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ABSTRACT 
 

CONTEXT AWARE ENERGY CONSERVATION 

IN PERVASIVE COMPUTING  

ENVIRONMENTS 

 

Publication No._____ 

 

Prathiba Joseph, M.S. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor: Mohan Kumar 

Extending battery lifetime is one of the most critical and challenging problems in mobile 

systems. The greatest utility of mobile devices is their ability to be used anywhere, and at 

anytime. But power limitations of these devices seem to hinder this goal. The ever-

growing needs of mobile users for increased lifetime of wireless devices imply that 

emerging wireless systems must be more energy-efficient than ever before. 

 

Cyber foraging or remote resource exploitation may be an efficient way to deal with this 

problem in a pervasive computing environment. Mobile devices can save battery power 

by migrating tasks to a nearby wired infrastructure or to other wireless devices in the 

environment with higher battery capacity and processing power. However, this process 

requires considerable automation to minimize energy consumption and user distraction. 

Also, a pervasive computing environment is highly dynamic and the contexts in the 

environment change rapidly as devices enter and leave the network. Thus, it is important 

 v 



 

that the devices are aware of the changing context and adapt to these changes 

accordingly. This leads to the challenge of how the devices would detect these changes 

and secondly how they would adapt to these changes after they are detected. 

 

A middleware service framework has been developed and deployed over a network of 

machines that exploit remote resources. The framework adopts a context-aware approach 

to make intelligent decisions on task migration and uses the achievable throughput in an 

end-to-end path as the context. The throughput achievable to each of the remote devices 

is measured and stored, and this is used to examine the trade-off between communication 

power expenditures and the power cost of local processing.  

For a set of tasks, energy savings of up to 43% are achieved through this process of 

context aware energy conservation. 
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  CHAPTER 1 

1 INTRODUCTION 
 
In the past fifty years of computing history, there have been two evolutionary trends that 

have altered the place of technology in our lives; the mainframe and the PC. Today the 

internet has brought a wave of technological change that is unprecedented in its sweep. 

The development in wireless technology has made revolutionary changes in the last 

decade. Laptops, Palmtops, smart phones and other handheld devices enabled with 

wireless capabilities are used for communication. Computing has truly accelerated the 

speeds at which mankind works, plays, and relaxes. Since its onset, computing 

technology continues to advance at an exponential rate. 

 

Over the years, ever smaller, portable computers came on the market and wireless 

networking technology evolved, leading to the emergence of mobile and wireless 

computing. Embedded computing gave us small devices, sensors and actuators, with 

increased communication capabilities. The technological potential for pervasive 

computing became apparent to researchers from the early 1990s. 

 

Pervasive computing is the trend towards increasingly connected computing devices in 

the environment, a trend being brought about by a convergence of advanced electronic - 

and particularly, wireless technologies and the Internet.  It is the idea of integrating 

computers seamlessly into the world such that people cease to become aware of it. 

Tremendous developments in such technologies as wireless communications and 

networking, mobile computing and handheld devices, embedded systems, and the like 

have led to the evolution of pervasive computing platforms. Two distinct earlier steps in 

this evolution are distributed systems and mobile computing. Distributed systems 



 

emerged at the intersection of personal computers and local area networks. It essentially 

is parallel computing using multiple independent computers communicating over a

 network to accomplish a common objective or task. Mobile Computing is distributed 

computing with mobile devices Thus, the design principles of distributed computing 

apply with constraints introduced due to mobility. 

 

Users in pervasive computing environments can be mobile and have computing sessions 

distributed over a range of devices. The infrastructure’s role with respect to users should 

be to maintain knowledge of their context and to manage tasks related to their mobility. 
 

The shrinking size and increasing density of next generation wireless devices imply 

reduced battery capacities, meaning that emerging wireless systems must be more 

energy-efficient than ever before.   

1.1 Motivation 

The motivation of this thesis stems from the fact that power management is one of the 

most challenging problems in mobile systems. The fraction of the time a wireless device 

remains usable to the user is constrained by limited battery capacity and the user may 

have to plug in his device to recharge the battery regularly, which hampers the use of 

wireless devices. Advances in battery technology alone cannot deal with this problem. It 

is very important that the higher levels of the system are actively involved to ensure that 

the available energy is conserved and utilized in the most efficient way. 

 

Also, today’s systems are poor at capturing and exploiting context information and in 

adapting to changes in context. A pervasive computing system must be cognizant of its 

user’s state and surroundings, and must modify its behavior based on this information. A 

pervasive computing environment is highly dynamic and the contexts in the environment 

change rapidly as users enter and leave the network. It is important that the devices are 

aware of the changing context and adapt to these changes accordingly. The need to make 

mobile devices smaller, lighter and have longer battery life may require that their 
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computing capabilities be compromised. But meeting the ever-growing needs of mobile 

users may require high computing capabilities in lightweight devices. Reconciling these 

contradicting needs can be difficult. Cyber foraging provides an effective solution to this 

problem. The idea of cyber foraging is to dynamically augment the resources of a 

wireless mobile device by exploiting the resources of a nearby-wired infrastructure. Task 

migration also provides an effective solution to the problem of power management, but is 

dependent on environment conditions and other system and user contexts.  

Most systems today, do not adapt to dynamically changing context data to make 

decisions on task migration. Thus, they are not able to fully exploit the benefits of remote 

execution. 

 

1.2 Contribution and Scope 

This thesis work investigates the criteria necessary to make intelligent choices on behalf 

of human users based on user preferences and system conditions. It addresses the need to 

automate performance enhancement techniques. 

 
The contribution of this thesis includes the development of a middleware service 

framework, ConAEC (Context Aware Energy Conservation), deployed over a network of 

machines that exploit remote resources. The framework adopts a context-aware approach 

to make decisions on task migration to maximize energy savings on the local device. The 

developed framework is novel, in that it consists of intelligent software agents that are 

capable of: 

• capturing and storing context information 

• processing and analyzing this information 

• adapting to dynamically changing contexts 

• automatically making decisions and performing tasks on behalf of the user  

• performing these activities in a way that is transparent to the user.  



 

Most systems today do not use context information, do not consider the network 

environment context while making a decision to offload the task, or use static context 

information like size of the task to make an offload decision. 

The framework proposed in this thesis work combines concepts from cyber foraging and 

context awareness to enable an adaptive context aware energy conservation scheme that 

uses cyber foraging to address the problem of power management. 

1.3 Organization 

The rest of the thesis is organized as follows. Chapter 2 gives a background of the related 

work in this area and covers pervasive computing, energy conservation, cyber foraging 

and context awareness. In Chapter 3, we discuss context aware energy conservation, 

energy conservation through cyber foraging, and the proposed scheme: context aware 

energy conservation using cyber foraging. In Chapter 4, we present the system model for 

the proposed middleware framework. Chapter 5 contains the implementation details and a 

discussion of the results. Finally, Chapter 6 draws conclusions and discusses future work.
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CHAPTER 2 

2 BACKGROUND AND LITERATURE REVIEW 
 

The vision of pervasive computing and ubiquitous computing was set forth in the early 

90’s. Mark Weiser, known as the ‘father of ubiquitous computing’, described a vision 

that consisted of environments saturated with computing and communication capability, 

yet gracefully integrated with human users. The goal is to create a system that is 

pervasively and unobtrusively embedded in the environment, completely connected, 

intuitive, effortlessly portable, and constantly available. 

2.1 Pervasive Computing 

Pervasive computing is an emerging field of research that brings in revolutionary 

paradigms for computing models in the 21st century. It is the trend towards increasingly 

connected computing devices in the environment, a trend being brought about by a 

convergence of advanced electronic - and particularly, wireless technologies and the 

Internet.  It is the idea of integrating computers seamlessly into the world such that they, 

as Mark Weiser put it, ‘weave themselves into the fabric of everyday life until they are 

indistinguishable from it’.  According to Liu et al. [15] a pervasive computing system 

should be:  

• Pervasive: be everywhere, with every portal reaching into the same information 

base. 

• Embedded: live in our world, sensing and affecting it. 

• Nomadic: allow users and computations to move around freely, according to their 

needs. 

• Adaptable: provide flexibility and spontaneity, in response to changes in user 

requirements and operating conditions. 
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• Powerful, yet efficient: free itself from constraints imposed by bounded hardware 

resources, addressing instead system constraints imposed by user demands and 

available power or communication bandwidth. 

• Intentional: enable people to name services and software objects by intent. 

• Eternal: never shut down or reboot; it must be available all the time. 

 

Although new technologies are emerging, the most crucial objective is not, necessarily, to 

develop new technologies but is largely focused on finding ways to integrate existing 

technologies with a wireless infrastructure.  

 

2.1.1 History 

The late Mark Weiser wrote what are considered some of the seminal papers in 

Ubiquitous Computing beginning in 1988. Weiser was influenced in a small way by the 

dystopian Philip K. Dick novel Ubik, which envisioned a future in which everything from 

doorknobs to toilet-paper holders, were intelligent and connected. Currently, the art is not 

as mature as Weiser hoped, but a considerable amount of development is taking place. 

The history of pervasive computing spans three decades while research in pervasive 

computing is very much ongoing. There are three key individuals that are responsible for 

shaping the concepts of pervasive computing. 

 

Mark Weiser is considered to be the father of Ubiquitous computing. He wrote what are 

considered some of the seminal papers in Ubiquitous Computing beginning in 1988. 

