing the

subtree.

22
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public abstract class GPFunction{

public int retType;

public int[] childTypes;

public GPFunction[] children;

public abstract Object eval(GPProblem problem,

GPIndividual individual);

}

Figure 5.1. A simplification of the abstract class that all GP function nodes must subclass.

The main effect of encapsulation protects the function’s body from genetic opera-

tors and in turn reduces the number of crossover points within an individual. In Section

5.2, we describe the function extraction1 operation. The extraction process randomly se-

lects a subtree from a copy of the original and replaces it with a newly created function.

The descendants of both the original and the copy (which contains the new function) are

tracked, up to a specified maximum number of generations. While a function is being

tracked, the difference between the average fitnesses of the original’s living descendants

and the copy’s living descendants is recorded each generation and a statistical significance

test is applied to these differences. Functions passing the test criteria (i.e. descendants of

the copy that contained the new function are on average, with x% certainty, performing

y better than the descendants of the original individual) are promoted to the primitive

function set and shared with subsequent GP searches.

5.2 Function Encapsulation

As stated in Section 4.1, functions are selected randomly from individuals in the

population. Individuals chosen for function extraction are uniformly sampled from the

population, rather than in proportion to fitness. This thesis uses the same extraction

procedure as [13] in which functions were created from an individual’s genotype by picking

1The term encapsulation will also be used.
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a random location and encapsulating, up to a maximum depth, nodes beneath it. Any

nodes beyond the maximum depth became arguments to the function and thus defined the

new function’s prototype. Before each function extraction attempt a random maximum

depth is chosen uniformly between 2 and 10. See Figure 5.2 (a reproduction of Figure

3.5) for an example. Functions were further constrained to have at least one parameter.

I fM o v e P l a yO r
N EC o r n e r

C o n dI s O nM o v e
T h e n E l s e

S o u t h
E a s tA r g 1L o cD i r L o c I sV a l i dA r g 2N WC o r n e rL o c D i r P l a y

S WC o r n e rM o v eW e s t
L o c L o cD i r L o c

L o c
S WC o r n e rL o c

(a)

N EC o r n e rM o v eS o u t h D i r L o c N WC o r n e r S WC o r n e rM o v eW e s t D i r L o cA r g 1 A r g 2 A r g 3L o cF u n c1
(b)

Figure 5.2. (a) shows a program fragment before a function extraction. (b) shows the
result of a function extraction rooted at the If statement with a maximum depth of 3.

When an individual is selected for a random function extraction, a copy is made

of that individual and the function extraction is performed on the copy. The original is

referred to as unmodified and the copy of the original with the function stub substituted

for the function body is called modified. A reference to both the unmodified and modified

individuals is kept in the new function for use in judging the usefulness of the function.

Table 5.1 contains a more detailed description of the process.
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Table 5.1. Extraction Algorithm

1. Set UNMODIFIED IND to a sample from the population.
2. Create MODIFIED IND by copying UNMODIFIED IND.
3. Create EXTRACTED FUNC by extracting a random function from MODIFIED IND.
4. Replace structure in MODIFIED IND used to create EXTRACTED FUNC with a stub

pointing to EXTRACTED FUNC.
5. Set EXTRACTED FUNC.UNMODIFIED reference to UNMODIFIED IND.
6. Set EXTRACTED FUNC.MODIFIED reference to MODIFIED IND.
7. Add EXTRACTED FUNC to the extracted function repository.
8. Add both UNMODIFIED IND and MODIFIED IND to the next generation’s population.

5.3 Function Judgment/Identification Mechanism

Given the increased search space overhead for each addition to the function set, we

can’t simply share all functions extracted. If we expect to benefit from sharing extracted

functions, a method is needed to identify the beneficial functions from the total set of

extracted functions. Here we propose a scheme for estimating how much better or worse

off the GP search is after extracting a function using significance testing (SigTest).

