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ABSTRACT

STRUCTURAL SIMILARITY BASED IMAGE QUALITY ASSESSMENT:

POOLING STRATEGIES AND APPLICATIONS TO IMAGE

COMPRESSION AND DIGIT RECOGNITION

Publication No.

Xinli Shang, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Zhou Wang

This thesis studies a recently proposed perceptual image similarity measure − the

structural similarity (SSIM) index. Although still in its early stage, the SSIM index

has demonstrated superior performance in a large number of tests as compared to the

currently most widely used image distortion/quality measures, the mean squared error

(MSE) and the peak signal-to-noise-ratio (PSNR). This motivates us to further inves-

tigate the SSIM method and extend it to other image processing and pattern recog-

nition applications. Specifically, three topics have been studied in this thesis: spatial

pooling strategies for perceptual image quality assessment, structural similarity-guided

perceptual image compression, and handwritten digit recognition using complex wavelet

structural similarity index.

Recently, a number of objective image quality assessment algorithms have been

proposed to predict human perception of image quality. Many of these algorithms are
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implemented in two stages. In the first stage, image quality is evaluated within local

regions. This results in a quality/distortion map over the image space. In the second

stage, a spatial pooling algorithm is employed that combines the quality/distortion map

into a single quality score. While great effort has been devoted to developing algorithms

for the first stage, little has been done to find the best strategies for the second stage (and

simple spatial average is often used). We have investigated three spatial pooling methods

for the second stage: Minkowski pooling, local quality/distortion-weighted pooling, and

information content-weighted pooling. Extensive experiments with the LIVE database

(developed at the Laboratory of Image and Video Engineering at The University of

Texas at Austin) show that all three methods may improve the prediction performance of

perceptual image quality measures, but the third method demonstrates the best potential

to be a general and robust method that leads to consistent improvement over a wide range

of image distortion types.

State-of-the-art image compression techniques, such as the set partitioning in hier-

archical trees (SPIHT) algorithm and JPEG2000, apply a wavelet decomposition to the

image followed by a bitplane coding scheme. The bitplane coding technique allows for

continuously rate scalable coding and can help to order the encoded bitstreams according

to their importance, where a bit’s importance is directly related to its contribution to

the MSE between the original and the decoded image. Since MSE is not an adequate

measure of perceptual image quality, here we attempt to replace the role of MSE with the

SSIM index. By applying such a new optimization goal into the bitplane coding scheme,

we obtain visually improved images using the same bit rate. In comparison with SPIHT

and JPEG2000 compressed images, the perceptual quality of the decoded images is more

evenly distributed over the image space.

The structural similarity method has also been used for handwritten digit recogni-

tion. In particular, an extended version of the SSIM index, namely the complex wavelet
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structural similarity (CW-SSIM), has been employed. One of the major advantages of

the CW-SSIM index is its robustness to small geometric distortions such as translation,

scaling and rotation of the images. This is an extremely important feature for many

pattern recognition problems. As an initial attempt for the application of the CW-SSIM

method for pattern recognition, we use it as the similarity measure for handwritten digit

recognition. Experiments with the MNIST database [1] show that our algorithm results

in an error rate of 5.06% with 200 templates for each digit. This is achieved without

any sophisticated preprocessing stages that normalize and register the test images before

comparison.
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CHAPTER 1

INTRODUCTION

Digital imagery is a pervasive way to describe the world. In recent years, there

is a dramatic growth in the use of digital images as a means for representing and com-

municating information. In the literature, a large amount of effort has been devoted to

developing methods for improving images appearance, or for maintaining the appearance

of images that are processed. To maintain, control, and enhance the quality of images,

it is important for images acquisition, management, communication, and processing sys-

tems to be able to identify and quantify image quality degradations [2]. For the purpose

of visual perception, the human eyes are the ultimate receivers, hence the most reliable

way of assessing the quality of an image is subjective evaluation [3]. In a standard sub-

jective test, a number of human observers are asked to give scores on a test image and

the mean value of all the subjective scores (the mean opinion score, or MOS) can then

be used as an indicator of image quality. However, MOS method has two drawbacks: it

is very expensive, and it is usually too slow to handle a large number of images in real

time. Therefore, it is imperative to develop effective automatic image quality assessment

systems.

Objective image quality assessment techniques can be classified into full-reference

(FR), reduced-reference (RR), and no-reference (NR) method according to the availability

of the “original image”, which is considered to be distortion-free or perfect quality [2].

Most of the proposed objective quality measures in the literature adopt the FR method,

i.e., assuming that the undistorted reference image exists and is fully available. But in

many practical applications, an image quality assessment system does not have access
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to the reference images. Therefore, it is desirable to develop measurement approaches

that can evaluate image quality blindly (NR). NR image quality assessment turns out

to be a very difficult task, although human observers usually can effectively and reliably

assess the quality of distorted images without using any reference at all. In the third

type of image quality assessment method (RR), the reference image is not fully available.

Instead, certain features are extracted from the reference image and employed by the

quality assessment system as side information to help evaluate the quality of the distorted

image. This thesis mainly focuses on FR image quality assessment.

Mean squared error (MSE) is widely used in objective image quality assessment as

well as many other fields. MSE is simple and straightforward. However, it has long been

pointed out that MSE is a poor model for visual perception of image distortion. Since the

human eye is the ultimate receiver in most real world applications, the characteristics of

the human visual system (HVS) would need to be taken into consideration in the design of

image quality evaluation systems. Pioneering work in the field of objective image quality

assessment was done by Mannos and Sakrison, who proposed an image fidelity criteria

that takes into account the human visual sensitivity as a function of spatial frequency [4].

Other important early work was documented in an edited book by Watson [5]. Reviews

of the most recent development of objective image quality assessment can be found at

[2, 3]. In [6] and [7], the structural similarity (SSIM) measure was proposed as a tool

for image quality assessment. Experiment results showed that this approach achieves

better correlations with subject evaluations. The complex wavelet version of the SSIM

method (CW-SSIM) is provided in [8], which gives better performance than SSIM in the

existence of small geometric distortions.

Many recently proposed perceptual image quality assessment algorithms are imple-

mented in two stages. In the first stage, image quality is evaluated within local regions.

This results in a quality/distortion map over the image space. In the second stage, a
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spatial pooling algorithm is employed that combines the quality distortion map into a

single quality score. While great effort has been devoted to developing algorithms for the

first stage, little has been done to find the best strategies for the second stage. Typically,

simple spatial average is used.

Image compression has been an active topic in the past two to three decades.

However, most of the current image codecs, such as the set partitioning in hierarchical

trees (SPIHT) algorithm and the JPEG2000 codecs (VM [9], JASPER[10] and JJ2000

[11]), adopt a rate-based MSE minimization encoding approach [12]. The involvement of

perceptual optimization has been minimal and its effectiveness is very limited. This leaves

space for further perceptual improvement by incorporating new image quality assessment

algorithm such as the SSIM index.

Handwritten digit recognition is widely desirable in many real applications such as

automatic bank check reading and automatic postal code recognition. Since FR image

quality assessment algorithms can be directly used to evaluate the similarity between two

images, it would be interesting to see how they perform in digit recognition problems. In

particular, the CW-SSIM index would be useful because it can provide adequate image

comparison without a precise registration stage at the front end.

The goal of this thesis is threefold: 1) Study the pooling strategies of objective

image quality assessment; 2) Design an structural similarity - guided perceptual image

compression algorithm; 3) Design an algorithm for handwritten digit recognition using

CW-SSIM.

1.1 Objective Image Quality Assessment

MSE is a simple and straightforward objective image quality measure. Let X and Y

be two matrices representing two images being compared. Let M and N be the numbers
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of rows and columns in the images (we have assumed that the two images have the same

size). MSE is defined as Eq. 1.1 [6]:

MSE =
1

M ×N

M,N∑
i=1,j=1

(xij − yij)
2 (1.1)

Assuming that X is the original image, then the MSE value can be used as a measure

of the distortion in the distorted image Y. Another related and often-used measure for

image quality is the peak signal-to-noise Ratio (PSNR), which is defined as follows.

PSNR = 10 log10

L2

MSE
(1.2)

Here L is the dynamic range of allowable image pixel intensities. For gray-scale images

of 8 bits/pixel, L = 28-1 = 255. Note that for a given L, an MSE value can be uniquely

mapped to a PSNR value, and vice versa.

MSE is often the most convenient for the purpose of algorithm optimization, since

it is differentiable and when combined with linear algebra tools, closed-form solutions can

often be found for real problems. In addition, MSE often has a clear physical meaning −
the energy of the error signal (an error signal is defined as the difference signal between

the two images being compared). These are the major reasons why MSE (and PSNR)

is extensively used throughout the literature of image processing, communication, and

many other signal processing fields.

Nevertheless, MSE has long been criticized for its poor correlation with perceived

image quality. An instructive example is shown in Figure 1.1, where the original “Ein-

stein image” (a) is altered by several different types of distortions: (b) contrast stretch;

(c) mean luminance shift; (d) Gaussian noise contamination; (e) impulsive noise contam-

ination; (f) JPEG compression; (g) blurring. It is important to note that several of these
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images have nearly identical MSE values relative to the “original”, yet these same images

present dramatically different visual quality.

A common explanation is that MSE does not reflect the way that the human

visual systems perceive images. A number of important psychophysical and physiological

features of Human Visual System (HVS) are not accounted for by the MSE. Notice that

MSE is defined using one dimensional formulation, thus it does not make use of any spatial

structural information in the image at all, which may be essential for the evaluation of

perceptual image quality.

The first notable work in the field of objective perceptual image quality assessment

is the pioneering work of Mannos and Sakrison [4], who proposed an image fidelity criteria

that takes into account human visual sensitivity as a function of spatial frequency.

The Daly model [13], or visible differences predictor (VDP), is intended to be used

for high-quality imaging systems, in which the probability of whether the difference be-

tween two images can be discerned is evaluated. The output of this model is a probability-

of-detection map between the reference and the distorted images. This model includes a

number of processing stages, including a point-wise nonlinearlity, filtering based on the

contrast sensitivity function (CSF), space-frequency channel decomposition, contrast cal-

culation, masker calculation, and a probability-of-detection calculation [2]. The model

uses a modified version of Watson’s cortex transform for the channel decomposition,

which separates the image signal into five scale levels followed by six orientations. For

each channel, a threshold elevation map is computed from the contrast in that channel.

There are two distinct features of Daly model. One is that it allows for mutual mask-

ing, which includes not only the reference image, but also the distorted image in the

calculation of the masking factor. The second is that a psychometric function is used to

convert the strengths of the normalized error into a probability-of-detection map before

the pooling stage.
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Another model that attempts to estimate the probability-of-detection of the differ-

ences between the reference and distorted images is by Lubin [14]. Lubin model starts

by filtering the images using a low-pass PSF that simulates eye optics. The filtered

images are then re-sampled according to the retinal photoreceptor sampling. Next, the

images are decomposed using a Laplacian pyramid into seven resolutions, followed by

band-limited contrast calculations. To reflect orientation selectivity, the signal is further

decomposed into four orientations using a bank of steerable filters. The decomposed

signal is normalized using the subband base-sensitivity determined by the CSF. A point-

nonlinearity of sigmoid shape is implemented to account for intra-channel masking. The

normalized error signal is convolved with disk-shaped kernels before a Minkowski pool-

ing stage across scale. The pooled error at each spatial location is then converted into

a probability-of-detection map. An additional pooling stage may be finally applied to

obtain a single number for the entire image.

The Safranek-Johnston model [15] is designed for perceptual image coding. It de-

composes the image signal using the generalized quadrature mirror filter(GQMF)transform,

a separable decomposition that equally divides the frequency space into 16 subbands. At

each subband, a base sensitivity factor is determined by the noise sensitivity on a mid-

gray image and was obtained by subjective experiment.

In the Teo-Heeger model [16], the channel decomposition is applied after a front-

end linear filtering stage. In an earlier version of the model, a hex-QMF transform,

which is quadrature mirror filter implemented on a hexagonally-sampled image, is used

to accomplish the channel decomposition. Later, the authors adopted a steerable pyramid

decomposition with six orientations, which is a polar separable wavelet design that avoids

aliasing in the subbands.
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Some researchers consider spatially varying distortion metrics which attempt to

exploit the masking phenomenon of the visual systems. Watson’s work [17] [18] and

others work such as [19] on visual optimization are noteworthy in this regard.

