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ABSTRACT 

 

DYNAMIC MODELING OF CEREBRAL BLOOD  

FLOW AUTOREGULATION USING ARX  

AND WINDKESSEL MODELS 

 

Publication No. ______ 

 

Piyush Gehalot, M. S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Khosrow Behbehani, Ph.D., P.E. 

Linear lumped parameter models like ARX and Windkessel models are simple, 

easy to solve, and find their application in real time modeling. The present study is 

focused on employing single input single output ARX and Windkessel models to beat-

to-beat mean arterial blood pressure (MABP, mmHg) considered as input to the model, 

and cerebral blood flow velocity (CBFV, cm/sec) considered as output of the model. 

For some models and modeling methodologies, the data consisted of cerebral perfusion 

pressure (CPP, mmHg, estimated from MABP) and CBFV. The data was measured 

from 10 healthy normal subjects while the subjects performed Valsalva maneuver with 

and without the ganglion blockade by the use of trimethaphan. The main objective of 



 

vi 

this study was to examine the relative performance and limitations of the above 

mentioned linear modeling options and to demonstrate newer modeling methodologies 

for them. Also, since for linear model estimation it is required that the input be 

persistently exciting, the present study aimed to establish the efficacy of MABP for 

estimation of linear models and tested if a short data segment of 1.5 minute duration is 

adequate for the same, as compared to the traditional 6 minutes data.  

 Two ARX modeling schemes investigating up to 10th order models, and three 

schemes for Windkessel modeling involving the 3-element model and four of its 

modified versions of 4 or 5 elements, were employed in the present study. Even though 

the study was not restricted to lower order systems or simple Windkessel models, 

results indicate that lower order ARX models (1st, 2nd, and 3rd order ARX models) and 

the 3-element Windkessel model are adequate. Among the ARX and Windkessel 

methodologies, ARX modeling schemes proved more promising. The results of using 

CPP-CBFV data were not better than the results of using MABP-CBFV data.  

It is clear that the models used for the present study had very basic mechanisms 

and structures, but were still able to reproduce the measured data. Also, tests involving 

the 1.5 minute MABP using the ARX models and results from the Monte-Carlo 

simulations of Windkessel models using two schemes suggest that a segment of 1.5 

minute duration of MABP is effective and adequate for estimating linear models of 

cerebral autoregulation. 
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CHAPTER 1 

INTRODUCTION 
 
 
 
 

1.1 Cerebral Autoregulation 

Autoregulation [3, 21] is the phenomenon wherein intrinsic, or “built-in”, 

mechanisms within individual organs provide a localized regulation of vascular 

resistance and blood flow. Survival requires that the heart and brain receive an adequate 

supply of blood at all times. The brain is the organ that can least tolerate low rates of 

blood flow. Hence organs, like the brain in particular, utilize these intrinsic mechanisms 

to maintain relatively constant flow rates despite wide fluctuations in blood pressure. In 

normal range of arterial pressures, cerebral blood flow is regulated almost exclusively 

by autoregulation, achieved by both myogenic and metabolic mechanisms. Myogenic 

regulation occurs when there is variation in systemic arterial pressure. When the blood 

pressure falls, the cerebral arteries automatically dilate; when the pressure rises, they 

contract. These responses are myogenic, they are direct responses by the vascular 

smooth muscle and help to maintain a constant flow rate during the normal pressure 

variations that occur during rest, exercise, and emotional states. The myogenic 

regulation protects fine blood vessels in brain from being ruptured (causing 

cerebrovascular accident, or stroke). In metabolic regulation, the cerebral arterioles are 

exquisitely sensitive to local changes in metabolic activity, so that those brain regions 
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with the highest metabolic activity receive the most blood. The control mechanism in 

this case is a result of the chemical environment created by the organ’s metabolism. 

Some of the localized chemical conditions that promote vasodilation are (1) decreased 

oxygen concentrations; (2) increased carbon dioxide concentrations; (3) decreased 

tissue pH; and (4) the release of adenosine or K+ from the tissue cells [3]. Through these 

chemical changes brain signals its blood vessels of its need for increased oxygen 

delivery. 

The cerebral autoregulation phenomenon has been well documented in animals 

and humans. The understanding of this phenomenon is essential for development of 

new strategies to prevent autonomic dysfunctions such as cognitive loss, falls, and 

syncope, which are major causes of morbidity and mortality in elderly people [16]. One 

of the means to study and analyze cerebral autoregulation is by identification of the 

temporal relationship between beat-to-beat changes in mean arterial blood pressure 

(MABP) and cerebral blood flow velocity (CBFV). Studies [18, 20, 25, 26, 28, 29, 30 

and 44] of dynamic cerebral autoregulation have used different techniques to induce 

rapid changes in MABP. These include sudden deflation of thigh cuffs, Valsalva 

maneuvers, forced breathing, periodic squatting, or tilting of the whole body. Other 

investigations involved spontaneous fluctuations in MABP to observe corresponding 

transient changes in CBFV. There have been studies [13, 18, and 44] for evaluating the 

role of autonomic neural activity versus other non-neural factors in autoregulation by 

introducing ganglion blockade with trimethaphan, the infusion of which removes the 

autonomic neural control of dynamic autoregulation.    
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1.2 Valsalva Maneuver 

 Valsalva maneuver (VM) [3, 18, 19, 25, 26, 28, 29, and 30] is the term used to 

describe an expiratory effort against a closed glottis (which prevents the air from exiting 

the lungs) for at least 15 seconds by maintaining an expiratory pressure of 

approximately 30 mmHg. It is approximately 45 seconds long and is also known as 

Valsalva’s test and Valsalva’s method, after Antonio Maria Valsalva, a famous Italian 

anatomist. Figure 1.1 illustrates a Valsalva maneuver. The maneuver mimics commonly 

occurring events such as coughing, forceful defecation, or lifting of heavy weights. VM 

increases the intrathoracic pressure and causes the abdominal muscles to tighten up, 

squeezing the intestines and organs in abdominal cavity so that they press upward 

against the diaphragm, compressing the chest cavity even more. Contraction of thoracic 

cage compresses the lungs and causes a large rise in intrapleural pressure (the pressure 

measured in the space between the lungs and thoracic wall) from approximately -3 

mmHg to >150 mmHg. This results in the compression of the thoracic veins which 

causes a fall in venous return and cardiac output, thus lowering arterial blood pressure. 