For each function under consideration, the fitnesses of the descendants of the un-

modified and modified individuals in the current population are compared each generation

until a worthiness decision on the function is made. This comparison each generation

is called a sample. The sample for the current generation is the average fitness of the

descendants of the unmodified individual minus the average fitness of the descendants of

the modified individual. Equation 5.1 shows how a sample is calculated for function id.

fitidunmod and fitidmod are lists of fitness values for individuals that are living descendants

(i.e. contained within the current population) of the id.UNMODIFIED and id.MODIFIED in-

dividuals, respectively. Length returns the number of elements in a list, and the bracket

operation indexes into a given list. g is the number of generations after id was created,
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thus X id
g is the performance sample for function id for the gth generation after id was

created.

X id
g =

Pm
j=1

fitid
unmod

[j]

m
−

Pn
k=1

fitid
mod

[k]

n

m = Length(fitidunmod)

n = Length(fitidmod)

(5.1)

The reason we look at the difference in performance of the descendants of the un-

modified (without) and modified (with) for each extracted function is because we are

attempting to single out exceptional functions for sharing. We are inferring the differ-

ence in performance of the unmodified and modified individuals should be credited to the

extracted function since they are identical otherwise. Thus, if the performance difference

favors the modified individual’s descendants, we assign the reason for the performance

difference to the function. While this is an unproven assumption, it seems more straight-

forward to compare performance differentials of initially identical individuals, save the

function extraction, to tease out the worth of a function rather than assigning worth to

functions based on the fitness of individuals containing said function, or simply because

a function occurs frequently.

One sample is not much information judge a function with, so multiple samples

are taken. After two samples are obtained2, a t-test is performed to analyze the samples

obtained in Equation 5.1. Functions that pass the t-distribution significance test in

Equation (5.2), where X is the function’s sample array and α = 0.95, are deemed good

and are added to the primitive function set which allows them to be introduced into

2There is one sample per generation for each function currently under consideration by the judgement

mechanism.
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the population via mutation as well as propagated by reproduction. Functions that fail

Equation (5.2), with α = 0.6, are deemed unworthy and are dissolved3.

X id(n)− tn−1,α

√

S2(n)

n
≥ DecencyThreshold (5.2)

where X id(n) is the mean of the performance differences between the function and non-

function individuals over the last n generations, and S2(n) is the corresponding variance.

X id(n) =

∑n

g=1 X id
g

n
(5.3)

S2(n) =

∑n

g=1 [X id
g −X id(n)]2

n− 1
(5.4)

It should be noted that the assumed fitness value range is from zero to infinity,

where zero is the best fitness value. The values for tn−1,α and Equations (5.3) and (5.4)

can be found in [21]. Equation 5.2 simply states that if the inequality holds true, the

confidence interval of the mean of all the samples taken for function id is better than

the specified value, DecencyThreshold. The larger DecencyThreshold is, the higher the

expectations of performance for promotion are. Table 5.2 shows the judgement algorithm

in more detail.

5.4 Function Dissolution and the Mutation Operator

Functions are dissolved randomly (i.e. replacing the function stub with the actual

subtree representing its body) via the mutation operator. If a site selected at random

within an individual is an encapsulated function, it will be dissolved. If not, the mutation

operation works normally (i.e. replacing the selected site with a randomly constructed

subtree). Because functions insulate the program structure that they represent from

3The function stub is replaced with the associated body in individuals containing the function. This

is the reverse of the extraction process.
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Table 5.2. Function Rating Algorithm

1. Set UNMOD DESCENDANTS to the list of descendants of FUNC.UNMODIFIED within the
current population. This value was set during the function’s creation.

2. Set MOD DESCENDANTS to the list of descendants of FUNC.MODIFIED within the cur-
rent population.

3. Remove individuals from MOD DESCENDANTS that either don’t contain FUNC or didn’t
execute FUNC.

4. Sort both UNMOD DESCENDANTS and MOD DESCENDANTS according to fitness, from
best to worst.

5. Set AVG UNMOD and AVG MOD to the average fitness of the individuals in
UNMOD DESCENDANTS and MOD DESCENDANTS respectively.

6. Set SAMPLE to AVG UNMOD minus AVG MOD. Samples greater than zero indicate
AVG MOD is performing better than AVG UNMOD since lower values are better, ac-
cording to the fitness value range assumptions.

