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ABSTRACT

STATISTICAL ANALYSIS OF ROCK FABRICS

Publication No.

Boris Avdeev, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: John Wickham

The main goal of the work is to present new procedures for statistical analysis of

fabric data for structural geology. After an introduction to the problems of orientation

analysis, discussion of different types of the orientation data and a brief review of the

existing techniques and statistics for the orientation data, a comprehensive discussion of

several proposed methods is given.

The first part of the methodology chapter states a general model in terms of a

structural frame and introduces some notation. The second part is a detailed description

of a pooled estimator, which is intended to assess a structural frame mean orientation

using different sorts of data simultaneously. The third part is a discussion of a regression

model in a transformed space. Four sub-models are derived and a method for fitting is

provided. This chapter ends with a brief coverage of a problem of spatial autocorrelation.

Next chapter presents a sample analysis of the Kukas lake structure of the Baltic

shield, North West Russia. This dataset is analized by all the models. The obtained

trends and orientations are plotted in various ways. A residual analysis for the models

closes the chapter.
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CHAPTER 1

INTRODUCTION

Orientation analysis, one of the branches of structural geology, studies strain re-

lated rock fabrics aiming to obtain some information about the stress-strain conditions

responsible for the appearance of these textures. The basic principle of orientation anal-

ysis is that the orientation of each fabric is determined by the stress and strain fields.

Therefore by studying textures one can constrain past stress-strain conditions.

Many researches have studied the problem of stress-strain-fabric orientation rela-

tionships (Hanmer & Passchier, 1991, Nicolas, 1987, Karato & Wenk, 2002, Turner &

Weiss, 1963). Indeed, knowledge of these relationships is a key to orientation analysis.

However, to properly use this information one needs effective statistical techniques to ex-

tract important parts from necessarily noisy field observations. Surprisingly, this aspect

of the problem has been investigated by structural geologists to much less extent.

The purpose of this work is to introduce several techniques for quantitative fabric

data analysis and discuss some problems that need to be solved by future research.

In the current chapter I am going to present some background on orientation anal-

ysis, spherical and spatial statistics, and give a brief review of current state of research

in the contributing sciences.

In chapter 2, I will describe the proposed methods and also mention once again

the existing techniques, that may be familiar to statisticians but seem to be not so well

known by geologists.

Chapter 3 contains a detailed example on the analysis of fabric data from the Kukas

lake area of the Baltic shield. This analysis shows the utility of the proposed techniques as
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well as their problematic spots. Some discussion and geological interpretation follows the

analysis. This chapter is intended to show the value of this work for structural geology.

Finally in chapter 4 the current work is summarized to give clear perception of its

position in the body of structural geology and orientation analysis. Based on chapter 3,

conclusions on usability are provided. At last, directions of further study are discussed.

1.1 Orientation Data

For purposes of orientation analysis, a rock fabric is understood as some specific

orientation in a rock with respect to a geographical coordinate system or any other suit-

able frame of reference. Fabric orientation can be defined by a preferred orientation of

non-isometric crystals, attitude of composition boundaries such as bedding planes in sedi-

mentary rocks and a bending in metamorphic or igneous rocks, orientation of deformed

pebbels in a conglomerate, specific direction of folds and so on. From the mathematical

point of view there are several distinguishable types of fabric element orientations, which

I will discuss in the following three sections.

1.1.1 Directions

The first type of orientation is a direction in a q-dimentional real vector space Rq.

Those are usually represented by unit vectors and therefore this type of data can be

seen as points on a (q − 1) dimensional unit sphere (hence orientation data is sometimes

referred to as spherical data). This type of data is said to belong to a Stiefel manifold1

S1,q. Another possible representation is by (q − 1) Euler angles. They are used most

1 Stiefel manifold, denoted Sk(V n) or Sk,n, is the set of all orthonormal k-frames in n-dimentional
vector space V .
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often in field geology to write down the fabric attitudes. Conversion between the Euler

angles and the R3 vector representation is provided by

d1 = cos θ cosφ (1.1a)

d2 = sin θ cosφ (1.1b)

d3 = sinφ, (1.1c)

where di are components of the R3 vector, θ is a longitude (or trend) and φ is a latitude

(or plunge). Orthogonal coordinates in R3 are defined such that the x1 axis is directed

North, x2 — East and x3 — down.

Unlike the Rq unit vector, Euler angles are the minimal representation of S1,q.

However they are useless in computations and bear singularities at the poles.

A distance measure between two directions is naturally an angle:

θ(d1,d2) = arccos(dT1 d2), (1.2)

where di is the S1,q point represented as a Rq unit vector.

1.1.2 Axes

The second, and most common type in structural geology, is an unsigned direction

usually called an axis. Axes are commonly represented in the same way as the directions.

The only difference is that there are two opposite directions d and −d corresponding

to every axis l and therefore such representation is not unique. The space of axes is

sometimes called S1,q
+ , which implies that all axes can be presented as points on a unit

hemisphere in Rq. However, more precisely, axes are points on a Grassman manifold2

G1,q(R3).

2 Grassman manifold is the space of all k-dimensional subspaces of an n-dimensional vector space V ,
often denoted as Gk(V n) or simply Gk,n.

3



The distance between two axes can be expressed as minimum angle between corre-

sponding directions, i.e.

θ(l1, l2) = min
(
arccos(lT1 l2), arccos(−lT1 l2)

)
=

= arccos |lT1 l2|,
(1.3)

where li is a G1,q axis written as an Rq vector.

Van den Boogaart & Schaeben (2002a) suggest Rq×q representation for axes, which

can be derived from the Rq representation as follows

f(l ∈ G1,q) = llt =


l1l1 · · · l1lq
...

. . .
...

lql1 · · · lqlq

 7→



l1l1
...

l1lq
...

...

lql1
...

lqlq



∈ Rq×q (1.4)

This representation is convenient because the distance between two axes can be expressed

as

θ(u1,u2) = ‖u1 − u2‖ =
√

2 sin θ(l1, l2), (1.5)

where ui is a representation of li according to equation (1.4).