The lowering of arterial pressure then stimulates the baroreceptor reflex, resulting in 

tachycardia and increased total peripheral resistance. When the glottis is finally opened 

and the air is exhaled, the cardiac output returns to normal, however, the blood pressure 

is high as the total peripheral resistance is still elevated. The blood pressure is then 

brought back to normal by the baroreceptor reflex, which causes a slowing of the heart 

rate (HR).  
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Figure 1.1 Valsalva maneuver 

 

 There are four recognized phases to VM. Figure 1.2 illustrates the four phases of 

the maneuver, with corresponding changes in MABP (mmHg), CBFV (cm/sec) and HR 

(beats per minute). Phase I is associated with the beginning of the strain (expiration 

with the nose and mouth closed) and a transient rise in MABP as the increase in 

intrathoracic pressure is transmitted to the arterial tree. During phase IIa, the atrial 

filling pressure falls so MABP decreases. In phase IIb there is increased sympathetic 

activation, causing a rise in peripheral vascular resistance, which leads to a small 

increase in MABP and HR. Phase III is associated with the release of the intrathoracic 

pressure influence (strain) on the arterial tree resulting in sudden fall in MABP. Finally, 

phase IV sees an immediate “overshoot” in MABP because of the persistence of 

increased sympathetic tone and systemic vascular resistance. A reflex bradycardia then 
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results due to stimulation of arterial baroreceptors, and both MABP and HR return to 

baseline values.     

 
Figure 1.2 Phases (I through IV) associated with Valsalva maneuver shown in the mean 

arterial blood pressure (MABP) subplot. The vertical arrow indicates the onset of the  
maneuver. The corresponding cerebral blood flow velocity (CBFV) and  

heart rate (HR) changes are shown in the subsequent subplots. 
 

 VM is used as diagnostic tool to evaluate the condition of the heart and is done 

as a treatment to correct abnormal heart rhythms or relieve chest pain. It has been used 

as to test the integrity of autonomic function and may represent a dynamic challenge to 

the autoregulatory mechanisms of cerebral circulation. Changes in cerebral 

hemodynamics during the maneuver are mediated by both mechanical effects of the 

changes in intrathoracic pressure and the elicited autonomic neural activity. The 

differentiation between the mechanical effects and the autonomic effects has been done 

using ganglion blockade with trimethaphan, the infusion of which essentially removes 

the autonomic neural activity. The changes in cerebral hemodynamics during VM have 
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potentially significant clinical implications. If cerebral autoregulation is the process 

regulating CBFV during phase IV of the maneuver, then the rapid rise in MABP should 

be followed by a rapid rise in CBFV, which is quickly returned to baseline values by 

dynamic autoregulation, before MABP returns to normal (Figure 1.2). In case of 

patients with impaired autoregulation, the magnitude of MABP reduction during a 

routine VM (phases IIa and III) is substantially greater than in normal subjects. This 

would result in substantial reduction in CBFV which may ultimately lead to syncope. 

Such effects can be also be seen in studies [13, 18, and 44] introducing ganglion 

blockade by trimethaphan drug infusion for removal of the autonomic neural control of 

dynamic autoregulation. 

 

1.3 Previous Studies Involving Human Cerebral Circulation and its Modeling  

 Physiological modeling and system identification is aimed towards a better 

understanding of the dynamics of various living systems. Modeling effort ranges from 

graphic depiction of physiological process to mathematical emulation of realistic living 

systems that unravels the mechanisms that underlie various complex physiological 

functions. Physiological modeling strives to create a framework that would help with 

the integration of experimental observations. A successful model also provides 

guidance to new experiments, which may modify or generalize the model in turn 

suggesting newer experiments.  

 In the context of human cerebral circulation under various pathophysiological 

conditions, several studies [9, 10, 11, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26, and 29] have 



 

7 

been done to understand pressure-flow velocity relationships using non-parametric 

techniques such as transfer function analysis [5, 6, 12, and 44] using cross correlation 

techniques [4, 5]. Non-linear analysis and neural network modeling studies of dynamic 

cerebral autoregulation have also been conducted [7, 8]. Studies [28, 30, 41, 42, and 43] 

involving frequency-domain and time-domain analysis of CBFV and its correlation with 

MABP for assessing dynamics of autoregulation, developing indices for the degree and 

quality of autoregulation and deriving clinical and physiological implications for 

detection of autonomic dysfunction have all been well described and documented. 

There have also been investigations employing linear lumped parametric models such 

as autoregressive ARX models [11, 44] and various Windkessel models [16, 32]. These 

models relate MABP and CBFV data for characterizing the dynamics of cerebral blood 

flow regulation. It has been seen that even though treating the vasculature in this 

manner is a gross simplification of the system, lumped models have been shown to 

provide good results and have aided the understanding of physiological systems. Further 

more, there have been studies to test the validity and reliability of these models [35, 36, 

and 37].  

