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ABSTRACT 

 

A SIMULATION TOOL SUITE FOR THE MODELING AND 

OPTIMIZATION OF MULTIPLE QUANTUM 

WELL STRUCTURES 

 

Publication No. ______ 

 

Jeffery Wayne Allen, M.S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Kambiz Alavi  

This thesis aims to develop a suite of computational tools for design, analysis, 

and simulation of semiconductor multiple quantum well structures with a user-friendly 

GUI. The research project focuses on the electrical and optical aspects of user defined 

quantum well structures, and allows the user to vary design parameters to optimize the 

structure for different device applications and functionality. Specifically the thesis 

delves into the design and analysis of different quantum well structures as they relate to 

band gap engineering. Key features of this computational suite include relationship to 

electrical field, doping profiles and optical transitions.  
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The quantum well structures presented are single, double, stepped, and chirped 

quantum wells, with uniform, modulated, or planar doping. The computational suite can 

be applied to the calculation of energy levels and band bending in intraband and 

interband optical transitions in quantum well infrared photodetectors (QWIPs) and 

quantum well electroabsorption and electroreflection modulators. 

 



 v

 

 

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS....................................................................................... ii 
 
ABSTRACT .............................................................................................................. iii 
 
LIST OF ILLUSTRATIONS..................................................................................... viii 
 
LIST OF TABLES..................................................................................................... xi 
 
Chapter 
 
 1. INTRODUCTION……… ............................................................................. 1 
 
  1.1 Optimization of Materials........................................................................ 2 
 
  1.2 Thesis Outline..........................................................................................  3 
   
 2.  BACKGROUND THEORY.......................................................................... 6 
 
   2.1 Physical Interpretation of the Wavefunction ...................................... 7 
    
   2.2 Infinite Quantum Well ........................................................................ 8 
 
   2.3 Finite Rectangular Quantum Well ...................................................... 11 
 
    2.3.1 Exact Solution........................................................................... 11 
 
    2.3.2 Numerical Analysis .................................................................. 16 
 
   2.4 Runge-Kutta Method .......................................................................... 17 
 
    2.4.1 Adaptive Step Size.................................................................... 19 
 
    2.4.2 Selection of Step Size ............................................................... 23 
 
    2.4.3 Continuous Interpolation Polynomials ..................................... 24 
 



 vi

   2.5 Shooting Methods. .............................................................................. 26 
 
    2.5.1 Simple Shooting Method .......................................................... 26 
 
    2.5.2 Shooting to a Fitting Point........................................................ 28 
 
   2.6 Simple Model: Undoped Case. ........................................................... 33 
 
   2.7 Self Consistent Model: Doped Case. .................................................. 35 
 
    2.7.1 Poisson Equation ...................................................................... 35 
 
    2.7.2 Self Consistent Schrödinger Poisson Equation......................... 41 
 
 3.  QUANTUM-WELL USER ENTERED SIMULATION TOOL (QUEST)... 45 
 
   3.1 Developing the Suite of Tools ............................................................ 45 
 
   3.2 QUEST Features.................................................................................. 46 
 
    3.2.1 Input Features............................................................................ 46 
 
    3.2.2 Error Handling..........................................................................  50 
 
    3.2.3 Running the Program................................................................. 51 
 
    3.2.4 Flow Chart of QUEST Hierarchy.............................................. 56 
 
   3.3 Example of a Complete QUEST Run.................................................  64 
 
 4.  SIMULATION RESULTS............................................................................  72 
    
   4.1 Undoped Rectangular Well.................................................................  72 
 
   4.2 Doped Rectangular Well.....................................................................  74 
 
   4.3 Effects of Electric Field ...................................................................... 76 
 
    4.3.1 Rectangular Well with Applied Electric Field.......................... 77 
 
   4.4 Asymmetric Well structures: Stepped Well Structures ...................... 79 
 
   4.5 Triple Well Structures.......................................................................... 81 
 



 vii

   4.6 Chirped Well Structure........................................................................ 83 
 
 
 5.  DEVICE APPLICATION.............................................................................. 87 
    
   5.1 Quantum Well Infrared Photodetector................................................  87 
 
   5.2 Application of Electric Field............................................................... 88 
 
   5.3 Calculation of Absorption.................................................................... 88 
 
    5.3.1 Calculation of Absorption Spectrum........................................  89 
 
   5.4 Simulated Structure Parameters........................................................... 89 
 
 6.  SUMMARY AND FUTURE WORK...........................................................  94 
    
   6.1 Specific Achievements........................................................................ 94 
 
   6.2 Future Work........................................................................................  95 
 
 
REFERENCES .......................................................................................................... 96 
 
BIOGRAPHICAL INFORMATION......................................................................... 101 



 

 viii

 

 

 

LIST OF ILLUSTRATIONS 

Figure Page 
 
2.1 Potential energy of an infinite well, with width Lx.  
  Also indicated are the lowest five energy levels in the well. ..........................  9 
 
2.2 (a) Energy levels, wavefunctions and  
  (b) Probability density functions of an infinite quantum well ........................  11 
 
2.3 Finite quantum well.........................................................................................  11 
 

2.4 Graph of 
22
w

w

b L
m
m

k  against 
21
wL

k  and 
2

2
2

0 ww LVm
h

.  

  The solutions of the finite rectangular quantum well......................................  15 
 
2.5 The wavefunctions for the solutions found in figure 2.4 ................................  16 
 
2.6 Graph illustrating the Midpoint method..........................................................  18 
 
2.7 Step doubling as a means for adaptive step size control  
  in fourth order Runge-Kutta............................................................................. 20 
 
2.8 Method of shooting from an initial point x=a to x=b .....................................  27 
 
2.9 Shooting to an intermediate fitting point, xf ....................................................  28 
 
2.10 Modulation doped single quantum well ..........................................................  35 
 
2.11 Electric field strength from an infinite plane of charge  
  from a volume density of dopants, d(x) and thickness, δx ..............................  36 
 
2.12 Areal charge density for a 100 angstrom GaAs well,  
  n-type doped to 1x1018 cm-3 surrounded  
  by undoped Ga0.8Al0.2As barriers ....................................................................  39 
 
 



 

 ix

2.13 The electric field strength due to the charge distribution  
  shown in figure 2.12........................................................................................  40 
 
2.14 The potential due to the donor (electron) charge distribution.........................  41 
 
2.15 Block diagram of the iterative process used to  
  solve the self consistent model........................................................................  43 
 
2.16 The sum of the band edge potential, VCB, Poisson's potential, Vρ ,  
  for the single quantum well of Figure 12 ........................................................  44 
 
3.1 User Interface for QUEST at start-up .............................................................  47 
 
3.2 Error message displayed for incorrect input data............................................  50 
 
3.3 Progress bar while program is busy ................................................................  51 
 
3.4 Dialog box to proceed to next structure or go to next step .............................  52 
 
3.5 Dialog box to proceed to the Poisson self-consistent model...........................  52 
 
3.6 User defined variables for the Poisson self-consistent model.........................  53 
 
3.7 'Browse for folder' selection box.....................................................................  55 
 
3.8 Flow chart representing the QUEST hierarchy...............................................  57 
 
3.9 Input screen for Example 1- first well structure..............................................  65 
 
3.10 Output screen 1- Example 1 solutions  
  (energy levels and wavefunctions)..................................................................  66 
 
3.11 User chooses to simulate another well by clicking 'YES' ...............................  67 
 
3.12 Input screen for Example 2- Second well structure ........................................  67 
 
3.13 Output screen 2- Example 2 solutions  
  (energy levels and wavefunctions)..................................................................  68 
 
 
3.14 User chooses to continue with the Self consistent  
  model by clicking 'YES' ..................................................................................  69 
 
3.15 Input screen for Example 2- doping structure.................................................  69 



 

 x

 
3.16 User chooses the well for further calculations  
  (here Example 2) .............................................................................................  70 
 
3.17 Output Screen 3- Self consistent solutions for Example 2  
  (Energy levels and Wave functions) ...............................................................  71 
 
4.1 Schematic of the tilting of conduction and valence band  
  under the influence of and electric field .........................................................  76 
 
 

 



 

 xi

 

 

 

LIST OF TABLES 

 
Table  Page 
 
 2.1 Classical variables and the corresponding quantum operator .........................  8 

 2.2 RK5(4)7FM embedded pair (DOPRI5) ..........................................................  25 

 4.1 The wave functions and the solutions of a finite rectangular  
  quantum well where the Barrier width = 150 Å, Lw = 100 Å, 
   mw =0.067, mb =0.0919, V0 =0.302 eV...........................................................  73 
  
 4.2 Solutions of a finite rectangular quantum well where the  
  Barrier width = 150 Å, Lw = 100 Å, mw =0.067, 
  mb =0.0919, V0 =0.302 eV...............................................................................  74 
 
 4.3 The wave functions and the solutions of a finite rectangular  
  quantum well where the Barrier width = 50 Å, Lw = 100 Å,  
  mw =0.067, mb =0.0919, V0 =0.251 eV with modulation  
  doping within 10 Ǻ at both ends of the profile  
  -100 Ǻ ≤ x ≤ -90 Ǻ and 90 Ǻ ≤ x ≤ 100 Ǻ, ND = 4E18 cm-3...........................  75 
 
 4.4 Solutions of a finite rectangular quantum well where the  
  Barrier width = 50 Å, Lw = 100 Å, mw =0.067, mb =0.0919,  
  V0 =0.251 eV with modulation doping within 10 Ǻ at both  
  ends of the profile -100 Ǻ ≤ x ≤ -90 Ǻ and 90 Ǻ ≤ x ≤ 100 Ǻ,  
  ND = 4E18 cm-3................................................................................................  76 
  

 4.5 The wave functions and the solutions of a finite rectangular quantum  
  well where the Barrier width = 200 Å, Lw = 100 Å, mw =0.0665,  
  mb =0.0957, V0 =0.262 eV, Applied electric field E=50 kV/cm .....................  78 
 
 4.6 Solutions of a finite rectangular quantum well where the Barrier  
  width = 200 Å, Lw = 100 Å, mw =0.0665, mb =0.0957, V0 =0.262 eV,  
  Applied electric field E=50 kV/cm .................................................................  79 
 



 

 xii

 4.7 The wave functions and the solutions of a finite rectangular quantum  
  well where the Al0.44Ga0.56As barrier of width = 280 Å, well width of  
  Lw = 60 Å with a step of Al0.18Ga0.82As of width 90 Å , and well mass  
  of mw =0.0665, barrier mass of mb =0.1, step mass of ms=0.08 and   
  barrier height of V0 =0.33 eV, step height Vs =0.15 eV ..................................  80 
 
 4.8 Solutions of a finite rectangular quantum well where the Al0.44Ga0.56As  
  barrier of width = 280 Å, well width of Lw = 60 Å with a step of  
  Al0.18Ga0.82As of width 90 Å , and well mass of mw =0.0665,  
  barrier mass of mb =0.1, step mass of ms=0.08 and  barrier  
  height of V0 =0.33 eV, step height Vs =0.15 eV..............................................  81 
 
 4.9 The wave functions and the solutions of a quantum well structure with  
  three Ga0.47In0.53As quantum wells with well width of Lw = 64 Å, 42 Å  
  and 28 Å respectively separated by Al0.48In0.52As barrier of width = 16 Å, 
  and well mass of mw = 0.04 , barrier mass of mb =0.075 and  barrier  
  height of V0 =0.53 eV......................................................................................  82 
 
 4.10  Solutions of a quantum well structure with three Ga0.47In0.53As quantum wells 

with well width of Lw = 64 Å, 42 Å and 28 Å respectively, separated  
   by Al0.48In0.52As barrier of width = 16 Å, and well mass of mw = 0.04 ,  
   barrier mass of mb =0.075 and  barrier height of V0 =0.53 eV.......................  83 
 
 4.11  The wave functions and the solutions of a chirped rectangular quantum  
   well where the Barrier width = 150 Å, Lw ~ 100 Å (36 monolayers),  
   mw = 0.067, mb = 0.15, V0 =0.044 eV.............................................................  84 
 
 4.12  The wave functions and the solutions of a chirped rectangular quantum  
   well where the Barrier width = 150 Å, Lw ~ 100 Å (36 monolayers),  
   mw = 0.067, mb = 0.15, V0 = 0.044 eV, Applied electric field  
   E = 128.571 kV/cm ........................................................................................  85 
 
 4.13  The wave functions and the solutions of a chirped rectangular quantum  
   well where the Barrier width = 150 Å, Lw ~ 100 Å (36 monolayers), 
   mw = 0.067, mb = 0.15, V0 =0.044 eV, Applied electric field  
   E=257.143 kV/cm ..........................................................................................  86 
 
 4.14  Solutions of a quantum well structure where the Barrier width = 150 Å,  
   Lw ~ 100 Å (36 monolayers), mw =0.067, mb =0.15, V0 =0.044 eV...............  86 
 
 
 
 
  



 

 xiii

 5.1 Plots that show the wavefunctions, states and absorption spectra for  
            the well structure with In0.65Ga0.35As wells of 50Ǻ and 100 Ǻ, 
  In0.52Al0.48As center barrier of 30Ǻ, surrounding barrier widths 
  of 150Ǻ under applied electric filed of  0, -50  and 50 kV/cm.  
  The effective mass values of the In0.52Al0.48As barrier and the  
  In0.65Ga0.35As are 0.13663 m0 and 0.03654 m0 ................................................  92 



 

 1

 

 
 

CHAPTER 1 

INTRODUCTION 

A quantum well is defined as a potential well that confines particles in one 

dimension, and forces them to occupy a planar region. The effects of quantum 

confinement become pronounced as the quantum well thickness approaches the de 

Broglie wavelength of the particles namely electrons and holes. This leads to energy 

levels that are different from those observed in larger sized semiconductor structures 

fabricated from comparable materials. This phenomenon dictates that the carriers can 

have only discrete energy values called energy subbands.  