1.1.3 Orthogonal Rigid Frames

A generalization of the Stiefel manifold that accounts for more than a single direc-

tion is written as Sr(Rq), where r is is a number of S1,q dimensional orthogonal directions

in a so called rigid frame which represents a single point on Sr(Rq). Now the direction is

just S1(Rq) special case of Sr(Rq).
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Other special cases are Sq(Rq) q-frames in Rq space, which is isomorphic to O(q)

orthogonal group, and Sq−1(Rq) isomorphic to SO(q). Orthogonal group O(q) is a set of

all q × q orthogonal matrices, while SO(q) (special orthogonal group) is the same group

but limited to matrices with the determinant equal one, i.e. this group does not include

improper rotations. Data belonging to these two special cases is usually referred to as

rotational data.

Analogous generalization exist for axes. Their orthogonal frames are said to belong

to a Grassman manifold Gr(Rq).

For more information on orientations refer to Mardia & Jupp (2000), Altmann

(1986).

1.2 Rock Fabrics

As it was mentioned above, in orientation analysis rock fabrics3 are considered to

be just orientations of various types in R3. The most common fabrics such as lineations,

fold axes, normals to bedding and foliation planes are treated as axes since in most cases

they don’t possess any directional information. However, in case where one can recognize

sedimentary structures in layers to tell upright or overturned orientation of the bedding

or sense of shear in case of foliation and lineation, corresponding orientations should be

considered as directions.

Lineation and foliation often occur together in the same structural paragenesis, i.e.

they correspond to the same deformation event. In this case foliation-lineation pairs can

be treated as a rigid frame on either Stiefel or Grassman manifold.

A combination of different types of fabrics can be used to define a structural frame.

Consider cylindrical folds of bedding and a corresponding fold axis lineation (figure 1.1).

3 In this work the term fabric is used in narrow sense, i.e. it stands for an atomic (in a scale of
observation) texture element. The wide sense fabric will be called a structural frame and is discussed
below.
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Figure 1.1 Structural paragenesis of a cylindrically folded domain.

Providing that the lineation is parallel to the fold axes, both the fold axes and lineation

can be grouped together and called b-fabrics related to a β axis of the structural frame.

Often, this β axis may correspond further to a medium eigenvalue eigenvector of the

strain tensor. If an axial plane cleavage is present, its normal will define the α axis of the

structural frame. This α axis will usually be interpreted as the direction of maximum

compressional strain.

The structural frame provides a convenient abstraction for the fabric data. It serves

as a middle-tier layer between the field observation and their interpretation in terms of

strain or stress.
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1.3 Statistical Distributions and Analysis Methods for Orientation Data

Each of the types of spherical data has been treated by several authors. The most

comprehensive and up to date text on this subject is a book by Mardia & Jupp (2000).

Other significant references are Fisher et al. (1993) and Watson (1983).

Most attention was given to directional data. There exist a number of theoretical

distributions and many inference procedures for this type of data. Original research

on this topic was done by Presnell et al. (1998), Fisher et al. (1996), Fisher & Hall

(1989), Jupp & Mardia (1989), Rivest (1989), Ducharme & Milasevic (1987), Jupp (1987),

Ducharme (1985), Jupp & Spurr (1983), Kent (1982), Jupp & Mardia (1980), Beran

(1979), Wellner (1979), Bingham & Mardia (1978), Prentice (1978) and Mardia (1975).

The main topics of these papers include distribution theory, miscellaneous single and

multiple sample parametric and non-parametric tests and so on. Much less attention

was paid to the regression techniques with the exception of spherical-spherical regression

(Procrustes analysis). Kriging techniques for the directional data are discussed in light

of injective embedding transformation into Rq in van den Boogaart & Schaeben (2002a),

Young (1987b,a).

Axial data is covered to much less extent. However in most cases it should not

be too challenging to modify the techniques of the directional statistics to fit axial data.

Besides the textbooks mentioned, published research relevant to this topic include Kunze

& Schaeben (2004), Wood (1993), Kent (1987), Tyler (1987), Wood (1987), Prentice

(1984), Kent (1982), Wood (1982), Bingham (1974). Kriging for axial data is covered by

van den Boogaart & Schaeben (2002a).

Vollmer (1990) discusses a technique for subdividing a region into a number of

domains with more or less high cylindricity inside each domain. By cylindricity he means

a goodness of fit of the c-fabrics to a great circle.

7



This method can be called a spatially supervised spherical classification. Its main

application is an automated domain search in computer aided geological mapping.
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CHAPTER 2

METHODOLOGY

In this chapter I am going to present a model and methods for the analysis of

orientation data in structural geology.

The structural frame mentioned in the introduction and used in the rest of this

paper will contain only one axis which I will call a β structural axis.

This axis will correspond to such fabrics as a β-lineation and fold axes (b-structures).

This means that in terms of kinematics the β-axis may coincide with the intermediate

eigenvector of the strain tensor.

Another set of fabrics including bedding or pre-existing foliation is assumed to

be deformed in cylindrical folds in the same strain field which is responsible for the

appearance of the b-structures. These folded fabric elements (called c-fabrics) will be

distributed along a great circle normal to the average direction of the b-fabrics, parallel

to the β axis.

Such a model describes many data sets in structural geology. Some data sets can

be studied with some straightforward adjustments.

The main consequence of this model is that the β axis can be estimated using both

kinds of fabrics. In the next sections I will elaborate on this, but before that let me

introduce some notation.

Let A be n×3 matrix of measurements of a-type fabrics represented as unit vectors

in R3. Then its scatter matrix, also known as orientation tensor or Scheidegger tensor is

defined as

La = n−1ATA, (2.1)

9



where AT means transposition of A (Woodcock, 1977, Lisle, 1985).

Further let λL
a

1 ≥ λL
a

2 ≥ λL
a

3 ≥ 0 be eigenvalues of La and υL
a

1 , υL
a

2 , υL
a

3 correspond-

ing eigenvectors. It can be shown that trace of ATA is n, therefore

3∑
i=1

λL
a

i = 1. (2.2)

Unlike the scatter matrix of linear data, L incorporates both spherical location

parameter1 and scatter of the sample. The former is determined by eigenvectors and the

later by eigenvalues.

2.1 Pooled Estimator βb,c

According to the model described in the beginning of this chapter, the β-axis can

be estimated using both, b- and c-fabrics. Since these two types of fabric often co-exist,

it is important to be able to estimate β-axis using both types of data simultaneously.

When for each measurement of one type there is a corresponding measurement of

another type, both measurements can be considered as components of a single obser-

vation. A pair of b- and c-structures can be thought of as a rigid frame, which can be

treated as a point on Grassman manifold. There are a number of statistical distributions

and procedures designed for such kind of data. For more details refer to Downs (1972),

Bingham (1974), Khatri & Mardia (1977), Bingham & Mardia (1978), Jupp & Mardia

(1979), de Waal (1979), Bingham et al. (1992), Purkayastha & Mukerjee (1992), Wood

(1993), Mardia & Jupp (2000).

