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ABSTRACT 

 

UBCA:  A UTILITY BASED CLUSTERING ARCHITECTURE 

FOR PEER TO PEER NETWORKS 

 

Publication No. ______ 

 

Brent Jason Lagesse, M.S. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Dr. Mohan Kumar 

Use of the Peer-to-Peer (P2P) architecture has recently spread in popularity.  File sharing 

and ad hoc networks have contributed to the architecture's usage.  P2P generates new 

challenges in scalability, fairness, and quality of service.  Current solutions tend to fall 

into two main areas:  incentives and system design.  Incentive-based approaches appeal to 

the self-interested nature of peers by requiring service to the system in order to access 

resources.  System design includes distributed hash tables and graph-theoretical based 

designs which have seen some success, but also result in new problems.  We introduce a 

Utility-Based Clustering Architecture, UBCA, designed to address scalability, fairness, 

quality of service, and load distribution through the use of implicit incentives.  The 

UBCA runs on peers and clusters during the execution based on mutual utility gained as a 
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result of the grouping.  Simulation of the UBCA shows improved bandwidth and latency 

per access and reduced overhead costs. 
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CHAPTER 1 

INTRODUCTION 

 Peer to Peer (P2P) computing is now commonly used in software development 

[16].  Since the architecture has direct implications in dynamic and decentralized 

environments, it has become part of the foundation of mobile and distributed computing.  

P2P computing provides advantages in resource replication, a decentralized nature, 

improved availability, and flexibility for dynamic systems [2].  Despite all of its 

advantages, the P2P architecture introduces several new problems that must be 

addressed.[1,2,6,22]  High overhead costs are introduced to systems based on P2P since 

resource locations are not known, but rather must be discovered.  As a result, excess 

queries and broadcasts are sent that do not result in the access of a resource.  These extra 

communication messages can clutter a network and reduce performance.  In addition to 

increased overhead, P2P-based systems scale poorly.  P2P-based systems also can be 

dominated my non-contributors which only consume resources and provide nothing. 

 We examine current solutions to problems in P2P-based systems and introduce a 

utility-based solution which addresses problems of increased overhead, fairness, and load 

distribution.  This solution utilizes techniques from distributed computing and game 

theory in order to reduce overhead costs and select the best resources to access.  Each 

peer is abstracted into an agent that consumes and provides a set of resources with certain 

quality and quantity attributes, such as the pages per minute on a printer or the number of 
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jazz music files in a music archive.  By performing this abstraction, peers can be clustered 

together to satisfy each other's consumptions best so that there is less need for a peer to 

request help from outside the group. 

 In order to provide a concrete example, we can examine the interaction of players in 

sports, particularly basketball.  In basketball, each player possesses certain skills which 

contribute to the team; however each player is also dependent on the provisions of other 

players in order to operate at or near their maximum potential.  For example, a guard is a 

player who is quick, a good ball-handler, a good passer, and a good shooter; however, the 

point guard cannot do much without the ball, so he or she needs somebody (including 

potentially himself or herself) to provide him or her with the ball.  This can be done by 

players providing such actions as rebounds, steals, and passes.  A center is typically a taller 

player who plays near the goal and makes short shots well and grabs rebounds due to height.  

For this case, the center provides close shots and rebounds, but needs to consume the shots of 

other players and passes from them.  Evidently, a team will not do as well with 5 great 

players with a minimal set of skills as they will with 5 players whose skills complement each 

other.  This analogy can be taken even further to realize that 5 players on a team is an 

artificial limit placed on leagues by rule makers.  Due to the cost of having to satisfy the 

needs of all players, a team that is formed based on compositional need may not increase 

their performance by continually adding players.  Each player that joins the team adds an 

additional overhead cost, so at some point, the addition of another player will not benefit of 

the team. 

 As a result of simulating the utility-based clustering architecture (UBCA), we have 
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seen positive results in terms of overhead messages, bandwidth and latency in accessing 

resources, and classification of peers.  The primary use of the UBCA is expected in pervasive 

computing applications.  In pervasive computing environments, many agents are brought 

together and communicate in order to perform tasks to make the lives of the users better. 

 In Figure 1, an example of peer clustering is shown.  This example demonstrates three 

groups of peers which have mutually derived utility from each other existing in a system with 

peers that either cannot currently benefit groups or themselves.  These peers act as though 

there were in a normal version of the P2P system and are not affected by the groups, other 

than the likelihood that they will have less requests sent to them.  The peers handle the 

significant load of their interactions within the group, so they do not need to interact with 

other peers as often. 
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Figure 1:  An example of grouped and non-grouped peers interacting in a P2P network 
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CHAPTER 2 

BACKGROUND 

2.1 Pervasive Computing 

Computational hardware continues to be produced in smaller forms and become 

more abundant in every day life as technological and production techniques improve.  In fact, 

we are beginning to reach a point where computing has become ubiquitous.   As computers 

reach a point of ubiquity, they also become more intertwined in networking and information 

sharing. Ideally the conglomeration of computers should be completely transparent from the 

perspective of a human; however, in most cases we are far from achieving this goal. 

 In 1991, Mark Weiser noted that “the most profound technologies are those that disappear. 

They weave themselves into the fabric of everyday life until they are indistinguishable from 

it.” [32] This concept has become the core of Pervasive Computing.  While it includes work 

done in distributed and mobile computing, pervasive computing goes further to integrate 

itself invisibly into all things.  Satyanarayanan identifies four new research thrusts for 

pervasive computing.  These are effective use of smart spaces, invisibility, localized 

scalability, and masking uneven conditioning.   

 Smart spaces bring together the physical infrastructure of an area with the 

computational infrastructure.  They are an excellent environment in which to research 

pervasive computing.  Many research efforts have begun in this area, including MavHome at 

University of Texas Arlington, Gaia at University of Illinois Urbana-Champaign, and Vigil at 
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University of Maryland Baltimore-County.  These research efforts address and raise 

questions in service provision, trust, communication and format protocols, and resource 

discovery; however, all of these issues are manifestations of the other three research thrusts 

identified by Satyanarayanan [25].   

 MavHome [9] is a smart space with significant focus in pro-active automation.  Work 

in MavHome focuses on utilizing artificial intelligence techniques in order to learn inhabitant 

patterns.  The goal of this work is to create a home that acts as a rational agent and maximize 

comfort while minimizing operation and interaction costs through the ability to predict 

mobility patterns and device usage.  The MavHome architecture is rooted in the house agent, 

which communicates with Rooms/Robots and then further through them to 

Appliances/Robots.  The house agent is divided into four layers:  Decision, Information, 

Communication, and Physical.  The decision layer is in charge of selecting actions to take 

based on information it receives from other layers.  The information layer works to collect, 

maintain, and generate information useful for decision making.  The communication layer 

exists to route communications between the users and the house and the house and external 

resources.  Finally, the physical layer is the actual hardware devices in the house.  Together, 

these layers work to create a proactive smart environment. 