Quantum wells are fabricated by sandwiching narrower bandgap material such 

as Gallium Aresenide (GaAs) between two layers of a wider bandgap material such as 

Aluminium arsenide (AlAs). Electrons in quantum wells have a sharper density of states 

than bulk materials and can be used for optical applications such diode lasers, spatial 

light modulators (SLMs), and quantum well infrared photodetectors (QWIPs) as well as 

semiconductor electronic deices such as high electron mobility transistors (HEMTs). 

Although devices based on quantum wells are used widely in several 

applications like optical communication systems, many of the operating characteristics 

are not fully understood. This thesis focuses on studying the physics behind III-V 

materials and devices and using the accumulated knowledge and experimental data to 
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develop an integrated suite of simulation tools that can be used for the preliminary 

characterization of a device based on its material properties. 

1.1 Optimization of Materials 

As described in the previous section, a quantum well is fabricated by depositing 

a smaller bandgap material between two layers of barrier (larger bandgap) material. In a 

semiconductor heterostructure, this forms a potential well which is observed in both the 

valence and conduction bands [4, 5]. The well is capable of capturing carriers namely 

electrons and holes which gives rise to quantum confinement leading to dramatic 

changes in optical and transport properties of the carriers.   

 Growth of viable devices that serve the application for which they are fabricated 

is contingent on the development of reliable and predictable heterostructures. It is 

essential to accurately simulate structural, optical and electronic transport characteristics 

which affect device function so that a particular growth methodology or process can be 

chosen for fabrication to produce the desired results [6]. These operational 

characteristics are governed by the composition, thickness, doping and placement of 

dopants in the quantum well and surrounding barriers [7]. Material composition and 

profiles of the well and barriers determine the potential depth, effective masses and 

internal strains. These attributes affect the wavefunctions and quantum confined 

energies which in turn determine the density of states for optical absorption and 

emission as well as the electron occupancy ratios and scattering cross section area. 

It is of great interest to have a simulation tool which allows a user to design and 

analyze quantum wells of arbitrary shapes and composition. Such a tool maybe used to 
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determine the operating characteristics of a device fabricated based on the simulated 

quantum well. The primary goal of this thesis is to develop a user-friendly quantum 

well simulation tool suite to perform the following functions:  

(a) Calculate Eigen energies/states and wavefunctions for arbitrary well structures  

(b) Determine the effects of electric field and doping profiles on well characteristics  

(c) Calculate absorption coefficients for the user defined quantum well  

(d) Comparison of simulated characteristics to experimental results 

 To summarize, the simulation tool aims to aid in semiconductor epitaxial 

methods such as molecular beam epitaxy, primarily in the design and building of 

material structures that take advantage of the quantum mechanical effects using 

bandgap engineering. Additionally the simulation tool may also be applied to research 

efforts that examine the outcome of changing size, shape and material composition of 

wells and consequently how these affect various electronic properties of the material. 

Furthermore, device characteristics can be modified using an external electric field. 

Such effects have also been simulated as part of this thesis and are presented in a later 

section. 

1.2 Thesis Outline 

This thesis is organized in the following manner. 

Chapter 1 gives a general introduction to the thesis and the aims that motivate 

this work. A short thesis is provided that gives a brief summary of the topics covered in 

each chapter. 
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Chapter 2 starts with basic quantum mechanics theory underlying this research. 

It begins with an explanation of the physical interpretation of a wavefunction. Next the 

Schrödinger's equation is solved for the case of the infinite quantum well. Boundary 

conditions are refined to develop the case of the finite rectangular quantum well. Both 

the exact and numerical solution for a single bounded well are discussed. The Runge-

Kutta and Shooting method that are used to solve the differential equations is described 

in detail. The general quantum theory is then particularized to address the simple 

rectangular well in both the undoped and doped case (Self consistent Poisson equation). 

Chapter 3 is designed to be a user manual for the Quantum-Well User Entered 

Simulation Tool (QUEST) that is developed in this research. Apart from the user 

instructions to run the program, installation requirements and software implementation 

are also detailed. An example run of the software is presented to guide the user through 

the program. 

Chapter 4 outlines simulation results for well structures and QUEST results for 

these varied structures are compared to previously published data. The structures that 

are presented include an Undoped Rectangular Well, Doped Rectangular Well, 

Asymmetric Well structures, Triple Well Structures and Chirped Well Structure. Effects 

of extrnal applied electric field are also discussed with relevant examples and 

simulations. 

Chapter 5 demonstrates the application of the developed simulation tool suite to 

a device simulation. A Quantum Well Infrared Photodetector (QWIP) is used to bring 

forth the functionality of QUEST as an effective pre-fabrication procedure for bandgap 
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engineering. A QWIP was chosen because of the interest of the Optoelectronic 

Research Group at UTA in the design, development and fabrication of such devices.  

Chapter 6 summarizes the specific achievements of this research work and 

provides suggestions for future development and directions for this research. 
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CHAPTER 2 

BACKGROUND THEORY 

The infinite quantum well is the simplest confinement potential to study and is 

the foundation of this research. The theory underlying the infinite quantum well 

develops the standard assumptions and their consequences for a one-dimensional 

confinement potential. 

The general solution to the Schrödinger Equation starts from the classical 

description of the total energy, E, which is equal to the sum of the kinetic energy, T, and 

the potential energy, V 

)(
2

2

xV
m

pVTE +=+=       (1)  

A wavefunction, Ψ, is defined to convert the energy equation into a wave equation 

(Equation 2) [8]. This is achieved by multiplying each term in the energy equation by 

the defined wavefunction, Ψ  

)(
2

2

xV
m

pE +Ψ=Ψ       (2) 

To incorporate the de Broglie wavelength of the particle, we introduce the 

operator 2

22

x∂
∂

−
h , which provides the square of the momentum, p. When applied to a 

plane wave we obtain Equation 3 [8, 9] 
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Ψ=Ψ=
∂

Ψ∂
− 222

2

2
2 pk

x
hh for  ( )tkxie ω−=Ψ     (3) 

where k is the wavenumber (k = 2π /λ). Replacing the momentum squared, p2, in 

equation (2) by this operator yields the one-dimensional time-independent Schrödinger 

equation (Equation 4). 

)()()()(
2 2

2

xExxV
dx

xd
m

Ψ=Ψ+
Ψ

−
h      (4) 

2.1 Physical Interpretation of the Wavefunction  

The particle-wave duality principle is applied to the Schrödinger equation to 

explain the use of a wavefunction to describe a confined particle. While this helps 

simplify the mathematical solution, it does not provide adequate insight into the 

physical meaning of the wavefunction. 

Quantum theory postulates that the probability density function, P(x), associated 

with a particle is proportional to the product of the wavefunction of the particle, Ψ(x), 

and its complex conjugate, Ψ*(x).  

)()()( xxxP ∗ΨΨ=       (5) 

The probability density function, P(x), integrated over a specific volume provides the 

probability that the particle described by the wavefunction is within that volume. The 

probability function is normalized to indicate that the probability of finding a particle in 

a given volume equals 100%. The magnitude of the wavefunction is calculated with this 

normalization (Equation 6) [8, 10] 

  ∫
∞

∞−

= 1)( dxxP         (6) 
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The probability density function is used to find the properties of the particle using 

quantum operators. The expected value of the probability density function for a particle, 

f(x,p), is described by the wavefunction and is given by 

∫
∞

∞−

∗ΨΨ>=< dxxFxpxf )()(),(     (7) 

where F(x) is the quantum operator associated with the function. A list of quantum 

operators corresponding to classical variables is provided in Table 2.1 [8]. 

 

Table 2.1 Classical variables and the corresponding quantum operator [8] 
 

 
Classical Variable Quantum Operator 

Position x x 

A function which depends 
only on  position f(x) F(x) 

Momentum p 
xi ∂

∂h  

Energy E 
ti ∂

∂
−
h  

 

 

2.2 Infinite Quantum Well  

The one-dimensional infinite quantum well is used to illustrate specific 

properties of quantum mechanical systems. In an infinite well, the potential is zero 

within the well (x = 0 and x = Lx) and infinite outside the well. Figure 2.1 shows the 

potential of a well and the first five energy levels an electron can occupy.  



 

 9

 
Figure 2.1 Potential energy of an infinite well, with width Lx. Also indicated are 

the lowest five energy levels in the well.[8] 
 

The energy levels in an infinite quantum well are calculated by solving 

Schrödinger’s equation (Equation 4) with the potential, V(x). Inside the well the 

potential, V(x) = 0 and Schrödinger's equation reduces to the following form. 

Ψ=
Ψ

− E
dx

xd
m 2

22 )(
2
h   for 0 < x < Lx     (8)  

The general solution to this differential equation is 

)2cos()2sin()( xmEBxmEAx
hh

+=Ψ   for 0 < x < Lx   (9) 

where the coefficients A and B are determined by applying boundary conditions. Since 

the potential is infinite on both sides of the well, the probability of finding an electron 

outside the well and at the well boundary is zero. Therefore the wave function must be 

zero on both sides of the infinite quantum well [8, 11]. 

 0)0( =Ψ  and 0)( =Ψ xL      (10)  

These boundary conditions imply that the coefficient B must be zero and the argument 

of the sine function must equal to a multiple of pi at the edge of the quantum well 
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  ,
2

πnL
mE

x
n =

h
 with n = 1,2 …    (11)  

where n represents quantized energy levels. The resulting values of the energy, En, are  

  2
2

)
2

(
2 x

n L
n

m
hE ∗= , with n = 1, 2 …     (12)  

The corresponding normalized wave functions, Ψn(x), are 

  )
2

sin(2)( x
mE

L
x n

x
n

h
=Ψ  for 0 < x < Lx   (13)  

The coefficient A is determined by setting the probability of finding the electron in the 

well to unity. [4, 8] 

∫ =ΨΨ ∗
xL

nn dxxx
0

1)()(       (14)  

The lowest possible energy, E1, is not zero although the potential within the well 

is zero. The discrete energy values are obtained by solving for the Eigen values of the 

Schrödinger equation [11]. The energy difference between adjacent energy levels 

increases as the energy increases. The wavefunctions corresponding to each energy 

level are shown in Figure 2.2(a). Each wavefunction is shifted by the corresponding 

energy and scaled. The probability density functions for the first five energy levels are 

shown in Figure 2.2(b).  
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Figure 2.2 (a) Energy levels, wavefunctions and (b) Probability density functions 

of an infinite quantum well [8] 
  

2.3 Finite Rectangular Quantum Well  

 The finite rectangular quantum well is characterized by a zero potential inside 

the well and a potential V0 outside the well. The origin is chosen in the middle of the 

well. 

2.3.1 Exact Solution 

 

 

 

 

 

 

 

Figure 2.3 Finite quantum well [12] 
 

-Lw/2 Lw/2 

(a) (b)
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A simple model of the energy levels in a finite quantum well is solved below 

using an analytic solution. The Schrödinger equation is solved for a finite potential to 

give the values of various energy levels within the well. Consider a potential well of 

width, Lw and barrier height, V0, centered around the origin [9]. The Schrödinger 

equation can be rewritten using the condition that potential inside the well is zero and 

outside the well is V0. 