Weiser's research paper [2] described computing as a progression of three waves of 

human-computer interaction. The first wave was mainframes in which one machine was 

shared by many human users. The second wave described today's common personal 

computing. In the second wave one personal computer is used by one human user. Weiser 

described the third wave as ubiquitous computing, in which one person will be shared by 

many computers.  
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Terry Allen Winograd is notable for his prediction of the future of computer science. In 

his article, “From Computing Machinery to Interface Design” [34] Winograd describes 

three directions of change for Computer Science. They are computation to 

communication, machinery to habit, and aliens to agents. He describes how data 

computing machines and applications have evolved to become data communicating 

applications. The second direction of change noted by Winograd is from machinery to 

habit. There is a shift in computer science from how to give instructions to computing 

machinery to how to perform high-level operations. There also is a shift from what 

operating system and software is running on a machine to what experience web enabled 

applications give to a user. 

 

Mahadev Satyanarayanan is most notable for his 2001 article, “Pervasive Computing: 

Vision and Challenges” [3]. He identifies four new research areas brought about by 

pervasive computing; effective use of smart spaces, invisibility, localized scalability, and 

masking uneven conditioning. By embedding computing infrastructure in building 

infrastructure, a smart space brings together two worlds that have been disjoint until now. 

The fusion of these worlds enables sensing and control of one world by the other. 

Smartness may also extend to individual objects, whether located in a smart space or not. 

Satyanarayanan points out that the ideal expressed by Weiser is a complete disappearance 

of pervasive computing technology from a user’s consciousness. In practice, a reasonable 

approximation to this ideal is minimal user distraction. If a pervasive computing 

environment continuously meets user expectations and rarely presents him with surprises, 

it allows him to interact almost at a subconscious level. As smart spaces grow in 

sophistication, the intensity of interaction between a user’s personal computing space and 

his surroundings increases. This has severe bandwidth, energy and distraction 

implications for a wireless mobile user. The fourth thrust is the development of 

techniques for masking uneven conditioning of environments. The rate of penetration of 

pervasive computing technology into the infrastructure will vary considerably depending 

on many non-technical factors such as organizational structure, economics and business 
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models. He also predicts a shift toward research areas outside mainstream computer 

science. 

 

2.1.2 Related Fields 

Tremendous developments in such technologies as wireless communications and 

networking, mobile computing and handheld devices, embedded systems, and the like 

have led to the evolution of pervasive computing platforms. Pervasive computing 

represents an evolutionary step in this line of work. Two distinct earlier steps in this 

evolution are distributed systems and mobile computing. 

2.1.2.1 Distributed computing 

Distributed systems emerged at the intersection of personal computers and local area 

networks. It essentially is parallel computing using multiple independent computers 

communicating over a network to accomplish a common objective or task. The type of 

hardware, programming languages, operating systems and other resources may vary 

drastically. Distributed computing spans many areas such as,  

• remote communication, including protocol layering, remote procedure call, the 

use of timeouts, and the use of end-to-end arguments in place of functionality. 

• fault tolerance, including atomic transactions, distributed and nested transactions, 

and two-phase commit 

• high availability, including optimistic and pessimistic replica control, mirrored 

execution, and optimistic recovery. 

• remote information access, including caching, function shipping, distributed file 

systems, and distributed databases. 

• security, including encryption-based mutual authentication and privacy.  

This body of knowledge is foundational to pervasive computing [2]. 

 8 



 

2.1.2.2 Mobile computing 

Another important concept for pervasive computing is mobile computing. Mobile 

Computing can be defined as distributed computing with devices. Thus, the design 

principles of distributed computing apply with constraints introduced due to mobility. 

The key challenges include unpredictable variation in network quality, lowered trust and 

robustness, limitations on local resources imposed by weight and size constraints, and 

concern for battery power consumption of mobile elements. 

Mobile computing is still a very active and evolving field of research and includes: 

• Mobile networking, including Mobile IP, ad hoc protocols, and techniques for 

improving TCP performance in wireless networks. 

• Mobile information access, including disconnected operation, bandwidth-adaptive 

file access, and selective control of data consistency. 

• Support for adaptive applications, including transcoding by proxies and adaptive 

resource management. 

• System-level energy saving techniques, such as energy aware adaptation, 

variable-speed processor scheduling, and energy-sensitive memory management. 

• Location sensitivity, including location sensing and location-aware system 

behavior [2]. 

 

2.1.2.3 Missing Capabilities 

Satyanarayanan [2] identifies two main capabilities, missing from distributed and mobile 

computing, that enable pervasive computing. The first is pro-activity which involves a 

system's ability to foresee a user's need and the system's capability to act upon that fore 

knowledge. The second is self-tuning or automatically adjusting to dynamically changing 

environmental conditions. 
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2.1.3 Challenges in Pervasive Computing 

Pervasive computing provides a wealth of ubiquitous services and applications that allow 

users, machines, data, applications, and physical spaces to interact seamlessly with one 

another. Some of the technical problems in pervasive computing correspond to problems 

already identified and studied earlier in the evolution. In some of those cases, existing 

solutions apply directly; in other cases, the demands of pervasive computing are 

sufficiently different that new solutions have to be sought. 

 

A pervasive computing environment may consist of a wide variety of devices such as 

wired devices, wireless devices, handheld devices, sensors and so on. Each of these 

devices has different requirements and capabilities and hence it is important that these 

heterogeneous devices communicate with each other efficiently with minimum user 

interaction. The practical realization of pervasive computing is hindered by a number of 

challenges. The software components of a pervasive computing system would need to 

support application requirements such as context awareness, dynamic adaptation, 

mobility and distribution, interoperability, rapid development and deployment of 

software components, providing resource discovery services and scalability. 

2.1.3.1 Heterogeneity 

One major challenge is that posed by devices operating in the environment: heterogeneity 

in the devices and the problems caused by device mobility. Heterogeneous devices will 

be required to interact seamlessly, despite wide differences in hardware and software 

capabilities.  

2.1.3.2 Mobility 

Mobility introduces problems such as the maintenance of connections as devices move 

between areas of differing network connectivity, and the handling of network 

disconnections. 

 10 



 

2.1.3.3 Scalability 

As smart spaces grow in sophistication, the intensity of interactions between a user’s 

personal computing space and its surroundings increases. This has severe bandwidth, 

energy and distraction implications for a wireless mobile user. Scalability, in the broadest 

sense, is thus a critical problem in pervasive computing. Like the inverse square laws of 

nature, good system design has to achieve scalability by severely reducing interactions 

between distant entities.  

2.1.3.4 Consistency 

Users in pervasive computing environments can be mobile and have computing sessions 

distributed over a range of devices. The infrastructure’s role with respect to users should 

be to maintain knowledge of their context and to manage tasks related to their mobility. 

2.1.3.5 Security and Privacy 

As a pervasive computing system becomes more knowledgeable about the user’s 

movements, behavior and habits, it becomes more important that the use of this 

information is strictly controlled to prevent privacy and security threats. 

 

2.1.4 Ongoing Work 

There are also several research groups actively working to making pervasive computing 

environments a reality. 

2.1.4.1 Aura 

Aura [35] is a Carnegie Mellon University project that studies distraction free ubiquitous 

computing. Its goal is to create a halo of computing and information services that persist 

regardless of locality. The research group's approach is to redesign today's systems to 

decrease user distraction. Their current research areas include task driven computing, 

energy-aware adaptation, intelligent networking, resource opportunism, speech 

recognition, user interfaces, and nomadic data access. 
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2.1.4.2 Oxygen 

The mission of project Oxygen [36] is pervasive, human-centered computing. Its goal is 

to bring abundant computation and communication naturally in the lives of people. The 

research group's approach is to use specific user and system technologies to address 

human needs, perform automated tasks, and allow humans to interact with the system as 

if interacting with another human being. Their research areas are computer speech and 

vision, knowledge access, automation, and collaboration. 

2.1.4.3 The Endeavour Expedition 

The Endeavour Expedition [37] is a University of California at Berkeley pervasive 

computing project. Its mission is to chart the fluid information utility, or sea of 

information. The project's goal is to enhance human understanding through the use of 

information technology. The research group envisions a sea of information that needs to 

be mapped or charted, and made fluidly available. Their approach is to make interaction 

with information, devices, and other people more convenient. Their research areas are 

dynamic adaptation, self-organization, and personalization. 

use sensors and resource status data to maintain a model of the physical world. Their 

research areas are location sensing, context awareness, user interfaces, and resource 

management. 

2.1.4.4 PICO 

The University of Texas at Arlington's pervasive computing research is on going with the 

Pervasive Information Community Organization (PICO) project [38]. The PICO project's 

mission is to create a simple, unique, and versatile middleware framework for pervasive 

computing. The research group's goal is to create mission oriented dynamic communities 

of software entities that collaborate to automatically perform tasks on behalf of users and 

devices. Their research areas include pervasive information acquisition and 

dissemination, context and location aware computing, quality of service, and security. 

The research group is investigating the use of middleware services to create Internet-

enabled pervasive computing applications in heterogeneous networks.  
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2.2 Energy Consumption 

The shrinking size and increasing density of next generation wireless devices imply 

reduced battery capacities, meaning that emerging wireless systems must be more 

energy-efficient than ever before.  The fraction of the time a wireless device remains 

usable to the user is limited and the user may have to plug in his device to recharge the 

battery regularly, which hampers the use of wireless devices. 

Also, studies show that battery consumption of the wireless communication devices like a 

network interface card can account for over 50% of the total system power on these 

devices. 

 

The energy capacity of batteries has doubled roughly every 35 years. While this trend has 

somewhat accelerated in recent years due to the needs of portable electronic devices, the 

rate of improvement is still fairly slow. 

