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ABSTRACT

UTILITY BASED RESOURCE AWARE FRAMEWORK FOR INFORMATION

CACHING AND SHARING IN MOBILE AND DISTRIBUTED SYSTEMS

Publication No.

HUAPING SHEN, Ph.D.

The University of Texas at Arlington, 2005

Supervising Professors: Sajal K. Das and Mohan Kumar

The Internet is evolving into an indispensable service delivery infrastructure and

infinite information database. Along with the technology advancements in mobile and

wireless networks, ubiquitous information service is becoming a reality in which users can

access information anytime anywhere. However, the user mobility, network heterogeneity

and resource constraints impose significant challenges to provide ubiquitous information

services. In this dissertation, a utility based resource aware framework is proposed to

enhance ubiquitous information availability to mobile users through data caching and

peer-to-peer sharing. The framework considers the constrained resources of mobile and

distributed environments and provides flexible, efficient and scalable data access services

to the mobile users. The major contributions of this framework are as follows. First,

we introduce a novel energy and bandwidth efficient data caching mechanism, called

GreedyDual Least Utility (GD-LU), to enhance dynamic data availability to mobile users

in cellular networks. Based on the utility function derived from our analytical model,

we propose algorithms for cache replacement and passive prefetching of data objects.
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Second, we introduce a novel scheme called energy efficient peer-to-peer caching with op-

timal radius (EPCOR), to enable peer-to-peer information sharing in multi-hop hybrid

networks. In EPCOR, a peer-to-peer overlay network is built among the mobile users

to facilitate cooperative sharing of data based on network proximity and data prefer-

ence. In order to conserve energy, each mobile user shares a data item in a cooperation

zone. An algorithm is developed to determine the optimal radius of the cooperation

zone. Third, we investigate location-aided information retrieval in large-scale mobile

peer-to-peer (MP2P) networks. A novel scheme, called Proximity Regions for Caching

in Cooperative MP2P Networks (PReCinCt) is designed to utilize location information

to support scalable data retrieval. In the PReCinCt scheme, the network topology is

divided into geographical regions where each region is responsible for a set of keys rep-

resenting the data. Each key is then mapped to a location based on a geographical

hash function. We evaluate and validate the developed algorithms both analytically and

experimentally. We have conducted extensive experiments using large scale simulations

to evaluate the performance of proposed framework. Our analytical and experimental

results show that the framework can efficiently provide ubiquitous information services

in mobile and distributed environments.
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CHAPTER 1

INTRODUCTION

Today’s Internet has become an important service delivery infrastructure rather

than merely providing host connectivity and best-effort data transmission. Along with

the advancements in mobile devices and wireless communication technologies, ubiquitous

information access is becoming a reality, in which users can access information whenever

and wherever. However, limited battery power and memory, scarce wireless bandwidth,

user mobility and network heterogeneity impose significant challenges to users to access

data in mobile and distributed computing environments. In this dissertation, we propose

a utility based resource aware framework to enhance information availability and cooper-

ative sharing for users in mobile and distributed environments. In this chapter, we discuss

the background and challenges of our research, summarize the major contributions and

organization of this dissertation.

1.1 Research Background

With the advent of ubiquitous computing era, the computer systems have been

extended to the whole physical space and receded into the background of our lives [93].

Ubiquitous computing promises to provide information access services whenever and

wherever. While the wireless communication infrastructure is and will continue to be

characterized by a heterogeneous multitude of systems, next generation mobile systems

focus on seamlessly integrating the existing wireless technologies. Such all-IP based net-

works will allow users to use any system anytime, anywhere. Users carrying an integrated

terminal will be able to use a wide range of applications provided by multiple wireless

1
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Figure 1.1 Conceptual Architecture of Next Generation Mobile Systems.

networks. Users will also have the flexibility to use multiple services from multiple service

providers at the same time [43]. The communication will not only be limited to cellu-

lar telecommunication systems, like Global System for Mobile Communication (GSM),

General Packet Radio Service (GPRS) or Universal Mobile Telecommunications System

(UMTS), but will also include wireless LAN (WLAN), Digital Video Broadcast (DVB)

[22], Digital Audio Broadcast (DAB) [21] and mobile ad hoc networks (MANET). As

these networks vary in bearer service offerings, coverage, quality of service, and ability to

serve a wide range of communication scenarios, the end-systems are required to provide

access to all currently available wireless communication systems and adaptively use the

most appropriate communication infrastructure in the right situation. Figure 1.1 shows

a conceptual architecture of next generation mobile systems.
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According to different wireless services of next generation mobile systems, we can

classify wireless information access methods into four main categories: 1) infrastructure

based approach; 2) peer-to-peer approach; 3) hybrid approach; and 4) push based ap-

proach; In the first approach, there exists a fixed information access point in the system,

with which each mobile user (MU) interacts to retrieve desired information. The fixed

information access point can be a base station (BS) of cellular networks or an access

point (AP) of wireless LAN connected to the wired Internet, or a wireless data reposi-

tory server such as an infostation [38]. The MUs need to send requests to the information

access point to fetch the data items. We call this information access mechanism as the

infrastructure-based approach. However, due to the expensive spectrum license fees and

limited coverage area of high speed wireless networks, the deployment cost of sufficient

base stations, access points or infostations to provide ubiquitous information service is

prohibitive. Moreover, in some scenarios, the infrastructure may not exist, like mov-

ing vehicles, subway stations, battle field and disaster relief operations. Thus, we need

another approach to provide ubiquitous information services in such scenarios.

Mobile ad hoc networks were designed for environments that lack established in-

frastructure. Communication networks for such scenarios as battle field and disaster

relief operations are examples of ad hoc networks, where each MU retrieves the desired

information from other MUs through multi-hop paths. Here MUs cooperatively act as

routers to relay the data traffic, so that all MUs in the network form a mobile peer-to-

peer (MP2P) system to cooperatively share their information. We call this information

access scheme as the peer-to-peer based approach. However, due to the absence of stable

network connection and frequent changes of the network topology, it is hard to provide

reliable ubiquitous information services in this approach.

Recently, hybrid information access approaches [64] [59] have been proposed to

complement ad hoc and infrastructure based information access methods. In the hy-
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brid approach, the base stations are assumed to have Internet connection or infostation

attachment. In such systems, an MU in the transmission range of a BS can retrieve

information from the latter directly. When an MU moves out of the BS transmission

range, it can continue to access information by relaying data to other MUs along the

path to the BS. Since the hybrid approach extends the wireless service area at low cost,

it is an attractive alternative for ubiquitous data services. However, due to uneven load

distribution and high bottleneck at the base station, this approach suffers from scalability

issues [81].

In order to provide ubiquitous information services to a large number of mobile

users, digital broadcast networks, e.g., digital audio broadcast (DAB) and digital video

broadcast (DVB), offer mass media services. Such networks are able to efficiently reach

large groups of subscribers and provide them with a high-rate, though one way data

broadcast services. In such networks, a set of information units (Web pages, digital

audio or video clips, games) are periodically broadcast over the networks. Mobile users

listen to the broadcast channel and acquire their requested data items. The push of

information and periodic transmission cycles will enhance the information availability to

mobile users. We call this approach as push based information access method. However,

due to the nature of asymmetric communication, this approach cannot provide interactive

information services.

As explained, the above four approaches have their own advantages and disadvan-

tages to provide information services to users for different application scenarios. These

four approaches are expected to coexist to provide ubiquitous information services to

users in next generation mobile and distributed systems. Considering the persistence

of access heterogeneity and the continued co-existence of systems, a clear requirement

for next generation systems [35] is to cope with multiple air interfaces rather than to
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unify and replace them. Future systems have to combine all these information access

approaches to provide a seamlessly ubiquitous information service.

1.2 Research Challenges and Motivation

To enable ubiquitous access to information services for mobile and wireless users,

we need to propose a middleware framework that is independent of air interface and

communication services. This framework resides within the user end terminals. Before

introducing the framework we first describe the specific research issues and challenges our

research has been focused on. To the best of our knowledge, these challenging problems

have not been solved by existing related work that will be reviewed in Chapter 2.

• Efficient Resource Utilization. In mobile and distributed systems, mobile de-

vices have limited battery power, computation capacity and memory storage. Espe-

cially, as more and more bandwidth is available in wireless networks, transmitting

and receiving data cost more energy to mobile users. With slow progress in the

battery technology, energy of mobile devices is the crucial resource in mobile and

distributed systems. In cellular networks, the wireless bandwidth is also a limited

resource. Moreover, for mobile peer-to-peer communication, it is a challenge to effi-

ciently distribute service provisioning load among different mobile users to achieve

optimal load sharing as well as resource utilization.

• Consistent Information Availability. In mobile distributed environments, mo-

bile users connect/disconnect from wireless networks frequently, and they are al-

ways roaming between different wireless networks. On the other hand, information

is subject to dynamic changes all the time. Therefore, developing mechanisms to

provide consistent information to mobile users is also the significant challenge.

• Flexibility. The third challenge is to achieve flexible and seamless information

services to mobile users. Most existing solutions can only support information
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services in specific wireless networks. As a result, the flexibility and efficiency of

existing approaches are limited by the requirement of specific underlay network

infrastructure support. However, heterogenous networks will co-exist to provide

information services in the future. Thus, there is a need for new flexible solutions

that can integrate different mechanisms and adapt to various network environments.

• Scalability. The challenges of scalability are twofold: user scalability and data

scalability. User scalability demands a solution that can support a massive number

of mobile users. On the other hand, data scalability requires mobile users to access

large volumes of different types of information, like Web pages, digital audio or

video clips, electronic newspapers, software, and games.

In the mobile and distributed environments like an airport, a commercial center,

a campus or an urban environment, users usually access local and general information,

such as news headlines, weather reports, sports, maps, music, video files or mobile games.

The information requested in such environments shows high spatial locality. According

to the measurement conducted in a wireless campus network [51], more than 20% of all

data object requests were from nearby users or those in close proximity within the last

one hour. Therefore, cooperative peer-to-peer sharing of frequently accessed data objects

can significantly reduce the energy and bandwidth consumption due to users’ request in

such environments. Moreover, Caching is considered as one of the important techniques

to relieve bandwidth constraint imposed on mobile and distributed environments [2].

Copies of remote data can be kept in the local storage of mobile devices to substantially

reduce data retrievals from the original server.

Based on these two observations, in this dissertation we develop a utility based

resource aware framework for information caching and sharing to support ubiquitous

information services in mobile and distributed environments. In this framework, util-

ity functions are used to optimize cache management and get optimal performances for
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user data accesses under different wireless networks. The utility functions consider var-

ious resource constraints (e.g., energy, bandwidth, memory, network connectivity, etc. )

of mobile and distributed environments. Since different utility functions can adapt to

different wireless networks, the framework provides a flexible solution for information ser-

vices in different application scenarios. Moreover, efficient data consistency maintenance

schemes are deployed in the framework to enhance consistent information availability

to users. Since the framework efficiently integrates various information providing mod-

els such as push-based, pull-based and peer-to-peer based, it can support large scale

information services in mobile and distributed environments.

1.3 Contributions of the Dissertation

In this dissertation, we propose a utility based resource aware framework to enhance

consistent and dynamic information availability to users in mobile and distributed envi-

ronments through data caching and peer-to-peer data sharing. The framework considers

the constrained resources of mobile devices and wireless networks and provides flexible,

efficient and scalable data access services to the users. In this framework, there are four

major components: (1) Energy-efficient data caching in cellular wireless networks; (2)

passive prefetching in digital broadcast networks; (3) Peer-to-peer data sharing in multi-

hop hybrid wireless networks; and (4) Location-aided data retrieval in mobile peer-to-peer

systems. Figure 1.2 describes the internal components of the proposed framework.

In the proposed framework, we provide a unified information query interface that

allows users to input their queries. Users can input Universal Resource Identifier (URI)

[9] of requested data item, like www.cnn.com or input the description of requested data

item, like hero.mp3. In order to efficiently manage large scale data items, the query

interface implements a conflict free hash function, like MD5 [74] or SHA-1 [27], to hash

users’ query into m-bit identifier. Therefore, different data items have different identifiers
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Query Processing

Passive Prefetching

P2P Searching

DBN

WWAN

MANET

Internet

Consistency Maintenance

Cache Replacement

Data Queries Demand Fetching

Figure 1.2 Internal Components of Proposed Framework.

(IDs). The framework uses IDs to manage all data items in cache, and uses IDs to locate

and retrieve data items in mobile and distributed environments.

For each user query, the framework will search the local cache of mobile devices to

check if the requested item is already cached by matching IDs of cached items and the

requested item’s ID. If requested item is found in the local cache, the data consistency

algorithm implemented in cache management module is used to check the consistency of

the item. The consistent data item is returned to the user. In case of a cache miss, the

framework needs to consult with the service handoff module of mobile devices to check

the availability of wireless information services. According to the availability of different

information services, corresponding data retrieval schemes are used to fetch the requested

item from other mobile users or from the Internet.

As mobile users access information through cellular wireless networks (e.g., GSM,

GPRS, UMTS), they are subject to long access latency and high energy consumption

due to the limited wireless channel bandwidth. In the framework, we propose an energy-

efficient data caching scheme to reduce access latency and energy consumption of infor-

mation access in the cellular networks. In the proposed scheme, we develop an analytical

model for energy consumption of mobile devices due to dynamic data access. The an-
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alytical model considers different events such as data request, data update, connection-

disconnection and device mobility handoff and affect energy consumption due to data

retrievals. Based on this model, we derive a utility function for each data item in terms

of energy saving. A novel caching mechanism, called GreedyDual Least Utility (GD-LU)

[77], is proposed for cache management in mobile devices.

In addition, mobile users access the information through digital broadcast based

wireless networks (DBN), such as Digital Audio Broadcast (DAB) and Digital Video

Broadcast (DVB). These systems will continue to push information (Web pages, digital

audio or video clips, personal electronic newspapers) to mobile users. Under push-based

information service model, we propose a passive prefetching [79] scheme to further reduce

the access latency of each mobile user. In this scheme, mobile devices acquire the data

items from broadcast channels for the users’ future requests based on data items’ relative

utility values. A threshold value is used to admit the data items from broadcast channel.

Based on the utility model, the threshold value is dynamically determined to achieve

near-optimal performance tradeoff between access latency and energy consumption.

When mobile users access information service in hybrid wireless networks, our

framework proposes a novel scheme called energy efficient peer-to-peer caching with op-

timal radius (EPCOR) [78], to efficiently support ubiquitous data accesses in hybrid

wireless networks. In EPCOR, each mobile user or peer has a cache to store the fre-

quently accessed data items. Cached data items in each peer node satisfy local queries as

well as those from peers. Furthermore, a localized overlay network is built among mobile

users to help them cooperatively share cached data based on network proximity and data

preference. The neighbor relationship of two peers in the localized overlay is maintained

by proactive exchange of cache index messages between them. In order to conserve en-

ergy, message exchanges are localized in a cooperation area, and the size of cooperation

zone is determined by setting a hop-to-live value of each cache index message. We de-



10

velop a utility based analytical model to evaluate the performance of EPCOR system. An

iterative algorithm is developed to determine the optimal radius of the cooperation zone

based on the gained utility due to cooperation. Both theoretical and simulation results

show that EPCOR can significantly improve the performance by saving energy, reducing

access latency and balancing load of information access in hybrid wireless networks.

In order to improve the scalability performance of data retrieval in mobile ad hoc

networks, we develop a location-aided data retrieval scheme in the proposed framework to

support information access in environments without Internet connection. A novel scheme,

called Proximity Regions for Caching in Cooperative MP2P Networks (PReCinCt) [80]

[47] is introduced. In this scheme, the entire network topology is divided into geographical

regions, each being responsible for a set of keys representing the data of interest. A hash

function is used at each peer to map a key to a location in a region, called the home

region of the key. When a peer requests a data item represented by a key, the peer

obtains the location information of home region by using the hash function, and then a

request message is sent to the home region by using geographic-aided routing protocol.

After reaching the home region, localized flooding is used to locate the peer holding

the requested data. By routing to regions rather than to specific locations, PReCinCt

requires only approximate location information of each region which makes it robust

against errors in location measurement and frequent mobility of peers.

After data items are retrieved, the framework uses different utility functions to

evaluate the importance of retrieved items considering different application scenarios.

GreedyDual (GD) based caching algorithms are deployed to manage the cache content of

mobile users. In order to provide consistent information to users, various data consistency

maintenance schemes are deployed in the framework to maintain the data consistency of

cached data items.
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To the best of our knowledge, the research work completed in this dissertation is the

first comprehensive attempt to build a resource aware framework for mobile devices to

support ubiquitous information access in next generation heterogenous wireless networks.

Novel algorithms and functional modules have been developed and thoroughly evaluated

with comprehensive analytical and simulation experiments.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 describes research

work related to this dissertation. Chapter 3 describes a utility based model for energy

consumption in mobile devices. A novel caching mechanism, called GreedyDual Least

Utility (GD-LU), is proposed for cache management in mobile devices. The passive

prefetch algorithm is also proposed to access information in data broadcast networks.

Comprehensive simulations are conducted to evaluate the performance of GD-LU cache

management mechanism and passive prefetching scheme.

In Chapter 4, we extend the information sharing into multi-hop wireless networks.

A mobile peer-to-peer information sharing system, EPCOR, is proposed. A model of the

proposed system, and some analytical results are presented to evaluate its performance.

The implementation issues and complexities of EPCOR are discussed. Simulation results

verify EPCOR performances.

In Chapter 5, we investigate location-aided data retrieval in large-scale mobile peer-

to-peer systems. A novel scheme, Proximity Regions for Caching in Cooperative MP2P

Networks (PReCinCt) is proposed to efficiently support location-aided data retrieval in

large-scale MP2P networks. Analytical performance evaluation and simulation results of

PReCinCt scheme are also presented. Chapter 6 concludes the dissertation and discusses

future research.
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1.5 Summary

In next generation wireless networks, different wireless networks will co-exist to

provide ubiquitous information services. Each mobile user will have multiple wireless in-

terfaces so that they can operate in different wireless networks. Mobile users are deployed

with service handoff to discover and select wireless systems and provide seamless mobility

support under heterogenous wireless networks. With limited battery power and memory

storage, a utility based framework is proposed for mobile users to support ubiquitous in-

formation services under the heterogenous wireless networks. In this section, we present

an architectural overview of the proposed framework. The framework integrates three dif-

ferent data access schemes, i.e., passive prefethcing, on-demand fetching and peer-to-peer

sharing, to make mobile users adapt to various information access model under different

wireless networks. Different utility functions are proposed to manage and optimize the

cache content for different data access schemes. Data consistency schemes are also de-

ployed in the framework to provide consistent information to users. All schemes of the

proposed framework are developed, analyzed and evaluated in the following chapters.



CHAPTER 2

RELATED WORK

In this chapter, we discuss the related work of this dissertation. A range of different

research efforts are related to our research work. We classify the related work into several

categories, each of which is briefly reviewed. Existing research work on data broadcast,

caching, prefetching, cache consistency maintenance and peer-to-peer network are mainly

presented in this chapter.

2.1 Data Broadcast

Data broadcasting has been considered as a promising way of disseminating and

sharing information to a massive number of users in a wireless communication environ-

ment. For data broadcasting, three kinds of broadcast schemes are proposed: push-based,

pull-based (or on-demand) and hybrid.

In push broadcast, data are periodically broadcast on the wireless channel accord-

ing to the broadcast program generated by the data scheduling algorithm. The scheduling

algorithm may make use of precompiled access profiles in determining the broadcast pro-

gram. Once a mobile user issues query for a data item, the MH tunes into the broadcast

channel and acquires the desired data, perhaps after a wait period. In the following,

we describe three typical push based broadcast schemes: flat broadcast, broadcast disks,

square-root rule broadcast.

Flat broadcast is the simplest scheme for data broadcast scheduling. With a flat

broadcast program, all data items are broadcast in a round-robin manner. The access

time for every data item is the same, i.e., half of the broadcast cycle. This scheme is

13
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simple, but its performance is poor in terms of average access time when data access

probabilities are skewed.