1.4 Objectives and Overview of the Thesis 

 Lumped parameter models like ARX and Windkessel models are easy to solve, 

find their application in real time modeling where it is necessary to analyze data that 

include dynamic changes, and are simple enough to be implemented in a clinical 

setting. Windkessel models have an added advantage that they provide a model 

structure in terms of individual elements (resistors, capacitors, and inductors) of their 
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electrically analogous circuit. This makes it easier to extract the dynamic variation of 

each of the elements from the measured data. It may also be possible to interpret 

physiological changes with changes in the value of the elements.      

 The present study is focused on employing single input single output linear 

lumped parametric models (ARX and Windkessel) to the data collected from normal 

human subjects and computing the model parameters. The data consisted of beat-to-beat 

mean arterial blood pressure (MABP, mmHg) considered as input to the model, and 

cerebral blood flow velocity (CBFV, cm/sec) considered as output of the model. For 

some models and modeling methodologies, the data consisted of cerebral perfusion 

pressure (CPP, mmHg, estimated from MABP) and CBFV [18]. The measurement of 

the data from the subjects was done while the subjects were performing Valsalva 

maneuver with and without the use of trimethaphan for ganglion blockade, the infusion 

of which essentially removes the autonomic neural activity.  

Referring to previous studies involving human cerebral circulation and its 

modeling in section 1.3, there have been no investigations in applying Windkessel 

models to cerebral autoregulation data in conjunction with Valsalva maneuver for 

ganglion blockade. Although there has been a previous study [44] involving ARX 

models, it was limited to second order models only. Also under the same context, one 

doesn’t find a comprehensive comparison of the performance of various models and 

modeling techniques with respect to ARX models and Windkessel models. The main 

objective of this study was to examine the relative performance and limitations of the 

above mentioned linear modeling options and to demonstrate newer modeling 
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methodologies for them. All of these modeling methods rely on the assumption that the 

dynamic autoregulatory mechanism can be approximated by a linear system, ignoring 

all nonlinearities, like those related to fluid flow. It has been assumed that the MABP 

and CBFV are correlated without taking into account any phase lag between them. 

Another presumption is that the middle cerebral artery (MCA), where CBFV is 

measured, does not change its diameter, and hence the words cerebral blood flow 

velocity (CBFV) and cerebral blood flow (CBF) have been used interchangeably. Also, 

effects due to changes in venous and intracranial pressure are not specifically included 

in the data and the models where data was MABP and CBFV. These effects were 

considered while estimating CPP from MABP and modeling CPP and CBFV. 

Since for linear model estimation it is required that the input be persistently 

exciting, another purpose of this study was to examine and establish the efficacy of 

beat-to-beat blood pressure time sequence in serving as an input stimulus. Furthermore, 

this involved investigating the possibility of using a shorter data segment of 1.5 minute 

duration of changes in MABP for obtaining linear model estimation of cerebral 

autoregulation. None of the studies in section 1.3 have involved this type of testing and 

validation, and only one previous investigation has examined the use of 3 minute input 

data [11]. Most of the previous studies have used the traditional 6 minutes duration of 

pressure and flow data [12, 13, and 44].  

The rest of this thesis is arranged in the following way. Chapter 2 presents the 

experimental setup and protocol for the data collection and provides various model 

structures and modeling techniques applied to the data. Chapter 3 presents the results 
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obtained from different modeling approaches and studies. Chapter 4 deals with the 

discussion for the results and limitations. Finally, chapter 5 details the conclusions and 

directions for future work. 
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CHAPTER 2 

METHODS 

 

 

This chapter presents the experimental setup, protocol for data collection and 

various model structures and modeling methodologies applied to the data. All the data 

analysis algorithms in this study were developed, tested and evaluated in MATLAB 

(ver. 5.2 and ver. 6.5) and Simulink (ver. 5.0) environments, some of which are shown 

in Appendix A. 

 
2.1 Experimental Setup and Data Acquisition 

2.1.1 Subjects 

Data for the present study was obtained from ten healthy subjects, 8 men and 2 

women, aged 29±6 years in supine resting position. No subject smoked, used 

recreational drugs or had known medical problems. Subjects were screened carefully 

with regard to their medical history and a physical examination with a 12-lead 

Electrocardiogram (ECG). All subjects signed an informed consent form approved by 

the Institutional Review Boards of the University of Texas Southwestern Medical 

Center at Dallas and Presbyterian Hospital of Dallas.  
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2.1.2 Instrumentation 

 Heart rate (HR) was monitored continuously by ECG. The beat-to-beat mean 

arterial blood pressure (MABP, mmHg) was measured non-invasively with finger 

photoplethysmography (Finapres Ohmeda, Amsterdam, Netherlands). The cerebral 

blood flow velocity (CBFV, cm/sec) was recorded from the middle cerebral artery 

(MCA) with transcranial Doppler ultrasonography (TCD). A 2-MHz probe (Multiflow 

DWL, Elektronische Systeme, Sipplingen, Germany) was placed over the subject’s 

temporal window and fixed at a constant angle with a probe holder to secure the probe 

position during the experiments. This technique allows non-invasive and repeatable 

estimates of changes in CBFV on a beat-to-beat basis. 