The development in battery technology has not kept up with the development of wireless 

technologies and hence we cannot expect any major progresses in battery capacity in the 

near future. Hence, it is very important that the higher levels of the system are actively 

involved to ensure that the available energy is conserved and utilized in the most efficient 

way. 
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2.2.1  Sources of power consumption 

User tasks: The applications that the user is running on his/her mobile device consume 

energy. Here we take in to account only those tasks that are run locally on the device and 

require no communication through network interfaces. It involves the usage of the CPU, 

main memory, disk, I/O and other components. 

System Tasks: These include tasks that are performed by the operating system as part of 

its routine. 

Display: The display is considered to be the Achilles heel of power management as the 

entire display has to be backlit. This contributes a factor of 25 %– 35 % to the energy 

consumption of wireless devices like a PDA, cell phone or laptop.  

Network Related: Sources of power consumption in relation to the network protocol 

stack can be classified into two types: communication related and computation related. 

Communication related consumption refers to the usage of the transceiver at the source, 

intermediate (in the case of ad hoc networks), and destination nodes. The transmitter is 

used for sending control, route request and response, as well as data packets originating at 

or routed through the transmitting node. The receiver is used to receive data and control 

packets – some of which are destined for the receiving node and some of which is 

forwarded. Communication energy is, among others, dictated by the signal-to-noise ratio 

(SNR) requirements and the radio cell diameter. A typical mobile device exists in three 

modes: transmit, receive and standby. Most of the power is consumed in the transmit 

mode and least in the standby mode.  

Computation considerations on the other hand are concerned with protocol processing 

aspects. It mainly involves the usage of the CPU and main memory and, to a minute 

extent, the disk or other components. Also, data compression techniques, which reduces 

packet length (and hence energy usage), may result in increased computation. 

Computation energy is a function of the hardware and software used for the tasks such as 

compression and forward error correction. There exists a potential tradeoff between 

computation and communication costs. Techniques that may strive to achieve lower 
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communication costs may results in higher computation needs, and vice-versa. Therefore 

a balance between the two goals must be struck for energy efficiency to be achieved. 

 

2.2.2 Energy Conservation Techniques 

Energy conservation techniques can be broadly classified into hardware techniques, 

communication protocols related techniques and application level techniques. The 

following sections discuss these approaches in detail and the related work in each field. 

2.2.2.1 Hardware Power Management 

Operating system: The operating system plays a key role in energy management [39]. It 

controls all the devices, so it must decide what and when to shut down. If it shuts down a 

device and that device is needed again quickly, there may be an annoying delay while it 

is restarted. On the other hand, if it waits too long to shut down a device, energy is 

wasted for nothing. 

Hard Disk: It takes substantial energy to keep it spinning at high speed, even if there are 

no accesses. Many computers, especially laptops, spin the disk down after a certain 

number of minutes of activity. When it is next needed, it is spun up again. Unfortunately, 

a stopped disk is hibernating rather than sleeping because it takes quite a few seconds to 

spin it up again, which causes noticeable delays for the user. In addition, restarting the 

disk consumes considerable extra energy. If a good prediction could be made (e.g., based 

on past access patterns), the operating system could make good shutdown predictions and 

save energy. In practice, most systems are conservative and only spin down the disk after 

a few minutes of inactivity. Another way to save disk energy is to have a substantial disk 

cache in RAM. Another way to avoid unnecessary disk starts is for the operating system 

to keep running programs informed about the disk state by sending it messages or signals 

[39]. 

 

CPU: The CPU can also be managed to save energy. A laptop CPU can be put to sleep in 

software, reducing power usage to almost zero. The only thing it can do in this state is 
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wake up when an interrupt occurs. Therefore, whenever the CPU goes idle, either waiting 

for I/O or because there is no work to do, it goes to sleep. On many computers, there is a 

relationship between CPU voltage, clock cycle, and power usage. The CPU voltage can 

often be reduced in software, which saves energy but also reduces the clock cycle 

(approximately linearly). Since power consumed is proportional to the square of the 

voltage, cutting the voltage in half makes the CPU about half as fast but at 1/4 the power 

[39]. 

 

Memory: Two possible options exist for saving energy with the memory. First, the cache 

can be flushed and then switched off. It can always be reloaded from main memory with 

no loss of information. The reload can be done dynamically and quickly, so turning off 

the cache is entering a sleep state. A more drastic option is to write the contents of main 

memory to the disk, then switch off the main memory itself. This approach is hibernation, 

since virtually all power can be cut to memory at the expense of a substantial reload time, 

especially if the disk is off too [39].  

 

Display: Many operating systems attempt to save energy here by shutting down the 

display when there has been no activity for some number of minutes. Often the user can 

decide what the shutdown interval is, pushing the trade-off between frequent blanking of 

the screen and using the battery up quickly back to the user (who probably really does not 

want it). Turning off the display is a sleep state because it can be regenerated (from the 

video RAM) almost instantaneously when any key is struck or the pointing device is 

moved. One possible improvement was proposed by Flinn and Satyanarayanan [12]. 

They suggested having the display consist of some number of zones that can be 

independently powered up or down. 

2.2.2.2 Energy Efficient communication protocols 

Communication is a significant consumer of power and hence, considerable research has 

been devoted to low-power design of the entire network protocol stack of wireless 

networks in an effort to enhance energy efficiency [16]. 
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Application programs using the network do not interact directly with the network 

hardware. Instead, an application interacts with the protocol software. The notion of 

protocol layering provides a conceptual basis for understanding how a complex set of 

protocols work together with the hardware to provide a powerful communication system. 

The application and services layer occupies the top of the stack followed by the operating 

system/middleware, transport, network, data link, and physical layers. The problems 

inherent to the wireless channel and issues related to mobility challenge the design of the 

protocol stack adopted for wireless networks. In addition, networking protocols need to 

be designed with energy efficiency in mind. A lot of research has been done in all layers 

of the protocol stack to design energy efficient protocols. We will review a few 

techniques at each layer that have been proposed.

 

MAC Layer: The MAC (Media Access Control) layer is a sublayer of the data link layer 

which is responsible for providing reliability to upper layers for the point-to-point 

connections established by the physical layer. The MAC sublayer interfaces with the 

physical layer and is represented by protocols that define how the shared wireless 

channels are to be allocated among a number of mobiles. Collisions should be eliminated 

as much as possible within the MAC layer since they result in retransmissions. 

Retransmissions lead to unnecessary power consumption However, it may not be possible 

to fully eliminate collisions and retransmissions in a wireless mobile network. In this 

case, using a small packet size for registration and bandwidth request may reduce energy 

consumption. The EC-MAC protocol is one example that avoids collisions during 

reservation and data packet transmission [16].  

In a typical broadcast environment, the receiver remains on at all times which results in 

significant power consumption. The mobile radio receives all packets, and forwards only 

the packets destined for the receiving mobile. This is the default mechanism used in the 

IEEE 802.11 wireless protocol which consumes a lot of energy. One solution is to 

broadcast a schedule that contains data transmission starting times for each mobile [16]. 

This enables the mobiles to switch to standby mode until the receive start time.  
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Link Layer: At the link layer, transmissions may be avoided when channel conditions are 

poor. Also, error control schemes that combine automatic repeat request (ARQ) and 

forward error correction (FEC) mechanisms may be used to conserve power (i.e., tradeoff 

retransmissions with ARQ versus longer packets with FEC) [16]. 

 

Network Layer: Energy efficient routing protocols may be achieved by establishing 

routes that ensure that all nodes equally deplete their battery power. This helps balance 

the amount of traffic carried by each node. A related mechanism is to avoid routing 

through nodes with lower battery power, but this requires a mechanism for dissemination 

of node battery power. Also, the periodicity of routing updates can be reduced to 

conserve energy, but may result in inefficient routes when user mobility is high. Another 

method to improve energy performance is to take advantage of the broadcast nature of the 

network for broadcast and multicast traffic, the topology of the network is controlled by 

varying the transmit power of the nodes, and the topology is generated to satisfy certain 

network properties [16].  

 

Transport Layer:  The transport layer provides a reliable end-to-end data delivery service 

to applications running at the end points of a network. TCP and similar transport 

protocols resort to a larger number of retransmissions and frequently invoke congestion 

control measures. Increased retransmissions unnecessarily consume battery energy and 

limited bandwidth. Various schemes have been proposed to alleviate the effects of non 

congestion-related losses on TCP performance over networks with wireless links. The 

energy consumption of Tahoe, Reno, and New Reno versions of TCP is analyzed and 

results of the study demonstrate that error correlation significantly affects the energy 

performance of TCP and that congestion control algorithms of TCP actually allow for 

greater energy savings by backing off and waiting during error bursts [16]. A modified 

version of TCP, referred to as TCP Probing is proposed, in which data transmission is 

suspended and a probe cycle is initiated when a data segment is delayed or lost, rather 

than immediately invoking congestion control [16]. 
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2.2.2.3 Application Level Power Management 

The application layer in a wireless system is responsible for such things as partitioning of 

tasks between the fixed and mobile hosts, audio and video source encoding/decoding, and 

context adaptation in a mobile environment. Energy efficiency at the application layer is 

becoming an important area of research. Some of the research being conducted at the 

application layer with respect to power conservation include:  

Load partitioning: Due to power and bandwidth constraints, applications may be 

selectively partitioned, for example, between the mobile and base station [16]. Thus, most 

of the power intensive computations of an application are executed at the base station, 

and the mobile host plays the role of an intelligent terminal for displaying and acquiring 

multimedia data [16]. 

 

Proxies: Another means of managing energy and bandwidth for applications on mobile 

clients is to use proxies. Proxies are middleware that automatically adapt the applications 

to changes in battery power and bandwidth. 

 

Databases: Impact of power efficiency on database systems is considered by some 

researchers. For example, energy efficiency in database design by minimizing power 

consumed per transaction through embedded indexing has been addressed in [16]. 

