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ABSTRACT 

 

A NOVEL APPROACH IN THE DETECTION OF OBSTRUCTIVE SLEEP APNEA 

FROM ELECTROCARDIOGRAM SIGNALS USING NEURAL NETWORK 

CLASSIFICATION OF TEXTURAL FEATURES EXTRACTED 

FROM TIME-FREQUENCY PLOTS 

 

Publication No. ______ 

 

Mohammad Ahmad Al-Abed, M. S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Khosrow Behbehani, Ph.D., P.E.  

Sleep-Disordered Breathing (SDB) is estimated to have a prevalence of 5% in 

middle-aged population.  The population is widely thought to be under diagnosed, since 

the present method to detect and diagnose SDB, Nocturnal Polysomnography (NPSG), 

is still expensive and not accessible by most.  SDB has been shown to affect the 

productivity and degree of life of the patient, and to have a high correlation with obesity 

and cognitive heart failure (CHF).  Cheap and accessible means to screen the population 

for SDB are greatly pursued.  This work presents an automatic algorithm to detect 

obstructive sleep apnea (OSA) events in 15-minute clips.  Data is collected from 12 



 v

normal subjects (6 males, 6 females; age 46.27±9.79 years, AHI 3.82±3.25) and 14 

apneic subjects (8 males, 6 females; age 49.08±8.82 years; AHI 31.21±23.90).  The 

algorithm uses textural features extracted from co-occurrence matrices of gray-level 

encoded images generated by short-time discrete Fourier transform (STDFT) of the 

heart rate variability (HRV).  Seventeen selected features are used as inputs to a 3-layer 

multilayer perceptron (MLP), with 45 hidden units and 4200 training epochs.  A 1000-

run Monte-Carlo simulation of the algorithm gave the following results: mean training 

sensitivity, specificity and accuracy of 99.00%, 93.42%, and 96.42%, respectively.  The 

mean testing sensitivity, specificity and accuracy are 94.42%, 85.40%, and 90.16%, 

respectively. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Definitions, Diagnosis, and Prevalence 

1.1.1 Basic Definitions 

Obstructive Sleep Apnea (OSA) is defined as the total cessation of breathing 

during sleep for 10 seconds or more [1].  This cessation is caused by an airway 

blockage in spite of a continuous respiratory nervous effort.  This blockage results from 

an upper airway collapse at the level of the tongue and/or soft palate, due to a 

combination of anatomic factors [2], [3].  This event leads to a drop in blood 

oxygenation levels and sleep interruptions [4].  Obstructive Sleep Hypopnea (OSH) is 

defined as the partial cessation (50% or more) of breathing during sleep for 10 seconds 

or more [1].  OSA and OSH combined are referred to as Obstructive Sleep Apnea-

Hypopnea Syndrome (OSAHS).  The number of OSAHS events that are recorded for a 

patient during sleep, divided by the number of sleep hours is defined as the Apnea-

Hypopnea Index, or AHI.  This is the measure [1] adopted by the American Academy 

of Sleep Medicine task force as the criteria on which to describe the level of disorder 

intensity.  Patients with AHI of 5 hr-1 or more may need medical intervention. 
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1.1.2 Prevalence and Diagnosis 

The standard Sleep Disordered Breathing (SDB) diagnosis test [1] that includes 

diagnosis of OSAHS is the Nocturnal Polysomnography (NPSG).  This test is 

comprised of overnight sleep recording of different physiological markers, in which a 

trained sleep expert will mark the stages of sleep and the type of SDB, if present.  

Young et al [3], [5] have published two studies in which they show an astonishing 

prevalence of OSAHS of a 4% in men and 2% in women in their first study [3], then in 

[5] show a higher population prevalence of 5%.  However, due to the fact that NPSG is 

very expensive and inaccessible by most patients, it is widely believed that OSAHS is 

under-diagnosed and actual population prevalence is higher [2]. 

OSAHS has been linked to different pathological abnormalities [5] and remains 

a notable cause of lowered quality of sleep, decreased productivity, and a cause to many 

auto-vehicle accidents in the middle-age group.  OSAHS has been shown to have a high 

correlation with obesity, especially in men, a 50% occurrence with congestive heart 

failure (CHF) patients, and 50-60% having systemic high blood pressure [6].  High 

blood pressure is directly linked to the chronic and continuous decrease in the blood 

saturation levels, causing an increase in sympathetic nerve activity, and an eventual 

increase in blood pressure [6]. 
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1.2 Alternative Methods of Diagnosis 

1.2.1 ECG as a Marker     

In 1984, Guilleminault et al have showed a cyclical variation in 

electrocardiogram (ECG) that is closely correlated with events of OSAHS.  This 

variation is characterized by a progressive decrease in heart rate (bradycardia) 

simultaneous with an OSAHS event, followed by an abrupt increase in heart rate 

(tachycardia) at arousal and onset of breath resumption [7]. 

This finding started an ongoing research to find alternative, cheap, and practical 

screening tools that physicians can use.  Ever since, different features were extracted 

from ECG recordings with reliable detection accuracy for screening purposes. 

1.2.2 ECG Features     

Different research group have concentrated on different features of the ECG 

overnight recordings [2], [8], [13].  Some groups concentrated on time-domain 

characteristics of the ECG signal, such as Angle of Mean Electrical Axis [9], [10], [11], 

Heart Rate Variability (HRV) [2], ECG-Derived Respiration (EDR) [2], [12], and R-

Peak Envelope (RPE) [8].  Other groups looked at frequency-domain parameters such 

as PSD [8], [13] and time-frequency plots [2], [14].  However, time-frequency plots 

have only been studied in a qualitative manner, in which some noted differences 

between normal subjects and OSAHS patients have been described, but not 

quantitatively studied. 
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1.3 Study Overview and Organization 

1.3.1 Overview     

This investigation is as a continuation of efforts done by [8], [15] within the 

UTA-OSA research group.  It is an effort to bridge the time-frequency plots 

investigation described by [14] and provide a quantitative study of these plots.  The aim 

is to improve the overall detection accuracy and provide a reliable and practical 

screening method for OSAHS candidate patients.  The study concentrates on extracting 

gray-level pictorial plots from HRV 15-minute clips, and performs reliable statistical 

image processing and classification schemes to distinguish event clips from normal 

ones. 

1.3.2 Study Organization     

The second chapter of this study gives a detailed structure of the methodology 

of the automatic detection algorithm proposed by this study.  Chapter Three presents the 

results of applying the available sleep ECG record to the algorithm.  Chapter Four 

discusses these results and their significance.  Chapter Five, concludes with what this 

research has answered and new directions for future studies. 
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CHAPTER 2 

AUTOMATIC DETECTION ALGORITHM DESIGN 

 

The first two sections of this chapter summarize the previous efforts by the 

UTA SDB-research group to gather and process the data used in this study.  Section 2.3 

describes the process in which pictorial images are produced from the selected data.  

Section 2.4 details the image processing and feature extraction scheme used. Section 2.5 

illustrates the detection methods used.  Section 2.6 is a summary of the chapter that 

includes a graphic depiction of the over all process.  

Figure 2.1 shows a block diagram the outlines and structure of this study.  The 

reader can find the section that explains in detail the content and contribution of each 

block to the overall system. 
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Figure 2.1 Block diagram of the proposed automatic detection algorithm.  The 
section assignment of each stage is shown. 
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2.1 Subject Population and Data Gathering 

This study is based on data collected and processed previously by the SDB-

research group at UTA in collaboration with Sleep Consultants Inc., Fort Worth, TX.  

2.1.1 Data Gathering and NPSG 

The original experiment set-up called for an overnight recording of standard 

NPSG physiological parameters.  A total of 18 channels were recorded; nine ECG 

channels, three EEG channels, EOG, chin EMG, chest and abdominal movements, nasal 

airflow, and percent oxygen saturation.  All nine ECG channels (Leads I, II. III, and V1-

V6), in addition to the nasal airflow, were acquired and sampled at a rate of 1024 

samples/second.  The remaining nine channels where acquired and sampled at different 

rates ranging from 25 to 100 samples/sec [8], [15].   

2.1.2 Subject Population 

As described by [8], [15], a volunteer population of sixteen normal (NOR) 

subjects was recruited for the purposes of the studies.  The data from the subjects was 

used as a control group, where none of them had any known SDB history and none of 

them has had undergone any previous NPSG studies.  Another group of fourteen 

previously diagnosed patients with OSAHS were selected for the study as well.  This 

will be referred to as the (OSA) group. 

The subject demographics of the NOR and OSA groups are shown in Table 2.1 

and Table 2.2, respectively.  The sleep expert scoring of their AHI is also included. 
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Table 2.1 NOR subject group demographics 
Subject 

ID Gender Age 
(Years) 

Weight 
(kg) 

Height 
(m) 

BMI  
(kg/m2) AHI 

N01 M 43 87 1.85 25.4 3 
N02 M 36 66 1.73 22.1 6 
N03 F 58 64 1.6 25 0 
N04 M 62 65 1.68 23 2 
N05 M 49 95 1.75 31 4 
N06 F 42 82 1.7 28.4 6 
N07 F 40 61 1.6 23.8 2 
N08 F 35 46 1.58 18.4 0 
N09 M 38 68 1.65 25 6 
N10 M 56 86 1.75 28.1 2 
N11 F 54 57 1.6 22.3 3 
N12 M 39 100 1.78 31.6 11 
N13 F 36 81 1.68 28.7 2 
N14 F 43 NA NA NA 20 
N15 M 59 93 1.88 26.3 1 
N16 F 42 78 1.65 28.7 14 

Mean ± standard 
deviation 

46.00  
± 9.38 

73.08  
± 16.53 

1.69  
± 0.09 

25.34  
± 3.86 

3.75  
± 3.11 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 9

Table 2.2 OSA subject group demographics 
Subject 

ID Gender Age 
(Years)

Weight 
(kg) 

Height
(m) 

BMI  
(kg/m2) AHI 

N17 M 50 99 1.83 29.6 9 
N18 M 38 91 1.88 25.7 4 
N19 F 49 67 1.75 21.9 19 
N20 M 39 157 1.90 43.5 70 
N21 F 47 91 1.65 33.4 57 
N22 M 37 64 1.63 24.1 8 
N23 M 56 128 1.85 37.4 37 
N24 F 44 89 1.70 30.8 20 
N25 F 49 59 1.60 23.0 62 
N26 M 49 100 1.80 30.9 14 
N27 M 57 105 1.80 32.4 4 
N28 F 54 92 1.52 39.8 30 
N29 F 69 76 1.52 32.9 38 
N30 M 66 95 1.75 33.2 65 

Mean ± standard 
deviation 

50.28  
± 9.60 

93.79  
± 25.62

1.73  
± 0.13

31.33  
± 6.29 

31.21  
± 23.89 

 

Subjects N14 and N16 were excluded from the study for being recruited as 

NOR subjects, but turned out to have higher than normal AHI [15]. Subjects N13 and 

N15 were excluded from this study for having very noisy ECG LI recording, and the 

collected data was not suitable for further processing.  Subjects N31 and N32 were 

excluded from the whole study for having amplifier saturated signal at all channels.  

The data extracted from them was deemed non-usable. 

2.2 Clip Preparation and Selection 

2.2.1 Clip Preparation 

As described in Section 2.1.1, the data collected consisted of 18 channels.  

Previous time-domain and frequency-domain studies using this data [8], [15] showed 
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that ECG Lead I has the most sensitivity of all ECG leads in detecting OSA events 

when R-Peak Envelope (RPE) is extracted, showing a sensitivity of 88.23% compared 

to a 70.00% for Lead II and 72.97% for Lead V6 [8].  Heart Rate Variability (HRV) 

showed limited sensitivity both in time and frequency domains.  Time domain analysis 

reported in [8] of HRV showed a maximum of 78.57% sensitivity, whereas frequency 

domain tests, in the mentioned study, showed a sensitivity of 59.52%. 

By contrast, this research combines both time and frequency domains to 

improve the detection sensitivity from HRV.  Lead I will be used to extract the R-R 

interval, from which the HRV feature is found.  The following is a summery of the steps 

used by [8] and [15] that explain the details of Lead I time-domain signal preprocessing. 

2.2.1.1 Baseline Wander Removal 

Caused by electrode movement and possibly the respiration, low-frequency drift 

in ECG is removed using a high-pass, linear phase, finite impulse response filter with 

cut-off frequency 0.8 Hz and length 200 [8]. 

2.2.1.2 R-Peak Detection 

Finding the R-peaks in the ECG signal defines a discrete time series from which 

the HR can be calculated and used.  In [8], [15], Hilbert-transform-based algorithm 

suggested by Benitez et al [16] to detect the R-peaks is used. The overall mean 

detection error for the acquired data (1.78 million beats) was 1% [8]. 
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2.2.1.3 Manual Verification and Correction of the R-Peak Detection 

Detection results using the automatic detection method mentioned above in 

Section 2.2.1.2 were manually verified.  False detection was corrected.  Clips with more 

than 15% detection error or more than 10% premature contraction were rejected. 