7. Add SAMPLE to FUNC.SAMPLES.
8. Calculate the SAMPLE MEAN and t-distribution confidence intervals CONF INT 95%

and CONF INT 60% of FUNC.SAMPLES.
9. If SAMPLE MEAN minus CONF INT 95% is greater than or equal to DecencyThreshold

then FUNC is deemed good and the rating algorithm is done, otherwise proceed to
the next step. DecencyThreshold is a runtime parameter.

10. If SAMPLE MEAN minus CONF INT 60% is not greater than or equal to
DecencyThreshold then FUNC is deemed bad, otherwise no decision is made, and
more samples are needed.

the standard genetic operators, the encapsulated subtree forming the function is frozen.

While this is desirable (it is, after all, the point of function encapsulation), allowing too

much of the genetic code to be frozen can drive the GP search into a local optimum[13][22].

Random function dissolution is a counter balance to this effect.

5.5 Function Sharing Across Problems

To measure how well the rating system selects functions that generalize to other

problems, good functions from previous GP searches are added to the primitive function

set before the initial random population is constructed for a subsequent GP search on a

different problem set.
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5.6 Breeding Policy

Experimentation with the breeding policy was performed to attempt to speed learn-

ing by placing constraints on offspring that increase diversity between successive gener-

ations. Enforcing diversity among the population mitigates the search getting caught

in local optima. Diversity metrics found in [23], [24] and [25] focus on analysis of the

genotype (i.e. the structure of the individual). In contrast, this research considers only

the results of individuals. If two individuals in a population produce different results for

a given problem, it is inferred that their structure is different, though no metric of how

much different is estimated.

In the case of the Lights Off problem domain (see section 6), the result of an

individual is the end configuration of the game board after its program tree has been

executed. This end configuration is mapped to an integer (each light represents a binary

digit of an integer) that represents the result.

5.6.1 Standard Policy

The standard breeding policy does not consider diversity at all. Two offspring

are generated by each breeding procedure. Two parents are sampled probabilistically,

according to fitness, from the current population. A single point crossover (see Figure

5.3, a copy of Figure 3.2, for an example) is performed to form two offspring individuals.

Then a mutation is possibly performed on each offspring, determined by the mutation

rate. The offspring are then executed on the problem set and enter the next generation’s

population.

5.6.2 Extended Policy

Offspring are generated and executed in the same manner as the standard policy.

After execution, the GP system analyzes the results of an offspring and if it does not
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Figure 5.3. An example of a simple one point crossover between two parents resulting in
two offspring..

have sufficient result diversity with respect to the current population it is discarded.

Sufficient result diversity is defined as a minimum number of different results. If, for

instance, there are 2 results produced by each individual, and a diversity requirement of

1 is imposed, then any offspring not producing at least one new result, with respect to

the current population’s result set, will not enter the next generation’s population and

is thrown away. For more detail, see Table 5.3.
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Table 5.3. Extended Breeding Policy

1. Select PARENT1 and PARENT2 from the population.
2. Generate OFFSPRING from PARENT1 and PARENT2.
3. Execute OFFSPRING on the problem set.
4. Set NUM UNIQUE RESULTS to 0.
5. For each PROBLEM / RESULT pair in OFFSPRING:

• If RESULT is not in the current generation’s result set for PROBLEM, then incre-
ment NUM UNIQUE RESULTS.

6. If NUM UNIQUE RESULTS is less than DIVERSITY REQUIREMENT then throw
OFFSPRING away. Otherwise, add OFFSPRING to the next generation’s pop-
ulation and add a reference to OFFSPRING to PARENT1.OFFSPRING SET and
PARENT2.OFFSPRING SET.



CHAPTER 6

PROBLEM DOMAIN

The problem domain chosen for experimentation is the game known as “Lights Off”

or “Lights Out”. The board consists of a 5 x 5 matrix of “lights” that have binary states,

either on or off. Pressing a light will toggle not only that light, but also the light’s four

cardinal neighbors. On corners and edges, there is no wrap around. See figure 6.1 for an

example play. The goal of the game is to extinguish all the lights.
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Figure 6.1. Board configurations before and after a play at the center light..