In [2], a repetitive broadcast technique, called broadcast disk is proposed to struc-

ture the broadcast in a way that provides improved performance for non-uniformly ac-

cessed data. The broadcast disks superimpose multiple disks spinning at different speeds

on a single broadcast channel-in effect creating an arbitrarily fine-grained memory hier-

archy. In this scheme, the data items are sorted according to their popularity. The list of

all items are partitioned into multiple ranges (i.e., disk). Each of the disks is assigned a

relative frequency of broadcast. Each disk is split into a number of smaller units, namely

chunks. The broadcast program is then created by interleaving the chunks of each disk.

In [88], a square-root rule is discovered to achieve the minimum overall access

latency for push-based data broadcast. Square-root Rule: Give the demand probability

pi of each item i, the minimum overall mean access time, t, is achieved when frequency fi

of each item i is proportional to square root of its demand probability
√

pi and inversely

proportional to square root of its length
√

li, assuming that instances of each item are

equally spaced.

In pull-based broadcast, the server provides on-demand data access in response to

explicit client requests. The increased broadcast capacity due to various technological

advances has spawned a number of new on-demand applications which exploit pull-based

broadcast infrastructure. Once the client makes a request for a data item, it monitors

the downlink channel for the server response and pulls of off the pages comprising its

desired data item. The broadcast pages are assumed to have self-identifying headers and

the server delivers pages comprising an item in order. Since the channel uses broadcast,

a client’s request may be satisfied by the response to a prior request for the same item

from another client (in point-to-point case, this is not feasible). The amount of common

requests among clients, of course depends on the application. The broadcast server queues
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up the client requests as they come along unless there is already a pre-existing request

for the same data item which has not yet been satisfied. The scheduling algorithm used

by the server determines the order in which the requests are serviced.

Preemption [3]: Preemption involves interrupting a broadcast to service others

requests before resuming the remainder of the original broadcast. According to the

definition of preemption, the pull-based data scheduling algorithms are classified into two

categories: preemptive scheduling and non-preemptive scheduling.

Pull-based broadcast scheduling for application with variable data item sizes was

studied in [3]. To evaluate the performance for items of different sizes, a new performance

metric called stretch was introduced:

Stretch: the ratio of the access time of a request to its service time, where the

service time is the time needed to complete the request if it were the only job in the

system.

Compared with access time, stretch is believed to be a fairer metric for items of

variable sizes since it takes into account the size (included in service time) of a request

item.

In the hybrid push based system, a less popular item if requested, is sent immedi-

ately after having broadcast the most popular item. Suppose D is the total number of

unique data items present in the system, the push set contains data items 1 to K, that are

most popular, and the remaining (D−K) items are served as push set data. The hybrid

broadcast architecture is first investigated in [4]. An algorithm, called Interleaved Push

and Pull (IPP) was proposed to combine push-based and pull-based broadcast schemes.

IPP mixes both push and pull by allowing clients to send pull requests for misses on the

backchannel while the server supports a broadcast disk plus interleaved response to the

pulls on the front channel. The allocation of bandwidth to pushed and pulled pages is

determined by the PullBW parameter. A refinement to IPP uses a fixed threshold to
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limit the use of the backchannel by any one client. The client sends a pull request for

page p only if the number of slots before p is scheduled to appear in the periodic broad-

cast is greater than the threshold parameter called ThresPerc. Threshold is expressed as

a percentage of the major cycle length (i.e., the push period). When ThresPerc = 0%,

the client sends requests for all missed pages to the server. When Thresperc = 100%

and the whole database appears in the push schedule, the client sends no request since

all pages will apppear with a major cycle. Increasing the threshold has the effect of

forcing clients to conserve their use of the backchannel and this, minimizes the load on

the server. A client will only pull a page that would otherwise have a very high push

latency. The experimental results in [4] show that when there is little or no contention

at the server, pulling pages using the backchannel with no server push (pure pull) is the

best strategy. If the server is lightly loaded, all requests get queued and are serviced

much faster than the average latency of pages on the Broadcast Disk. When the server

is saturated, the best strategy is to use Pure-Push since it provides a ”safety net” and

puts an upper bound on the delay for any page.

2.2 Data Consistency Maintenance

In the literature, there are three types of cache consistency maintenance algorithms

for wireless mobile computing environments: stateless, stateful and hybrid. In the state-

less approach [6], the server is unaware of client’s cache content. The client needs to check

the validity of cached entries from the server before each query. Even though stateless

approaches employ simple database management, their scalability and ability to support

disconnectedness are poor. On the other hand, stateful approaches [32] are scalable, but

incur significant overhead due to server database management. In the hybrid approach

[91], the server keeps very little information about client cache statutes. Light computa-
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tion overhead is need at server database management, therefore it achieves good tradeoff

between scalability and efficiency.

In the stateless approach, an MSS assumes no knowledge of MU’s cache contents.

An MSS simply sends invalidation reports (IRs) to its MUs periodically. At an MU,

a data object request cannot be serviced until the next IR from the MSS is received.

Synchronous methods of cache invalidation are based on periodic broadcasting of IRs. A

client has to listen to the invalidation report first in order to conclude whether its cache

is valid or not. (Notice that this adds some latency to query processing.) If the decision

is negative the MU has to issue a query to the server and refresh its cache. It may turn

out that the invalidation report leads to a false alarm, and in fact the cache was valid.

However if given an invalidation report, the MU concludes that the cache is valid, it

must in fact be so. Hence, this scheme will only allow false alarm errors and will always

correctly inform the MU if his copy is invalid.

The server timestamps each report with the time at the initiation of the broadcast.

If the last report was broadcast with timestamp Ti and a MU determines that a particular

item’s cache is valid after listening to the report, this cache gets timestamped with the

value Ti (marked as valid up to this time). If the MU has to submit an uplink request

because the cache is invalid, then the obtained copy has the timestamp equal to the

timestamp of the request. The broadcast of the invalidation reports divides the time

into intervals. Notice that the MU has to wait for the next invalidation report before

answering a query. The MU keeps a list of items queried during an interval and answers

them after receiving the next report.

The stateless server sends the invalidation reports according to the different strate-

gies. We can classify the stateless approach into two categories as follows:

• Asynchronous: Here invalidation reports are broadcast immediately after changes

to data items occur. In particular, the report may just contain the name of the
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changed data item. In general, it may have extra information about other data

items such as timestamps of their most recent changes.

• Synchronous: When the invalidation reports are broadcast periodically.

Asynchronous methods do not provide any latency guarantees for the querying client; if

the client queries a data item after disconnection period then it either has to wait for the

next invalidation report (with no time bound on the waiting time) or has to submit the

query to the server(cache miss). In case of synchronous method, there is a guaranteed

latency due to the periodic nature of synchronous broadcast. For stateless synchronous

method, two algorithms proposed by Barbara and Imielinksi [6] (i.e., Timestamps (TS)

and Amnesic Terminals (AT )) are proposed in the literature.

In the stateful approach, an MSS maintains object state for each MU’s cache

and only broadcasts IRs for those objects. Kahol, et al. [32] proposed an asynchronous

stateful (AS) algorithm which uses asynchronous invalidation reports to maintain cache

consistency, i.e., reports are broadcast by the server only when some data changes and

not periodically.

In AS, each MU maintains its own Home Location Cache (HLC) to deal with the

problem of disconnections. The HLC of an MU is maintained at the designated home

Mobile Switching Station (MSS). If a MU is roaming, its HLC is duplicated at the MSS

of its current cell. Thus, an MSS always maintains a HLC for each MU in its coverage

area at any given time. Consider an MSS with N mobile users (MUi, 1 ≤ i ≤ N) at any

given time. For any i, HLCi for MUi, as maintained in the MSS, keeps track of what

data has been locally cached at MUi (state information of the MU). In general, HLCi is

a list of records (x, T, invalid flag) for each data item x locally cached at MUi, where x

is the identifier of a data item and T is the timestamp of the last invalidation of x. The

key feature of AS scheme is that the invalidation report are transmitted asynchronously

and those reports are buffered at the MSS (in the HLCs of the mobile user) until an
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explicit acknowledgment is received from the specific MU. The invalid flag in the HLC

record for the specific data item is set to TRUE for data items for which an invalidation

has been sent to the MU but no acknowledgement has been received. The timestamp is

the same as that provided by the server in its invalidation message.

Each MU maintains a local cache of data items which it frequently accesses. Before

answer any queries from the application, it checks if the requested data is in a consistent

state. When a MSS receive receives an invalidation from a server, the MSS determines

the set of MUs that are using the data by consulting the HLCs and sends an invalidation

report to each of them. When a MU receives that invalidation message, it marks the

particular data item in its local cache to be invalid. When an MU receives (from the

application layer) a query for a data item, it checks the validity of the item in its local

cache. Of the item is valid, it satisfies the query from its local cache and saves on latency,

bandwidth and battery power; otherwise, an uplink request to the MSS for the data item

is required. The MSS make a request to the server for the data item on behalf of the

MU. When the data item is received the MSS adds an entry to the HLC for the requested

data item and forwards the data item to the MU. Note that the data item may or may

not be cached at the MSS.

Wang, et al. proposed a hybrid consistency maintenance scheme, called Scalable

Asynchronous Cache Consistency Scheme (SACCS) to maintain MU’s cache consistency

of mobile computing systems [89] [90] [91]. Unlike the stateful algorithm which requires

the MSS to remember all data objects for each and every MU’s cache, SACCS only

requires the MSS to identify which data objects in its database might be valid in MU’s

caches. This makes the management of the MSS database much simpler. On the other

hand, unlike existing synchronous stateless approaches, SACCS does not require periodic

broadcast of IRs, thus greatly reducing IR messages that need to be sent through the

downlink broadcast channel.
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For each cached data object, SACCS uses a single flag bit fx, to maintain the

consistency between the MSS and MU caches. When data item dx is retrieved by an

MU, fx is set (fx = 1), indicating that a valid copy of dx may be available in an MU’s

cache. If and when the MSS receives an updated dx, it broadcasts an invalidation report

IR(x) and resets fx (fx = 0). This action implies that there are no valid copies of dx in

any MU’s caches. Furthermore, while fx = 0, subsequent updates do not entail broadcast

of IR(x). The flag fx is set again when the MSS services a retrieval (including request

and confirmation) for dx by an MU. For every data object with unique identifier x, the

data structure for MSS is as follows:

• (dx , tx , fx ): data entry format for each data object in MSS. Here dx is the data

object, tx is the last update time for the data object and fx is a flag bit.

In mobile environments, an MU’s cache is in one of two states: (i) awake or (ii)

sleep. If an MU is awake at the time of IR(x) broadcast, the dx copy is invalidated

and an ID-only entry is maintained by the MU. The data objects of an MU in the sleep

state are unaffected until it wakes up. When an MU wakes up, it sets all cached valid

data objects (including dx) into the uncertain state. Consequently, sleeping MUs and the

cached object are unaffected by missing IR(x) broadcast.

2.3 Caching and Prefetching

The constraints of mobile wireless environments, such as scarce bandwidth and

limited client resources, remain barriers to the full utilization of the capabilities of mobile

computing. Client data caching has been considered a good solution for coping with

inefficiency of wireless data dissemination because it reduces the amount of traffic over

the wireless communication channel by answering queries from data cached at the client.

There are three main issues involved in cache design for mobile devices: 1) a cache

replacement policy which chooses to discard the victim data set currently in the cache
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for accommodating new incoming data; 2) a cache prefetching policy which automatically

prefetches data into cache for possible future accesses; and 3) cache invalidation scheme

which maintains the data consistency between local cache and the original server. In this

section, we investigate first two issues of the mobile data caching.

2.3.1 Caching Replacement Algorithms

Ideally, a cache replacement algorithm is required to achieve multiple goals. The

goals may include high hit ratio, low access latency, low stretch, or high energy saving.

In order to achieve a specific performance goal, the cache replacement [99] use different

parameters to evaluate the importance of cached data items and chooses the victim data

set at each replacement. In other words, the cache replacement algorithm should aim to

optimize the following expression

max
∑
i∈C

Uj(di) (2.1)

subject to a constraint
∑
i∈C

si ≤ S (2.2)

where C is the set of data items selected for caching, S is the total cache size and U(di)

is the utility value of cached data item di for goal j (the goal can be hit ratio, access

delay and energy saving etc.). The problem defined by Equations (2.1) and (2.3) is

equivalent to the knapsack problem, which is NP-hard. Consequently, there is no known

efficient algorithm for solving the problem. However, if we assume that the sizes of cached

documents are relatively small when compared with the total cache size S, and thus it is

always possible to utilize almost the entire cache space, then the solution space can be

restricted to sets of documents C satisfying:

∑
i∈C

si = S (2.3)
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and there exists some optimal solutions by using simple greedy off-line algorithm.

For the cost consideration, there have been several algorithms developed for the

uniform-size variable-cost data items caching problem. GreedyDual [103], is actually

a range of algorithms which include a generalization of LRU and a generalization of

FIFO. The name GreedyDual comes from the technique used to prove that this entire

range of algorithms is optimal according to its competitive ratio. The competitive ratio

is essentially the maximum ratio of the algorithms cost to the optimal offline algorithm’s

cost over all possible request sequences. In [15], Cao et al. proposed a variant algorithm,

GreedyDual-Size, which handles data items of differing sizes and differing cost. They

also showed that GreedyDual-Size has an optimal competitive ratio.

In the literature, there are other cost based algorithms that have been proposed to

optimize the documents of web proxy cache in the wired networks. Least-Recently-Used

(LRU) evicts the document with was requested the least recently. Least-Frequently-Used

(LFU) evicts the document which is accessed least frequently. Size [95] evicts the largest

document. LRU-Threshold [1] is the same as LRU, except documents large than a certain

threshold size are never cached. Hyper-G [95] is a refinement of LFU with last access

time and size considerations. Lowest-Latency-First [96] tries to minimize average latency

by removing the document with the lowest download latency first. Hybrid [96] is aimed

at reducing the total latency. Lowest Relative Value (LRV) [58] includes the cost and

size of a document in the calculation of a value that estimates the utility of keeping a

document in the cache.

The cache replacement algorithm of wireless data access was first studied in the

Broadcast Disks project. Acharya, et al. propose a cache replacement policy called PIX

[2], in which the data item with the minimum value of p/x was evicted for replacement,

where p is the item’s access probability and x is its broadcast frequency. Thus, an evicted

item either has a low access probability or has a short retrieval delay. As an example of
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PIX, consider two pages. One page is accessed 1% of the time at a particular client and

is also broadcast 1% of the time. A second page is accessed only 0.5% of the time at the

client, but is broadcast only 0.1% of the time. In this example, the former page has a

lower PIX value than the latter. As a result, a page replacement policy based on PIX

would replace the first page in favor of the second, even though the first page is accessed

twice as frequently.

Tassiulas and Su presented a cache update policy that attempted to minimize

average access latency [86]. In [86], the broadcast channel was divided into time slots of

equal size, which were equal to the broadcast time of a single item. Let λi be the access

rate for item i and τi(n) be the amount of time from slot n to the next transmission

of item i. A time-dependent reward (latency reduction) for item i in slot n is given by

r(i, n) = λiτi(n) + λi

2
. The proposed W-step look-ahead scheme made the cache update

decision at slot n, such that the cumulative average reward from slot n up to slot n + W

was maximized. The larger the window W , the better the access performance, but

complexity of the algorithm is high.

Caching algorithms for the Broadcast Disks systems were also investigated by

Khanna and Liberatore [37]. Different from the previous work, their work assumed that

neither knowledge of future data requests nor knowledge of access probability distribu-

tion over the data items was available to the clients. The proposed Gray algorithm took

into consideration the factors of both access history and retrieval delay for cache replace-

ment/prefetching. Theoretical study showed that, in terms of worst-case performance,

Gray outperformed LRU by a factor proportional to CacheSize/ log CacheSize.

Cache replacement policies in a data updating environment were investigated by

Xu et al. [100]. Different from the previous work, variable data sizes, data updates are

considered in the design of cache replacement algorithm. An cache replacement policy,

called Min-SAUD, which accounts for the cost of ensuing cache consistency before each
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cached item is used. Min-SAUD uses stretch as the major performance metric, which

accounts for the data service time and, thus is fair for data items with various sizes.

Based on the optimization of stretch performance, a gain function is derived to evaluate

each cached data item. The function is given as follows:

gain(i) =
pi

si

(
bi

1 + xi

− v

)
(2.4)

where pi is the access probability of data item i, bi is the retrieval delay from the server,

xi is the ratio of update rate to access rate for the data item, si is the size of the data

item, and v is the cache validation delay.

2.3.2 Prefetching

Prefetching is a technique that can reduce the access latency and improve the cache

hit ratio. The idea of prefetching stems from the fact that, after retrieving a page or

data item from the remote server, a user usually spends some time viewing the page, and

during this period the network link is generally idle. If we can take advantage of this idea

by fetching some files that will likely be accessed soon (in other words, prefetching them

to the local disk), there will be no transmission delay when the user actually requests

these files. In addition, prefetched files can be immediately processed if decryption or

decompression is required, which allows further reduction in the delay of loading a page in

the mobile device. The difficulty of realizing efficient prefetching lies in the fact that it is

impossible to predict exactly what a user is going to need. So some of the prefetched files

are never used, which means prefetching increases the system load. At some point, this

increase in load may increase the delay of normal (nonprefetching) requests significantly

and may eventually cause the overall system performance to degrade. In the wireless

network, this also increases the uplink consumption and battery power waste. Therefore,
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the key challenge in prefetching is to determine ”what to prefetch” so that improvement

in performance will be enhanced.

Jiang and Kleinrock [45] proposed an adaptive network prefetch scheme comprising

a prediction module and a threshold module. The two modules compute the access

probabilities and the prefetch thresholds, respectively. Whenever a new page is displayed,

the prediction module updates the local access history, if needed, and computes the access

probability of each link on that page. At the same time, for each server which has at

least one link on this page, the threshold module computes its prefetch threshold based

on network and server conditions as well as the costs of time and bandwidth to the user.

Finally, all the files with access probability greater than its server’s prefetch threshold

are prefetched. The prediction algorithm may also be run at the server, in which case

access probabilities will be send to the user along with the requested page.

Speculative prefetching has been proposed to improve the response time of net-

work access. N. J Tuah et al. [87] investigates performance modelling of speculative

prefetching. They analyze the performance of a prefethcer that has uncertain knowledge

about future access. They also have developed a prefetch algorithm to maximize the

improvement in access time. The algorithm is based on finding the best solution to a

stretch knapsack problem. An integration between speculative prefetching and caching

is also investigated in [87].