2.2.2 R-R Interval Discrete Time Sequence 

From the R-Peak detection, each R-peak can be associated with a single value 

that corresponds to the time interval between that peak and the peak before it.  This 

clearly results in a discrete time series that is unevenly sampled.  This time series is 

evenly resampled at 10 Hz with cubic spline interpolation, using MATLAB® function 

spline. 

 
Figure 2.2 Typical R-R interval plot (a 100 seconds recording from NOR subject 
N10). HR in this clip varies from 59-66bpm. 

 

2.2.3 Clip Selection 

With significant spectral elements for studying and detecting OSA in HRV that 

are as low as 0.001Hz, a 900-second clip length has been recommended by [14] for 
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frequency domain analysis of R-R interval time series [8].  During the study conducted 

by [15], all the available usable data was cut into 15-minute clips.  As part of the study, 

these original data was visually scored by a certified sleep specialist, blind to the 

objective of the study. 

For the purposes of this work, a clip that is extracted from a normal (NOR) 

subject and is free from any apnea or hypopnea episode was given a diagnostic value of 

zero (0).  Any clip that is extracted from an apneic (OSA) subject and has an event of 

SDB was given a diagnostic value of one (1).  Table 2.3 shows a break down of the 

number of clips used, per subject, for the purposes of this study. 

Table 2.3 A break down of the number of the 900-second clips contributed by subject  
NOR OSA 

Subject ID No. of Clips Subject ID No. of Clips 
N01 7 N17 4 
N02 6 N18 4 
N03 8 N19 5 
N04 12 N20 12 
N05 11 N21 13 
N06 4 N22 6 
N07 7 N23 11 
N08 11 N24 13 
N09 9 N25 5 
N10 5 N26 9 
N11 6 N27 2 
N12 6 N28 5 

N29 8  N30 9 
Total NOR 92 Total OSA 106 
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2.3 Time-Frequency Plots 

2.3.1 Short-Time Discrete Fourier Transform (STDFT) 

From Section 2.2.2, R-R interval time series was sampled at 10 Hz.  Choosing 

900-second clips from Section 2.2.3, the discrete time series develop into 9000-point 

clip for each of the 900-second clips. 

STDFT is performed on these equally-spaced 9000-point R-R interval discrete 

time series.  From [17], the STDFT is found using:  

sF
fjN

w ehnSfnP
πτ

τ

ττ
21

0
})()({),(

−−

=

⋅⋅+= ∑  

where P(n,f) is the complex Fourier Transform at discrete time n and discrete frequency 

f,  S(n) is the discrete R-R interval time signal, hw(n) is a Hanning window with of N = 

300 point length, and Fs = 10Hz is the sampling rate. 

In order to decrease the computational load, without effecting the resolution, the 

resulting matrix is sampled at every n = 4 points, and including the frequency range of 

0-0.5 Hz at 0.004 Hz intervals, the STDFT complex matrix is reduced to 2250 discrete 

temporal columns by 125 discrete frequency rows. 

2.3.2 Converting STDFT to Pictorial Images 

198 125-rows × 2250-columns P(n,f) STDFT complex-valued matrices are 

obtain.  These matrices are handled as complex valued function of two variables i and j.  

This allows for conventional matrix processing methods to be applied, or for these 

matrices to be processed as pictorial images, after converting the complex values of the 

matrices to color or gray-level encoded values.  This conversion is considered as one of 



 

 14

the major contributions of this investigation, where validated image recognition and 

classification schemes can be applied on of STDFT matrices extracted from temporal 

signal. 

Performing a magnitude of the complex-valued matrices is equivalent to finding 

the signal power at each time-frequency point.  When plotted with MATLAB® using the 

mesh function, the plot appears to have a smooth continuous surface.  This function is 

used to visualize the resulting STDFT power distribution of the time-frequency plots.  

Different power distribution trends can be compared and contrasted between plots 

produced from NOR clips and OSA clips.  

The following are four color-coded figures of chosen clips from the study that 

show the different trends in NOR and OSA clips.  The coloring scheme is hot-cold; in 

which red signifies higher end of the power spectrum, and blue signifies the lower end.  

In Figures 2.3 and 2.4, there are visual distinctions between the NOR and OSA clips.  

However, in Figures 2.5 and 2.6, this distinction is not as clear.  A reliable method of 

image detection and classification is needed. 
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Figure 2.3 Color-code illustration of a 15-minute clip from a normal subject 
(N10). The coloring is done using MATLAB mesh command.  

 

 
Figure 2.4 Color-code illustration of a 15-minute clip from an apneic subject 
(N20). The coloring is done using MATLAB mesh command.  

. 
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Figure 2.5 Color-code illustration of a 15-minute clip from a normal subject 
(N11). The coloring is done using MATLAB mesh command.  

 

 
Figure 2.6 Color-code illustration of a 15-minute clip from an apneic subject 
(N20). The coloring is done using MATLAB mesh command. 
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However, for the purposes of this investigation, only gray-level encoding is 

considered.  Choosing gray-level encoding simplifies the detection schemes.  In a gray-

level encoding, Ng levels are usually used, where Ng is equal to 2N, N=1, 2, 3, etc.  The 

value of each level corresponds to a shade of gray in which level 0 is black and level 

Ng-1 is white. The magnitude of each complex matrix P(n,f) is used to produce real-

valued matrix I125×2250. 

The following four sections describe four characteristically different encoding 

schemes that can be applied to generate four different images per each 900-sec clip.  

Each of the following encoding schemes will be trailed with example plots representing 

the encoding scheme applied on the clips shown in figures 2.3-6. 

2.3.2.1 Magnitude encoding with 16 Gray levels (Ng = 16) 

For encoding purposes, the global maximum and minimum magnitude values of 

the entire matrix I125×2250 were found.  The entire matrix was normalized with respect to 

I(m,n)max.  Then all values were quantized to 16 equally-spaced bins, where each bin’s 

length is equal to
16

),(),( minmax nmInmI −
.  The quantized 16-gray-level matrix, 

Ig16(m,n), was found using the following rule: 

inmI
nmInmI

inmI
nmInmI

iIf g =⇒⎟⎟
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⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ −

×+<≤⎥⎦
⎤

⎢⎣
⎡ −
× ),(
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)1(),(
16

),(),(
16
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for 150 ≤≤ i , 1251 ≤≤ m , 22501 ≤≤ n .  The following are plots of the same clips 

shown in figures 2.3-6 encoded in this scheme. 
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Figure 2.7 Gray-level encoding of a 15-minute clip from a normal subject (N10). 
The encoding is done using absolute value with Ng = 16. 

 

 
Figure 2.8 Gray-level encoding of a 15-minute clip from an apneic subject (N20). 
The encoding is done using absolute value with Ng = 16. 
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Figure 2.9 Gray-level encoding of a 15-minute clip from a normal subject (N11). 
The encoding is done using absolute value with Ng = 16. 

 

 
Figure 2.10 Gray-level encoding of a 15-minute clip from an apneic subject 
(N21). The encoding is done using absolute value with Ng = 16. 
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2.3.2.2 Magnitude encoding with 32 Gray levels (Ng = 32) 

Higher resolution images, with smaller quantization bins, and lower 

quantization error, can be achieved by using 32 gray levels, rather than 16.  As in 

Section 2.3.2.1, the global maximum and minimum values of the entire matrix I125×2250 

were found.  The entire matrix was normalized with respect to I(m,n)max.  Then all 

values were quantized to 32 equally-spaced bins, where each bin’s length is equal 

to
32

),(),( minmax nmInmI −
.  The quantized 32-gray-level matrix, Ig32(m,n), was found 

using the following rule: 

inmI
nmInmI

inmI
nmInmI
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⎡ −
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⎤

⎢⎣
⎡ −
× ),(

32
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32

),(),(
32
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for 310 ≤≤ i , 1251 ≤≤ m , 22501 ≤≤ n . The following are plots of the same clips 

shown in figures 2.3-6 encoded in this scheme. 
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Figure 2.11 Gray-level encoding of a 15-minute clip from a normal subject (N10). 
The encoding is done using absolute value with Ng = 32. 

 

 
Figure 2.12 Gray-level encoding of a 15-minute clip from an apneic subject 
(N20). The encoding is done using absolute value with Ng = 32. 
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Figure 2.13 Gray-level encoding of a 15-minute clip from a normal subject (N11). 
The encoding is done using absolute value with Ng = 32. 

 

 
Figure 2.14 Gray-level encoding of a 15-minute clip from an apneic subject 
(N21). The encoding is done using absolute value with Ng = 32. 
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2.3.2.3 Ln(Magnitude) encoding with 16 Gray levels (Ng = 16) 

The encoding process described in Sections 2.3.2.1-2 is very sensitive to the 

global minimum and maximum values of I(m,n), and particularly sensitive to the 

maximum value.  For images that showed a localized high peak in magnitude, all other 

local maxima are dwarfed and data is potentially lost during the process of quantization.   

Taking the natural logarithm of the magnitude of I(m,n) is a method that will 

suppress the global maximum, and give rise to the details of the local maxima. Then as 

in Section 2.3.2.1, the global maximum and minimum intensity values of the entire 

matrix I125×2250 were found.  The entire matrix was normalized with respect to I(m,n)max.  

Then all values were quantized to 16 equally-spaced bins, where each bin’s length is 

equal to
16

),(),( minmax nmInmI −
.   

The quantized 16-gray-level matrix, IgLn16(m,n), was found using the following 

rule: 

inmI
nmInmI
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16
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for 150 ≤≤ i , 1251 ≤≤ m , 22501 ≤≤ n .  The following are plots of the same clips 

shown in figures 2.3-6 encoded in this scheme. 
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Figure 2.15 Gray-level encoding of a 15-minute clip from a normal subject (N10). 
The encoding is done using ln of absolute value with Ng = 16. 

 

 
Figure 2.16 Gray-level encoding of a 15-minute clip from an apneic subject 
(N20). The encoding is done using ln of absolute value with Ng = 16. 
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Figure 2.17 Gray-level encoding of a 15-minute clip from a normal subject (N11). 
The encoding is done using ln of absolute value with Ng = 16. 

 

 
Figure 2.18 Gray-level encoding of a 15-minute clip from an apneic subject 
(N21). The encoding is done using ln of absolute value with Ng = 16. 
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2.3.2.4 Histogram(Magnitude) encoding with 16 Gray levels (Ng = 16) 

Based on the fact that the previous three images have gray-level bins that were 

equally spaced, a fourth image was introduced.  This image is based on quantizing the 

image into unequally spaced bins, where the length of the bin is inversely proportional 

to the histogramic distribution of the I(m,n) magnitude values.  In other words, the 

higher the occurrence of a certain range of values in the matrix I(m,n) is, the smaller the 

bin size that will contain them.   

Hence, values with similar characteristics with be grouped together, and the 

effect of extremely high or extremely low values will be nullified.  This means that all 

Ng gray levels will have equal distribution in the image.  Figure 2.19 illustrates this 

encoding scheme with Ng = 4.  It can be noticed that the unequal bin length is due to the 

unequal intensity distribution, which is a function of the image itself. 

 
Figure 2.19 Histogram distribution of absolute values of clip in N10. Notice the 
unequal sized bins used to generate a 4-gray level image. 

 

B1 
B2 

B3 

B4
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It is observed that the bin thresholds are chosen so that ratio of value 

occurrences within the bin to the overall value occurrences for all bins is fixed.  This 

value is equal to
gN

1 , and for Ng = 16, this value is 0.0625.  No normalization is 

required for this encoding method.   

The quantized 16-gray-level matrix, IgHist16(m,n), was found using the following 

rule: ( ) inmIibinnmIIf gHist =⇒⊂ ),(#),( 16 , for 150 ≤≤ i , 1251 ≤≤ m , 22501 ≤≤ n . 

For example, in Figure 2.19, an example intensity image histogram is shown.  

Choosing Ng = 4, the values falling within bin B1 will have a quantized value of i = 0 

(Black). The values falling within bin B2 will have a quantized value of i = 1, which 

corresponds to a 66%-Gray shade.  The values falling within bin B3 will have a 

quantized value of i = 2 (33%-Gray), and finally the trailing tail of intensity values 

falling within bin B4 will have a quantized value of i = 3 (White). The following are 

plots of the same clips shown in figures 2.3-6 encoded in this scheme. 
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Figure 2.20 Gray-level encoding of a 15-minute clip from a normal subject (N10). 
The encoding is done using histogram of absolute value with Ng = 16. 
 

 
Figure 2.21 Gray-level encoding of a 15-minute clip from an apneic subject 
(N20). The encoding is done using histogram of absolute value with Ng = 16. 
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Figure 2.22 Gray-level encoding of a 15-minute clip from a normal subject (N11). 
The encoding is done using histogram of absolute value with Ng = 16. 