In case of a few missing components of an observation, the observation can be

simply omitted or, alternatively, the missing part of the observation can be guessed by

virtue of imputation. However when the proportion of missing data becomes significant,

1 The term location is used by analogy with the linear data. Although in case of orientation data
more naturally this value should be called an orientation of a distribution, word “orientation” is already
reserved for the type of data. Therefore these two meanings would interfere with awkwardly in speech
and text (e.g. re-read this footnote).
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neither solution is satisfactory: imputation becomes unreliable and ignoring data kills

the sample. A proposed solution to this problem is presented below.

Let’s call the normalized inverse of the scatter matrix of c fabric elements Lc as

L⊥c

L⊥c =
(Lc)−1

tr
(
(Lc)−1) , (2.3)

where tr stands for the trace of a matrix.

Then using equation (2.3), I define a pooled scatter matrix Lb,c as

Lb,c =
nbL

b + ncL
⊥c

nb + nc
, (2.4)

where nb and nc are sample sizes of b- and c-structures.

Now, the β-axis can be estimated by the eigenvector of Lb,c corresponding to the

maximum eigenvalue:

βb,c = υL
b,c

1 . (2.5)

So what is the meaning of the scatter and inverse scatter matrices? It is clear that

the eigenvectors of the scatter matrix define a location of a distribution of the orientation

data. As a matter of fact, these eigenvectors are the maximum likelihood estimators for

location parameters of a number of spherical distributions (see Mardia & Jupp, 2000).

Eigenvalues of this matrix define a density of the observations around the corresponding

eigenvectors. So the first eigenvector is one of the three orthogonal directions with the

maximum concentration of data points around it and the third eigenvector has the least

number of points in its neighborhood. Now it should be clear why the first eigenvector of

the Lb matrix can be used as an estimator of β axis. The uncertainty of this estimator will

increase as the first eigenvalue decreases. Besides that, the uncertainty in the direction of

the second eigenvector increases as the second eigenvalue increases. Indeed, the greater

it is, the higher the girdleness of the distibution is and, consequently, the less determined

the estimator is. The same thing happens with the third eigenvector and eigenvalue.
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Therefore the uncertainty of the direction of the first eigenvector can be decomposed into

uncertainties along the directions of the second and third eigenvectors. Let’s put this in

the following notation:

unc(υ1) =

 unc2(υ1)

unc3(υ1)

 (2.6)

here the subscript at unc stands for the component of the uncertainty. This is almost like

a scatter matrix of two dimensional linear data, except now it is on a two dimensional

surface of a sphere.

Rewriting this for the Lb matrix obtain

unc(υL
b

1 ) ∼

 λ2

λ1
λ3

λ1


Lb

(2.7)

Now consider the Lc scatter matrix. The c-fabrics are commonly distributed along

a great circle. This means that they all lay approximately in the same plane and have

various directions. This also means that the concentration of the axes around the first

and second eigenvectors will be approximately the same, therefore the maximum and

intermediate eigenvalues will be close. The difference will increase as clustering of the

data around a single direction increases. Now recall that the normal to the great circle

of c-fabrics corresponds to the β-axis. Therefore it can be estimated by the minimal

eigenvalue of the Lc scatter matrix. The uncertainty of this estimator will increase with

the third eigenvalue increasing. In the directions of the first and second eigenvectors it

will be inversely proportional to the first and second eigenvalues correspondingly. Using

the notation similar to one defined in the equation (2.6) I can write

unc−1(υL
c

3 ) ∼

 λ2

λ3
λ1

λ3


Lc

(2.8)
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Here unc−1 stands for certainty (or inverse uncertainty if you prefer).

It is quite easy to show that a first eigenvector of a matrix2 equals the third eigen-

vector of its inverse matrix and vice versa. The following eigenvalue ratios are true as

well:

λL3
λL2

=
λL

−1

2

λL
−1

1

,
λL2
λL1

=
λL

−1

3

λL
−1

2

,
λL3
λL1

=
λL

−1

3

λL
−1

1

, (2.9)

Therefore the equation (2.8) can be rewritten as

unc(υL
c

3 ) ∼

 λ3

λ2
λ3

λ1


Lc

=

 λ2

λ1
λ3

λ1


L⊥c

∼ unc(υL
⊥c

1 ) (2.10)

The right hand side expression is identical to the equation (2.7). Both these expressions

show the variance of a β-axis estimator. The first one is for the variance of βb and the

second for the variance of βc. Since they express the uncertainty in the same way and

are using corresponding eigenvalues, the pooled estimator can be obtained by simple

summation of the scatter matrices Lb and L⊥c like it is done in the equation (2.4). This

equation also accounts for the possible difference in the sample sizes scaling the scatter

matrices proportionally.

In most cases fabric data is collected over some area and the question of interest is

whether any spatial trend is present or not. Below, I present a few methods which can

be used to investigate spatial variability.

2.2 Assessing Spatial Trend I. Kernel Smoothing

Kernel smoothing is useful for exploratory purposes. The idea is to compute the

scatter matrix (either pooled or separately for each fabric type) over a grid assigning

weights to the observations according to some function of distance between the grid node

2 Every time time you read “matrix”, understand it as “positive definite symmetric real matrix”
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and location of the observation (see Duda et al., 2000, Hallin et al., 2004, Bowman &

Azzalini, 1997).

Let A be a matrix composed of rows of data points aj. Then, for a particular grid

point gi, the weighted data matrix Âi will consist of row vectors

âij = k(gi, sj)aj (2.11)

where k is a kernel function and sj is a location of the jth observation.

The weighted scatter matrix will be defined analogous to equation (2.1) as

L̂ai = n−1ÂTi Âi (2.12)

This operation will produce a scatter matrix field which can be further explored

in different ways. The simplest and most commonly used smoother is a properly scaled

inverse distance kernel function.

This non-parametric technique can show the spatial behavior of the fabric distri-

bution.

2.3 Assessing Spatial Trend II. Model Based Approach

It is often preferable to have some simple model which explains only a particular

feature of data, omitting other features as a noise. Here I am going to introduce several

models aiming to describe the spatial trend of β-axis. Also a method of fitting these

models to data will be presented.