2.1.3 Experimental Protocol 

 All experiments were performed in the morning at least 2 hours after a light 

breakfast in a quiet environmentally controlled laboratory with an ambient temperature 

of 25 °C. The subjects were asked to refrain from heavy exercise and caffeinated or 

alcoholic beverages at least 24 hours before the tests. After at least 30 minutes of supine 

rest, 6 minutes of baseline data were collected during spontaneous breathing. This data 

collection was repeated again after approximately 1 hour to test the reproducibility of 

MABP and CBFV. Then, the subjects performed a Valsalva maneuver (VM) with an 

expiratory strain of 30 mmHg for 15 seconds. The strain pressure during the VM was 

monitored by a sphygmomanometer (Tycos, Arden, NC, USA). Typical changes in 

MABP, HR and CBFV during the maneuver were observed in all subjects before 

ganglion blockade. After performance of the baseline VM, intravenous infusion of 
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trimethaphan (trimethaphan camsylate, Cambridge Laboratories, UK) was begun at a 

low dose of 3 mg min-1. Three minutes after the infusion, a VM was performed again to 

evaluate the HR responses to the changes in MABP. The infusion dose was increased 

incrementally by 1 mg min-1 if the HR response during the preceding maneuver was still 

present. This procedure was repeated at each level of infusion until the absence of HR 

response was observed. The ultimate infusion dose used for ganglion blockade was 6-7 

mg min-1 in the present study. The efficacy of ganglion blockade was demonstrated not 

only by the absence of HR response, but also by the absence MABP recovery during 

phase II or MABP overshoot during phase IV of the Valsalva maneuver, suggesting the 

removal of autonomic neural activity. In general, from the multiple maneuvers (3-4) 

performed by each subject with and without infusion, the first VM was considered 

practice and the last one was used for data analysis. Thus, there were four types of data 

recordings for each of the ten subjects, spontaneous with no infusion (SNI), 

spontaneous with infusion (SI), Valsalva maneuver with no infusion (VNI) and 

Valsalva maneuver with infusion (VI).  

2.1.4 Data Pre-processing 

The data recordings were interpolated and resampled§ at 2 Hz using cubic spline 

interpolation. For the purpose of examining the efficacy of beat-to-beat blood pressure 

time sequence in serving as an input stimulus and to investigate the use of a short data 

segment of 1.5 minute, 6 minutes SNI data and its four non-overlapping contiguous 1.5 

minute sections were examined. For the other part of the study involving modeling 

                                                 
§ The MATLAB function interp1 was used 
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methodologies and their comparison, first 1.5 minute section of the 6 minute SNI 

recording, and approximately 90 seconds (1.5 minute) of SI, VNI and VI data 

recordings were used. Prior to any analysis, all data sequences were first detrended∗ by 

removing their mean values, and then normalized by the range of time series (maximum 

value of the sequence minus minimum value of the sequence). Figure 2.1 through 

Figure 2.4 illustrate approximately 90 seconds recordings of MABP and CBFV for 

subject number 1 for all the four (SNI, SI, VNI, and VI) data conditions.  

 

 
Figure 2.1 Spontaneous with no infusion (SNI) mean arterial blood pressure (MABP) 

and cerebral blood flow velocity (CBFV) data 
 

                                                 
∗ The MATLAB function dtrend was used 
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Figure 2.2 Spontaneous with infusion (SI) mean arterial blood pressure (MABP) and 

cerebral blood flow velocity (CBFV) data 
 

 
Figure 2.3 Valsalva maneuver with no infusion (VNI) mean arterial blood pressure 

(MABP) and cerebral blood flow velocity (CBFV) data 
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Figure 2.4 Valsalva maneuver with infusion (VI) mean arterial blood pressure (MABP) 

and cerebral blood flow velocity (CBFV) data 
 

 

2.2 Modeling Methodologies 

 This section describes the two types of modeling approaches (ARX and 

Windkessel) employed to the data collected as mentioned in the previous section. 

Section 2.2.1 discusses the ARX modeling technique and modeling schemes associated 

with it. Section 2.2.2 details Windkessel estimation and various types of Windkessel 

models employed in the present study, section 2.2.3 discusses different modeling 

schemes associated with them.   

2.2.1 ARX Model Estimation 

 For linear system parametric identification of an autoregressive ARX model [1, 

2, 14, 27, and 44], the model describes the relationship between input signal, output 

signal, and disturbance signal or noise, through a set of linear difference equations 
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where the output at a given time t is computed as a linear combination of the current 

and past outputs and the current and past inputs. In general the structure for ARX 

identification is, 

                                                  )().()().()( kqHkuqGky ε+=                                    (2.1) 

where y is the output, u is the input and ε is the noise, k is the sample number (instance) 

and q is the index of the domain in which the model transfer function is analyzed. G is 

the process model, which represents the causal relationship between the deterministic 

input u and output y to the model, H is the noise model.  

In many cases, the effect of noise on the model output may be insignificant as 

compared to the input signal. Hence, it is often not necessary to include an accurate 

noise model in the system modeling such as in the study of cerebral autoregulation [8, 

11, and 12]. Thus, for a single input, single output model the structure (excluding the 

noise model H) can be represented as,  
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The transfer function in Z-domain for the above model structure G(q) would be, 
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In ARX model estimation, the model structure is set a priori, but with unknown model 

order (i.e. the upper bound on m and n). The model identification is reduced to 
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estimating the model order and its parameters (ai and bi) using input and output data that 

give the best agreement between model’s (computed or predicted) output and the 

measured one. There are various criteria that are used to select a model and its order, 

such as mean squared error (MSE), Akaike’s index or final prediction error (FPE) [22]. 

In case of this study, the MSE value between the measured and predicted output was 

used. 

With respect to selection and restriction of the orders m and n of the ARX 

model, there were two modeling schemes that have been followed in this study§. They 

will be referred to as ARX-1 and ARX-2 modeling schemes. 