2.4 Peer-to-Peer Networks

Recently, with the popularity of peer-to-peer (P2P) file sharing systems, such as

Gnutella [105], peer-to-peer computing has drawn much research attention. Much re-

search work has been devoted to provide scalable P2P lookup services, such as Chord

[85], CAN [69] and Pastry [71].
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With the great success of peer-to-peer networks on the files sharing in Internet,

mobile peer-to-peer networks are emerging as a promising mechanism for information

sharing in wireless network. Such networks consist of mobile devices called peers, that

interact during (brief) physical encounters in the real world, thereby engaging in short-

haul wireless exchanges of data [48]. Compared to P2P systems in wired networks, MP2P

networks present a more constrained communication environment. Due to limitations

of battery power, wireless bandwidth, and the highly dynamic nature of the network

topology, MP2P networks give rise to new challenges for research on routing, resource

discovery, data retrieval, security and privacy management. Papadopouli and Schulzinne

[64] proposed the 7DS architecture, a peer-to-peer data sharing system, in which a couple

of new protocols are defined to share and disseminate data among users that experience

intermittent connectivity to the Internet. A cooperation concept was introduced in 7DS

for data sharing among all mobile hosts. Lim, et al. [53] suggested a cooperative caching

scheme for Internet based mobile ad hoc networks. A broadcast based simple search

scheme is proposed to establish cooperation among all MUs in the network to share cached

data items. Although the broadcast based data search scheme can locate the nearest

requested data item, the energy and bandwidth cost of the flooding search is significantly

high for a mobile ad hoc network. Sailhan and Issarny [75] limited the broadcast range

in collaborative Web caching in ad hoc networks to minimize energy consumption and

network load. The authors proposed a fixed broadcast range based on the underlaying

routing protocol. However, the mobile users’ location, data popularity and network

density often change in a real mobile environment, so the fixed broadcast scheme is hard

to adapt to real mobile applications. Yin and Cao [102] investigated cooperative caching

algorithms in ad hoc networks to support data access. These algorithms mainly focus on

the problem of choosing data item or data path for caching in the limited cache space of

mobile devices.
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In a summary, in order to enable ubiquitous information access to mobile and wire-

less users, a comprehensive resource aware framework which combines various informa-

tion access approaches need to be studied. However, most of above works were proposed

under some specific application scenarios. Moreover, due to limited resource, network

heterogeneity and user mobility, efficient resource utilization, flexibility and scalability

are crucial for providing information access to mobile users in mobile and distributed

environments. Most related work did not address all these three challenges. In this dis-

sertation, we propose a utility based resource aware framework for information caching

and sharing to support ubiquitous information services in mobile and distributed environ-

ments. In this framework, utility functions are used to optimize cache management and

get optimal performances for user data accesses under different wireless networks. The

utility functions consider various resource constraints (e.g., energy, bandwidth, memory,

network connectivity etc) of mobile and distributed environments. Since different util-

ity functions can adapt to different wireless networks, the framework provides a flexible

solution for information services in different application scenarios. Moreover, efficient

data consistency maintenance schemes are deployed in the framework to enhance consis-

tent information availability to users. Since the framework efficiently integrates various

information providing models, (push-based, pull-based and peer-to-peer based), it can

support large scale information services in mobile and distributed environments.



CHAPTER 3

ENERGY-EFFICIENT DATA CACHING AND PASSIVE PREFETCHING

In the next generation mobile systems, cellular networks will continue to serve

as the backbone of wireless Internet for providing ubiquitous information services. In

our proposed framework, whenever the cellular wireless service is available, mobile users

fetch data items from the original servers via base stations using pull based information

access. However, limited battery power of mobile terminals and scarce wireless channel

bandwidth impose significant challenges to ubiquitous information services. In this chap-

ter, we propose a novel energy and bandwidth efficient data caching mechanism, called

GreedyDual Least Utility (GD-LU), that enhances dynamic data availability to the mo-

bile users in cellular wireless networks. The proposed utility-based caching mechanism

considers such characteristics of mobile distributed systems as connection-disconnection,

mobility handoff, data update and user request patterns to achieve significant energy and

bandwidth saving. In mobile and distributed environments, mobile users frequently con-

nect and disconnect from the cellular network. Thus, we need to have some mechanism

to guarantee data consistency between the original servers and the caches of mobile users.

In our proposed framework, we deploy a scalable asynchronous cache consistency scheme

(SACCS) [91] for caches at mobile users and servers to provide consistent information

availability in the cellular networks.

In the next generation of mobile systems, digital broadcast networks (DBNs) [36]

is also expected to play an important role to provide information services to massive

number of mobile users. In digital broadcast networks, a set of information units (Web

pages, digital audio or video clips, games) are periodically broadcast (or pushed) over

28
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the broadcast channel. In push based information services environments, the data item

requested by one mobile user is available to all other mobile devices in the data dis-

semination channel. In this chapter, we propose a passive prefetching scheme for cache

management of mobile users in push based information service environments. In contrast

to existing prefetching schemes, in passive prefetching, mobile users do not send request

messages to acquire data item. A threshold (TH) is set at the cache, based on the relative

utility value of each data item to admit data appearing at the broadcast channel. This

significantly reduces energy and bandwidth consumption for data access in push based

information service environments.

3.1 An Overview of SACCS

In order to maintain data consistency between mobile devices and the server, Wang

et. al [89] [91] proposed the SACCS algorithm, in which each data item in the server

is associated with a flag bit. When an item is retrieved by a mobile device, the corre-

sponding flag bit is set indicating that a valid copy may be available in the mobile cache.

When the data item is updated, the server immediately broadcasts its invalidation report

(IR) to mobile devices and resets the flag bit. The reset flag bit implies that there is no

valid copy in any mobile cache. Hence, subsequent updates do not broadcast IR until

the flag bit is set again. A mobile device is either in an awake state (i.e., connected with

base station) or in a sleep state (i.e., disconnected from base station) at the time of IR

broadcast. If a mobile device is in the awake state, it deletes the valid copy and sets

the entry to invalidated state (i.e., the data item is deleted, but an ID is kept) after it

receives the IR. If the device is in the sleep state, it misses the IR; and upon wake up, it

sets all valid cache entries to an uncertain state. An uncertain entry must be refreshed or

checked before its usage. Thus, the cache consistency is guaranteed. All entries with data
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items in uncertain or invalidated state can be used to identify useful broadcast messages

for validating or downloading valid data items.

In SACCS, each data item in the system is in one of three states: invalidated,

certain and uncertain. The invalidated state is defined for data items that are not cached

at the mobile device. The uncertain state is defined for data items that are cached at the

mobile device, but validation of data items is not confirmed. The certain state is defined

for data items whose validation is confirmed and can be used to satisfy the application’s

data request.

After receiving the IR, mobile devices discard the corresponding data items and

keep the metadata information (including ID) in their local caches. Also, the data items

contained in IR will change their status to the invalidated state. If mobile devices recon-

nect to wireless networks after a disconnection from the base station for a while or if they

move to another cell, all data items in the cache are set to the uncertain state. In both

cases, we do not know whether the data in the cache are valid or not. If applications

request an item that is in uncertain state, an uncertain request message is initialized and

sent to the base station. The base station responds with a confirmation message if the

data item has not been updated since the mobile device last acquired it; otherwise, the

whole data item is sent to the mobile. After receiving confirmation message from the

base station, the uncertain cached data items will be changed to the certain state.

In order to handle IR loss, the server sets an estimated time-to-live (TTL) for each

data item based on its update history. This TTL is also cached together with the data

item in the mobile device when acquired from the server. The cached item in the mobile

device is automatically set to an uncertain state when its TTL expires. This will protect

a stale data item from being used for an arbitrarily long time due to IR loss, which

means that a connected mobile user cannot correctly receive a broadcast IR. Simulation

results reported in [91] show that the performance of SACCS is superior to those of other
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existing stateful and stateless cache consistency algorithms in both single and multi-cell

wireless environments, we use SACCS in our framework to maintain data consistency of

mobile users for accessing information in cellular networks.

3.2 Analytical Model for Utility

In pull based approach to access information in cellular networks, the mobile user

continuously requests the original server and retrieves the data from the server through

a unicast channel. Four kinds of data management events happen at a mobile user: data

request, data update (i.e., receiving data invalidation report), disconnection, and mobility

handoff. Figure 3.1 depicts these events for a mobile user. Data update, disconnection,

and handoff events may occur zero or more times between two consecutive request events.

nth Request

data update
(n+1)th Request

Time

handoffdisconnect

Figure 3.1 Events of Mobile Devices.

Based on the data access model of mobile users in cellular networks, we develop a

utility model to analyze the energy saving due to cache usage at a mobile device. First,

we state some assumptions used in our analytical model. The outcome of our analysis is

a utility function, which will be deployed to manage the cache space of mobile devices.

Since Poisson process has been widely used to model independent arrivals [30], we

assume that data request, data update at the server, mobility handoff and disconnection

of mobile devices follow Poisson processes. The following analysis assumes a unicast

communication between the base station and mobile devices. As mentioned earlier, the
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SACCS algorithm is used to maintain data consistency between mobile devices and the

original server.

3.2.1 Notations

The notations used in the analysis are listed below:

• di: data item i;

• λu
i : update rate of data item di;

• λa
i : access request arrival rate of data item di;

• λdc: disconnection rate of mobile devices;

• λh: handoff rate of mobile devices;

• λs = λdc + λh: uncertain rate of mobile devices;

• λa: user request arrival rate of mobile devices;

• pi = λa
i /λ

a: average access probability of di;

• si: size of data item di;

• sup: size of uplink uncertain request or cache missing request;

• sdw: size of downlink confirmation message;

• ε(sup): energy cost to send a request to a base station;

• ε(sdw): energy cost to receive a confirmation message;

• ε(si): energy cost to receive a data item of size si;

• Su
n: set of uncertain data items in cache after nth request;

• Sc
n: set of certain data items in cache after nth request;

• Sn = Su
n ∪ Sc

n: set of data items in cache after nth request;

• EVj: event j occurs in mobile device.

• Pj: the probability of event EVj.

Figure 3.2 depicts the state transitions of each cached data item di in the system

between nth and (n + 1)th data requests. Event EV1 occurs when the mobile device
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Uncertain

Invalidated Certain

EV
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1

EV2

EV3
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5

Figure 3.2 States Transition of Mobile Data.

does not receive any IR for di which therefore remains in the uncertain state. Event

EV2 occurs when the item di moves to an invalidated state as an IR for di is received.

Event EV3 occurs if both the following conditions are satisfied: mobile device does not

receive any IR for di, and no handoff or disconnection occurs. Event EV4 accounts for

di changing from certain to uncertain state, if a handoff or disconnection occurs. EV5

stands for the event that di changes to invalidated state from certain state. EV5 happens

if there is at least one IR for di received by the mobile device.

3.2.2 Probability of Events

Recall that we assume that the arrivals of data request, data update, disconnection

and handoff are all Poisson processes. The probability Pj of each event EVj (for 1 ≤ j ≤
5) is given by Equations (3.1)-(3.5) respectively.

P1 =

∫ ∞

0

e−λu
i tλa

i e
−λa

i t dt =
λa

i

λa
i + λu

i

(3.1)

P2 = 1− P1 =
λu

i

λa
i + λu

i

(3.2)
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P3 =

∫ ∞

0

e−λu
i te−λstλa

i e
−λa

i t dt =
λa

i

λa
i + λu

i + λs
(3.3)

P4 =
∫∞

0
e−λu

i t(1− e−λst)λa
i e
−λa

i t dt =
λa

i

λa
i +λu

i
− λa

i

λa
i +λu

i +λs
(3.4)

P5 = 1− P3 − P4 =
λu

i

λa
i + λu

i

(3.5)

3.2.3 Energy Calculation

Energy consumed by any mobile device for sending, receiving or discarding a mes-

sage is given by the following linear equation [26]:

ε(s) = m ∗ s + h (3.6)

where s is the message size, m denotes the incremental energy cost associated with mes-

sage, and h is the energy cost due to the overheads of message. The latter two parameters,

i.e., m and h, are different for sending and receiving. When a mobile user requests an

uncertain data item in the cache, two probabilities need to be considered to calculate

the energy cost of satisfying user requests. If the requested data item is still valid, the

energy cost is ε(sup) + ε(sdw), that is the energy costs for sending uncertain request on

the uplink and receiving the confirmation message on the downlink. If the requested data

item is invalid, the energy cost is given by ε(sup) + ε(si), the sum of the energy costs for

sending uplink uncertain request and for receiving data item. According to Equations

(3.1)-(3.5), the energy cost (Eu
i ) of the mobile device’s request for an uncertain data item

di ∈ Su
n is given by,

Eu
i = pi

[
(ε(sup) + ε(sdw))

λa
i

λa
i + λu

i

+ (ε(sup) + ε(si))
λu

i

λa
i + λu

i

]
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The energy cost (Ec
i ) of a mobile device’s request for a certain data item di ∈ Sc

n

is given by,

Ec
i = pi

[
(ε(sup) + ε(sdw))(

λa
i

λa
i + λu

i

− λa
i

λa
i + λu

i + λs
) + (ε(sup) + ε(si))

λu
i

λa
i + λu

i

]

At the (n + 1)th request, the caching mechanism needs to choose victim data set

from certain and uncertain data sets in the cache to make space for an incoming data

item dx. Therefore,

Sn+1 = Sn ∪ dx − V u
n − V c

n

where V u
n ∈ Su

n is the victim data set chosen from the uncertain data set and V c
n ∈ Sc

n is

the victim data set chosen from the certain set.

So the energy cost after the (n + 1)th request can be expressed in a recursive way

as follows:

en+1 = en + [Ec
x − px(ε(sup) + ε(sx))]

+
∑

di∈V u
n
[pi(ε(sup) + ε(si))− Eu

i ]

+
∑

di∈V c
n
[pi(ε(sup) + ε(si))− Ec

i ]

(3.7)

The objective of our replacement policy is to choose the optimal victim data set

from the cache to minimize the energy cost after the (n + 1)th request. The second term

in Equation (3.7) is the increased energy cost as dx is cached at the (n+1)th request, i.e.,

dx changes from invalidated state to certain state. The first two terms of Equation (3.7)

are unaffected by the caching mechanism, whereas the last two terms of the equation can

be minimized as follows:

∑

di∈V u
n

[pi(ε(sup) + ε(si))− Eu
i ] =

∑

di∈V u
n

pi(ε(si)− ε(sdw))× λa
i

λa
i + λu

i

∑

di∈V c
n

[pi(ε(sup) + ε(si))− Ec
i ] =

∑

di∈V c
n

[pi(ε(si)− ε(sdw))×

λa
i

λa
i + λu

i

+ (ε(sup) + ε(sdw))
λa

i

λa
i + λu

i + λs
]
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Therefore, the utility function to evaluate uncertain data items in a cache is given

by,

Uu
i = pi[ε(si)− ε(sdw)]

λa
i

λa
i + λu

i

(3.8)

The utility function for certain data items is given by,

U c
i = pi[ε(si)− ε(sdw)]

λa
i

λa
i +λu

i
+ pi[ε(sup) + ε(sdw)]

λa
i

λa
i +λu

i +λs
(3.9)

In order to minimize the energy cost at mobile devices, at each replacement, we

choose the data items with the least utility values according to Equations (3.8) and (3.9).

An uncertain data item costs more energy as it is necessary to get confirmation from the

base station. The utility of a data item di while it is in the certain state is more than its

utility value when in uncertain state by an additive factor of pi[ε(sup)+ε(sdw)]
λa

i

λa
i +λu

i +λs .

3.3 GD-LU Cache Replacement Algorithm

The GreedyDual (GD) cache replacement is an efficient online optimal algorithm

[103] devised to deal with systems that exhibit heterogeneous data retrieval costs. GD

in essence allows a bias to be applied to each item in cache so as to give higher priority

to items that incur higher retrieval costs. Revised versions of GD algorithm have been

deployed for web proxy caching [14] and multimedia stream caching [49]. Based on the

GD concept, we propose a novel algorithm, called GreedyDual Least Utility (GD-LU)

cache replacement algorithm for mobile devices. Since the utility functions derived from

Equations (3.8) and (3.9) are used in the GD-LU algorithm, the parameters in the utility

functions should be available when a replacement occurs at the cache. We associate

each data item with a metadata that contains the necessary parameters of that item.

Parameter estimation is discussed later in Section 3.5. Since each metadata contains

history information of the corresponding data item, we use a queue to store the metadata

of replaced data items.
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C: the set of data items in cache;
ui: utility value of cached item di;
Mi: response message to request data di;
L: minimal utility in the cache;
initialize L = 0;
user requests a data item di

case 1: di is in cache and valid
ui = L + U c

i /si; /∗ Utility calculation ∗/
case 2: di is in cache and uncertain

send uncertain message to the server;
case 3: di is not cached

send cache missing message to the server;
Wait: message Mi appears at downlink channel;
if Mi is a confirmation message then

set the state of di as valid;
ui = L + Uu

i /si;
return di to the application;

if Mi contains the data item di then
while there is not enough space for Mi;

let L = MINdk∈C(uk);
Evict dj such that uj = L;
Keep metadata of dk in metadata queue;

end while
Add di into cache;
ui = L + U c

i /si;

Figure 3.3 GD-LU Cache Replacement Algorithm.

As shown in the algorithm described in Figure 3.3, when an application requests

for a data item, the algorithm first checks the state of the item in the cache. If the data

item is valid, it is returned and the corresponding metadata is updated. If the data item

is in an uncertain state, an uncertain message is sent to the server to check if the data

is valid or not since the last retrieval. In the event of a cache miss, the message is sent

to the server to retrieve the data. When the mobile device receives the confirmation

message, the data item is set to the certain state and returned to the application. If the
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whole data item is received, the GD-LU replacement algorithm chooses the victim data

set to make space to accommodate the incoming data item.

3.4 Passive Prefetching Algorithm

In the next generation of mobile systems, digital broadcast networks (DBNs) [36]

will play an important role to provide information services to massive number of mobile

users. In digital broadcast networks, a set of information units (e.g., Web pages, digital

audio or video clips, games) are periodically broadcast over the broadcast channel. Mobile

users listen to the broadcast channel and acquire their requested data items. DBNs are

able to efficiently reach large groups of subscribers and provide them with a high-rate,

through one way data broadcast services.

In push based information services environments, the data item requested by one

mobile user is available to all other mobile devices in the data dissemination channel.

Although the data item may not be requested by a mobile user, prefetching data into

the cache of that mobile device may reduce future access latency. However, acquiring the

data item from dissemination channel still costs energy at the mobile users. Therefore,

blind prefetching of the data that a user never requested may result in wasting energy

and replacement of some recently accessed data, thus degrading cache performance.

In order to avoid blind prefetching, we propose a passive prefetching scheme for

cache management of mobile users in push based information service environments. In

passive prefetching, a threshold (TH) is set at the cache to admit data appearing at the

broadcast channel. According to the GD-LU replacement algorithm, a data item whose

metadata are kept in the metadata queue may have a higher probability to be requested

again by the mobile device. So the data item whose metadata is kept in the metadata

queue is considered as valuable candidate for passive prefetching. To evaluate the future
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utility of an item at the mobile device, we define relative utility (RU) as the ratio of the

utility of data (di) to the utility of cached data. Thus,

RU(di) =
U c

i (di)

MAXdj∈C(uj)−MINdj∈C(uj)
(3.10)

where C is the set of data items in cache, and uj is the utility value of cached data item dj.

If RU is greater than the threshold (TH) of the cache, the data item is admitted into the

cache; otherwise the cache ignores such data. Although the utility function in Equation

(3.9) is derived based on a unicast assumption, as shown in the next section, it can

adapt to broadcast communication very well. In the later part of performance evaluation

section, the threshold (TH) will be discussed in more details. A median utility threshold

scheme is proposed to achieve a near-optimal performance tradeoff between access latency

and power consumption. The passive prefetching algorithm is shown in Figure 3.4. In

passive prefetching, a mobile device does not send uplink request, thus reducing the

burden on the server while improving on cache performance at the mobile device and

saving scarce wireless bandwidth.

TH: prefetch threshold set at mobile devices.
for each data item df appearing at broadcast channel

if df is in metadata queue then
Calculate RU(df );
if RU(df ) > TH then

while there is not enough space for df ;
let L = MINdj∈C(uj);
Evict dj such that uj = L;
Keep metadata of dj in metadata queue;

end while
Add df into cache;
uf = L + U c

f/sf ;

Figure 3.4 GD-LU Passive Prefetch Algorithm.
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3.5 Implementation Issues and Complexity

To implement the proposed replacement and passive prefetching schemes at the

mobile devices, two issues must be addressed; namely, the data structure management

and the parameter estimation. Like the GreedyDual algorithm [103], the GD-LU mecha-

nism also uses a priority queue for the data items based on their utility values. Handling

a cache hit requires O(log N) time, where N is the number of data items in the cache.

Handling an eviction also requires O(log N) time. For both cache hit and eviction, the

GD-LU replacement requires only one data item to be updated. Due to the priority queue

management, the proposed passive prefetching algorithm also has a time complexity of

O(log N).

Several parameters are involved in computing the utility value of a data item. The

incremental energy coefficient m and overhead h in Equation (3.6) are system parameters

obtained from system specifications. The disconnection rate (λdc), handoff rate (λh) and

request arrival rate (λa) can be estimated by using the sliding average method [82].

The update rate (λu
i ) and access rate (λa

i ) of each data item can be estimated by the

exponential aging [82] or sliding average method.