 The Gaia project [24] at University of Illinois approaches the smart space concept by 

bringing the functionality of an operating system to physical spaces.  Through extending the 

operating system to include concepts of context and location awareness, mobile computing 

devices, and actuators, they are seeking to be able to build generic applications to function 

without the knowledge of the underlying hardware.  Using middleware, the Gaia project 
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builds an application layer on top of their application framework and Quality of Service 

measures, which sit on top of the Gaia kernel.  These measures work to provide fault 

tolerance and invisibility to the smart space environment.   

 Vigil [13] at University of Maryland Baltimore County is a third generation pervasive 

computing infrastructure designed to utilize role-based services.  The work is agent based 

where software agents provide services which are registered with service managers and are 

accessible to client agents (either humans or computers) based on the needs of their role.  

These roles are wrapped in digitally signed role-certificates and are utilized within the Rei 

framework which is an engine using rights, prohibitions, obligations, and dispensations to 

create logic-inference rules.  Furthermore, Vigil can be extended as has been done with 

UMBC's EasyMeeting [7] which provides context awareness and privacy protection.  With 

this extension, Vigil has been able to pro-actively utilize context to disappear into the 

background while providing a basic meeting smart space 

 In developing pervasive computing applications and infrastructures such as these, one 

of the most prominent architectures used as been the Peer to Peer computing.  Due to the 

nature of this architecture, in which agents both provide and consume resources rather than 

all looking towards a centralized source, systems can become robust, but it also introduces 

other potential problems such as trust, corruption, discovery, and traffic issues.  Because of 

and despite these characteristics of peer to per computing, many projects and research thrusts 

in pervasive computing utilize the architecture to approach their goals in a pervasive 

computing system, including transparency, reliability, and content/resource distribution. 
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2.2 Peer-to-Peer Architecture  

 Peer-to-Peer systems break from the typical client/server architecture which specifies 

that one node must provide a service while others node must contact the server node in order 

to receive the service.   In Peer-to-Peer systems, this distinction disappears.  Each node (or 

peer) ideally has the some capabilities and services and acts as both a client and a server.  

Peer-to-Peer broadly defines a range of computing systems.  From a purist standpoint, peer-

to-peer systems are created where each peer has a completely equal level (but not the same 

set) of tasks and abilities, which result in a purely decentralized system.  However, we open 

the label of peer-to-peer to many other systems that utilize super-nodes such as Kazaa, 

systems that have decentralized distribution of tasks, but a centralized searching mechanism 

such as Napster, and systems such as Gnutella, which is close to a pure peer-to-peer system, 

but does require bootstrapping.  According to Androutsellis-Theotokis and Spinellis: 

Peer-to-peer systems are distributed systems consisting of interconnected 

nodes able to self-organize into network topologies with the purpose of sharing 

resources such as content, CPU cycles, storage and bandwidth, capable of 

adapting to failures and accommodating transient populations of nodes while 

maintaining acceptable connectivity and performance, without requiring the 

intermediation or support of a global centralized server or authority. [2] 

 Androutsellis-Theotokis and Spinellis state that there are three types of structures and three 

types of centralization.  These are Unstructured, Structured Infrastructures, and Structured 

Systems for structures and Hybrid, Partial, and None for centralization.  Unstructured 

systems content and services are distributed with no particular method.  This requires a 



 

9 

search to locate the desired content or service.  This causes problems in with scalability and 

availability, but those can be somewhat mitigated through the use of advanced searching 

techniques and replication.  The main advantage of these types of systems is that they are 

excellent at supporting very transient populations.  Structured networks provide excellent 

scalability when a node needs to perform non-ambiguous searches.  The main disadvantage 

of the structured Peer-to-Peer network is that the structure is extremely difficult to maintain 

due to the highly transient nature of Peer-to-Peer systems. 

 As a very pure and widely used peer to peer system, the Gnutella architecture [21] will 

be a main focus in future discussions.  The basics of Gnutella employ a query flooding 

protocol which includes five main messages: 

• Ping – Discovers hosts 

• Pong – Replies to a ping 

• Query – Searches for a File 

• Query Hit -Replies to a Query 

• Push – Request to Download for firewalled peer 

Gnutella works by bootstrapping peers into the network.  This method can differ depending 

on the implementation of the Gnutella protocol, but generally involves connecting to some 

initial peer or set of peers and requesting a list of available peers to connect to.  Whenever a 

peer requires access to a file, it then sends a query to each connected peer (usually a small 

number on the order of a single digit).  Each peer that receives a query then does two things.  

First, the peer checks to see if it can satisfy that query.  If this is the case, the peer will then 

return that result.  This is done in two forms.  If the peer is not firewalled, it returns the result 
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directly to the original requesting peer; however, if it is firewalled, the peer will return the 

resulting query hit along the same route of peers that it received the query.  The second 

action a peer takes is forward the request to its connected peers (if a peer has already 

forwarded a unique request, it will drop the request in most systems to avoid eternal looping 

which would bring the system to overload).  Theoretically speaking, all members of the 

system will eventually receive the query.  Unfortunately, Gnutella does not scale since the 

regeneration of each requests creates significant amounts of traffic. Peers can then utilize 

multiple copies of the file that has been queried in order to download pieces from several 

peers at once, thus reducing load on any particular peer and utilizing available bandwidth 

better.   

 Peer-to-Peer computing does an excellent job of adapting, providing fault tolerance, 

handling transient populations of peers and the instability caused by transient populations 

[26]; however, there is significant lack of success in defining the infrastructure to promote 

common protocols and interoperability.  One of the key areas of focus in peer to peer 

computing is the need for improved performance.  Generally speaking, peers can be modeled 

as selfish agents, seeking to improve their own utility while not caring about the system as a 

whole.  While this is not always the case, it needs to be accounted for.  As a result, many 

mechanisms have been designed to address freeloading peers and to promote and reward a 

more communal perspective of distributed computing in peer to peer systems. 