2.2.1.1 ARX-1 Modeling Scheme 

 The block diagram in Figure 2.5 illustrates the ARX-1 modeling scheme for 

each subject for all the four data conditions. All the possible causal ARX models with 

orders m and n ranging from 1 to 10 (a total of 55 models) were considered using 

MABP (u1) as the input and CBFV (v1) as the output. The mean squared error (MSE) 

value between the predicted output (v2) from each of these models and v1 was then 

calculated based on the following general equation, 
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where vx and vy are the two data sequences for which the MSE value is to be calculated 

and Ln is the length of the data sequences.  

                                                 
§ The MATLAB function arx was used 
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The model having the smallest MSE value was selected as the best. This way, for each 

of the 10 subjects, there were four best models generated, one for each of the SNI, SI, 

VNI, and VI conditions of the data respectively. 

 

Figure 2.5 ARX-1 modeling scheme 

 

2.2.1.2 ARX-2 Modeling Scheme 

The block diagram in Figure 2.6 illustrates the ARX-2 modeling scheme for 

each subject for all the four data conditions. In this type of modeling scheme, ARX 

model orders m and n were restricted to be 1, 2, and 3, utilizing MABP (u1) as the input 

and CBFV (v1) as the output. This way, for each of the 10 subjects, for each of the SNI, 

SI, VNI, and VI conditions of the data, there were three models (one 1st order, one 2nd 

order, and one 3rd order model) generated. Hence, the total number of models for each 

subject was 12. The mean squared error (MSE) value between the predicted output (v2) 
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from each of these models and v1 was then calculated based on equation 2.5. The 

rationale behind restricting the model order was to provide a comparison between the 

performance of ARX and Windkessel models (Windkessel models generally are limited 

to 1st, 2nd and 3rd order model structures). Also, a comparison between the performances 

of ARX-1 and ARX-2 modeling schemes would provide an insight in reason behind 

fitting lower order models to physiological data and trying to select models of order as 

high as 10.   

 

Figure 2.6 ARX-2 modeling scheme 
 

2.2.2 Windkessel Model Estimation 

 Windkessel and similar lumped models are often used to represent blood flow 

and pressure in arterial system and to capture the dynamics of cerebral circulation [17, 

31, 32, 33, 34, 35, 36, 37, 38, 39, and 40]. These lumped models can be derived from 

electrical circuit analogies where current (i) represents blood flow and voltage (v) 

represents pressure. Resistances (R) represent arterial and peripheral resistance that 
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occurs as a result of viscous dissipation inside vessels, capacitors (C) represent volume 

compliance of the vessels that allows them to store significant amounts of blood, and 

inductors (L) represent inertia of the blood flow in vessels.  

The Windkessel model was originally put forward by Stephen Hales in 1733 and 

further developed by Otto Frank in 1899. Frank used Windkessel model to describe 

blood flow in the heart and systemic arteries, modeling the arterial system as a 

compliant reservoir fed by the heart (Cs), driving a simple resistive load (Rs) modeled as 

resistance to the outflow (Figure 2.7). The original (two-element) Windkessel model 

(Figure 2.8) comprised an electric circuit with one resistor and one capacitor; where the 

capacitor represented the compliance of the large arteries while the resistor represented 

the resistance of the small arteries and arterioles (so called resistance vessels). The two-

element Windkessel model was later extended to the three-element Windkessel model, 

which had two resistors and a capacitor (Figure 2.9). The additional resistor was 

thought to represent the characteristic impedance of aorta and the large compliance 

vessels. The three-element model is and has been widely used and accepted.  

 

Figure 2.7 Frank’s simple Windkessel model of arterial vascular system 
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Figure 2.8 Original (two-element) Windkessel model with  
one resistor (R1) and one capacitor (C1) 

 
 

 

Figure 2.9 Three-element Windkessel model with two  
resistors (R1 and R2) and one capacitor (C1) 

 

Even though the Windkessel model was originally derived for the ventricle and 

aorta for cardiovascular modeling, it has been successfully employed for 

cerebrovascular modeling [16, 32]. Also, investigators have modified the three-element 

Windkessel model in several ways to produce significant improvements in fitting of the 

model output to the measured output [17, 31, 32, 36, 37, 38, 39, and 40]. The 

modifications to the original model have come in various forms, addition of 
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capacitances to mimic local and distal compliances, addition of resistor-capacitor 

combinations to expand the model to more finite levels like arterioles, capillaries and 

veins and addition of inductance-resistance combination to add inertial effect associated 

with long vessels. Although these modifications generated better results over the 

original Windkessel model, their physiological interpretations were not always obvious 

and apparent. Windkessel models are easy to understand and simple in their structure, 

however, these models include a number of parameters (resistors, capacitors, and 

inductors), and it is not obvious how to estimate the parameters from measurements of 

just blood flow and pressure. Generally the estimation of these parameters depends on 

minimization or maximization of a cost-function (a function of time or frequency) to 

either fit the model time-domain output to the measured time-domain output, or match 

the measured and model frequency responses.  