We use a metadata to keep the information (e.g., λa
i and λu

i ) of each data item.

For each eviction, the metadata of victim items are kept in the metadata queue. The

memory space overhead of each metadata is very small, and the total space overhead of

our proposed cache mechanism is smd ∗ (N +Q), where smd is the size of one metadata,

N is the total number data items in the cache, and Q is the maximum length of the

metadata queue.
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3.6 Performance Evaluation

In this section, we evaluate the performance of the proposed GD-LU replacement

and passive prefetching algorithms under various system settings and environments. Dif-

ferent performance metrics are used to evaluate three main aspects concerned with the

applications (e.g., energy efficiency, access latency and data availability). The Min-SAUD

[100], GreedyDual-Size (GD-Size) [14] and traditional Least Recently Used (LRU) algo-

rithms are included for comparison in the performance evaluation study.

3.6.1 Simulation Model and System Parameters

For web data, the size distribution follows the lognormal model [7]. In our sim-

ulation also, the lognormal model is used for the size distribution of all data items in

the system. We consider a total of 10,000 data items. The cutoff minimal size of the

data item is assumed to be 256 bytes, the cutoff maximal size is 80K bytes, and the

average size is 25.7K bytes. For each data item, the period between two updates follows

an exponential distribution. At original settings, the mean update period of each data

item is chosen from a set of {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200}
seconds with equal probability.

The arrival of requests for each mobile device is assumed to follow a Poisson process

with a mean arrival rate of 1/10sec−1. We consider Zipf-like [10] distribution for mobile

device’s access pattern, in which the access probability pi of data item di is proportional

to its popularity rank, rank(i) where rank is 1 for most popular item. That is, pi =

c/rank(i)θ, where c is the normalization constant and θ is a parameter between 0 and

1 whose default value is 0.9 in simulations. A sleep-wakeup process [6] is used to model

the connection and disconnection behavior of mobile devices. In this model, the arrival

rate of the event that a connected mobile device goes into the disconnected state is

α = 1/(1− r)Ts and the arrival rate of the event that a disconnected mobile device goes
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into the connected state is β = 1/rTs. Ts is the duration of a connected-disconnected

cycle whose default setting is 3600 seconds, and r is the ratio of the connected time to

the connected-disconnected period whose default value is 0.4. We use the linear power

consumption model for mobile devices [26]. One broadcast channel of 2 Mbps bandwidth

is shared by all mobiles. In the simulation, there are 180 mobile devices, each having a

cache of size 2M bytes. The size of a request message (i.e., uncertain and cache miss) is

20 bytes. The size of confirmation and IR message is 16 bytes.

3.6.2 Performance Metrics

The performance metrics considered are the hit ratio (HR), energy per query

(EPQ), stretch (ST) [42] and energy stretch (EST) [101]. The metric EPQ is defined

as the ratio of the total energy consumed by data requests to the number of requests

in a given period. ST is defined as the ratio of the response time of a request to its

service time, where service time is defined as the ratio of the requested item size to the

bandwidth. EST is defined as the product of stretch and the energy consumption of

a data request. Clearly, energy stretch reflects a performance tradeoff between energy

consumption and access latency.

3.6.3 Simulation Results

In the experiments, we evaluate the performance of GD-LU replacement algorithm

and compare it with the LRU, GD-Size [14], and Min-SAUD [100] algorithms. For

performance comparison, two versions of the GD-Size algorithm are used, namely, GD-

Size(1) and GD-Size(packets) [14]. The cost of each document is set to 1 for GD-Size(1),

and 2 + size/536 which is the estimated number of network packets sent and received

if a miss to the document occurs for GD-Size(packets). As Min-SAUD was originally

proposed with the time stamp (TS) based cache consistency maintenance, to ensure
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fair comparison, we implement the Min-SAUD under SACCS consistency maintenance

scheme. For this, we set the cache validation delay (v) to zero for valid data items

and set v to the confirmation delay for uncertain data items as we calculate the gain

function of Min-SAUD. In the following figures, for brevity, SC stands for the SACCS

cache consistency scheme, MIN stands for the Min-SAUD algorithm, GD-SIZE(1) and

GD-SIZE(PKT) stand for the two versions of the GD-Size algorithm.

3.6.3.1 Passive Prefetching

In the passive prefetching, a large threshold (TH) value means few data items to

be prefetched. As the threshold decreases, more and more data items can be prefetched.

When the threshold is zero, all data items in the downlink channel are prefetched. Figures

3.5-3.8 show the performance of EPQ, HR, ST and EST metrics against prefetch threshold

under different cache sizes, respectively.
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Figure 3.5 Energy Consumption with Passive Prefetching.

As shown in Figure 3.5, the energy consumption is high when the threshold (TH)

value is small. For TH ≤ 10−2, the energy consumption significantly decreases as the
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Figure 3.6 Hit Ratio with Passive Prefetching.

threshold increases. But if the threshold is more than 10−2, the energy consumption is

almost a constant. This is because more data items are prefetched when the threshold

is set at a lower value and some of them are not useful to users. When the threshold is

large enough, most of the prefetched data items are useful thus leading to constant energy

consumption. Figure 3.6 shows that the hit ratio improves as the threshold decreases.

However, at a low threshold of TH = 10−3, the hit ratio does not improve although

more data items are prefetched. This is called blind prefetching. A similar behavior is

observed in stretch performance in Figure 3.7. The stretch of access drops with decreasing

threshold, since prefetched data items help to improve the hit ratio and reduce stretch.

However, blind prefetching does not improve stretch performance due to more energy

consumption without any improvement in cache performance. From Figures 3.5, 3.6 and

3.7, we also conclude that devices with more cache space have less energy consumption,

and enjoy high hit ratio and less access latency than devices with less cache space.

Since energy consumption of passive prefetching is determined by the threshold

value, the passive prefetching scheme can dynamically adjust the threshold according to

the current energy level of the devices. When battery power is not a big concern, we
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Figure 3.7 Stretch with Passive Prefetching.

Table 3.1 Median Utility Prefetching Performance

Cache Size EPQ(10−2Joule) HR ST EST (10−2Joule) Min EST

2MB 1.20368 0.256328 6.39952 7.70297 7.7069
3MB 1.2057 0.271676 5.45998 6.5831 6.57452
4MB 1.21802 0.281747 4.99865 6.0845 6.12083
5MB 1.23306 0.289208 4.75577 5.86415 5.87524

set the threshold at a low value to reduce data access latency. When a mobile is at low

energy level, we choose high threshold to save the battery power. However, the setting

of threshold should not result in blind prefetching.

As seen in Figure 3.8, if we consider EST as the main performance metric for

passive prefetching, we can get an optimal value of threshold. Since energy stretch is the

metric that factors in both energy consumption and access latency, the optimal value of

threshold can be considered as the best point for the tradeoff between energy consumption

and access latency.

As shown in Table 3.1, if we choose the points with minimal energy stretch (Min

EST) from Figure 3.8 for comparison, the energy stretch performance of median utility
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Figure 3.8 Energy Stretch with Passive Prefetching.

threshold setting (EST) achieves near-optimal performance under different cache sizes.

This demonstrates that the median relative utility threshold setting is a good heuristic

method to achieve optimal performance tradeoff between energy consumption and access

latency.
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Figure 3.9 Energy Consumption under Different Cache Sizes.
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Figure 3.10 Hit Ratio under Different Cache Sizes.

3.6.3.2 GD-LU Replacement

(a) Effect of Cache Size: In this experiment, we evaluate the performance of GD-

LU replacement under different cache sizes using EPQ, HR and ST as the performance

metrics. In order to evaluate only the cache replacement algorithms, we do not consider

passive prefetching scheme in this experiment. As shown in Figure 3.9, power consump-

tion at mobile devices decreases with increasing cache size. GD-LU achieves best EPQ

performance among all schemes, and GD-Size(1) exhibits worst EPQ performance. Both

Min-SAUD and GD-LU outperform the LRU algorithm in terms of energy consumption,

since both of them significantly improve the hit ratio as shown in Figure 3.10. However,

the improvement on energy saving of GD-LU is about 15% which is larger than that of

Min-SAUD. Because the goal of Min-SAUD is to improve the stretch performance, data

items with small size are preferred since smaller size data items contribute more to the

stretch performance. In contrast, GD-LU endeavors to achieve optimal energy conser-

vation, therefore, the data items that consume more energy are selected to be cached.

Thus, GD-LU outperforms Min-SUAD in terms of energy consumption. Furthermore,

GD-LU outperforms both GD-Size(1) and GD-Size(packets), since GD-Size does not con-
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Figure 3.11 Stretch under Different Cache Sizes.

sider data update in the cost function. The EPQ performance of GD-Size(1) is worse

than LRU, since GD-Size(1) only tries to minimize the miss ratio by giving preference

to small data items.

In Figure 3.10, LRU shows worst hit ratio (HR) performance, and GD-LU shows

best hit ratio performance. Min-SAUD performs better than GD-Size(1) for small cache

sizes, while Min-SAUD achieves a similar hit ratio performance as GD-Size(1) at large

cache sizes. When the cache size is small, the hit ratio is very sensitive to the total

number of data items in the cache. The algorithm favoring small data items can cache

more data items, so Min-SAUD achieves better HR performance than GD-Size(1) which

achieves better HR performance than GD-Size(packets). This is because GD-Size(1) tries

to minimize the miss ratio, while GD-Size(packets) tries to minimize the network traffic.

In Figure 3.11, both GD-LU and Min-SAUD achieve similar stretch performance which

is a significant improvement compared to GD-Size(1), LRU and GD-Size(packets).

(b) Effect of Data Update Rate: As mentioned at the beginning of this section,

the default data update rates have a uniform distribution. The mean update period is

6855 seconds for all data items in the system. In this experiment, the mean update
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Figure 3.12 Energy Consumption under Different Data Updating Rates.
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Figure 3.13 Hit Ratio under Different Data Updating Rates.

period varies. As shown in Figure 3.12, the energy consumption decreases as the mean

update period increases for all algorithms. There are two reasons for the EPQ dropping

as the mean update period increases. First, SACCS broadcasts fewer IR messages as

the mean update period increases, so the energy used for IR listening is less at a low

data update rate. Second, as seen in Figure 3.13, the hit ratio performance increases

as the mean update period increases, and each scheme saves more energy by reducing

cache misses. As shown in Figure 3.12, GD-LU achieves best EPQ performance among
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all schemes, but the improvement from LRU scheme is low at a high update rate. When

the data update rate is high, each mobile device needs to listen to many IR messages,

thus IR listening dominates the energy consumption for mobile devices. This leads to

low EPQ improvement of GD-LU compared to LRU at high update rates. But the EPQ

improvement of GD-LU from LRU is higher than that of Min-SAUD at different updating

rates, and GD-LU also outperforms two versions of the GD-Size algorithm.

As shown in Figure 3.13, all algorithms achieve better hit ratio performance in

a lower update rate environment. The hit ratio performance of GD-LU is better than

that of other schemes under different update rates. Min-SAUD achieves similar hit ratio

performance as LRU at a high update rate. This is because the gain function used in Min-

SAUD approaches zero for each data item at high data update rates. Thus, Min-SAUD

is degraded as LRU, which only evaluates recent access.
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Figure 3.14 Energy Consumption under Different Connection/Disconnection Period.

(c) Effect of Disconnection Frequency: This experiment evaluates the performance

of GD-LU under different disconnection frequencies. The connection-disconnection du-

ration (Ts) is varied to simulate the different disconnection frequencies of mobile de-
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Figure 3.15 Hit Ratio under Different Connection/Disconnection Period.

vices. A small value of Ts indicates a high disconnection frequency, and vice versa.

Figure 3.14 shows that GD-LU has a significant improvement on EPQ performance over

LRU under different disconnection frequency, and also outperforms Min-SAUD and GD-

Size(packets). GD-Size(1) shows worst EPQ performance under different disconnection

frequencies. According to the SACCS algorithm, more data items in the cache are in

uncertain state as the disconnection frequency increases. Since the hit ratio is counted

only for valid data, as shown in Figure 3.15, LRU, GD-Size(1), GD-Size(packets) and

Min-SAUD achieve similar hit ratio performance for high disconnection scenario, while

GD-LU gets best hit ratio performance under different disconnection frequencies. This

is because the utility function deployed in GD-LU considers connection-disconnection

characteristic of mobile devices. Figure 3.16 shows that the GD-LU achieves best stretch

performance among all schemes under different connection-disconnection periods.

3.7 Summary

In this chapter, we investigate two data access mechanisms of the proposed frame-

work under two different wireless service networks. First, we study the pull based in-
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Figure 3.16 Stretch under Different Connection/Disconnection Period.

formation access in wireless cellular networks. In order to save energy and wireless

bandwidth and reduce access latency, we propose a novel caching mechanism for pull

based information access. A scalable asynchronous cache consistency scheme (SACCS)

is deployed at mobile users and the servers to maintain data consistency. A utility model

is built to investigate the energy conservation by deploying a cache at mobile devices in

the cellular networks. Based on the utility function derived from the analytical model,

we propose a novel caching mechanism, called GreedyDual Least Utility (GD-LU). Sim-

ulation results show that GD-LU achieves more than 10% energy saving for mobile users

in pull based information access in cellular networks.

Second, we study the push based information access in digital broadcast networks.

In order to save energy and reduce the latency of information accesses, a passive prefetch-

ing scheme is proposed to predict users’ future information accesses based on relative util-

ity value of data items. Simulation experiments demonstrate that the passive prefetching

algorithm can achieve near-optimal performance tradeoff between access latency and en-

ergy consumption by choosing proper threshold.
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Both pull based and push based information access approaches rely on client server

model to provide the information services to mobile users, and employ wireless infras-

tructure and an information server. However, in some application scenarios, the wireless

infrastructure may be inaccessible. In order for mobile users to continuously access infor-

mation in such scenarios, we propose peer-to-peer information access approaches under

different wireless environments.

In Chapter 4, we study a peer-to-peer caching approach to help mobile users access

information when they are not in the service coverage of wireless infrastructure. In

Chapter 5, a location-aided peer-to-peer data search scheme is proposed to further reduce

energy and bandwidth consumption of each data access of mobile users in the mobile

environments without wireless infrastructure.



CHAPTER 4

PEER-TO-PEER CACHING IN MULTI-HOP HYBRID NETWORKS

In the last chapter we studied pull and push based information access approaches

under cellular networks and digital broadcast networks. However, in some application

scenarios, mobile users are temporarily out of the service coverage of the wireless in-

frastructure, or the wireless infrastructure is temporarily not available due to network

congestion. In order to enable ubiquitous information services in such scenarios, mobile

ad hoc networks (MANET) is considered as complementary to wireless infrastructure

(e.g., cellular or wireless LANs). Indeed, hybrid wireless networks as an integration of

infrastructure based and mobile ad hoc networks are emerging as an attractive solution

to providing ubiquitous information services. In such networks, mobile users not only

can access information through cellular networks but also can retrieve information from

other mobile users via multi-hop peer-to-peer communications.

In this chapter, we introduce a novel scheme called energy-efficient peer-to-peer

caching with optimal radius (EPCOR), to help mobile users to efficiently access infor-

mation in the hybrid wireless networks. In this scheme, a peer-to-peer (P2P) overlay

network is built among the mobile users (MUs) to facilitate cooperative data sharing. In

particular, for energy conservation, each MU in the P2P overlay shares a data item in

a cooperation zone. An analytical model is developed to evaluate the performance im-

provement due to energy conservation in the EPCOR scheme. An algorithm is developed

to determine the optimal radius of the cooperation zone, based on the trade-off between

performance improvement and the overhead of cooperation.

54
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4.1 Hybrid Wireless Networks

Before proposing the EPCOR scheme, let us fist give a brief introduction to hybrid

wireless networks. To provide wireless Internet services, currently there exist two ma-

jor categories of infrastructure-based networks: cellular and Wi-Fi networks (e.g., IEEE

802.11 based wireless LANs). Cellular networks operate on licensed frequencies and of-

fer wide geographic coverage (up to 20 Km) but limited bit rate bandwidth (e.g., 107.2

Kbps for GPRS). On the other hand, Wi-Fi networks operate on unlicensed frequencies

and offer higher bit rate (e.g., 11 Mbps for IEEE 802.11b and up to 54 Mbps for IEEE

802.11g) but very limited coverage (up to 250 m). In order to provide mobile data ser-

vices efficiently, both high bit rate and wide coverage are desirable. For this purpose, ad

hoc networks are considered as complementary to infrastructure-based networks. Com-

munication networks for such scenarios as battle field and disaster relief operations are

examples of ad hoc networks. In ad hoc networks, each MU retrieves the desired informa-

tion from other MUs through multi-hop paths in which MUs cooperatively act as routers

to relay the data traffic. However, due to the absence of stable network connection, a

pure ad hoc network has a low reliability.

Recently, several models have been proposed for designing hybrid networks that

integrate ad hoc and infrastructure-based networks with a goal to extend the coverage

area of Wi-Fi networks [34] [55] [56] [106] and also improve the throughput of cellular

networks [41] [59] [98]. In hybrid networks, the base stations (or access points) are

assumed to be attached to the Internet or an infostation [38]. When an MU, say A,

moves out of the transmission range of its base station (BS) or if the quality of cellular

wireless link is low, other MUs along the path to the BS allow A to continue to access

information by relaying its packets to the BS. The proxy MUs around the BS serve as

a bridge to exchange data between the BS and other MUs. Figure 4.1 illustrates an

example of a hybrid wireless network. Since the hybrid networks significantly improve
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the data rate and extend the wireless service coverage area at low cost, this network

model offers an attractive solution to providing mobile data services.

�
�
�
�

AB
R

Base Station (BS)

Proxy Mobile User

Figure 4.1 An Example of Multi-Hop Hybrid Wireless Networks.

4.2 Description of EPCOR Scheme

Each mobile user in a hybrid network has dual communication capability. If an MU

is within the transmission range of a base station, it accesses the information directly

from the BS in a single hop; otherwise the MU uses peer-to-peer ad hoc links to retrieve

data through multiple hops. Let the BS be a source of all items. The BS may retrieve the

data items from the Internet through a wired network, or from an attached infostation.

A data query initiated by an MU is sent to the BS along with the routing path; upon

receiving the request, the BS responds with the requested data item. A multi-hop routing

protocol (e.g., [39], [65], [66]) is assumed to route data packets in the network.
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In the EPCOR scheme, a peer-to-peer (P2P) overlay network is created among

the mobile users to facilitate cooperative sharing of data. Two peers in the overlay

network periodically exchange their cache index messages to maintain their neighborhood

relationship in the overlay. In order to conserve energy, the message exchange is localized

in a cooperation zone. We define the cooperation zone (CZij) of an MU, say MUi, for

sharing the data object dj as a set of MUs in the overlay. Each MU that belongs to

CZij receives the cache index message, including the index of dj from MUi. The radius

of a cooperation zone is defined as the maximum number of hops between MUi and any

other MU in the cooperation zone. In the EPCOR scheme, each MU uses a resource

table to maintain the indices of the data items cached at neighboring MUs in the P2P

overlay. For a cache miss, the MU looks up the resource table and forwards the query to

a neighbor that has the requested data item. If more than one neighbor has a copy of the

requested item, then the one that entails the least cost of data retrieval is chosen. With

reference to Figure 4.1, when a data query is initiated in an MU, say A, it first looks for

the data item in its own cache. If there is a cache miss, A checks if the item is cached

in other neighboring peers, say B, in the P2P overlay; then the query is forwarded to

B. Since the number of hops between A and B is less than that between A and the BS,

there is a saving of bandwidth and energy in retrieving the data item.

Cache

Update List

......

ttlhopMU_i

song.mp3

www.cnn.com

timer
ID ptr

Resource Table (RT)
Neighbor Table (NT)

Figure 4.2 Data Structures at a Mobile Node.
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4.2.1 Data Structures

Figure 4.2 shows the main data structures maintained in each peer in the EPCOR

system. These data structures are resource table (RT), neighbor table(NT), update list

and cache. They are formally described below along with message formats:

• CL = {d1, d2, ..., dn}: set of cached data items.