In linear data analysis one of the most widely used modeling techniques is linear

regression. Unfortunately orientation data does not withstand linear transformations

with the exception of rotations and identity transformations. Fortunately rotation is all

we need.
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Let’s represent the orientation of the β-axis as a product of a spatially dependent

rotation of some constant reference axis:

β(s) = R(r(s))β0 (2.13)

where r(s) ∈ R3 is some function of spatial location; R ∈ SO(3) is a rotation operator

and β0 ∈ S2 a reference axis.

There exist a number of mathematical representations of rotations (for more in-

depth discussion see Altmann, 1986). Probably the most commonly used one is an

orthogonal matrix. It has useful algebraic properties and is convenient for computation.

These matrices are members of SO(3) space.

Another representation of rotations is a pseudo-vector. The only difference from

a regular vector is that the sign of a pseudo-vector does not change under improper

rotations. In a representation of rotation, the direction of the pseudo-vector is treated

as the axis of rotation and its length is the sine of the rotation angle. Pseudo-vectors, as

rotations, do not possess nice properties. For example there is no simple operation which

would combine two consecutive rotations. Therefore pseudo-vectors are rarely used for

this purpose. However they do have one really important property for this study — they

are members of R3. This means that standard statistical procedures can be applied to

model rotations.

As it was mentioned above, R range is SO(3), i.e. values of this function are 3× 3

orthogonal matrices. As its domain we are free to choose any representation of rotation

suitable for linear modeling. From the previous paragraph it follows that a pseudo-vector

is a good candidate for that. One of its negative features follows from the property

‖r‖ = sin θ. This means that number of revolutions associated with this representation

is not limited. Therefore there are multiple representations of the same model3, which

3 For axes, rotations nπ, n ∈ Z are indistinguishable
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is undesirable since it may lead to problems with optimization (which will be described

later in this chapter). On the other hand, this representation allows for more than a

single revolution in the limits of a single model. However, the importance of this kind of

model for geology is doubtful.

To resolve the problem of multiple rotations I will replace sine with tangent ob-

taining

r = n tan θ, (2.14)

where n is a unit vector. The transformation ‖r‖ = tan θ maps ‖r‖ ∈ R to θ ∈

(−π/2, π/2). This representation is suitable for moderate (say less than 2π/3) angles

of rotation inside a model. This restriction seems to be reasonable for most problems.

Otherwise the standard pseudo-vector interpretation must be used.

Using representation (2.14) and an expression for an orthogonal matrix of a rota-

tion (θn) given by Altmann (1986, chap. 3.3), a SO(3)-valued function R from equa-

tion (2.13) can be written as

R(r : r = n tan θ) =
1− 2(n2

2 + n2
3) sin2 1

2
θ −n3 sin θ + 2n1n2 sin2 1

2
θ n2 sin θ + 2n1n3 sin2 1

2
θ

n3 sin θ + 2n1n2 sin2 1
2
θ 1− 2(n2

1 + n2
3) sin2 1

2
θ −n1 sin θ + 2n2n3 sin2 1

2
θ

−n2 sin θ + 2n1n3 sin2 1
2
θ n1 sin θ + 2n2n3 sin2 1

2
θ 1− 2(n2

1 + n2
2) sin2 1

2
θ


(2.15)

2.3.1 “Full” Model

Consider a linear model

R = SΨ, (2.16)
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where R is matrix of rotations represented according to equation (2.14), S is a matrix

of spatial coordinates with the first column added to account for an intercept and Ψ is

the model parameter matrix.

R =


r11 · · · r1p
...

. . .
...

rn1 · · · rnp

 S =


1 s11 · · · s1q

...
...

. . .
...

1 sn1 · · · snq

 Ψ =



ψ01 · · · ψ0p

ψ11 · · · ψ1p

...
. . .

...

ψq1 · · · ψqp


In vector form the equation (2.16) can be written as

r(sk) = ΨTsk =

=


ψ10 + ψ11sk1 + · · ·+ ψ1qskq

...

ψp0 + ψp1sk1 + · · ·+ ψpqskq

 ,
(2.17)

where sk is a kth row of the S matrix written as a column vector, i.e. sk = (1, sk1, . . . , skq)
T .

This model defines a linear field of Rp vectors in Rq space. In structural geology

p = 3 almost always, but geographical space may be considered either two or three

dimensional. Throughout this paper q = 2.

Now, from equations (2.13) and (2.17) obtain

β(sk) = R(ΨTsk)β0. (2.18)

This determines a model for the β-axis in a structural frame. As I mentioned above,

the γ-axis (corresponding to c-fabrics) is assumed to be normal to β:

γT(sk)β(sk) = 0. (2.19)

This is the only restriction on the γ-axis in this model. Its rotations around β are not

considered. The main purpose of the current section is to model β-axis behavior and the

γ-axis is introduced only to allow c-fabrics related to it to contribute some information.
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Now, once the model is formulated, a technique to find its optimal parameters must

be developed. Traditionally this is done by minimizing total deviation of data from a

model. A natural way to express the distance on a sphere is the angle between R3 vectors

corresponding to the S1,3 data (embedding approach).

Providing a model for the β-axis and data on b- and c-fabrics, the objective function

can be defined as follows

ε(Ψ, β0) =

nb∑
i=1

θ
(
bi, β(si)

)
+

nc∑
i=1

(
π/2− θ

(
ci, β(si)

))
(2.20)

where β(si) is determined according to the equation (2.18), nb and nc are the sizes of b-

and c-fabric samples respectively. Function θ is a suitable measure of an angle between

two orientations. In the case of direction it is defined by equation (1.2) and for axes —

by equation (1.3).

The first summation in equation (2.20) reflects the deviation of measurements of

b-structures from the modeled β. The second summation corresponds to the deviation

of c-fabrics from the normality condition in equation (2.19). Rewriting equations (2.20)

and (2.18) together and minimizing overall error, the estimator for model parameters is

obtained

(Ψ, β0)
b,c = arg min

Ψ,β0

( nb∑
i=1

θ
(
bi,R(ΨTsk)β0

)
+

+
ncπ

2
−

nc∑
i=1

θ
(
ci,R(ΨTsk)β0

))
.

(2.21)

Assume the orientations to be G1,3 axes in R2 geographical space.4 This model now

contains a total of 11 parameters: Ψ 3×3 matrix contributes nine and β0 ∈ S2 gives two.

However, β0 actually can be absorbed by Ψ and therefore it can be chosen arbitrarily.