Watson’s DCT model first divides the image into distinct blocks and a visibility

threshold is calculated for each coefficient in each block. Three factors determine the

visibility threshold. The first is the baseline contrast sensitivity associated with the DCT

component, which is determined empirically. The second factor is luminance masking,

which only affects the DC coefficient in the DCT. The third factor is contrast/texture

masking, in which the masking adjustment is determined by all the coefficients within

the same block.

Watson’s wavelet model is based on direct measurement of the human visual sen-

sitivity threshold for individual wavelet coefficients. It constructs a mathematical model

for DWT noise detection thresholds that is a function of level, orientation, and display

visual resolution. This allows for calculation of a “perceptually lossless” quantization

matrix, for which all errors are in theory below the visual threshold. The model can be

used as the basis for adaptive quantization schemes or the bit plane coding rate distortion

scheme.

[19] presented an algorithm that locally adapts the quantizer step size at each

pixel according to an estimate of the masking measure. This estimate is based on the

pixels already coded for the prediction of the pixels not yet coded. This algorithm

exploits the spatiotemporal masking properties of the human visual system, based on

psychophysical masking phenomena, to establish thresholds of just-noticeable distortion

(JND) or minimally noticeable distortion (MND). The central ideas are: 1) to “hide”

coding distortion beneath spatial and temporal JND thresholds, and 2) to augment the

classical coding paradigm of redundancy removal with elimination of irrelevant signal
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information, i.e., discarding those signal components which are imperceptible to the

human receiver.

The structural similarity (SSIM) method [6] [7] is a recently proposed approach

for image quality assessment. An important observation is that natural image signals

are highly structured: their pixels exhibit strong dependencies, especially when they

are spatially proximate, and these dependencies carry important information about the

structure of the objects in the visual scene. The motivation of SSIM is to find a more

direct way to compare the structures of the reference and the distorted signals.

The system diagram of the SSIM method is shown in Figure 1.2. Suppose x and

y and are two nonnegative image signals, which have been aligned with each other (e.g.,

image patches extracted from the same location in two images). Suppose that one of

the signals has perfect quality, then the similarity measure can serve as a quantitative

measurement of the quality of the second signal. The system separates the task of

similarity measurement into three comparisons: luminance, contrast and structure. First,

the luminance of each signal is compared. Assuming discrete signals, this is estimated as

the mean intensity

µx =
1

N

N∑
i=1

xi (1.3)

and

µy =
1

N

N∑
i=1

yi (1.4)
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Secondly, signal contrast is estimated as the standard deviation (the square root of

variance). The contrast comparison is then the comparison of σx and σy.

σx = (
1

N − 1

N∑
i=1

(xi − µx)
2)

1
2 (1.5)

σy = (
1

N − 1

N∑
i=1

(yi − µy)
2)

1
2 (1.6)

Thirdly, the signal is normalized (divided) by its own standard deviation, so that

the two signals being compared have unit standard deviation. The structure comparison

s(x,y) is conducted on these normalized signals (x−µx)
σx

and (x−µy)

σy
.

σxy = (
1

N − 1

N∑
i=1

(xi − µx)(yi − µy))
1
2 (1.7)

Finally, the comparisons are combined and the SSIM index is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(1.8)

where C1, C2 are small positive constants.

Although the spatial domain SSIM index gives superior performance in a wide

range of image distortion types and levels, it is highly sensitive to translation, scaling

and rotation of images, as demonstrated in images (h)-(l) of Figure 1.3. [8] extended

the SSIM method into the complex wavelet transform domain, so that it is insensitive to

these “non-structural” image distortions that are typically caused by the movement of the
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image acquisition devices, rather than the changes of the structures of the objects in the

visual scene. This new image similarity measure does not require a precise registration

process in the front, and naturally combines a number of invariants into one simple

measurement.

In the complex wavelet transform domain, suppose cx = {cx,i|i = 1, ..., N} and

cy = {cy,i|i = 1, ..., N} are two sets of coefficients extracted at the same spatial location

in the same wavelet subbands of the two images being compared, respectively. The

complex wavelet SSIM (CW-SSIM) index is defined as:

S (cx, cy) =
2|∑N

i=1 cx,ic
∗
y,i|+ K∑N

i=1 |cx,i|2 +
∑N

i=1 |cy,i|2 + K
(1.9)

Here c∗ denotes the complex conjugate of c and K is a small positive constant. CW-SSIM

is based on the following two assumptions [8]:

1)The structural information of local image features is mainly contained in the

relative phase patterns of the wavelet coefficients.

2)Consistent phase shift of all coefficients does not change the structure of the local

image feature.

Figure 1.3 demonstrates the CW-SSIM measure for image quality assessment. A 2-

scale, 16-orientation steerable pyramid decomposition is constructed and the 16 subbands

at the second scale are used by the CW-SSIM measure. It can be seen that images

with almost the same MSE values but different distortion types (Images (b)-(g)) have

drastically different visual quality, which is better predicted by SSIM and CW-SSIM.

However, the SSIM method fails to provide useful quality prediction when the images are

slightly shifted, scaled or rotated (Images (h)-(l)). These are effectively accounted for by

CW-SSIM, which gives significantly higher scores to Images (b), (c) and (h)-(l) than to

Images (d)-(g).
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1.2 Spatial Pooling for Image Quality Assessment

Many of the image quality assessment algorithms (especially full-reference algo-

rithms) adopted a two-stage implementation: In the first stage, image quality/distortion

is evaluated locally within small regions, resulting in a quality/distortion map. In the

second stage, a spatial pooling algorithm is employed to combine the quality/distortion

map into a single quality score. Such a two-stage approach may be applied directly in

image pixel domain or after channel decompositions (e.g., applied to a wavelet subband).

A pixel-domain full-reference example is shown in figure 1.4, where the goal is to

evaluate the quality of image (b) with a given perfect-quality reference image (a). Two

methods are used to compute local quality/distortions - absolute difference and the struc-

tural similarity (SSIM) index. The resulting quality/distortion maps are shown in figure

1.4(c) and (d), respectively. For easy comparison, we have adjusted the quality/distortion

map representations so that brighter indicates better quality in both maps. Careful in-

spection shows that the SSIM index (computed within a local window that slides across

the image space) better reflects the spatial variations of perceived image quality, for ex-

ample, the blockiness in the sky is clearly indicated in figure 1.4(d) but not in figure

1.4(c). However, the major concern here is not on how to create a better quality map

but on how to convert a quality map into a scalar quality score.

Surprisingly, in the literature, little investigation and careful comparison have been

devoted to developing and testing spatial pooling methods. In practice, spatial pooling

has often been treated superficially, e.g., using a simple spatial average. Some methods

incorporate human interactions or automatic object detections and segmentations to

define the regions-of-interest or points-of- fixations before spatial pooling (e.g., [20] [21]),

but these methods may not be easily applied to general-purpose image quality assessment

because for many images, it may not always be easy to find obviously outstanding objects

that attract visual attention. On the other hand, problems arise with the direct spatial
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average approach when the distortion is highly non-uniform over the image space. For

example, when only a small region in an image is corrupted with extremely annoying

artifacts, but all other regions have high quality, human subjects tend to pay more

attention to the low quality region and give an overall quality score lower than the

average of the quality/distortion map.

This thesis studies three strategies for spatial pooling - Minkowski pooling, local

quality/distortion-weighted pooling, and information content-weighted pooling.

1.3 Image Coding and Perceptual Optimization

Uncompressed image data requires considerable storage capacity and transmission

bandwidth. Despite the rapid progress in mass-storage density, processor speed, and

digital communication system performance, the demand for data storage capacity and

data-transmission bandwidth continue to outstrip the capabilities of available technolo-

gies. The recent growth of data intensive multimedia-based web applications have not

only sustained the need for more efficient ways to encode signals and images but have

made compression of such signals central to storage and communication technology [22].

JPEG (Joint Photographic Experts Group) standard has been established by ISO

(International Standards Organization) and IEC (International Electro-Technical Com-

mission) for still image compression. JPEG is based the block discrete cosine transform

(DCT) and its performance significantly degrades at low bit-rates. In recent years, the

wavelet transform has been an attractive technology in image compression field. Wavelet-

based coding provides considerable improvements in image quality at high compression

ratios (low bit rates). In the last few years, several wavelet-based schemes for image

compression, such as embedded zerotree wavelet (EZW), SPIHT and JPEG2000, have

been developed.
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Shapiro [23] introduced the EZW image coding that uses a tree-like data structure

to encode the coefficients of wavelet decomposition followed by an continuously scalable

bitplane coding algorithm. The zerotree idea is based on the hypothesis that if a wavelet

coefficient at a coarse scale is insignificant with respect to a given threshold T, then all

wavelet coefficients of the same orientation in the same spatial location at a finer scales

are also likely to be insignificant with respect to threshold T. Said and Pearlman [24]

provided a new and more effective implementation of a modified EZW algorithm based on

a set partitioning in hierarchical trees (SPIHT) algorithm. They also presented a scheme

for progressive transmission of the coefficient values that incorporates the concepts of

ordering the coefficients by magnitude and transmitting the most significant bits first.

They used a uniform scalar quantizer and claimed that the ordering information made

this simple quantization method more efficient. An efficient way to code the ordering

information is also proposed.

In recent years, JPEG2000 (i.e.,ISO/IEC15444) has been approved as a new in-

ternational standard. It supports both lossy and lossless compression. In addition to

improved compression performance,a number of other attractive features are provided,

including: 1) progressive recovery of an image by fidelity or resolution; 2) region of in-

terest coding, whereby different parts of an image can be coded with differing fidelity;

3) random access to particular regions of an image without decoding the entire code

stream; 4) a flexible file format with provisions for specifying opacity information and

image sequences; and 5) good error resilience [25].

JPEG2000 codec is based on wavelet/subband coding techniques [26] [27]. In the

encoder, after the image data has been transformed, the resulting coefficients may be

quantized. Quantization is the first primary source of information loss in the coding

path. There are two coding stages in JPEG2000 - tier-1 coding and tier-2 coding. In

tier-1 coding, The quantizer indices for each subband are partitioned into code blocks.
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Code blocks are rectangular in shape, and their nominal size is a free parameter of the

coding process. After a subband has been partitioned into code blocks, each of the code

blocks is independently coded. For entropy coding, a context-based adaptive binary

arithmetic coder is used [28]. For each code block, an embedded code is produced,

comprised of a number of coding passes. The output of the tier-1 encoding process is,

therefore, a collection of coding passes (significance pass, refinement pass, and cleanup

pass) for the various code blocks. In tier-2 encoding, the coding pass information is

partitioned into data units called packets, a process typically referred to as packetization.

Each coding pass is either assigned to one of the L layers or discarded. The coding

passes containing the most important data are included in the lower layers, while the

coding passes associated with finer details are included in higher layers. The rate control

algorithm must decide in which layer each coding pass is to be included. Since some

coding passes may be discarded, tier-2 coding is the second primary source of information

loss in the coding path. To decide which coding pass should be discarded before tier-2

coding in order to compress image data, many distortion metrics/criteria has been put

forward in the literature.

Since MSE is known to be a poor model for visual perception of image distortion,

some authors [29] have considered a relatively straightforward extension of MSE to a

weighted MSE in the frequency domain, where the weights were derived from studies

of the contrast sensitivity function (CSF) of the human visual system. A number of

spatially varying distortion metrics have been proposed in the literature to exploit the

visual masking effect. Watson’s work [17] on visual optimization of JPEG compressed

images is noteworthy in this regard, as is the work of [19]. The EBCOT algorithm is

provided by [30], which provides improved image quality when compared with SPIHT.

Specifically, EBCOT coded images exhibit substantially less ringing artifacts around
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edges and superior rendition of textures. This thesis tries to use SSIM as an objective

criteria in the context of visual optimization of wavelet-based image compression.

1.4 Handwritten Digit Recognition

Pattern recognition is one of the main tasks of biological perception and information

processing systems, and it is also a major challenge in computer science and engineering.

The problem of pattern recognition is to classify objects into categories, given that objects

in a particular category may vary widely, while objects in different categories may be very

similar. A typical example is handwritten digit recognition [31]. Automatic handwritten

digit recognition is desirable in many real world applications, including automatic bank

check reading and automatic postal code reading. Digit characters, typically represented

as binary images must be classified into one of 10 (0 to 9) categories using a classification

function. Building such a classification function is a major technological challenge.