 Peer to Peer systems are utilized extensively in pervasive computing.  Since the goals 

of pervasive computing include transparency and scalability, the advantages of the peer to 

peer architecture should become evident.  Furthermore, pervasive environments are usually 
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considered a conglomeration of dynamic agents that act together for the benefit of the users 

(who can be considered agents in themselves).  This makes modeling systems as groups of 

peers an obvious choice since the architecture so closely resembles the physical environment.  

Two examples of the use of P2P in pervasive computing are shown in the PICO (Pervasive 

Information Community Organization) project at the University of Texas at Arlington and 

Scarlet, a middleware for context-awareness, at Illinois Institute of Technology. 

 PICO [17] uses Camileuns (devices) and Delegent (software agents) as the basis of 

its architecture.  A Camilieun is generically defined by its identifier, its set of characteristics 

(ie, Operating System, CPU, Memory, etc.) and its set of functionalities (ie, communications, 

data sensors, etc.).  A Delegent is generically defined by its identifier and its functional 

description.  By allowing Delegents to live on devices and provide functionality, PICO 

creates communities, which are the set of Delegents in the community, the set of goals of the 

community, and the set of community characteristics (ie, the community manager, resources 

need by the community, etc.).  The PICO Delegents can be considered peers that provide and 

consume services.  PICO currently relies on JXTA to provide communications between 

peers. 

 Scarlet [31] is a pervasive middleware project for context-aware computing with 

goals of cross-platform compatibility, scalability, modularity, and extensibility.  The 

architecture for Scarlet utilizes the peer to peer architecture whenever possible in order to 

improve scalability.  Scarlet uses pure peer-to-peer communications in all aspects of 

communication except in service discovery, in which handled in a very similar form to DNS.  

The main communications occur between Context Providers (ie, sensors) and Context 
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Consumers (ie, an agent) in the form of SOAP messages.  The performance of the system is 

largely based on the performance of these communications. 

 Since Scarlet relies so heavily on peer-to-peer communications, the need for 

optimizing these communications is essential to providing a seamless context provision.  

Since peer-to-peer communications assists in offloading the work of routing and satisfying 

requests from a single point and distributes it to the peers, the system becomes scalable and 

usable.  Thus the system becomes useful as an aspect of an effective smart space. 

 While there are many advantages to using the Peer to Peer architecture, there are also 

problems within it.  To begin, agents must discover who has resources that they need.  This 

process requires communications which can bog down a network's resources if enough 

agents are searching at once.  Furthermore, its peer to peer architecture relies on the fact that 

each peer both shares and consumes.  When too many peers fail to share and become 

consumers, the architecture begins to resemble a client server architecture.  Peers that only 

consume are referred to as free loaders.   

 There are many conceivable ways to improve efficiency, and thus performance, of a 

peer to peer system.  One method is to offer incentives to promote sharing.  Another is to 

optimize communications such that less communications are wasted and yield no return.  

Another method, especially utilized in content distribution systems, is to devise mechanisms 

to promote distribution of resources in a more homogeneous manner, so that the load of 

satisfying requests would be distributed more evenly and that the hop distance required to 

find a resource would be decreased. 

 Buragohain, Agrawal, and Suri begin their paper, “A Game Theoretic Framework for 
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Incentives in P2P Systems” [5], by stating research that shows that 50% of users in Napster 

and Gnutella systems utilize “short sessions” which last less than an hour.  Additionally, both 

systems have high levels of free loaders that purely consume and provide no contribution to 

the systems.  It was stated that approximately 25% of Gnutella users fall into this category.  

What these two facts result in is a significantly negative turn in performance for the system.  

Short sessions result in large periods of time where resources become unavailable, thus 

grouping load rather than spreading it out.  Furthermore, it is stated that as more users 

become free loaders, the Peer-to-Peer system loses its nature and begins to resemble more of 

client/server architecture.  The paper then goes on to explain the differences between a 

monetary payment incentive system (a payment is made to consume services and the entity is 

paid when its services are consumed) and a differentiated services incentive system (where 

nodes that contribute more receive a higher level of quality of service).  The authors 

introduce their idea of providing a formal model for incentives through differentiated service 

utilizing Nash equilibrium (the point at which no player can improve his utility my changing 

only his strategy).  The authors begin by establishing that each node in the system is a 

“rational, strategic play, which wants to maximize his utility by participating in the P2P 

system.” [5] The authors introduce the concept of Nash equilibrium, but then are quick to 

admit that its computation is non-trivial since there is no known polynomial time algorithm 

for a general N person game.  The authors describe the ideal Peer-to-Peer system as one that 

is a cooperative game where all players work together for the benefit of both themselves and 

the system as a whole; however, the authors then point out that this is rarely the case, so 

instead they classify a general Peer-to-Peer system as a non-cooperative game.  Next the 
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authors establish the basics of their system.  In this, metrics are defined and they establish a 

dimensionless contribution, d, which is the user’s contribution divided by a base level 

contribution defined by the system architect.  The goal of their system is to have every user 

contribute at least a d value of 1.  The authors then define a benefit matrix which details the 

amount that a node will benefit from the contribution of d = 1 from each node.  Then given 

that value, each node that requests from the user will be accepted with a probability P(d) such 

that P is any reasonable probability function.  The function does not affect the qualitative 

results of the system.  They then define a function U(i) which describes the total utility node i 

will experience from joining the system.  The authors then apply Nash equilibrium equations 

using an iterative learning model to this system based on the utility function for each node.  

Their results proved positive, showing an increase in average contribution and a decrease in 

free loading peers. 

 

2.3 Group Management 

 Group management is a method by which a system attempts to improve efficiency by 

supplying as much of the full benefit of the entire system, but in a much smaller capacity.  

Groups are advantageous in that they approximate a full system at a significantly smaller 

overhead cost.  Therefore, scalability, robustness, and efficiency can all be improved at a 

small trade-off cost in reliability and replication.  Furthermore, these schemes often seek to 

penalize freeloaders and promote fairness within the system.  Group formation can occur 

many different ways and based on many different factors.  Grouping also creates a natural 

avenue through which a system can be modeled as services rather than just individual 
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components. 

 Koo, et al present work on Group Management in utilizing peer to peer systems for 

content distribution [15].    In this case, it is argued that the set of peers in a group should 

have the most disjoint set of content (provisions).  They solve the problem by utilizing 

integer programming; however noting that there is a large overhead computational cost, so 

there is ongoing effort to produce a low cost approximation. Furthermore, Koo utilizes 

upload to download ratio and “price” in the form of pieces of content as incentive for peers to 

participate.  This penalizes freeloaders, assists in selecting partners, promotes fairness, and 

helps the system to adapt to a potentially non-cooperative environment. 