This reduces dimensionality of the parameter space to R9.

4 This assumption will stay till the end of this paper.
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The final solution then becomes

(Ψ)b,c = arg min
Ψ

( nb∑
i=1

θ
(
bi,R(ΨTsk)β0

)
+

+
ncπ

2
−

nc∑
i=1

θ
(
ci,R(ΨTsk)β0

))∣∣∣∣
β0

(2.22)

It should be mentioned that while choosing the reference axis β0 one should remem-

ber about limitations on the rotation angle created by representation (2.14). Therefore

the βb,c point estimator defined by equation (2.5) should be taken as a reference axis.

2.3.2 Small Circle Model

The model defined by equation (2.18) allows significant flexibility regarding the

trend of the β-axis. Sometimes it may be desirable to have a simpler but more restrictive

model. First, it may be hard to assign any geological meaning to the“full”model. Besides

that, the more parameters in a model, the bigger the sample size needed.

One obvious simplification is to hold the axis of rotation fixed. This leads to the

following decomposition of the Ψ matrix:

Ψ =


ψ0

...

ψq


(
r01 · · · r0p

)
= ψrT0 . (2.23)

Using equations (2.13) and (2.17) obtain

β(s) = R(r0ψ
Ts)β0 (2.24)

The model restricts the β orientation to a small circle, which gives rise to the name.

In the case of p = 3 and q = 2 this model contains a total of seven parameters

(using the 2(p− 1) + (q + 1) rule). Unlike the “full” model, β0 cannot be absorbed by ψ

completely. However given r0, the β0 orientation needs to be defined only by an angle
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which it makes with r0. The rest can be accounted by ψ vector. Therefore, the actual

number of parameters in this model is six.

Estimation of the model parameters is analogous to equation (2.22)

(ψ, r0, θ0)
b,c = arg min

ψ,r0,θ0

( nb∑
i=1

θ
(
bi,R(r0ψ

Ts)β0

)
+

+
ncπ

2
−

nc∑
i=1

θ
(
ci,R(r0ψ

Ts)β0

))∣∣∣∣
βT
0 r0=cos θ0

(2.25)

Again, as in the previous model, β0 should be chosen close to the average β (see

remarks below the equation (2.22)).

2.3.3 Great Circle Model

A further simplification is to constrain angle between β0 and r0 to π/2. This will

bring all β onto the same great circle. Hence the name.

Solution for the parameters of this model is derived from equation (2.25)

(ψ, r0)
b,c = arg min

ψ,r0

( nb∑
i=1

θ
(
bi,R(r0ψ

Ts)β0

)
+

+
ncπ

2
−

nc∑
i=1

θ
(
ci,R(r0ψ

Ts)β0

))∣∣∣∣
βT
0 r0=0

(2.26)

It further reduces number of parameters to five.

2.3.4 “Null” Model

The last reduction of this model is to remove the spatial component completely,

i.e. to put

Ψ =


0 · · · 0

...
. . .

...

0 · · · 0

 (2.27)
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in equation (2.17). According to the equation (2.15) this leads to

R =


1 0 0

0 1 0

0 0 1

 (2.28)

everywhere. In this case solution for the parameters becomes simply

(β0)
b,c = arg min

β0

( nb∑
i=1

θ
(
bi, β0

)
+

+
ncπ

2
−

nc∑
i=1

θ
(
ci, β0

)) (2.29)

This estimator is similar to one defined by equation (2.5).

2.4 Spatial Autocorellation

All of the estimators in section 2.3 implicitly assume independence between obser-

vations in each group. However, spatial data is rarely independent, but tend to display

some degree of correlation, which is usually a function of geographical distance between

points. This feature of spatial data leads to a reduction of total weight that should be

assigned to observations in a closely spaced cluster because they are correlated and, so

to speak, share the same bits of information about population from which the sample is

drawn.

So the problem to solve when dealing with spatial data is to estimate a degree of

autocorrelation and use it to assign appropriate weights to the observations. This task

requires a correlation model that can be fitted. To investigate properties of a spatial

process, geostatistics operates with a set of so called stationary random functions (for

more details refer to Schabenberger & Gotway, 2005, Ripley, 2004, Haining, 2003, Hould-

ing, 2000, Chilès & Delfiner, 1999, Rivoirard, 1994, Cressie, 1993, Griffith, 1988, Young,

1987b, Upton & Fingleton, 1985).
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An often used intrinsic stationary model assumes

E
(
Z(s + h)− Z(s)

)
= 0 (2.30a)

E2
(
Z(s + h)− Z(s)

)
= 2γ(h), (2.30b)

where {Z(s) : s ∈ D ⊂ Rq} is a q-dimensional spatial random function defined over

a domain D, s is a spatial index and h ∈ Rq is a separation vector; E stands for

expectation and E2 is variance. Quantity γ is called semivariogram. It is the parameter

of autocorrelation for this model.

From equation (2.30a) it follows that in order to use this model, data must be first

detrended. However to estimate the trend of data one has to know the autocorrelation

structure. To resolve this problem, trend is usually estimated neglecting the autocorre-

lation aspect of data. Then, using residuals, which hopefully will have an approximately

constant mean, the variogram is estimated and used to fit the trend again but armed with

the modeled autocorellation structure this time. To obtain better results this procedure

can be repeated recursively.

Spatial analysis of orientation data currently is not very well developed. Young

(1987a,b) and later van den Boogaart & Schaeben (2002a,b) used the embedding approach

to map orientation data to a linear space, then did an analysis using linear geostatistics

and then mapped the results back to the manifold. Unfortunately, there is no such

bijective transformation between the linear space and the manifold. Therefore the trend

in embedding space does not generally belong to the manifold.
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CHAPTER 3

ANALYSIS OF THE KUKAS LAKE STRUCTURE

3.1 Data description

3.1.1 Geological settings of the Kukas lake structure

Data used in this research was collected during structural mapping of the Eastern

part of the Kukas lake area (North Karelia, Russia) shown on figure 3.1. This region is on

the Baltic shield and is situated on the border between two Archean cratons: Belomorskii

on the North and Karelskii on the South. Therefore the Kukas lake structure is commonly

interpreted as an orogenic belt produced by collision of those cratons. According to some

other interpretations the whole Belomorskii block with the Kukas lake structure is an

orogenic belt between the Karelskii and Kolskii cratons. The later is situated North of

the Belomorskii block.