6.1 GP Primitives

6.1.1 Types

Three types have been defined for Lights Off. Table 6.1 shows each type and gives

a short description of its purpose. The primitive types correspond to legal argument and

return types. Any structure altering operation must respect these constraints to ensure

post-operation program structure is legal. Every function within the GP system contains
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a data structure indicating what its return type is, as well as the types of any parameters

it takes.

Table 6.1. Types

type description

boolean An object representing the binary values true or false.
direction An ordered pair object representing cardinal directions. These val-

ues are added to locations to move from one location to another.
For example, North is (0, -1) and South is (0, 1).

location An ordered pair object representing a light on the board matrix.
The coordinate system used to specify lights on the board has the
origin at the top left button and positive y values growing down
the page. Increasing x values grow from left to right on the page.
This coordinate system will be used unless otherwise indicated.

6.1.2 Terminals

Terminals (see Table 6.2) are any functions that do not take any parameters, and

typically refer to constant values, such as a particular board location or direction. Figure

6.2 displays the corner board locations.
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Figure 6.2. Illustration of coordinate system and location constants..
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Table 6.2. Terminals

return type names

boolean False
boolean True

direction East
direction North
direction South
direction West
location CornerNE
location CornerNW
location CornerSE
location CornerSW

6.1.3 Non-Terminals

Table 6.3 shows the data types and primitive functions used for this domain. And

and Or short circuit, as in C and many other programming languages. For example, if the

first argument of an And function node evaluates to False then the second argument is

not evaluated. Depending on the result of the condition branch of an If, either the then-

branch or the else-branch is evaluated and returned. IsOn returns True if its argument

branch returns a board location that is in the on state. IsValid returns True if its

argument branch returns a meaningful board location. Move returns a location displaced

by a direction. PlayAt toggles a neighborhood on the board centered at location and

then returns that same location.

6.1.4 Sample Program

Programs within the GP system are represented by tree structures. Parameters to

functions are contained within an array of references to children nodes. A program such

as PlayAt( Move( If( IsOn( CornerNE ), North, South ), Move( North, CornerSE ) )

) would have the structure shown in Figure 6.3. The effect of the program is to make a
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Table 6.3. Non-Terminals

return type name, argument types

boolean And(boolean Arg1, boolean Arg2)
boolean Not(boolean Arg1)
boolean Or(boolean Arg1, boolean Arg2)
boolean IsOn(location Loc)
boolean IsValid(location Loc)
location Move(direction Dir, location Loc)
location PlayAt(location Loc)
boolean If(boolean Cond, boolean Then, boolean Else)

direction If(boolean Cond, direction Then, direction Else)
location If(boolean Cond, location Then, location Else)P l a yM o v e

N o r t h
L o cD i r L o cI fC o n d T h e n E l s eI s O nN EC o r n e rL o c S o u t h S EC o r n e rM o v eN o r t h D i r L o c

Figure 6.3. A sample Lights Off program.

play at either (4,2) or southeast corner (4,4), depending on whether the northeast corner

of the board is on or not. Figure 6.4 lists the function evaluation method for Move .

6.2 Fitness Function

The fitness of an individual is the total number of lights still in the on state after

the individual has been executed. Thus, zero is the ideal fitness, indicating the initial

board configuration has been solved. The GP search will terminate before the maximum
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public Object eval(GPProblem problem,

GPIndividual individual)

{

Point dir, loc;

dir = (Point)children[DIR].eval(problem,

individual);

loc = (Point)children[LOC].eval(problem,

individual);

loc.translate(dir.x, dir.y);

return loc;

}

Figure 6.4. Evaluation Method for Move.

number of generations has been reached if an ideal solution to the problem configuration

set is found, otherwise it will continue running until the specified maximum generation.