⎩
⎨
⎧

≥
<

=
2/,
2/,0

0
0

w

w

LxV
Lx

V         (15)  

 

 
Inside the well 

0)()(
2 12

22

=Ψ+
Ψ xk
dx

xd
m
h  |x| <Lw/2 with 21

2
h

mEk =   (16)  

 
 
Outside the well/in the barrier region 

0)()(
2 22

22

=Ψ−
Ψ xk
dx

xd
m
h  |x| > Lw/2 with 2

0
2

)(2
h

EVm
k

−
=   (17)  

For even wavefunctions, the solution of the Schrödinger equation within the well is 

given by 

 
⎩
⎨
⎧

<
>−−

=Ψ
2/
2/

cos
)exp(

)(
12

21

w

ww

Lx
Lx

xkC
LxkC

x           (18) 

Using the boundary conditions in which the wave function and its first derivative 

divided by the effective mass (1/m)(dΨ/dx) are continuous at the interface between the 

barrier and the well [11]. 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Ψ=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Ψ

−+

22
ww LL

 and ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Ψ=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Ψ

−+

2
1

2
1 w

w

w

b

L
dx
d

m
L

dx
d

m
 (19) 

we obtain 

 )
2

cos( 121
wLkCC =       (20)  

)
2

sin( 12
1

1
2 w

wb

L
kC

m
k

C
m
k

=      (21)  

Eliminating C 1 and C 2, we obtain the Eigen equation or the quantization condition:  

)
2

tan( 1
1

2
w

w

b L
k

m
km

k =       (22)  

The Eigen energy can be found from the above equation by substituting k1 and k2 [10]. 

Similarly for odd wave functions, we have of the form 
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The boundary conditions give  
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The Eigen equation is thus given by 
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which determines the Eigen energy, E, for the odd wave function using k1 and k2. In 

general, the solutions for the quantized Eigen energies can be obtained by finding 

k1Lw/2 and k2Lw/2 directly from a graphical approach since  

2
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and 
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k =  for even solutions    (28)  
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k −=      for odd solutions  (29)  

In the case where the mass of the particle in the barrier differs from the mass of the 

particle in the well, we introduce a scaling factor to account for this [9]. Plotting 

22
w

w

b L
m
m

k against 
21
wL

k produces the graphs below, the potential generates a circle of 

radius
2

2
2

0 ww LVm
h

. The energy levels in the well are found from the intersection of the 

tangent and cotangent relationships with the circle within the positive quarter. Figures 

2.4 and 2.5 further demonstrate the use of this technique to solve a finite rectangular 

quantum well [9]. The simulation was carried out by a program written in Matlab for a 

finite rectangular quantum well where Barrier width = 150 Å, Lw = 100 Å, mw =0.067, 

mb =0.0919, V0 =0.302 eV 
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Figure 2.4 Graph of 
22
w

w

b L
m
m

k  against 
21
wL

k  and 
2

2
2

0 ww LVm
h

. The solutions 

of the finite rectangular quantum well where the Barrier width = 150 Å, Lw = 100 
Å, mw =0.067, mb =0.0919, V0 =0.302 eV are shown by the circles. 
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Figure 2.5 The wavefunctions for the solutions found in figure 2.4 

 

2.3.2 Numerical Analysis 

A differential equation describes the relation between an unknown function and 

its derivatives. The solution of a differential equation is usually in the form of a function 

that satisfies the relation stated in the problem (the differential equation itself) along 

with some additional condition (like boundary or initial conditions) [13] . In a canonical 

initial value problem, the behavior of the system is described by an ordinary differential 

equation (ODE) of the form dx/dt = f(x,t) where f is a known function, x is the state of 

the system, and dx/dt is the time derivative of x. Typically, x and dx/dt are vectors. As 

the name suggests, in an initial value problem x at time=0 is known and we wish to 

follow x over time thereafter [13]. 
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The standard differential equation solver is the fourth-order Runge-Kutta 

method. It has more precision than the Euler’s algorithm from which it is derived and 

offers several attractive features such as ease of programming and mathematical 

simplicity.  With the addition of an adaptive or self-adjusting step size, the fourth-order 

Runge-Kutta method is both robust and capable of providing solutions to complex 

problems. In the next section a basic derivation of the Runge-Kutta method is provided 

in addition to background theory and underlying equations [14].  

2.4 Runge-Kutta Method 

The approximate solution for a given point in space using the Euler method is 

yn+1 = yn + hf(xn, yn) which advances a solution from xn to x n+1 ≡ x n+ h. . It advances the 

solution through an interval h, and uses the derivative at the beginning of that interval to 

avoid discontinuities at the boundaries. This implies that the error in a single step is 

limited to only one power of h smaller than the correction [15]. 

Euler's method is not very accurate, when compared to more complicated 

methods using an equivalent step size and can also be unstable. Thus a more complex 

method, namely the Runge-Kutta solver, is adopted for this development. The Runge-

Kutta solver uses the following method to find the solutions to a given system of 

differential equations. A trial step to the midpoint of the interval is taken. Then the 

values of both x and y at that midpoint are used to compute the “real” step across the 

whole interval [15]. This is illustrated below in Figure 2.6. 
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Figure 2.6  Graph illustrating the Midpoint method. Second order accuracy is 
obtained by using the initial derivative at each step to find a point halfway across 

the interval, then using the midpoint derivative across the full width of the 
interval. In the figure, filled dots represent final function values, while open dots 

represent function values that are discarded once there derivatives have been 
calculated and used.[15] 

 

Putting this idea in the form of equations,  
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Symmetrization cancels out the first order term (which is shown in the error term) and 

makes the method a second order solver. A method is conventionally called nth order if 

its error term is O (h n+1). In fact, Equation 30 above describes the second-order Runge-

Kutta or midpoint method. There are many ways to evaluate the right-hand side f(x, y) 

that have different coefficients of higher-order error terms but lead to solutions that 

agree with those derived using a first order method. By choosing the optimal 

combination of right hand side terms, error terms can be systematically eliminated order 

by order. This is the basic idea of the Runge-Kutta method. The most commonly 
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employed method for numerical solutions is the fourth order Runge-Kutta formula 

because of its elegant organization that renders it easy to implement [15]. 
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The fourth-order Runge-Kutta method requires four evaluations of the right 

hand side per step h. This is almost always superior to the midpoint method. In fact, this 

method proves to be very effective when combined with an adaptive step size 

algorithm. Each step in a sequence of steps is treated identically in a Runge-Kutta 

method [15]. Prior behavior of a solution is not used in its propagation and this is 

justified mathematically since any point along the trajectory of an ordinary differential 

equation can serve as an initial point. This approach does not minimize computer time, 

and can fail for problems whose nature requires a variable/adaptive step size. Adaptive 

step size control helps minimize computing time and is discussed in detail in the next 

section [15]. 

2.4.1 Adaptive Step Size 

Adaptive step size control is used to give better accuracy to a solution while 

minimizing computational effort. The basic idea is to take small steps in areas of rapid 

change and larger steps where the rate of change is slower [15]. This usually results in 

gains of efficiency that are ten to a hundred or more times faster than without adaptive 
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step size control. Implementation of adaptive step size control requires that the stepping 

algorithm signal information about its performance, and most important, an estimate of 

its truncation error. In a fourth-order Runge-Kutta method, a technique called step 

doubling is often used. Each step is taken twice, once as a full step, then, independently, 

as two half steps (Figure 2.7).  

 

 

Figure 2.7 Step doubling as a means for adaptive step size control in fourth order 
Runge-Kutta. Points where the derivative is evaluated are shown as filled circles. The 
open circle represents the same derivative as the filled circle immediately above it, so 
the total number of evaluations is 11 per two steps. Comparing the accuracy of the big 

step with the two small steps gives a criterion for adjusting the step size on the next 
step, or for rejecting the current step as inaccurate [15]. 

 

Each of the three separate steps in the procedure requires 4 evaluations, 

however the single and double sequences share a starting point and thus the total 

number of evaluations required is 11. This should not be compared to 4, but rather to 8 

evaluations (due to the two half-steps), since the accuracy of the half stepsize is 

achieved. The overhead cost is therefore a factor 1.375 [15]. 

To illustrate the advantage of this method, let us denote the exact solution for an 

advance from x to x + 2h by y(x + 2h) and the two approximate solutions by y1 (one 
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step 2h) and y2 (2 steps each of size h). Since the basic method is fourth order, the true 

solution and the two numerical approximations are related by  

K
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+++=+

)()(2)2(
)()2()2(

65
2

65
1

hOhyhxy
hOhyhxy

φ
φ

   (32) 

where, to order h5, the value φ remains constant over the step. In a Taylor series 

expansion, φ represents a number whose order of magnitude is (y(5)(x)/5!). The first 

expression in Equation 32 involves (2h)5 since the step size is 2h, while the second 

expression involves 2(h5) since the error on each step is h5φ [15]. The difference 

between the two numerical estimates gives the truncation error 

12 yy −≡Δ        (33) 

The method aims to keep the truncation error to a desired degree of accuracy 

which is neither to neither large nor too small. This is realized by adjusting the step size, 

h [15]. Equation 32 can be solved by ignoring terms of order h6 and higher, to improve 

our numerical estimate of the true solution y(x + 2h), namely, 

)(
15

)2( 6
2 hOyhxy +

Δ
+≡+

      (34) 

This estimate is accurate to the fifth order, one order higher than the original 

Runge-Kutta steps. Although the estimate is accurate to the fifth-order, the truncation 

error is not known at this stage. Therefore, ∆ is used as the error estimate. Such a 

procedure is called “local extrapolation” [15]. 

An alternative stepsize adjustment algorithm is based on the embedded Runge-

Kutta formula, originally invented by Fehlberg. An interesting fact about Runge-Kutta 
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formula is that for orders, M, higher than four, more than M function evaluations 

(though never more than M + 2) are required [15]. Thus the fourth-order method is 

often the first choice in numerical analysis problems. Fehlberg discovered a fifth-order 

method with six function evaluations where another combination of the six functions 

gives a fourth-order method. The difference between the two estimates of y(x + h) is 

used as an estimate of the truncation error to adjust the stepsize. Accordingly, 

embedded Runge-Kutta formulas, which are roughly a factor of two more efficient, 

have superseded algorithms based on step-doubling. The general form of a fifth-order 

Runge-Kutta formula is [15] 
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The embedded fourth-order formula and its corresponding error estimate are as follows 
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At this step, the approximate error is known and the next step is to keep the 

error within desired bounds. The error, ∆, is proportional to the fifth power of the step 

size (~h5). If we take a step, h1, and produce an error, ∆1, then the step h0 that would 

have given some other value ∆0 is readily estimated as [15] 
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2.0

1

0
10 Δ

Δ
= hh       (38) 

Let ∆0 denote the desired accuracy. Equation 38 is used in two ways: If ∆1 is 

larger than ∆0 in magnitude, the equation indicates how much to decrease the step size 

when the present (failed) step is retried. On the other hand, if ∆1 is smaller than ∆0, then 

the equation can be used to determine the increment of the step size for the next step. 

Local extrapolation consists in accepting the fifth order value yn+1, even though the 

error estimate actually applies to the fourth order value y∗
n+1. The desired accuracy, ∆0, 

is a vector, one for each equation in the set of ODEs. In general, all equations are 

assumed to be within their respective allowed errors. In other words, we will rescale the 

step size according to the needs of the equation with the worst error [15]. 

The next step is to relate the desired accuracy, ∆0, to some user defined error 

bounds. When dealing with a set of equations whose dependent variables differ 

enormously in magnitude, fractional errors are utilized (For example, ∆0 = εy, where ε is 

the number like 10−6). When dealing with oscillatory functions that pass through zero 

but are bounded by some maximum values, ∆0 is set equal to ε times the maximum 

values [15]. 

2.4.2 Selection of Step Size 

A well-known method for adjusting step size selection to the event functions is 

to include their first time derivative in the array of integrating variables. The extended 

system of differential equations can be written as 
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where y represents the state variables of the system, and g is an array collecting all 

active event functions. However, this measure alone does not suffice to warrant reliable 

event detection, because in a high order of the interpolation polynomials of the 

integrator, an even number of roots can occur within the integrator steps that remain 

undetected when simple sign checks are used [15]. 

2.4.3 Continuous Interpolation Polynomials 

Reliable event detection can be obtained by exploiting polynomials generated 

by the integrator for event functions in the extended system concurrently with a 

polynomial root finding algorithm to predict the number of roots contained in a single 

integration step [14]. However, standard interpolation polynomials of numerical 

integration codes often have the disadvantage of discontinuities at mesh points. 