The present study employs the basic three-element Windkessel model and four 

of its modified versions, which have shown significant improvements in fitting of the 

model output to the measured output in previous cardiovascular and cerebrovascular 

modeling studies. Their transfer functions using Laplace transform (S-domain) have 

been analyzed considering MABP as input to the model and CBFV as output to the 

model.  
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2.2.2.1 Model 1: Windkessel 3-Element Model [16, 21, 32, 33, 34, 35, 37, 38] 

 

Figure 2.11 Windkessel 3-element model 

 

 Figure 2.11 illustrates the structure for the basic 3-element Windkessel model 

(Model 1), with input MABP analogous to voltage (v) and output CBFV analogous to 

current (i). The transfer function in S-domain for Model 1 in terms of its parameters R1, 

R2, and C1, is, 
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2.2.2.2 Model 2: Modified Windkessel 5-Element Model [32] 

 

Figure 2.12 Modified Windkessel 5-element model 

 

Figure 2.12 illustrates the structure for a 5-element modified Windkessel model 

(Model 2), with input MABP analogous to voltage (v) and output CBFV analogous to 

current (i). The transfer function in S-domain for Model 2 in terms of its parameters R1, 

R2, R3, C1, and C2, is, 
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2.2.2.3 Model 3: Modified Windkessel 5-Element Model [31] 

 

Figure 2.13 Modified Windkessel 5-element model 

 

Figure 2.13 illustrates the structure for another 5-element modified Windkessel 

model (Model 3), with input MABP analogous to voltage (v) and output CBFV 

analogous to current (i). The transfer function in S-domain for Model 3 in terms of its 

parameters R1, R2, L1, C1, and C2, is, 
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2.2.2.4 Model 4: Modified Windkessel 5-Element Model [39] 

 

Figure 2.14 Modified Windkessel 5-element model 

 

Figure 2.14 illustrates the structure for yet another 5-element modified 

Windkessel model (Model 4), with input MABP analogous to voltage (v) and output 

CBFV analogous to current (i). The transfer function in S-domain for Model 4 in terms 

of its parameters R1, R2, L1, C1, and C2, is, 
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2.2.2.5 Model 5: Modified Windkessel 4-Element Model [17, 38] 

 

Figure 2.15 Modified Windkessel 4-element model 
 

Figure 2.15 illustrates the structure for a 4-element modified Windkessel model 

(Model 5), with input MABP analogous to voltage (v) and output CBFV analogous to 

current (i). The transfer function in S-domain for Model 5 in terms of its parameters R1, 

R2, L1, and C1, is, 
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2.2.3 Windkessel Modeling Schemes 

 From the section 2.2.2 it is relatively clear that the Windkessel models are easy 

to understand and simple, yet defined in their structure. However, these models include 

a number of parameters (R, L, and C), and the real challenge of the model identification 

is the estimation of these parameters from the measurements of just MABP and CBFV. 

In pervious investigations [16, 21, 31, 32, 34, 35, 37, and 38] the extraction of these 
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parameters was done by minimization or maximization of a cost-function, which may 

be a function of time or frequency. The present study involves parameter selection by a 

two-phase optimization§ of the parameters of a Windkessel model. This optimization is 

done by minimization of the MSE in frequency domain for the measured and predicted 

impedance curves, and MSE in time domain for the measured and predicted outputs. 

They are referred as frequency-domain optimization phase and time-domain 

optimization phase respectively. The advantage of this two phase optimization process 

is that it converges to final values of the parameters which yield better time-domain fit 

of the model output and result in lower time-domain MSE value between the measured 

and the model output, as compared to single stage parameter extraction techniques 

similar to those used in previous investigations.  

For frequency-domain optimization phase, first an impedance curve for the 

measured data (detrended and normalized MABP and CBFV) was generated. This was 

done by finding the cross-correlation, Syx, of CBFV and MABP sequences, and the 

auto-correlation, Sxx, of MABP. Then by Welch’s averaged, modified periodogram 

method*, a 512 point fast Fourier transform (FFT) of Syx and Syx was calculated with 50 

percent overlap, using a Hanning window and a sampling frequency of 2 Hz. The 

measured impedance curve Zm was calculated from dividing the absolute value 

(modulus) of the FFT of Syx by the absolute value of the FFT of Sxx. In the equations 2.6 

through 2.10, replacing the complex variable s in the each of the transfer function for 

the five Windkessel models, by jω, where j is imaginary number ( 2 1− ) and ω is 

                                                 
§ The MATLAB function fminimax was used  * The MATLAB function psd was used  
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frequency (rad/sec), would present the transfer function as a function of ω with 

unknown values of parameters. Taking the absolute value (modulus) of this transfer 

function would yield the predicted impedance curve for the model, Zp. Essentially, the 

frequency-domain optimization is selection of the parameters of the model in order to 

fit Zp to Zm, such that the MSE value between Zm and Zp is minimized. 

Time-domain optimization phase involves selecting those parameters, R, C and 

L of a Windkessel model, which minimize the MSE value between the measured time 

domain output (CBFV) and predicted (model) time domain output, for fitting the 

predicted output to the measured one. To calculate the predicted time domain output, 

the estimated model was subjected to the measured time domain input (MABP). 

2.2.3.1 Optimization Algorithm 

This section provides an overview of the optimization method used in the 

present study. For both frequency-domain and time-domain optimization phases, 

parameters of the Windkessel models were estimated using a constrained optimization 

technique. In this technique, a multivariable function is minimized, starting at an initial 

estimate. The value of the variables (parameters R, C, and L of the model) are subject to 

constraints, in terms of lower and upper bounds that they can attain. The lower and the 

upper bound values are decided keeping physiologically considerations in mind and 

referring pervious cerebral blood flow modeling studies. In the present study, for the 

part which involves analyzing the five Windkessel models for fitting them to the subject 

data, the lower and the upper boundary values were 0.1 and 50 for the frequency-

domain optimization phase and 0.01 and 100 for the time-domain optimization phase 
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respectively, for every parameter. The difference in the boundary values for the two 

phases accounts for the situation when the frequency-domain optimization phase yields 

parameter estimates which are close to its boundary values, particularly to the upper 

boundary value. This allows the time-domain optimization phase to start with an initial 

estimate that is approximately at the midpoint of the range of its boundary values, and 

hence result in better parameter estimates. This strategy is advantageous in case where 

the two phases are sequential and final estimates of one phase act as initial estimates for 

the subsequent phase. 