Handwritten digit recognition algorithms can be roughly divided into two camps:

image-based matching and feature-based matching. In image-based matching, proto-

type image patterns (or templates) for each category are stored. Each incoming pattern

can then be compared to all the stored prototypes, and the label associated with the

prototype that best matches the input will be output. Rather than trying to keep an

image representation of the training set, feature-based matching algorithms to learn a

set of feature parameters from the training set and stored these feature parameters for

each category. When recognizing a new pattern, its feature parameters are calculated

and compared with the features for each category, and the final recognition result is

determined by the closeness of patterns in the feature space.

Many methods are proposed for handwritten digits recognition [32] [33], and several

representative methods are discussed as follows.
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Linear classifier: It is probably the simplest classifier, where each input pixel value

contributes to a weighted sum for each output unit. The output unit with the high-

est sum is then recognized as the class of the input digit. For the MNIST database

(http://yann.lecun.com/exdb/mnist/), an error rate of 8.4% is obtained with a deskew-

ing preprocessing stage in the front.

Baseline Nearest Neighbor Classifier: K-nearest neighbor classifier is proposed in

[32]. It is carried out by calculating an Euclidean distance measure between input images.

The error rate for the MNIST database is 1.22%, which is obtained with a set of front

end preprocessing steps, including deskewing, noise removal and blurring.

LeNet 4 [32]: It is an improved version of LeNet 1 [34] that has a 32x32 input

layer. It includes more feature maps and an additional layer of hidden units that is

fully connected to both the last layer of features maps and to the output units. LeNet

4 contains about 260,000 connections and has about 17,000 free parameters. The error

rate for the MNIST database is 1.1 %.

Convolutional Net with cross-entropy [35]: This classifier attempts to expand the

training set by adding a new form of distorted data. Unlike many other advanced ap-

proaches, the convolutional neural network method does not require sophisticated compu-

tations such as momentum, weight decay, structure dependent learning rates, averaging

layers, tangent propagation, or even finely-tuning the architecture. It achieved an error

rate of 0.4% for the MNIST, which is the best performance reported in the literature.

Most of the existing handwritten digit recognition methods are complex in structure

and are difficult to implement. This motivated us to apply CW-SSIM for handwritten

digit recognition, which may provide a completely different and simplified approach with

an acceptable error rate.
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1.5 Thesis Outline

The rest of the thesis is organized as follows: Detailed information about spa-

tial pooling for image quality assessment are described in chapter 2, including Minkowski

pooling, local quality/distortion-weighted pooling, and information content-weighted pool-

ing. All methods are tested with the LIVE database [36]. Chapter 3 presents our work

on structural similarity-guided perceptual image compression which is implemented by

incorporating the SPIHT and JPEG2000 compression algorithms. In chapter 4, we de-

scribe handwritten digit recognition using complex wavelet structural similarity index.

The method is tested with the MNIST database [1]. Chapter 5 concludes this thesis.
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(c) MSE=309
(b) MSE=306


(f) MSE=309


(a) MSE=0


(e) MSE=313


(d) MSE=309


(g) MSE=308


Figure 1.1. Einstein Image Altered with Different Types of Distortions. Images are
ordered in raster scan. (A) Reference Image (8 Bits/Pixel, Assumed to Have Perfect
Quality); (B) Contrast Stretch; (C) Mean Luminance Shift; (D) Gaussian Noise Con-
tamination; (E) Impulsive Noise Contamination; (F) JPEG Compression; (G) Blurring.
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Figure 1.2. Diagram of the Structural Similarity (SSIM) Measurement System.
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Figure 1.3. Comparison of Image Similarity Measures for Images with Different Types
of Distortions. Images are ordered in raster scan. (A) Reference Image (8Bits/Pixel, As-
sumed To Have Perfect Quality); (B) Contrast Stretch; (C) Mean Luminance Shift; (D)
Gaussian Noise Contamination; (E) Impulsive Noise Contamination; (F) JPEG Com-
pression; (G) Blurring; (H) Spatial Scaling (Zooming Out); (I) Spatial Translation (To
The Right); (J) Spatial Translation (To The Left); (K) Rotation (Counterclockwise); (L)
Rotation (Clockwise).
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(a)
 (b)


(c)
 (d)


Figure 1.4. Quality/Distortion Map Example (a) Original image; (b) Distorted Image
(by JPEG compression); (c) Absolute Difference Map: Brighter Indicates Better Quality
(Smaller Absolute Difference between the Original and the Distorted Images); (d) SSIM
Index Map: Brighter Indicates Better Quality (Larger SSIM Value).



CHAPTER 2

IMAGE QUALITY ASSESSMENT POOLING STRATEGIES

In this chapter, we discuss and test a variety of spatial pooling algorithms for

perceptual image quality assessment. We first state our motivation for the design and

development of these algorithms, and then present detailed algorithms and the testing

procedures. Finally, we discuss the experimental results of our test.

2.1 Motivation

Many recently proposed perceptual image quality assessment algorithms are imple-

mented in two stages. In the first stage, image quality is evaluated within local regions.

This results in a quality/distortion map over the image space. In the second stage, a

spatial pooling algorithm is employed that combines the quality/distortion map into a

single quality score. While great effort has been devoted to developing algorithms for the

first stage, little investigation and careful comparison have been devoted to developing

and testing spatial pooling methods. In practice, spatial pooling has often been treated

superficially, e.g., using a simple spatial average. Some methods incorporate human

interactions or automatic object detections and segmentations to define the regions-of-

interest or points-of-fixations before spatial pooling, but these methods may not be easily

applied to general-purpose image quality assessment because for many images, it may

not always be easy to find obviously outstanding objects that attract visual attention.

On the other hand, problems arise with the direct spatial average approach when the

distortion is highly non-uniform over the image space. For example, when only a small

region in an image is corrupted with extremely annoying artifacts, but all other regions

22
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have high quality, human subjects tend to pay more attention to the low quality region

and give an overall quality score lower than the average of the quality/distortion map.

Perhaps the simplest way to do pooling is to average all the samples in the qual-

ity/distortion map. The first question here is that whether each sample in the qual-

ity/distortion map has equal contribution to perceptual image quality. The answer is

most likely no, given the example. The second question that follows is how to determine

the weights assigned to each sample in the quality/distortion map. This is not a trivial

problem and motivates us to study different strategies for spatial pooling.

2.2 Algorithm Description

2.2.1 Minkowski Pooling

Let mi be the quality/distortion value at the i-th spatial location in the qual-

ity/distortion map. Minkowski pooling is defined as follows:

M = (
N∑

i=1

mβ
i )

1
β (2.1)

where N is the number of samples in the quality/distortion map and β is a constant

exponent (typically chosen to lie between 1 and 4 in the literature of image quality

assessment).

Without losing the generality and to make the expression easy to work with, we

adopt the following expression:

M =
1

N

N∑
i=1

mp
i (2.2)

where N is the number of samples in the quality/distortion map, and p is the Minkowski

power. As a special case, when mi represents the absolute difference as in Figure 1.4(c),

then Eq.2.2 is directly related to the lp norm (subject to a normalization constant). In
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particular, when p = 1, it reduces to the mean absolute error (MAE). When p = 2, it

becomes the widely used MSE. As p increases, more and more emphasis will be put at

the image regions that have high distortions. It is often conjectured that an appropriate

value of p should provide a reasonable estimation of how humans rate image quality.

2.2.2 Local Quality/Distortion-Weighted Pooling

The non-uniform quality distribution problem may also be solved more directly by

assigning spatially varying importance (weights) over the image space. A general form

of such a spatial weighting approach is given by

M =

∑N
i=1 wimi∑N

i=1 wi

(2.3)

where wi is the weight assigned to the i-th spatial location. The idea of local quality/distortion-

weighted pooling is to define the weight wi by the local quality measure mi itself, i.e.,

wi = f(mi) (2.4)

For example, in the case that mi represents a distortion measure (higher value indi-

cates higher distortion) and we would like to put more emphasis on the spatial locations

where the image quality is extremely bad, then we would choose f(·) to be a monoton-

ically increasing function. On the other hand, if mi is a quality measure (higher value

indicates better quality), then we would prefer f(·) to be a monotonically decreasing

function.
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2.2.3 Information Content-Weighted Pooling

In information content-weighted pooling, a similar spatial weighting method as in

Eq. 2.3 is employed. However, the weights are determined by the local image content (of

either or both of the reference and the distorted images), rather than the measured local

quality/distortion. Let xi and yi be the local image patches (e.g., a collection of pixels

in a local window) extracted around the i-th spatial location from the reference and the

distorted images, respectively. The weight wi is computed using a function

wi = g(xi, yi) (2.5)

The local energy-weighted pooling method proposed in [37] may be considered as a special

case of this approach, where the weighting function is given by

g(x, y) = σ2
x + σ2

y + C (2.6)

Here σx and σy are the standard deviations of x and y, respectively, and C is a con-

stant representing a baseline minimal weight. The underlying justification of using Eq.

2.6 is that the high-energy (or high-variance) image regions are likely to contain more

information. If the ultimate goal of visual perception is to efficiently extract useful in-

formation from the visual scene, then the high energy regions are more likely to attract

visual attention, and thus should be given more importance. While this general idea is

well motivated, the specific formulation of Eq. 2.6 is not directly an information measure

based on any statistical model. Here we propose a new method, in which the perceived

local information content is quantified as the number of bits that can be received from a

statistical image information source that passes through a noisy visual channel. To keep

the algorithm tractable, we assume a local Gaussian source model and an additive Gaus-
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sian channel model. Similar information communication-based models have been used

previously for image quality assessment [38], though not involved in the spatial pooling

stage. Assume that the source power is S and the channel noise power is Cnoise (which is

considered as an estimate of the intrinsic noise in the visual system [38]). A well-known

result from information theory is that the received information can be computed as

I =
1

2
log(1 +

S

C
) (2.7)

Now assume that the source power of a local image patch x can be estimated as σ2
x,

and the channel noise variance is a known parameter (as in [38]). Then the weighting

function is given by

g(x, y) = log[(1 +
σ2

x

C
)(1 +

σ2
y

Cnoise

)] (2.8)

Here we have removed the front scalar constant, which has no effect on the final

pooling result because of the normalization in Eq. 2.3. We have also added the infor-

mation content of both the reference and the distorted image patches, so as to make

the algorithm symmetric. Figure 2.1 gives an example of an information content-based

weighting function over the image space, which is computed for the images shown in 1.4.

As in [7], in the computation of local σ2
x and σ2

y, a sliding Gaussian window with standard

deviation of 1.5 pixels is employed.

2.3 Experiment Result

We test the objective image quality measures with different spatial pooling ap-

proaches using the LIVE database (developed at the Laboratory for Image and Video

Engineering at The University of Texas at Austin) [36], which contains seven subject-

rated data sets, including two data sets for JPEG 2000 compression (contains 87 and
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(a)
 (b)


Figure 2.1. Local Information Content Calculated Weighting Function of Images (a) and
(b) in Figure 1.4. (a) Computed Using Eq. 2.6; (b) Computed Using Eq.2.8.

82 images, respectively), two for JPEG compression (contains 87 and 88 images, respec-

tively), one for white Gaussian noise contamination (145 images), one for Gaussian blur

(145 images), and one for transmission errors of JPEG 2000 compressed images (145

images). For each objective quality measure being evaluated, we report the Spearman

rank order correlation coefficients (ROCC) between the subjective and objective scores

for each data set. The ROCC is defined as

r = 1− 6
∑N

i=1 d2
i

O(O2 − 1)
(2.9)

where O is the number of images in the data set, and di is the difference between the

ith image’s ranks in subjective and objective evaluations. ROCC is one of the metrics

adopted by the video quality experts group (VQEG, www.vqeg.org) for the evaluation

of video quality measures.
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The image quality measures being evaluated are divided into two groups. The first

group uses the absolute difference to create the distortion map, and the second group

uses the SSIM index to generate the quality map.

2.3.1 Absolute Difference

2.3.1.1 Minkowski Pooling

Suppose that the original image is X and distorted image is Y. Let mi be the

quality/distortion value at the i-th spatial location in the quality/distortion map.

mi = |xi − yi| (2.10)

M =
1

N

N∑
i=1

mp
i (2.11)

where N is the number of samples in the quality/distortion map, and p is the Minkowski

power.

Figure 2.2 is the experiment result by using this method and changing p from 1
8

to

8, i.e 1
8
, 1

4
, 1

2
, 1, 2, 4 and 8.