Continuous extension interpolation polynomials that follow dense output formulas of 

[16] are employed in the Matlab routine (ode45) [17, 18] used in this research, to ensure 

continuity at the endpoints of an interval. The basic form of dense-output Runge-Kutta 

scheme is as follows 
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A continuous extension can be computed using the same function evaluations, fi ,with 

,10,)()(
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1 ≤≤+= ∑
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+ σσσσ

s

i
iinn fbhyy     (41) 

where )(σ∗
ib are given polynomials of the interpolation parameter 10 ≤≤ σ (see Table 

2.2). The DOPRI5 scheme [19, 20] is a 7-stage explicit Runge-Kutta formula of fifth 

order with an embedded fourth order step for step size control. The fourth order 

continuous extension is used for the interpolation polynomials. 

 

Table 2.2 RK5(4)7FM embedded pair (DOPRI5) [21] 
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2.5 Shooting Methods 

In all but the simplest differential equations, an analytical solution is difficult to 

obtain and a numerical method is applied to solve the system. The shooting method is a 

numerical approach that is often used to deal with complex boundary value problems. 

Shooting to a fitting point is a symmetrical method and has the advantage of being 

readily applied to both linear and nonlinear differential equations using the same 

algorithm [22].  

Shooting to a fitting point helps minimize the build-up of systematic error and is 

especially desirable in situations when a singularity is encountered in the differential 

equation. The simple shooting method is introduced and then built upon to give results 

for the "shooting to a fitting point" method which refines the prior method [22]. 

2.5.1 Simple Shooting Method 

In a simple shooting method, a differential equation in the form of 

y''(x)=F(y',y,x) with boundary conditions y(a)=α and y(b)=β is solved. A solution for 

the boundary value problem is sought by guessing the slope of the solution y'(a) (refer 

to Figure 2.8).  
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Figure 2.8 Method of shooting from an initial point x=a to x=b. Using initial an 
initial guess for the slope, y'(a), the differential equation is numerically integrated 

from x=a to x=b. If the boundary condition, y(b)=β,  is not satisfied, another 
initial slope,  y'(a), is tried until the boundary condition at x=β is satisfied[22]. 
 

This guess for the slope together with the known boundary condition, y(a) =α, 

are used to numerically integrate the differential equation from x=a to x=b. When the 

solution does not satisfy the right boundary condition, y(b)=β, the slope at the left 

boundary, y'(a),is varied until the right boundary condition is satisfied to some desired 

accuracy [22]. This simple shooting method works well for many problems but the 

method can fail if the integrating method (in this case, Runge-Kutta) is not able to 

perform the numerical integration through the whole region from x=a to x=b. This can 

happen because the differential equation has a singularity in the region of integration or 

because the end points of integration are singular and the numerical integration may fail 

when shooting into a singular point of the differential equation at x=b. Shooting to a 

fitting point also reduces the buildup of error and thus increases accuracy. The method 
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of shooting to a fitting point can be used as an effective alternative to overcome the 

drawbacks of the simple method of shooting [22]. 

2.5.2 Shooting to a Fitting Point 

In this method, we integrate from the left boundary at x=a toward the right 

boundary at some intermediate fitting point, xf where a< xf <b. Next we integrate from 

the right boundary at x=b toward the left to the same intermediate fitting point, xf (refer 

to Figure 2.9). This method is more symmetrical than the simple shooting scheme. 

Furthermore, when there are singularities at the boundary (such as in a singular Sturm-

Liouville problem), we are shooting away from the singularities rather than into them.  
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Figure 2.9 Shooting to an intermediate fitting point, xf . This involves two 
numerical integrations, one starting at x=a and going to x=xf , the other starting 

point at x=b and going to x=xf. Both solutions and their derivatives must match at 
x=xf  [22]. 

 

Consider a boundary problem defined by the second order differential equation 
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 with the boundary conditions, y(a)=α1 and y(b)=β1. Setting y1(x)=y(x) and y2(x)=y'(x) 

such a second order differential equation can be written as two first order equations [22] 

 2,1),,,( 21 == ixyyf
dx
dyi      (43) 

with the boundary conditions, y1(a)=α1 and y1(b)=β1. In order to integrate the system of 

two first order equations from x=a to x=xf, we must have two initial conditions,y1(a) 

and y2(a). However only y1(a) is known and a guess at the value of y2(a) is made and 

the set of equations from x=a to x=xf  are numerically integrated . These functions are 

called yi
(-)(x) for i=1,2. The situation on the right hand side of xf is similar [22]. The 

slope of y'2(b) is not known and a guess is used during integration from x=b to x=xf. 

These two functions are called yi
(+)(x) for i=1,2. The solutions yi

(-)(x) and yi
(+)(x), for 

i=1,2, must match at x=xf. This is unlikely on the first try and therefore a discrepancy 

function, Δi=yi
(-)(xf) - yi

(+)(xf) for i=1,2 is constructed. The vector of the discrepancy 

function, Δi, depends on two variables, α2=y2(a) and β2=y2(b) , which are the two 

unknown slopes needed to construct a solution to the boundary value problem. These 

unknown slopes are found by searching for a simultaneous zero of the function, Δi, for 

some value of α2 and β2. The solution to the boundary value problem is then found by 

using the slopes, α2 and β2, to integrate the system of equations from x=a to x=xf and 

from x=b to x=xf  respectively [22]. 

In the general case, a boundary value problem consists of a set of 'N' first order 

differential equations 

Nixyyf
dx
dy
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i ,,1),,,,( 1 KK ==     (44)  
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or an Nth order differential equation 

),,,,( )1( xyyyF
dx

yd N
N

N
−′= K      (45)  

 which can be rewritten as a set of n first order differential equations. Assume that there 

are n1 boundary conditions specified at x=a and n2 conditions at x=b so that n1 + n2 = N. 

Therefore, N initial conditions must be known in order to numerically integrate the 

system of N first order differential equations from x=a to some fitting point, xf, where 

a<xf<b. Consequently, guesses have to made for n2 = N-n1 initial conditions at 

x=a.[22] Similarly in order to numerically integrate the system of equations from x=b 

to x=xf, guesses have to made for values for n1=N-n2 initial conditions at x=b. An N 

component discrepancy function, Δi=yi
(-)(xf) - yi

(+)(xf) for i=1,2 …..N, is constructed 

which depends on the n2 free parameters at x=a and the n1 free parameters at x=b. The 

values of the N parameters that make the functions, Δi, simultaneously zero give the 

initial conditions so that the system of N first order differential equations can be 

integrated numerically to yield the solution of the boundary value problem [22]. 

When either the boundary conditions are non-zero (e.g. non-zero α1 or β1) or the 

differential equation is inhomogeneous, the boundary value problem is said to be 

inhomogeneous. Typically a well posed inhomogeneous boundary value problem has a 

unique solution. However the situation is different for Eigen value problems. A typical 

Eigen value problem is defined by a homogenous differential equation with 

homogenous boundary conditions (e.g. α1=0 and β1=0) and does not have a unique 

solution. Instead it has a series of solutions (Eigen functions) that satisfy the boundary 



 

 31

conditions. Often Eigen value problems are more difficult to solve numerically than 

inhomogeneous boundary value problems. The reason for this increased difficulty is 

that in an Eigen value problem, there exist several unknown Eigen values and their 

corresponding Eigen functions rather than a single unique solution. This requires 

repetitive calculation to obtain all the desired Eigen functions and Eigen values [10, 22]. 

In this section the method of shooting to a fitting point is applied to solve a 

common Eigen value problem that arises in physical applications, namely the Sturm 

Liouville Eigen value problem [10]. This problem is defined by the differential equation  

0)()()()()()( =+−⎥⎦
⎤

⎢⎣
⎡ xyxrxyxq

dx
xdyxp

dx
d λ     (46)  

and the boundary conditions y(a)=0 and y(b)=0. Here p(x), q(x), and r(x) are real 

functions and r(x) is usually taken to be positive. The aim is to find a series of Eigen 

values, λ, and associated Eigen functions, y(x). The Eigen value problem can be put into 

the form of a boundary value problem that is given by Equation 44 by treating the Eigen 

value, λ, as an unknown function which satisfies the differential equation, λ'=0. 

Furthermore, since the differential equation is homogenous, if y(x) is a solution then so 

is cy(x) where c is a constant. It is conventional to choose the normalization of y(x) to be  

∫ =
b

a

dxxyxr 1)()( 2       (47)  

To enforce this normalization another auxiliary function, w'(x), is introduced. 

)()()( 2 xyxrxw =′       (48)  
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Conventional normalization for y(x) is obtained by requiring that w(b)-w(a)=1. An 

arbitrary choice can be made for one of w(a) and w(b). A transformation is made using 

Equation 49 to give the new functions y1, y2, y3 and y4. 
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In terms of these functions the Eigen value problem can be written as [23]  
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with the boundary conditions [24] 
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where r0 is some convenient constant that determines the normalization of y(x) = y1(x).  

In order to integrate the system of four differential equations (Equation 50), four 

initial conditions are needed. Integrating from the left boundary at x=a to fitting point at 

x=xf, guess values for y2(a) and y3(a) are required. Similarly, integrating from the right 

boundary point at x=b to fitting point at x=xf, guess values for y2(b) and y3(b) are 

needed. The discrepancy function, Δi=yi
(-)(xf) - yi

(+)(xf), will now have four components 

which depend on the four initial conditions, y2(a), y3(a), y2(b), and y3(b). The solution to 

the boundary value problem can be obtained by choosing physically reasonable starting 
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values for the four initial conditions and searching for a zero of the discrepancy 

function, Δi [22]. 

2.6 Simple Model: Undoped Case 

The Ben Daniel-Duke Hamiltonian is used to study the behavior of electrons 

confined in quantum wells. This equation is also known as the modified Schrödinger’s 

equation and can be solved with appropriate boundary conditions to give the wave 

functions and energy levels associated with electrons or holes [7,9]. The wave functions 

determine the probabilistic distribution of electrons or holes with respect to space. The 

general form of the Schrödinger equation for an electron is 

Ψ=Ψ+Ψ⎟⎟
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where  h = reduced Planck's constant = 
π2

10626.6 34×  Js , m0 = mass of electron = 

9.1x10-31 kg, V(x) = Potential energy, E = Energy of electron,  and )(xΨ  = wave 

function. 

In a semiconductor material, the mass m in the Schrödinger equation represents 

the effective mass rather than the bare electron mass and is a function of space for a 

particle under consideration [10]. In the case of quantum wells, wavefunctions and 

energy levels are confined in one direction and the modified Schrödinger’s equation is: 
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where  0)()( mxmxm e=∗  and )(xme is the effective mass of electron in the conduction 

band. The boundary conditions of )(xΨ  and )(
)(

1 x
xxm

Ψ
∂
∂

∗  are continuous to avoid 

differentiating discontinuous functions which produces infinities [10]. A simple square 

well potential is give by 
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where V0 is the barrier height  and Lw is the well width. The functions in the Sturm 

Liouville problem of Equation. 46 are rewritten as 

 

 

(55) 

   

where 'r' is a constant function independent of x .  It is convenient to introduce a length 

scale, x0, defined by )( 2
00

2 xmh = 1 eV [9]. The length scale x0 ≈ 2.76042 Å. Therefore 

Equation 55 can now be rewritten as  
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2.7 Self Consistent Model: Doped Case 

The theoretical methods described thus far have concentrated on solving 

systems for a single charge carrier. In many devices such models are inadequate 

especially when large numbers of charge carriers are present in the conduction band. 

The electrostatics describing the system is solved in order to decide whether typical 

carrier densities give rise to an additional potential over the band edge [25, 26]. 

2.7.1 Poisson Equation 

Consider the case of an n-type material, where the number of free electrons in 

the conduction band is equal to the number of positively charged ionized donors in the 

heterostructure. In the example shown in Figure 10 six donors are ionized and supply 

six electrons into the well, thus maintaining charge neutrality.  
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Figure 2.10 Modulation doped single quantum well [10]  
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Figure 2.10 is a modulation doped system and the doping is located in a position 

where free carriers it produces are spatially separated from the ions. The additional 

potential term, Vρ(x), which arises from this or any other charge distribution, ρ, can be 

expressed using Poisson's equation.  