In constrained optimization, the general aim is to transform the problem into an 

easier sub-problem that can then be solved and used as the basis of an iterative process. 

In this way the constrained problem is solved using a sequence of parameterized 

unconstrained optimizations, which in the limit (of the sequence) converge to the 

constrained problem. This method is commonly referred to as Sequential Quadratic 

Programming (SQP) method, since a QP sub-problem is solved at each major iteration 

(also known as Iterative Quadratic Programming, Recursive Quadratic Programming, 

and Constrained Variable Metric methods) [2].  

Constrained methods use the solution of a sub-problem to yield a search 

direction in which the solution is estimated to lie. The minimum along the path formed 

from this search direction is generally approximated using a search procedure. In the 

present study, this search procedure was a cubic polynomial method, where a function 

evaluation is made at every iteration. At each iteration an update is performed when a 

new point is found that results in a lower value of the multivariable function being 
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minimized. Value of each function parameter is also updated by a step at every 

iteration. If this step does not result into a lower function value, then further reduction 

in the step is done to form a new step, Usual method for this reduction is to use 

bisection, i.e., to continually halve the step length until a reduction is achieved in the 

function output. The values of the optional parameters like the step size, maximum 

number of iterations, maximum number of function evaluations, and termination 

tolerance on the constraint violation can be provided before the start of the optimization 

to improve the efficiency and accuracy of the process. More details about the 

optimization algorithm can be found in [2]. 

While SQP method has been implemented and tested over a large number of test 

problems, it has certain limitations. For instance, the function to be minimized must be 

continuous and the optimization may result in only the local solutions. Also, the method 

is very sensitive to the initial estimates. Based on the number of parameters optimized 

and the sequence of performing the frequency-domain and time-domain optimization 

phases, three types of Windkessel modeling schemes were obtained. They will be 

referred to as Windkessel-1, Windkessel-2 and Windkessel-3 modeling schemes.  

2.2.3.2 Windkessel-1 Modeling Scheme 

The Windkessel-1 relies on the approximation that the resistance parameter R1 

for the each of the five Windkessel models can be extracted from the highest frequency 

point of the measured impedance curve Zm. As discussed in section 2.2.3, in the 

equations 2.6 through 2.10, replacing the complex variable s in the each of the transfer 

function for the five Windkessel models, by jω, where j is imaginary number ( 2 1− ) 
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and ω is frequency (rad/sec), would present the transfer function as a function of ω with 

unknown values of parameters, taking the absolute value (modulus) of this transfer 

function would yield the predicted impedance Zp. For instance, the transfer function 

g1(s) in equation 2.6 would take the form, 
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Dividing the numerator and the denominator in equation 2.11 by jω would give, 
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Applying the limit of ω tending to infinity, to modulus of g1(ω) in equation 2.12 would 

give, 
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Hence in order to fit Zp to Zm, the value of the resistance parameter R1 is taken from the 

highest frequency point of the measured impedance curve Zm, this value will be referred 

to as VR1. By applying this approximation technique to the transfer functions of rest of 

the models (equations 2.7-2.10), VR1 in each of the models can be extracted in a similar 

way. 

The block diagram in Figure 2.16 illustrates the methodology used for 

Windkessel-1 modeling scheme. First, using the input (u1, MABP) and output (v1, 

CBFV) a measured impedance curve Zm is generated. Value of parameter R1 is 

extracted from the highest present frequency value of Zm. The frequency-domain 

optimization phase optimizes all the parameters, except R1, of the Windkessel model 
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being analyzed, for least square fitting of Zp to Zm (minimizing the MSE between the 

two). For the 3-element Windkessel model (Model 1), the initial estimates (Initial 

Estimates 1) of the parameters being optimized for frequency-domain optimization were 

taken from the results of a pervious cerebral blood flow modeling study [16]. For the 

rest of the four Windkessel models, the initial estimate for every parameter was the 

middle point value of the range of the boundary condition (constraint) for the 

optimization of that parameter (section 2.2.3.1). Thus, at the end of the optimization, 

VR1 and value of every frequency-domain optimized parameter of the Windkessel 

model (Estimate 1) is given. 

The time-domain optimization phase is the process of least square fitting of the 

model output to the measured output, by optimizing the parameters, except R1, starting 

from the Estimate 1 values (Initial Estimates 2 = Estimate 1). At the end of the 

optimization, VR1, and of every time-domain optimized parameter of the Windkessel 

model (Estimate 2) is given. The Estimate 2 along with VR1, are taken as the final 

values of the model parameters. Based on equation 2.5, MSE is calculated between v1 

and the predicted output v2 of model with these final values. The Windkessel-1 

modeling scheme utilizes the value of parameter R1 (VR1, extracted from Zm) in both the 

frequency-domain and time domain optimizations, but R1 is essentially never optimized. 

This modeling scheme was applied to all the 10 subjects’ data, to all the four data 

conditions (SNI, SI, VNI, and VI) for each subject, and for all the five Windkessel 

models. 



 

35 

 

Figure 2.16 Windkessel-1 modeling scheme 

 

2.2.3.3 Windkessel-2 Modeling Scheme 

The block diagram in Figure 2.17 illustrates the methodology used for 

Windkessel-2 modeling scheme. First, using the input (u1, MABP) and output (v1, 

CBFV) a measured impedance curve Zm was generated. Value of parameter R1 is 

extracted from the highest present frequency value of Zm, as discussed in section 

2.2.3.2. The frequency-domain optimization phase optimizes all the parameters, except 
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R1, of the Windkessel model being analyzed, for least square fitting of Zp to Zm 

(minimizing the MSE between the two). For the 3-element Windkessel model (Model 

1), the initial estimates (Initial Estimates 1) of the parameters being optimized for 

frequency-domain optimization were taken from the results of a pervious cerebral blood 

flow modeling study [16]. For the rest of the four Windkessel models, the initial 

estimate for every parameter was the middle point value of the range of the boundary 

condition (constraint) for the optimization of that parameter (section 2.2.3.1). Thus at 

the end of the optimization, VR1 and value of every frequency-domain optimized 

parameter of the Windkessel model (Estimate 1) is given. 