 

 
Figure 2.23 Gray-level encoding of a 15-minute clip from an apneic subject 
(N21). The encoding is done using histogram of absolute value with Ng = 16. 
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2.4 Feature Extraction 

In previous sections, we have created four characteristically different gray-level 

images from each of the 900-second clips.  Known and published image processing and 

classification techniques can be explored and used for the purposes of this research.  

Image classification based on their statistical properties is well-established and used in 

many industrial and medical applications.  It is based on describing the image by a set 

of numerical features, such as Fourier, moment, Zernike, and Textural Features.  

Textural Features, first introduced by Haralick [18], are used in this investigation. 

2.4.1 Co-occurrence Matrices 

Described first by [18], Gray Level Co-occurrence Matrices (GLCM) are Ng×Ng 

symmetric matrices that contain the count of paired i and j gray levels separated by a 

certain distance, d, and angle, θ.  So, a single image can produce numerous different 

GLCMs, depending on the choice of parameters, d and θ. The main aim of developing 

this method was the need for a faster, reliable and automatic method to sort the massive 

number of satellite images in the early 1970’s [18]. 

For images with square pixels, there are four conventional values for θ that 

dictate the neighborhood relationship of any two paired pixels [18].  θ take on the 

values of 0 º, 45 º, 90 º, and 135 º.  However, for the purposes of this research, only θ = 

90 º values will be considered for the majority of GLCMs, for the reason explained in 

Section 2.3.2, and further discussed in Section 2.4.3.  A θ = 0 º GLCM was used only 

once. 
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Calculating GLCMs has a high computational load, especially for images with 

large Ng and/or large dimensions.  Different algorithms to efficiently calculate the 

GLCMs have been suggested [19]-[22].   

In this work, a simple code of for-loop counters was used to calculate the 

GLCMs.  The results of this code were manually verified and compared to the examples 

and results shown in the literature [18], [20], [23], and [24]. 

Other forms of co-occurrence matrices have been suggested, including 

Neighborhood Gray-tone Difference Matrices [25], [26], and Gray-Level Gradient-

based Co-occurrence Matrices [27].  Also, the co-occurrence matrices definition has 

been generalized for multispecral images, where a single image is composed of 

different intensity, visible color, UV and/or IR sensors [28]. 

Normalized GLCMs (NGLCM) are GLCMs normalized to the total number of 

counted pairs, Np.  Np is function of image size, the orientation θ, and the distance d.  

For an image with size Ip×Ip pixels, Np is given as 

 Np = 2ּ( Ip×(Ip -d))  for θ = 0º and 90º , and 

Np = 2ּ((Ip-d)×(Ip -d))  for θ = 45º and 135º. 

NGLCM’s have been shown to consistently perform better than the un-

normalized versions [29].  NGLCMs have been used for the purposes of this 

investigation. 

The following is an example of calculating a GLCM and NGLCM from a 

simple 5-pixel by 5-pixel image, with only two gray levels (Ng = 2); black and white, 

for all four standard orientations (θ = 0 º, 45 º, 90 º, and 135 º), and d = 1. 
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Figure 2.24 Example 2-tone gray level image. The image is 5-by-5 pixels. Its 
corresponding GLCMs and NGLCMs are found in Table 2.4. 

 
 

Table 2.4 GLCMs and NGLCMs found from the 5-pixel by 5-pixel example image in 
Figure 2.24  

 GLCM NGLCM 

θ = 0 º,  
Np = 40 

8161
1600
10, →↓ ji

 

2.04.01
4.000

10, →↓ ji
 

θ = 45 º,  
Np = 32 

8121
1200
10, →↓ ji

 

25.0375.01
375.000
10, →↓ ji

 

θ = 90 º,  
Np = 40 

1661
6120
10, →↓ ji

 

40.015.01
15.030.00
10, →↓ ji

 

θ = 135 º,  
Np = 32 

8121
1200
10, →↓ ji

 

25.0375.01
375.000
10, →↓ ji

 

 

2.4.2 Textural Features 

 In [18] definitions of statistical measures calculated from GLCM and later 

expanded to NGLCM are presented.  These statistical measures are used as numerical 

descriptors of the textural features of the image from which the GLCM.  More measures 

have been proposed in the literature [19], [30], and [31]. 
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For all the subsequent measures, the following definitions are applicable: 

M(i,j) = The Gray Level Co-occurrence Matrix M element located on the ith row 

and jth column.  Since M is symmetric, M(i,j) = M(j,i) since. 

Ng = Number of gray levels used in the image. 

Matrix Mean, ∑ ∑=
g gN

i

N

j
jiMi ),(μ  

 Matrix Variance, ∑ ∑−=
g gN

i

N

j
jiMi ),()( 22 μσ .  

Nine textural features are chosen for the purpose of this research, and are 

defined herein. 

Entropy (ENT) [18], [19], [31]: ∑∑ ⋅−=
g gN

i

N

j

jiMjiMENT )),(log(),(  

Angular Second Moment (ASM) [18], [19], [31]: ∑∑=
g gN

i

N

j
jiMASM 2)],([  

Contrast (CON) [19], [31]: ∑∑ −⋅=
g gN

i

N

j
jijiMCON 2)(),(  

Correlation (COR) [19], [30], [31]: ∑∑ −⋅−⋅
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i

N
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)()(),(
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μμ  

Dissimilarity (DIS) [19], [31]: ∑∑ −⋅=
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i
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Inverse Difference (IND) [19]: ∑∑ −+
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Inverse Difference Moment (IDM) [18], [19], [30]: ∑∑ −+
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Variance (VAR) [18], [30]: ∑∑ −⋅=
g gN

i

N

j
ijiMVAR 2)(),( μ  

Inverse Recursivity (INR) [30]: 

∑∑∑ ⋅−⋅⋅⋅−=
+=

gg g N
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N

i

N

ij

iiMiiMjiMjiMINR )),(log(),()),(2log(),(2
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The following are the calculations of these features from the NGLCMs 

calculated in Table 2.4. 

Table 2.5 Textural features calculated from NGLCMs found in Table 2.4 
 NGLCM-0 º NGLCM-45 º NGLCM-90 º NGLCM-135 º 

ENT +1.05462 +1.08190 +1.29644 +1.08190 
ASM +0.36000 +0.34375 +0.29500 +0.34375 
CON +0.80000 +0.75000 +0.30000 +0.75000 
COR -0.66667 -0.60000 +0.39394 -0.60000 
DIS +0.80000 +0.75000 +0.30000 +0.75000 
IND +0.60000 +0.62500 +0.85000 +0.62500 
IDM +0.84000 +0.85000 +0.94000 +0.85000 
VAR +0.24000 +0.23438 +0.24750 +0.23438 
INR +0.50020 +0.56214 +1.08860 +0.56214 

 

2.4.3 Image Preparation 

From Section 2.3.2, each of the 198 15-minute clips has been converted to a 

125×2250 point complex-valued matrix using STDFT.  Each of these matrices in turn 

produced four characteristically different gray-level images, as detailed in Sections 

2.3.2.1-4.   

For the purposes of having square images during for processing, each one of the 

images is cut into 18 segments, each segment of size 125×125 (18×125=2250).  So each 

segment represents 50 seconds in length.  The last segment, segment-18, is disregarded.   



 

 35

All seventeen segments coming from one image clip will be processed 

separately, and their results will be averaged to give a mean value for that one image 

clip. 

Studying the characteristics of these images, we noticed in Section 2.3.2 the 

following: 

1. All these images have vertical grooves or striations (at θ = 90º). 

2. Most of the clip energy and fluctuations are evident in the lower half of 

the frequency range (0-0.25Hz). 

It has been shown that different GLCMs can be derived from any given image, 

depending on the choice of distance, d, and angle, θ.  Based on the two observations, 

orientation of GLCM calculation was mostly along θ = 90º.  One image was calculated 

in the θ = 0º direction during the research experimentation phase.  Also, a couple of 

images show a size of 64×125, to account for the observation that most of the energy in 

the signal was seen to be in the lower half of the frequency range.  

Applying feature extraction techniques as in Section 2.4.2, ten different GLCMs 

were extracted from each segment as follows: 

From the image constructed in Section 2.3.2.1, four GLCM’s were found: 

 a. Full image 125×125, d = 5, θ = 90º gives GLCM-1 

 b. Full image 125×125, d = 1, θ = 90º gives GLCM-2 

 c. Half image 64×125, d = 5, θ = 90º gives GLCM-3 

 d. Full image 125×125, d = 5, θ = 0º gives GLCM-4 
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From the image constructed in Section 2.3.2.2, three GLCM’s were found: 

 a. Full image 125×125, d = 5, θ = 90º gives GLCM-5 

 b. Full image 125×125, d = 3, θ = 90º gives GLCM-6 

 c. Full image 125×125, d = 1, θ = 90º gives GLCM-7 

From the image constructed in Section 2.3.2.3, two GLCM’s were found: 

 a. Full image 125×125, d = 5, θ = 90º gives GLCM-8 

 b. Half image 64×125, d = 5, θ = 90º gives GLCM-9 

From the image constructed in Section 2.3.2.4, one GLCM was found: 

 Full image 125×125, d = 5, θ = 90º gives GLCM-10 

In the following figure 2.25, the process of slicing the clip into 17 usable square 

segments is illustrated.  Each segment is processed to produce 4 different gray-scale 

images.  Each image in turn is sorted to produce 10 different GLCMs as described 

above.  For each GLCM, 9 features are extracted, and in turn these features are 

averaged across all 17 segments to give 9 features per treated image.  Having 10 treated 

images per clip, this adds up to 90 features per clip. 

It should be pointed out that all GLCMs are modified to their normalized form 

[29], NGLCMs, as described in Section 2.4.1. 



 

 37

Fi
gu

re
 2

.2
5 

B
lo

ck
 d

ia
gr

am
 o

f t
he

 o
ve

ra
ll 

cl
ip

 e
nc

od
in

g 
an

d 
fe

at
ur

e 
ex

tra
ct

io
n 

  
 

Im
ag

e 
1 

Im
ag

e 
2 

Im
ag

e 
3 

Im
ag

e 
4 

N
g=

16
, A

bs
(1

25
×

12
5)

, d
=5

, θ
=

90
º 

N
g=

16
, A

bs
(1

25
×

12
5)

, d
=1

, θ
=

90
º 

N
g=

16
, A

bs
(1

25
×

64
), 

d=
5,

 θ
=

90
º 

N
g=

16
, A

bs
(1

25
×

12
5)

, d
=

5,
 θ

=0
º 

N
g=

32
, A

bs
(1

25
×

12
5)

, d
=1

, θ
=

90
º 

N
g=

32
, A

bs
(1

25
×

12
5)

, d
=3

, θ
=

90
º 

N
g=

32
, A

bs
(1

25
×

12
5)

, d
=5

, θ
=

90
º 

N
g=

16
, L

n(
Ab

s(
12

5×
12

5)
), 

d=
5,

 θ
=

90
º 

N
g=

16
, L

n(
Ab

s(
12

5×
64

))
, d

=
5,

 θ
=

90
º 

N
g=

16
, H

is
tg

rm
(1

25
×

12
5)

, d
=

5,
 θ

=
90

º 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,1
,k
 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,2
,k
 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,3
,k
 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,4
,k
 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,5
,k
 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,6
,k
 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,7
,k
 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,8
,k
 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,9
,k
 

[9
 te

xt
ur

al
 fe

at
ur

es
] m

,1
0,

k 

C
lip

 m
 (1
≤m
≤1

98
) 

12
5-

ro
w

 ×
 2

25
0-

co
lu

m
n 

re
al

-v
al

ue
d 

M
at

rix
 

Se
gm

en
t 

k 
= 

1 

12
5x

12
5 

Se
gm

en
t 

k 
= 

2 

12
5x

12
5 

Se
gm

en
t 

k 
= 

3 

12
5x

12
5 

Se
gm

en
t 

k 
= 

4 

12
5x

12
5 

Se
gm

en
t 

k 
= 

5 

12
5x

12
5 

Se
gm

en
t 

k 
= 

6 

12
5x

12
5 

Se
gm

en
t 

k 
= 

7 

12
5x

12
5 

Se
gm

en
t 

k 
= 

16
 

12
5x

12
5 

Se
gm

en
t 

k 
= 

17
 

12
5x

12
5 

Se
gm

en
t 

k 
= 

18
 

12
5x

12
5 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,1
 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,2
 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,3
 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,4
 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,5
 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,6
 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,7
 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,8
 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,9
 

[9
 m

ea
n 

te
xt

ur
al

 fe
at

ur
es

] m
,1

0 

Im
ag

e 
C

re
at

io
n 

N
G

L
C

M
Fe

at
ur

e 
E

xt
ra

ct
io

n 
M

ea
n 

Fe
at

ur
es

 o
ve

r 
al

l  
k 

= 
17

 se
gm

en
ts

 



 

 38

2.4.4 Feature Organization 

With each of the 198 diagnosed clips processed, ninety average features are 

found to describe each clip.  These features were sorted to form a 198×92 matrix for 

data processing purposes; 198 rows representing each example clip (example vectors).  