ε
ρ

ρ −=∇ V2       (57) 

where ε is the permittivity of the material that is ε=εoεr . The solution obtained via the 

electric field strength, E , is given by  

Vx −∇=)(E       (58) 

and the potential is equal to 

∫
∞−

•−=
r

rdErV )(ρ      (59) 

 If the potential profiles are one dimensional, they produce a one dimensional charge 

distribution [10]. In addition, quantum wells are assumed to be infinite in the x-y plane 

and hence any charge density, ρ(x), can be assumed to be an infinite plane or a sheet 

with areal charge density, σ(x), and thickness, δx, as shown in Figure 2.11. 

xxdx δσ )()( =
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Figure 2.11 Electric field strength from an infinite plane of charge from a volume 
density of dopants, d(x) and thickness, δx [10] 
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Such an infinite plane of charge produces an electric field perpendicular to it with 

strength given by Equation 60. 

ε
σ

=E        (60) 

Since the sheet is infinite in the plane, the field strength is constant at all distances from 

the plane. The total electric field strength due to many of these planes of charge, as 

shown in Figure 11(b), is then the sum of the individual contributions as follows  

∑
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′

−
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xxsignxxE )'()()(
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σ      (61) 

where the function sign is defined as 

;0,1)( ≥+= xxsign    0,1)( <−= xxsign     (62) 

This accounts for the vector nature of E , i.e. if a single sheet of charge is at position x', 

then for x> x', E (x) = +σ/ε, whereas for x<x' E (x) = -σ/ε. Moreover, there exists 

charge neutrality, i.e. there are as many ionized donors (or acceptors), in the system as 

there are electrons (or holes). This can be expressed mathematically as Equation 63 

[10]. 

0)( =∑
+∞

−∞=x
xσ       (63) 

It is the charge neutrality which ensures that the electric field and hence the 

potential, go to zero at large distances from the charge distribution. For the case of a 

doped semiconductor, there are two contributions to the charge density σ(x), (i) ionized 

impurities and (ii) free charge carriers. Ionized impurities are known from the doping 

profile densities in each semiconductor layer as defined at growth time [10]. Free 
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charge carriers are calculated from the probability distribution of the carriers in the 

heterostructure. Thus if d(x) defines the volume density of the dopants at position x, 

where the planes are separated by the step length, δx, then the total number of carriers 

per unit cross sectional area, introduced in to the heterostructure  is given by 

∫
+∞

∞−

= dxxdN )(       (64) 

 The net charge density in any of the planes is 
 

xxdxxNqx δσ )]()()([)( −ΨΨ= ∗     (65) 
 
where q is the charge on the extrinsic carriers. The step length, (δx), selects the 

proportion of the carriers that are within the slab and converts the volume density of 

dopant, d(x), into an areal density [27]. If the charge carriers are distributed over more 

than one subband, then the contribution to the charge density, σ(x), would have to be 

summed over the relevant subbands (Equation 66). 
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Figure 2.12 shows the areal charge density along the growth axis for a 100 Å GaAs 

well, n-type doped to 1x1018 cm-3, surrounded by 200Å Ga0.8Al0.2As barriers.  
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Figure 2.12 Areal charge density for a 100 angstrom GaAs well, n-type doped to 
1x1018 cm-3 surrounded by undoped Ga0.8Al0.2As barriers [10] 

 

 

All the electrons introduced by doping are assumed to occupy the ground state of the 

quantum well. The ionized donors give rise to a constant contribution,σ , within the 

well of 21410324 101010)( mmxxd =×= −−δ , in each of the 1010m thick slabs. The total 

number of N electrons in the quantum well is 100x1x1014m-2 = 1016m-2.  

Figure 2.13 plots the electric field strength E due to the charge along the growth 

axis of the heterostructure.  
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Figure 2.13 The electric field strength due to the charge distribution shown in 
figure 2.12[10] 

 

The field reaches zero at either end of the structure implying charge neutrality. In 

addition, the symmetry of the charge distribution is reflected by the zero point in the 

center of the structure. The electric field strength is an intermediate quantity but the 

more significant quantity is the potential due to this charge distribution. Figure 2.14 

plots the potential as calculated from Equation 59, by defining the origin for the 

potential at the left hand edge of the barrier well structure which is the effective infinity 

for the system under consideration.  
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Figure 2.14 The potential due to the donor (electron) charge distribution[10] 
 

Again, the symmetry of the original heterostructure and doping profiles are 

reflected in the symmetric potential. The potential is positive at the center of the well 

since the system consists of electrons in the conduction band, and any test charge used 

to probe the potential is also an electron which is repelled by the existing charge. The 

carrier density in the quantum well is reasonably high (~1e12 cm-2) and produces a 

potential (~ 4MeV) which is small compared to the conduction band offset (usually on 

the order of 100-200 MeV). This potential can still have a measurable effect on the 

energy Eigen values of the quantum well [10].  

2.7.2 Self Consistent Schrödinger Poisson Solution 

Consider the introduction of a test electron into the system. The energy Eigen 

values are calculated by incorporating the potential due to the test electron with the 
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carrier density present into the standard Schrödinger equation i.e. the potential term, 

V(x), in Equation 53 becomes [10] 

)()()( xVxVxV CB ρ+→      (67) 

where VCB represents the band edge potential at zero doping and the function, Vρ, 

represents the potential due to the number of carriers, that is the charge density, ρ [9]. 

The numerical shooting method described earlier (refer to Section 2.5.2) can be 

used to solve for the new potential which yields new energies and wave functions. This 

is important since the potential due to the charge distribution depends on its wave 

functions. It is thus necessary to form a closed loop consisting of the following steps: 

1. Solve the Schrödinger's equation 

2. Calculate the potential due to the resulting charge distribution 

3. Add the potential (step 2) to the original band edge potential 

4. Solve Schrödinger's equation again with the new band edge potential (step 3) 

5. Repeat until the energy Eigen values converge 

This process is illustrated in Figure 2.15. 
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Figure 2.15 Block diagram of the iterative process used to solve the self consistent 
model [10] 

 

At this point the wave functions are simultaneous solutions to both 

Schrödinger's and Poisson's equations and are described as the self consistent solution, 

like Hartree's approach to solving many electron atoms. Figure 2.16 shows the result of 

adding the potential due to the charge distribution, Vρ, (refer to Figure 2.14) to the 

original band edge potential, VCB, for a single quantum well. The perturbation (even at 

this high carrier density ~ 1e12 cm-2) is relatively small compared to the barrier height 

but it is important to calculate the effect of this perturbation on the electron energy 

levels using the previously described iterative process to look for convergence of the 

resulting Eigen solutions.  
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Figure 2.16 The sum of the band edge potential, VCB, Poisson's potential, Vρ , for 
the single quantum well of Figure 12 [10] 
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CHAPTER 3 

QUANTUM-WELL USER ENTERED SIMULATION TOOL (QUEST)  

Quantum-well User Entered Simulation Tool (QUEST) is a suite of simulation 

tools with an appealing and simple-to-use graphical user interface to solve the states, 

potentials and wave functions for user defined quantum well structures. The main 

purpose of building such an integrated system of tools is to simulate different structures 

before fabrication in the laboratory to test whether the structures look promising. If the 

wave functions, states and potentials are found to be acceptable after simulation than 

they can be made in the lab or discarded in the simulation stage and other materials or 

geometries can be tried till the desired results are obtained. Thus the solver is the first 

step to efficient time and money management in the device development process.  

3.1 Developing the Suite of Tools 

The code was developed primarily in Matlab but also contains some modules 

written in C. After the code was developed and tested to remove bugs, error handling 

and a graphical user interface (GUI) was added. The GUI was created to make the 

program user friendly and efficient.  The GUI was designed using dialog and indication 

boxes in Matlab. Furthermore the tools allows for the simulation of several structures in 

a single session. The results of each structure in a session can be stored to a different 

location. The result is a working tool to calculate states and wave functions for the 
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conduction band for an arbitrarily shaped quantum well that was input by the user. 

QUEST can be compiled into a stand-alone version for users who do not have Matlab 

available to them. This version is compatible with Windows 2000 and Windows XP 

operating systems. Future work will involve the extension of QUEST to calculate 

valence band states, potentials and wave functions in addition to handling excitons and 

the associated calculations. 

3.2 QUEST Features 

QUEST contains several features such as input dialog boxes, error handling and 

choice of data storage. These features are discussed in detail in this section. 

3.2.1 Input Features 

At start-up QUEST brings up the following interface (Figure 3.1), which 

contains eight fields for user input. The red numbers are not included in the original 

interface and have been added to the user manual figures to facilitate the explanation of 

each input field. 
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Figure 3.1 User Interface for QUEST at start-up 
 

Input Field (1): "Enter dx in Angstroms" 

This field defines the step-size used by the Runge-Kutta solver as defined along 

the x-direction/growth axis. Values of 'dx' that yield good results range from 0.1 to 1, 

with an optimal step-size of 0.5 for typical well structures. This value can be adjusted to 

change accuracy of calculation and computation time. 
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Input Field (2): "Enter dy in eV" 

This field defines the step-size used by the Runge-Kutta solver as defined along 

the y-direction. Values of 'dy' that yield good results range from 0.001 to 0.005, with an 

optimal step-size of 0.002 for typical well structures. This value can also be adjusted to 

change accuracy of calculation and computation time. 

 

Input Field (3): "Enter well depth in eV" 

This field defines the conduction band potential for each layer of the well 

structure. Each input should be separated by a comma where the first input defines the 

well depth for the left-most layer and the last input represents the right-most layer of the 

well structure. Typical values of well depth that range from 0 to 1 eV. Note: The 

number of layers in the well depth i.e. the number comma separated inputs must equal 

the number of well widths and effective masses as defined by input (4) and (5). 

 

Input Field (4): "Enter well widths in Angstroms" 

This field defines the width for each layer along the growth axis (x-axis) of the 

user-defined well structure. Each input should be separated by a comma where the first 

input defines the well width for the left-most layer and the last input represents the 

width of the right-most layer of the well structure. Typical values of well width that 

range from 5 to 500. Note: The number of layers in the well width i.e. the number 

comma separated inputs must equal the number of well depths and effective masses as 

defined by input (3) and (5). 
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Input Field (5): "Enter Effective barrier and well masses" 

This field defines the effective masses for each layer along the growth axis (x-

axis) of the user-defined well structure. Each input should be separated by a comma 

where the first input defines the effective mass for the left-most layer (usually a barrier) 

and the last input represents the effective mass of the right-most layer of the well 

structure (also usually a barrier) and the middle numbers represent either barriers or 

wells. Typical values of well width that range from 0.033 to 0.15 depending on the 

material to be simulated. Note: The number of effective masses i.e. the number comma 

separated inputs must equal the number of well widths and well depths that define the 

number of layers in the structure as defined by input (3) and (4). 

 

Input Field (6): "Enter Field strength in kV/cm" 

This field defines the external applied electric field at the center of the well.  

Typical values of applied electric field that range from -100 to 100 depending on the 

input well structure. 

 

Input Field (7): "Enter max no. of modes to be found" 

This field defines the upper limit on the number of modes/solutions that will be 

calculated for the well structure defined by the previous inputs.  If this input exceeds the 

number of modes that can be excited in the defined well structure then all the possible 

modes will be calculated and displayed. The solver starts by finding the lowest energy 

mode and progresses to higher modes of increasing energy. 
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Input Field (8): "Enter folder name for data storage" 

This field defines the name of the folder in which all the output data folders and 

files will be stored. This folder does have to be pre-existing folder but it is created by 

QUEST for data storage when the simulator is run. The data folder is created in the root 

directory of the QUEST simulator which is the same location in which the program is 

stored and run from. The path for the folder is usually defined as follows DRIVE: 

\QUEST\wavefuncdata\<Folder name>. Caution: If there exists a folder name that 

shares the user input folder name in this field then the folder and all data in it is 

overwritten by QUEST. 

 

3.2.2 Error Handling 

If the data entered by the user does not comply by the aforementioned format 

(For example: QUEST finds an alphanumeric string entered where numeric values are 

expected or unequal number of inputs is encountered in Inputs 3, 4 and 5) then the error 

message (Figure 3.2) is displayed on the screen to inform the user to check all inputs 

and make necessary changes.  

 

 

Figure 3.2 Error message displayed for incorrect input data 
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3.2.3 Running the Program 

While the program is conducting the computations, a progress bar appears on 

the screen to inform the user of the extent of the calculations (Figure 3.3). This helps the 

user estimate the approximate computation time that is left to complete the simulation. 