CHAPTER 7

RESULTS

A series of experiments were performed to compare the rates of learning without

function extraction and with our GP function identification and sharing approach. A level

is a single starting light configuration for the Lights Off puzzle. Successively presenting

the GP system with 3 levels (all separate GP searches) is considered a run. Functions

were extracted during levels 1 and 2 but not 3. Level 3 had access to the original primitive

function set (see Tables 6.2 and 6.3) as well as functions promoted in levels 1 and 2. Level

2 had access to the original function set and functions promoted during the level 1 GP

search. See Figure 7.1 for an overview of the GP system augmented with function

extraction.

For each function identification scheme tested, it is applied to 100 runs of 3 random

levels, each with a 20 of 25 lights on. No two random levels are identical. Each function

identification scheme tested is presented with the same random levels. Table 7.1 is an

example of one random run.

Table 7.1. Random Run

lllll
lllll
lllll
lllll
lllll| |||
|||||
||| |

| |
||||| lllll

lllll
lllll
lllll
lllll||||
|||||
| ||
|||||
| || lllll

lllll
lllll
lllll
lllll||||
|||||
|| ||
|| |
||| |

Level 1 Level 2 Level 3
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I sn u m F u n c s P e r L e v e l >0 ?Y e s N o

Figure 7.1. Overview of the GP system with function extraction. Elements shaded gray
are steps added to the original GP system in Figure 3.1.

In the cases where the extended breeding policy was used (see Section 5.6.2),

DIVERSITY REQUIREMENT was 1. In all cases (except for the control experiment with

no functions at all), the function extraction routine attempted to create 32 functions per

generation. The result plots represent averages for each level, across all runs1, with 95%

1Occasionally, the GP system would run out of memory on a level within a run. In this case, the

entire run was thrown away, thus the data may only reflect 98 or 99 runs.
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t-distribution confidence intervals shown every 15 generations. The top 5% of the pop-

ulation is automatically carried over (copied) to the next generation and the population

size is 512. Population sampling is linearly proportional to the individual’s fitness value

(roulette wheel) . The mutation rate was fixed at 20%.

7.1 Function Identification Methods

Three methods for identifying exceptionally performing functions were compared

against the significance testing method (SigTest x). The following is a summary of each

method. The EvoVia, Best, and Rand methods all identify and promote functions at

the end a GP search. SigTest x rates and promotes each generation. In all cases, once

functions are committed to the primitive function set, they are not removed until the

run (i.e. all 3 levels) is over. Also, for all methods, adding functions to the primitive

function set behaves like standard set operations, so there are no duplicates within the

function set (i.e. multiple promotions of the same function has no effect).

7.1.1 SigTest x

SigTest x is the algorithm described in Section 5.3, where x is the value chosen for

DecencyThreshold. As DecencyThreshold increases, a higher differential performance

between the average fitness of the descendants with (modified) and without (unmod-

ified) a particular function. For example, if the series of numbers {2.35424, 4.05059,

2.89817, 2.57818, 1.42205, 3.57517, 1.93977, 1.78932, 3.88968, 2.28426}2 represents the

difference of the average descendant fitness of the unmodified and modified subsequent

generations after the function id was created (see Equation 5.1), then the 60% and

95% confidence intervals look like Figure 7.2. Continuing with the example, consider

2Note that each generation after the creation of id one sample value is added to the list, thus this is

the samples list for id at n = 10.
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Figure 7.2. (a)60% and (b)95% confidence interval plots for the sample data in Section
7.1.1.

DecencyThreshold = 2.0 (SigTest 2). A function’s rating begins two generations after

its creation since statistical tests require at least two samples. Since at n = 2, the lower

half of the 95% confidence interval is not above 2.0, id is not deemed worthy of promotion

at this point. The lower part of the 60% confidence interval is (just barely) above 2.0

so id is allowed to continue. This same rating outcome for id occurs each generation

after n = 2 until n = 10. During this generation, the 95% confidence interval of the

mean of the sample differences creeps above 2.0 and at this point, the decision to pro-

mote id is made and rating id stops as well. If the lower end of the 60% error bar had

gone below 2.0, then id would have been deemed unhelpful (to the degree specified by

DecencyThreshold) and dissolved in all the individuals containing it.