 Ogston, et al have worked with decentralized clustering in large (2,500-160,000 

agents) multi-agent systems.  In their work, they seek to define high-quality (most well 

matched) clusters of agents based on their attributes.  Thus, each agent is defined as a set of 

data items with a small number of links to other agents.  Each agent also has a number of 

objectives based on their characteristic attributes. Each agent is provided two methods to 

improve their clusters and achieve their objectives.  The first is to combine their sets of links 

with other agents to increase the magnitude of their neighborhood.  The second is the ability 

to break weaker links in favor of stronger matches.  Additionally, a limit on the size of 

groups is also enforced.  

 After the bootstrapping phase where the agents get their initial set of links, the agents 

go through four phases: 

1. Connecting – Using some rule, clusters choose some subset of their matched links 

to become connected links. 
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2. Mixing – Using a random permutation, each cluster mixes its unmatched adjacent 

links 

3. Matching – Using a turn-dependent matching probability, each agent tests its 

unmatched links and makes matched links. 

4. Breaking -  Using a breaking probability, clusters downgrade some matched links 

to unmatched  

While they do not explore performance metrics, they do show relatively decent scalability in 

matching quality (99% for small systems and 95% for large systems) which significantly 

outperforms k-means clustering in each case. 

 

2.4 Related Techniques 

 While we have addressed work primarily in the area of Peer to Peer Computing, it is 

not unreasonable to take into consideration work in other related fields which have potential 

application to peer to peer computing.   

 Since the architecture of peer to peer computing is highly related to parallel 

processing and can be utilized in a similar fashion, this makes sense as our first 

consideration.  As expected, due to communication overhead, parallel processing reaches 

points of diminished returns.  To overcome this, Weissman and Grimshaw [33] utilize a 

heuristic which is guided by a run-time cost estimate based on the result from their callback 

framework which deals with computational costs (number of PDU's, Computation 

Complexity, and architecture costs), and communication costs (topology, communication 

complexity, and overlap in the communication and computation phases).  A total cost is then 
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computed with the heuristics which explore configurations of the best clusters first, but do 

not guarantee an optimal solution since exploring all configurations would cause exponential 

growth in cost of processors and clusters.   
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CHAPTER 3 

UBCA DESIGN 

3.1 Goals 

 At a high level, the goal of my work is to form dynamic communities of peers.  In 

designing UBCA, three main goals stood out. 

• Improved scalability 

• Improved performance 

• Incentive to share resources 

The accomplishment of these goals will create a more efficient and useful architecture for 

designing applications that rely on P2P. 

 

3.1.1 Scalability 

 Scalability is the ability of a system to grow without a drop in performance significant 

enough to inhibit the use of the system.  Scalability exists in different forms, for instance, 

size, geography, and administration.  The design will primarily address size and geographic 

scalability. 

 Size scalability, a metric in which Gnutella systems fail [22], is of first concern.  As 

new peers enter the system, the performance of the system should not degrade.  While this 

metric is not easily definable by itself, it is easy to observe as more peers are injected into the 

system by examining the decrease in performance as measured by latency and bandwidth.  
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While some performance degradation is tolerable, the goal is to prevent the system from 

degrading severely into an unusable state. 

 Since Gnutella relies on message forwarding to connected peers in order to discover 

resources, the number of requests can potentially increase exponentially [22].  Accounting 

for the simplest set of TCP and IP headers, Ritter shows a query packet will be 83 bytes.  

While 83 bytes may seem inconsequential, there is potential of producing gigabytes of traffic 

by a single request if there are enough peers that need to be reached.  Likewise, and even 

more bandwidth-consuming, the response messages are exponential and even more 

detrimental to the network.  Furthermore, the sheer number of requests that must be handled 

in the network will bog down routers and increase latency and affect response time.  One 

solution to deter this type of system overload is to set a maximum hop count on query 

messages [16].  The downside of this approach is that it inhibits a peer’s ability to find 

resources outside of the range of the maximum hop count. 

 When the UBCA is applied to ad-hoc peer to peer networks, it is highly applicable to 

geographic scalability.  While the focus is in an Internet style network, it is evident that the 

UBCA can be applied to an ad-hoc network.  In the ad-hoc network, the location of the peer 

becomes an issue in more ways than in an Internet style network (which typically only 

reflects latency and possibly bandwidth to a lesser extent in geographic scaling).  In the ad-

hoc network, another factor, connectivity, is introduced, as the paths to a resource are 

potentially mobile, present a higher chance of exhibiting a dynamic nature. 

 In order to demonstrate that the UBCA improves the scalability of a system, the 

simulations need to show an improvement in the overhead traffic generated in order for the 
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system implemented to access the resources needed.  The three primary contributors to 

overhead traffic are queries, queries forwarded, and query hits.  While the specific 

application of the UBCA to mobile ad-hoc networks is not simulated in this work, it is 

expected that UBCA implementations on mobile ad-hoc networks will further improve their 

scalability. 

 

3.1.2 Performance 

 System performance is measured in two ways.  The first is the performance of the 

system as a whole, and the second is application specific performance. 

 The first consideration to take into account is bandwidth.  Obviously, this is more 

important in some applications than in others; however, it is a necessary consideration for the 

general case and can be “weighted out” if the case does not need to require bandwidth 

capabilities.   

 Latency is time required for a trivially sized message to propagate from one peer to 

another and back.  This has the most effect on transactions that occur often and are not 

bandwidth intensive.  This is not only essential for response time, but also for resource 

utilization. 

 Performance will be tested based on overall system performance.  In order to show 

that performance is improved, the simulations will need to show improvements in bandwidth 

per access and latency per access. 
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3.1.3 Incentives 

 Incentives are the approach to getting self-interested peers to share resources [5,12].  

Most systems with incentives utilize a currency type approach such as karma in Kazaa.  The 

primary problem with incentives is that they introduce many other problems.  These issues 

primarily involve securing transactions and preventing counterfeiting.  In the UBCA, 

incentives are currency-less.  These incentives are implicit in the clustering of the peers.  

Since the group is based on mutually increased utility, each peer must contribute sufficiently, 

and if an peer is not part of a group, their performance will drop back to the levels of non-

UBCA systems.  Futhermore, incentives will improve the quantity and quality of resources 

accessed since these two aspects are factored in to the computation of utility. 

 Quality refers to the quality of a resource.  The function to derive the quality is 

defined by the peer itself and may differ significantly based on type of resource and the needs 

of the user.  These quality factors are defined in the resource definition file, and vary widely 

based on the resource.  For instance, a quality factor of a printer might be its maximum DPI, 

or the quality factor of a song might be its bit rate.  