Each example vector composed of 90 columns containing all 90 features, column 91 has 

the expert diagnosis of the clip (0 for NOR, 1 for OSA), and column 92 has the clip 

number, for clip tracking purposes.  

2.4.5 Feature Selection 

With 90 features making up every example vector, the issue of identifying the 

features with that will give an optimum detecting accuracy rises.  Optimum feature 

selection is complex problem addressed extensively in the literature [33]-[36].  The goal 

is to find the subset of features that will result in the least classification error [36].  This 

is particularly important due to the fact that many of the features are redundant, noisy, 

or irrelevant to the classification problem at hand [35].  Also, the selection of a small 

subset of features from all candidate feature set can greatly reduce the computational 

load, especially in the case of using a neural network (NN) as a classifier. 

The following is a description of the different feature selection schemes used in 

the classification stage of the research. 

2.4.5.1 Complete Extracted Feature Set  

Using all 90 features as inputs to the classifier was an available and legitimate 

option, even if it is computationally exhaustive, and most likely will not result in 
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optimal results.  This option can be considered as a control group to compare it with the 

subsequent feature selection methods and results. 

2.4.5.2 Feature Selection Using Statistical Difference 

At the first stages of this research, it was noticed that some features showed 

statistically significant difference between NOR clips and OSA clips within the general 

population of the clips.  These features seemed to be trivial candidate to be used as 

inputs to the classifier.  The features that showed best 1st degree statistical separation, 

i.e. features with largest mean gap between NOR and OSA and with minimum spread 

around each mean, were selected.  These features were identified by minimum 
μ
σ  

value. 

2.4.5.3 Feature Selection Using Piecewise Linear Network  

Several feature selection methods have been developed in the quest of finding 

an optimal feature subset that has the least classification error.  Inherently, this requires 

a user-define criterion to base the feature selection or rejection on [33].  Bottom-up or 

top-down methods are considered to be easy to construct, where a feature subset is 

growing or pruned, respectively.  These methods are not optimal since they suffer from 

the nesting effect, where a feature cannot be discarded after being selected in the top-

down method, or a feature cannot be selected if it was rejected early on in the bottom up 

method.  The branch and bound method [32] has been shown to give the optimal 

selection of features subset.  However, this method was shown impractical for data sets 

with more than 30 features [33].  Floating search algorithm [39] has been introduced to 
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prevent the nesting effect, in which selection of the optimal feature subset is open to 

discarding chosen features based on conditional criteria. 

Due to the inherent high non-linearity of the feature selection problem, 

Piecewise Linear Networks (PLN) has been shown to optimally perform in selecting the 

feature subset regardless of the size of feature set [33].  In [33], the authors have 

introduced feature selection algorithm that utilize piecewise linear orthonormal least 

square procedure.  This algorithm has been used to find the optimal subset of the 90 

available textural features in the available data.  It has the advantages of giving optimal 

feature subset and being computationally efficient since it requires only one pass of the 

data.  Data is divided in an appropriate number of clusters and auto- and cross-

correlation matrices are calculated only once. 

This algorithm is capable of finding combination of raw features that have high 

variance noise and discovering the useful ones.  This is evident in choosing features 

beyond the 1st degree of statistical difference, and eliminating the noise. 

2.5 Detection Method 

2.5.1 Multilayer Perceptrons 

A Multilayer Perceptron network (MLP) is a form of a feed-forward (FF) neural 

network.  A feed-forward NN is one that does not have any of its frontward layer 

outputs feeding back into a previous layer’s input.  Its simple structure allows for 

relatively easy training, using conventional back-propagation (BP) tainting algorithms.  

It has been shown that MLP classifiers are very successful in image classification 

applications [32]. 



 

 41

In this work, a three layer MLP was used; an input layer, hidden layer and an 

output layer.  The input layer has a number of neurons (nodes) equal to the input vector 

length.  The output layer consists of one neuron, accounting for a possibility of only 2 

classes to be classified.  The number of units in the hidden layer is adjustable, to 

achieve maximum classification accuracy. 

Besides changing the number of hidden units, each layer of a MLP has two 

parameters that are trained to achieve maximum detection: node transfer function and 

weight vector. Both input and output layers use linear transfer functions (TF) for each 

neuron. This is achieved using MATLAB®’s linear TF purelin.  The hidden layer, on 

the other hand, uses a hyperbolic tangent sigmoid function.  MATLAB®’s 

implementation of this TF is
1)1(

2)( 2 −+
=

− ne
nf , and the built-in TF is tansig. 

A MLP can be created using the newff function in the Neural Network toolbox 

in MATLAB®.  Here, ff stands for “feed-forward”.  Three MLPs were created to 

classify the clips based on the three sets of input features described in Section 2.4.5. 

2.5.2 Training the Multilayer Perceptrons 

Training of a MLP is achieved by fitting the network parameters to the desired 

output using BP.  By training the network using a training set, the network training 

accuracy is increases with the number of training epochs, Nep.  This is characteristic of 

MLPs, where it has been shown that they can approximate any polynomial [32].  

However, the problem of over-fitting arises with increased number of training epochs, 
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since the accuracy of a test set tends to have an optimum Nep, after which it starts to 

decline [32]. 

In order to optimize the performance of the three MLPs we created, the selected 

feature set, used as input vectors to the MLP, are randomly assigned into two groups; 

training and testing, with a 2:1 ratio.  With total of 198 clips, this is translated to 132 

clips for training, and the remaining 66 for testing and validation.   

The optimum number of hidden units and training epochs (Nh, Nep pair) is found 

using a the following method:   

For each possible Nh, the network is trained using the training set with Nep 

epochs, and then the weights and biases parameters of the network are fixed in order to 

run the test set and calculate the accuracy of the network, since the network was blind to 

this set.  Once the training and testing accuracies are stored for this Nep, the MLP is then 

trained for the next Nep increment, and so on.  Once the maximum Nep is reached, the 

training and testing for this Nh is repeated another 50 times, using different training and 

testing sets.  This allows for studying the average performance of the MLP at that given 

Nh.    

After experimenting with different back-propagation training algorithms, the 

one-step-secant back propagation method was used for training the MLP due to its fast 

convergence compared to other methods. It is implemented using the MATLAB® built-

in trainoss algorithm. 
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2.5.3 Monte-Carlo Simulations and Network Performance 

The goal in the network optimization is to find the optimum pair of hidden units 

and training epochs that will result in the maximum detection rate for the test set.  Once 

these pairs are chosen for each of the three MLPs at hand, 1000-run Monte-Carlo 

simulations are performed to study the performance of the detector MLPs.  

The performance of the network is measured using the following criteria: 

Sensitivity = %100×
testedclipsOSATotal

OSAc  

Specificity = %100×
testedclipsNORTotal

NORc  

Accuracy = %100
&

×
+

testedclipsOSANORTotal
NOROSA cc  

where OSAc is the number of correctly detected OSA clips and NORc is the number of 

correctly detected NOR clips [8], [37].   

Sensitivity refers to the probability that a diagnostic test is positive, given that 

the subject is apneic.  Specificity refers to the probability that a diagnostic test is 

negative, given that the subject is normal.  Accuracy refers to the probability that the 

diagnostic test is performed correctly [37].  
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CHAPTER 3 

RESULTS AND ANALYSIS 

 

The first section of this chapter summarizes the statistics of the study group.  

Section 3.2 reports the statistical results obtained from the textural features extracted 

from the clips’ different images.  Section 3.3 summarizes the results obtained from the 

different feature selections schemes described in the Chapter 2.  Finally, Section 3.4 

reports the training and testing performance of the detection algorithm suggested by this 

investigation. 

3.1 Apnea-Hypopnea Index (AHI) Statistics 

The AHI is the parameter used to distinguish between the NOR (N = 12) and 

OSA (N = 14) groups.  Figure 3.1 shows the mean and Standard Error Mean (SEM) for 

the AHI of the two groups.  SEM is calculated as
N
σ , where σ is the standard deviation 

of the group, and N is the number of subjects or examples in the group. 
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Mean and SEM of AHI for the NOR and OSA 
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Figure 3.1 A comparison between the Mean of AHI for the NOR and OSA 
groups. The error bars represent the SEM.  The two groups have p-value < 0.05. 

 

3.2 Statistical Analysis of the Textural Features Extracted from the Images 

In section 2.4.3, ten different GLCMs have been proposed to describe each of 

the 198 study clips.  Each of these GLCMs was normalized to produce normalized 

GLCMs (NGLCMs).  In order to study the difference between NOR and OSA clips, 

nine textural features were extracted from each of NGLCMs.  These textural features 

are entropy (ENT), angular second moment (ASM), contrast (CON), correlation (COR), 

dissimilarity (DIS), inverse difference (IND), inverse difference moment (IDM), 

variance (VAR), and inverse recursivibility (INR).  This collective group of ninety 

features per clip is the input to the proposed detection algorithm.   

In the following ten subsections, a 1st degree statistical analysis of the nine 

features produced by each NGLCM is presented.  The mean (µ), standard deviation (σ), 
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and the percent standard deviation to the mean ratio (
μ
σ ) are calculated.  These values 

were initially used as discriminators to find the best feature subset to be used as inputs 

to the detection algorithm.  Features with larger OSANOR μμ −  and least (
μ
σ ) percentage 

were considered prime candidate for the 1st degree statistical difference feature subset. 
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3.2.1 Features Extracted from NGLCM-1 

NGLCM-1 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.1.  This image has Ng=16, representing the absolute 

magnitude of the power spectrum of the time frequency plot of the clip.  The full scale 

of the frequency was used (125 points).  In calculating the GLCM, pairing of the pixels 

was at distance d=5 and orientation θ=90˚.  Table 3.1 shows a tabulation of the statistics 

of the features extracted from NGLCM-1 for all clips extracted from the NOR and OSA 

groups.  Figure 3.2 shows a graphical representation of these results. 

Table 3.1 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-1 for both NOR and OSA groups 

 NOR (N = 92) OSA (N = 106) 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT1 2.38584 0.55879 23.42 1.82793 0.51032 27.92 
ASM1 0.52323 0.21250 40.61 0.32373 0.14266 44.07 
CON1 0.85136 0.49757 58.44 0.50537 0.24761 48.99 
COR1 0.80902 0.03738 4.62 0.82276 0.04468 5.43 
DIS1 0.52323 0.21250 40.61 0.33628 0.13404 39.86 
IND1 0.78190 0.07186 9.19 0.85367 0.05373 6.29 
IDM1 0.99675 0.00188 0.19 0.99807 0.00094 0.09 
VAR1 2.60765 1.31884 50.58 1.77622 0.87370 49.19 
INR1 2.10968 0.47982 22.74 1.63869 0.44409 27.10 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-1
(Abs, Ng=16, 125×125, d = 5, θ = 90º)
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Figure 3.2 Comparison between the mean of the features extracted from  
NGLCM-1 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.2 Features Extracted from NGLCM-2 

NGLCM-2 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.1.  This image has Ng=16, representing the absolute 

magnitude of the power spectrum of the time frequency plot of the clip.  The full scale 

of the frequency was used (125 points).  In calculating the GLCM, pairing of the pixels 

was at distance d=1 and orientation θ=90˚.  Table 3.2 shows a tabulation of the statistics 

of the features extracted from NGLCM-2 for all clips extracted from the NOR and OSA 

groups.  Figure 3.3 shows a graphical representation of these results. 

Table 3.2 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-2 for both NOR and OSA groups 

 NOR (N = 92) OSA (N = 106) 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT2 1.82328 0.41382 22.70 1.41891 0.37904 26.71 
ASM2 0.27502 0.10280 37.38 0.39803 0.13068 32.83 
CON2 0.11066 0.04549 41.10 0.07095 0.02896 40.82 
COR2 0.97185 0.00874 0.90 0.97213 0.01061 1.09 
DIS2 0.11040 0.04539 41.12 0.07076 0.02888 40.82 
IND2 0.94485 0.02268 2.40 0.96465 0.01443 1.50 
IDM2 0.99957 0.00018 0.02 0.99972 0.00011 0.01 
VAR2 2.74772 1.32471 48.21 1.95360 0.90989 46.58 
INR2 1.74765 0.38381 21.96 1.37064 0.35985 26.25 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-2
(Abs, Ng=16, 125×125, d = 1, θ = 90º)
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Figure 3.3 Comparison between the mean of the features extracted from  
NGLCM-2 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.3 Features Extracted from NGLCM-3 

NGLCM-3 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.1.  This image has Ng=16, representing the absolute 

magnitude of the power spectrum of the time frequency plot of the clip.  Half the scale 

of the frequency was used (64 points).  In calculating the GLCM, pairing of the pixels 

was at distance d=5 and orientation θ=90˚.  Table 3.3 shows a tabulation of the statistics 

of the features extracted from NGLCM-3 for all clips extracted from the NOR and OSA 

groups.  Figure 3.4 shows a graphical representation of these results. 