7.1.2 EvoVia

EvoVia promotes the functions by looking at the last population of a GP search

and creating a list, Funcfreq, of extracted functions sorted from most frequently to least

frequently occurring. Then, the top 1% of the functions in Funcfreq are promoted.

Functions promoted in previous levels that are designated for promotion in the current

level have no effect, though count towards the 1% requirement. See Figure 7.3(a).
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7.1.3 Rand

Rand (see Figure 7.3(b)) is similar to EvoVia in that the number of functions to

promote is calculated as 1% of the total number of created functions. Rand chooses the

functions to promote at random, sampling uniformly from the entire set of extracted

functions, regardless of whether functions are contained within the last population or

not.

7.1.4 Best

Best is the simplest function identification scheme tested. All the extracted func-

tions residing in the best individual from the last generation’s population are promoted

to the primitive function set.

7.1.5 NoFunc

NoFunc is the control experiment that doesn’t extract, and thus doesn’t share, any

functions on any level of a run. This facilitates comparison of the different functions

extraction/identification methods with standard GP.

7.2 Standard Breeding Policy

Figure 7.4(a) shows the mean best performance plotted against the mean number

of individuals evaluated each generation for NoFunc, EvoVia, Rand, and SigTest 5. All

strategies perform statistically the same. This shows that the Lights Off domain resists

improvement by extracting functions within a GP search, since none of the function

strategies performed significantly better than NoFunc. While only EvoVia, Rand, and

SigTest 5 strategies are shown against NoFunc, Best performed virtually identically in

level 1. This is an indicator that the Lights Off domain is not particularly conducive to

random module extraction, as enabling module extraction doesn’t increase the learning
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Figure 7.3. Overview of various function identification methods: (a)EvoVia, (b)Rand,
and (c)Best.

rate. Analyzing levels 2 & 3 will give insight on how domain can benefit from seeding

the initial population with program fragments evolved from earlier GP searches.

Level 2 (see Figure 7.4(b)) shows the effect of sharing functions promoted from

level 1. EvoVia, while seeding the population at the best starting fitness, shows the

poorest performance. There appears to be a long term learning cost associated with

using promoted functions from a previous GP search in the primitive function set, even

as it gives better initial performance.

For both levels 2 and 3, SigTest 5 distinguishes itself above the other function

judgement strategies, and performs almost as good as NoFunc asymptotically. Even

though the domain shows no favoritism towards extracting functions, the SigTest strat-

egy mitigates the penalty for sharing extracted functions, while still providing initial
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performance gains. By decreasing the DecencyThreshold to 3, from 5, Figure 7.5(b)

shows that the SigTest strategy can achieve initial fitnesses comparable to the other

function identification strategies, while still maintaining the asymptotic performance of

SigTest 5.

Looking at Table 7.2, one can see that there is a large difference between EvoVia

and SigTest 5 in the average number of functions promoted each run. SigTest 5 promotes

about one fourth as many functions each run. Lowering DecencyThreshold to 3 lowers

the performance differential expectations (i.e. the SigTest strategy become less picky and

promotes more functions). SigTest 3 promoted on average 40.47 per run, which is more

than EvoVia. If the performance difference between SigTest x and EvoVia is simply due

to the number of functions promoted in a run, then we should see SigTest 3 perform

poorer than EvoVia. Figure 7.5 shows this is not the sole explanation, since SigTest3

also outperforms EvoVia. It is interesting to see that both EvoVia and SigTest3 start at

essentially the same initial fitness in levels 2 and 3, but quickly diverge. SigTest 3 does

not suffer from an early learning rate plateau as severely as EvoVia. Also worthy of note

is by level 3, SigTest 3 and SigTest 5 perform so similarly, despite the stark difference in

the average number of functions promoted during a run.