 

Video processing: Multimedia processing and transmission require considerable battery 

power as well as network bandwidth. This is especially true for video processing and 

transmission. However, reducing the effective bit rate of video transmissions allows 

lightweight video encoding and decoding techniques to be utilized thereby reducing 

power consumption. 

Degradation mechanisms: can be used where the programs are instructed to use less 

energy, even if this means providing a poorer user experience to the user. Typically, this 

information is passed on when the battery charge is below some threshold. It is then up to 

the programs to decide between degrading performance to lengthen battery life or to 
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maintain performance and risk running out of energy. Flinn and Satyanarayanan [12] 

provide four examples of how degraded performance can save energy. Information is 

presented to the user in various forms. When no degradation is present, the best possible 

information is presented. When degradation is present, the fidelity (accuracy) of the 

information presented to the user is worse than what it could have been. The first 

program measured was a video player which plays 30 frames/sec in full resolution and 

color. One form of degradation is to abandon the color information and display the video 

in black and white. Another form of degradation is to reduce the frame rate, which leads 

to flicker and gives the movie a jerky quality. Similar experiments were conducted with a 

speech recognizer, map viewer that fetched the map over the radio link and transmission 

of JPEG images to a Web browser. Some degradation mechanism was applied to each 

application when power was low and experiments showed that by accepting some quality 

degradation, the user can run longer on a given battery. 

 

2.3 Resource Exploitation or Cyber Foraging 

The need to make mobile devices smaller, lighter and have longer battery life may 

require that their computing capabilities be compromised. But meeting the ever-growing 

needs of mobile users may require high computing capabilities in lightweight devices. 

Reconciling these contradicting needs can be difficult. 

Cyber foraging provides an effective solution to this problem. The idea of cyber foraging 

is to dynamically augment the resources of a wireless mobile device by exploiting the 

resources of a nearby-wired infrastructure [3]. When an intensive computation accessing 

a large volume of data has to be performed, the mobile device ships the entire workload 

to the wired computer. This computer performs the required processing and ships the 

results back to the mobile device. The remote machine can also be a server.  

2.3.1 Challenges 

Cyber foraging opens a number of challenges [3]: 
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• How does the wireless device detect the presence of a wired infrastructure? Since 

the wireless devices are highly mobile, they would have to constantly detect the 

presence of new infrastructure and absence of older ones. What type of service 

discovery mechanism would be best to use. 

• How does the mobile device become aware of the capabilities of the wired 

computer? 

• Security issues: What is the level of security needed and how is access granted to 

users of the services.  

• What is the level of trust between the wired device and mobile devices? 

• How is load balancing done on the wired devices? 

• What are the implications of scalability? 

• How can this be done so that it as transparent to the user as possible? 

 

The performance increase experienced by the use of resource exploitation is very 

important. Noticeable improvements in energy consumption or response time are 

necessary to substantiate the use of resource exploitation. A consideration in this area is 

the size and complexity of the middleware system. 

 

2.3.2 Related Work 

Two related approaches based on [7] are Cyber-foraging (Spectra) and Cyber-foraging 

(Lightweight). Cyber-foraging uses the concept of surrogates which are unused machines 

that mobile devices dynamically locate and control to store data or run applications. 

Spectra [7] is designed for data staging, which allows a device user to cache data at a 

nearby surrogate while a user is in a locality, and remote execution through remote 

procedure calls (RPC). Spectra uses a heavyweight middleware component and a 

centralized server to allow a device access to surrogates. Cyber-foraging (Lightweight) 

[7] removes some of the heavyweight middleware components to decrease energy 

consumption. Each surrogate creates virtual servers with quality guarantees upon 
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receiving a client request. The client can then bypass the surrogate and customize and 

utilize its virtual server. This approach still uses a centralized resource manager and has 

added virtual server allocation and configuration overhead. Portability and 

interoperability are other concerns that need to be addressed. The goal is to maximize 

energy savings on the low power device so system independent components such as Java 

can be used to provide interoperability and limited functionality when necessary.  

Rudenko et al. [8] propose a remote processing framework for automatically migrating 

tasks from a portable computer over a wireless network to a server and migrating the 

results back. The design of the Remote Processing Framework (RPF) is based on a client-

agent-server paradigm. On the client’s side the framework automatically decides whether 

to run a process remotely or locally, moves necessary portions of the user’s tile system to 

the remote machine, runs the process locally or remotely, and handles the database of 

processes. On the server side the package performs the operations the user requested and 

reliably communicates the results back. 

Rollins et al. [9] investigate the possibility of managing the user’s data across a collection 

of devices that the user carries. It is assumed that the user carries a number of small 

devices like a laptop, PDA, cell phone and say, a digital watch. Cyber foraging can also 

be applied in this environment where the workload is migrated to another wireless device 

of the user based on the capabilities of the device. 

In addition to issues above we have to deal with the issues of choosing which device to 

migrate the task to, the communication used between the devices and the problem of 

heterogeneity of these devices. 

 

2.4 Context Awareness 

According to DEY et al. [20] context can be defined as: any information that can be used 

to characterize the situation of an entity. An entity is a person, place, or object that is 

considered relevant to the interaction between a user and an application, including the 

user and applications themselves.  
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The important aspects of context are: where you are, who you are with, and what 

resources are nearby. Examples of context are numerous and include location, 

temperature, network bandwidth, remaining energy, date and time etc. Application 

designers will need to determine what context-aware behaviors to support in their 

applications and hence decide what contexts they are interested in. 

2.4.1 Context-Aware Systems 

A system is context-aware if it uses context to provide relevant information and/or 

services to the user, where relevancy depends on the user’s task. 

 

2.4.2 User Intent 

A proactive pervasive computing system must capture the user intent. Systems today are 

poor at exploiting user intent and have no idea what the user is trying to do. Though 

attempts are being made, most are more often annoying than useful. In designing systems 

that capture user intent, one has to decide how the user intent is going to be determined. 

Is it going to be inferred or does the user have to provide it, how the user intent would be 

represented internally, how accurate is this information and will this effort put a burden 

on the user and on the system’s resources (CPU, memory and energy). 

 

2.4.3 Context awareness 

A pervasive computing system must be cognizant of its user’s state and surroundings, and 

must modify its behavior based on this information. A user’s context can consist of his 

physical location, physiological state (e.g., body temperature and heart rate), emotional 

state (e.g., angry, distraught, or calm), personal history, daily behavioral patterns, and so 

on. Schmandt et al. [22] develop a location aware system that detects the user’s location 

using GPS. Schilt et al [23] discuss an auto-receptionist system that detects user’s 

location and forwards calls to the user. Contexts such as weather, body temperature, light 

etc. require the use of sensor nodes in the environment.  

 23 



 

 

A system can modify its behavior based on its own context information. A system’s 

context could consist of the applications currently running on the system, the current 

energy level of the battery, the type of device being used and the internal resources like 

CPU, memory available etc. The context could also include external resources available 

like network bandwidth, nearby wired infrastructure, services available etc. 

Zimmer [21] identifies the important attributes of “context data” as: 

Relevance: depends on the age and the distance between where the context data was 

generated and where it is being used. 

Reliability: usually depends on the reliability of the input data used to determine the 

context 

Context history: context is usually dynamic and context history can be viewed as a 

representation of its dynamic character. 

Validity: The value of this attribute can depend on the relevance and reliability of the 

data and its history. 

 

2.4.4 Adaptation 

A pervasive computing environment is highly dynamic and the contexts in the 

environment change rapidly as users enter and leave the network. Hence most 

applications use changes in contexts to trigger events. Thus, it is important that the 

devices are aware of the changing context and adapt to these changes accordingly. This 

leads to the challenge of how the devices would detect these changes and secondly how 

they would adapt to these changes after they are detected. This is called the adaptation 

strategy. 

 

It is interesting to see if this context information can be used in some way to reduce 

energy consumption of the device. However, learning and storing context information, 

processing and analyzing this information and using this information to adapt accordingly 
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would require system resources (CPU, memory and energy). Hence, it is important to 

decide if the cost is worth the benefits. 
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     CHAPTER 3 

3 PROPOSED SCHEME: ConAEC 
 

The scheme proposed in this thesis is a context aware energy conservation scheme that 

uses cyber foraging. In this section, we first address the concepts of context aware energy 

conservation, cyber foraging for energy conservation and the related work in these fields. 

We then describe the proposed scheme, the energy model and the algorithms. 

 

3.1 Context Aware Energy Conservation 

Energy is a vital resource for mobile devices. The development in battery technology has 

not kept up with the development of wireless technologies and hence we cannot expect 

any major progresses in battery capacity in the near future. Hence, it is very important 

that the higher levels of the system are actively involved to ensure that the available 

energy is conserved and utilized in the most efficient way.  

 

One of the major challenges of pervasive computing is to exploit the changing 

environment with a new class of applications that are aware of the context in which they 

run. A context aware system can examine the computing environment and react to 

changes to the environment.  

 

Context information can be used to reduce energy consumption of the device. Contexts 

such as location, network connectivity, date and time, remaining energy, local and remote 

resources available can be used by the higher levels of the system in efficient utilization 

of energy. The system should also be able to adapt to changes in these contexts. 

However, learning and storing context information, processing and analyzing this 

information and using this information to adapt accordingly would require system 
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resources (CPU, memory and energy). Hence, it is important to decide if the cost is worth 

the benefits and keep the cost of this overhead low. 

3.1.1 Related Work 

There has been limited research in the area of context aware energy conservation where 

devices are context aware and modify their operation according to changes in contexts or 

the environment around them. The behavior that is desirable in such wireless devices is 

adaptation where the system is able to adapt to changes in the environment.  