Table 3.3 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-3 for both NOR and OSA groups 

 NOR (N = 92) OSA (N = 106) 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT3 2.36465 0.45421 19.21 2.02018 0.43726 21.64 
ASM3 0.17681 0.07608 43.03 0.25164 0.09900 39.34 
CON3 0.35623 0.13489 37.86 0.26736 0.11301 42.27 
COR3 0.92608 0.01989 2.15 0.92448 0.03126 3.38 
DIS3 0.30835 0.10159 32.95 0.23780 0.09115 38.33 
IND3 0.85332 0.04593 5.38 0.88573 0.04236 4.78 
IDM3 0.99862 0.00052 0.05 0.99896 0.00044 0.04 
VAR3 3.22542 1.44491 44.80 2.77618 1.20756 43.50 
INR3 2.16760 0.39570 18.26 1.86601 0.38404 20.58 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-3
(Abs, Ng=16, 64×125, d = 5, θ = 90º)
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Figure 3.4 Comparison between the mean of the features extracted from  
NGLCM-3 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.4 Features Extracted from NGLCM-4 

NGLCM-4 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.1.  This image has Ng=16, representing the absolute 

magnitude of the power spectrum of the time frequency plot of the clip.  The full scale 

of the frequency was used (125 points).  In calculating the GLCM, pairing of the pixels 

was at distance d=5 and orientation θ=0˚.  Table 3.4 shows a tabulation of the statistics 

of the features extracted from NGLCM-4 for all clips extracted from the NOR and OSA 

groups.  Figure 3.5 shows a graphical representation of these results. 

Table 3.4 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-4 for both NOR and OSA groups 

 NOR (N = 92) OSA (N = 106) 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT4 2.01444 0.45645 22.66 1.58810 0.43675 27.50 
ASM4 0.24840 0.10483 42.20 0.37128 0.13642 36.74 
CON4 0.23352 0.09304 39.85 0.16435 0.07620 46.36 
COR4 0.94740 0.01305 1.38 0.94143 0.02267 2.41 
DIS4 0.20657 0.07507 36.34 0.14905 0.06515 43.71 
IND4 0.90092 0.03500 3.89 0.92788 0.03094 3.33 
IDM4 0.99909 0.00036 0.04 0.99936 0.00030 0.03 
VAR4 2.78114 1.32986 47.82 1.99617 0.91865 46.02 
INR4 1.88117 0.41107 21.85 1.49084 0.39644 26.59 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-4
(Abs, Ng=16, 125×125, d = 5, θ = 0º)
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Figure 3.5 Comparison between the mean of the features extracted from  
NGLCM-4 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.5 Features Extracted from NGLCM-5 

NGLCM-5 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.2.  This image has Ng=32, representing the absolute 

magnitude of the power spectrum of the time frequency plot of the clip.  The full scale 

of the frequency was used (125 points).  In calculating the GLCM, pairing of the pixels 

was at distance d=5 and orientation θ=90˚.  Table 3.5 shows a tabulation of the statistics 

of the features extracted from NGLCM-5 for all clips extracted from the NOR and OSA 

groups.  Figure 3.6 shows a graphical representation of these results. 

Table 3.5 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-5 for both NOR and OSA groups 

 NOR (N = 92) OSA (N = 106) 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT5 3.39839 0.65466 19.26 2.72565 0.61705 22.64 
ASM5 0.09054 0.05549 61.29 0.16475 0.08718 52.92 
CON5 3.14441 2.06239 65.59 1.77052 0.99209 56.03 
COR5 0.83279 0.03176 3.81 0.85376 0.02952 3.46 
DIS5 1.06320 0.42722 40.18 0.68797 0.26729 38.85 
IND5 0.66153 0.08570 12.96 0.75579 0.07345 9.72 
IDM5 0.99700 0.00195 0.20 0.99831 0.00094 0.09 
VAR5 10.56572 5.60065 53.01 7.08415 3.62526 51.17 
INR5 3.01224 0.58179 19.31 2.43304 0.54040 22.21 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-5
(Abs, Ng=32, 125×125, d = 5, θ = 90º)
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Figure 3.6 Comparison between the mean of the features extracted from  
NGLCM-5 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.6 Features Extracted from NGLCM-6 

NGLCM-6 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.2.  This image has Ng=32, representing the absolute 

magnitude of the power spectrum of the time frequency plot of the clip.  The full scale 

of the frequency was used (125 points).  In calculating the GLCM, pairing of the pixels 

was at distance d=3 and orientation θ=90˚.  Table 3.6 shows a tabulation of the statistics 

of the features extracted from NGLCM-6 for all clips extracted from the NOR and OSA 

groups.  Figure 3.7 shows a graphical representation of these results. 

Table 3.6 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-6 for both NOR and OSA groups 

 NOR (N = 92) OSA (N = 106) 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT6 3.13069 0.61297 19.58 2.51151 0.56809 22.62 
ASM6 0.11126 0.06179 55.53 0.19188 0.09139 47.63 
CON6 1.30730 0.80438 61.53 0.76175 0.39854 52.32 
COR6 0.92846 0.01459 1.57 0.93373 0.01971 2.11 
DIS6 0.66388 0.26590 40.05 0.43027 0.16813 39.08 
IND6 0.74467 0.07568 10.16 0.82351 0.05963 7.24 
IDM6 0.99874 0.00077 0.08 0.99926 0.00038 0.04 
VAR6 10.84714 5.60850 51.70 7.44534 3.69733 49.66 
INR6 2.82015 0.53732 19.05 2.29028 0.49880 21.78 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-6
(Abs, Ng=32, 125×125, d = 3, θ = 90º)
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Figure 3.7 Comparison between the mean of the features extracted from  
NGLCM-6 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.7 Features Extracted from NGLCM-7 

NGLCM-7 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.2.  This image has Ng=32, representing the absolute 

magnitude of the power spectrum of the time frequency plot of the clip.  The full scale 

of the frequency was used (125 points).  In calculating the GLCM, pairing of the pixels 

was at distance d=1 and orientation θ=90˚.  Table 3.7 shows a tabulation of the statistics 

of the features extracted from NGLCM-7 for all clips extracted from the NOR and OSA 

groups.  Figure 3.8 shows a graphical representation of these results. 

Table 3.7 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-7 for both NOR and OSA groups 

 NOR (N = 92) OSA (N = 106) 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT7 2.61686 0.49995 19.10 2.11759 0.46367 21.90 
ASM7 0.15445 0.06867 44.46 0.23860 0.09215 38.62 
CON7 0.24501 0.10922 44.58 0.15682 0.06403 40.83 
COR7 0.98408 0.00576 0.59 0.98350 0.00785 0.80 
DIS7 0.22534 0.09046 40.14 0.14588 0.05746 39.39 
IND7 0.89052 0.04234 4.76 0.92882 0.02774 2.99 
IDM7 0.99976 0.00011 0.01 0.99985 0.00006 0.01 
VAR7 11.15492 5.61780 50.36 7.83261 3.77899 48.25 
INR7 2.46960 0.44574 18.05 2.02210 0.42752 21.14 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-7
(Abs, Ng=32, 125×125, d = 1, θ = 90º)
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Figure 3.8 Comparison between the mean of the features extracted from  
NGLCM-7 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.8 Features Extracted from NGLCM-8 

NGLCM-8 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.3.  This image has Ng=16, representing the log of the 

absolute magnitude of the power spectrum of the time frequency plot of the clip.  The 

full scale of the frequency was used (125 points).  In calculating the GLCM, pairing of 

the pixels was at distance d=5 and orientation θ=90˚.  Table 3.8 shows a tabulation of 

the statistics of the features extracted from NGLCM-8 for all clips extracted from the 

NOR and OSA groups.  Figure 3.9 shows a graphical representation of these results. 

Table 3.8 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-8 for both NOR and OSA groups 

 NOR (N = 92) OSA (N = 106) 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT8 3.10340 0.19130 6.16 3.05394 0.18498 6.06 
ASM8 0.06564 0.01447 22.04 0.07053 0.01454 20.62 
CON8 1.06220 0.20693 19.48 0.92169 0.15636 16.96 
COR8 0.78911 0.04556 5.77 0.81818 0.02292 2.80 
DIS8 0.68506 0.08656 12.64 0.62603 0.07232 11.55 
IND8 0.70839 0.02863 4.04 0.72762 0.02568 3.53 
IDM8 0.99594 0.00078 0.08 0.99647 0.00059 0.06 
VAR8 2.68323 0.62907 23.44 2.65270 0.52775 19.89 
INR8 2.73089 0.16808 6.15 2.70256 0.15844 5.86 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-8
(Ln(Abs), Ng=16, 125×125, d = 5, θ = 90º)
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Figure 3.9 Comparison between the mean of the features extracted from  
NGLCM-8 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.9 Features Extracted from NGLCM-9 

NGLCM-9 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.3.  This image has Ng=16, representing the log of the 

absolute magnitude of the power spectrum of the time frequency plot of the clip.  Half 

of the scale of the frequency was used (125 points).  In calculating the GLCM, pairing 

of the pixels was at distance d=5 and orientation θ=90˚.  Table 3.9 shows a tabulation of 

the statistics of the features extracted from NGLCM-9 for all clips extracted from the 

NOR and OSA groups.  Figure 3.10 shows a graphical representation of these results. 

Table 3.9 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-9 for both NOR and OSA groups 

 NOR (N = 92) OSA (N = 106) 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT9 2.35719 0.18907 8.02 2.45024 0.22939 9.36 
ASM9 0.15187 0.03184 20.97 0.13740 0.03541 25.77 
CON9 0.39263 0.05654 14.40 0.38551 0.05835 15.14 
COR9 0.87220 0.02253 2.58 0.88936 0.03607 4.06 
DIS9 0.31210 0.03495 11.20 0.31325 0.03713 11.85 
IND9 0.85455 0.01490 1.74 0.85306 0.01593 1.87 
IDM9 0.99849 0.00021 0.02 0.99852 0.00022 0.02 
VAR9 1.68962 0.45560 26.96 2.08339 0.79281 38.05 
INR9 2.16324 0.17309 8.00 2.25385 0.21669 9.61 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-9
(Ln(Abs), Ng=16, 64×125, d = 5, θ = 90º)
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Figure 3.10 Comparison between the mean of the features extracted from 
NGLCM-9 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.10 Features Extracted from NGLCM-10 

NGLCM-10 were normalized GLCM extracted from the gray-scale image 

scheme described in Section 2.3.2.4.  This image has Ng=16, representing the histogram 

of absolute magnitude of the power spectrum of the time frequency plot of the clip.  The 

full scale of the frequency was used (125 points).  In calculating the GLCM, pairing of 

the pixels was at distance d=5 and orientation θ=90˚.  Table 3.10 shows a tabulation of 

the statistics of the features extracted from NGLCM-10 for all clips extracted from the 

NOR and OSA groups.  Figure 3.11 shows a graphical representation of these results. 

Table 3.10 Mean, standard deviation, and mean to standard deviation ratio for all nine 
features for NGLCM-10 for both NOR and OSA groups 

 NOR OSA 
 Mean (µ) St Dev (σ) (σ/µ) % Mean (µ) St Dev (σ) (σ/µ) %

ENT10 3.67206 0.10979 2.99 3.62396 0.06916 1.91 
ASM10 0.03628 0.00566 15.60 0.03808 0.00427 11.21 
CON10 0.53098 0.08413 15.84 0.48703 0.04576 9.40 
COR10 0.98661 0.00183 0.19 0.98772 0.00095 0.10 
DIS10 0.40910 0.05331 13.03 0.37571 0.02975 7.92 
IND10 0.81215 0.02238 2.76 0.82674 0.01307 1.58 
IDM10 0.99796 0.00032 0.03 0.99813 0.00017 0.02 
VAR10 20.19158 1.33592 6.62 20.20932 0.87440 4.33 
INR10 3.42489 0.08335 2.43 3.39575 0.05445 1.60 

Mean and SEM of NOR vs OSA Textural Features Extracted from NGLCM-10
(Histogram(Abs), Ng=16, 125×125, d = 5, θ = 90º)
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Figure 3.11 Comparison between the mean of the features extracted from 
NGLCM-10 between NOR and OSA groups. The error bars represent the SEM. 
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3.2.11 Comparison between Features with Varying Pairing Distances 

It was noticed from the previous sections that varying the pairing distance have 

showed a distinct effect on the values of the features extracted from each image 

regardless of the clip classification.  A study of the changes in values of the features 

ENT, CON, DIS, COR, and IND extracted from NGLCM-5, NGLCM-6 and NGLCM-7 

with varying pairing distance, d, is shown in Figure 3.12.  Each point represent the 

average value of the feature for NOR and OSA clips. 
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Figure 3.12 Comparison between different features with varying pairing distances. 
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3.3 Feature Selection 

3.3.1 Feature Selection Using Statistical Difference between Features 

In Section 2.4.5.2, it was proposed to use a 1st degree statistical feature selection 

by finding the features that least (
μ
σ ) percentage.  In Section 3.2, tabulations of the 

features statistical analysis were presented.  It is noticed the COR, INV, and IDM 

features from all 10 NGLCM’s had the lowest 
μ
σ  ratio.  This reduces the number of 

selected features per NGLCM from 9 to 3 (total of 30, down from 90).  These thirty 

features will be the input to the detector and the results will be compared to these from 

using all ninety features and those from the features selected in the following section. 