• UIM = {< id1, htl1, ttl1 >, ..., < idn, htln, ttln >}: update index message where idj

is index of data item dj; htlj is its hop-to-live value; ttlj is the time to live value

used to indicate dj’s validation.

• Lupd = {< id1, f lag >, ..., < idn, f lag >}: update list to record the updated data

items since the last UIM exchange, where flag bit indicates the states of the item

(i.e., 0 for deleted item, 1 for added item).

• RTj =< idj, ptr > : the entry of resource table for data item dj where ptr is the

pointer to a neighbor table.

• RT = {RT1, RT2, ..., RTn}: resource table containing the index information for

data items cached in neighboring peers;

• NTj = {< MU1, hop1, ttl1, timer1 >, ..., < MUn, hopn, ttln, timern >}: the neigh-

bor table of RTj, where hopi is the number hops of the neighboring peer MUi from

the current peer; ttli is the time to live value of the data item dj cached at MUi;

timeri is the aging timer for the entry of MUi.

In the EPCOR scheme, each MU maintains a resource table for the cache index informa-

tion of all neighbors in the overlay. For each entry of a data object in the resource table,

we maintain a neighbor table which includes the information of neighboring peers in the

cooperation zone that have cached this data object. In order to handle mobility of MUs,

we use a timer in the each entry of neighbor table to indicate whether the neighboring

peer currently resides in the cooperation zone or not.
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4.2.2 Peer-to-Peer Overlay Maintenance

The P2P overlay of EPCOR scheme is maintained through periodic exchange of

update index messages (UIM) among mobile peers. When a mobile peer successfully

fetches (or evicts) a copy of an item, it records index information of the data items in the

update list, Lupd. In one UIM exchange cycle, the mobile peer creates and disseminates

a UIM message according to the information in Lupd. Peers share each data item in

a cooperation zone. With each data item’s index included in the UIM , we associate a

hop-to-live (htl) value to indicate the radius of cooperation zone of the corresponding

data item. A time to live (ttl) value is also included to indicate the estimation of valid

time period of the corresponding item. When an MU, say MUi, receives a UIM from

a source, MUs, the htl value of each entry in UIM is re-calculated. If the htl value

of an entry reaches zero, it is deleted from the UIM to indicate that the UIM has

reached the boundary of the cooperation zone for that data item in the overlay. The

calculation of optimal cooperation radius is discussed in Section 4.3. In EPCOR, each

MU maintains a resource table for the cache information of all neighbors in the overlay.

After receiving a UIM from the source MUs, for each entry with ttl > 0 in the UIM ,

the MUi checks if the resource table already has an entry for that data item. If not, a

new resource entry is created and inserted in the resource table and an entry of MUs is

included in the neighbor table. If the resource entry is already created at the resource

table, the source MU is added to the neighbor table. If the neighbor table is full, the

neighbor with lowest value of the ratio ttl/hop or with expired timer, is deleted from the

neighbor table. For each entry with ttl = 0 in the UIM , the corresponding entry of the

source MUs in the neighbor table is deleted, because the data item cached in the MUs

is invalidated. In order to handle mobility of MUs, each entry of neighbor table has an

aging timer value (timer). After receiving a UIM from MUs, the MUi needs to update

all the neighbor entries of the MUs by resetting the timer to the initial value. When the
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Procedure UIM Exchange{}
(1) In a UIM exchange cycle, MUi constructs a UIM as follows:

For each entry < idx, f lag > in the update list Lupd

If flag == 1
Get ttlx value from cached data item dx;

Else
ttlx = 0;

Calculate the optimal radius (Rix) of dx;
If Rix > 0

htlx = Rix;
Insert < idx, htlx, ttlx > into UIM ;

Forward UIM to neighboring nodes;
Lupd = NULL;

(2) When MUi receives UIM from MUs via a neighboring MU:
Reset the timer field of MUs entries in all neighbor tables;
If current UIM is equal to one of previously received UIMs

Discard UIM and return;
For each entry < idx, htlx, ttlx > in UIM

If ttlx > 0
Update the source table and add an entry of MUs to neighbor table;

If ttlx = 0
delete the entry of MUs from the neighbor table;

Re-calculate the optimal radius (Rsx);
If Rsx ≤ 0

delete < idx, htlx, ttlx > entry from the UIM ;
If UIM 6= NULL

Forward UIM to neighboring nodes;

Figure 4.3 UIM Exchange Algorithm of EPCOR.

timer expires, the entry is deleted from the neighbor table, so that the MU that moved

out of the cooperation zone can no longer participate in the cooperative cache sharing.

The detailed algorithm of P2P overlay maintenance is shown in Figure 4.3.

Additionally, Figure 4.4 illustrates the proposed EPCOR scheme with a simple

example. In this figure, MU1 is one hop away from MU2 and MU3, and two hops away

from MU4. MU1 caches items d1,...,d5. When MU1 constructs UIM, the htl values of

these items are 2, 2, 2, 0 and 1 respectively. Thus, a neighbor table entry of MU1 is
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added in the resource tables of MU2 and MU3 for the indices of d1, d2, d3, and d5. MU1

is also included in the resource table of MU4 for the indices of d1, d2 and d3. The index

of d5 is deleted from the UIM relayed at MU2 after the htl value of d5 reaches zero. It

is also shown in Figure 4.4 that since the htl values of all cached data items in MU4 are

less than 3, the cached data items’ information is not included in the resource table of

MU3, which is three hops away from MU4.
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Figure 4.4 A Simple Example of EPCOR Scheme.

4.2.3 Object Lookup and Cache Management

When MUi initiates a data query, it first checks the local cache for the requested

data item. On a cache miss, MUi searches its resource table. If the requested data

item is cached by neighboring peers in the P2P overlay, the query is forwarded to the

neighbor with the least hop. Otherwise, the query is forwarded to the BS to retrieve

the data item. As shown in Figure 4.4, if MU1 requests for d10, the request message is

forwarded to MU4. If MUi receives a query from a source, MUs, then MUi first checks
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its local cache; if available, the data item is sent to MUs. If the requested data is not

in MUi’s cache, the query is forwarded to the neighboring peer MUx that cached the

requested item and has the least hop from MUi. If MUi finds itself as the destination

of the query and does not cache the requested item, it means that the source MUs has

inconsistent cache index information of MUi. In this case, the query is forwarded to the

BS to retrieve the data item. For example, in Figure 4.4, MU4 receives a request message

for d8 from MU2. In this case, the request message is forwarded to the BS to retrieve

the requested data item. Inconsistencies may occur due to loss of UIM or transmission

errors. When the source MU receives the requested data item from other MUs or the

BS, a cache replacement policy, such as least recently used (LRU), is used to evict the

existing data items to make space for the incoming data item. The indices of data items

that are evicted from the cache are kept in the update list (Lupd) as items with flag = 0;

and the indices of incoming data items with flag = 1 are kept. The update list is used for

the construction of next UIM. The algorithm for object lookup and cache management

is formally described in Figure 4.5.

4.3 Mathematical Analysis

In this section, we develop an analytical model of the EPCOR scheme to evaluate its

performance. An algorithm is developed from the analytical model to calculate optimal

radius of the cooperation zone of each data sharing based on energy efficiency.

4.3.1 An Energy Model

In [26] [25],a detailed energy consumption model is proposed for performance anal-

ysis of mobile ad hoc networks based on energy consumption measurements of some

commercially-available IEEE 802.11 network interface cards (NICs) operating in the ad

hoc mode. To the best of our knowledge, this is a most accurate model of energy con-
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Procedure Cache Management{}
(1) When MUi initiates a query for data item dj

If dj is in cache /* a cache hit*/
return dj;

Else If dj is in the resource table;
choose the neighbor MUx with the least hop;
send the query to MUx;

Else
send the query to base station;

(2) When MUi receives a query;
If requested item dj is in cache /* a peer cache hit*/

send dj to source peer;
Else If idj is in resource table;

choose the neighbor MUx which has the least hop;
send query to MUx;

Else If the destination of query is MUi

send query to base station;
Else

send query to the destination;
(3) When MUi receives a data item dj;

If residual cache space is less than the size of dj;
Evict victim item dt by using cache replacement policy;
Lupd = Lupd ∪ < idt, 0 >;

cache dj;
Lupd = Lupd ∪ < idj, 1 >;

Figure 4.5 Caching Algorithm of EPCOR Scheme.

sumption in ad hoc networks in the literature. In our analysis, we use this model to

calculate the energy consumption of an MU for sending and receiving a message in uni-

cast or broadcast mode. Our analysis of EPCOR scheme is independent of the energy

model, other energy models can also be used in our analysis of the EPCOR scheme.

We briefly introduce the energy consumption model presented in [26] and [25].

The energy model and its detailed description about IEEE 802.11 properties are not the

major part of this work. Readers can find more details in [26] and [25]. According to
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their model, energy consumed by a mobile user using IEEE 802.11 wireless interface for

sending, receiving or discarding a message is given by

E(s) = m× s + b (4.1)

where s is the message size, m denotes the incremental energy cost associated with a

message, and b is the energy cost for the overhead of message. The parameters m and b

are different for sending and receiving messages. In particular, the energy model proposed

in [26] describes the energy consumption for broadcast and unicast traffic of IEEE 802.11

NICs operating in ad hoc mode.

4.3.1.1 Broadcast Traffic

The IEEE 802.11 standard [104] uses Carrier Sensing Multiple Access with Collision

Avoidance (CSMA/CA) technology to avoid frames collision and share channel between

multiple senders and receivers. In CSMA/CA, before sending a broadcast packet, the

sender listens briefly to the channel. If the channel is clear, the message is sent and

received by all nodes in the wireless (radio) range. Otherwise, the sender must back off

and try later. In [26], the energy cost associated with sending a broadcast packet is given

by:

Ebd sd(s) = mbd sd × s + bbd sd (4.2)

The cost associated with receiving a broadcast packet is:

Ebd rv(s) = mbd rv × s + bbd rv (4.3)

4.3.1.2 Unicast Traffic

For unicast traffic, in order to present collisions caused by hidden terminals, a

mechanism called virtual carrier sensing is used in addition to CSMA/CA in IEEE 802.11
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standard. If a source desires to transmit a message, it first sends a Request-To-Send

(RTS) control message identifying the destination. The destination responds with a

Clear-To-Send (CTS) message. Upon receiving the CTS, the source sends the data and

awaits an ACK from the destination. Thus, the energy cost model for unicast send as

shown in [26] is,

Ep2p sd(s) = bsendctl + brecvctl + mp2p sd × s + bp2p sd + brecvctl (4.4)

where bsendctl and brecvctl are the energy costs for send and receive of small control messages

(RTS, CTS and ACK). The cost of a unicast receive is thus given by,

Ep2p rv(s) = brecvctl + bsendctl + mp2p rv × s + bp2p rv + bsendctl (4.5)

Based on the energy model given in Equations (4.2)-(4.3), we derive the energy cost

of broadcasting a message in ad hoc networks. When a packet is broadcast, all nodes

within the transmission range of the sender will receive it. The fixed channel access costs

are bbd rv and bbd sd and the incremental payload costs are mbd sd and mbd rv. If r is the

radio transmission range, the average number of receivers within the transmission range

of the sender is given by ρ × π × r2, where ρ is the node density of the network. Thus,

the total energy cost associated with a broadcast send and receive is,

Etotal bd(s) = Ebd sd(s) + ρ× π × r2 × Ebd rv(s) (4.6)

In ad hoc networks, the energy cost of relaying a message at an intermediate node

is given by,

Erelay(s) = Ep2p rv(s) + Ep2p sd(s) (4.7)

In IEEE 820.11, messages may be lost due to collision or other failures and the pro-

tocol provides for various MAC layer retransmissions. Therefore, each element of protocol

in Equations (4.4)-(4.5) includes an implicit factor of (1 + Nretransmissions/duplicates) where
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Nretransmissions/duplicates is the average number of retransmissions for sending a packet in

the network. Based on this energy model, we analyze the energy cost performance of the

EPCOR scheme in the next subsection.

4.3.2 Assumptions and Notations

We introduce the following assumptions made in our analysis.

1. All nodes in the network are two-dimensionally Poisson distributed with density ρ.

That is the probability p(i, A) of finding i nodes in an area of size A is given by,

p(i, A) =
(ρA)ie−ρA

i!
(4.8)

2. All nodes have the same transmission and receiving range, denoted by r. N is the

average number of neighbor nodes within a circular region of radius r. Therefore

N = ρπr2.

3. All proxy nodes that exchange data traffic with BS reside within circular area of

radius r from the BS.

4. The energy cost of data processing is negligible compared to that due to data

communication.

5. All nodes use least recently used (LRU) replacement policy to manage their cache.

6. The data requests of each node follow a Poisson process.

According to [68], the energy cost for transmitting 1K bits of information is approx-

imately the same as the energy consumed to execute 3 million instructions. Therefore,

we only consider the energy cost of data communications in our analysis. The other

notations used in the analytical model are listed as follows.

• Hi: number of route hops between BS and MUi;

• Hik: number of route hops between MUi and MUk ;

• si: size (bytes) of a data item di;
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• suim: size of an update index message (UIM);

• sq: size of a query message;

• CZij: the set of MUs in the cooperation zone of MUi for sharing data item dj;

• Rij: radius of the cooperation zone CZij;

• λq
ij: MUi’s query rate for data item dj;

• λuim
ij : MUi’s UIM dissemination rate for data item dj;

• fij =
λuim

ij

λq
ij

: MUi’s UIM dissemination rate relative with query rate for dj;

• Pij: cache hit ratio of data item dj in MUi;

• Eij: overall energy cost of MUi for accessing dj;

• ρ: node density of the network.

4.3.3 Problem Formulation

In the EPCOR scheme, each MU maintains a cooperation zone in the localized P2P

overlay for each data item by setting the htl value in UIM. When MUi queries for a data

item dj, if dj is located in the cooperation zone, MUi will retrieve the data item from the

nearest neighbor node, otherwise the query message will be routed to the BS to retrieve

the item. The overall energy cost (Eij) of MUi for accessing dj can be calculated by

considering the energy cost (E1
ij) used to disseminate UIM messages in the P2P overlay

and the energy cost (E2
ij) used to retrieve dj. Thus,

Eij = E1
ij + E2

ij (4.9)

Since the radius of the cooperation zone CZij is Rij, the average number of MUs

in CZij is ρπR2
ij. The relative UIM dissemination rate is fij. In a UIM dissemination

process, each MU that belongs to CZij will send the UIM once and receive the same UIM
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from all neighbors multiple times. Thus, according to the UIM dissemination algorithm

(see Fig. 4.3) and Equation (4.6), E1
ij is calculated as:

E1
ij = ρπR2

ij × fij × Etotal bd(suim) (4.10)

According to the caching algorithm in Figure 4.5, as MUi queries for dj, if dj is

cached in MUi, we assume the energy cost of data retrieval to be zero. If dj is cached

in some MUs belonging to CZij, the item is retrieved from the nearest node. Thus, the

average energy cost (e1
ij) for this case is calculated as:

e1
ij =

Rij∑

l=1

l(1−
∏

Hti=l

(1− Ptj))
∏

Hki<l

(1− Pkj)× [Erelay(sq) + Erelay(sj)] (4.11)

If dj is not cached in any MU within the cooperation zone CZij, the query is

forwarded to the BS. The requested item is retrieved from the BS. Thus, the average

energy cost (e2
ij) for this case is calculated as follows:

e2
ij =

∏
Hti≤Rij

(1− Ptj)×Hi × [Erelay(sq) + Erelay(sj)] (4.12)

Therefore, the average energy cost (E2
ij) used to retrieve the data item dj is given

as,

E2
ij = e1

ij + e2
ij (4.13)

The total energy cost of any MUi to access dj is thus expressed as:

Eij = ρπR2
ij × fij × Etotal bd(suim)

+




Rij∑
r=1

r(1−
∏

Hti=r

(1− Ptj))
∏

Hki<r

(1− Pkj) +
∏

MUt∈CZij

(1− Ptj)Hi




× [Erelay(sq) + Erelay(sj)]

In order to optimize the energy consumption of the whole network, we need to min-

imize the energy cost Eij due to each data access at each node by choosing the optimal
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radius (Ropt
ij ) of the cooperation zone CZij

Theorem 1. For any MUi in the network, there exists an optimal radius 0 ≤ Ropt
ij ≤ Hi

of the cooperation zone CZij for sharing any data item dj, such that the overall energy

cost Eij of accessing dj is minimized.

Proof. In order to prove the existence of Ropt
ij , we first calculate the achievable energy

saving, when the size of the cooperation zone is increased. Given a radius Rij, we define

∆E1
ij as the increased energy cost due to UIM dissemination if the radius is increased by

one (from Rij to Rij + 1). Let ∆E2
ij define the saved energy cost of data retrieval due to

larger cooperation zone if the radius is increased by one. According to Equation (4.10),

∆E1
ij is calculated as

∆E1
ij = ρπ(2Rij + 1)× fij × Etotal bd(suim) (4.14)

and according to Equations (4.11)-(4.13), ∆E2
ij is calculated as,

∆E2
ij =

∏
Hti≤Rij

(1− Ptj)(1−
∏

Hti=Rij+1

(1− Ptj))(Rij + 1−Hi)× [Erelay(sq) + Erelay(sj)]

(4.15)

In order to make the problem tractable, we use average cache hit ratio (Pj) of all nodes

belonging to CZij for data item dj to calculate the probability of caching dj in any MU

belonging to CZij. Thus,

Pj =

∑
Hti≤Rij

Ptj

ρπR2
ij

(4.16)

According to the Poisson distribution assumption of nodes as in Equation (4.8), the

probability that dj is not cached in any node within a circular area of radius Rij is

calculated as,
∞∑
i=0

(1− Pj)
i
(ρπR2

ij)
i

i!
e−ρπR2

ij = e−PjρπR2
ij (4.17)
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Thus,

∆E2
ij = e−PjρπR2

ij(1− e−Pjρπ(2Rij+1))(Rij + 1−Hi)× [Erelay(sq) + Erelay(sj)] (4.18)

Rij < Hi and ∆E2
ij(Rij) ≤ 0 implies we can always achieve an energy saving of |∆E2

ij| for

each data retrieval of dj, as the radius of the cooperation zone increases by one. Moreover

0 ≤ Rij < Hi, ∆E1
ij > 0, implies the energy cost of UIM message dissemination increases

with the radius of the cooperation zone. If we want to achieve minimal energy cost of

each data access of dj, we need to make sure ∆E1
ij + ∆E2

ij < 0 for each step of UIM

dissemination.

The following iterative algorithm finds the optimal radius Ropt
ij . Initially, Rij is set

as 0. At each step, Rij is incremented by 1. In each step, if ∆E1
ij > |∆E2

ij|, the iteration

stops and optimal radius, Ropt
ij = Rij. Rij = Hi − 1 implies ∆E2

ij = 0 and ∆E1
ij > 0, so

∆E1
ij > |∆E2

ij|, thus, the iteration will always stop and find the optimal radius before

Rij increases to Hi. Therefore, for any MUi, the algorithm can find an optimal radius

0 ≤ Ropt
ij ≤ Hi for the cooperation zone of sharing the data item dj, so that the energy

cost Eij of each retrieval of dj is minimal.

4.3.4 Numerical Results

In this subsection, we present some numerical results on the performance of EPCOR

based on the model derived above. We evaluate the EPCOR scheme under a hybrid

network with one BS and density of ρ = 100 nodes/ km2 and node communication range

of r = 200 m. The size of a query message is sq = 10 bytes, and the size of UIM is

suim = 3 bytes/item. Each MU has the same data access pattern. We consider the

energy consumption of MUi that is Hi = 10 hops away from the BS. Also, MUi accesses

a data item (dj) of size sj = 100K bytes and average cache hit ratio Pj = 0.01.
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4.3.4.1 Analysis of an Individual MU
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Figure 4.6 Analytical Results for Energy Efficiency Performance of an MU.