 

 

Figure 3.3 Progress bar while program is busy 
 

 

Once the program is done calculating the solutions to the user input structure, 

the states and wavefunctions are displayed in a figure. After this step is complete, the 

user has results displayed for each solution that is asked for in a graphical format. Next 

the program brings up a dialog box that asks the user if another structure is to be 

simulated in the current session (Figure 3.4). If the user responds with a 'YES' to this 

question then the first dialog box where well specifications can be entered comes up 

again (Figure 3.1). The user can then proceed with entering specifications for the next 

well structure that has to be simulated.  If the user responds with a 'NO' to this question 

then the next dialog box comes up (Figure 3.5). 
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Figure 3.4 Dialog box to proceed to next structure or go to next step 
 

 
The next dialog box queries the user about his next choice for the solution. If the 

user replies with a 'NO' to the question (Figure 3.5) then QUEST exits. However, if the 

user answers with a 'YES' then the program proceeds to the next step for the Poisson 

Self-consistent model. 

 

 

Figure 3.5 Dialog box to proceed to the Poisson self-consistent model 
 

 

At this point the user has decided to carry out the calculations for the Poisson 

Self-consistent model and an input dialog box comes up to prompt the entry of variables 

that define the doping structure of the well structure that has been simulated in the 

previous section. This interface (Figure 3.6) contains three fields for user input. The red 

numbers are not included in the original interface and have been added to the user 

manual figures to facilitate the explanation of each input field. 
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Figure 3.6 User defined variables for the Poisson self-consistent model 
 
 
 
 

Input Field (1): "Enter doping density for each layer in 10^18 cm^-3" 

This field defines the doping density in each layer. Each input should be 

separated by a comma. The first input defines the doping density along the growth axis 

for the left-most layer (usually a barrier) and the last input represents the doping density 

of the right-most layer of the well structure (also usually a barrier) while the middle 

numbers represent either barriers or wells. It should be noted that negative values 

indicate doping with donors (e.g. Phosphorus that is produces n-type material) and 

positive values indicate doping with acceptors (e.g. Boron that gives rise to a p-type 

material). (In this thesis, only calculations dealing with electrons are carried out that is 

conduction band calculations have been implemented and hence all values entered for 

doping density will always be negative numbers. This field can be modified to hold 

positive values for future work that includes calculations for holes). Values of doping 

density vary widely depending on the well structure and should be chosen carefully to 
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conform to the desired material and geometry of the well structure to be simulated while 

being practical and capable of generating viable solutions. Note: The number of doping 

density entries i.e. the number comma separated inputs must equal the number of well 

widths, well depths and effective masses that define the number of layers in the 

structure as defined by input (3), (4) and (5) in the first dialog box(Figure 17). If not, 

the program will generate and error and exit. 

 

Input Field (2): "Enter electron population for each subband in percent" 

This field specifies the proportion of charge carriers (in this case, electrons) in 

each of the quantum well energy levels, that is the percentage of the total are input for 

each energy level (e.g. For a population of electrons split over two lowest energy levels 

can be given 60, 40 to represent that 60% of the total carrier population is in the first 

energy level and the remaining 40% is in the next level). To further clarify, the two files 

picked in Figure 3.7 define the two energy levels that will be considered in this step. 

The first wave function file relates to the lowest energy level and thus the first number 

input into this field while the second wave function file corresponds to the higher 

energy level and the second number entered by the user in to field (2). If a single 

number (100) is entered instead of two numbers then the configuration assumes that 

electrons introduced by the doping all occupy the ground state of the quantum well and 

thus there is no contribution to the higher energy level. Values of 'electron population in 

percent' range from 0 to 100 corresponding to no contribution of doping to that level 

and to all contribution of doping to that level only, respectively. 
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Input Field (3): "Enter folder name for data storage" 

This field defines the name of the folder in which all the output data folders and 

files are stored. This folder does not have to be a pre-existing folder. It is created by 

QUEST for data storage when the simulator is run. The data folder is created in the root 

directory of the QUEST simulator which is the same location that the program is stored 

in and run from. The path for the folder is usually defined as follows DRIVE: 

\QUEST\wavefuncdata\<Folder name>. Caution: If there exists a folder name that 

shares the user input folder name in this field then the folder and all data in it is 

overwritten by QUEST. 

 

 

Figure 3.7 'Browse for folder' selection box 
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After the user completes the input fields in the dialog box shown in Figure 3.6 

and clicks 'OK', QUEST brings up a 'Browse for folder' selection box (Figure 3.7). By 

default the QUEST root directory is selected. The user is given the option to choose the 

directory where previous calculations for the input well structure are stored. This allows 

the user to pick between any well structures that may have been simulated at an earlier 

time. The user is advised to choose the folder containing the states and wave functions 

data for the well. 

3.2.4 Flow Chart of QUEST Hierarchy 

The following flow chart (Figure 3.8) shows the various components/programs 

of QUEST. Each program is represented by a box and the arrows interconnecting the 

boxes show the functionality dependence of the interacting components. A short 

description of each program, its layout, functionality and input/output files is outlined 

next.  

 



 

 57

main

RKgetwelldata getSCPdata ElectroStaticPotential

odesolveL optimize Nextcolor

StumRhsL

 

Figure 3.8 Flow chart representing the QUEST hierarchy 
 

 
Function 1 (main) 

 The 'main' function is the entry point of the QUEST program and the tool 

begins execution at the function 'main'. When QUEST is compiled and run, the code 

that is first executed is the code within the function titled 'main'. This function calls the 

following functions: getwelldata, RK, getSCPdata and ElectrostaticPotential. 

 

Function 2 (getwelldata) 

 This function creates the first input dialog box as shown in Figure 3.1 

and accepts all the user defined parameters for the well structure  and  auxiliary inputs 

(such as number of solutions needed, folder name for data storage) that are used in the 
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simulation. This function creates a file called 'userdata.txt' that stores the most recent 

user inputs. 

This function name is an abbreviation that stands for Runge-Kutta. This name is 

chosen since this method for solving the differential Schrödinger equation for the well 

structure defined by the parameters in 'getwelldata'. This function defines the well 

structure in a .mat file called 'structure.mat'. This structure is divided into sections along 

the well depth. The thickness of each section is defined by the user in 'getwelldata' in 

the Field 2, 'dy'. RK then calls the next function 'odesolveL' which solves the 

differential equation (details in Function 6: odesolveL). As described in Section 2.5.2 

(Shooting to a Fitting Point), the idea is to divide the total integration interval [a, b] into 

two parts, [a, xf] and [b, xf] where a < xf < b. An integration algorithm is used to 

integrate within the two sub-intervals from the endpoints x=a and x=b towards the 

common match point (xf), using some guessed value for the energy, E. The next step is 

to determine if the guessed value of E is an Eigen value. When solving the Schrödinger 

equation in two separate regions, it is required that the wavefunction and its derivative 

are continuous at the common point.[27] If the solutions in the two sub-intervals are 

labeled as A and B, the matching condition becomes 
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These two conditions can be combined into one equation as shown in Equation 68 

where the expression on each side is referred to as the logarithmic derivative.  
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If the wave function has a node at the match point, both sides can be inverted, since it is 

unlikely that the derivative is zero. This condition holds exactly if E is an Eigen value. 

Further more, if a function is zero at some point, it should have different signs on 

opposite sides of this point (other than in a trivial case such as f(x)=x2 around x =0). 

Thus the aforementioned condition taken as a postulate and the function described in 

Equation 69 is assumed to change sign at the Eigen value. The Eigen values can thus be 

found using two major steps: first, integrate the differential equation for a number of 

different values of E (say an array covering the energy interval of interest), and second, 

find the zeros of f(E) by bracketing [27]. 
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A practical and simple way to perform this task is not to study the function f(E) but only 

record whether it is positive or negative to avoid the risk of dividing by zero [27]. 

ABBBAA mmEg ψψψψ '')( ∗∗ −=                                       (70) 

Similar to Equation 69, Equation 70 also changes sign around the Eigen value. In this 

way, an Eigen value is located with g(E)>0 on one side and g(E)<0 on the opposite. 

Next a standard routine for bracketing the roots of the equation g(E) to desired accuracy 

is employed. This bracketing procedure is implemented in Function 7 (optimize) [27].  

The procedure described above is used repetitively to find all the Eigen values 

for the user-defined well structure. The method is implemented such that it searches for 

solutions starting from the lowest energy level of the well (bottom of the conduction 

band potential) and progresses incrementally along the well energy to the top of the 
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conduction band potential. Next the potential well, the Eigen values (states) and their 

corresponding wavefunctions are plotted.  

The function also makes two output files in which the calculated data is stored. 

The first file stores the Eigen value/modes of the well structure and the second file 

holds the wavefunctions that correspond to each solution. The calculated Eigen values 

are stored in ASCII format. The stored file consists of two columns; the first column in 

the file represents the solution number/mode and the second column represents the 

Energy Level/Solution (Units: eV) of the well structure. The stored file is located in the 

QUEST root directory in a folder called 'wavefuncdata\<user-defined-folder>\Energy-

Levels.rtf'. The <user-defined-folder> is the folder name input by the user in the first 

dialog box that comes up when QUEST is run (Refer to Figure 3.1, Field (8): "Enter 

folder name for data storage"). 

The wavefunctions that relate to the Eigen values are also calculated and stored 

in ASCII format. The stored file is located in the QUEST root directory in a folder 

called 'wavefuncdata\<user-defined-folder>\PSI<solution_no>.dat'. The <user-defined-

folder> is the folder name input by the user in the first dialog box that comes up when 

QUEST is run (Refer to Figure 3.1, Field (8): "Enter folder name for data storage"). The 

<solution_no> indicates the number of the mode/Eigen value that the stored 

wavefunction corresponds to. The stored file consists of two columns; the first column 

in the file represents the growth axis /x-axis (Units: meters) and the second column 

represents the wave function (Normalized Units). 

 



 

 61

Function 4 (getSCPdata) 

This function creates the second input dialog box as shown in Figure 3.6 and 

accepts all the user defined parameters for the doping profile and subband populations 

and the name of the folder for data storage. This function creates a file called 

'SCPdata.txt' that stores the most recent user inputs. 

 

Function 5 (ElectrostaticPotential)  

This function reads in the states from a file ('Energy-Levels.rtf') in the user 

chosen folder. The stored file is located in the QUEST root directory in a folder called 

'wavefuncdata\<user-defined-folder>\Energy-Levels.rtf. The <user-defined-folder> is 

the folder chosen by the user in a dialog box (Refer to Figure 3.7, 'Browse for folder' 

selection box). Next the wave functions are read in from a file located in the QUEST 

root directory in a folder called 'wavefuncdata' which is located in 'wavefuncdata\<user-

defined-folder>\PSI<solution_no>.dat' (Refer Figure 3.6). The <user-defined-folder> is 

the same folder as described above. The <solution_no> indicates the number of the 

mode/Eigen value that the stored wave function corresponds to. The stored ASCII file 

consists of two columns; the first column in the file represents the growth axis /x-axis 

(Units: meters) and the second column represent the wave function (Normalized Units). 

The function then proceeds to build the doping structure defined by the user (Refer 

Figure 3.6) and calculates the net areal charge, the electric field distribution and the 

potential due to the charged carriers, Vρ (in this case electrons since QUEST in the 

present version performs calculations only for the conduction band). It returns the value 
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of Vρ which is added to VCB and the process is repeated until a solution is found within 

acceptable error bounds.  

The final solution is stored in the following directory path (which is the root 

directory of QUEST by default) DRIVE:\QUEST\wavefuncdata\<Folder_name>\<user-

defined-folder> where <Folder_name> is the folder chosen by the user in a dialog box 

(Refer to Figure 3.7, 'Browse for folder' selection box) and <user-defined-folder> is the 

name input by the user in the input dialog box (Refer Figure 3.6:User defined variables 

for the Poisson Self-consistent model). The naming convention and file format (Eigen 

values and wave functions) for the final solutions are the same as previously described. 

 

Function 6 (odesolveL)  

The inputs to this function are the parameters that describe the user defined well 

structure. This function uses the inbuilt Matlab function 'ode45' to solve the given 

differential equation. 'ode45' is based on an explicit Runge-Kutta (4,5) formula, the 

Dormand-Prince pair [17]. It is a one-step solver that is when computing y(tn), it needs 

only the solution at the immediately preceding time point, y(tn-1) and thus 'ode45' is the 

best function to apply as a "first try" for most problems [14, 17]. The function 

'odesolveL' uses 'ode45' to shoot towards the fitting point (x=xf) first from the right end 

point (x=b) and then from the left end point (x=a) (Refer to Section 2.5.2: Shooting to a 

fitting point). Next the derivatives at the fitting point (x=xf) are calculated. Finally, the 

function returns the left and right half of the wave function and the value of Equation 

70.  This function is called by Function 3 (RK) and Function 7 (optimize). 
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Function 7 (optimize)  

This function is called by the function 'fminbnd' within Function 3 (RK). 