3.3.2 Feature Selection Using Piecewise Linear Network 

In Section 2.4.5.3, the concept of using a Piecewise Linear Network in fitting 

the data and selecting an optimal feature subset using floating search algorithm was 

described.  Using a PLN algorithm, the following seventeen features comprise the 

optimal feature subset.  These features are: 

COR2 VAR2 ASM1 ENT10 DIS7 IND2 IDM10 INR6 

COR3 VAR3 ASM2      

COR5 VAR8 ASM10      

COR6 VAR10       

COR9        
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Table 3.11 summarizes these features by NGLCM number. 

Table 3.11 a break down of feature contribution per NGLCM 
NGLCM number  

1 2 3 4 5 6 7 8 9 10 
ENT          × 
ASM × ×        × 
CON           
COR  × ×  × ×   ×  
DIS       ×    
IND  ×         
IDM          × 
VAR  × ×     ×  × 
INR      ×     

 

These seventeen features will be inputs to the NN detector and their results will 

be compared with the results from those from the control results and those from the 

features found in the previous section. 

3.4 Detection Results 

Based on Section 2.4.5, three sets of input features are introduced and are to be 

compared.  This brings forth the construction of three different detection networks.  The 

detection results of these three networks are to be compared.  These three networks 

were separately optimized, trained, and performance results where found using a 1000-

run Monte-Carlo simulation. 

3.4.1 Network Optimization 

As detailed in Section 2.5, the goal in the MLP network optimization phase is to 

find the optimum number of hidden units, and the optimum number of training epochs 

that will result in the best performance.  The best performance is defined as the 

maximum accuracy the MLP network can find. 
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For each one of the three networks, the tested hidden units (Nh) were 2, 4, 6, 8, 

10, 14, 18, 22, 26, 30, 35, 40, 45, and 50.  At each hidden unit value, a 50-run Monte-

Carlo simulation was performed, and the training and testing results were stored at fixed 

training epochs.  For each run, a new and random assignment of the training and testing 

set were used.   

The number of possible distinct arrangements that the example vectors can 

assume can be calculated using the general un-ordered arrangement equation: 

Number of arrangements 53102553.3
!132)!132198(

!198
!)!(

!
×=

−
=

−
=

nnm
m  

As it shows, this number is found to be very large; which means that it is 

practically impossible to have a train-test pair ran twice in any given Monte-Carlo 

simulation. 

The following subsections illustrate the results found for the three networks 

optimization operations. 

3.4.1.1 Optimization Using the Complete Feature Set 

Table 3.12 shows the results of the average performance using all 90 features as 

inputs to the MLP network.  For tabulation purposes, only the testing accuracy mean 

and standard deviation are shown. 
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Table 3.12 Testing accuracy mean and standard deviation (std) for 50-run Monte-Carlo 
Simulation.  Values shown are per each Nh and Nep pair for an MLP with 90 input 

features 
Number of Training Epochs Nep Nh 

Test 
Accuracy 200 600 1000 1400 1800 2200 2600 3000 3400 3800 4200 4600 5000 

Mean 74.79 83.42 85.52 86.15 86.39 86.18 86.36 86.21 86.06 85.79 85.94 85.82 85.79 
2 

Std 8.59 4.92 4.86 5.17 5.29 5.32 5.28 5.27 5.48 5.33 5.33 5.18 5.22 

Mean 75.55 83.88 85.24 85.18 85.45 85.30 85.27 85.67 85.58 85.67 85.48 85.48 85.55 
4 

Std 7.99 6.00 5.87 6.31 6.17 6.05 6.25 6.12 6.02 5.87 5.85 5.72 5.70 

Mean 77.58 83.73 85.42 85.64 86.42 86.33 86.45 86.42 86.21 86.15 85.91 85.82 86.03 
6 

Std 8.98 6.93 6.75 6.66 4.81 4.88 5.07 5.16 5.11 5.13 4.99 5.09 5.17 

Mean 76.67 85.30 86.61 87.73 88.12 87.91 87.88 87.70 87.70 87.39 87.42 87.58 87.61 
8 

Std 8.98 7.48 6.05 5.75 5.30 5.26 4.89 4.88 4.83 4.78 4.76 4.88 4.85 

Mean 77.21 84.67 86.06 86.33 86.58 87.33 86.97 86.58 86.67 86.24 86.27 86.42 86.61 
10 

Std 9.12 6.13 5.70 6.13 5.98 4.49 4.79 4.64 4.61 4.55 4.61 4.63 4.54 

Mean 76.09 83.45 85.21 85.97 86.27 86.03 86.00 86.06 85.88 85.91 85.94 85.91 85.67 
14 

Std 6.25 6.54 5.33 5.26 5.29 5.30 5.57 5.07 5.29 5.24 5.34 5.23 5.11 

Mean 76.18 83.55 85.67 85.85 86.39 86.45 86.64 86.52 86.67 86.73 86.61 86.55 86.58 
18 

Std 6.71 6.26 5.05 5.38 5.24 5.16 5.35 5.34 5.23 5.35 5.29 5.24 5.31 

Mean 76.15 82.94 84.48 85.12 85.42 85.64 85.82 85.97 85.70 85.70 86.39 86.24 86.18 
22 

Std 7.13 6.89 5.88 6.07 6.09 5.91 6.00 6.14 6.06 5.95 5.06 5.07 5.11 

Mean 75.58 82.58 85.18 86.12 85.91 85.91 85.73 85.88 85.91 85.82 85.67 85.64 85.76 
26 

Std 7.39 6.39 5.06 5.16 5.23 5.18 4.97 4.95 5.02 5.02 5.02 4.98 4.97 

Mean 75.52 81.70 83.21 84.30 85.70 85.48 85.97 85.82 85.82 85.67 85.61 85.33 85.52 
30 

Std 8.67 8.61 8.56 8.08 5.72 5.29 5.05 5.33 5.38 5.55 5.59 5.71 5.71 

Mean 75.76 82.67 84.48 85.27 85.45 85.67 85.94 85.94 85.97 86.03 86.15 86.27 86.42 
35 

Std 7.57 7.01 5.52 5.24 5.38 4.54 4.29 4.60 4.35 4.45 4.40 4.54 4.53 

Mean 74.39 82.30 84.39 84.73 85.15 85.27 85.39 85.33 85.64 85.39 85.18 85.33 85.27 
40 

Std 7.71 7.82 6.52 5.93 5.86 5.69 5.85 5.52 5.49 5.63 5.61 5.59 5.46 

Mean 76.45 84.30 86.33 87.15 87.79 87.67 87.30 87.48 87.52 87.55 87.36 87.33 87.12 
45 

Std 6.03 5.92 4.46 4.11 4.39 4.58 5.01 5.29 5.42 5.42 5.41 5.07 4.87 

Mean 74.24 79.88 82.30 83.36 83.45 83.61 84.06 83.94 83.94 83.76 83.70 83.79 83.67 
50 

Std 6.24 6.53 6.57 6.02 6.29 6.22 5.55 5.74 5.81 6.21 6.35 5.94 5.90 
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Figure 3.13 shows a graphical representation of the optimization results for five 

selected hidden unit values: 8, 14, 18, 26, and 45.  This graph shows the mean training 

and testing curves for this MLP. 
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Figure 3.13 Training and testing accuracy for selected hidden units shown in 
Table 3.12.  90 features are used as inputs to the MLP. 

 

3.4.1.2 Optimization Using 30 Selected Features 

Table 3.13 shows the results of the average performance using 30 selected 

features as in Section 3.3.1 as inputs to the MLP network.  For tabulation purposes, only 

the testing accuracy mean and standard deviation are shown.   
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Table 3.13 Testing accuracy mean and standard deviation (std) for 50-run Monte-Carlo 
Simulation.  Values shown are per each Nh and Nep pair for an MLP with 30 input 

features 
Number of Training Epochs Nep Nh 

Validation 
Accuracy 200 600 1000 1400 1800 2200 2600 3000 3400 3800 4200 4600 5000 

Mean 78.91 79.55 78.73 77.91 77.94 77.64 77.24 77.15 76.94 76.79 76.64 76.36 76.64 
2 

Std 3.91 4.33 4.58 4.34 4.04 3.83 4.08 3.92 4.11 4.12 4.51 4.29 4.20 

Mean 78.61 78.18 77.70 77.24 76.97 76.58 76.45 76.09 76.12 75.97 76.09 76.06 75.94 
4 

Std 4.36 4.36 4.52 4.36 4.49 4.12 3.86 3.80 3.74 3.82 3.85 3.75 3.47 

Mean 78.24 77.39 77.21 76.52 76.33 75.85 75.67 75.79 75.36 75.21 75.18 75.21 75.24 
6 

Std 3.93 5.07 5.08 4.82 4.40 3.97 4.19 3.96 3.68 3.70 3.54 3.47 3.53 

Mean 77.73 77.21 77.00 76.45 75.52 74.70 74.64 74.42 74.39 74.42 74.24 74.18 74.33 
8 

Std 4.11 4.26 4.00 3.90 3.70 3.78 3.70 3.57 3.76 3.58 3.45 3.24 3.13 

Mean 78.18 78.82 77.73 77.06 76.55 76.45 75.91 75.64 75.48 75.61 75.30 75.24 75.21 
10 

Std 4.54 3.35 3.47 3.93 3.53 3.51 3.38 2.90 2.98 2.89 2.78 2.70 2.70 

Mean 78.76 77.91 77.24 76.82 76.70 76.06 75.73 75.36 75.33 75.21 75.21 75.18 75.09 
14 

Std 3.89 4.45 3.91 3.90 4.04 3.54 3.60 3.29 3.31 3.29 3.29 3.24 3.06 

Mean 78.58 77.64 76.48 75.85 75.73 75.52 75.39 74.88 75.06 74.94 75.03 74.94 74.82 
18 

Std 4.25 4.11 3.98 3.63 3.62 3.73 3.64 3.40 3.31 3.15 3.13 3.08 3.15 

Mean 78.48 78.15 77.36 77.00 76.52 76.09 75.85 75.36 75.27 75.27 75.15 75.18 75.00 
22 

Std 4.68 4.55 4.03 3.96 3.97 3.57 3.85 3.55 3.56 3.56 3.46 3.48 3.43 

Mean 78.97 77.94 76.61 76.45 76.12 75.58 75.45 75.18 74.97 74.88 74.67 74.82 74.64 
26 

Std 3.59 3.69 4.15 3.98 3.85 3.35 3.60 3.50 3.40 3.30 3.18 3.12 3.10 

Mean 79.67 78.61 77.85 77.00 76.45 76.33 76.00 75.82 75.61 75.58 75.45 75.39 75.21 
30 

Std 4.54 3.69 3.99 4.10 3.56 3.15 3.30 3.37 3.24 3.25 3.33 3.30 3.45 

Mean 78.55 77.64 76.55 76.52 75.97 75.48 75.18 75.24 75.21 75.24 75.18 75.15 75.06 
35 

Std 4.42 3.87 3.60 3.93 3.53 3.31 3.41 3.55 3.67 3.46 3.25 3.14 2.97 

Mean 78.55 77.33 76.61 75.94 75.09 74.91 74.82 74.76 74.76 74.79 74.73 74.67 74.48 
40 

Std 4.15 4.49 3.74 4.00 3.48 3.17 3.30 3.26 3.18 3.16 3.05 2.98 2.96 

Mean 79.42 78.21 77.82 77.36 76.67 76.12 75.70 75.64 75.61 75.42 75.42 75.45 75.42 
45 

Std 4.65 4.34 4.27 4.32 3.81 3.63 3.57 3.35 3.34 2.99 3.02 3.08 3.14 

Mean 79.18 78.94 77.97 77.06 76.55 75.97 75.64 75.52 75.33 75.18 74.85 74.82 74.91 
50 

Std 4.32 3.76 3.87 3.71 3.65 3.09 2.93 3.13 3.31 3.14 3.03 3.04 3.08 
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Figure 3.14 shows a graphical representation of the optimization results for five 

selected hidden unit values: 8, 14, 18, 26, and 45.  This graph shows the mean training 

and testing curves for this MLP. 
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Figure 3.14 Training and testing accuracy for selected hidden units shown in 
Table 3.13.  30 selected features are used as inputs to the MLP. 

 
 

3.4.1.2 Optimization Using 17 Selected Features 

Table 3.14 shows the results of the average performance using 17 selected 

features as in Section 3.3.2 as inputs to the MLP network.  For tabulation purposes, only 

the testing accuracy mean and standard deviation are shown. 