2.3.1.2 Local Quality/Distortion-Weighted Pooling

The result of wi = m
1
4
i , wi = m

1
2
i , wi = m1

i , wi = m2
i , wi = m4

i , wi = m8
i , wi = m16

i ,

wi = m32
i in the Eq 2.4 is as figure 2.3 and figure 2.4:

From the figure, we can see that as p increases, the average performance (the bold

blue line) keeps stable in all the Figures (a), (b), (c), (d), (e), (f), (g) and (h). And as

the weight increases, the performance increases.
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Figure 2.2. Absolute Difference Minkowski Pooling.

2.3.1.3 Information Content-Weighted Pooling

The idea of information content - weighted pooling is to define the weight wi by

the information content measure mi itself, i.e. wi = g(mi).

In the first approach, we set

g(x, y) = σ2
x + σ2

y + C (2.12)

Here σx and σy are the standard deviations of x and y, respectively, and C is a

constant representing a baseline minimal weight. The experiment result of this approach

is shown in Figure 2.5.

In the second approach, we set

g(x, y) = (σ2
x + σ2

y + C)
1
2 (2.13)
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Figure 2.3. Absolute Difference Local Quality/Distortion-Weighted Pooling (a) wi = m
1
4
i ;

(b) wi = m
1
2
i ; (c)wi = m1

i ; (d)wi = m2
i .

Here σx and σy are the standard deviations of x and y, respectively, and C is a constant

representing a baseline minimal weight (It may be the same value as in Eq. 2.5). The

experiment result of this approach is shown in Figure 2.6.

In the third approach, we set

g(x, y) = log[(1 +
σ2

x

C
) + (1 +

σ2
y

C
)] (2.14)
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Figure 2.4. Continue with Fig. 2.3 (a) wi = m4
i ; (b)wi = m8

i ; (c)wi = m16
i ; (d)wi = m32

i .

Here σx and σx are the standard deviations of x and y, respectively, and C is a constant

representing a baseline minimal weight (It may be the same value as in Eq. 2.5). The

experimental result of this approach is shown in Figure 2.7.

Figures 2.5, 2.6, 2.7 show that as p increases, the average performance may decrease

a little bit or keep stable. Comparing these three figures, we find that the third approach

can get better performance.



32

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Minkowski Power − log(p)

R
O

C
C

 (
0~

1)

JP2−1
JP2−2
JPG−1
JPG−2
Noise
Blur
Transerr
Crossvalid
All

Figure 2.5. Absolute Difference Information Content - Weighted Pooling - g(x, y) =
σ2

x + σ2
y + C.
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Figure 2.6. Absolute Difference Information Content - Weighted Pooling - g(x, y) =

(σ2
x + σ2

y + C)
1
2 .
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Figure 2.7. Absolute Difference Information Content - Weighted Pooling - g(x, y) =

log[(1 + σ2
x

C
) + (1 +

σ2
y

C
)].

2.3.2 SSIM Quality Map

In SSIM difference approach, SSIM algorithm is used to generate the quality/distortion

map, instead of using absolute difference. All the other method are the same as section

2.3.1.

2.3.2.1 Minkowski Pooling

Figure 2.8 is the experimental results by using Minkowski pooling with p ranging

from 1
8

to 8, i.e. 1
8
, 1

4
, 1

2
, 1, 2, 4 and 8. Figure 2.8 shows that as p increases, the average

performance decreases.

2.3.2.2 Local Quality/Distortion Weighted Pooling

Figure 2.9 is the experimental result by using local quality/distortion-weighted

pooling with p ranging from 1 to 4 for wi = m1
i , wi = m2

i , wi = m4
i . From section
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Figure 2.8. SSIM Minkowski Pooling(p is from 1 to 4).

2.3.1, we find that as p changes, the overall performance keeps almost stable. And for

wi = f(mi), as the poser of mi changes, the average value changes insignificantly. So

here we only need to test p and the power of mi from 1 to 4. The Figure 2.9 shows that

as p increases, the average performance decreases.

2.3.2.3 Information Weighted Pooling

Figure 2.10 is the experimental result by using information content-weighted pool-

ing with p ranging from 1 to 4. It shows that as p increases, the average performance

decreases.

2.3.3 Analysis of Result

The ROCC results for the two groups of objective image quality measures are shown

in Tables 2.1 and 2.2, respectively. For easy visualization, we have added a ′∧′, ′∨′ or

′−′ behind each ROCC number to indicate an increase/decrease/no significant-change of
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Figure 2.9. SSIM Local Weighted Pooling (a)wi = m1
i ; (b)wi = m2

i ; (c)wi = m4
i .

ROCC value as compared to the baseline ROCC (given by spatial average pooling). We

have also added a final column that gives the average improvement of ROCC values over

the baseline. It can be observed that all three pooling strategies may lead to improvement

of quality prediction performance. However, the best parameter choices of the Minkowski

pooling methods and the local quality/distortion-weighted pooling methods depend on

the underlying specific local quality/distortion measure. For example, Minkowski pooling

with p = 4 results in improvement when the local quality/distortion measure is the
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Figure 2.10. SSIM Information Weighted Pooling: (a) Eq.2.5; (b) Eq.2.6; (c) Eq.2.7.

absolute difference, but not the SSIM index. Comparatively, the information content-

weighted pooling method, especially when the newly proposed Eq. 2.14 is used as the

weighting function, appears to be more stable and general. It results in consistent and

most of the time significant improvement over a wide range of image distortion types for

both cases of local quality/distortion measures.
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Table 2.1. Performance comparison of spatial pooling methods. The absolute difference
is used to generate the distortion map. JP2: JPEG2000 dataset; JPG: JPEG; Noise:
white Gaussian noise; Blur: Gaussian blur; Error: transmission error; AI: average im-
provement; PS: pooling strategy; SA: spatial average; MP: Minkowski pooling; LQDWP:
local quality distortion-weighted pooling; ICWP: info. content-weighted pooling; ′∧′:
increase of ROCC value compared with spatial average pooling; ′∨′: decrease of ROCC
value compared with spatial average pooling; ′−′: no significance change of ROCC value
compared with spatial average pooling

method LIVE dataset / ROCC result
PS p wi JP2-1 JP2-2 JPG-1 JPG-2 Noise Blur Error AI

SA 1 1 0.9026 0.8180 0.8722 0.7485 0.9857 0.7425 0.8651 0
1/8 1 0.8619∨ 0.7384∨ 0.8562∨ 0.7487− 0.9860− 0.6309∨ 0.7669∨ −0.0494
1/4 1 0.8700∨ 0.7595∨ 0.8593∨ 0.7541∧ 0.9860− 0.6621∨ 0.7998∨ −0.0348

MP 1/2 1 0.8823∨ 0.7875∨ 0.8607∨ 0.7478− 0.9858− 0.7003∨ 0.8386∨ −0.0188
2 1 0.9227∧ 0.8662∧ 0.8876∧ 0.7446∨ 0.9856− 0.7921∧ 0.8931∧ +0.0225
4 1 0.9449∧ 0.9105∧ 0.9052∧ 0.7573∧ 0.9845− 0.8413∧ 0.9012∧ +0.0443
8 1 0.9566∧ 0.9438∧ 0.9355∧ 0.7934∧ 0.9843− 0.8731∧ 0.8931∧ +0.0636

1 |mi|1/8 0.9152∧ 0.8431∧ 0.8721− 0.7479− 0.9855− 0.7536∧ 0.8840∧ +0.0095

1 |mi|1/4 0.9204∧ 0.8539∧ 0.8753∧ 0.7438∨ 0.9853− 0.7671∧ 0.8875∧ +0.0141

LQ- 1 |mi|1/2 0.9280∧ 0.8709∧ 0.8858∧ 0.7385∨ 0.9849− 0.7856∧ 0.8956∧ +0.0221
DWP 1 |mi|1 0.9412∧ 0.8956∧ 0.8944∧ 0.7359∨ 0.9844− 0.8218∧ 0.9006∧ +0.0342

1 |mi|2 0.9529∧ 0.9302∧ 0.9173∧ 0.7457− 0.9841− 0.8470∧ 0.8873∧ +0.0471
1 |mi|4 0.9592∧ 0.9485∧ 0.9360∧ 0.8068∧ 0.9836− 0.8514∧ 0.8550∨ +0.0580
1 |mi|8 0.9594∧ 0.9461∧ 0.9487∧ 0.8453∧ 0.9826∨ 0.8412∧ 0.8466∨ +0.0622

IC- 1 Eq. (2.13) 0.9512∧ 0.9341∧ 0.9294∧ 0.7850∧ 0.9858− 0.8287∧ 0.9214∧ +0.0573
WP 1 Eq. (2.14) 0.9556∧ 0.9332∧ 0.9210∧ 0.7864∧ 0.9859− 0.8809∧ 0.9299∧ +0.0655
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Table 2.2. Performance comparison of spatial pooling methods. The SSIM index is used
to generate the quality map. JP2: JPEG2000 dataset; JPG: JPEG; Noise: white Gaus-
sian noise; Blur: Gaussian blur; Error: transmission error; AI: average improvement;
PS: pooling strategy; SA: spatial average; MP: Minkowski pooling; LQDWP: local qual-
ity distortion-weighted pooling; ICWP: info. content-weighted pooling; ′∧′: increase of
ROCC value compared with spatial average pooling; ′∨′: decrease of ROCC value com-
pared with spatial average pooling; ′−′: no significance change of ROCC value compared
with spatial average pooling

method LIVE dataset / ROCC result
PS p wi JP2-1 JP2-2 JPG-1 JPG-2 Noise Blur Error AI

SA 1 1 0.9545 0.9636 0.9598 0.9028 0.9737 0.9497 0.9546 0
1/8 1 0.9549− 0.9660− 0.9609− 0.9069∧ 0.9777∧ 0.9559∧ 0.9554− +0.0027
1/4 1 0.9547− 0.9652− 0.9608− 0.9063∧ 0.9768∧ 0.9552∧ 0.9554− +0.0022

MP 1/2 1 0.9542− 0.9642− 0.9605− 0.9035− 0.9755− 0.9531∧ 0.9551− +0.0011
2 1 0.9537− 0.9620− 0.9589− 0.8978∨ 0.9712− 0.9430∨ 0.9529− −0.0027
4 1 0.9506∨ 0.9551∨ 0.9573− 0.8808∨ 0.9707∨ 0.9321∨ 0.9505∨ −0.0088
8 1 0.9473∨ 0.9443∨ 0.9556∨ 0.8662∨ 0.9712− 0.9078∨ 0.9447∨ −0.0174

1 |mi|−1/8 0.9541− 0.9637− 0.9600− 0.9023− 0.9743− 0.9513− 0.9550− +0.0003

1 |mi|−1/4 0.9544− 0.9642− 0.9605− 0.9030− 0.9755− 0.9537∧ 0.9552− +0.0011

LQ- 1 |mi|−1/2 0.9552− 0.9661− 0.9609− 0.9083∧ 0.9779∧ 0.9566∧ 0.9551− +0.0031
DWP 1 |mi|−1 0.9577∧ 0.9698∧ 0.9606− 0.9114∧ 0.9825∧ 0.9603∧ 0.9492∨ +0.0047

1 |mi|−2 0.9617∧ 0.9708∧ 0.9613− 0.9096∧ 0.9849∧ 0.9640∧ 0.9381∨ +0.0045
1 |mi|−4 0.9638∧ 0.9678∧ 0.9627− 0.8527∨ 0.9592∨ 0.9603∧ 0.8797∨ −0.0161
1 |mi|−8 0.9673∧ 0.9615− 0.9629∧ 0.8664∨ 0.9584∨ 0.9507− 0.8668∨ −0.0178

IC- 1 Eq. (2.13) 0.9535− 0.9671∧ 0.9439∨ 0.9288∧ 0.9723− 0.9672∧ 0.9662∧ +0.0058
WP 1 Eq. (2.14) 0.9612∧ 0.9743∧ 0.9591− 0.9401∧ 0.9776∧ 0.9716∧ 0.9659∧ +0.0130



CHAPTER 3

SSIM-GUIDED PERCEPTUAL IMAGE COMPRESSION

In this chapter, we present our work on structural similarity-guided perceptual

image compression. To help readers understand our algorithm more clearly, we first

make a brief introduction on SPIHT and JPEG2000 encoding schemes and their rate

distortion systems. We then describe our perceptual coding schemes by incorporating

the SSIM index with the SPIHT and JPEG2000 coding algorithms. Experimental results

demonstrates the effectiveness of our algorithms.