 Quantity is quite simply the amount of a resource that a peer offers.  For instance, if 

the type is memory, it could be defined as the number of megabytes.  This value might be 

part of a range (such as in the memory example), or it may also be a 0 or 1 value based on 

whether or not the resource is available (ie. a particular HTML file). 

 In order to show that the goal of providing incentives is met, it must be shown that 

utility is increased by providing resources and not leaching off of the system.  The utility 
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increase is shown by comparing utility with the number of resources shared. 

 

3.2 Architecture 

 

Requesting Peer  Responding Peer  

ReceiveQueryHit()  GenerateQueryHit()  

if (CalculateAdditionalUtility() > 0)  ReceiveRequest()  

     SendRequest()  if (CalculateAdditionalUtility() > 0)  

     ReceiveResponse()       SendResponse()  

     If (CalculateAdditionalUtility() > 0)       if (receiveAck())  

          AddToGroup()            AddToGroup()           

          SendAck()    

 

 

3.2.1 Utility 

 Utility is the defining metric for forming a group. Utility is defined as the sum of the 

benefits minus the sum of the costs.  

Equation 1:Utility 

 Cost)(Benefit   Utility ∑=  

When the utility is greater than 0 for a peer, it implies that the formation of a group is 

beneficial for those involved.  The metrics constraining the value of utility and selection are 

based on bandwidth, latency, memory, and cpu cycles. [26] 
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3.2.2 Benefit 

 Benefit is the value derived from the sum of the weighted averages of all the 

consumed resources less the cost of consuming those resources.  The increase in benefit from 

one quantity of a resource can model a diminished return, which is common in economic 

systems, or linear increase, which be seen in situations where replication is valuable. 

 The cost to consume a resource takes into account a sum of the weighted ratio of the 

resource's latency to the average latency for that resource and the weighted ratio of the 

average bandwidth of that resource to the specific resource's bandwidth.  The consideration 

of cost to consume creates a situation in which only the resources that are effectively more 

accessible to the consumer are selected. 

Equation 2:  Benefit 

∑ += consumeca0ca0 )) - Cost)/Qn(RQn(R w) )/Q(RQ(R(w Benefit  

Equation 3:  Cost to Consume 

/B)))(B (w)) (L/L ((w Cost m2m1consume +=  

Where:  

 w  is the weight of the parameter 
 Q is the quality function for the resource 
 Qn is the quantity of the resource 
 aR is the value of the particular resource 

 cR is the value needed/preferred 

 L  is the latency of the instance resource being considered 
  mL is the mean latency of all instances of the resource being considered 

 mB  is the mean bandwidth of all instances of the resource being considered 
 B  is the bandwidth of the instance resource being considered 
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3.2.3 Cost 

 The cost of joining a group is determined by analyzing how taxing it is on the peer to 

provide that resource.  This value is determined by taking the ratio of the bandwidth required 

by the resource to the bandwidth available, the ratio of the memory required by the resource 

to the memory available, and the ratio of the CPU cycles required by the resource to the CPU 

cycles available.  The bandwidth available is the effective bandwidth which is determined as 

the average bandwidth determined experimentally by the running average of the bandwidth 

to resources consumed.  These values are then weighted by the amount relative importance to 

the peer, as with the benefit, but then the sum itself is weighted again based on the relative 

amount this resource provides out of the entire group in comparison to the amount that is 

consumed by the group.   

Equation 4:  Cost to Provide 

))/C(C  (w)) /M(M (w)) /B(B (w Cost ar3ar2ar1provide ++=  

Where:  

 w  is the weight of the parameter 
 rB  is the expected bandwidth required by providing the resource 

 aB  is the expected bandwidth available from the perspective of the peer 

 rM  is the expected memory required by providing the resource 

 aM  is the expected memory available from the perspective of the peer 

 rC  is the expected CPU time required by providing the resource 

 aC  is the expected CPU time available from the perspective of the peer 

 

3.2.4 Selection 

 Selection entails determining which resource is optimal to request.  The value for 

selection is given by taking the quality of the resource and subtracting from that weighted 
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value of the ratio of the latency of that resource to the mean latency and the weighted value 

of the ratio of the average bandwidth to the bandwidth of that resource.   

Equation 5:  Selection Value 

)) )/B(B (w)) /L(LQ(R) - ((w walue SelectionV im3mi21 +=  

Where:  

 w is the weight of the parameter 
 Q(R) is the quality value for the particular resource 
 iL  is the latency of the instance resource being considered 

  mL is the mean latency of all instances of the resource being considered 

 mB  is the mean bandwidth of all instances of the resource being considered 

 iB  is the bandwidth of the instance resource being considered 
 

3.2.5 Data Structures 

 

Figure 2:  Peer Data Structure 

 

Figure 3:  Consumed Resource Data Structure 
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Figure 4:  Provided Resource Data Structure 

 

 The UBCA data structures are used to represent the resource production (Figure 4) 

and consumption (Figure 3) of both the individual peer (Figure 2) and the collective 

resources of the group.  A resource record contains the type of resource, the expected latency 

to access the resource, the expected bandwidth to the resource, the qualities of the resource, 

and the address of the resource.  

The resource's expected latency is a running average of latency values as determined from 

communications with that peer.  While many methods of calculating this average may be 

sufficient, we find that an approach similar to TCP timeout by weighting 75% of the value on 

previous measurements and 25% of the current measurement does well to adapt to changes in 

latency, but without overreacting to a single sample.  The approach to bandwidth parallels 

that of latency.  Transmission rates are taken empirically during communication and the 

value of the weighted average is stored.  The type of resource is obviously the system's 

identifier for the resource (possibly a hash code or a specified resource ID); however, the 

quality of the resource is slightly less obvious.  The resource quality is the list of attributes of 

a resource that could cause its quality to vary.  For instance, a storage resource's quality 

could include the available space.  A file, for instance, a song, could have resource qualities 

of bit rate and frequency.  These quality properties can be defined in a definition file that 

establishes the resource's existence to the hosting peer or even sampled at load time when the 
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peer becomes active or resource is shared and then stored in memory. 

 

Figure 5:  Peer Communication State Flow 
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3.2.6 Communications 

 Communications utilize and extend the Gnutella communication protocol [30].  The 

extension contains two major portions.  The first portion is utilized to establish a group.  The 

second is intra-group communication. 