 

 



 

 65

Table 3.14 Testing accuracy mean and standard deviation (std) for 50-run Monte-Carlo 
Simulation.  Values shown are per each Nh and Nep pair for an MLP with 17 input 

features 
Number of Training Epochs Nep Nh 

Validation 
Accuracy 200 600 1000 1400 1800 2200 2600 3000 3400 3800 4200 4600 5000 

Mean 81.94 86.88 87.70 88.24 88.18 88.30 88.46 88.58 88.42 88.39 88.46 88.33 88.42 
2 

Std 5.77 4.54 3.92 4.00 4.25 4.52 4.32 4.48 4.69 4.75 4.56 4.60 4.58 

Mean 81.82 85.03 87.42 87.52 87.79 87.73 87.67 87.79 87.88 87.94 87.64 87.76 87.82 
4 

Std 6.41 6.72 4.44 3.87 4.16 4.40 4.54 4.74 4.85 4.65 4.89 4.68 4.75 

Mean 80.24 84.73 86.36 86.79 87.09 87.67 87.73 87.91 88.33 88.18 87.97 88.00 88.03 
6 

Std 5.24 4.25 4.47 4.47 4.64 4.16 4.24 4.19 4.19 4.29 4.27 4.42 4.62 

Mean 81.06 84.97 86.48 88.00 87.94 89.09 89.30 89.30 89.33 89.27 89.39 89.39 89.30 
8 

Std 8.52 7.06 7.05 7.01 7.35 4.37 4.34 4.20 4.15 4.28 4.27 4.46 4.46 

Mean 80.27 85.33 87.88 88.73 88.76 88.36 88.76 88.73 88.70 88.85 88.73 89.21 89.21 
10 

Std 8.66 5.14 4.49 4.09 4.02 3.96 3.90 4.14 4.24 4.10 4.21 3.89 4.33 

Mean 79.36 85.85 88.15 89.09 89.94 90.48 90.39 90.79 90.73 91.18 90.94 91.24 91.33 
14 

Std 9.81 6.92 5.57 4.60 4.56 3.67 4.19 3.83 3.96 3.83 4.01 3.72 3.91 

Mean 81.52 86.15 88.15 89.55 90.03 90.30 90.52 90.70 90.82 90.64 90.64 90.61 90.64 
18 

Std 6.36 5.47 4.08 4.06 4.34 4.16 3.76 3.76 3.72 3.93 3.87 3.94 4.06 

Mean 79.82 84.58 86.48 87.85 88.61 88.94 89.15 88.91 89.30 89.21 89.55 89.79 89.85 
22 

Std 9.88 4.24 4.68 4.10 4.21 3.96 4.44 4.91 4.65 4.76 4.96 4.79 4.77 

Mean 79.48 85.27 87.88 89.09 89.76 90.18 90.79 90.70 90.55 90.67 90.64 90.64 90.52 
26 

Std 7.78 6.03 4.97 5.36 5.23 4.88 4.58 4.65 4.86 5.15 4.93 5.03 5.04 

Mean 79.91 85.09 86.94 87.79 88.61 89.42 89.55 89.58 89.58 89.70 89.67 89.97 89.82 
30 

Std 7.48 5.08 4.78 4.96 5.32 5.17 5.10 5.21 5.35 5.13 5.05 4.91 4.85 

Mean 80.00 84.30 85.36 86.27 87.12 87.58 88.18 88.39 88.55 88.61 88.64 88.73 88.55 
35 

Std 6.33 4.99 5.12 5.17 5.10 4.95 4.87 4.94 4.73 4.66 4.85 4.60 4.76 

Mean 79.24 84.58 86.79 87.85 89.03 89.36 89.79 89.82 90.06 89.97 89.91 89.94 90.15 
40 

Std 10.07 6.37 5.45 5.63 4.96 4.88 4.82 5.05 4.52 4.62 4.91 5.04 4.77 

Mean 80.39 85.88 87.61 88.48 89.27 89.73 89.85 90.27 90.39 90.30 90.42 90.36 90.45 
45 

Std 8.30 3.95 4.07 4.37 3.86 3.84 3.93 3.93 4.06 4.08 3.97 3.93 4.02 

Mean 78.06 84.09 86.36 87.52 88.94 89.73 90.03 90.09 90.09 89.97 90.15 90.30 90.18 
50 

Std 9.93 7.95 7.73 7.98 5.44 5.32 5.42 5.30 5.05 4.96 5.08 4.99 5.32 
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Figure 3.15 shows a graphical representation of the optimization results for five 

selected hidden unit values: 8, 14, 18, 26, and 45.  This graph shows the mean training 

and testing curves for this MLP. 
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Figure 3.15 Training and testing accuracy for selected hidden units shown in 
Table 3.14.  17 selected features are used as inputs to the MLP. 

 
 

3.4.2 Monte-Carlo Simulation 

A 1000-run Monte-Carlo simulation is performed to find the overall 

performance and robustness of the suggested algorithm for the three discussed 

networks.  A random assignment of training and testing vectors was performed, as 

described in Section 3.4, and the network’s training and testing performance was 

calculated after each run.  The choice of Nh and Nep for each of the three Monte-Carlo 

simulations was found after examining all potential results in Section 3.4.1. 
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3.4.2.1 Monte-Carlo Simulation Using all 90 Features 

After examining all potentially promising Nh and Nep pairs in Table 3.12 that 

yielded the best validation accuracy, Nh = 8 with Nep = 1800 were chosen. 

The following Table 3.15 summarizes the results of the 1000-run Monte-Carlo 

Simulation. 

Table 3.15 Sensitivity, specificity and accuracy mean and standard deviation (std) for 
training and testing sets after 1000-run Monte-Carlo simulation for a MLP of 90 inputs 

Training Testing 
 Sensitivity 

(%) 
Specificity

(%) 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 
Mean 
± std 

97.06  
± 6.58 

90.39  
± 5.93 

93.96  
± 4.29 

90.67  
± 8.29 

81.42  
± 8.15 

86.36  
± 5.46 

 

Figure 3.16 is a graphical Representation of these results. 
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Figure 3.16 Graphical representation of the sensitivity, specificity and accuracy 
mean for training and testing sets after 1000-run Monte-Carlo simulation and 
MLP of 90 inputs. Error bars represent the standard deviation. 
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3.4.2.2 Monte-Carlo Simulation Using 30 Features 

After examining all potentially promising Nh and Nep pairs in Table 3.13 that 

yielded the best validation accuracy, Nh = 45 with Nep = 200 were chosen. 

The following Table 3.16 summarizes the results of the 1000-run Monte-Carlo 

Simulation. 

Table 3.16 Sensitivity, specificity and accuracy mean and standard deviation (std) for 
training and testing sets after 1000-run Monte-Carlo simulation for a MLP of 30 inputs 

Training Testing 
 Sensitivity 

(%) 
Specificity

(%) 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 
Mean 
± std 

81.91  
± 5.76 

68.09  
± 4.86 

75.70  
± 3.11 

82.10  
± 7.92 

67.93  
± 8.03 

75.14  
± 3.28 

 

Figure 3.17 is a graphical Representation of these results. 
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Figure 3.17 Graphical representation of the sensitivity, specificity and accuracy 
mean for training and testing sets after 1000-run Monte-Carlo simulation and 
MLP of 30 inputs. Error bars represent the standard deviation. 
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3.4.2.3 Monte-Carlo Simulation Using 17 Features 

After examining all potentially promising Nh and Nep pairs in Table 3.14 that 

yielded the best validation accuracy, Nh = 8 with Nep = 1800 were chosen. 

The following Table 3.17 summarizes the results of the 1000-run Monte-Carlo 

Simulation. 

Table 3.17 Sensitivity, specificity and accuracy mean and standard deviation (std) for 
training and testing sets after 1000-run Monte-Carlo simulation for a MLP of 17 inputs 

Training Testing 
 Sensitivity 

(%) 
Specificity

(%) 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 
Mean 
± std 

99.00 
± 1.84 

93.41 
± 6.67 

96.42 
± 3.50 

94.42  
± 4.71 

85.40  
± 8.49 

90.16  
± 4.57 

 

Figure 3.18 is a graphical Representation of these results. 
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Figure 3.18 Graphical representation of the sensitivity, specificity and accuracy 
mean for training and testing sets after 1000-run Monte-Carlo simulation and 
MLP of 17 inputs. Error bars represent the standard deviation. 
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3.4.3 Comparison between the Detection Results  

A summary of the testing sensitivity, specificity and accuracy results of the 

Monte-Carlo simulation for the three MLP networks is shown in the following table.  

Table 3.18 Summery of the sensitivity, specificity and accuracy mean and standard 
deviation (std) for testing sets after 1000-run Monte-Carlo simulation for a the three 

discussed MLPs having input features of 90, 30 and 17 
 

Testing (mean ± std) Number of 
input features to 

the MLP 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 

90 90.67 
± 8.29 

81.42 
± 8.15 

86.36 
± 5.46 

30 82.10 
± 7.92 

67.93 
± 8.03 

75.14 
± 3.28 

17 94.42 
± 4.71 

85.40 
± 8.49 

90.16 
± 4.57 
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CHAPTER 4 

DISCUSSION 

 

This chapter contains the discussion of the different results obtained in this 

investigation.  Section 4.1 discusses the rationale behind choosing the signal source.  

Section 4.2 elaborates on the findings of the clips visual illustrations.  Section 4.3 

discusses the statistical findings of the textural features when compared between the 

different images.  Section 4.4 discusses the optimization and results of the automatic 

detection algorithm presented in this investigation.  

4.1 Signal Source 

4.1.1 Choice of R-R Interval as the Data Source 

R-R interval is unique in the sense that it can be extracted from different 

markers such as ECG and possibly oximetery.  This makes it particularly feasible to 

make relatively cheap and handy overnight recordings, in which the patient can sleep at 

their home rather at a sleep laboratory. 

Furthermore, it has been shown that HRV is physiologically related to sleep 

events [14].  On the onset of an OSA event and breathing cessation, vagus activity 

increases, causing the heart to slow down (bradycardia), followed by arousal and 

marked increase in heart rate (tachycardia).  This cyclic behavior in heart rate during an 

OSA event can be detected by an automated method.  
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Other studies [8], [14], [15] have shown a limited ability to use the HRV, 

represented by the R-R interval, as a marker to distinguish normal from eventful sleep 

clips.  This investigation has concentrated on using this discrete index sequence by 

combining both time and frequency domains. 

4.1.2 Choice of Time-Frequency Plots 

This research is fundamentally different from the work of de Chazel, et al [2], 

[36].  Their work depends on extracting statistical features directly from the temporal R-

R and EDR sequences (such features include mean, standard deviation, correlations, 

difference between adjacent features, etc).   

This investigation, however, is based on statistical features from images derived 

from time-frequency plots.  This intrinsically combines the properties of time and 

frequency domains together rather than studying them separately.  This is a powerful 

tool in the sense that known and verified image detection and classifications schemes 

are readily used towards this application.  Furthermore, the automated system 

developed in this investigation may potentially be applied as a universal tool in 

engineering and medical application in which a reliable offline classification of signals 

is needed.  Previous studies, [13], [14], have demonstrated qualitative schemes to study 

these plots, but no quantitative schemes in previous studies were applied to these plots. 

4.2 Clip Visualization 

A comparison of visual differences in clip is shown in Figures 2.3 and 2.4.  The 

reader, with the previous knowledge of the image classification, can identify differences 

between the two clips.  However, that is the exception.  Most time-frequency plots of 
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clips generated [8], showed little visually distinguishable features between the two 

classifications as shown in Figures 2.5 and 2.6. 

 Using the visualization, some data is inherently lost using the coding scheme, 

whether it is colored scheme [28], [31] (Red-Blue-Green (RGB), or Intensity-Hue-

Saturation (IHS)) or quantized gray-scale scheme.  The data loss is due to use of linear 

or nonlinear transformations on the complex valued matrices that concentrate on the 

magnitude of the signal and does not include phase shift.  Data loss also arises from the 

quantization process, in which the plots are quantized to a set number of gray scale 

levels, rather than having a continuous range of values. 

The four different gray-level encoding schemes used in this research have 

allowed for different distribution of the gray-scale that represent each point in the 

spectrum.  The aim at the beginning of this investigation was to search for a single 

encoding scheme that will show greatest separation between the two classes.  Using the 

linear magnitude encoding in Section 2.3.2.1, it is noticed that the images produced are 

predominantly low power, and a lot of power variation within the band 0.2-0.3 Hz are 

lost due to quantization, especially if a local maximum eclipse them.   