3.1 Motivation

Currently available JPEG2000 software (VM [9], JASPER [10] and JJ2000 [11])

all adopt the rate-based MSE minimization encoding approach [12]. As we noted above,

MSE is a poor model in perceptual coding. Because the human eyes are the ultimate

receiver in most real world applications, it would be preferable to take the properties

of the human visual system (HVS) into considerations. Since SSIM provides a much

better indication of perceptual image quality, it is desirable to use it as a new image

quality criteria in the optimization of image compression algorithms such as SPIHT and

JPEG2000.

Other perceptual image distortion metrics (e.g., [39]) have been used to control

the bit rate in wavelet image compression. However, most of these methods are not

compatible with the standard base-line decoder. It means that we have to modify each

decoder in order to accommodate these algorithms. This highly limits the application

scope of these methods, because in many real world environment such as digital video

39
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broadcasting, it is impossible to modify all existing codecs. Therefore, here we attempt to

develop a perceptual coding scheme that is compatible with standard baseline decoders.

3.2 SPIHT Encoding Scheme

3.2.1 Progressive Image Transmission

An original image is denoted by a set of pixel values pi,j, where (i, j) is the pixel

coordinate. The coding is actually done to the array [24]

c = Ω(p) (3.1)

where Ω(·) represents a hierarchical subband transformation. The 2-D array c has the

same dimensions of p, and each element ci,j is called transform coefficient at coordinate (i,

j ) . For the purpose of coding, we assume that each ci,j is represented with a fixed-point

binary format, with a small number of bits, typically 16 or less, and be treated as an

integer.

A major objective in a progressive transmission scheme is to select the most impor-

tant information, which yields the largest distortion reduction, to be transmitted first.

For this selection, the mean squared-error (MSE) distortion measure is used.

Information in the value of |ci,j| can also be ranked according to its binary repre-

sentation, and the most significant bits should be transmitted first. This idea is used, for

example, in the bit-plane method for progressive transmission [40].

3.2.2 Transmission of the Coefficient Values

Assume that the coefficients are ordered according to the minimum number of bits

required for its magnitude binary representation, that is, ordered according to a one-to-

one mapping η : I → I2, such that
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Figure 3.1. Binary Representation Of The Magnitude-Ordered Coefficient.

blog2 |cη(k)|c ≥ blog2 |cη(k+1)|c (3.2)

Figure 3.1 shows the schematic binary representation of a list of magnitude - ordered

coefficients. Each column k in Figure 3.1 contains the bits of cη(k). The bits in the top

row indicate the sign of the coefficient. The rows are numbered from the bottom up, and

the bits in the lowest row are the least significant.

The progressive transmission method outlined above can be implemented with the

following algorithm to be used by the encoder.

1) Output n = blog2(max(i,j){|ci,j|})c to the decoder;

2) Output µn, followed by the pixel coordinates η(k) and sign of each of the µn

coefficients such that 2n ≤ |cη(k)| < 2n+1;

3) Output the nth most significant bit of all the coefficients with |ci,j| ≥ 2n+1 (i.e.,

those that had their coordinates transmitted in previous sorting passes), in the same

order used to send the coordinates (refinement pass);

4) Decrement n by one, and go to Step 2).

The algorithm stops at the desired rate or distortion. Normally, good quality images

can be recovered after a relatively small fraction of the pixel coordinates are transmitted.
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Figure 3.2. Examples Of Parent-Offspring Dependencies In The Spatial-Orientation Tree.

3.2.3 Spatial Orientation Trees

Normally, most of an image’s energy is concentrated in the low frequency compo-

nents. Consequently, the variance decreases as we move from the highest to the low-

est levels of the subband pyramid. Furthermore, it has been observed that there is a

spatial self-similarity between subbands, and the coefficients are expected to be bet-

ter magnitude-ordered if we move downward in the pyramid following the same spatial

orientation.

A tree structure, called spatial orientation tree, naturally defines the spatial rela-

tionship on the hierarchical pyramid. Figure 3.2 shows how our spatial orientation tree

is defined in a pyramid constructed with recursive four-subband splitting. Each node

of the tree corresponds to a pixel and is identified by the pixel coordinate. Its direct

descendants (offspring) correspond to the pixels of the same spatial orientation in the

next finer level of the pyramid.
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Figure 3.3. JPEG2000 Codec Structure: (a)Encoder (b)Decoder.

3.3 JPEG2000 Codec Structure

The general structure of the codec is shown in Figure 3.3 with the form of the

encoder given by Figure 3.3(a) and the decoder given by Figure 3.3(b). From these dia-

grams, the key processes associated with the codec can be identified: 1) preprocessing/

postprocessing, 2) intercomponent transform, 3) intracomponent transform, 4) quantiza-

tion/dequantization, 5) tier-1 coding, 6) tier-2 coding, and 7) rate control. The decoder

structure essentially mirrors that of the encoder. That is, with the exception of rate

control, there is a one-to-one correspondence between functional blocks in the encoder

and the decoder [25].

3.3.1 Preprocessing

A nominal dynamic range that is approximately centered about zero of input data

is expected by each codec. The preprocessing stage of the encoder is to ensure that.

Assuming a particular component has P bits/pixel, each pixel leads to a nominal dynamic
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range of [−2P−1, 2P−1 − 1] or [0, 2P−1] for signed or unsigned data respectively. For

unsigned sample values, the nominal dynamic range is clearly not centered about zero.

The opposite case is for signed sample values. If the given sample data can not met this

expectation, adjustment will be carried out. The postprocessing stage of the decoder

essentially reverses the preprocessing in the encoder.

3.3.2 Intercomponent Transform

The intercomponent transform stage is performed after preprocessing stage in the

forward. Such a transform operates on all of the components data, and serves to reduce

the correlation between components, leading to improved coding efficiency. Baseline

JPEG2000 codec defines two intercomponent transforms: Irreversible Color Transform

(ICT) and Reversible Color Transform (RCT). ICT is nonreversible and real-to-real in

nature, while the RCT is reversible and integer-to-integer. Both of these transforms

essentially map image data from the RGB to YCrCb color space. The components on

which they operate must be sampled at the same resolution (i.e., have the same size).

As a result, the ICT and RCT can be employed only when the images to be coded

have at least three components, and the first three components are sampled at the same

resolution. The ICT can only be used in the case of lossy coding, while the RCT can be

used in either lossy or lossless case. The ICT is nothing more than the classic RGB to

YCrCb color space transform. The forward transform is defined as




V0(x, y)

V1(x, y)

V2(x, y)




=




0.299 0.587 0.114

−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131







U0(x, y)

U1(x, y)

U2(x, y),




(3.3)
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where U0(x; y), U1(x; y), andU2(x; y) are the input components corresponding to the red,

green, and blue color planes, respectively, and V0(x; y), V1(x; y), andV2(x; y) are the out-

put components corresponding to the Y, Cr, and Cb planes, respectively. The inverse

transform can be shown to be




U0(x, y)

U1(x, y)

U2(x, y)




=




1 0 1.402

1 −0.34413 −0.71414

1 −1.772 0







V0(x, y)

V1(x, y)

V2(x, y).




(3.4)

3.3.3 Intracomponent Transform

The intercomponent transform stage is followed by the intracomponent transform

stage at the encoder. In this stage, transforms that operate on individual components

will be applied. The specific type of operator employed for this purpose is the wavelet

transform. During the wavelet transform, a component is divided into several frequency

subbands. The number of subbands is a parameter of JPEG2000. Due to the statistical

properties of wavelet transform on image data, image can usually be coded more efficiently

in wavelet domain than in the pixel domain.

Both reversible integer-to-integer and nonreversible real-to-real wavelet transforms

are employed by the baseline codec. The basic building block for such transforms is the 1-

D 2-channel perfect-reconstruction (PR) uniformly maximally - decimated (UMD) filter

bank (FB) which has the general form shown in Figure 3.4. For detailed information,

please refer to JPEG2000 standard.

3.3.4 Quantization/Dequantization

The resulting coefficients of intercomponent and/or intracomponent transforms

on tile-component data may be quantized in the encoder. Higher compression can be
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Figure 3.4. Lifting Realization of 1-D 2-Channel PR UMDFB (a) Analysis Side (b)
Synthesis Side.

achieved by quantization which represents transformed coefficients with only the minimal

precision required to obtain the desired level of image quality. One of the two primary

sources of information loss is quantization of transform coefficients in the encoder side

(The other source being the coding pass data discarded). Transformed coefficients are

quantized using scalar quantization with a dead zone. Each quantizer has only one pa-

rameter, its step size. Different subband has different quantizer steps for the transformed

coefficients. Mathematically, the quantization process is defined as Eq. 3.5.

V (x, y) = b|U(x, y)|/∆csgnU(x, y) (3.5)

where ∆ is the quantizer step size, U(x, y) is the input subband signal, and V(x, y)

denotes the output quantizer indices for the subband.
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The baseline codec has two distinct modes of operation, referred to herein as integer

mode and real mode. In integer mode, all transforms employed are integer-to-integer in

nature (e.g., RCT, 5/3 WT). In real mode, real-to-real transforms are employed (e.g.,

ICT, 9/7 WT). In integer mode, the quantizer step sizes are always fixed at one, effectively

bypassing quantization and forcing the quantizer indices and transform coefficients to be

one and the same. In this case, lossy coding is still possible, but rate control is achieved

by another mechanism (to be discussed later). In the case of real mode (which implies

lossy coding), the quantizer step sizes are chosen in conjunction with rate control [25].

3.3.5 Tier-1 Coding

Quantization is followed by tier-1 coding. Tier-1 coding is the first of two coding

stages (The other one is tier-2 coding). The quantized indices of each subband are

partitioned into blocks called code blocks. Code blocks are rectangular in shape, and

their nominal size is a parameter of the encoder, subject to some constraints:

1) The nominal width and height of a code block must be an integer power of two;

2) The product of the nominal width and height can not exceed 4096.

Each of the code blocks is then independently coded. The coding is performed using

the bit-plane coder. For each code block, an embedded code is produced, comprised of

numerous coding passes (Significance Pass, Refinement Pass and Cleanup Pass). The

output of the tier-1 encoding process is, therefore, a collection of coding passes for the

various code blocks [25].

3.3.6 Bit-Plane Coding

After all of the subbands have been partitioned into code blocks, a bit-plane coder

is applied to each of the resulting code blocks independently. The bit-plane coding

technique employed here is similar to those used in the embedded zero tree wavelet
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(EZW) and set partitioning in hierarchical trees (SPIHT) codecs. However, there are

still two notable differences:

1) No inter-band dependencies are exploited;

2) There are three coding passes per bit plane instead of two.

A sequence of symbols is generated by the bit-plane encoding process for each

coding pass. Part or all of these symbols may be entropy coded, depending on the target

bit rate. A context based adaptive binary arithmetic coder is then used for the purposes

of entropy coding.

3.3.7 Tier-2 Coding

Tier-2 encoding is performed in the encoder after tier-1 encoding. The input to

the tier-2 encoding process is the set of bit-plane coding passes generated during tier-1

encoding. In essence, tier-2 encoding is nothing but packetization process, in which the

coding pass information is divided into data units called packets. The resulting packets

are then output to the final code stream. Each packet is comprised of two parts: a header

and a body. The header indicates which coding passes are included in the packet, while

the body contains the actual coding pass data itself. In the code stream, the header and

the body may appear together or separately, depending on the coding options in effect.

Rate scalability is achieved through (quality) layers.

3.4 Rate Control and Distortion Metrics

In JPEG2000, rate control can be achieved through two distinct mechanisms: 1)

the choice of quantizer step sizes, and 2) the selection of the subset of coding passes to

be included in the code stream [25]. When the integer coding mode is used (i.e., when

only integer-to-integer transforms are employed) only the first mechanism may be used,

since the quantizer step sizes must be fixed at one. When the real coding mode is used,



49

then either or both of these rate control mechanisms may be employed. When the second

mechanism is used, the encoder can elect to discard coding passes in order to control the

rate. The encoder knows the contribution that each coding pass makes to rate, and can

also calculate the distortion reduction associated with each coding pass.