 

Flinn and Satyanarayanan [12] explore how applications can dynamically modify their 

behavior to conserve energy. The context used in their work is the remaining energy on 

the resource-limited device. Based on this context, information is presented to the user in 

various forms. When energy is plentiful, application behavior is biased toward a good 

user experience; when it is scarce, the behavior is biased toward energy conservation by 

degrading the quality of the applications running on the device. The first program 

measured was a video player which plays 30 frames/sec in full resolution and color. One 

form of degradation is to abandon the color information and display the video in black 

and white. Another form of degradation is to reduce the frame rate, which leads to flicker 

and gives the movie a jerky quality. Similar experiments were conducted with a speech 

recognizer, map viewer that fetched the map over the radio link, and transmission of 

JPEG images to a Web browser. Some degradation mechanism was applied to each 

application when power was low and experiments showed that by accepting some quality 

degradation, the user can run the device for a longer period on a given battery. 

 

Rollins et al. [9] focus on data management and power limitations and investigate the 

benefit of using power aware schemes to manage data among a number of devices to 

prolong data availability to the user. The energy level of each device is monitored and the 

workload is migrated from devices that are in danger of dying, to other devices that can 

handle the workload with their remaining energy. Here again, the context used is the 

remaining energy on each of the devices. 
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 Chong et al. [10] propose a context aware approach to conserve energy in wireless 

sensor networks. They present a framework for supporting the use of context to trigger 

power saving functionalities in sensors. The Context Discovery component serves to 

discover useful contexts from sensor data. In the context-trigger engine, the discovered 

context is used as a trigger. Context input is discovered and used to analyze data streams 

and if it matches the triggering information, an output reaction is triggered by the engine. 

 

3.1.2 Context Aware Energy Conservation Techniques 

This section discusses the different context aware energy techniques. 

3.1.2.1 Hardware Power Management for context aware energy conservation 

The operating system plays a key role in energy management, controlling the devices and  

decides what and when to shut down. The operating system uses some context 

information such as time of inactivity to make this decision. Other context information 

such as the user’s location, remaining energy, information derived from user’s calendar 

and date and time can be used to put the device in low power mode. 

3.1.2.2 Communication related context aware energy conservation 

As described in section 2.2, communication is a significant consumer of power. The 

energy associated with communication can be reduced by monitoring contexts such as 

available network bandwidth, idle times of the network interface card and the network 

environment. For example, if system is aware that the network interface is in idle mode 

and will be idle for some period of time, the system may then turn the NI off and put it 

into sleep mode to conserve energy; or if the system is aware of higher power devices in 

the network it can offload its tasks to the remote device.  

3.1.2.3 Application-specific context aware energy conservation 

As discussed in section 2.2, the applications that the user is running on his/her mobile 

device consume energy. The application can adapt to changes in contexts such as 
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location, remaining energy or date and time. For e.g. the fidelity (quality) of the 

application can be changed based on energy supply or in case of e-mail application the 

display can be changed to a lower power consuming quality and resolution than in case of 

camera mode [12]. 

 

3.2 Cyber foraging and Energy Conservation 

Cyber foraging can be adopted as an energy conservation technique. One of the major 

challenges of cyber foraging is determining the tasks that are worth migrating and the 

costs involved in the migration. 

Firstly, we have to determine the transmission costs involved in the migration of the task. 

The network interface consumes energy in the sending, receiving and idle state. 

Secondly, we have to determine the set of tasks that can be migrated, based on the 

capabilities of the remote device and the type of application. Thirdly, we will have to 

compute the energy that will be consumed if the task would be executed locally on the 

device. 

3.2.1 Determining the set of tasks that can be migrated 

The set of tasks that can be migrated depends on the type of application (e.g. real-time or 

device-specific tasks) and the capabilities of the remote machine. The device may know 

the capabilities of the remote device or the device can probe the remote device to 

determine its capabilities and available computing resources.  

 

3.2.2 Measuring the energy spent in communication 

This includes the energy spent in sending data, receiving data and the energy spent in idle 

mode. The energy consumed in idle mode is directly related to the time required for the 

task to execute on the remote machine. During this time the NI is idle and waiting for a 

response from the remote machine. Hence, the total execution time on the remote device 

is an important factor in determining if the benefits of migration are worth the cost. Also, 
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the amount of data shipped to and from the device is directly related to the size of the 

task. Therefore, the size of the data transferred should be considered in cyber foraging. 

 

3.2.3 Measuring the energy consumed by the local execution of a task 

 To make an offload decision we would have to compare the energy spent by the device 

to execute the task locally with the energy spent by NI in transferring the task to a remote 

machine. The most accurate way to measure the power consumption due to the execution 

of a task on a device would be to insert appropriate electronic instrumentation between 

the battery and the device. However this leads to many practical problems. Rudenko et al 

[8] propose the use of less direct methods. They suggest the use of the Advanced Power 

Metric of a laptop that reports the remaining energy as a percentage of the maximum. 

Flinn and Satyanarayanan [12] use the PowerScope energy profiler that can determine 

what fraction of the total energy consumed during a certain period of time is due to a 

specific process. These methods can be used to determine the energy drain of the local 

device if the task is executed locally, and this can be used to determine the trade-offs in 

task migration. 

 

3.2.4 Related Work 

Rudenko et. al [8] explore the idea of power saving and battery life extension through 

wireless remote processing of power-costly tasks. The authors have analyzed the trade-

off between communication power and local processing cost. The tasks are moved to the 

remote machine before the task starts execution. The server would process the task and 

ship the results back to the portable device. In the meantime, the portable device can run 

other tasks or be idle. The first part of the experiments was run in a noiseless 

environment. All major sources of noise (like other laptops equipped with wireless cards) 

were isolated. Power consumption of local and remote execution was compared. For 

relatively small tasks, the cost of local execution was lesser than that of remote but for 

larger tasks savings of remote execution were as high as 45%. Further experiments were 
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performed to determine the power saving characteristics of remote execution in a realistic 

noisy environment where the devices have to contend for the channel. The same set of 

experiments were conducted to measure the total energy and to measure the transmission 

energy. In a noisy environment there are more re-transmissions as a result of collisions 

and the time the client has to wait for a response increases. Hence, the energy savings 

through remote execution decreases. Results show that the increased cost of 

transmissions in a noisy medium is about 1.5 – 2% of the battery.   

 

Li et al. [6] propose a partition scheme for computation offloading to save energy on 

handheld devices. In this work, a cost graph is constructed for a given application 

program based on profiling information on computation time and data sharing at the level 

of procedure calls. A partition scheme is then applied to statically divide the program into 

server and client tasks such that the energy consumed by the program is minimized. 

 

3.3 Context Aware Energy Conservation with Cyber foraging 

All schemes proposed thus far do not use context information, do not consider the 

network environment context while making a decision to offload the task, or use static 

context information like size of the task to make an offload decision. 

 

The scheme proposed in this thesis is a context aware energy conservation scheme that 

uses cyber foraging. We have explored the combination of context awareness and cyber 

foraging and see if this could yield an effective method to deal with the problem of 

energy conservation. 

 

A mobile environment is highly dynamic and this leads to a situation where there is 

unpredictable variation in the network resources available, the services available and the 

devices nearby.  The user’s and the devices’ context also change dynamically with time. 

We would like to devise a scheme that takes the current context of the environment, the 

device and the user in making decisions on task migration. 
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For e.g. if available network bandwidth is low, the energy spent on communication may 

dominate the benefits of remote task execution. If the available bandwidth increases over 

time the system should be able to detect this change in context and adapt accordingly. 

 

Our scheme uses the available network bandwidth or the achievable throughput in an 

end-to-end path as the context to make intelligent decisions on task migration. We 

examined the trade-off between communication power expenditures and the power cost 

of local processing using this context. 

When a task is to be performed a decision is made to execute it locally or offload it to one 

of the available remote devices. Estimations of energy that will be consumed if the task is 

executed locally and remotely is made. For local execution, the activities that contribute 

to energy consumption primarily include CPU processing and disk accesses. For remote 

execution, energy is consumed by the network interface in transmission of the task 

request and data (if required), in reception of the results, and in the idle state while the 

device waits for the results to be shipped back. If the end-to-end throughput to the remote 

device is high, then, the energy consumed is less. Hence, we use this context of 

achievable throughput to each device to make a decision to offload, and the device to 

offload to. 

 

We maintain a history of the achievable throughput to each device and use an average of 

the values to estimate what the current throughput to each device would be. Using these 

values we estimate the energy that will be spent in communication to each device.  

A history of execution times for each task on the local and each of the remote devices is 

also maintained. These values are used to estimate the energy that will be spent to 

execute the task on the local device and the energy spent by the NI in the idle state if the 

task is offloaded. A decision is made to execute the task on the local device or on a 

remote device so as to minimize the energy consumption on the local device. 
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3.4 Energy Model 

This section discusses the energy model used for estimations and decision making. 

3.4.1 Decision making 

A decision to offload a task is made if the estimated energy for local execution is greater 

than the estimated energy for remote execution by a value greater than the threshold 

value. The threshold value, Eth, is introduced to account for dynamically changing 

network environments. When network conditions are close to static, Eth approaches zero. 

if  [Epl > Epo + Eth]   then 

offload = true 

else  

offload = false 

where: 

Epl  :   is the predicted energy consumption for local execution 

Eal   :   is the actual energy consumption for local execution 

Epo  :   is the predicted energy consumption for remote execution 

Eao  :   is the actual energy consumption for remote execution 

Eth   :  is the error margin or threshold 

 

3.4.2 Checking for correctness of the decision 

After a decision is made and the task is executed, the actual energy consumed in 

completing the task is measured. A comparison between the actual and predicted values 

is made and the value of the threshold is modified appropriately if the decision was 

wrong. 