Doubling the number of gray levels from 16 to 32 in Section 2.3.2.2, smoothing 

the roughness of the plot texture was sought.  Figures 2.11 and 2.12 are the same clips 

as in Figures 2.7 and 2.8.  It is noticed that they are have a relatively smoother surface 

compared to their counterpart images in Figures 2.7 and 2.8 with 16 gray-levels.  Same 

argument can be made for images 2.13 and 2.14 compared to their counterpart images 

in Figures 2.9 and 2.10. 
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Using the natural logarithm operation in Section 2.3.2.3 has an inherent 

disadvantage.  The goal was to decrease the local maxima in order for the textures on 

the plot to be more defined.  However, this operation is very sensitive to the local 

minima, where a value that is very close to zero will be magnified, causing the whole 

image values to be higher around it.  This is apparent by the lighter gray shades of the 

images in Figures 2.15-18.  This has produced characteristically different images than 

their predecessors. 

The disadvantage in the given schemes so far is that the plot gray-scale 

distribution is very sensitive and dependant on the presence of high bursts in the power 

causing a local maximum.  Examining the quantization equations in Sections 2.3.2.1-3, 

it is noticed that quantization levels are dependent on the maximum value.  By using the 

unequal bin size method described in Section 2.3.2.4, that in the plots will have a  

textures of that have equal distribution of gray shades as can be seen Figures 2.19-22. 

4.3 Textural Features 

The first task in this work was finding different images that represent each clip.  

It is next sought to show if these images are automatically identifiable using the textural 

feature described in Section 2.4. 

Using 1st degree statistical analysis, it is found that for all features, except for 

the variance feature (VAR), all images were described by statistically different features 

sets (t-test resulted in α value << 0.05).  However, none of these features was adequate 

as a stand alone classifier.  Using this method, it was not feasible to use threshold to 
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distinguish between NOR and OSA clips due to the high spread of the calculated 

values. 

4.3.1 Intra-Image Comparisons 

It was initially noticed that for all images, the value of the inverse difference 

moment feature (IDM) is very close to 1, regardless of the classification (i.e. NOR or 

OSA), number of gray levels, distance, or orientation.  This is an indication that the 

NGLCM’s produced are nearly diagonal.  A near diagonal NGLCM is produced when 

an image does not show great jumps in gray-levels between paired pixels (low contrast) 

[30].  It is also seen that there is a strong correlation between the ENT and INR features 

for all images.  Correlation (COR) has showed promising results as distinguishing 

feature, since it showed a reasonable separation power between the means of the two 

classes with a relatively small spread. 

4.3.2 Cross-Image Comparisons 

Studying a single feature between different fixed images, with only one variable 

changed, has showed some noticeable findings.  Studying the results in Sections 3.2.1, 

3.2.8 and 3.2.10, it is noticed that the gray levels, Ng = 16, and distance d = 5, are fixed.  

However, these results represent different encoding schemes, namely Abs, ln, and 

histogram encodings.  It is noticed that the entropy (ENT) of the latter two images 

increase (ln and histogram) indicating a visual increase in the roughness of the image.  

Since ENT is a parameter that measures the randomness of the image [30], we can 

visually see this effect when studying the images in Sections 2.3.2.1 (Abs), 2.3.2.3 (ln) 

and 2.3.2.4 (histogram). 
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For the same group of images, we observed a noticeable increase in the variance 

in the histogram encoding scheme compared to the other two.  Having images expressed 

and spread on all gray levels equally is a very heterogeneous image, which the feature 

VAR readily measure [30].  It is worth mentioning that VAR was the most sensitive 

feature between all images whenever a parameter was changed.  However, it showed no 

statistical difference between the two classes.  This led us initially to believe that VAR 

cannot play a role in the detection algorithm.  However, we found that this was untrue, 

as will be discussed in Section 4.4. 

Studying Figure 3.12, it can be seen that changing the pairing distance, d, 

showed that the smaller the pairing distance (d = 1) the less the image contrast is and 

the more the homogeneity, compared to higher distance (d = 3 and d = 5).  This is 

expressed by an increase in ENT, CON, and DIS, and decrease in COR and IND with 

the increase in pairing distance, d. 

4.3.3 Bypassing Encoding 

The introduction of image processing and textural features described above 

directly to the time-frequency complex-valued matrices generated in Section 2.3.1 is 

feasible.  These feature values, however, will be complex, and theoretical understanding 

of the meaning of the features and their variation between the clips remain to be 

accomplished in the future studies.  
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4.4 Detection 

4.4.1 Feature Selection 

After initial trials with using the images separately for automatic detection, the 

study was later directed to combining all images produced in order to achieve higher 

sensitivity and specificity results, since each image may hold a certain level of 

distinguishability between the two classes across the nine features. 

First, all ninety extracted features in the detection algorithm were used.  Then, 

observing the results in Tables 3.1-10, it was seen that COR, IND, and IDM show the 

least 
μ
σ  ratio for all ten NGLCMs.  These comprise 30 selected features.  Finally, using 

an optimum selective method in Section 2.4.5.2, it was that found 17 optimum features 

that yielded best results.  The bulk of these features were COR (5 images) and VAR (4 

images).   

COR, as discussed in Section 4.3.1, was expected to be a keystone classifying 

feature.  However, finding VAR as an important classifying feature gave noticeable 

improvements.  We noticed that NGLCM-2 [Abs, Ng=16, 125×125, d=1, θ=90˚] and 

NGLCM-10 [Histogram(Abs), Ng=16, 125×125, d=5, θ=90˚] has showed the highest 

classification contribution, with 4 features each.  NGLCM-4 [Abs, Ng=16, 125×125, 

d=5, θ=0˚] provided no classifying power.  This can be contributed to its horizontal 

pairing, which is perpendicular to the striations originally noted on the images. 
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4.4.2 MLP Optimization 

In Section 3.4.1, all Nh and Nep pairs were calculated for training and testing sets 

for the three different feature permutations.  While the training accuracy improves with 

Nep for all Nh, testing starts at a much lower accuracy, and improves gradually before 

reaching an optimum value, leveling off, then declining.  This declination is a result of 

over-fitting the network with the training set and narrowing the decision boundaries to 

confine smaller areas [32].  Figure 3.13 shows training and testing accuracy curves for 

selected Nh values. 

In Section 3.4.1.1, using all 90 features as inputs to the MLP achieves a training 

accuracy less than 99% even after a 5000 training epochs, as apparent in Figure 3.13.  

On the other hand, using the selected 30 features would give a 100% training accuracy 

within 2500 training epochs, as noted in Figure 3.14.  However, from this figure we 

observe that with an increasing training accuracy, the validation accuracy drops below 

75%, which is in the less than acceptable range. 

It is apparent from Section 3.4.1.3 that the optimum selection method of 

Piecewise Linear Network [33] gives an evident advantage over the last two feature 

permutations, allowing for the testing accuracy to jump over 90% in numerous Nh and 

Nep pairs. 

4.4.3 Monte-Carlo Simulation 

A 1000-run Monte-Carlo simulations have been conducted for each of the three 

networks proposed in this research.  As seen in Section 3.4, each network basically 

differed in the number of features as inputs to the first layer of the MLP.  Consequently, 
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different hidden units and training epochs where selected.  This selection is based on the 

highest possible detection rate yielded by that specific network. 

Using the complete set of extracted features, it was found that eight hidden units 

trained for 1800 epochs yielded the best results for this particular network.  Section 

3.4.2.1 summarizes the results of the 1000-run Monte-Carlo simulations for each of this 

Nh and Nep pairs.  These results are summarized in Table 3.15, and graphically shown in 

Figure 3.16.  This network is considered as the control MLP since there was no attempt 

to minimize the number of input features.   These results are higher than those reported 

in previous studies [8]. 

In a first attempt to capitalize on the results found above, and to reduce the 

calculation time, a reduction in the number of input features from 90 to 30 was 

implemented, base on statistical differences between the extracted features.  It was 

found that 45 hidden units trained for 200 epochs yielded the best results for this 

particular network; however, it is obvious from Table 3.16 and Figure 3.17 that the test 

results are markedly much lower than those for the control network.  This shows that 

using the 1st statistical measure of the
μ
σ  ratio is not adequate as feature selection 

criteria.  It also shows that this feature subset is not an optimum set and yields 

validation accuracy below the desired range.  Furthermore, the low number of training 

epochs accounted for the low and almost equal training and testing detection accuracies. 

In the second attempt to reduce the input features, an optimum feature selection 

method was used, and the number of input features was reduced from 90 to 17.  
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Different 1000-run Monte-Carlo simulations were conducted for this network, due to 

the fact that multiple Nh and Nep pairs yielded testing set accuracies above 90%, as 

noticed in Table 3.17.  Any of these pairs are potentially the ones that will produce the 

optimum detection results.  From these simulations, the 45 hidden units trained for 4200 

epochs yielded the best results.  These results are graphically shown in Figure 3.18. 

These results are comparable to those reported by de Chazel et al [2], [38].  

They reported results for combined features from HRV and R-Wave Attenuation 

(RWA).  Their study shows a test sensitivity and specificity of 86.4% and 92.3% for 

combined HRV and RWA features.  When using HRV temporal features only, the best 

results they achieved where test sensitivity and specificity of 80.0% and 90.3%, 

respectively [2].  

It should be pointed out here that these reported results are based on minute-by-

minute classification, whereas this investigation accounts for 15-minute clip 

classification, which is recommended to distinguish very low frequency (~0.001Hz) 

markers in HRV.  Also, their described algorithm is based only on a set of time-domain 

features, whereas our proposed algorithm combines both time and frequency domains 

and quantitatively uses the time-domain plot to distinguish between normal and apneic 

clips.   

Also, in [8], results of 88% sensitivity and 80% specificity were reported.  In 

[15], an algorithm proposed to distinguish between patients with OSA events, Chyene-

Stokes Respiration (CSR), and normal subjects resulted in detection rate accuracies of 

70.3%, 91.6% and 94.8% in the training set and 71.8%, 90.1% and 77.1% in the test set, 
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respectively.  It is evident that our proposed algorithm has an enhanced performance 

over the previous studies.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Conclusions 

A new approach in detecting the presence of SDB in overnight ECG recording 

has been presented.  This approach combines both time and frequency domains in 

generating pictorial images representing the spectral variation of the HRV over 900-

second, 0-0.5 Hz clips.  This approach showed very promising results than what has 

been thought to be a limited marker in previous studies. 

Using co-occurrence matrices and their features showed a very promising 

approach to studying these time-frequency plots.  However, calculating the GLCMs is 

computationally demanding. 

We also found that combining different gray-level encoding schemes showed 

better results than using one scheme, where absolute encoding and histogram encoding 

with sixteen gray levels showed the most promising results.  The correlation (COR), 

variance (VAR), and angular second moment (ASM), in this order, were the best 

distinguishing features between all nine textural features selected for this investigation.   

The use of optimum feature subset selection algorithm, such as the Branch and 

Bound algorithm, is found to be crucial in finding the highest detection accuracy.  
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Relying directly on first-order statistical measures has showed little promise in 

identifying such optimum feature subsets. 

The use of MLP is found very effective in the classification of the clips studied 

in this investigation.  However, a more superior MLP algorithm that has a lower 

computational load and a faster training algorithm is needed. 

5.2 Future Directions 

This investigation has concentrated on improving the detection accuracy using a 

HRV marker, which was previously thought to have limited results.  We have taken the 

extra step in studying the time-frequency plots quantitatively, rather than the qualitative 

descriptions seen in the literature [2], [13], [14]. 

Building on the block diagram in Figure 2.1, we can see in Figure 5.1 readily 

the areas in which this investigation can be expanded.  HRV can be detected using any 

of the ECG leads or even an oximeter.  However, continuing on the results of [8], [15], 

we can use time index sequence of the RPE as the data source.  This sequence showed 

promising results in the previous work of this research group.  Any or all of these leads 

can be used to further find better distinguishing features. 

In this research, we used conventional STDFT to generate the pictorial clips.  

Future work can concentrate on wavelets for image generation.  Wavelets have an 

advantage over STDFT in that they do not require periodicity of the time sequence or 

for it to be stationary.  Also, the images generated from wavelets have greater time 

resolution and are computationally more efficient [14]. 
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Different encoding schemes can be used for the matrices from above, including 

different gray-level quantization methods and generalized color encoding.  This extends 

to the use of different possible feature extraction and optimum feature selection 

algorithms.   

Due to representing the data in image format, a multitude of image processing 

and pattern recognition methods can be applied.  The detection and classification 

algorithm can take different direction, including the different forms of neural network 

or fuzzy logic systems.  Neural networks can be used using different node functions, 

single or multiple hidden layers.  Fuzzy logic systems (FLS) are flexible and 

application-oriented, where the design can optimally benefit from the spread of the 

extracted features in type-I or type-II non-singleton rule-based fuzzy system. 

The method presented in this investigation can be widely applied to different 

kinds of electrical, mechanical, chemical or photo signals in which offline classification 

of the signal source or nature is required.  We believe that this generalization can be 

extended to different industrial and medical application, and is one of the main 

contributions of this investigation. 
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Figure 5.1 Block diagram of possible future directions at each level of research. 
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