The accurate rate control is achieved by the selection of the coding pass data of

each code-block to be included in the code-stream [41]. In other words, the code-block

bit-stream will be truncated at a particular point. JPEG2000 has no requirement on the

selection of a particular rate control method. However, an optimal rate control process

called PCRD optimization is recommended in the standard. This process had been de-

scribed in [30]; Let {Bi}i=1,2... denote the set of code-blocks in the whole image/tile. For

each code-block, an embedded bit-stream is formed by the tier-1 coding of all the bit-

planes from MSB to LSB. In the bit-stream, there is a set of feasible truncation points,

each of which is defined at the end of a coding pass [30]. We use ni to identify the feasible

truncation points of the ith code-block Bi, with ni = k corresponding to the kth trun-

cation point from the MSB. For code block Bi, the bit-stream can be truncated at any

feasible ni, resulting in corresponding discrete length or bit rate Rni
i . The correspond-

ing distortion incurred by reconstructing the truncated bit-stream is denoted by Dni
i .

The rate control optimization process selects the truncation points of all code-blocks to

minimize the overall reconstructed image distortion D, where

D =
∑

i

Dni
i (3.6)

subject to the rate constraint

R =
∑

i

Rni
i ≤ Rbudget (3.7)
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where Rbudget denotes the target bit rate.

Using the Lagrange multiplier technique [30], the optimization process is equivalent

to minimizing the cost function

J = D + Rλ =
∑

i

(D
ni(λ)
i + R

ni(λ)
i λ) (3.8)

Therefore, if we can find a value of λ such that the resulting set of truncation points

{ni(λ)}i=1,2... minimizes Eq. 3.6 and yields R = Rbudget, both the value of λ and the set

of truncation points will be optimal in the sense that we cannot reduce the distortion

without increasing the bit rate beyond Rbudget.

PCRD [30] is a simple algorithm to find the optimal truncation points. At any

feasible truncation point , PCRD computes the R-D slope, which is defined as

Sni
i =

∆Dni
i

∆Rni
i

=
Dni−1

i −Dni
i

Rni
i −Rni−1

i

(3.9)

Assuming that the R-D slope is strictly decreasing [30] such that Sni+1
i < Sni

i for

any feasible truncation point ni the optimal value of λ denoted as λoptimal is equal to the

minimum value of λ which satisfies the rate constraint. Theoretically, there are infinitely

many possible values. Thus, an iterative approach with fast convergence is used in PCRD

to search for the λoptimal. Once we know the λoptimal the optimal truncation points can

be found by Eq. 3.8 with λ = λoptimal.

However, the R-D slopes at the feasible truncation points of real images may not be

strictly decreasing, especially those in the initial few bit planes. Figure 3.5 is an example

of the feasible truncation point. Thus, in the PCRD implementation, the feasible trunca-

tion points at which the R-D slope are not strictly decreasing are considered “unfeasible”

and PCRD would not truncate at those points.
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Figure 3.5. Feasible Truncation Point.

In our design, we use the SSIM algorithm as the rate distortion metric instead of

the MSE. Basing on this information, the encoder can then include the coding passes in

the order of decreasing distortion reduction per unit rate until the bit budget has been

exhausted.

Compared with JPEG2000, the rate control in SPIHT is pretty simple. The al-

gorithm just stops at the desired rate or distortion. In other words, the rate control in

SPIHT is without any perceptual distortion control. The whole process can be described

with Figure 3.6.

The encoder goes through every bit plane from the most significant bitplane to the

least significant bitplane. When the target bit budget is exhausted, the encoder ceases

at certain point. All of the following bit will be discarded. In Figure 3.6, assuming the

target bit rate is achieved in the point where the arrow points at, all of the bits with

shadow should be discarded.
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Figure 3.6. SPIHT Rate Control: Encoder Stops at Desired Bit-Rate Or Distortion.

As we know, in bit plane coding, a zero tree can cover many zeros. In other words,

in each bit plane, the more number of bit ‘1’, the bigger size of coding pass it generates.

From Figure 3.6, we can see that the algorithm just stops at the desired rate or distortion.

This scheme, in essence, is equivalent to the method illustrated by Figure 3.7.

Firstly, remove all the ‘1’s in the bit planes lower than the bit plane that the coder

stops at (here, ‘remove’ means replacing all ‘1’s to ‘0’s);

Secondly, Remove all the ‘1’s behind the stoping point in the bit plane that the

coder stops at (We call the line in Figure 3.7 that removes the bits ‘1’ the ‘Removing

Line’);

Finally, apply a bitplane coding of the ‘modified bit planes’ without any rate con-

trol.

Our perceptually-guided coding algorithm was motivated by the idea of change the

“Removing Line” into a “Removing Curve”, as demonstrated in Figure 3.8.

This is desirable because the bits in the same bit plane at different location may

have different contributions to image quality. To implement the idea, however, we need
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Figure 3.7. Equal Rate Control Scheme: All of the Bits Under the Line is Removed.

MSB


LSB


1
 1


0
 1


1
 0
 1


1
 1
 0
 0
 1
 1


1
 0
 1
 1
 0
 1
 0


1
 0
 0
 1
 0
 1
 0
 0


0
 1
 1
 0
 0
 0
 0
 1


1
 0
 1
 0
 0
 1
 0
 1
 1


Figure 3.8. ‘Removing Curve’: All of the Bits under the Curve is Removed.
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Original Image
 Compressed Image


Figure 3.9. Example Images; Left one is Original Image; Right one is Compressed Image.

to develop an algorithm to automatically decide on which bits should be reserved and

which bits need to removed.

Let that X = xi=1,2...N denote the original image and Y = yi=1,2...N denote the

compressed image. Let

E = SSIM(X, Y ) (3.10)

Here, E = ei=1,2...N is the error map generated by using the SSIM algorithm on the image

X and Y. An example is given in Figure 3.9 (image size is 512 × 512).

After calculating the SSIM index with a sliding window approach across the image,

we obtain the error map between X and Y, as demonstrated in Figure 3.10.

Comparing the original image with the compressed image, we can see that the

SSIM error map can reflect human’s perception of error quite well. Specifically, the top

and the edge of the tower is distorted severely; A piece of fake cloud is added on the top

of the right house; The middle of the fence is blurred. They are all successfully indicated

by the SSIM error map as the dark regions.
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spith quality map rate = 0.2

Figure 3.10. Quality/Distortion Map Example.

The contrast sensitivity function models the sensitivity of the HVS as a function

of the spatial frequency content in visual stimuli [2]. A typical CSF is shown at the

bottom part of Figure 3.11. In general, the CSF has a band-pass nature. It peaks at a

spatial frequency around 4 cycles per degree of visual angel and drops significantly with

both increasing and decreasing frequencies. This effect is demonstrated at the top part of

Figure 3.11, which is widely known as the Campbell-Robson CSF chart [42]. In the chart,

the pixel intensity is modulated using sinusoids along the horizontal dimension, while

the modulating spatial frequency increases logarithmically. The image contrast increases

logarithmically from top to bottom. Now suppose that the perception of contrast is

determined solely by the image contrast. Then, the alternating bright and dark bars

should appear to have equal height across any horizontal line across the image. However,

the bars are observed to be significantly higher at the middle of the chart. As a matter of

fact, the peak shifts with viewing distance, and it is important to note that this observed

effect is a property of the HVS, but not the test image.
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Figure 3.11. Contrast Sensitivity Function. Top: Campbell-Robson CSF chart; Bottom:
Normalized Visual Sensitivity as a Function of Spatial Frequency.

Because of the non-uniform distributions of cone receptors and ganglion cells in

the retina of humans, when one fixates at a point in the visual environment, the region

around the fixation point is sampled with the highest spatial resolution, and the resolution

decrease rapidly with distance from the fixation point. A simulation of such a “foveation

process” is shown in Figure 3.12. If attention is focused at the man at the lower part of

the image(where the foveal center was placed), then the foveated and the original images

are almost indistinguishable. In other words, when we observe the image X and Y in

Figure 3.9, we may have a higher spatial resolution of the distortion part such as the
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(a)
 (b)


Figure 3.12. Foveated Image (a)Original Image; (b)Foveated Image, where the assumed
fixation point is at the man at the lower part of the image.

top and the edge of the tower and the top of the right house. As a result, the observer

may draw a conclusion that the image is very distorted, with less regard to the fact that

many other areas in the image actually have pretty high quality.

If we move the higher error value to a lower error value location, in other words, if

we smooth the error map, then the “most distorted” parts of the image Y may become

much less annoying.

Our proposed scheme is shown in Figure 3.13. The decoder is the same as the

original JPEG2000 baseline decoder. In other words, our proposed algorithm is decoder

compatible. In the encoder side, a “SSIM Equalization” module is added to evenly

distribution the coded errors in terms of the SSIM measure.

The purpose of “SSIM equalization” is to make the error evenly distributed if pos-

sible, or at least smooth it. To make error evenly distributed or smooth the error map,

it is necessary to estimate and model the errors. Equalization is carried out after quan-
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Figure 3.13. Proposed Scheme (a)Encoder Structure (b)Decoder Structure.

tization and before tier-1 coding. Our estimation and Modeling schemes are illustrated

in Figure 3.14:

The task of equalization modeling is to generate a equalization map to adjust the

DWT coefficients according to the estimation error map. Before we go any further, it is

necessary to investigate the characteristics of the Discrete Wavelet Transform (DWT).

Two specific wavelet transforms are assumed by the baseline JPEG2000 codec: the 5/3

and 9/7 wavelets. The 5/3 wavelet transform is reversible, integer-to-integer, and non-

linear. This transform was proposed in [43], and is simply an approximation to a linear

wavelet transform proposed in [44]. The 9/7 wavelet transform is nonreversible and

real-to-real. This transform, proposed in [27], is also employed in the FBI fingerprint

compression standard [45] (although the normalizations differ). The 5/3 transform and

9/7 transform are different in terms of parameters of 1-D UMDFB, while maintaining

the state of art of wavelet transform.
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Figure 3.14. Estimation and Modelling Scheme.

The estimated error map is calculated in spatial domain, which is an IDWT trans-

lation of frequency domain. The estimated error map is blurred with a Gaussian function,

which is defined as

G(r) =
1√
2πσ

e
−r2

2σ2 (3.11)

where σ is the standard deviation of the Gaussian function. In our scheme, we select σ

= 1.5. Down sampling is carried out after the Gaussian blur to distribute the error into

each resolution level. In JPEG2000, the number of resolution levels is a parameter of

each transform. A typical value for this parameter is six (for a sufficiently large image).

In SPIHT, the number of resolution levels depends on the image size.

The next step is to map each error in estimated error map into equalization value.

In JPEG2000, the maximal number of bit planes is less than or equal to the depth of

the pixel intensity. However, in the SPIHT algorithm, the number of bit planes can be

extended from positive to negative. The Figure 3.15 is an example of the equalization

map. In the equalization map, the bright part is the high value in the equalization map
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Equalization Map rate = 0.2

Figure 3.15. Equalization Map: The Bright Part Means the High Value in the Equaliza-
tion Map; The Dark Part Means the Low Value; There Are 10 Levels in this Example.

and the dark part is the low value. More bits will be removed from bottom for higher

value than lower value. There are a total of 10 levels in this example.

3.5 Experiment Result

3.5.1 Results of Proposed Scheme with SPIHT Coding

The SPIHT code is modified to incorporate the proposed encoding with perceptual

SSIM distortion metric. The original image bit rate is 8 bits/pixel (bpp) and the image

size is 512×512. We test the compressed image of which the bit rates are from 0.2 bpp to

0.8 bpp by using the original SPIHT and the SPIHT algorithm with our SSIM distortion

metric. The quality/distortion map is calculated and presented by comparing with the

original image.

Figures 3.16 and 3.17 give examples of the original image, the SPIHT compressed

image and the modified SPIHT compressed image with the proposed method at a bit
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rate of 0.2 bits/pixel (bpp). The images are (a)Original Image; (b) Equalization Map;

(c) SPIHT image; (d) SSIM image; (e)Local Enlarged SPIHT Image; (f)Local Enlarged

SSIM Image; (g)SPIHT Quality Map; and (g)SSIM Quality Map, respectively.

When the bit rate is 0.2bpp, the images are highly compressed (Refer to append

A for images at different bit rates). It can be seen that the SPIHT image with SSIM

optimization has a clearly higher quality than SPIHT image. For example, on the top

of the tower, the edge is missing in SPIHT coded image, but is easily discerned in SSIM

image. The edge of the top of the right house is distorted with a fabricated piece of

cloud, but is still clear in the SSIM image.

Figure 3.18 shows the SSIM index and PSNR comparison between SPIHT coded

images and SSIM images. We can see that our proposed scheme do have some degradation

at bit rate 0.2, 0.3 and 0.4 bits/pixel in terms of PSNR. But we get much improvement

in terms of SSIM index. The maximum value of the SSIM quality/distortion map is

almost keep unchanged. However, the minimum value of quality/distortion map gets

much improvement at bit rate 0.2, 0.3 and 0.4 bits/pixel. In other words, the quality

map of our proposed scheme is smoother than that of the original SPIHT coded image.