Table 7.2. Average number of functions promoted per run using the standard breeding
policy over 100 generations

Best 6.44
EvoVia 34.81

Rand 45.14
SigTest 3 40.47
SigTest 5 8.63
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Figure 7.4. (a), (b), and (c) correspond to levels 1, 2, and 3, respectively. The horizontal
axis represents the mean number of individuals evaluated for the level over all runs.
The vertical axis represents the mean fitness of the best individuals over all (100) runs
for the particular level. Search duration was 100 generations. The vertical bars are 95%
confidence intervals, shown every 15 generations. The standard breeding policy was used.
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Figure 7.5. (a)Level 2 and (b)Level 3. Mean fitness, over 100 runs, of the best indi-
vidual each generation. The vertical bars are 95% confidence intervals, shown every 15
generations. The standard breeding policy was used.

Figure 7.6 shows results for the four function identification methods on level 3.

SigTest 5 significantly outperforms the other methods in terms of number of individuals

evaluated, under the standard breeding policy. It should be noted, as stated previously,

that NoFunc surpassed them all by the end of level’s GP search.
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Figure 7.6. A quick summary of the four function identification strategies on level 3, all
using the standard breeding policy.

7.3 Extended Breeding Policy

Running the same experiments as in the previous section (7.2) with the extended

breeding policy produced some unexpected results. Remember the extended breeding

policy throws out offspring that don’t meet the diversity requirements, thus only suffi-

ciently diverse offspring survive for a chance at reproducing for the next generation. In

this case, the diversity requirement is that the offspring produce a board configuration

not already produced in the new population. Only the level 3 plots are shown in Figure

7.7 because level 2 and level 3 performance were virtually identical. Level 1 is not shown,

because as was the case with the standard breeding policy, all the function identification

strategies performed identically with NoFunc. Because offspring not meeting the diver-

sity requirements are thrown away, the number of individuals evaluated per generation

can be much higher for the extended breeding policy than the standard one. Table 7.3

shows the average number of functions promoted each run.

As we see in Figure 7.7(a), NoFunc doesn’t surpass the function identification

methods. NoFunc matches the performance of the function identification methods, but

using roughly 50% more individuals. The extended breeding policy homogenized the
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Table 7.3. Average number of functions promoted per run using the extended breeding
policy over 50 generations

Best 5.43
EvoVia 16.29

Rand 26.22
SigTest 3 47.99
SigTest 5 26.06

10000 20000 30000 40000 50000 60000
Ind

4

6

8

10

12

14

16

Fit
Lev. 3

Ext SigTest 5

Ext Rand 1%

Ext EvoVia 1%

Ext NoFunc

(a)

10000 20000 30000 40000 50000
Ind

3

4

5

6

7

8

9

10

Fit
Lev. 3

Ext SigTest 5

Ext SigTest 3

Ext Rand 1%

Ext Best

(b)

Figure 7.7. Both (a) and (b) are level 3, comparing different strategies. Mean fitness, over
100 runs, of the best individual each generation. The vertical bars are 95% confidence
intervals, shown every 15 generations. Search duration was 50 generations. The extended
breeding policy was used.
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average best fitness performance of all the function identification strategies, except Best.

The most unexpected result was Rand performing so well. It is difficult to justify spending

the overhead needed to run the significance testing or any other heuristic for identifying

exceptional functions when promoting functions at random does just as well. It seems the

extended breeding policy plays a strong role in function extractions such that the method

of choosing functions to promote from the set of extracted functions is largely irrelevant.

The more discriminating breeding policy produced a bias towards populations with a

diversity of structure that is inferred from the fact that each member of the population

produces a different end configuration. The Rand strategy performing as well SigTest

and EvoVia suggests that the probability a module will be beneficial to a GP search is

roughly uniform across strategies and that each strategy selects similar traits.

7.4 Standard vs. Extended

A head to head comparison of selected standard and extended breeding policy re-

sults is shown Figure 7.8. It shows the extended breeding policy to be much more efficient

terms of best individual per individual evaluated. Figure 7.8(b) also illustrates the col-

lapse in performance difference between SigTest 3 and Rand going from the standard

to extended breeding policy. Given that the extended breeding policy produces better

fitnesses on a per individual evaluated basis, why would one not employ the extended

breeding policy and randomly pick modules to promote in all GP searches? One reason

is it may not be practical or possible in all problem domains to have a diversity metric

that implements result equality checks. Without an equality checking mechanism the

extended breeding policy cannot be used. Wasting CPU time on offspring that end up

thrown away is another consequence of the extended breeding policy. It may be that a

breeding policy with less strict diversity requirements, such as specifying a probability
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that an offspring not meeting the diversity requirements is not thrown away, may perform

as well as the extended policy with less CPU waste.
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Figure 7.8. A comparison of various standard and extended policy results. (a), (b), and
(c) all represent results for level 3.