The following section discusses when a decision is considered wrong and what actions 

are taken to ensure that the further decisions are made correctly. 

 

A. When task is offloaded: 
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When the task is offloaded, if the difference between the actual and predicted values for 

energy is less than the threshold value, Eth, then the decision is considered to be right. 

This is because the decision to offload is made considering a possible error margin equal 

to the threshold. Therefore, as long as the difference is less than this threshold value, the 

decision is right. If the actual energy consumed is greater than the predicted value, the 

decision is considered to be wrong. The value of the threshold, Eth is increased to avoid 

further wrong decisions.  

if  [ offload = true ]  then 
 if  [ Eao – Epo  < = Eth  ]  then 

                decision = right 
                if [ Eao < Epo ] then 
                       decrease Eth
                endif 
      
         else  
               decision = wrong 
                increase Eth
         endif 

endif 
 

B. When task is executed locally: 

When the task is executed locally, if the actual energy consumed is less than or equal to 

the predicted offload energy plus the threshold, then the decision is considered to be 

right, otherwise, the decision is considered as wrong. The assumption is that the predicted 

offload energy is almost accurate and energy savings would have been higher if the task 

had been offloaded. 

if [offload = false]  then 
     if  [Eal <= Epo + Eth]   then  

decision = right 
     else  

decision = wrong 
     endif 
    endif 
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3.4.3 Predicting Energy Consumption 

This section describes the method adopted to estimate the energy consumed if a given 

task is executed locally and energy consumed if the task is offloaded. The basic principle 

used to estimate the energy is given by the equation: 

Energy = Power * Time 

 

A. When the task is executed locally: 

The energy that will be consumed to execute the task locally is estimated as the product 

of the power dissipated by the device for performing calculations while doing no 

communication, and the time to execute the task locally on the device. The time to 

execute the task is estimated based on the past values of execution time for the same task. 

This method is described in next section. 

Epl = Pproc * tproc , where, 

 

Epl  :   is the predicted energy consumption for local execution 

Pproc: power in watts the node consumes when performing computation and no 

communication 

tproc:  time to execute the task locally 

 

B. When the task is offloaded: 

The energy that will be consumed to offload the task and receive the results back is 

estimated as the sum of the energy consumed to transmit the data needed to execute the 

task to the remote device, the energy consumed by the network interface in the idle state 

waiting for the results from the device and the energy consumed in the reception of the 

results. Each component is calculated as the product of the power and the time for each 

activity to complete [4]. 

Epo = (Ptx ttx) + (Pidle tidle) + (Prx trx), where, 

Epo  :   is the predicted energy consumption for remote execution 

Pidle:  is the power in watts the node consumes when idle waiting for packets or ACKs 
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Ptx:  is the power in watts spent in processing and transmitting TCP segments and ACKs 

Prx:   is the power in watts spent in processing and receiving TCP segments and ACKs 

tidle:  idle time of the node waiting for packets or ACKs 

ttx:    time for processing and transmitting TCP segments and ACKs 

trx:    time for processing and receiving TCP segments and ACKs 

 

The method to estimate the time required for transmission, in idle state and reception is as 

follows: 

The values of ttx (time for processing and transmitting TCP segments and ACKs) and trx 

(time for processing and receiving TCP segments and ACKs) are estimated using the 

principle: 

Time for transmission (reception) = Size of the data / Rate of the link 
 

 

ttx    =     
r

Bsend  

 

trx    =     
r

Brecv  

 
The value of tidle (idle time of the node waiting for packets or ACKs) is estimated by first 

estimating the total time for sending and receiving the data using the value of the average 

throughput of the end-to-end path and the time required  to execute the task on the remote 

device. 

ttotal  =  
τ

BrecvBsend +  

 
tidle =   trproc + (ttotal - ttx - trx) 

 
where: 

BBsend:   size of data to be transmitted 

BBrecv:   size of data to be received 

r:        transmission rate of the link 
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τ:       estimated achievable throughput 

ttotal:   total time to send and receive the completed task 
trproc:  time taken by the remote machine to execute the task 

 

3.4.4 Estimating trproc, tproc and τ 

We maintain a history of the last N measured values of these parameters (param)  

and estimate param(N+1) as:  

param(N+1) =  α  * paramN    +    (1- α)  
1

1

1

−

∑
−

=

N

param
N

i        
 

 

3.5 Algorithms 

A decision making algorithm is derived based on the energy model described above. This 

section gives an overview of this algorithm and the algorithm that updates the parameters 

when actual measurements of the throughput, execution time and energy consumed are 

made. 

 

3.5.1 Procedure to make an offload decision 

This algorithm makes an offload decision by first estimating the energy required to 

perform the task locally. It then estimates the energy required to offload the task to each 

of the available devices that provide this service. It then makes a decision based on these 

estimated values to minimize the energy consumption. 
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Notations: 
task: the task to be executed 
size: size of the task to be executed 
Bsend: size of data to be transmitted to remote device  
Brecv: size of data to be received from the remote device 
 
Procedure offloadDecision 
begin 
 Epl := proc estimateLocalEnergy (task, size) 
 set targetDevice as "local" 
  
 get list of devices hDevices that provide this service 
  

set Epomin as infinite 
foreach (device in hDevices) 

Epo := proc estimateOffloadEnergy (task, size, 
Bsend,    Brecv) 
if (Epo < Epomin) 

   Epomin = Epo 
   targetDevice = device 
  end if  
 end foreach 
 
 if (Epl > Epomin + Eth)    
  decision = "offload" 
     
 else  
  decision = "local" 
    
end 
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3.5.2 Procedure to estimate the energy for local execution 

This algorithm estimates the energy required to execute the task locally based on the 

energy model described in the above section. 

 

Notations: 
Tproc: time to execute the task locally 
size : size of the task to be executed 
Epl: predicted energy for local execution 
Pproc: power consumed when performing computation  
 
Procedure estimateLocalEnergy 
begin 
 Tproc = proc estimateTime (size) 
 Epl = Pproc * Tproc  
 return Epl 
end 
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3.5.3 Procedure to estimate the energy for remote execution 
This algorithm estimates the energy required to execute the task remotely based on the 

energy model described in the above section. 

 

Notations: 
size: size of the task to be executed 
LinTr: transmission rate of the wireless link 
Epo: predicted energy for remote execution 
Trproc: time to execute the task on the remote device 
Tidle: idle time waiting for results 
Ttx: time for processing and transmitting the data and ACKs 
Trx: time for processing and receiving ACKs 
bwSend: estimated throughput to send the data to remote device 
bwRecv: estimated throughput to receive the data from remote 
device 
Pproc: power consumed when performing computation  
 
 
Procedure estimateOffloadEnergy 
begin 

Ttx = (Bsend + ACKData) / LinkTr  
 Trx = (Brecv + ACKData) / LinkTr 
 
 bwSend = proc estimateBWSend ()  
 bwRecv = proc estimateBWRecv () 
 

Ttotal = ( Bsend  / bwSend ) + ( Brecv / bwRecv ) 
Trproc = estimateTime (size) 

 Tidle = Trproc + (Ttotal - Ttx - Trx) 
   
 Epo = ((Pidle * Tidle) + (Ptx * Ttx) + (Prx * Trx))  
 return Epo 
end 
 

 
 
 

3.6 Mobility and Service Discovery 

A pervasive environment is highly dynamic and devices may enter and leave the network 

at any time. Mobility introduces problems such as the maintenance of connections as 

devices move between areas of differing network connectivity, and the handling of 

network disconnections.  
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The framework must constantly keep track the set of devices that are available for remote 

processing. If a device leaves the network each of the other devices should be able to 

adapt to this change in the environment and update the information accordingly.  

However, the process of service discovery is beyond the scope of this thesis work. 
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     CHAPTER 4 

4 SYSTEM MODEL 
 

The framework uses a software engineering concept known as middleware. The term 

middleware describes a software layer that bridges the gap between operating systems, 

network components, and applications. The Internet2 Middleware Initiative [40] 

describes middleware as a modular or layered approach to providing communication, 

identification, authorization, authentication, security, and other services. It simplifies 

system development by isolating and hiding complex system components and their 

associated interfaces.  The goals of middleware also include masking heterogeneity and 

providing a useful distributed programming model. Middleware services are defined by 

their interfaces and data formats.  

 

4.1 Pervasive Information Community Organization (PICO) 

The PICO framework consists of an interconnection of hardware devices called devices 

and autonomous, intelligent software agents called delegents (or intelligent delegates). 

PICO’s objective is to provide “what we want, when we want, where we want, and how 

we want” types of services autonomously and continually [1].  

In a pervasive computing environment the hardware device capabilities and resources in 

the system vary. This problem of heterogeneity in the environment is addressed by the 

software agents which provide interoperability. The software agents are also proactive 

which allow them to automatically perform tasks on behalf of human and device entities. 

 

4.1.1 Architecture of the PICO framework 

Devices and delegents are PICO’s basic building blocks. A delegent representing a user, 

application, or device can reside on another device. A community’s delegents can reside 
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on one or more devices. Community operations involving several delegents and the 

device resources make up the PICO architecture [1]. 

4.1.1.1 Devices 

A device possesses one or more functionalities— such as see, hear, adapt, compute, 

communicate, learn, or process information.  

     

                                                                                             
 

 

Device IdentifierCid 
  Ch 

F 
System Characteristics 

 
Device Functionality 

4.1: A Device Tuple 
 
A device is described by three tuples, C = < Cid, Ch, F>, where Cid is the device 

identifier, Ch is the set of system characteristics, and F is the set of functionalities. For 

example, we describe an image processing device by C(IP) = <###, Ch, F>, where ### is 

the identifier, Ch = <operating system, processor type, memory, I/O type, battery, 

wireless transceiver>, and F = <image processing, communication> [1].  