 Upon receiving a successful query hit, a peer analyzes the peer that generated the 

query hit through a utility function and determines if the benefit based on that resource 

outweighs the cost of adding the peer to the group.  If that is the case, then the peer initiates a 

group request by sending a group request message with the current group's set of resource 

provisions and consumptions.  The peer then moves into a response-wait state.  Upon 

receiving this invitation, the peer who supplied the query hit analyzes the provisions and 

consumptions with its utility function to determine if it accepts.  If joining the group is 

beneficial to the peer, it then returns a response to the request containing its provisions and 

consumptions and enters a response-wait state.  The original querying peer then performs a 

full utility analysis of the provisions and consumptions and decides if the peer is acceptable.  

If so, the peer is added to the group.  Upon this acceptance, the peer will return a response to 

the waiting peer informing it of the decision and the peer will accept the group's provisions 

and consumptions.  After each peer has added, they return to normal state. 

 Intra-group communication permits either lazy or active communication depending 

on the needs of the application.  The communications that take place within the group are 

utilized to maintain the link state of the group.  Each peer capable of permitting another peer 

into the group maintains a set of resources of each peer's consumption and production.  In 
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order to update these lists, when a new peer is added, the peer that admits it broadcasts a 

message to the group announcing the new addition of resources provided and consumed.  

Furthermore, when a peer departs from a group, that peer broadcasts an exit message for the 

other peers to remove its record.  Since peer-to-peer networks are often ad-hoc, mobile, and 

dynamic,[16] peers are likely to exit without warning.  If a peer departs the group for any 

reason without sending the exit message, any peer that fails to access the peer broadcasts a 

message to warn other of the potential departure.  When a peer receives a sufficient number 

of these messages (by default, one) the peer removes the departed peer's record from the data 

structure. 

 

3.3 Theoretical of Implications 

 

3.3.1 Group Sizes 

 One major concern that differs from the work of Ogston, et al. is the sizing of groups.  

Ogston presents evidence of successful convergence rates of groups with fixed sizes [20], but 

does not address situations where group sizes are undefined or dynamic. 

 Since the algorithm is based on additional benefit, the size of the group will only 

grow as it is beneficial for the group.  The utility functions provide a point where the 

overhead of adding another peer to the group will exceed the benefit. Since the benefit 

derived from adding more of a resource diminishes as the resource is continually replicated, 

if it is given that there are a finite number of desired resources, it is then possible to show that 

every group will have a limit where the utility will decrease by adding another peer.  If 
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needed, an artificial limit can be placed on the size groups; however, it will diminish the 

utility of the system. 

 

3.3.2 Network Utilization 

 One of the effects of P2P computing is the increased network traffic [22] from 

searching for resources.  In addition to the overhead caused by this traffic, the effective time 

of the network is wasted.  The algorithm pits the overhead cost of establishing and 

maintaining groups against the cost of doing “dumb” searches for resources.  A “dumb” 

search is one in which there is no strategy in the search and each peer forwards queries to all 

of its neighbors, as in Gnutella.  Since the cost in bandwidth of maintaining groups is 

relatively close to that of “dumb” searches when compared to the overall bandwidth typically 

available to peers, we discard this factor and look to a more important issue.  This issue is the 

time it takes to actually acquire and utilize a resource.  Since a peer will be in a group only if 

the peer itself gains benefit from participating in the group, the majority of its important 

resource needs are met within the group.  Because of this fact, a peer will require no 

additional network access time, which is significantly more costly in comparison to CPU or 

memory access time, the ratio of time spent utilizing the network bandwidth for accessing the 

resource as opposed to utilizing the network bandwidth for overhead costs greatly increases.  

Hence, the overhead traffic is compacted such that the peer's time is better utilized.   
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3.3.3 Flexibility 

 Since the algorithm is designed to be general case, it can be easily modified to meet 

constraints that might be enforced by a particular aspect of the system.  For instance, if the 

need arises, it is simple to enforce a limit on the group size.  Additionally, systems which 

need to utilize the benefits of loosely or tightly formed groups are free to do so within the 

parameters of the algorithm.  The form of communication is also not prescribed, as the 

UBCA works with either lazy or strict propagation of information. 
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CHAPTER 4 

IMPLEMENTATION DETAILS 

4.1 GroupSim 

 GroupSim is a Java-based simulator designed for simulating P2P systems.  It 

implements the Gnutella architecture and the UBCA present in this thesis built on top of 

Gnutella.  This implementation decision was made since Gnutella is not highly structured and 

is decentralized. The simulator takes the following inputs: 

• number of classes of resource in the system 

• number of peers in the system 

• number of peers to connect to initially 

• latency distribution of a peer 

• bandwidth distribution of a peer 

• maximum number of resources consumed by a peer 

• maximum number of resources produced by a peer 

• probability of a peer accessing resources 

• whether or not the UBCA is enabled 

• number of partitions of peers 

 

 Peers can be extended from a base peer class which provides random access to 

resources.  Extending the peer class can allow for particular classifications (ie, leechers, 
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servers) of peers to be simulated, or to simulate related resources by defining that certain 

resources are provided and consumed with a higher probability by one class of peer.  The 

controlling values set in the system parameters are defined by these values.  These are 

applied to all peers that extend the basic peer class and are utilized by the basic peer as 

follows: 

• Classes of resources - the set of possible resources a peer can provide or consume.   

• Number of peers in the system - the maximum number of active peers in the system.  

Since the simulations model dynamic situations, it is likely that not all peers are 

currently available at any given time.   

• Number of peers to connect to - the number of peers originally connected to each peer 

in the bootstrapping process.   

• Maximum latency and bandwidth - both mean values, standard deviations, and 

distribution type  

• Maximum number of resources consumed and produced – defines the range from 0 to 

the maximum provided that a peer with consume or produce, respectively. 

• Probability of the peer to access – likelihood that a peer is to choose to access a 

resource at the given time.   

• Number of partitions – partitions the resources into linked sets of resources to each 

other 

 

 Simulations statistics are organized into two types.  The first is the underlying 

metrics.  These are the core statistics of the system, such as average latency, bandwidth, and 
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so on.  These values are essential to determining the performance of how well the system can 

be tuned to particular needs.  The second type of simulation is the high level statistics.  These 

figures provide a big picture of the architecture.  For instance, how well it can be used to fit 

specific needs, such as ad-hoc clustering.  The former simulations show the potential of the 

UBCA and the latter show the application of the UBCA. 