'fminbnd'   is a standard routine for bracketing that can be used to minimize a function 

of one variable on a fixed interval. The algorithm is based on a Golden Section search 

and parabolic interpolation method [17]. This function is used by QUEST primarily to 

bracket the roots of the equation, g(E), to desired accuracy (Refer Function 3-RK). The 

function 'optimize' returns the value of g(E) and the complete/concatenated wave 

function (Ψ) after a solution is found within acceptable error.  

 

Function 8 (nextcolor)  

QUEST outputs graphs with multiple data traces (e.g. several wave functions 

plotted in the same figure). Each data trace is plotted using a different color. These 

colors are generated by the function 'nextcolor'. This function returns the next value of 

the 'rgb' array that defines the color to be used in the plotting function as follows plot 

(...,'Color', [r g b]). The input vector 'rgb_ip' is a 1x3 vector of RGB values, each in the 

range of 0 to 1. This input vector is incremented by a predefined amount to give the 

output vector 'rgb_op', the final RGB vector [r g b] used during plotting. For example, 

with rgb_ip=001 and increase=1, the rgb_op is 010. 
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Function 9 (SturmRhsL)  

This function defines the Schrödinger equation in a Sturm-Liouville form as 

four first order differential equations (Refer to Section 2.6 Simple Model: Undoped 

Case). This function is called by Function 6 (odesolveL). 

3.3 Example of a Complete QUEST Run 

In the following section two wells of different input parameters are run 

(Example 1 and Example 2). The well structure that is simulated in Example 2 is chosen 

for further calculations using the self consistent model. Results and intermediate steps 

are shown below to give the user an idea of what a complete run of QUEST looks like 

along with the types of graphs and results one can expect.  
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Figure 3.9 Input screen for Example 1- first well structure 
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Figure 3.10 Output screen 1- Example 1 solutions (energy levels and 
wavefunctions) 
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Figure 3.11 User chooses to simulate another well by clicking 'YES' 
 

 
 
 

 

Figure 3.12 Input screen for Example 2- Second well structure 
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Figure 3.13 Output screen 2- Example 2 solutions (energy levels and 
wavefunctions) 
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Figure 3.14 User chooses to continue with the Self consistent model by clicking 
'YES' 

 
 
 
 

 
 
 

 

Figure 3.15 Input screen for Example 2- doping structure 
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Figure 3.16 User chooses the well for further calculations (here Example 2) 
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Figure 3.17 Output Screen 3- Self consistent solutions for Example 2 (Energy 
levels and Wave functions) 
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CHAPTER 4 

SIMULATION RESULTS 

This chapter contains the simulations and results for different well structures. 

Results are compared to either analytic solutions or previously published data to verify 

the validity of the results obtained by QUEST.  

4.1 Undoped Rectangular Well 

The simulation was carried out by QUEST and a program written in Matlab to 

calculate the analytic solution for an undoped finite rectangular quantum well with 

Barrier width = 150 Å, Lw = 100 Å, mw =0.067, mb =0.0919, V0 =0.302 eV.  
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Table 4.1 The wave functions and the solutions of a finite rectangular quantum well 
where the Barrier width = 150 Å, Lw = 100 Å, mw =0.067, mb =0.0919, V0 =0.302 eV.  

 
Analytic Solution QUEST Solution 

  

 

 

The left panel in Table 4.1 shows the analytic solution for the well structure 

described. The QUEST solution is presented in the right panel for comparison. It can be 

observed that the solutions/ Eigen values are exact to at least the fourth decimal place 

and the wave functions have similar shapes. The changes observed in the amplitudes are 

a matter of different normalizations used and do not reflect on the discrepancies 

between the two solutions. The solutions/ Eigen values are shown in Table 4.2 for easy 

comparison of the results generated by each method namely the analytic solution and 

the numerical/QUEST solutions. Note that the values presented in for Table 4.2 the 

QUEST solution are obtained from the stored text file which is at a higher precision 
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(more decimal places) than shown in the graph for the same. This disparity is due to 

space limitations on a Matlab figure which causes the program to truncate the number. 

 

Table 4.2 Solutions of a finite rectangular quantum well where the Barrier width = 150 
Å, Lw = 100 Å, mw =0.067, mb =0.0919, V0 =0.302 eV.  

 
Mode Number Analytic Solution QUEST Solution 

1 0.0320586 0.032058343 
2 0.126562 0.126558409 
3 0.268391 0.268400015 

 
 

4.2 Doped Rectangular Well 

The simulation was carried out for a Self consistent potential profile for a 

GaAs/Al0.3Ga0.7As quantum well with modulation doping within 10 Ǻ at both ends of 

the profile -100 Ǻ ≤ x ≤ -90 Ǻ and 90 Ǻ ≤ x ≤ 100 Ǻ. The well structure is an n-type 

modulation doped quantum well and ND = 4E18 cm-3. 
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Table 4.3 The wave functions and the solutions of a finite rectangular quantum well 
where the Barrier width = 50 Å, Lw = 100 Å, mw =0.067, mb =0.0919, V0 =0.251 eV with 
modulation doping within 10 Ǻ at both ends of the profile -100 Ǻ ≤ x ≤ -90 Ǻ and 90 Ǻ 

≤ x ≤ 100 Ǻ, ND = 4E18 cm-3 [9]  

 

Previously Published Results [9] QUEST Results 

  

 

 

The left panel in Table 4.3 shows the solution from Physics of Optoelectronic 

Devices for the well structure described. The QUEST solution is presented in the right 

panel for comparison. It can be observed that the solutions/ Eigen values are in 

agreement within a 5% difference in solutions and the wave functions have similar 

shapes. The changes observed in the amplitudes are a matter of different normalizations 

used and do not reflect on the discrepancies between the two solutions. The solutions/ 

Eigen values are shown in Table 4.4 for easy comparison of the results generated by 

each method namely the published results and the numerical/QUEST solutions. 
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Table 4.4 Solutions of a finite rectangular quantum well where the Barrier width = 50 Å, 
Lw = 100 Å, mw =0.067, mb =0.0919, V0 =0.251 eV with modulation doping within 10 Ǻ 
at both ends of the profile -100 Ǻ ≤ x ≤ -90 Ǻ and 90 Ǻ ≤ x ≤ 100 Ǻ, ND = 4E18 cm-3[9] 
 

Mode Number Published Results QUEST Solution 
1 0.0695 0.065763060063  
2 0.154 0.157449993483  

 

 

4.3 Effects of Electric Field 

The potential energy is simply added to the potential term within the appropriate 

shooting equation i.e  

)()()( 0zzqFzVzV −+→                                                    (71) 

where for an electron q = -e and F is the electric field. The position z0 represents the 

origin of the electric field often chosen to be the center of the well [10]. 

 

 

Figure 4.1 Schematic of the tilting of conduction and valence band under the 
influence of and electric field [10] 
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Figure 4.1 shows the effect of an electric field on the conduction band potentials; note 

that the electrons in the double well are pulled to the right side. The amplitude of the 

wave function within the well decreases when external electric field is applied [28]. 

This electric field causes electrons at the higher energy levels to tunnel. As field 

strength is increased, the tunneling phenomenon becomes more pronounced. This effect 

creates the phenomena known as quantum confined stark effect (QCSE) [29]. The 

quantum confined stark effect arises when an electric field is applied perpendicular to 

the plane of the quantum well, inducing polarization of electrons and/or holes, which 

alters the confined energy states and shifts the absorption resonance to lower energy 

thus providing the basis for optical modulators and switches. Many modern 

optoelectronic devices such as high speed modulators and bistable devices are based on 

the Quantum Confined Stark Effect [10].  

4.3.1 Rectangular Well with Applied Electric Field 

The simulation was carried out for a GaAs/Al0.35Ga0.65As quantum well with 

finite rectangular quantum well where the Barrier width = 200 Å, well width of Lw = 

100 Å, and well mass of mw =0.0665, barrier mass of mb =0.0957, barrier height of V0 

=0.262 eV, applied electric field E=50 kV/cm. 
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Table 4.5 The wave functions and the solutions of a finite rectangular quantum well 
where the Barrier width = 200 Å, Lw = 100 Å, mw =0.0665, mb =0.0957, V0 =0.262 eV, 

Applied electric field E=50 kV/cm [30] 
 
 

Previously Published Results [30] QUEST Results 

 

 

 

 

The left panel in Table 4.5 shows the solution from Roan et al. for the well 

structure described [30]. The QUEST solution is presented in the right panel for 

comparison. It can be observed that the solutions/ Eigen values are in agreement and the 

wave functions have similar shapes. The solutions/ Eigen values are shown in Table 4.6 

for comparison of results generated by each method namely the published results and 

the numerical/QUEST solutions. 
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Table 4.6 Solutions of a finite rectangular quantum well where the Barrier width = 200 
Å, Lw = 100 Å, mw =0.0665, mb =0.0957, V0 =0.262 eV, Applied electric field E=50 

kV/cm [30] 
 
 

Mode Number Published Results QUEST Solution 
1 0.029 0.029396106572 
2 0.125 0.122760024103 
3 0.195 0.200327100101 

 

 

4.4 Asymmetric Well structures: Stepped Well Structures   

The efficiency of high speed switching devices can be improved by using 

asymmetric step quantum wells [31]. An example of such a structure is simulated and 

the results are presented below. The simulation was carried out for a GaAs quantum 

well with finite rectangular quantum well where the Al0.44Ga0.56As barrier of width = 

280 Å, well width of Lw = 60 Å with a step of Al0.18Ga0.82As of width 90 Å , and well 

mass of mw =0.0665, barrier mass of mb =0.1, step mass of ms=0.08 and  barrier height 

of V0 =0.33 eV, step height of Vs =0.15 eV [32]. These structures have been previously 

used in devices such as high speed optical modulators and optical bistable switches. 

 

 
 
 
 
 
 
 
 
 
 



 

 80

Table 4.7 The wave functions and the solutions of a finite rectangular quantum well 
where the Al0.44Ga0.56As barrier of width = 280 Å, well width of Lw = 60 Å with a step 
of Al0.18Ga0.82As of width 90 Å , and well mass of mw =0.0665, barrier mass of mb =0.1, 
step mass of ms=0.08 and  barrier height of V0 =0.33 eV, step height Vs =0.15 eV [32]. 

 
 

Previously Published Results [32] QUEST Results 

  

 

 

The left panel in Table 4.7 shows the solution from Mii et al for the well 

structure described. The QUEST solution is presented in the right panel for comparison. 

It can be observed that the solutions/ Eigen values are in agreement and the wave 

functions have similar shapes. The solutions/ Eigen values are shown in Table 4.8 for 

comparison of results generated by each method namely the published results and the 

numerical/QUEST solutions. 
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Table 4.8 Solutions of a finite rectangular quantum well where the Al0.44Ga0.56As barrier 
of width = 280 Å, well width of Lw = 60 Å with a step of Al0.18Ga0.82As of width 90 Å , 

and well mass of mw =0.0665, barrier mass of mb =0.1, step mass of ms=0.08 and  
barrier height of V0 =0.33 eV, step height Vs =0.15 eV [32]. 

 
Mode Number Published Results QUEST Solution 

1 0.054 0.055836702413 
2 0.162 0.163108018453  
3 0.216 0.218854107531 
4 0.305 0.304214359752 

 

 

4.5 Triple Well Structures  

In this section, a three coupled well structure is simulated. The simulation was 

carried out for an undoped asymmetric triple coupled quantum well structure with three 

Ga0.47In0.53As quantum wells with well width of Lw = 64 Å, 42 Å and 28 Å respectively  

separated by Al0.48In0.52As barrier of width = 16 Å, and well mass of mw = 0.04 , barrier 

mass of mb =0.075 and  barrier height of V0 =0.53 eV [33]. 
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Table 4.9 The wave functions and the solutions of a quantum well structure with three 
Ga0.47In0.53As quantum wells with well width of Lw = 64 Å, 42 Å and 28 Å respectively  
separated by Al0.48In0.52As barrier of width = 16 Å, and well mass of mw = 0.04 , barrier 

mass of mb =0.075 and  barrier height of V0 =0.53 eV [33] 
 
 

Previously Published Results [33] QUEST Results 

  

 

 

The left panel in Table 4.9 shows the solution from Huang et al. for the well 

structure described [33]. The QUEST solution is presented in the right panel for 

comparison. It can be observed that the solutions/ Eigen values are comparable and the 

wave functions have similar shapes. The solutions/ Eigen values are shown in Table 

4.10 for comparison of results generated by each method namely the published results 

and the numerical/QUEST solutions.  
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Table 4.10 Solutions of a quantum well structure with three Ga0.47In0.53As quantum 
wells with well width of Lw = 64 Å, 42 Å and 28 Å respectively, separated by 

Al0.48In0.52As barrier of width = 16 Å, and well mass of mw = 0.04 , barrier mass of mb 
=0.075 and  barrier height of V0 =0.53 eV [33]. 