4.1.1.2 Delegents 

A delegent works diligently on behalf of a device or user. Delegents are intelligent 

software agents that consist of a tuple set  D = <Did, Fd>, where Did is the delegent’s 

identity and Fd is its functional description. Functionally, a delegent can be represented 

by a three tuple, Fd = <M, R, S>, where M is the set of program modules, R is the set of 

rules for delegent behavior, and S is the delegent’s goal or mission [1]. 

 

                  services (S)         rules (R)            modules (M) 

service A 
- event 

rule A 
event 
   - module 
   - action 

module A 
function (A) 

 

 

 

 

4.2: A Delegent Tuple 
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The tuples (delegent = <M, R, S>) are used to map service requests into executing 

software entities. Changing the rule sets changes the behavior of each software agent, 

while updating the software modules allows the addition or removal of software and 

hardware capabilities. 

A delegent receives inputs from many sources such as external events, internal events, 

and intentions. A delegent can be in a dormant, active, or mobile state. A dormant 

delegent is activated when certain events take place in its environment. A mobile 

delegent migrates from one device to another. After completing the designated tasks in 

the remote device, a delegent returns to the active state.  

 

4.2 ConAEC 

A middleware-based service architecture called ConAEC (Context Aware Energy 

Conservation) was developed as part of this thesis work to examine the practicality and 

limitations of real world implementations. This architecture is an adaptation of the PICO 

middleware-based framework as described above. Discovering other devices in the 

network and their capabilities is important. This requires a service discovery function that 

provides a list of devices in the network, their IP address, the port at which they can be 

contacted and the services they have to offer. This protocol should also take care if 

devices that may dynamically enter or leave the network at any time. However, the 

implementation of such a protocol is beyond the scope of this thesis. One possible 

approach is to use a distributed server that maintains this information. Each device may 

register its address, port and services at this server which can be retrieved by other 

devices. Another possible solution is to use a point-to-point protocol in which devices 

share all the information they possess of other devices in communication range.  

 

4.2.1 ConAEC Agents 

ConAEC agents are the middleware entities that perform tasks on behalf of human users, 

software entities and hardware devices. An agent resides on each device and may interact 
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with agents on other devices to collaborate and accomplish a service request. Each agent 

maintains information about the delegents residing on the local device, the services they 

provide and the system characteristics, like CPU, memory and remaining battery power 

of the device. It also keeps track of other devices in the network with information about 

the services offered by each of the devices, their system characteristics and the address 

and port at which service requests can be made. The agent runs a manager known as a 

delegent manager at a port number advertised to all remote agents in the environment. 

Service requests are made to this port. Hence, a device in the ConAEC framework can be 

defined as C = < Cid, Cadport, Ch, F>, where Cid is the device identifier, Cadport is the 

address of the device and the port number at which its delegent manager can be 

contacted, Ch is the set of system characteristics, and F is the set of functionalities or 

services that it provides. In this framework, service names are unique aliases used to 

access middleware services. One or more service names map to a single middleware 

service. Requesting a service triggers an event that is handled by the corresponding 

delegent’s rule set. Rule sets map events into software module actions which invoke 

methods or call functions. Modules contain sets of actions with associated input 

parameters that are used to invoke an executing software entity. 
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imageProc

offloadDec

Application/Agent 
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ConAEC  
AGENT 

matrixMult

offloadDec

APPLICATION APPLICATION

M/W Interface 

Middleware 

Services 

Device A Device B 

 
4.3: ConAEC Framework 

 
The Application/Agent Interface bridges the gap between the middleware and the 

application, constructs service request messages in the format defined by the middleware 

protocol and conveys results back to application in the appropriate format. The ConAEC 

agents accept service requests through the delegent manager running at a known port 

number, and invoke the corresponding delegents providing the service. These invoke 

software modules which execute functions or call methods. 

 

4.2.2 Control flow 

This section describes the flow of control within the framework when a request for a 

service is generated by an application. The application invokes the 

application/middleware interface with the appropriate parameters.  

Based on the current context information of achievable throughput to each device, a 

decision must be made to execute the task locally or on a remote device. Hence the 

application/middleware interface first requests an offload decision service from the agent. 

It includes in the service request message the task to be executed, the size of the task, the 
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size of the data that will have to be transmitted and received and other parameters needed 

to make the decision. 

When the delegent manager receives the service request, it awakens the delegent that 

provides the offload decision service. The ‘offloadDec’ service invokes the offload 

decision module which makes a decision based on the input parameters using the 

algorithm described in the previous chapter and returns its decision to the 

application/middleware interface. 

 

Delegent Manager 

Application 

Delegent Manager 

App/MW Interface 

Offload Decision 
Module 

<service = matrixMult> <size = 100> 

<service = offloadDec> 
<task = matrixMult> <size = 100> 
<sendSize = 200> <recvSize = 100> 

<return decision> 

Remote Device Local Device 

 
 

4.4: Making a service request for an offload decision 
 
Case I: When decision is to offload 

When the Offload Decision Module returns a decision to offload the task, it also returns 

the address and port of the device to offload to. The App/MW Interface then contacts the 

Delegent Manager on the remote device and requests for the ‘matrixMult’ service. The 

delegent manager awakens the ‘matrixMult’ delegent which invokes the Matrix 
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Multiplication module. This module interacts with the App/MW and requests for the files 

necessary to accomplish the task. The final results are shipped back to the device and are 

received by App/MW interface. 

 

 

 

 

  
 2 

 1 

 

 

 

 

  

 
3 
result 

Delegent Manager 

Application 

Delegent Manager 

App/MW Interface 
<service = matrixMult> 

<size = 100> 
<inputFile = m100, n100> 

<outputFile = p100> 

Remote Device Local Device 

Matrix Multiplication 
Module 

input and output files transfer 

 

 

 

 

4.5: Offloading the task to a remote device 
 
Case II: When decision is to execute locally 

When the Offload Decision Module decides to execute the task locally, the App/MW 

Interface contacts the Delegent Manager and requests for the ‘matrixMult’ service. The 

delegent manager awakens the ‘matrixMult’ delegent which invokes the Matrix 

Multiplication module. This module performs the matrix multiplication and returns the 

results back to the App/MW interface. 
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Module 

<return result> 
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<service = matrixMult>  
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<outputFile = p100> 

4.6: Executing the task on the local device 
 
 

4.2.3 Updating Parameters 

When the service request has been completed, the parameters, such as, energy consumed, 

average throughput, actual execution time that are measured are updated. This is 

accomplished through an ‘updateParams’ service. The figure shows the flow of control 

when the execution task is remote and local. 

 

 

  

 

 

 

 

 49 



 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

Local Execution 

Application 

Delegent Manager 

App/MW Interface 

Offload Decision 
Module 

<service = updateParams>  
<actualEnergy = Y J>  
<execTime =100ms> 

Remote Execution 

Application 

Delegent Manager 

App/MW Interface 

Offload Decision 
Module 

<service = updateParams>  
<throughput = XMbps> 
<actualEnergy = Y J>  
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4.7: Updating parameters 

 

 

4.3 Environment 

The environment consists of a wide variety of devices such as wired devices, wireless 

devices, handheld devices, sensors and so on. There exist resourceful and resource 

limited devices. Resourcefulness is determined by CPU speed, communications link 

speed, storage space, energy limitations, available peripherals, and available services. 

Using this model resourcefulness is meaningful with respect to what resources are needed 

and when the resources are requested. For example, a PDA considers a Pentium IV 

desktop system to be a resourceful device with respect to CPU speed and memory. 

However, a desktop system considers a wireless camera resourceful for an application 
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requiring a snapshot of a room. The end result is a community of hardware devices and 

software agents dynamically and statically collaborating to accomplish common goals. 

The architecture of ConAEC attempts to mask the heterogeneity and provide a useful 

distributed programming model. 

 

4.4 Software 

The ConAEC framework is implemented to be system independent and portable to small 

mobile devices. There are many system dependent obstacles that are overcome by using 

operating system and interoperability technology. 

The framework is implemented using the Java framework to maximize portability and 

system independence. The major obstacle is that many mobile devices use a scaled down 

version of the Java virtual machine. This obstacle is overcome by implementing any 

missing components such as an XML parser, string operations and generating binary 

class files compatible with older Java virtual machines. 
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CHAPTER 5 

5 IMPLEMENTATION AND RESULTS 
 
This chapter describes the implementation details and shows the performance results 

from test bed experiments. 

 

5.1 Devices and Environment 

The environment consists of devices varying in capacity in terms of CPU processing 

speed and remaining energy.  

The resource limited devices are two Sharp Zaurus SL-5500 PDAs. Each contains an 

Intel StrongARM processor running at 206MHz. They run Jeode Personal Profile for Java 

with 32MB of RAM. Their operating system is the Qtopia Desktop Environment (QDE) 

with Linux kernel 2.4.18 (Cacko). Their communications links are D-Link Air DCF- 

50W compact flash cards. 

The first resourceful device is a Dell Inspiron 5150 laptop with a 3.06 GHz, Pentium 4 

Processor and 256 MB RAM. It has a built-in Dell TruMobile 802.11g wireless network 

card. Its operating system is the Fedora Core 4 and it has the JDK 5.0 version of the java 

virtual machine. 

The second resourceful device is a Toshiba Satellite Centrino Processor and 256 MB 

RAM. An external LinkSys 802.11b wireless network card is used for communication. Its 

operating system is the Fedora Core 4 and it has the JDK 5.0 version of the java virtual 

machine. 