The Kukas lake structure is composed of Early Proterozoic volcanic and sedimen-

tary formations metamorphosed to amphibolite facies during Svecofenian time (2–1.8 Ga,

which approximately corresponds to the Orosirian). These rocks are conformably under-

laid by Archean amphibolites and gneisses referred to as Lopii strata. The Karelskii and

Belomorskii blocks are mostly composed of Archean gneisses and amphibolites.

Besides other problems, the curvature of the structure has attracted some interest.

There are two contradicting opinions on this. One interprets this curvature as a result

of curvature of one of cratons participating in the collision. In this case the flanks of

the structure are expected to be deformed in a transpressional regime — dextral to the

East and sinistral to the West. Another interpretation claims that this curvature is not

related to this orogeny, but caused by some later event.
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Figure 3.1 Geological map of the Kukas lake structure (after Somin & Travin, 2002) and
the region of study.

In the first case, the metamorphic fabrics should reflect a transpressive zone, which

were modeled quite extensively (e.g. Robin & Cruden, 1994).

In the other case all the structure should be rotated, possibly with little evidence of

strain associated with it. Presumably there was no metamorphism associated with this

rotation.

Some transpressional conditions could occur even without the presence of a curved

craton. However in this case the shear sense on both flanks of the structure should be

the same.
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3.1.2 Fabric observations

Collected during the 2002 field season the observations include measurements of

schistosity and bedding planes, intersectional biotite lineation, fold axes and axes of

winged inclusions. There is a total of 349 measurements of different kinds collected over

the area of approximately 20 km2.

Schistosity is primarily related to the parallel orientation of biotite and is parallel

to the bedding when it is observed. Travin (1992) showed that the lineation is caused by

a girdle distribution of biotite. Such interpretation implies the exclusive occurrence of

either schistosity or lineation. Indeed, it was noticed that the schistosity is more common

at the East part of the studied area, while the lineation becomes more prominent towards

West. However, both textures were sporadically observed together. This can be explained

by an incomplete girdle distribution of biotite. The maximum eigenvector of the biotite

orientation scatter matrix appeared as schistosity and the minimum value eigenvector as

lineation. Therefore both, lineation and foliation in this area are probably just different

aspects of the same rock texture that is biotite preferred orientation.

Schistosity, bedding, lineation and fold axes are the four major fabric elements

which will be used in this study. As it was mentioned above, schistosity is parallel to

bedding (c-fabrics) and lineation is parallel to fold axes (b-fabrics). Also, normals to the

c-fabrics are perpendicular to the b-fabrics.

The goal of this chapter is to verify these observations statistically and to discover

possible spatial trends of the orientations.
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3.2 Exploratory Analysis

Before fitting the models to the observations it is helpful to get some idea about

what this data look like. This section highlights a few aspects of the Kukas lake sample

using some visual techniques for the exploratory analysis of the orientation data.

All of the plots to be presented make use of the Lambert (or Schmidt) equal-area

azimuthal projection. This projection is a bijective transformation from a hemisphere in

R3 to a disk in R2. It is given by x1

x2

 =
√

2 sin
φ

2

 cos θ

sin θ

 , (3.1)

where θ corresponds to a trend of an orientation, φ is its plunge and (x1, x2) are the

coordinates of the projected orientation. This transformation is standard for structural

geology. Another convention is to use the lower hemisphere to project axes. It is reflected

by a requirement φ ∈ (0, π/2).

Figure 3.2 shows the overall scatter of different observations of the fabrics. Great

circles shown on the picture correspond to eigenvectors of the scatter matrix Lc of c-

fabrics. The crossed circle is υL
b

1 , an eigenvector of the maximum eigenvalue of the

b-fabrics scatter matrix (see page 9 for the notation). This axis is an estimator βb of the

β-axis of the structural frame. At the same time, eigenvector υL
c

3 of the scatter matrix Lc

can be considered an estimator of the β-axis as well.

Estimates of β from lineation and foliation data are

βb = (303, 27) and βc = (310, 16)

respectively (measurements are given in Euler angles and degrees). The angle between

the estimators is 13◦.
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Is this difference significant? Mathematically sound methods of statistical inference

for this kind of problem are still to be developed. For now I will use the following

qualitative procedure.

First, for both groups of observations, some number of bootstrap resamples from

the original data are generated. Then, for each of the bootstrapped samples and for each

group, compute the estimate of the β axis. Finally, plot both groups of the estimates on

a stereonet. Overlapping clusters will suggest no significant difference between βb and

βc, while clearly separated clusters will indicate the opposite.

Figure 3.3 shows the scatter of 100 bootstrapped estimates βb and βc. The clusters

are clearly separated, therefore the average direction of the b-fabrics can not be considered

normal to the best-fit girdle of the c-fabrics as was assumed.

There are two possible causes of this problem. At first, it may just be that the

assumption of normality is wrong, although this explanation might not be very satisfying

for a structural geologist. Another reason for the apparent non-normality may be presence

of a spatial trend, which was not considered by those estimators.

To check this possibility I will use the kernel smoothing method explained in sec-

tion 2.2.

Figure 3.4 shows the result of smoothing. It was obtained in the following way.

First a six by two spatial grid was generated. Then at each point of the grid a vector of

weights was computed using a Gaussian radial basis kernel function (GRBF), which is

defined as

k(gi, sj) = exp(−σ‖si − sj‖2), (3.2)

where σ is a parameter of the function which controls the smoothness and gi and sj are

points in space. In this case the first point was a grid node and the second — a location

of an observation.
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Table 3.1 Comparison of the regression models

Model Opt. Time (sec) Mean Error (deg) Error Ratio
1 Full 28.2 9.1 0.75
2 Small Circle 24.1 9.1 0.75
3 Great Circle 13.0 9.4 0.77
4 No Rotation 0.3 12.2 1.00

Then the b- and c- fabric observations was weighted as

b̂ij = k(gi, sj)bj (3.3)

ĉij = k(gi, sj)cj. (3.4)

These points are shown on the figure 3.4 as dots of varying intensity, which reflects their

corresponding weight.

After the observations were assigned weights, scatter matrices (L̂b)
i
and (L̂c)

i
were

computed at each node according to equation (2.1) and substituting A with B̂i and Ĉi

correspondingly. Finally using equation (2.4), the weighted pooled matrix was computed

for each node. Its eigenvectors are shown on the picture 3.4 as a great circles of blue

color.