CHAPTER 8

CONCLUSION

8.1 Observations

Sharing extracted functions across GP searches seems to be beneficial to the learn-

ing of subsequent problems within the same domain, although the benefit decreases as

generations pass, to the point where the no-function strategy catches up with function

sharing strategies in terms of fitness of the best individual.

Using a more discriminating breeding policy than the standard one renders the

different function identification strategies virtually indistinguishable from each other.

If the evaluation of individuals is a substantial fraction of total simulation run time,

imposing diversity constraints on the breeding policy coupled with function sharing could

realize a large benefit over no function sharing.

While the rate of learning, in terms of fitness, increased with function sharing, the

end fitness stayed approximately the same. Implementing a more sophisticated fitness

function for the tested problem domain might address this. One possible modification

to the fitness function of Lights Off domain is giving a slight preference to individuals

that produce board configurations with the remaining lights clustered together. Figure

8.1 illustrates this.

8.2 Applicable Domains

The Lights Off domain proved to be a poor choice for module extraction, shown

by the fact that NoFunc and all the function strategies performed the same for the

first level. Lights Off plays have side effects that move out in all directions, potentially

51
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Figure 8.1. Both board configurations have a fitness of 5, though the configuration on
the right is one play away from turning off all the lights. An individual producing the
right configuration would clearly be outperforming an individual that produces the left
configuration, but the current fitness function doesn’t differentiate between the two..

impacting many neighborhoods. It is possible that proper context checks1 to ensure

module applicability are too complex to evolve within the current experimental set up.

If the condition statements can never be sophisticated enough to capture the nuances of

Lights Off, no function will ever have anything but apparently random chance of being

labeled “beneficial”, no matter which strategy is applied, thus explaining why Rand

performs so well. Functions should only be called under certain circumstances, and if

the program structures that properly describe these circumstances are rare to evolve,

then whether a function should be called is (a seemingly) random event, due to some

dependent variables not being visible (to the condition for a module call).

Domains that would probably perform better with modules would have operations

or events that can be decided with very little context needed. The Tower Of Hanoi puzzle,

a block stacking problem, is an example of a domain where there is known regularity

and modularity to solutions, so it is likely that it can benefit from introducing module

extraction towards this problem domain. Evolving analog circuits also seems like a

promising domain for exploiting modules since many circuits exhibit regularity. For

1Here we mean a context check to be a series of condition clauses evaluated to determine whether to

call a module.
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instance, filters evolved by Koza et al.[26] display regularity in the form of identical or

very similar sub-circuits linked together in series.

A separate application for the seeding of GP searches with modules from previous

GP searches is in self-healing software. Imagine that a robot controlled by GP evolved

software suffers a malfunction. The robot could drastically reduce the needed CPU

time to evolve a new controller (on board) customized to the new hardware situation by

sharing previously extracted modules with the current GP search. If there are real-time

constraints, this decreased evolution time could be critical to adapting fast enough to

the environment. Figure 7.7(a) shows this significant CPU savings in terms of number

of individuals evaluated.

8.3 Future Work

Future work on this topic might include a method to identify and remove functions

that were initially deemed good but are actually hindering GP search progress, as well

as implementing more problem domains to test with. A known modular domain, like

the Tower of Hanoi, should be tested to get a better idea of how module extraction can

benefit a GP search, and which function identification strategy is best.

Another interesting point worth looking is after the initial random population of

level that has benefited from shared functions is created, to go through the entire pop-

ulation dissolving every function in each individual. This might help mitigate the early

learning plateau penalty sharing functions imposes while still benefiting from the initial

advantage in fitness.
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