First, we investigate the energy consumption of data requests of an individual MU

under different data sizes, cache probabilities, and distances from the BS. We assume

that indices of 10 items are grouped for one UIM exchange (fij = 0.1). As shown in

Figure 4.6(a), there exists an optimal radius for energy cost of data requests for different

data sizes. The amount of energy saving for requesting of larger size data items (e.g.,

sj = 1MB) is much more than that of smaller size data items. This is because the

amount of energy cost of data retrieval (E2
ij) is dominant in the overall energy cost (Eij)

when the size of the item is large. As the size decreases, we can still save some energy

by choosing the optimal radius. If the data size is too small, we set the radius as zero

(no sharing with other peers) to prevent the MU from wasting energy.

Figure 4.6(b) shows that the overall energy cost of accessing a data item with high

average cache ratio (Pj) is less than that of accessing an item with low average cache

ratio. This is because an MU has a higher chance to obtain the popular data items either

from its own cache or the neighboring MUs, which reduces the number of hops for a
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data retrieval. In order to obtain the data item whose average cache hit ratio is low, the

MU needs to search a wider area, thus the optimal radius for a less popular data item

is larger than that for more popular data items. As shown in Figure 4.6(b), when the

cached probability is 0.0001, the data item does not need to maintain a cooperation zone

(i.e., optimal radius equal to zero) for energy efficiency purpose.

Next, we vary the MU’s distance (Hi) from the BS to examine its impact on the

energy efficiency. As shown in Figure 4.6(c), if there is no cooperation among the MUs

(i.e., radius equal to zero), the MU that is 15 hops away from the BS incurs 200% more

energy to retrieve the data item than an MU that is 5 hops away from the BS. If we

assume that each MU uses optimal radius to form its cooperation zone, the MU with 15

hops needs about 20% more energy to retrieve the data item than the one that is 5 hops

away. This feature of EPCOR significantly improves the fairness of energy consumption

of each MU at different locations, thus improving the life time of the entire network.

4.3.4.2 Performance Analysis of the Entire Network

......
....

.... r

L
k

R

Figure 4.7 A Hyrbrid Wireless Network with Radius L.
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As shown in Figure 4.7, we consider a hybrid network in a circular area of radius

of L, where the BS resides at the center of the circle. If each MU uses its optimal

cooperation radius to form the cooperation zone for each item sharing, we can calculate

the optimal energy cost for each data request of MUs having different distances from the

BS by using the iteration algorithm proposed in proof of Theorem 1. Let Ek(R
opt
ij ) denote

average energy cost for each data request of MUs that are k hops away from the BS. In

the network, the average number of MUs that are k hops away from the BS is equal to

ρπ(k2 − (k − 1)2) where ρ is the node density. The total average number of MUs in the

network is ρπL2.

We use the average energy per query (EPQ) as a metric to evaluate the energy

consumption of each query in the whole network. EPQ is defined as the sum of energy

consumptions of all MUs divided by the total number of queries in a given period. Thus,

in the time period t, each MU has λ × t data requests, where λ is the average query

rate from each MU. There are L2πρλt data requests generated in the whole network.

Therefore, the EPQ performance of EPCOR for the whole network is given as:

EPQ =

∑L
k=1(k

2 − (k − 1)2)πρEk(R
opt
ij )λjt

L2πρλt
=

∑L
k=1(2k − 1)Ek(R

opt
ij )

L2
(4.19)

Since the wireless channel bandwidth of BS is the bottleneck in determining the

throughput of hybrid wireless networks, we use another metric, called base station re-

trieval ratio (BRR) to evaluate the burden of the base station. BRR is defined as the

number of data items retrieved from the BS divided by the total number of requested

data items of all MUs in the network. If BRR is high, it means that the channel is more

congested since more data items are retrieved from the BS. According to Equation (4.17),

the probability of a cache miss in the cooperation zone of the MU that is k hops from

the BS is e−Piπρ(Ropt
ij )2 . Therefore, the BRR of the whole network is given by:
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BRR =

∑L
k=1(k

2 − (k − 1)2)πρe−Piπρ(Ropt
ij )2λt

L2πρλt
=

∑L
k=1(2k − 1)e−Piπρ(Ropt

ij )2

L2
(4.20)
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Figure 4.8 Analytical and Simulation Results of a Whole Network.

Now we present the analytical results of the EPQ and BRR performances for a

simple hybrid wireless network. The analytical (Ana) results are also compared with

the simulation (Sim) results. We consider a hybrid wireless network in a circular area

of radius L = 1200 meters. Each MU has the same cache space and transmission range

of r = 200 meters. There are 1000 data items in the system, each of size 10 Kbytes

and same popularity for all MUs. The size of UIM is suim = 2 bytes/item. In this

evaluation, we compare EPCOR with path cooperative caching (PATHCC) [102], in

which the cooperation radius is set to zero and only the nodes that reside in the route

path from the source node to the BS participate in the cooperation to share the cache

data. In our simulations, all MUs are assumed to be stationary and the packet delivery

to nodes is instantaneous and error-free. This simulation thus faithfully represents the

request generation and data retrieval for the different caching schemes.
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As shown in Figure 4.8(a), the EPQ performance of both EPCOR and PATHCC

drop as the cache size increases. A network with EPCOR deployed saves almost 70%

energy compared to that using PATHCC. Figure 4.8(b) shows that EPCOR has much

lower BRR than PATHCC, thus significantly reducing the traffic at the base station.

Both Figures 4.8(a) and (b) demonstrate that the simulation results match the analytical

results very closely, thus validating our system model.

4.4 Implementation Issues

In this subsection, we address four critical implementation issues, namely estima-

tion of run-time parameters, incremental calculation of optimal radius, maintenance of

data consistency and piggyback UIM message dissemination. Additionally, the time and

space complexity of EPCOR are also discussed.

4.4.1 Estimation of Run-time Parameters

As shown in Equations (4.14) and (4.15), several parameters are involved in calcu-

lating the optimal radius. The incremental energy coefficient (m) and the overhead (b)

in Equation (4.1) are system parameters obtained from the specifications of the wireless

network card. The UIM dissemination frequency (λuim
ij ), size of UIM (suim) and size of

request message (sq) are obtained from the settings of EPCOR. Data query rate (λq
ij)

can be estimated by using the sliding average method [82]. The distance Hi of each MU

in terms of the number of hops from the BS is available at the routing table. The node

density (ρ) of the whole network can be estimated at the BS and disseminated to all

MUs.

In order to estimate the cache hit ratio of data items, we assign a metadata for each

requested data item dj (including local and peer requests) in the MUi. The metadata

includes two counters: query counter (cq
j) and hit counter (ch

j ). When MUi initializes
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a query for data item dj, or MUi receives a query from other peers, the corresponding

request counter cq
j is incremented by 1. When MUi satisfies a query for dj, the hit counter

ch
j is incremented by 1. Thus, the hit ratio of the data item dj at MUi is estimated as

Pij = cq
j/c

h
j .

4.4.2 Incremental Calculation of Optimal Radius

In Equation (4.18), we use average cache hit ratio (Pj) to calculate the optimal

radius. MUs have different cache hit ratios for the same data item and the hit ratio of

each item may dynamically change in an MU. Therefore, in order to efficiently estimate

Pj dynamically and calculate the optimal radius Rij, we use an incremental method.

In this method, Pj is added as an additional attribute to the entry of UIM for dj.

When MU creates a UIM message, its local hit ratio of dj is set as the value Pj. In each

broadcast step, if MUi receives a UIM from a neighboring MU, this attribute is updated

as Pj =
Pj∗n+Pij

n+1
, where n is the number of MUs the UIM has visited after leaving from the

source MU and Pij is the hit ratio of dj at MUi. After MUi receives the UIM, ∆E1
ij and

∆E2
ij are calculated according to Equations (4.14) and (4.18). According to the proof of

Theorem 1, if ∆E1
ij > |∆E2

ij|, MUi stops dissemination of the UIM message. Otherwise,

MUi broadcasts the UIM message to all neighbor nodes. Therefore, the average cache

hit ratio Pj and optimal radius are incrementally calculated as UIM propagates through

the cooperation zone in each dissemination step. Since this method does not require

global cache hit ratio information of all MUs in the cooperation zone, the method can

significantly reduce the computation cost of the calculation of optimal radius.

4.4.3 Data Consistency

In this chapter, we assume that all data updating occurs at the BS. The data item

is associated with a time-to-live (TTL) value after retrieval from the BS. When an MU
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receives a query for a cached item dj whose TTL value has not expired, the MU responds

to the query with the valid data item. If the requested data item is stale, the request is

forwarded to the BS or other peers to retrieve the valid one. In estimating the hit ratio,

we consider a stale hit the same as a cache miss, so a data item with low TTL value (i.e.,

invalidated frequently) has a high cache miss ratio.

4.4.4 Piggyback UIM Message Dissemination

In most ad-hoc routing protocols (e.g., AODV [66], DSDV [65], or ZRP[39]), two

neighboring MUs need to frequently exchange hello messages in the routing layers to

discover and maintain their neighborhood relationship. Due to the channel contention

[26], the energy cost of independently sending a small size message is much more than

the energy cost of piggybacking with other messages. This feature motivates us to use a

piggyback dissemination mechanism to propagate UIM messages of the EPCOR scheme

through the P2P overlay network. In the piggyback dissemination scheme, after a UIM

message is created as shown in Figure 4.3, a pending message queue is used to store the

created UIM messages. When the routing layer notifies a hello message exchange, the

UIM messages in the pending queue are piggybacked with hello message, and broadcast

to all neighboring nodes. The neighboring nodes can extract UIM message from the

received hello message and update their resource table and neighbor table. If the UIM

dissemination is not stopped, the UIM message will be inserted into pending queue for

subsequent broadcast. Otherwise, the UIM message is deleted from the pending queue.

Since the piggyback dissemination does not require each MU to proactively send UIM

messages, it significantly reduces the energy and bandwidth requirement of UIM message

dissemination. Furthermore, it also eliminates the chance that nodes cannot go to the

sleep mode due to UIM message dissemination, hence it improves the energy saving at

each node.
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4.4.5 Complexity

From Figure 4.3, the time complexity to construct and process a UIM is O(n),

where n is length of Lupd. Each MU needs O(D ∗ M) memory space to maintain a

resource table and all neighbor tables, where D is the maximum number of entries of a

resource table and M is the maximin number of MUs in a neighbor table. From Figure

4.5, a lookup operation in resource table requires O(log D + log M) time, if we use

priority queues to maintain the resource and neighbor entries.

4.5 Performance Evaluation

In this section, we evaluate the performance of the EPCOR scheme through sim-

ulation experiments. Different metrics are used to evaluate four main aspects of its

performance. They are energy efficiency, access latency, throughput and load balance.

4.5.1 Simulation Model and System Parameters

We use the Network Simulator (NS-2) [108] to study the performance of EPCOR.

Since EPCOR does not rely on any specific routing protocol, in our simulations, we use

DSDV [65] as the routing protocol to route data traffic in the hybrid wireless network.

Our simulations use IEEE 802.11 as the medium access control (MAC) protocol and also

use two-ray ground reflection as the radio propagation model. The default transmission

range of each MU is r = 200 meters. For the mobility model, as shown in Figure 4.9,

we assume a service area of 1500m × 1500m. One fixed base station is located at the

coordinate (750m, 0m). All mobile nodes moving in this area follow the random way

point mobility model [11], which is commonly used to model the movement of individual

pedestrians. According to this model, each mobile node starts at a location chosen

uniformly at random inside the service area. For each movement, the target location is

also randomly chosen, and the moving speed is uniformly random in the range [0, vmax].
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After the mobile node reaches its destination, it pauses for a period of time (tp) before

continuing its next movement.
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Figure 4.9 A Simulated Hybrid Network.

For Web data, the data size distribution follows the lognormal model [7]. In our

simulation also, the lognormal model is used for the size distribution of all data items

in the system. The cutoff minimal size of the data item is assumed to be 128 bytes,

the cutoff maximal size is 40 Kbytes, and the average size is 12.5 Kbytes. The update

intervals (i.e., time-to-live values) of all data items follow uniform distribution in the

range of [0, ttlmax]. The data requests of each mobile user follow a Poisson process. After

a request is sent out, if the MU does not receive the data item, it waits for an interval

(tw) before resending the same request message. The MU does not generate new request

until the query is served. We consider Zipf-like distribution [10] for the data popularity

pattern of MU’s access, in which the access probability ai of data item di is proportional

to its popularity rank, rank(i) where the most popular item has the smallest rank value.

That is, ai = A/rank(i)θ, where A is the normalization constant and θ is a parameter

between 0 and 1. As shown in Figure 4.9, the entire service area is equally divided into
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5 × 5 square grids. Beginning from the left upper most grid, we index the grids as 1, 2,

3,..., 25 in a zig-zag diagonal-wise fashion. The MUs in the same grid have the same Zipf

based data popularity pattern. MUs in different grids have different shift values for the

Zipf pattern. For an MU in grid i, the id of data access is shifted by i so that id = (id+ i)

mod N , where N is the total number of data items in the system. According to this

model, the data access of two adjacent grids show high similarity while the data access

of two far-off grids show a low similarity. In the simulations, a first come and first serve

(FCFS) policy is used at the BS to serve the incoming data requests. The settings of

system parameters are given in Table 4.1. Some parameters may vary in the following

experiments.

Table 4.1 System Parameter Setting

Parameters Default values Range of values

Number of mobile devices 120 NA
Number of data items 3000 NA

Cache size 1500 Kbytes 500-2500 Kbytes
Mean access rate (λi) 1/30 sec−1 1/10-1/40 sec−1

Average Update Interval 10000 sec 625-10000 sec
Pause time (tp) 2 sec NA

Max moving speed (vmax) 2 m/s 2-20 m/s
Initial value of aging timer (timer) 120 sec NA

Bandwidth 11 Mbps NA
UIM exchange Interval (T ) 60 sec NA

Waiting interval (tw) 5 sec NA
Request message size (sq) 10 bytes NA
UIM message size (suim) 3 bytes/item NA

4.5.2 Simulation Results

For each experiment, we simulate for 5000 seconds and the results after initial

1000 seconds are recorded for performance evaluation. All MUs’ caches are filled with
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randomly chosen data items at the initial state. Four major metrics are used in the evalu-

ation: hit ratio (HR), peer hit ratio (PHR), energy per query (EPQ) and average latency.

We define PHR as the ratio of the number of data items retrieved from peer mobile users

to the total number of requested data items of a mobile user. Recall that EPQ is the

ratio of the total energy consumed in a given period to the total number of requests in

that period. Under the same data request pattern, EPQ reflects the energy consumption

performance of different schemes. Energy consumption of each mobile device is measured

by the linear model proposed in [26].

In the performance study, two variants of the EPCOR scheme are evaluated. In

the basic EPCOR scheme, each MU disseminates UIM messages independently. In the

enhanced piggyback scheme (EPCOR-PG), MUs piggyback UIM messages with the un-

derlaying routing hello messages. These two variants of EPCOR scheme are compared

with three other schemes, namely NOCACHE, PATHCC and EXPRING. In the NO-

CACHE scheme, no cache space is used for each MU so that every data item is retrieved

from the base station. In path cooperative caching (PATHCC) scheme [102], each node

does not have resource table to maintain the neighbors information so that each data

request is forwarded to the BS, and only the nodes on the route path from the source

node to the BS participate in the cooperation to share the cached data. A broadcast

search based cooperative caching scheme has been proposed in [53] for the hybrid wireless

networks. In our comparison, in order to reduce data traffic of request message flood-

ing, the expanding ring (EXPRING) scheme [60] is deployed to set the range of request

message flooding. This algorithm can be viewed as successive instantiation of flooding

search with increase in TTL value ranging from 1 to the number of hops from the BS.

In the default setting, the waiting time between two consecutive broadcasts is 5 seconds.

In our simulations, the same data access patten and mobility model are applied to all

the above schemes. The same least recently used (LRU) cache replacement policy is also
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deployed in PATHCC, EXPRING and EPCOR schemes.

(1) Effect of Cache Size

In this experiment, we evaluate the performance of EPCOR under different cache sizes

and compare with the other three schemes. In Figure 4.10, the lower part of each column

represents the hit ratio (HR) of the corresponding scheme, and the upper part of each

column represents the peer hit ratio (PHR) of the scheme. We observe that for identical

cache sizes, four schemes show almost the same HR performance, since all four schemes

use the LRU cache replacement policy. The EXPRING and EPCOR-PG schemes have

the best PHR performance (note that EXPRING uses flooding to locate the nearest

requested data item in the network). The EPCOR outperforms the PATHCC in terms

of PHR, and NOCACHE have zero HR and PHR performance since no cache is used in

each MU. The enhanced EPCOR-PG significantly improves PHR performance over basic

EPCOR, since the former uses piggyback method to disseminate UIM messages which

reduces the cost of UIM dissemination so that each MU can maintain a larger cooperation

zone for each data item. Figure 4.10 also shows that the HR and PHR performance of

EXPRING, EPCOR and PATHCC schemes increase with larger cache sizes.

Figure 4.11 shows that EPCOR performs better in terms of EPQ than the other

three schemes. This is because EPCOR maintains a P2P overlay to share the cached

data, so that the number of hops for one data item retrieval is minimized. Moreover,

the energy cost of UIM dissemination is limited by using optimal radius value. Although

EXPRING can locate the nearest requested data item, the energy cost of the flooding

search is huge for a wireless network, so EXPRING has the worst EPQ performance.

Because PATHCC deploys a cache at each MU and the peers between the source node

and BS participate in the cache sharing, PATHCC consumes less energy for each data

retrieval than NOCACHE which does not deploy cache for each peer. In Figure 4.11, the



83

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it 

R
at

io
+

P
ee

r 
H

it 
R

at
io

Cache Sizes (KB)

NOCACHE
PATHCC
EXPRING
EPCOR
EPCOR−PG

Figure 4.10 Hit Ratio (HR) and Peer Hit Ratio (PHR) vs Cache Size.

basic EPCOR scheme consumes about 40% less energy than PATHCC. The enhanced

EPCOR-PG scheme has better EPQ performance than the basic one. This is because of

energy saving in UIM piggyback dissemination and better PHR performance.
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Figure 4.11 Energy per Query (EPQ) vs Cache Size.

Figure 4.12 shows that the EPCOR schemes outperform the other three schemes

in terms of average access latency. EXPRING, EPCOR and PATHCC achieve a perfor-

mance improvement with increasing cache size, while the improvement of EPCOR and
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EXPRING is greater than that of PATHCC. This is because only few MUs participate

in the cooperation for data sharing in PATHCC, as the probability of retrieving the re-

quested data item from the nodes on the path toward BS improves slightly when the

cache size increases. As shown in Figure 4.12, since both PATHCC and EPCOR have

opportunities to retrieve the data from other nearby peers, they have low access latency

than NOCACHE.
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Figure 4.12 Average Access Latency vs Cache Size.

(2) Effect of Query Rate

In this simulation, we change the average query interval of each peer to investigate the

scalability of each scheme. The cumulative data traffic of base station in 4000 seconds is

measured as the performance metric. Figure 4.13 shows cumulative BS data traffic dur-

ing 4000 seconds simulation under different query rates. In the experiment, we use two

different waiting intervals (5 seconds and 10 seconds) for EXPRING flooding scheme to

evaluate its effect on the performance of bandwidth consumption and network through-

put. EXPRING-5 and EXPRING-10 represent the scheme with 5 and 10 seconds waiting

intervals, respectively.
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Figure 4.13 BS Bandwidth Consumption vs Query Rat.