The presence of some trend seems obvious. Now it would be nice to somehow

quantify this trend. This is the goal of the following section.

3.3 Model Fitting

The four models discussed in section 2.3 will be fitted to the data.

Table 3.1 shows the run time for the optimization of each model on a hyper-threaded

3 GHz Intel r© Pentium r© 4 computer, the average deviation of the observations from the

model and the ratio of this error to the error of the minimal model.
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●

Figure 3.2 Lower hemisphere Lambert projection of fabric data collected at the study
area. Dark green crosses show bedding planes, black crosses — schistosity, red triangles
— lineation and blue circles — fold axes. The great circles show eigenvectors of the scatter
matrix of schistosity and bedding orientations. The crossed circle is the maximum value
eigenvector of the lineation and fold axes scatter matrix.
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Figure 3.3 Bootstrapped estimates βb (shown in darkblue) and βc (darkgreen).
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Figure 3.4 Smoothed trend over the area. Each stereonet is centered at a grid node. The
intensity of points correspond to their weights. Grey colored great circles are eigenvectors
of the unweighted pooled estimator Lb,c. Blue great circles correspond to the weighted
pooled estimator.
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From these numbers it can be seen that the resulting error of the “full” and the

small circle models is almost the same. The error of the great circle model increases

slightly. The error of the “null” model increases even further. That’s a good thing: the

smaller the model the farther the residuals. Since the “full” model in terms of the mean

error is not any better than the small circle model, and it is of no special interest for

structural geology, it is natural to disregard the “full” model for this dataset. However I

am going to keep analyzing it just for completeness of the discussion.

The small circle model has somewhat better performance than the simpler models.

So it might be the model of choice. However, with no inference procedure, it is hard to

tell how significant the mean error differences are.

Now let’s look at the fitted trends. Figure 3.5 shows predictions for the β axis by

the “full”, small circle and the great circle models. The estimators were computed at the

same grid locations that were used to evaluate the smoothed trend shown in figure 3.4.

Moreover, the smoothed version of the trend is reproduced together with the modeled

trend for comparison. The eigenvectors of the pooled scatter matrix are shown as well.

It can be seen that all three trends are quite similar. However the rotation by the

great circle model is more pronounced towards East compared to the other models.

3.3.1 Summary of the “Full” Model

The parameter matrix Ψ of the “full” model and the reference axis β0 are

Ψ =


1.88 −2.22 −0.55

−2.45 2.61 0.64

−0.43 0.26 1.47

 , β0 =


0.56

−0.75

0.35

 .

The reference axis β0 was actually chosen arbitrarily. For the reasons explained on

the page 19, it was set to be equal to the pooled estimator βb,c.
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Figure 3.5 Trends (dark red) of the “full” (at the top), small circle (middle) and the great
circle (bottom) models. The blue dashed lines show the kernel smoothed trend and the
grey lines correspond to the eigenvectors of the pooled scatter matrix.
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3.3.2 Summary of the Small Circle Model

The small circle model is parameterized by an axis of rotation r0, reference axis β0

and a parameter vector ψ, which actually defines a linear model for tangent of the rotation

angle (tan θ = ψTs, s = (1, s1, s2) is a space coordinate).

ψ =


−4.83

5.41

2.98

 , β0 =


0.67

−0.53

0.53

 , r0 =


−0.78

0.62

−0.06

 .

The angle between the r0 and β0 is approximately 28◦.

The tan θ model is a linear scalar field. Therefore it can be characterized by a

constant gradient

∇ψTs =

(
∂

∂s1

ψTs,
∂

∂s2

ψTs

)
=

= (ψ1, ψ2)

(3.5)

The direction of the gradient vector computed according to equation (3.5) is 61◦.

A normal to this direction will give a direction of no change in prediction of β.

3.3.3 Summary of the Great Circle Model

The great circle model parameterization is almost identical to the small circle model

with the exception of the angle between r0 and β0 which is restricted to π/2.

Optimized values for the parameters are given below.

ψ =


−3.79

3.39

2.41

 , β0 =


0.81

−0.01

0.59

 , r0 =


−0.59

0.01

0.81

 .

The direction of the gradient vector computed using the equation (3.5) is 55◦.
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●

Figure 3.6 The “null” model estimate of the β0 axis (dark red) and the pooled estimate
(black).

3.3.4 Summary of the “Null” Model

The “null” model differs from the others by the absence of any trend parameters.

As a matter of fact, it is analogous to the pooled estimator βb,c (equation (2.5)). It does

the same job of estimating β from b and c structures using a different approach.

β0 =


0.81

−0.01

0.59

 .
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Figure 3.7 Index grid used in figures 3.8 through 3.10.

Figure 3.6 shows the β0 estimate of the β axis (in dark red) and its relation to the

pooled estimate βb,c (grey). The angle between these two is only 2◦.

To better show the differences in the trends I use the following technique. Figure 3.7

shows the study area and a dense grid of locations at which the predictions by different

models are computed. Corners of the area are marked with letters corresponding to their

geographical orientation.

Figures 3.8 through 3.10 show these predictions for the “full”, small circle and the

great circle models. It is clear that all the predictions of the small circle model lay on the
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Figure 3.8 Stacked trend of the “full” model.

same small circle (as they should), and the great circle model predictions make a great

circle. The images of trends for the “full” model and for the small circle model are very

similar.

3.4 Residual analysis

Now, when the models are fitted and the trends observed it is time to check whether

the model assumptions were correct. This is usually done by observing residuals.
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Figure 3.9 Stacked trend of the small circle model.
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Figure 3.10 Stacked trend of the great circle model.
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In the case of orientation data, residuals can be obtained by rotating predicted

values together with observations to some “zero” orientation. For convenience of repre-

sentation on stereonets I choose the “zero” to be (0, 0, 1) (straight down).

Figures 3.11 through 3.14 show the residual plots for all four models. Each figure

consist of two stereonets. One on the left hand side shows the residuals for the pooled

estimator βb,c. Green and blue clouds represent 100 times bootstrapped sample of the

β axis estimations from b and c structures correspondingly. This stereonet is provided to

aid comparison (bad vs. good).

The stereonet on the right displays the same information but for one of the four

regression models.

The bootstrap clouds of the“full” and the small circle models are similar. Although

they are much closer than the clouds of the pooled estimator residuals they are still

separated. A precise answer to the question whether the directions of the βb and βc

estimators are different or not should be given by statistical inference. Unfortunately

this is a topic for another research. For now I will claim these estimators not to be

significantly different and therefore the assumption of the orthogonality is valid.