 Measurements were taken from 500 trials of the simulation software.  As a result, the 

simulations provide a narrow range for the 95% confidence interval.  The 95% confidence 

interval is give by a normal distribution in the form of:   

)(96.1)(96.1
n

xx
n

x
σσ +≤≤−  

Where the empirical average of the simulation results isx , the empirical standard deviation 

of the simulation results isσ , and the number of simulations performed isn . 

4.1.1 Average Bandwidth Per Access 

 Average Bandwidth per Access takes the average bandwidth a peer transfers per each 

access.  This metric is an essential consideration in large data transfers, for instance content 

distribution.  This is taken by determining the bandwidth of every access that occurs in the 

system over the course of a simulation, then dividing it by the number of accesses. 

4.1.2 Average Latency Per Access 

 Average Latency per Access parallels the average bandwidth per access.  In this case, 

however, the metric represents the performance of high numbers of accesses at potentially 

lower bandwidth concerns.  This metric is determined by taking the latency of every access 

over the course of the simulation, then dividing it by the number of accesses. 
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4.1.3 Queries Initiated 

 The queries initiated shows how many queries are issued during the course of the 

simulation.  This does not include the queries forwarded by a peer, which are captured in the 

next statistic. 

4.1.4 Queries Forwarded 

 The queries forwarded are the resulting queries that are forwarded to other peers 

when a peer receives a query.  Only unique queries are forwarded.  This statistic is a key 

factor in scalability. 

4.1.5 Query Hits  

 The query hits are the number of query hit packets that make it back to the original 

querying peer successfully.  This value is important in many factors, including measuring 

efficiency by the success rate of queries with respect to the available resources. 

4.2 Implementation Options 

4.2.1 Strong Versus Weak Groups 

 Groups can be either weak or strong.  Strong groups are better defined and have a 

group leader who organizing and orchestrate the membership of the group.  This is 

considered a strong group since the group is well defined and everybody is fully aware of 

everybody else and they each maintain the same group-state information.  A weak group is 

one in which all the peers act independently and there is no leader.  In this case, group 

membership is granted by any member of the group.  This provides a more flexible and 

robust group; however, it also presents a problem of inconsistency, since it is feasible that 

two peers will admit other peers into the group simultaneously which, individually would 
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benefit the community, but together decrease the utility of the community.  

4.2.2 Propagation of Information 

 Another issue to consider is how the group information propagates.  While this is not 

a focus in the work, it should be considered in system design.  For the architecture provided 

and implemented, lazy propagation is used in intra-group communications.  This reduces the 

difficulties of having to assure synchronization; however, the trade-off is that it is now 

possible to make errant decisions based on incomplete information.  It is expected that this 

will not have a significant effect on the system and will be tested in simulation. 
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CHAPTER 5 

RESULTS 

 In this chapter, we present the results of the simulation in order to demonstrate key 

strengths in the architecture in addition to its ability to satisfy our goals established 

previously.  Unless otherwise noted, all simulations were performed with the following 

parameters: 

• 100 classes of resources 

• 5 initial connections at bootstrap 

• Normally distributed latency 

• Normally distributed bandwidth 

• Resources consumed to provided ratio of 1 (25 to 25) 

• No Peer Classifications 

• The simulations were run for 10, 20, 50, 100, 200, 500, and 1000 peers 

and graphed values were extrapolated from those results 

 The first consideration is the traffic cost due to Gnutella as opposed to our UBCA 

implementation on Gnutella.  To demonstrate this, we show that our architecture reduces the 

queries initiated, queries forwarded, and query hits generated (which results in messages 

being sent) while still maintaining performance in other metrics. 
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Figure 6:  Number of Peers Vs. Queries 

 

 As Figure 6 shows, the number of queries initiated is drastically reduced in the 

UBCA implementation.  The 95% confidence interval for the average number of queries of 

Gnutella is plus or minus 71.80 queries Sent.  The 95% confidence interval for the average 

number of queries of UBCA is plus or minus 1093.81 queries Sent.   The reason that the 

UBCA implementation varied so much more than the standard Gnutella implementation is 

that the effectiveness of the UBCA depends on peers being able to find resources in peers 

with high bandwidth and low latency connections quickly.  Since the structure of the network 

and the allocation of resources are generated randomly, there will be cases when the UBCA 
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performs closer to the Gnutella implementation than others; however, even with the worst 

case of the 95% confidence interval, the UBCA still outperforms the Gnutella 

implementation. 

 

Figure 7:  Number of Peers Vs. Queries Forwarded 

As Figure 7 shows, the number of queries forwarded also is drastically reduce in the Grouped 

Architecture.  The 95% confidence interval for the average number of queries forwarded of 

Gnutella is plus or minus 247.6 queries forwarded.  The 95% confidence interval for the 

average number of queries forwarded of UBCA is plus or minus 422.35 queries Forwarded. 
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Figure 8:  Number of Peers Vs. Query Hits 

  

As Figure 8 shows, the number of query hits generated also is drastically reduced in the 

Grouped Architecture.  The 95% confidence interval for the average number of query hits of 

Gnutella is plus or minus 30.77 query hits.  The 95% confidence interval for the average 

number of query hits of UBCA is plus or minus 26.82 query hits. 
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Figure 9:  Number of Peers Vs. Average Latency per Resource Access 
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Figure 10:  Number of Peers Vs. Average Bandwidth per Resource Access 

 
 Figure 9 and Figure 10 compare the average latency and average bandwidth values 

per resource access.  The UBCA plot is the simulation using the UBCA with a uniform 

weight (all aspects are considered equal.  The optimal plot is a UBCA implementation where 

latency, for Figure 4, and bandwidth, for Figure 5, were given the entire weight of the 

decision.  The Gnutella plot is the result of the standard Gnutella implementation.  The 

comparison shows performance of the UBCA implementation’s with respect to the best 

possible choice that could have been made over all peers that a peer could have known of at 

the time of the resource access.  The 95% confidence interval for the average bandwidth 
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values of Gnutella is plus or minus 0.76 KB/s.  The 95% confidence interval for the average 

bandwidth values of UBCA is plus or minus 0.91 KB/s. The 95% confidence interval for the 

average bandwidth values of UBCA Optimal is plus or minus 0.88 KB/s.  The 95% 

confidence interval for the average latency values of Gnutella is plus or minus 5.90 ms.  The 

95% confidence interval for the average latency values of UBCA is plus or minus 3.61 ms.  

The 95% confidence interval for the average latency values of UBCA Optimal is plus or 

minus 3.44 ms. 