 
Mode Number Published Results QUEST Solution 

1 0.085 0.081673715241 
2 0.135 0.138982437801  
3 0.240 0.230811011403 
4 0.325 0.339751645232 

 

 

4.6 Chirped Well Structure  

This section contains simulations for a chirped quantum well structure with two 

different applied electric fields. The well configurations are about 100 Å wide and are 

bound by AlAs barriers. The chirped well is divided into six sections that are 6 

monolayers thick. The sections are composed of the following configuration: Number 

of GaAs monolayers=(y), Number of Al0.2Ga0.8As monolayers = (6-y) where a 

monolayer width equals 2.83 Å. For example, for the first section y = 6 that is the 

sections consists of 6 monolayers of GaAs and 0 monolayers of Al0.2Ga0.8As. 

Consecutive sections are composed of y = 5, 4, 3, 2 and 1 of the described composition 

of GaAs/Al0.2Ga0.8As. The barriers that bind the well were simulated with a height of 

0.44 eV while the heights for the barriers that separate each chirped section of the well 

were set at 0.149 eV. The simulation assumed a well mass of mw = 0.04, binding barrier 

mass of mb =0.15 and separating barrier mass of mb =0.08 respectively [34]. 

The left panel in Table 4.11 shows the solution for the well structure described. 

The QUEST solution is presented in the right panel for comparison. The same well 
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structure described above is simulated with an applied electric field of E = 128.571 

kV/cm and E = 257.143 kV/cm and the results are presented in Table 4.12 and Table 

4.13 respectively.  It can be observed that the solutions/ Eigen values are comparable 

and the wave functions have similar shapes. The solutions/ Eigen values are shown in 

Table 4.14 for comparison of results generated by each method.  

 

 

Table 4.11 The wave functions and the solutions of a chirped rectangular quantum well 
where the Barrier width = 150 Å, Lw ~ 100 Å (36 monolayers), mw = 0.067, mb = 0.15, 

V0 =0.044 eV  [34]  
 
 

Previously Published Results [34] QUEST Results 
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Table 4.12 The wave functions and the solutions of a chirped rectangular quantum well 
where the Barrier width = 150 Å, Lw ~ 100 Å (36 monolayers), mw = 0.067, mb = 0.15, 

V0 = 0.044 eV, Applied electric field E = 128.571 kV/cm [34] 
 
 

Previously Published Results [34] QUEST Results 
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Table 4.13 The wave functions and the solutions of a chirped rectangular quantum well 
where the Barrier width = 150 Å, Lw ~ 100 Å (36 monolayers), mw = 0.067, mb = 0.15, 

V0 =0.044 eV, Applied electric field E=257.143 kV/cm [34] 
 

Previously Published Results [34] QUEST Results 

 

 

 

 

Table 4.14 Solutions of a quantum well structure where the Barrier width = 150 Å, Lw ~ 
100 Å (36 monolayers), mw =0.067, mb =0.15, V0 =0.044 eV  [34] 

 
Applied field 

(kV/cm) 
Mode Number Published Results QUEST Solution 

0 1 0.0836286 0.083380365310 
128.571 1 0.0911959 0.091129186957  
257.143 1 0.0776968 0.077511226538 
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CHAPTER 5 

DEVICE APPLICATION 

The past several years have seen tremendous growth in the research and 

development of devices based on quantum well intersubband transitions in very useful 

and varied applications [35,36]. The interest was heightened by the simultaneous 

improvements in III-V semiconductor technology and by new semiconductor growth 

methods. GaAs semiconductor technology provides several advantages such as 

relatively low cost, high yield, and the flexibility in band tailoring to function under a 

wide range of operating conditions [37]. 

5.1 Quantum Well Infrared Photodetector 

The device explored in this chapter as a possible application is the Quantum 

Well Infrared Photodetectors (QWIPs). One significant benefit of using QWIPs is the 

ability to operate in two disparate wavelength windows by proper tailoring of the device 

design using band gap engineering that can be tested at the simulation level [3, 38]. This 

is also the reason why this device is presented as an application of QUEST to 

emphasize the relevance of such a simulation tool prior to fabrication in the laboratory. 

A detector that is accurately tuned to desired wavelengths can be used in applications 

such as on a military aircraft as a laser spot tracker or an infrared camera with good 

precision and dependability [4]. 
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5.2 Application of Electric Field 

The effect of an electric field on electronic subbands called the quantum 

confined Stark effect is used in conjunction with the aforementioned properties in 

semiconductor quantum well structures to modify the fundamental physical properties 

for applications in optoelectronic and communication devices [39-41]. Coupling 

between double quantum wells separated by a narrow barrier can dramatically enhance 

the energy shift induced by the electric field. This property has been previously 

exploited in the fabrication of electro-optical devices such as modulators and switches. 

InxGa1-xAs / InyAl1-yAs quantum well structures have a larger conduction-band as 

compared to AlxGa1-xAs/GaAs structures and are hence used in the QUEST simulation 

to aid band gap engineering for the proposed far-infrared detector operating in the 

atmospheric window spectral region between 10 and 20 µm [42]. While the device 

proposed in this section is a voltage tunable QWIP, these materials are also very 

attractive due to their potential applications in high-speed electronic and long-

wavelength devices due to their large conduction and discontinuity and the existence of 

several subbands in the quantum wells [40]. The operation of a QWIP is based on the 

absorption by electrons in the infrared region by the intersubband transitions of the first 

five subbands that exist in the InxGa1-xAs / InyAl1-yAs coupled quantum wells as 

demonstrated in Table 5.1. 

5.3 Calculation of Absorption 

A separate program was used to calculate and plot the absorption in a given well 

structure. The wavefunctions and the states that were generated using QUEST serve as 
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inputs to this program module. This program module will be integrated into QUEST in 

the future. The absorption that is calculated is considered to primarily result from the 

intersubband transitions of the doped quantum well structure [43]. The program is based 

on the assumption that the doping is not very large and thus screening effects due to 

electron to electron coulomb interaction are negligible [44].  

5.3.1 Calculation of Absorption Spectrum     

Consider two states with energies, Ea and Eb, respectively (in the simulation a=2 

and b=3 that is the E3->E2 intersubband transition is demonstrated). The nonzero 

absorption coefficient that results from the intersubband transitions from Eb to Ea is 

calculated for xe ˆˆ =  that is TM polarization and the y and z components of the 

intersubband dipole moment are zero. The absorption coefficient is given by Equation 

72 [9, 45, 46]. 
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where the intersubband dipole moment µba is given by Equation 73 [9] 

∫ ΨΨ=ΨΨ= ∗ dxxexxex ababba )()(μ      (73) 

and Ni is the number of electrons per unit volume in the ith subband (Equation 74) [9]. 
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5.4 Simulated Structure Parameters 

The sample structures simulated in this section uses an In0.65Ga0.35As / 

In0.52Al0.48As coupled double quantum well material system. The structure consists of 
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two In0.65Ga0.35As wells and In0.52Al0.48As barriers. The thicknesses of the left and right 

In0.65Ga0.35As wells was set to be 50Ǻ and 100 Ǻ respectively, while the In0.52Al0.48As 

center barrier width was set at 30Ǻ with binding/surrounding barrier widths of 150Ǻ. 

The subband energies and the energy wave functions were calculated using the 

simulation tool QUEST. The dielectric constant of In0.65Ga0.35As was taken to be 13.5. 

The electron effective mass values of the In0.52Al0.48As barrier and the In0.65Ga0.35As 

well were set at 0.13663 and 0.03654 m0, respectively [40].  

Table 16 shows the wavefunctions, states and absorption spectra (E3->E2 

intersubband transition) for the simulated well structure. It is observed that the 

wavelength at which the absorption peaks, changes with an applied electric field 

demonstrating QCSE, which is the basic working principle of voltage tunable 

photodetectors/QWIPs. When there is no applied electric field, E=0 kV/cm, the 

wavelength at which maximum absorption occurs is λmax≈19.25 µm. However when 

electric field, E=-50 kV/cm, the wavelength at which maximum absorption occurs is 

λmax≈10.55 µm and when electric field, E=50 kV/cm, the wavelength at which maximum 

absorption occurs is λmax≈95 µm [40].  

To summarize the results, a wavelength shift of is Δλ≈8.7µm is observed when 

an electric field of E=-50 kV/cm, is applied to the well structure. The operating range of 

the electric field for this device is -50≤E≤0 kV/cm. The example of applied electric 

field, E=50 kV/cm, is simulated to explore the characteristics of the well structure and 

demonstrate the QCSE and not necessarily for device operation [40]. In the case of a 

negative applied electric field (used in device operation), the wavefunctions move to the 
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left and the magnitude of the energy states increases that is the application of an applied 

field shifts the intersubband energy and increases the absorption at the operating 

wavelength. Quantum well structures can be also designed so that the intersubband 

absorption occurs at the operating wavelength and decreases with applied field.  

The simulated well structure was based on an In0.65Ga0.35As / In0.52Al0.48As 

material system and this material system was chosen to provide the desired operating 

long infrared wavelength range [47]. The results also indicate that the large 

intersubband Stark effect in In0.65Ga0.35As / In0.52Al0.48As coupled double quantum wells 

may be useful for the fabrication optical modulation devices and voltage tunable QWIPs 

based on the transfer of electrons between coupled quantum wells under an applied bias. 
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Table 5.1 Plots that show the wavefunctions, states and absorption spectra for the well 
structure with In0.65Ga0.35As wells of 50Ǻ and 100 Ǻ, In0.52Al0.48As center barrier of 

30Ǻ, surrounding barrier widths of 150Ǻ under applied electric filed of  0, -50  and 50 
kV/cm. The effective mass values of the In0.52Al0.48As barrier and the In0.65Ga0.35As are 

0.13663 m0 and 0.03654 m0  [40]. 
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Table 5.1-Continued  
 

Wavefunctions and States Absorption Curves 
E = 50 kV/cm 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

6.1 Specific Achievements 

The primary goal of this thesis was to build an integrated simulation tool suite to 

solve for energy levels and wavefunctions for the conduction band of arbitrary shaped 

well structures. The thesis focuses on simulation of these user input well structures to 

model their behavior for application to devices based on intersubband transitions. 

       Pursuant to this goal the thesis provides simulations of varied quantum well 

systems that are compared to previously published results to establish their validity and 

accuracy. Specifically the thesis makes the following contributions. 

1. Provides an integrated tool suite (QUEST) built in Matlab that can perform 

calculations for bandgap engineering and material optimization 

2. This tool suite is unique in that all key elements that required designing a device 

and tailoring its characteristics using bandgap engineering are integrated into a 

single user friendly program with a GUI. 

3. Advanced features such as effects of externally applied electric field, doping and 

absorption curves are also explored.  

4. A comprehensive user manual is provided to guide a new user through the 

process of simualtion. 
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5. QUEST simulations of several quantum well structures are presented with 

previously published results to validate the results and compare the degree of 

accuracy for QUEST predictions. 

6. Finally a device design of a quantum well infrared photodetector (QWIP) is 

discussed and the operational characteristics are related to the optimized design 

using QUEST. 

6.2 Future Work 

Future work can be categorized into two distinct directions: first, development 

of the simulation capabilities of QUEST to include additional features for material 

optimization and device design; and second, the software capabilities of QUEST which 

include enhancing the user interface and refinement of the software suite. 

Simulation Capabilities that will be added in the future include addition of 

calculations for valence band energy states ad wave functions. This will enable the user 

to simulate the behavior caused by exciton interactions. The absorption program that is 

currently a separate module will be integrated into the QUEST tool suite. 

Software Capabilities that will be worked on will be to improve the graphical 

user interface (GUI) of the program. These will include the addition of capabilities that 

will allow the user to enter a potential profile as a function and to enter the material 

profile from a preexisting file. This will streamline the operation of the program which 

is important while entering complex well structures. 
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