In case of the great circle model the bootstrap clusters are strongly separated. The

obvious reason for this is the failure to correctly estimate the spatial trend.

The “null” model never aimed to account for any trend, therefore the clouds are

even farther apart. As mentioned before, this model is extremely close to the pooled

estimator model.

Another important assumption implicit in the objective function (equation (2.20))

is the equality of the dispersion of b structures around the β axis to the dispersion of c

structures with respect to a great circle normal to the β axis.
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Figure 3.11 Plot of residuals from the “full” model and the bootstrap clouds (right plot)
and the same for the pooled estimator (left).

The b structures are shown as circles and triangles and c fabrics as crosses. Thus

the dispersions can be approximately assessed from the stereonets.

In my opinion these plots do not show any significant difference in variance of b-

and c-structures.

As a conclusion, the model of choice for this data is the small circle model. It is

almost as good as the “full” model in terms of the mean error, but since it has fewer pa-

rameters, it will have a better performance for unexisting inference procedures. Moreover

it is much simpler for the geological interpretation. Unlike the “full” model, which is a

nine-parameter vector field, the small circle model can be represented as a combination

of a constant vector of rotation and a linear scalar field of the tangent of the rotation

angle.
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Figure 3.12 Plot of residuals from the small circle model and the bootstrap clouds (right
plot) and the same for the pooled estimator (left).

Figure 3.13 Plot of residuals from the great circle model and the bootstrap clouds (right
plot) and the same for the pooled estimator (left).
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Figure 3.14 Plot of residuals from the “null” and the bootstrap clouds (right plot) and
the same for the pooled estimator (left).

The great circle model does not fit the data particularly well. This is especially

clear at the eastern part of the area where the predicted values of the β axis are way too

over-rotated.

The “null”model is of zero interest. Here it was presented mostly for the complete-

ness. However it will find its application in testing the hypothesis of no trend.

The overall reduction of the dispersion seen on figures 3.11–3.13 of the residuals

of the first three models corresponds to the effect and the principal of the regression —

minimization of the total error.

This residual dispersion is unexplained by the models variance which can be stud-

ied further. For example, the residuals can be used to fit a variogram to study spatial

autocorrelation. This was briefly mentioned in section 2.4. With knowledge of the auto-

correlation properties of the data, kriging for orientations described by Young (1987a,b)
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and van den Boogaart & Schaeben (2002a,b) can be used to assess smaller scale varia-

tions.

Besides that, the residuals can be used to study the c-fabric distribution. This

aspect was completely neglected during the trend fitting, but is an important part of the

orientation analysis study.

3.5 Geological Interpretation

It was mentioned in the beginning of this chapter that a model of a curved cra-

ton may explain the curvature of the structure. It was also shown why transpression

conditions should appear in this case.

The derived trend of about 60◦ does not correspond to the model provided by Robin

& Cruden (1994). Therefore it can be said that this data does not support that model.

A more complete study of the orientations that would provide some basis for an

interpretation of this structure would include a study of residuals obtained from a model

of choice. The regression models discussed in this work are concerned about just one

aspect of the data structure — spatial trend of the β-axis orientation. However, this

is not the most critical part of the numerical model of a transpression zone. What is

really significant, is the distribution of the c-fabrics after subtracting the β-trend, i.e.

the residuals. This detrended c-fabric data can be used to estimate such parameters

as deformation intensity, kinematic vorticity number, Flynn parameter and so forth.

However, the goal of this work was not a study of the Kukas lake structure, but methods

for this study. Therefore, no further analysis was done and no important conclusions

about the structure can be drawn.
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CHAPTER 4

CONCLUSIONS

This research is a continuation of research to develop statistical methods for ori-

entation analysis in structural geology. Spherical data, one of the most important forms

of information in structural geology, is significantly different from linear data which is

the target of almost all statistical techniques developed to date. Although it is quite

easy to transform orientation data into linear space, the inverse transformation is more

challenging in terms of providing a surjective mapping. Almost all transformation based

techniques suffer from this problem.

This paper presents a new (at least for the orientation data) transformation from a

sphere to linear space by virtue of rotations and pseudo-vectors. Although this transfor-

mation is surjective, it is not injective, i.e. a single point in the original space corresponds

to many points in the transformed space. However this does not seem to be a problem

for the regression techniques based on this transformation as presented in this paper.

These methods are actually linear regression models of orientations in the trans-

formed space on a spatial location with a special treatment for errors. Since the transfor-

mation is not injective, the errors have to be measured in the original space. Therefore

the model formulae and the developed optimization technique look different from ones

used in classical linear regression.

Another difference from a casual linear model is the use of two different sources of

information. The proposed methods take advantage of having measurements of both b-

and c-types of fabrics without requiring them to be paired. This is important when every

bit of information is precious and no data can be discarded.
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Four variants of this model are presented starting with the most comprehensive

“full” model that includes nine parameters and is very flexible, but is also rather hard to

interpret.

The next, small circle model, is a reduction of the “full” model, which restricts it

to a constant axis of rotation. The great circle model is its further simplification with a

restriction of the angle between the axis of rotation and the β axis to a given value (π/2

in this work). These models have the advantage of simplicity combined with moderate

flexibility.

The last, “null” model is a model of no rotation whatsoever. This model is mostly

reserved for future use, when methods of inference will be developed.

Besides these spatial trend models, a pooled estimator βb,c is also presented. Like

the regression models, this estimator is designed to incorporate unpaired observations on

different types of data. However this estimator disregards the spatial component, and in

this sense is somewhat similar to the “null” model.

Examples of all these techniques are given using the data from the Kukas lake

structure of the Baltic shield. The methods found and quantified a trend in orientation

of the β-axis allowing a further study of residuals that would give estimations necessary

for comparison with numeric models.

It is shown that the residuals obtained from the fitted models can be used for

further analysis using geostatistics.

The main direction for further research should be development of inferential tech-

niques. One of the simpler approaches would be bootstrapping. Indeed the distribution

theory for orientation data is quite difficult. Moreover, most of the geological data is

spatially attributed, therefore it is highly possible that it is autocorrelated, which means

that the traditional maximum likelihood methods will not be suitable.
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All computations were done using the R language (R Development Core Team,

2005). A set of functions was created, which will be published at the CRAN (Compre-

hensive R Archive Network) web site as a stand alone package.
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