As shown in Figure 4.13, NOCACHE has high BS traffic at low and moderate

query rates (i.e., 1/40-1/20 sec−1). This is because all requested data items are retrieved

from the BS in this scheme. EXPRING and EPCOR have similar BS data traffic under

low and moderate query rates. They retrieve the most requested items from other peers

so that the traffic is distributed in the whole network, which relieves the traffic burden

on the BS. However, when the query rate is high (i.e., 1/10 sec−1), the BS data traffic

of EXPRING-5 dramatically increases. This is because EXPRING-5 needs to flood its

request message every 5 seconds if the requested data item can not be located. Under

high query rate, the flooding messages quickly exhaust the network bandwidth. Most

nodes fail to retrieve the items from other peers, so that the nodes have to increase the

flooding range until they reach the base station. EXPRING-10 reduces the flooding traf-

fic by using longer waiting interval (10 seconds), which reduces the traffic congestion at

BS. The P2P overlay of EPCOR enhances peer to peer data retrieval among all nodes,

and the dynamic cooperation radius setting reduces the UIM dissemination traffic (e.g.,

most nodes around the BS do not generate UIM traffic). Thus, EPCOR has the least BS

bandwidth consumption under different query rates. If we consider the bandwidth of BS

as the bottleneck of the throughput of the entire network, EPCOR improves the network
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throughput by efficiently enhancing the peer-to-peer data retrieval among all nodes in

the network. In the enhanced EPCOR scheme, since piggyback mechanism is used to

disseminate the UIM messages, the network traffic is significantly reduced. Figure 4.14

shows the access throughput of six schemes under different query rates. We measure the

total number of successful data queries in the given simulation period to indicate the

throughput performance of these schemes. As shown in the figure, EPCOR has the best

throughput among all schemes under different query rates. Due to the network conges-

tion, the expanding ring scheme suffers a low throughput at the high query rate.
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Figure 4.14 Average Throughput vs Query Rate.

(3) Effect of Data Update Rate

In this experiment, we evaluate the performance of EPCOR under different data update

rates. Figure 4.15 shows the performance of HR and PHR of five schemes. As the update

rate increases, both HR and PHR metrics decrease. This is because fewer and fewer valid

data items are cached in each node to serve local queries and those from other peers.

Figures 4.16 and 4.17 show the access latency and EPQ performances of four

schemes under different data update rates. Figure 4.16 shows that the access laten-
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Figure 4.15 Hit Ratio and Peer Hit Ratio vs Data Update Rate.

cies of EXPRING, PATHCC and EPCOR increase as the data update rate increases.

PATHCC and EPCOR have similar access latency as NOCACHE at high data update

rate, and EXPRING suffers long access latency at high data update rates. When data

items are updated frequently, few valid items are available at the cache of each node

and therefore most queries are forwarded to the BS to retrieve the data items. In the

EXPRING scheme, if one query fails, the node needs to increase the broadcast hops

for the next query. Therefore, when update rates are high, most queries need to reach

BS to retrieve the requested item, leading to a broadcast storm in the network. Thus,

EXPRING has a long access latency and high energy consumption at high data update

rates.

(4) Load Balance and Effect of Mobility

In order to investigate the load balance in each scheme, we run the simulation for 4000

seconds and record the energy consumption of each MU under three different mobility

scenarios: vmax = 2m/s, 10m/s and 20m/s. Because the energy cost of each MU in

the simulation period indicates the amount of data traffic that the MU has processed,

we calculate the standard deviation of energy consumption of all MUs at the end of the

experiment to measure the load balance of each scheme. Figure 4.18 shows the energy
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Figure 4.16 Average Access Latency vs Data Update Rate.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2

4

6

8

10

12

14

x 10
5

E
P

Q
 (

µ 
J)

Average Update Interval (sec)

NOCACHE
PATHCC
EXPRING
EPCOR
EPCOR−PG

Figure 4.17 Energy per Query vs Data Update Rate.

consumption standard deviation (ECSD) of all MUs for each scheme after 4000 seconds

of simulation.

It is shown in the figure that each scheme has a high ECSD performance at low

mobility scenario (i.e., vmax = 2m/s), and ECSD drops as the mobility increases. Under

a low mobility scenario, the MUs that are close to the BS need to relay data traffic

between the BS and other MUs. Therefore, the MUs around the BS have a much higher

energy consumption than the MUs that are far away from the BS. This results in a

poor load balance in hybrid networks. As shown in Figure 4.18, NOCACHE scheme
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Figure 4.18 Energy Consumption Standard Deviation vs Mobility.

has a high ECSD at low mobility. This is because no cache is deployed at each MU in

NOCACHE and all queries are forwarded to the BS to retrieve data items. Thus the

MUs closer to the BS consume more energy due to the frequent data relaying, leading to

high ECSD performance. Since the battery life of the MUs that relay data traffic to BS is

the indicator of the life time of the entire network, NOCACHE has a short life time due

to the poor load balance. Figure 4.18 shows that EPCOR outperforms the other three

schemes under different mobilities. This is because the P2P overlay of EPCOR uses a

cooperation zone to share each data item among all peers, and the radius of cooperation

zone varies according to the distance from BS. The data items of far-off MUs have a bigger

cooperation radius than that of nearby MU. Thus, the data traffic is equally distributed

in the whole network, and EPCOR significantly improves the load balance performance

of hybrid networks. Enhanced EPCOR maintains bigger cooperation zone of each data

item due to the low cost of UIM piggyback dissemination, hence it improves load balance

among all nodes in the network. As the mobility increases, ECSD of each scheme drops.

In a high mobility scenario, the average moving speed of each MU is high so that each MU

has equal opportunity to appear at different locations of the hybrid networks. Thus, the



90

energy consumption of nodes is similar to one another as the network topology changes

fast.

4.6 Summary

Inheriting positive features of infrastructure-based and mobile ad hoc networks,

the hybrid wireless networks are expected to become effective and popular in providing

ubiquitous information services. In such networks, mobile users can pull information via

cellular networks as well as retrieve requested information from other mobile users via

multi-hop peer-to-peer wireless communications. In this chapter, we proposed a novel

caching scheme, called energy efficient peer-to-peer caching with optimal radius (EPCOR)

to reduce latency and energy consumption associated with data accesses for each mobile

user in such networks. In this scheme, a peer-to-peer (P2P) overlay is built based on

network proximity and data preference to enhance peer-to-peer communication and load

balancing among all mobile users. In the P2P overlay, each MU shares a data item in a

cooperation zone by proactive dissemination of cache index information.

The cooperative information sharing in the EPCOR scheme is only limited in all

mobile users in the same cooperation zone. If the requested data is cached by other mobile

users outside of the cooperation zone, the data query needs to be forwarded to the base

station and pull the information from the original sever via cellular networks. However,

in some application scenarios, like moving vehicles,subway stations, or battle field, there

is no wireless infrastructure available. How to enable ubiquitous information services to

mobile users in such scenarios is a big challenge to our proposed framework. Moreover,

since more and more mobile devices equipped with Global Position System (GPS), and

location information is available to mobile users. How to utilize the location information

of mobile users to improve the performance of information access in the mobile and

distributed environments is a another challenge for our proposed framework. In the
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next chapter, we will investigate location-aided data retrieval in the mobile environments

without wireless infrastructure.



CHAPTER 5

LOCATION-AIDED DATA RETRIEVAL IN MOBILE P2P NETWORKS

In the vision of next generation of mobile systems, mobile ad hoc networks (MANET)

[107] will be used to provide information access to mobile users in the environments with-

out infrastructure networks. With more mobile devices equipped with Global Positioning

System (GPS), location information of mobile users can be utilized to improve the per-

formance of information access in mobile ad hoc networks. In this chapter, we propose

a novel scheme called Proximity Regions for Caching in Cooperative MP2P Networks

(PReCinCt). PReCinCt scheme utilizes the location information of each mobile user

to improve the performance of peer-to-peer data retrieval in large scale mobile ad hoc

networks.

Along with the rapid advancements in Peer-to-Peer (P2P) computing, mobile peer-

to-peer (MP2P) networks [48] are being introduced to help mobile users share their data

via wireless peer-to-peer communications. The MP2P system comprises P2P overlay

networks on top of mobile ad hoc networks. In contrast to P2P systems on wired networks

that comprise static peers, MP2P systems are subjected to the limitations of battery

energy, wireless bandwidth, and the highly dynamic nature of the network topology. In

P2P networks, data retrieval scheme is used by each peer to locate and retrieve requested

data items from other peers. In existing unstructured P2P networks [105], flooding is

the most popular data retrieval mechanism. Flooding entails message processing at

every node which is expensive in terms of bandwidth, battery power and computational

resources. In [60], the expanding ring scheme is proposed to reduce the cost of each

data retrieval. A node starts a request flooding with a small Time-to-Live (TTL) and

continuously increases the TTL until the data is found. Due to the resource constraints

92
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(e.g., battery and wireless bandwidth), both flooding and expanding ring schemes do

not adapt well in large scale MP2P networks. In the structured P2P networks [85],

distributed hash table (DHT) is used to deploy and retrieve data in controlled network

topologies. However, due to the users’ frequent mobility, the data retrieval schemes of

structured P2P networks do not perform well in MP2P networks.

In PReCinCt scheme, the entire network topology is divided into geographical

regions, each being responsible for a set of keys representing the data of interest. A

geographical hash function h(ki) = Lj is used at each peer to map a key ki to a region

(Rj)’s location Lj. We call the region Rj as the home region of key ki. When a peer

requests a data item represented by a key ki, the peer obtains the location information

of home region Rj by using the hash function, and then a request message is sent to

the home region Rj by using a geographic-aided routing protocol, such as GPSR [33].

After reaching the home region, localized flooding is used to locate the peer holding

the requested data. By routing to regions rather than to specific points, PReCinCt

requires only approximate location information of each region, thus making it robust to

errors in location measurement and frequent mobility of peers. Moreover, a cooperative

caching scheme is integrated with PReCinCt scheme to further improve data retrieval

performance of mobile users. In addition, we also propose a hybrid push/pull algorithm

called Push with Adaptive Pull that uses minimal message overheads to maintain data

consistency for PReCinCt scheme.

5.1 Description of PReCinCt Scheme

This section describes our PReCinCt scheme for data retrieval in MP2P networks.

In this scheme, the network topology is divided into geographical regions, each associated

with a set of keys. The keys for the data are distributed among the regions, such that

each key ki maps to a region Rj. Peers can determine the key-set to region mapping
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by using a geographic hash function. Every data item is associated with a home region,

where the data item is initially stored.

5.1.1 Region Management

In PReCinCt, the whole network topology is divided into multiple geographical

regions. Each region is represented by the location information of its center point and all

vertices in the perimeter. Each peer uses a region table to keep the location information

of all regions in the whole network. When a peer joins the network for the first time,

the peer can retrieve the region table from its neighboring peers. The size and shape of

the regions can be changed by updating the region table of all peers in the network, at

the same time each key in the network also need to be relocated according to the region

table changes.

There are four operations that can be applied to regions: Add, Delete, Merge, and

Separate. In add operation, a new entry which includes the location information of a

new region is added into the region table to indicate the expansion of the whole network

topology. When a region no longer belongs to the network, the delete operation will

remove the entry of corresponding region from the region table. In merge operation, the

location information entry of the new region replaces the entries of two existing region

in the region table to indicate the merging of two neighboring regions into one. Separate

operation is used to divide one region into two new regions. All of these four operations

are executed by updating the region location information in the region table. After

each execution, the peers need to disseminate the update to all other peers in the whole

network to guarantee the consistency of region tables of all peers.

5.1.2 Data Search Process

When a peer requests for a data item, it first floods the request in the region in

which it currently resides to determine if any of its neighboring peers have a local cached
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copy of the item. If so, it is a local hit, the request succeeds and the response is sent back

to the requesting peer. If not, the requesting peer uses the geographic hash function to

get a location according to the query. Home region is determined by searching the region

whose center location is closest to the location from the region table. The requesting peer

generates a request message containing the following three fields: i) the identity of the

peer making the request, ii) the location of home (destination) region for the requested

item, and iii) the key of data item being requested.

Nodes routing the request message towards the destination region, check the des-

tination region location in the header to determine whether they are within that region.

The first node inside the destination region receiving the request message is identified

as the point of broadcast. It floods the message within the region to locate the peer

holding the data item. Each peer in the home region processes the request message to

determine if it has the requested data item. Peers located outside the home region drop

the request message without further processing. When the data item is located, the

response is sent back to the original requesting peer and the search process terminates.

When the requesting peer receives the response, the cache manager decides if this data

item should be cached. Thus using the PReCinCt scheme, flooding is limited to within

a region which leads to savings in network bandwidth and energy consumption of the

nodes. The detailed algorithm for search process in PReCinCt is given in Figure 5.1.

5.1.3 Peer Mobility Handling

In PReCinCt, mobility of peers is classified into two categories: intra-region and

inter-region. In the intra-region mobility, a peer moves in the same region which causes

minimal overhead in PReCinCt. In the inter-region mobility, on the other hand, a peer

moves out of its initial region to a neighboring region. Each peer checks its position

periodically to detect a inter-region mobility. If inter-region mobility occurs, the peer
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dj: requested data item;
P q

j : peer requesting the dj;
Rq

j : region in which Pq resides;
P p

j : peer which responds with data dj ;

Rh
j : home region of data item dj;

Procedure Search (query of dj)
Begin
if (di is cached in P q

j )
Update utility value and return dj;

else
Localized broadcast the query in Rq

j

for (each peer Pi in Rq
j)

if (dj cached in some peer P p
j )

Update utility value of dj;
Send dj to P q

j

else
Get the location of home region Rh

j by using GHT;
Route the query to Rh

j

Localized broadcast the query in Rh
j

Reply the query with dj to P q
j

End

Figure 5.1 The Search Algorithm of PReCinCt Scheme.

has to distribute its keys to other peers in the original region. To reduce the overhead of

inter-region mobility, the peer moving out of a region sends its keys to the other peers

that satisfy the following criteria: 1) have low mobility rates; 2) are located near the

center of the region; and 3) have cache space to store this data. Peers with low mobility

and those located near the center of the region have a low probability of leaving the

region in the near future, thus minimizing the average cost of each inter-region mobility.

5.1.4 Fault Tolerance and Replication

There is one major obstacle that all peer-to-peer systems must overcome: each peer

can be expected to suddenly disconnect (or crash). Due to the high peer mobility and
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low reliability of wireless links, the problem is more severe in the MP2P networks than

Wired P2P networks. We must therefore make fault-tolerance a priority.

An efficient general solution to fault tolerance problem is impossible to construct,

so we make three assumptions based on our target application and expected user behavior

in MP2P networks. i) Node failures are independent: Since nodes are owned by different

users and nodes use peer-to-peer wireless links, we assume that a set of nodes with

adjacent geographic locations are highly likely to have independent failures. ii) Most

users will gracefully quit from the network: If a node keeps some keys, the user will wait

to transfer these keys to other nodes in the same region before disconnecting the node

from the MP2P system. iii) Message will be routed to the correct node: Because of node

mobility and inhomogeneous node distribution in MP2P networks, a route from source to

destination node may not exist. If we consider a MP2P system with a high node density,

it is reasonable to assume that messages eventually reach the correct node.

Most underlayer ad-hoc routing protocols provide limited fault-tolerance to make

the routing resilient to user mobility and node failures, but data items in MP2P systems

still need to be replicated to improve their availability. Furthermore, the replicas must

be kept consistent with the original after each update. In PReCinCt, the keys of data

items are kept at their home regions, a home region failure is said to occur when there is

no copy of a key in its home region. Home region failure happens when there is no peer

in a region, or a peer did not send back the key to the home region after an inter-region

mobility, or sudden death occurs to the peer holding the key. Based on three assumptions,

we design a lightweight data replication mechanism in PReCinCt to tolerate failures at

the network, node and home region levels. The algorithm tries to keep at least one replica

of all keys in a region other than the home region under all circumstances to improve

the availability of each data item. Our discussion is based on a single replica, but can
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be extended to multiple replicas to cope with higher failure frequencies, at the cost of

increased bandwidth usage for replica messages and more cache space usage for replicas.

As we mentioned in the Data Search Process section, home region of each key is

determined by selecting the region whose center location is closest to the key’s hash

value. Given a data item with key K whose hash value is the location L, then the home

region Rh is the region whose center location (Lh) is closest to L. We will similarly

select the next closest region Rr whose center location is Lr as a replica region of K, i.e.,

∀Ri : dist(L − Lh) ≤ dist(L − Lr) ≤ dist(L − Li). This means that a request message

for key K will always be routed to the region Rh. If there exists a network failure, a

node failure or a region failure of Rh, this request message will instead be rerouted to the

replica region Rr. After reaching the Rr, localized flooding is used to locate the requested

data item. In order to maintain the consistency between original key and replica, update

message need to be sent from home region to the replica region after the home region

receives a data update for key K, which we will discuss in the next section.

5.2 Cooperative Caching in PReCinCt

The storage space of each peer is divided into two parts: static and dynamic caches.

The static cache contains the values of keys that belong to the region where the peer

currently resides. The dynamic cache, on the other hand, contains data items that

are placed opportunistically at a peer to reduce latency of subsequent retrievals. The

dynamic cache is optimally managed by a greedy cache mechanism. In this section we

present the caching scheme employed in PReCinCt that includes a cumulative cache, a

cache admission control and a cache replacement policy.
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C: the set of data objects in cache;
U(dj): the unity function;
uj: utility value of cached item j;
L: minimal utility in the cache;

Procedure Caching(dj)
Begin
if dj is retrieved from home region

while there is not enough space for dj;
let L = MINk∈C(uk);
Evict dk such that ujk = L;

end while
Add dj into cache;
uj = L + U(dj);

else
discard dj;

End

Figure 5.2 The Caching Algorithm of PReCinCt Scheme.

5.2.1 Cumulative Cache

Caching data items in the local caches of peers, helps reduce latency and increase

accessibility. When a peer Pi requests for data item dj, it first attempts to obtain the

data locally from its own region by broadcasting the request to its region members. If

the request can be satisfied within the same region, a local hit occurs. If not, the request

is sent to the home region of that data. If a peer along the path to the home region has

the requested data item dj, then it can serve the request without forwarding it further

towards the home region. Otherwise, the request will be forwarded to the home region of

item dj. Since the local caches of the peers virtually form a cumulative cache, decisions

regarding the caching of a data item and its eviction from the cache depends not only on

the peer itself but also on the neighboring peers. We propose a cache admission control

policy and a cache replacement algorithm for cumulative caches.



100

5.2.2 Cache Admission Control

When a peer Pi receives a response for the requested data item, a cache admission

control is triggered at Pi to decide whether the data item should be cached. If the origin

of the data resides in Pi’s region, then the item is not cached; otherwise it is cached at

the peer Pi. Peers cooperatively cache data and thus it is unnecessary to replicate data

in the same region, as they can be obtained locally for subsequent requests.

5.2.3 Cache Replacement Policy

We have developed a greedy replacement policy that considers three factors while

selecting a victim: i) the access count of the data items reflecting the popularity of

a data item in the region; ii) the sizes of the data items; and iii) the region-distance

which is the distance between the regions of the requesting and the responding peers.

This algorithm incorporates the region-distance as an important parameter in selecting

a victim for replacement. The greater the region-distance, the greater is the utility of

the data. This is because caching data items which are further away, save bandwidth

and reduce latency for subsequent requests. Thus we call our replacement algorithm

Greedy-Dual Least-Distance (GD-LD).

The cache replacement policy uses a utility function to assign a utility value for

each data item, based on the three factors mentioned above. Since the nodes in the

region cooperatively cache data, the utility value reflects the importance of the data item

to the entire region. The utility value is calculated using the following expression:

Utility = wr × acj + wd × reg dst + ws × 1

sj

(5.1)

where aj is number of times the item dj has been accessed in the region; reg dst is the

distance between the requesting region and the home region for the data; sj is size of the

item dj, and wr, wd, ws are the corresponding weight factors. The utility value of the
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data item is updated when there is a hit. This value is used by the greedy replacement

algorithm at the peer to find an optimal replacement and thereby manage the cache

efficiently. Details of the caching algorithm are given in Figure 5.2.

5.3 Data Consistency in PreCinCt

In this section we discuss our proposed Push with Adaptive Pull scheme to main-

tain data consistency among replicas in the MP2P network. This scheme combines the

push-based invalidation initiated by a peer updating a data item with the pull based

invalidation initiated by the individual peers that maintain the cache. During the push

phase the peer updating a data item sends the update to the home region for that data

item. During the pull phase peers poll the home regions to check if their cache contents

are obsolete. We propose an adaptive polling scheme which determines the frequency at

which peers should poll the home regions.