The devices in the environment form an ad hoc network and communicate with each 

other using the Wi-Fi (802.11b) protocol. 
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5.2 Power Specifications 

Energy consumption is estimated using the time necessary to perform all subtasks of a 

task along with the associated power level for each subtask. The power specifications for 

the Sharp Zaurus SL-5500 is as follows: data transmission (Ptx) is 1654mW; data 

reception (Prx) is 1324mW; the power dissipation for performing calculations while 

doing no communication (Pproc) is 961mW; power level for processor being idle with the 

communication link in standby mode (Pidle) is 661mW. 

 

5.3 Measurement of actual energy consumption 

The ConAEC framework needs to measure the actual energy consumed for the 

completion of a task. The most accurate way to measure the power consumption due to 

the execution of a task on a device would be to insert appropriate electronic 

instrumentation between the battery and the device. However this leads to many practical 

problems. Rudenko et al [8] propose the use of less direct methods. They suggest the use 

of the Advanced Power Metric (APM) of a device to determine this energy. The APM 

reports the remaining energy as a percentage of the maximum capacity of the device. The 

total energy in Joules, Etotal, available from a battery is obtained from the Ampere hour 

rating, Q of a battery, and the nominal voltage, V as, 

Etotal = 3600 * Q * V 

The actual energy consumed due to the execution of a task can be calculated by obtaining 

the difference in the APM readings before the start and after completion of the task. This 

gives the percentage, P, of the battery power dissipated to execute the task. The actual 

energy in Joules consumed for a task execution, Eactual, is then calculated by the 

following equation: 

Eactual = P / 100 * Etotal
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The display, which is one of the main sources of energy consumption on a device, is 

turned off during the experiments to get a more accurate estimation of the energy 

consumed for the execution of a task. 

 

5.4 Assumptions and Limitations 

One of the assumptions while measuring the energy consumed using the APM is that all 

the energy is spent only in execution of task. It assumes that other system daemons that 

may be running in the background do not consume significant energy. 

 

5.5 Results 

This section describes the experiments performed and discusses the results obtained. 

Application I: Matrix Multiplication 

Experiment I 

In this scenario, the user wishes to execute a set of tasks on the Sharp Zaurus SL-5500 

PDA. This experiment measures the energy consumed by the PDA to perform a given set 

of tasks using the ConAEC framework. The result is compared with the scheme in which 

all tasks are executed locally without the ConAEC framework and a scheme in which a 

static context i.e. the size of the task, is used to make an offload decision. The remaining 

battery energy on the PDA is periodically recorded until the set of tasks is completed. 

Task Set: Perform matrix multiplication of square matrices starting from size 20, in 

increments of 20, up to 500 and in decrements of 40 down to 20. 

Environment:  The environment consisted of the low power Sharp PDA and the two 

laptops, all providing the matrix multiplication service.  
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The plot shows the percentage remaining battery energy over time as the set of tasks is 

executed, when all the tasks are executed locally, for a static scheme where the task is 

offloaded when the size of the task is greater than 160, and the ConAEC scheme. 
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5.1: Remaining battery energy with time 

We see that, when the set of tasks have been completed, the remaining battery energy in 

the all-local scheme is less than 10%, in the static scheme is 30% and in ConAEC scheme 

is more than 50%. This gives battery power savings of about 43% over the all-local 

scheme and about 22% over the static scheme. 

This plot shows the energy savings of the ConAEC scheme over the all-local scheme as 

time progresses. 
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5.2: Energy savings for ConAEC 

As mentioned before, savings of up to 43% are achieved using the ConAEC framework. 

Experiment II 

This experiment is conducted to measure the energy savings that can be achieved using 

the ConAEC scheme at different values of average throughput. A given set of tasks is 

executed on the PDA using the ConAEC framework. The battery power consumed to 

execute the same set of tasks at the different throughput values is measured and plotted. 

The remaining battery energy on the PDA is periodically recorded until the set of tasks is 

completed. 

Task Set: Perform matrix multiplication of square matrices starting from size 20, in 

increments of 20, up to 500 and in decrements of 40 down to 20. 

 56 



 

Environment:  The environment consisted of the low power Sharp PDA and the two 

laptops, all providing the matrix multiplication service. The experiment is first conducted 

when there is no other traffic in the network and the average throughput to the two 

laptops is 3.5 Mbps and 2.1 Mbps, respectively. The experiment is repeated by 

introducing other traffic in the network and reducing the average throughput to 2.7 Mbps 

and 1.5 Mbps. Finally, the achievable throughput to each device is further reduced to 1.4 

Mbps and 0.7 Mbps. 

The plot shows the percentage remaining battery energy over time as the set of tasks is 

executed, when all the tasks are executed locally and the ConAEC scheme at different 

values of the average throughput. 
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5.3: Energy consumption at different throughput values 
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We see that at higher values of throughput, the remaining battery power when all tasks 

have been executed is higher. This is because at higher throughput, more tasks can be 

offloaded and the process of sending and receiving the data for task execution is faster. 

This plot shows the energy savings at different throughput values for the ConAEC 

scheme over the all-local scheme as time progresses. 
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5.4: Energy savings for ConAEC at different throughput values 
 
 
Experiment III 

This experiment is conducted to verify how ConAEC scheme adapts to changes in the 

environment. A given set of tasks is executed on the PDA using the ConAEC framework. 

The throughput value is modified as the experiment progresses and the aim is to verify 

that ConAEC detects this change in context and adapts accordingly. The result is 
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compared with the scheme in which a static context i.e. the size of the task is used to 

make an offload decision. The remaining battery energy on the PDA is periodically 

recorded until the set of tasks is completed. 

Task Set: Perform matrix multiplication of square matrices starting from size 20, in 

increments of 20, up to 500 and in decrements of 40 down to 20.  

Environment:  The environment consisted of the low power Sharp PDA and the two 

laptops, all providing the matrix multiplication service. The experiment is first conducted 

in a noiseless environment in which the average throughput to the two laptops is 3.5 

Mbps and 2.1 Mbps, respectively. The experiment is repeated by reducing the average 

throughput to 2.0 Mbps and 1.7 Mbps between the 10th minute and the 35th minute, by 

introducing other traffic in the network.  
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5.5: Adaptation in ConAEC 
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The plot shows the percentage remaining battery energy over time as the set of tasks is 

executed, for the static scheme when there is no change in throughput and when the 

throughput is modified. 
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5.6: Adaptation in the static scheme 

We see that the ConAEC scheme adapts better to changes in the environment as the 

difference in remaining battery energy between the two cases is less than 5%. ConAEC 

detects the change in the environment and makes a decision to offload task taking into 

account the reduced throughput. In the static scheme, the difference between the two 

cases is about 10% as it does not adapt to the dynamically changing environment and 

offloads tasks, based only on the size of the task 

Experiment IV 

This experiment is conducted to measure the energy savings that can be achieved using 

the ConAEC scheme for tasks of different sizes. A given set of tasks, each of different 

sizes, is executed on the PDA using the ConAEC framework. The result is compared with 
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the scheme in which all tasks are executed locally without the ConAEC framework. The 

remaining battery energy on the PDA is periodically recorded until the set of tasks is 

completed. 

Task Set: Perform matrix multiplication of square matrices of sizes 20, 100, 200, 300, 

400 and 500. 

Environment: The environment consisted of the low power Sharp PDA and the two 

laptops, all providing the matrix multiplication service. 

This plot gives the energy savings for different task sizes using the ConAEC scheme over 

the all-local scheme. 
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 5.7: Energy savings for different task sizes 
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We see that as the size of the task increases, the energy savings that can be achieved 

using this scheme is higher. 

Experiment V 

This experiment is conducted to measure the overhead due to the ConAEC framework. 

This overhead includes the cost to keep the delegent manager running at all times, the 

processing cost involved in the computation for storing and predicting energy 

consumption values, probing other devices in the network to maintain updated values of 

throughput to each of them and making the decision on where a task should be performed 

to minimize energy consumption. 

A given set of tasks is executed locally on the Sharp Zaurus PDA without the ConAEC 

framework. The same set of tasks is executed on the PDA with the ConAEC framework. 

All the processing involved in making a decision is completed but the decision is, always, 

to execute the task locally. 

Task Set: Perform matrix multiplication of square matrices starting from size 20, in 

increments of 20, up to 500 and in decrements of 40 down to 20.  

Environment:  The environment consisted of the low power Sharp PDA and the two 

laptops, all providing the matrix multiplication service. 
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5.8: Overhead due to ConAEC 

We see that the overhead due to the ConAEC framework is negligible compared to the 

savings we derive by using a context aware energy conservation scheme. 
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   CHAPTER 6 

6 CONCLUSIONS AND FUTURE WORK 
 
This thesis work presents the design and evaluation of a novel middleware-based 

framework for context aware energy conservation through cyber foraging. 

 

The framework is able to make intelligent decisions on task migration to maximize 

energy savings on the low power device. It also keeps this process transparent to the user.  

 

The proposed framework is compared with a scheme in which a decision to migrate a 

task is made based solely on the size of the task. It is also compared with a scheme in 

which no cyber foraging is used and all tasks are executed locally.  

 

 Implementation results show that the ConAEC framework achieves significant energy 

savings through task migration by adapting to network conditions. Experiments also sho 

that the overhead introduced by ConAEC is negligible when compared to the energy 

savings we can achieve through this scheme. 

 

The ConAEC framework can also be integrated with service discovery schemes to better 

support mobility. Also, support for parallel, distributed task execution can be 

incorporated where the task is migrated to more than device in the environment and 

executed in parallel for faster, distributed execution. Other contexts such as user’s 

location, priority of the task, time of the day, daily behavioral patterns can be included to 

increase energy savings. 
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