As the bit rate increases, the image quality improves accordingly, and the difference

between SPIHT and SSIM images becomes imperceivable.

3.5.2 Result of Proposed Scheme with JPEG2000 Coding

The JASPER [10] implementation of JPEG2000 is modified to incorporate the

proposed encoding scheme for perceptual SSIM quality control. The original image has

a bit rate of 8 bits/pixel (bpp) and a size of 512× 512. We test the compressed image at

bit rates from 0.2 bpp to 0.8 bpp by incorporating JPEG2000 with our SSIM distortion

control scheme respectively. The quality/distortion map is computed by comparing with

the original image.
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(a) Original
 (b) Curve Map


(c) SPIHT Image
 (d) SSIM Image


Figure 3.16. Results of Proposed Scheme with SPIHT Coding: (a)Original Image; (b)
Equalization Map: The brighter part means a higher value and more bits of coefficient
will be removed; The darker part means a lower value and less bits of coefficient will
be removed;; (c) SPIHT Compressed Image; (d) SPIHT Compressed Image with SSIM
Optimization. Rate = 0.2 bpp.



63

Figures 3.19 and 3.20 are examples of the original image, JPEG2000 compressed

image, and modified JPEG2000 with the proposed quality control scheme. Figure 3.21

compares the PSNR and SSIM index values of JPEG2000 compressed images and the

SSIM image. It can be seen that our proposed scheme has a little degradation at 0.2,

0.3 and 0.4 bits/pixel in terms of PSNR, and little improvement in terms of the SSIM

index. The maximum value of SSIM quality/distortion map is almost unchanged. The

minimum value of quality/distortion map gets a little improvement at bit rates of 0.2,

0.3 and 0.4 bits/pixel. As the bit rate increases, the image quality improves accordingly,

and the difference between JPEG2000 image and SSIM image becomes indistinguishable.

From the result, we can see that the proposed scheme with JPEG2000 is not as effective

as in SPIHT.

From our experiment, we conclude that our proposed algorithm can achieve better

image quality in terms the SSIM index. However, the improvement is only moderate,

especially in the case of JPEG2000 compression. The reason might be that the optimal

spatial bit allocation may not be sufficiently reached simply by moving bits from one

spatial location to another. During the bit movement, the image quality at the spatial

locations where new bits are added will improve, but at the same time, the quality at the

spatial locations that lose bits will degrade, and the quality improvement at one spatial

location may not fully compensate the quality degradation at another spatial location.

Therefore, more advanced perceptual bit allocation schemes need to be developed in the

future to achieve more effective perceptual image coding result.
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(a) Local Enlarged SPIHT Image
 (b) Local Enlarged SSIM Image


(c) SPIHT Quality Map
 (d) SSIM Qaulity Map


Figure 3.17. Continue with figure 3.16 (a)Local Enlarged SPIHT Image; (b)Local En-
larged SSIM Image; (c)SPIHT Quality Map; (d)SSIM Quality Map. Rate = 0.2 bpp.
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Figure 3.18. Numerical Comparison of Proposed Scheme with Original SPIHT (a) PSNR
Comparison (b) SSIM Comparison.
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(a) Original
 (b) Curve Map


(c) JPEG2000 Image
 (d) SSIM Image


Figure 3.19. Results of Proposed Scheme with JPEG2000 Coding:(a)Original Image; (b)
Equalization Map: The brighter part means a higher value and more bits of coefficient
will be removed; The darker part means a lower value and less bits of coefficient will
be removed;; (c) JPEG2000 Compressed Image; (d) JPEG2000 Compressed Image with
SSIM Optimization. Rate = 0.2 bpp.



67

(a) Local Enlarged JPEG2000 Image
 (b) Local Enlarged SSIM Image


(c) JPEG2000 Quality Map
 (d) SSIM Qaulity Map


Figure 3.20. Continue with figure 3.19 (a)Local Enlarged JPEG2000 Image; (b)Local
Enlarged SSIM Image; (c)JPEG2000 Quality Map; (d)SSIM Quality Map. Rate = 0.2
bpp.
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Figure 3.21. Numerical Comparison of Proposed Scheme with Original JPEG2000 (a)
PSNR Comparison (b) SSIM Comparison.



CHAPTER 4

HANDWRITTEN DIGIT RECOGNITION USING CW-SSIM

In this chapter, we describe our algorithm of handwritten digit recognition using

complex wavelet structural similarity (CW-SSIM) index. We first explain the motivation

of using the CW-SSIM index for handwritten digit recognition. We then present in

more details the CW-SSIM algorithm. Finally, we describe the procedures and test

results of using CW-SSIM for recognizing handwritten digits in the MNIST database

(http://yann.lecun.com/exdb/mnist/).

4.1 Motivation

A major drawback of the spatial domain SSIM algorithm is that it is highly sensi-

tive to translation, scaling and rotation of images, as demonstrated in Images (h)-(l) of

Figure 1.3. This is an undesirable feature for most image pattern recognition tasks such

as handwritten digit recognition, because the images are often shifted, scaled or rotated

by a small amount. A straightforward way to resolve this problem is to apply a regis-

tration process before computing the spatial domain SSIM index. This could potentially

eliminate some simple parametric distortions by estimating their parameters and apply-

ing a corresponding inverse transformation to the distorted image. However, current

image registration algorithms are often computationally expensive and the registration

accuracy is not always satisfactory. The CW-SSIM method provides an alternative so-

lution without a precise registration stage in the front, because it is insensitive to small

translation, scaling and rotation of images by itself. Many existing digit recognition algo-

rithms are computational complicated. The simplicity and robustness properties of the

69
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CW-SSIM algorithm lead us to use it as a tool for handwritten digit recognition. This

work is an initial attempt of using CW-SSIM for any pattern recognition applications.

4.2 Algorithm Description

The main task of image pattern recognition is to classify images into categories,

so that images in a particular category are similar, while images in different categories

may vary widely. In handwritten digit recognition, characters, typically represented as

fixed-size images must be classified into one of 10 (0 to 9) categories using a classifica-

tion function. The classification functions can be divided into two camps: image-based

matching and feature-based matching, as described in Chapter 1. Our algorithm belongs

to image-based matching, which uses a set of representative templates for each digit cat-

egory. There are two phases in our proposed scheme: template selection and CW-SSIM

based recognition.

4.2.1 Template Selection

The first step of our algorithm is to select a set of representative templates for each

digit category from a large database of training digit images. The goal is to maximize the

variations between the representative templates under a constraint of the total number

of allowed templates.

Our template selection scheme create ten template sets, each for one digit category.

The algorithm works as follows: For each digit category, we start from the first training

image and include it as the first template in the template set. For newcoming images, we

compute its CW-SSIM value with all existing templates in the template set. If the value is

higher than a threshold Tthesh, we regard the new training image as redundant and simply

move to the next training image; Otherwise, the image is added to the template set as a

new template. This procedure continues until all the training images have been tested or
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the maximum size of the template set is reached. The same procedure is applied to all ten

categories sets of training images separately, resulting in ten template sets. The result

of this template selection process depends on the threshold Tthesh, which was manually

selected in our experiments.

4.2.2 CW-SSIM Based Recognition

For any given test image to be recognized, the task of the CW-SSIM based recogni-

tion process is to calculate the CW-SSIM values between the test image with all templates

in all of the ten template sets. The category corresponds to the template of the highest

CW-SSIM value will then be determined as the recognition result.

Suppose X and Y are two digit images to be compared. A complex version of the

steerable pyramid decomposition [46] is first applied to both images. In the complex

wavelet transform domain, suppose cx = {cx,i|i = 1, ..., N} and cy = {cy,i|i = 1, ..., N}
are two sets of coefficients extracted at the same spatial location in the same wavelet

subbands of the two digit images, respectively. The CW-SSIM index is defined as

S (cx, cy) =
2|∑N

i=1 cx,ic
∗
y,i|+ K∑N

i=1 |cx,i|2 +
∑N

i=1 |cy,i|2 + K
(4.1)

Here c∗ denotes the complex conjugate of c and K is a small positive constant.

To better understand the CW-SSIM index, we rewrite it as a product of two com-

ponents:

S (cx, cy) =
2
∑N

i=1 |cx,i||c∗y,i|+ K∑N
i=1 |cx,i|2 +

∑N
i=1 |cy,i|2 + K

∗ 2|∑N
i=1 cx,ic

∗
y,i|+ K

2
∑N

i=1 |cx,ic∗y,i|+ K
(4.2)

The first component is completely determined by the magnitudes of the coefficients and

the maximum value one is achieved if and only |cx,i| = |cy,j| for all i′s. The second
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component, on the other hand, is fully determined by the consistency of phase changes

between cx and cy. It achieves the maximum value one when the phase difference between

cx,i and cy,j is a constant for all i′s. We consider this component as a useful measure of

image structural similarity based on the believes that:

1) The structural information of local image features is mainly contained in the

relative phase patterns of the wavelet coefficients.

2) Consistent phase shift of all coefficients does not change the structure of the

local image feature.

This measure is not only insensitive to small geometrical distortions, but also to

luminance and contrast changes. Note that luminance and contrast changes of images

can be roughly described as a point-wise linear transform of local pixel intensities: yi =

axi + b, here a and b are constant. Due to the linear and bandpass nature of the wavelet

transform, the effect in the wavelet domain is a constant scaling of all the coefficients,

i.e., cy,i = acx,i for all i′s. Substitute this into Eq. 4.1, we can see that a perfect value

one is obtained for the second component and the first component gives

S (cx, cy) =
2α + K/

∑N
i=1 |cx,i|2

1 + α2 + K/
∑N

i=1 |cx,i|2
(4.3)

At strong image features (large coefficient magnitudes), K/
∑N

i=1 |cx,i|2 is small and can

be ignored, leading to an insensitive measure (compared with MSE) - changing the mag-

nitude by a factor of 10 percent (a = 1.1) only causes reduction of the SSIM value from 1

to 0.9955. The measure is even less sensitive at weaker image features (small coefficient

magnitudes).
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4.3 Experiment Result

We test our handwritten digit recognition algorithm with complex wavelet struc-

tural similarity index using the MNIST database [1], which contains a training set of

60,000 images, and a test set of 10,000 images. It is a subset of a larger set available

from NIST. The MNIST database was constructed from NIST’s Special Database 3 and

Special Database 1 which contain binary images of handwritten digits. NIST originally

designated SD-3 as their training set and SD-1 as their test set. However, SD-3 is much

cleaner and easier to recognize than SD-1. That is because SD-3 was collected among

Census Bureau employees, while SD-1 was collected among high-school students. The

digits in this database have been size-normalized and centered in a fixed-size image.

These images contain grey levels as a result of the anti-aliasing technique used by the

normalization algorithm. The image size is 28x28 pixels.

We tested our algorithm with five different choices of the size of the template

sets, ranging from 10 to 200 templates per digit category. Table 4.1 shows the results

of correct recognition rate, which is defined as the percentage of the total number of

correctly recognized digits divided by the total number of digits being recognized.

It can be observed that the correct recognition rate increases as the template in-

creases. It is interesting that the digits “0” and “1” always have higher correct recognition

rate than other digits and digit “5” always gets the lowest performance. The reason may

be that digits “0” and “1” have less correlation with all other digits while digit “5” has

strong correlation and are often confused with other similar digits such as “8”, “6”, and

“3”. To better visualize the recognition result, Append B shows all the templates (10,

30, 50, 100, 200) and the incorrectly recognized digits.

The CW-SSIM computation is the most time-consuming process in both the tem-

plate selection and the CW-SSIM comparison procedures. Therefore, the overall compu-

tational complexity scales approximately linearly with the number of CW-SSIM calcula-
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Figure 4.1. Correct Recognition Rate as a Function of the Size of the Template Sets.

Table 4.1. Correct recognition rate for ten digit categories with different sizes of the
template sets.