Push Phase: When a peer Pupdate initializes an update request for a data item dj

at time t, Pupdate updates dj and pushes the update message to the home region Rh of dj

as well as replica region Rr of dj. Within the home and replica regions, flooding is used

to locate the peer, say Pi, which has the data item dj. When Pi is located, it updates its

copy of data item dj. Thus by pushing the update to only the home and replica regions

instead of to the entire network, our scheme consumes less wireless bandwidth and incurs

less message overhead to maintain data consistency. After receiving the update message,

Pi updates the Time-to-Refresh (TTR) value for dj. The TTR values are dynamically

maintained to reflect the update rates for the data items. The algorithm of the Push

phase is given in Figure 5.3.

Pull Phase: The pull phase of the algorithm is initiated by the individual peers

interested in checking the validity of their cached items. During this phase peers poll
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Notations:
dj: updated data item;
t: time at which the update is initiated;
Pud: the peer initiating an update for dj;
Rh

j : home region for data dj;
Rr

j : replica region for data dj;
M(dj, t): Update message for data dj which is updated at time t;

Procedure Push
Begin

When Pud initiates an update message M(dj, t)
Obtain the home region Rh

j and replica region Rr
j for dj

Route the message M(dj, t) to regions Rh
j and Rr

j

For each Pi in Rh
j and Rr

j

If Pi have cached dj

Update dj and store the update time t in Pi

Pi calculates TTR of data item dj

Else
Discard M(dj, t);

End

Figure 5.3 Push Phase.

the home regions to determine the freshness of data items in their cache. We propose an

adaptive pull mechanism.

Adaptive Pull: The notion of adaptive polling has been used in the context of

web cache consistency [31] and we adopt a similar idea here. In our proposed adaptive

polling mechanism, peers vary the frequency with which they poll the home region for a

data item, depending on the update rate for that data item. In this scheme the polling

frequency is dynamically varied so that data items that are frequently updated are polled

more often than data items that are relatively static.

The home regions assign a TTR value to each of their data items. This TTR value

is varied dynamically by the home region to reflect the update rate for the associated

data item. When the home region for data item dj receives an update for dj, it locates
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the peer Pi which holds dj. tupd intvl is the interval between successive updates of dj. α

(0 ≤ α ≤ 1) is a constant factor to weigh the relative importance of the recent and past

updates, then the TTR value is updated as:

TTR = α× TTR + (1− α)× tupd intvl (5.2)

This TTR value will be sent by the home region to other peers on subsequent

requests for data item dj. When a peer requests for dj and there is a local cached copy,

then it determines if the TTR of dj has expired. The peer polls the home region only if

the TTR of dj has expired. Thus we avoid too many polls to the home regions while still

ensuring good consistency. The detailed algorithm for pull phase is given in Figure 5.4.

Notations:
dj: requested data item;
P q

j : the peer requesting dj;

Rh
j : home region for data item dj;

Procedure Pull
Begin
When P q

j requests data item dj

If dj is cached in P q
j

If TTR for dj has expired
Obtain the home region Rh

j for dj

Poll the home region Rh
j

Inquire for missed updates based on the last update times
Update the TTR and local cached copy

Else
Use the cached copy of dj to satisfy the request

End

Figure 5.4 Pull Phase.

The main advantages of our Push with Adaptive Pull mechanism are: 1) The push

messages need to be sent only to the home and replica regions, and not to the entire
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network, thus saving bandwidth and power consumption; 2) As the frequency of polling

is determined by the update rate for the data item, redundant polls to the home region

are avoided. This saves the bandwidth as well as reduces latency.

5.4 Performance Analysis of the PReCinCt Scheme

In this section we briefly describe the energy model used in our performance eval-

uation and determine the energy consumption of the proposed PReCinCt.

Energy as a distributed network resource has unique properties that distinguish it

from other resources [25]. Energy is non-renewable: a mobile node has a finite, mono-

tonically decreasing battery energy. Unlike bandwidth the energy cost requires separate

calculations with respect to the sender, the intended receiver and other nodes which

overhear the message. This makes it necessary to distinguish between broadcast traffic

which is processed by all nearby nodes and point-to-point traffic which is processed by

the intended receiver(s) and discarded by all other nearby nodes. The details of the

energy model for the analysis was presented in the last chapter in Section 4.3.1.

5.4.1 Analytical Model of the PReCinCt Search

In the light of the discussions above, we now present our analytical model for energy

consumption of one query search of PReCinCt scheme. Before we present the analytical

model, we give the assumptions used in the analysis and list the notations.

1. All nodes in the network are two-dimensionally Poisson distributed with density ρ,

i.e., the probability p(i, A) of finding i nodes in an area of size A is given by,

p(i, A) =
(ρA)ie−ρA

i!
(5.3)

2. All nodes have the same transmission and receiving range, denoted by r. N is the

average number of neighbor nodes within a circular region of radius r. Therefore,

we have N = ρπr2.
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3. The energy cost of data processing is negligible compared with the energy cost of

data communication.

The notations used in the analysis are listed as follows.

• N : number of nodes in the network;

• M : number of regions;

• l × l: size of the whole network area;

• r: transmission range of each MU;

• Rq: the set of MUs in requesting region;

• Rh: the set of MUs in home region;

• PH: the set of MUs in route path from requesting region to home region;

• Pi: mobile peer i;

• Pij: the probability data item dj is cached in Pi;

• sq: size of one query message;

• Ebd sd(sq): energy cost to broadcast a query message;

• Ebd rv(sq): energy cost to receive a broadcast query message;

• Ep2p sd(sq)): energy cost to unicast a query message;

• Ep2p rv(sq)): energy cost to receive a unicast query message;

In the model, we divided the energy cost of a query search PReCinCt into three

parts. 1) energy cost (E1) due to localized broadcast in requesting region; 2) energy

cost (E2) due to route query to home region; and 3) energy cost (E3) due to localized

broadcast in home region;

According to the energy analytical model given in [78], during a query broadcasting

in one region, each MU in the region will send the query once, and each MU receives

multiple duplicated queries from all neighbors. Therefore, E1 is calculated as follows.
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E1 = (1−
∏

MUi∈Rq

(1− Pij))

[
N

M
× Ebd sd(szq) +

πr2N

l2
× N

M
× Ebd rv(szq)

]
(5.4)

In the PReCinCt scheme, we use geographical hash table to deploy all data items in

the whole network area, so that the probability of a region to be a home region of a data

query is same for every region. Thus, the average length of route path from requesting

region to home region is equal to the distance between two randomly picked regions in

the network area, which is given by
√

2
2

l. Therefore, E2 is calculated as follows,

E2 =
∏

MUi∈Rq

(1− Pij)(1−
∏

MUi∈PH

(1− Pij))×
√

2l

4r
× (Ep2p sd(szq) + Ep2p rv(szq)) (5.5)

If the query cannot be satisfied by the caches of requesting region and cumulative

caches in route path, the query will reach the home region, where a localized broadcast

is used to find the requested item. The calculation of E3 is similar that of E1, E3 is

calculated as follows.

E3 =
∏

MUi∈Rq

(1− Pij)
∏

MUi∈PH

(1− Pij)

[
N

M
× Ebd sd(szq) +

πr2N

l2
× N

M
× Ebd rv(szq)

]

(5.6)

Since the average cost of a query search consists of these three parts, the average

cost of a PreCinCt search is given by,

E = E1 + E2 + E3

= (1−
∏

MUi∈Rq

(1− Pij))

[
N

M
× Ebd sd(szq) +

πr2N

l2
× N

M
× Ebd rv(szq)

]

+
∏

MUi∈Rq

(1− Pij)(1−
∏

MUi∈PH

(1− Pij))×
√

2l

4r
× (Ep2p sd(szq) + Ep2p rv(szq))

+
∏

MUi∈Rq

(1− Pij)
∏

MUi∈PH

(1− Pij)

[
N

M
× Ebd sd(szq) +

πr2N

l2
× N

M
× Ebd rv(szq)

]
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5.5 Simulation Results

To measure the performance of our data retrieval and caching schemes, we sim-

ulated the algorithms on a variety of static and mobile network topologies. We focus

mainly on the mobile simulation results in this chapter, as it is more demanding and

challenging in MP2P networks. GPSR [33] is used as the wireless routing protocol. We

have modified it to route to regions instead of specific destinations by forwarding the

packet towards the center of the region and using broadcast inside the region. The per-

formance metrics measured were average latency and energy consumption. We compare

our cache replacement algorithm GD-LD with the well known GD-Size [14]. Likewise,

we evaluate our cache consistency scheme namely Push with Adaptive Pull with the

Plain-Push and Pull-Every-time schemes.

5.5.1 Simulation Environment

We simulated our experiments in NS-2 [108]. The NS-2 simulation model simulates

nodes moving in an unobstructed plane. Motion follows the random waypoint model [11].

In our simulations the nodes are initially placed in a rectangular region of 1200m×1200m

divided into equal sized regions. We conducted simulations for a network of up to 160

nodes with a nominal 250m transmission range and a wireless bandwidth of 11Mbps.

The time interval between two consecutive requests and updates generated from a peer

follows a Poisson distribution with a mean of 30 seconds. Each peer generates accesses

to data items following a Zipf distribution with a skewness parameter, Θ. Nodes pause

for a period of 5s between motion steps. We simulate maximum velocities of 2, 8, 12, 16

and 20m/s. The default number of regions is 9.

5.5.2 Simulation Experiments

The PReCinCt scheme is compared with the flooding and the expanding ring search

schemes for energy consumption under varying node densities and moving speeds [47].



108

Three sets of experiments are reported in this chapter for evaluating the cooperative

caching and consistency mechanisms of PReCinCt. In the first set of experiments the

GD-LD cache replacement algorithm was compared with the GD-Size algorithm. The

performance metrics measured were byte hit ratio and latency. The second set of ex-

periments compare different cache consistency algorithms and show that the proposed

Push with Adaptive Pull scheme performs better than Plain-Push and Pull-Every-time

schemes. Finally the third set of experiments validates the theoretical studies by com-

paring the theoretical and simulation results.

5.5.2.1 Cache Replacement Experiments

In these set of experiments the developed cache replacement algorithm GD-LD is

compared with GD-Size [14]. The simulations were conducted on a topology with 80

nodes moving at a speed of 6m/s.

Figure 5.5 shows the variation of latency to fetch a data item under varying cache

sizes. GD-LD by far outperforms the GD-Size algorithm for all cache sizes. This is due

to two reasons: (1) The developed algorithm includes a new parameter - region distance

while calculating the utility value for an item. Region distance is the distance between

the regions of the requesting and responding peer. The algorithm favors items that

are further away as caching these items would reduce latency and save bandwidth for

subsequent requests for the same item, and (2) The GD-Size algorithm, penalizes a large

sized data item without considering its popularity or the cost of fetching it again for a

subsequent request.

Figure 5.6 shows the byte hit ratio of the two caching algorithms. We observe GD-

LD is able to achieve much higher byte hit ratios as compared to that of the GD-Size.

This is because GD-Size favors small data items independent of their popularity-thus a

large, popular data item stands less chance of being cached under GD-Size.



109

0.5 1 1.5 2 2.5
0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

A
ve

ra
ge

 L
at

en
cy

 (
se

c)

Cache Size (% of database size)

GD−Size
GD−LD

Figure 5.5 Variation of Latency with Cache Size.
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Figure 5.6 Variation of Byte Hit Ratio with Cache Size.

5.5.2.2 Data Consistency Experiments

In this section we compare the proposed Push with Adaptive Pull cache consistency

algorithm with the Plain-Push and Pull-Every-time schemes. The performance metrics

measured are: 1) Control Message Overhead, which is measured as the total number of

messages generated in the network to maintain data consistency among the replicas; 2)

False Hit ratio(FHR), measured as the ratio of the number of stale hits to the number of

hits that are shown as valid; and 3) The average latency to retrieve a data item.
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In the proposed model, the time interval between two consecutive requests, Trequest

and the time between two consecutive updates, Tupdate generated from a peer follows

a Poisson distribution. We measure the effects of the time between successive updates

Tupdate on the different cache consistency schemes. We fix Trequest to 30 seconds, and vary

Tupdate so that the ratio of Tupdate/Trequest varies from 1 to 5. A ratio of 1 indicates the

highest update rate.
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Figure 5.7 Effect of Update Rate on the Control Message Overhead.

Figure 5.7 shows the control message overhead of the three consistency schemes.

The message overhead of all the schemes decreases with the update rate due to lesser

invalidation messages that are generated. The overhead of Plain-Push is extremely high

as the invalidation messages are flooded to the entire network. In the Push with Adaptive

Pull scheme the invalidation messages are pushed only to the corresponding home region

thus incurring almost 89% less message overhead than the Plain-Push scheme. The Pull-

Every-time scheme also incurs higher overhead than that of the proposed scheme, as in

the Pull-Every-time scheme the peers are required to poll the home regions for every data

request to check for the validity of their cached item. In contrast the proposed scheme
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polls the home region only when the TTR of that data item has expired, thus achieving

24%-57% less overhead than that of the Pull- Every-time. As the update rate increases

the adaptive scheme tends to produce smaller TTR values, which results in slightly more

polls.
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Figure 5.8 Effect of Update Rate on the False Hit Ratio.

The FHR of the three schemes is shown in Figure 5.8. We observe that the proposed

scheme incurs the highest FHR, as the peers poll the home regions for data only when

the TTR has expired, thus increasing the probability of a false hit. However, we see that

this ratio is very small, 0.01 even with highest update rate. ThePlain-Push scheme also

incurs some false hits, as it is possible that the invalidation messages do not reach all the

peers due to network congestion, network partition or peer mobility.

Figure 5.9 shows the average latency to retrieve a data item with varying update

rates. It is observed that the Pull-Every-time scheme has the highest average latency, as

in this scheme the peers are required to poll the home regions for every request which

incurs an extra round-trip delay in obtaining the requested data.
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Figure 5.9 Effect of Update Rate on the Latency per Request.

5.6 Summary

Mobile Peer-to-Peer networks (MP2P) promise to offer ubiquitous information ser-

vices to mobile users in the environments without wireless infrastructure. With more and

more mobile users having location detection capability, we propose a novel location-aided

data retrieval scheme, called PReCinCt, of our proposed framework for the peer-to-peer

data searching in large scale mobile peer-to-peer system. The data retrieval scheme is

scalable and incurs less overhead with peer mobility. The cooperative caching scheme

enables peers in a region to share their data, thus providing a unified view of the cache.

This helps in alleviating the message latency and limited accessibility problems in MP2P

networks. In order to handle dynamic data, PreCinCt also includes an effective cache

consistency scheme called Push with Adaptive Pull that incurs less control message over-

heads as compared to that of existing schemes.

In summary, the proposed framework integrated three different information ac-

cess approaches, i.e., pull based, push based, peer-to-peer based to support ubiquitous

information services under different wireless networks. In the framework, different util-

ity models are developed to optimize cache management and cooperation for user data
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accesses. The utility models considers various resource constraints (e.g., energy, band-

width, memory, network connectivity etc) of mobile and distributed environments. The

framework provides a flexible solution for information services in different application

scenarios.



CHAPTER 6

CONCLUSION AND FUTURE WORK

Ubiquitous computing promises to provide the information access service whenever

and wherever. While the wireless communication infrastructure is and will continue to

be characterized by a heterogeneous multitude of systems. Next generation (4G) mobile

systems focus on seamlessly integrating the existing wireless technologies. 4G networks

are all-IP based heterogeneous networks that allow users to use any system anytime,

anywhere. Users carrying an integrated terminal can use a wide range of applications

provided by multiple wireless networks. Users can use multiple services from multiple

service provides at the same time.

In order to support ubiquitous information services in the next generation mobile

systems, in this dissertation, we develop a utility based resource aware framework to sup-

port ubiquitous information access in the heterogenous networks through data caching

and peer-to-peer cooperative sharing. The framework considers the constrained resource

of mobile devices and wireless networks and provides flexible, efficient and scalable data

information services to mobile users. In this framework, utility functions are used to

optimize cache management and get optimal performances for user data accesses under

different wireless networks. The utility functions consider various resource constraints

(e.g., energy, bandwidth, memory, network connectivity etc) of mobile and distributed

environments. The proposed framework efficiently integrates various information provid-

ing models, (push-based, pull-based and peer-to-peer based), it can support large scale

information services in mobile and distributed environments.

Particularly, tn the proposed framework, a novel energy and bandwidth efficient

data caching mechanism, called GreedyDual Least Utility (GD-LU), is proposed to en-

114
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hance dynamic data availability to mobile users. The proposed utility-based caching

mechanism considers several characteristics of mobile distributed systems, such as connection-

disconnection, mobility handoff, data update and user request patterns to achieve sig-

nificant energy savings in mobile devices. Our comprehensive simulation experiments

demonstrate that the proposed caching mechanism achieves more than 10% energy sav-

ing.

Moreover, a novel passive prefetching scheme is proposed to support information

access in data broadcast networks. A threshold based on relative utility value of each

data item is deployed to admit data items from broadcast channel. By choosing proper

threshold value, passive prefetching can achieve near-optimal performance tradeoff be-

tween access latency and energy consumption.

In order to support information access in multi-hop hybrid wireless networks, we

introduce a novel peer-to-peer information sharing scheme called energy efficient peer-to-

peer caching with optimal radius (EPCOR). In EPCOR, a localized P2P overlay network

is built among the mobile users to facilitate cooperative sharing of data based on net-

work proximity and data preference. In order to conserve energy, each MU in localized

overlay shares a data item in a cooperation zone. Both analytical and simulation re-

sults show that EPCOR enhances the peer-to-peer data sharing among mobile users and

achieves significant performance improvement in power saving, network throughput and

load distribution among mobile users in multi-hop wireless networks.

Finally, we investigate location-aided data retrieval in the mobile ad hoc networks

and proposed a novel scheme, called Proximity Regions for Caching in Cooperative MP2P

Networks (PReCinCt) to efficiently support scalable data retrieval in large-scale mobile ad

hoc networks. In the PReCinCt scheme, the network topology is divided into geographical

regions where each region is responsible for a set of keys representing the data. Each key

is then mapped to a region location based on a geographical hash function. A geographic-
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aided routing protocol is used to route traffic of each data retrieval. Moreover, a data

replication scheme is used to handle fault tolerance problem in PReCinCt. In order to

further save bandwidth for each data retrieval, PReCinCt incorporates a cooperative

caching scheme that caches relevant data among a set of peers in a region. Simulation

results show that PReCinCt can significantly save search cost in large scale mobile ad

hoc networks compared to existing flooding based schemes.

All novel algorithms and functional modules of propose framework have been de-

veloped and thoroughly evaluated with comprehensive simulation experiments. To the

best of our knowledge, the proposed work in this dissertation is the first comprehensive

attempt to build a resource aware middleware framework for mobile devices to support

ubiquitous information access in next generation heterogenous wireless networks.

The research work of this dissertation can lead to other future work as follows:

• Security management in peer-to-peer data sharing.

Reputation based mechanism could be used in the peer-to-peer data sharing. A

peer would receive a reputation based on the history of successful providing data

to other peers. This trust management mechanism could to be used to motivate

peers to share their information and could also be used to detect and exclude the

malicious peers from the data sharing.

• Supporting real time multimedia streaming.

Supporting multimedia applications is the major goal of next generation mobile

systems. Although, we mainly focus on the discrete data services in this disserta-

tion, caching and peer-to-peer sharing ideas of our work can be further studied to

support real time multimedia applications in wireless networks.

• Context-aware information services.

Context-aware computing is a ubiquitous computing paradigm in which applica-

tions can discover and take advantage of contextual information (such as user loca-
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tion, time of day, and user activity). Although, we did not investigate context-aware

information services in this dissertation. The proposed framework can be incorpo-

rated with research results of context-ware computing to provide context-aware

information services to mobile users in next generation mobile systems.

• Prototype development.

The middleware based framework needs proper programming model with appropri-

ate application programming interfaces (API) for deployment. Because the main

objective of this dissertation is to identify the functional modules and some systems

parameter settings, we have left the design of the prototype system under scope of

future works.
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