 

Figure 11:  Number of Peers Vs. Average Group Size 

 The average group size shown in Figure 11 is not an essential metric to performance, 

but it does show approximately how many peers need to be grouped together in order to 
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provide the performance shown previously and that the size of the group is basically constant 

with respect to number of peers.  It also demonstrates the low load on memory required for 

the algorithm to operate efficiently.  The 95% confidence interval for the average group size 

of UBCA is plus or minus .0099 members. 

 

Figure 12:  Percent of Peer Correctly Grouped at Each Iteration 

 

 In order to determine the UBCA’s performance as a classification algorithm, we 

produced the results shown in Figure 12 by iteratively examining the current status of groups 

after each round (in this case, the algorithm executes the same; however, time is not 
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considered in the same sense as the network simulations since no resources are actually 

accessed.  A round is the occurrence in which a peer has the opportunity to submit one query 

and handle any current incoming queries and group requests.).   

 The UBCA implementation’s ability to group peers scales constantly with the number 

of peers.  In order to determine the governing factors of algorithm's ability to group peers, 

other factors were varied until a significant change was discovered.  In this algorithm, the 

governing factors for grouping efficiency are the ratio of resources shared/consumed to the 

number of resource classes and the fuzzy difference between peer types.  Figure 12 shows a 

high classification rate of peers when the intersection of peers is null (in many cases peers 

cannot be grouped because of their poor latency and bandwidth values). 
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CHAPTER 6 

APPLICATIONS 

6.1 PICO 

 PICO is a framework which facilitates the formation of dynamic, mission-oriented 

communities of software agents [17].  Due to its agent-based dynamic nature, along with its 

promotion of the formation of communities, PICO is a prime candidate for utilizing the 

UBCA described in this paper.  Since PICO's goal is to create communities of agents for the 

completion of a particular meeting, our clustering work can be utilized in order to form a 

community with improved utility, rather than one with just an unknown set of available 

agents.  Furthermore, specific missions can utilize different weights within the UBCA in 

order to adapt it to cluster peers in order to more aptly satisfy the goals of the community.  

The application of the UBCA is a method to improve performance and reliability of the 

system. 

 

6.2 RoboCup 

 Robocup is an international competition for artificial intelligence and robotics [23].  

Robocup uses soccer as its standard for competition.  It encompasses several leagues 

including simulation, small, middle, 4-legged, and humanoid.  The simulation is done 

completely on computer while the others use various robots as described by the league type.   

 Within the context of this competition, I propose an extension of competition.  In 
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current competition, all competition is based on techniques of artificial intelligence and 

robotics.  I propose an additional competition on each league where a set of robots/agents are 

presented with definitions of their abilities (speed, passing accuracy, shooting accuracy, 

passing power, shooting power, etc.) and the teams compete by drafting these competitors.  

This new competition would use the familiar platform of soccer to introduce work in 

iterative, self-interested organization.  In this case, selecting the correct combination of 

players to work together could be accomplished with the UBCA presented in this paper. 

 As this architecture applies to the problem presented, its goal would be to put together 

the best team given the available players at the time of the selection.  This is a direct 

application of the architecture to a scenario directly related to the basketball one described at 

the beginning of this paper.  Depending on the nature of the competition, the architecture 

could be applied as-is (in the case that each agent is free to join whichever team offers 

admission) or more likely, could be applied with only one side's utility in consideration (in 

the case that there is a draft process where each team incrementally receives the right to add 

one player to its team each round).  Regardless of the case, the architecture can be applied to 

best match together a group of players to compete.  Since “best” is subjective, the 

architecture would use the skills needed by each player to compete best to put together a well 

matched team where each player complements the other players on the team. 

 

6.3 Content Distribution 

 Content Distribution Networks (CDNs) are systems which typically reside at many 

key points in the network infrastructure in order to transparently satisfy the requests of users 
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more efficiently [2,4].  P2P-based CDNs move content between peers in order to more 

quickly satisfy user requests and reduce the bandwidth associated with satisfying the request 

from a provider “further” away.  Similar to the architecture presented in this paper, this is 

often done by intelligently directing requests to peers which will reduce the number of hops 

or which will be capable of responding more quickly to the request.  Additionally, Content 

distribution can be accomplished by routing requests through a caching proxy.  For instance, 

in a university environment, requests may be routed through a proxy server which will satisfy 

a request with a page found in its cache.  This is done since University students tend to have 

similar interests and needs, so the content they consume will be similar.   

 

Figure 13:  Logical Departmental Layout 
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 One situation where this application would arise is a peer to peer network of college 

students all living in a particular dorm.  This network consists of students who have accessed 

and cached academic websites from their courses, departments, colleges, and University.  In 

this network, there are several classifications of students.  For instance, we can have 

Computer Science students, Mechanical Engineering students, and Philosophy students.  In 

such a scenario, each classification of students shares Provided (cached) and Consumed 

(request) resources (websites) most similar to each other; however, due to their membership 

in other similar groups, they also share provisions and consumptions with students outside of 

their classification.   

 The application of the UBCA described in this paper would group the most similar 

students together with consideration of the accessibility of those resources.   Obviously, each 

particular major would tend to group together most strongly, but Computer Science & 

Engineering students might also group together with Mechanical Engineering students who 

are very accessible to them because of their similarities in the College of Engineering.  

Likewise, the engineering students have minimal affinity towards Philosophy students (but a 

non-zero amount due to their similarities in the overall University website).  The probability 

of groupings would be based on this shared affinity and produce clusters of students which 

can easily access each other's cached websites to minimize the load on the University's 

central servers. 
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CHAPTER 7 

CONCLUSION 

UBCA provides an improvement to P2P systems, particularly Gnutella.  UBCA takes 

a unique approach to improving P2P systems by clustering peers together based on mutual 

utility derived from the clustering.  UBCA meets its design goals by improving scalability, 

increasing performance, and increasing resource availability/accessibility. 

UBCA has been shown in simulations to increase bandwidth per access, reduce 

latency per access, and reduce the overhead costs of system operation over Gnutella.  

Furthermore, UBCA uses the increased performance as a currency-less incentive for peers to 

share more resources and not free-load.  The implementation of UBCA will encourage the 

replication and access of files in distribution networks.   

The next step in this line of research is to implement the UBCA in the applications 

mentioned previously and examine their empirical performance.  Another area off work to 

consider is to examine application specific optimizations of UBCA such as defining the 

proper weights, or dynamic mechanisms for assigning weights for an application such as 

streaming multimedia in an ad-hoc network.  There is also potential for future work in 

examining implementations of the architecture in mobile environments and testing the result 

of those implementations. 
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