Digits Template Set Size
10 30 50 100 200

0 0.9622 0.9602 0.9633 0.9765 0.9908
1 0.8758 0.9903 0.9894 0.9877 0.9921
2 0.7209 0.8605 0.8740 0.9234 0.9477
3 0.7406 0.8851 0.8950 0.9198 0.9277
4 0.6823 0.8320 0.8737 0.9022 0.9287
5 0.5157 0.7388 0.7993 0.8901 0.9260
6 0.8925 0.9697 0.9749 0.9645 0.9791
7 0.6770 0.7996 0.8560 0.8920 0.9212
8 0.7536 0.8296 0.8398 0.8984 0.9261
9 0.7512 0.9207 0.9277 0.9554 0.9544

mean 0.7572 0.8787 0.8993 0.9310 0.9494
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tions. For template selection, the number of CW-SSIM calculations depends on the total

number of training images and the threshold used in the selection and thus the exact num-

ber is difficult to estimate. However, this number is bounded between 10(K
10
−N + N2

2
)O

and 10(N2

2
+ (N − 1)(K

10
−N + 1))O, where N is the number of templates for each digit

and K is the number of images in the training set. For practical applications, the speed

of the CW-SSIM comparison procedure is more critical in the sense that it determines

the speed of recognition. If L is the number of images in the testing set, then the total

number of CW-SSIM calculations is (L× 10N)O.



CHAPTER 5

CONCLUSIONS

In this thesis, we have studied several aspects of the structural similarity index,

from its spatial pooling methods to its applications to image compression and pattern

recognition.

5.1 Pooling Strategies for Image Quality Assessment

We have tested three spatial pooling strategies (Miknowski pooling, local qual-

ity/distortion weighted pooling, and information content-based pooling) for perceptual

image quality assessment based on an extensive experiment with the LIVE database.

The following conclusions can be drawn from this study:

1) SSIM index is a better indication of local image quality than the absolute dif-

ference.

2) All three pooling methods may improve the prediction performance of image

quality measures, compared with simple spatial averaging.

3) The information content-weighted pooling approach demonstrates the best po-

tential to be a general and stale approach that provides consistent improvement over a

wide range of image distortion types.

Future work includes testing the pooling methods with other image quality mea-

sures (including those that involve wavelet decompositions) and developing more accurate

method for the estimation of local information content by adopting improved statistical

image models.
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5.2 Structural Similarity-Guided Perceptual Image Compression

We have implemented a structural similarity-guided perceptual image compression

algorithms by incorporating the SSIM measure with the existing SPIHT and JPEG2000

algorithms. The verification was done by testing the images at bit rate ranging from

0.2 to 0.8 bits/pixel. According to the experimental result, we can make the following

conclusions:

1) The proposed algorithm achieves better compressed image quality according to

the SSIM measure, which is a much better indicator of image quality than PSNR or

MSE.

2) The proposed algorithm provides a better performance when incorporated with

the SPIHT algorithm than with the JPEG2000 algorithm. Given the complexity of the

JPEG2000 algorithm, the reason is not manifest and is still under investigation.

3) The performance of the proposed algorithm is much better at lower bit rate (0.2

to 0.4) than at higher bit rate (0.5 and above). This is not surprising because images

coded with SPIHT or JPEG2000 at high bit rate have high quality and the quality is

more spatially evenly distributed, leaving less space for improvement.

4) The effectiveness of the proposed algorithm is only moderate and sometimes

depend on the types of the content (smooth regions, textures, sharp edges ...) in the

image. During the bit redistribution process in the algorithm, the image quality at

the spatial locations where new bits are added will improve, but at the same time, the

quality at the spatial locations that lose bits will degrade, and the quality improvement

at one spatial location may not fully compensate the quality degradation at another

spatial location. Advanced perceptual bit allocation schemes are still yet to develop in

the future.
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5.3 Handwritten Digit Recognition

We have made an initial attempt of using the complex wavelet structural similarity

index for handwritten digit recognition. With a simple implementation and experiment,

the test result for the MNIST database is surprisingly good. When the size of the

template set is 200, the correct recognition rate is 94.94%. Although the current result

is still inferior to some existing approaches (e.g., [35]), it is still very encouraging. Be

aware that handwritten digits recognition and specifically the MNIST database has been

extensively studied over the years and many existing algorithms are complicated in nature

and requires a sophisticated preprocessing stage and a long training process. Our method

does not require any preprocessing and is applied in a straightforward way. The method

can be further improved in the following perspectives:

1) Include a preprocessing stage, such as rotation of the images and thinning of the

strokes.

2) Optimize the template selection process to account for more variations within

each digit category.

3) Improve the CW-SSIM algorithm by adopting more wavelet subbands and by

comparing the CW-SSIM index at multi-scales.

4) Combine the CW-SSIM index with other pattern comparison algorithms.
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In this appendix, we present the images, ‘removing’ curve maps, quality/distortion

maps for SPIHT at bit rate 0.2, 0.3 and 0.4 bpp.
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(a) Original
 (b) Curve Map


(c) SPIHT Image
 (d) SSIM Image


Figure A.1. Results of Proposed Scheme with SPIHT Coding: (a)Original Image; (b)
Equalization Map: The brighter part means a higher value and more bits of coefficient
will be removed; The darker part means a lower value and less bits of coefficient will
be removed; (c) SPIHT Compressed Image; (d) SPIHT Compressed Image With SSIM
Optimization; Rate = 0.2 bpp.
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(a) Local Enlarged SPIHT Image
 (b) Local Enlarged SSIM Image


(c) SPIHT Quality Map
 (d) SSIM Qaulity Map


Figure A.2. Continue with A.1 (a)Local Enlarged SPIHT Image; (b)Local Enlarged SSIM
Image; (c)SPIHT Quality Map; (d)SSIM Quality Map; Rate = 0.2 bpp.
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(a) Original
 (b) Curve Map


(c) SPIHT Image
 (d) SSIM Image


Figure A.3. Results of Proposed Scheme with SPIHT Coding: (a)Original Image; (b)
Equalization Map: The brighter part means a higher value and more bits of coefficient
will be removed; The darker part means a lower value and less bits of coefficient will
be removed; (c) SPIHT Compressed Image; (d) SPIHT Compressed Image With SSIM
Optimization; Rate = 0.3 bpp.
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(a) Local Enlarged SPIHT Image
 (b) Local Enlarged SSIM Image


(c) SPIHT Quality Map
 (d) SSIM Qaulity Map


Figure A.4. Continue with A.3(a)Local Enlarged SPIHT Image; (b)Local Enlarged SSIM
Image; (c)SPIHT Quality Map; (d)SSIM Quality Map; Rate = 0.3 bpp.
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(a) Original
 (b) Curve Map


(c) SPIHT Image
 (d) SSIM Image


Figure A.5. Results of Proposed Scheme with SPIHT Coding: (a)Original Image; (b)
Equalization Map: The brighter part means a higher value and more bits of coefficient
will be removed; The darker part means a lower value and less bits of coefficient will
be removed; (c) SPIHT Compressed Image; (d) SPIHT Compressed Image With SSIM
Optimization; Rate = 0.4 bpp.
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(a) Local Enlarged SPIHT Image
 (b) Local Enlarged SSIM Image


(c) SPIHT Quality Map
 (d) SSIM Qaulity Map


Figure A.6. Continue with A.5(a)Local Enlarged SPIHT Image; (b)Local Enlarged SSIM
Image; (c)SPIHT Quality Map; (d)SSIM Quality Map; Rate = 0.4 bpp.
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In this appendix, we present the images, ’removing’ curve maps, quality/distortion

maps for JPEG2000 at bit rate 0.2, 0.3 and 0.4 bpp.
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(a) Original
 (b) Curve Map


(c) JPEG2000 Image
 (d) SSIM Image


Figure B.1. Results of Proposed Scheme with JPEG2000 Coding: (a)Original Image; (b)
Equalization Map: The brighter part means a higher value and more bits of coefficient
will be removed; The darker part means a lower value and less bits of coefficient will
be removed; (c) JPEG2000 Compressed Image; (d) JPEG2000 Compressed Image with
SSIM Optimization; Rate = 0.2 bpp.
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(a) Local Enlarged JPEG2000 Image
 (b) Local Enlarged SSIM Image


(c) JPEG2000 Quality Map
 (d) SSIM Qaulity Map


Figure B.2. Continue with B.1 (a)Local Enlarged JPEG2000 Image; (b)Local Enlarged
SSIM Image; (c)JPEG2000 Quality Map; (d)SSIM Quality Map; Rate = 0.2 bpp.
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(a) Original
 (b) Curve Map


(c) JPEG2000 Image
 (d) SSIM Image


Figure B.3. Results of Proposed Scheme with JPEG2000 Coding: (a)Original Image; (b)
Equalization Map: The brighter part means a higher value and more bits of coefficient
will be removed; The darker part means a lower value and less bits of coefficient will
be removed; (c) JPEG2000 Compressed Image; (d) JPEG2000 Compressed Image with
SSIM Optimization; Rate = 0.3 bpp.
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(a) Local Enlarged JPEG2000 Image
 (b) Local Enlarged SSIM Image


(c) JPEG2000 Quality Map
 (d) SSIM Qaulity Map


Figure B.4. Continue with B.3 (a)Local Enlarged JPEG2000 Image; (b)Local Enlarged
SSIM Image; (c)JPEG2000 Quality Map; (d)SSIM Quality Map; Rate = 0.3 bpp.
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(a) Original
 (b) Curve Map


(c) JPEG2000 Image
 (d) SSIM Image


Figure B.5. Results of Proposed Scheme with JPEG2000 Coding: (a)Original Image; (b)
Equalization Map: The brighter part means a higher value and more bits of coefficient
will be removed; The darker part means a lower value and less bits of coefficient will
be removed; (c) JPEG2000 Compressed Image; (d) JPEG2000 Compressed Image with
SSIM Optimization; Rate = 0.4 bpp.
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(a) Local Enlarged JPEG2000 Image
 (b) Local Enlarged SSIM Image


(c) JPEG2000 Quality Map
 (d) SSIM Qaulity Map


Figure B.6. Continue with B.5 (a)Local Enlarged JPEG2000 Image; (b)Local Enlarged
SSIM Image; (c)JPEG2000 Quality Map; (d)SSIM Quality Map; Rate = 0.4 bpp.
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(a)

(b)

Figure C.1. Results of CW-SSIM Digits Recognition (a) Template; (b) Incorrectly Rec-
ognized Digits; Template set size is 10.
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Figure C.2. Continues with Figure C.1; Incorrectly Recognized Digits; Template set size
is 10.
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(a)

(b)

Figure C.3. Results of CW-SSIM Digits Recognition (a) Template; (b) Incorrectly Rec-
ognized Digits; Template set size is 30.
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(a)

(b)

Figure C.4. Results of CW-SSIM Digits Recognition (a) Template; (b) Incorrectly Rec-
ognized Digits; Template set size is 50.
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(a)

(b)

Figure C.5. Results of CW-SSIM Digits Recognition: (a) Template; (b) Incorrectly
Recognized Digits; Template set size is 100.
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Figure C.6. Results of CW-SSIM Digits Recognition: Templates; Template set size is
200.
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Figure C.7. Results of CW-SSIM Digits Recognition: Incorrectly Recognized Digits;
Template set size is 200.



APPENDIX D

LIST OF ACRONYMS

103



104

Acronyms Description

AI Average Improvement

CSF Contrast Sensitivity Function

CW-SSIM Complex Wavelet Domain Structural

Similarity Index Measurement

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimized Truncation

EZW Embedded Zerotree Wavelet

FB Filter Bank

FR Full Reference

GQMF Generalized Quadrature Mirror Filter

HVS Human Visual System

ICT Irreversible Color Transform

ICWP Information Content-Weighted Pooling

IDWT Inverse Discrete Wavelet Transform

JBIG Joint Bi-level Image experts Group

JND Just-Noticeable Distortion

JPEG Joint Photographic Experts Group

LIVE Laboratory of Image and Video

Engineering at The University

of Texas at Austin

LQDWP Local Quality Distortion-Weighted Pooling
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MAE Mean Absolute Error

MNIST Modified Database of the National Institute

of Standards and Technology

MND Minimally Noticeable Distortion

MOS Mean Opinion Score

MP Minkowski pooling

MSE Mean Square Error

NR No Reference

PCRD Post-Compression Rate-Distortion

PR Perfect-Reconstruction

PSNR Peak Signal to Noise Ratio

PS Pooling Strategy

QMF Quadrature Mirror Filter

RCT Reversible Color Transform

ROCC Spearman Rank Order Correlation Coefficient

RR Reduce Reference

SA Spatial Average;

SPIHT Set Partitioning in Hierarchical Trees

SSIM Structural Similarity Index Measurement

UMD Uniformly Maximally Decimated

VDP Visible Difference Predictor

VQEG Video Quality Experts Group
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