The time-domain optimization phase in this scheme optimizes all the parameters, 

including R1, starting from VR1, and Estimate 1 values (Initial Estimates 2 = [VR1, 

Estimate 1]) for least square fitting of the model output to the measured output. At the 

end of the optimization, the numerical value of every time-domain optimized parameter 

of the Windkessel model (Estimate 2) is given, which is taken as the final value of that 

model parameter. Based on equation 2.5, MSE is calculated between v1 and the 

predicted output v2 of model with these final values. The Windkessel-2 modeling 

scheme utilizes the value of parameter R1 (VR1, extracted from Zm) in the frequency-

domain optimization, and as initial estimate for the time domain optimization. This 

modeling scheme was applied to all the 10 subjects’ data, to all the four data conditions 

for each subject, and for all the five Windkessel models. 
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Figure 2.17 Windkessel-2 modeling scheme 

 

2.2.3.4 Windkessel-3 Modeling Scheme 

In Windkessl-3 scheme, simultaneous frequency-domain and time-domain 

optimization is performed, in contrast to sequential processes of Windkessel-1 and 
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minimization of the MSE in frequency domain for the measured and predicted 

impedance curves, and MSE in time domain for the measured and predicted outputs, is 

done§. For this purpose, frequency and time domain MSE values are weighed by certain 

weighting coefficients for the optimization, such that the sum of the two weighting 

coefficients (one for frequency-domain MSE, Wf, another for time-domain MSE, Wt) is 

1. Hence Wt is varied from 0.1 to 0.9 in steps of 0.1, whereas Wf = 1- Wt. From all of 

these 9 combinations of Wt and Wf (including one where Wt = Wf = 0.5), selection of 

the model parameters is done for the combination which produces the minimum time-

domain MSE value. 

 The block diagram in Figure 2.18 illustrates the methodology used for 

Windkessel-3 modeling scheme. Using the input (u1, MABP) and output (v1, CBFV) a 

measured impedance curve Zm was generated. The frequency-domain MSE between Zp 

and Zm is calculated. The time-domain MSE between the predicted (model) output and 

the measured output is also calculated. The optimization process minimizes the 

weighted frequency and time domain MSE values simultaneously, and for the 9 

combination of Wt and Wf, generates 9 sets of optimized parameters for the Windkessel 

model under analysis. Then for each of these 9 sets of model parameters, based on 

equation 2.5, time-domain MSE value is calculated between v1 and the predicted output 

v2 of model. The set of parameters yielding minimum MSE value is taken as the final 

estimate. This modeling scheme was applied to all the 10 subjects’ data, to all the four 

data conditions for each subject, and for only the 3-element Windkessel model (Model 

                                                 
§ The MATLAB function fgoalattain was used 
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1). The initial estimates of the parameters being optimized were taken from the results 

of a pervious cerebral blood flow modeling study involving Model 1 [16] and the lower 

and the upper boundary values were respectively 0.01 and 100 for the optimizations. 

 

 

Figure 2.18 Windkessel-3 modeling scheme 
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2.3 Establishing the Adequacy and Efficacy of 1.5 Minute MABP as Input Stimulus 

 For a linear model estimation it is required that the input be persistently exciting. 

This section focuses on that part of study which is aimed to establish if the MABP is 

adequately persistently exciting to properly estimate a linear model. In addition the 

possibility of using a short data segment of 1.5 minute of changes in MABP for linear 

model identification was examined. This is of relevance because various linear 

modeling investigations involve use of a pathophysiological condition, like Valsalva 

maneuver with and without ganglion blockade in the present study, which last 

approximately 1.5 minute long.  

 The data used for this part of the study was spontaneous no infusion (SNI) data. 

The aim was to prove that beat-to-beat MABP sequence is as effective as pseudo 

random binary sequence (PRBS). This is of importance, because PRBS is a very wide 

bandwidth signal and is considered persistently exciting. The study was based on 

parametric identification of autoregressive ARX and Windkessel models. In case of 

Windkessel models, the study was done by performing Monte-Carlo simulations 

(random-walk method) for 1000 trials.    

2.3.1 ARX Models 

 This study was based on ARX-1 modeling scheme. The block diagrams in Figure 

2.19 and Figure 2.20 illustrate the steps for the applied methodology for analysis of the 

ARX models for each of the 10 subjects. All the possible causal ARX models with 

numerator and denominator order (m and n) ranging from 1 to 10 (a total of 55 models) 

were considered using measured MABP (u1) as input and CBFV (v1) data as output 
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sequences. Based on equation 2.5, the MSE values between the predicted output (v2) 

from these models and v1 were then calculated and the model having smallest MSE 

value was selected as the best. This model will be referred to as Ma.  

 For the next two steps, Ma was treated as an unknown system. In step 2 of 

investigation, model Ma was subjected to PRBS signal (u2) with minimum value of -1, 

maximum value of +1, initial seed equal to zero and sample time equal to 0.5 seconds to 

obtain the computed output (v3). All the possible causal ARX models with m and n 

ranging from 1 to 10 (a total of 55 models) were fitted to u2 and v3. Based on equation 

2.5, the MSE values between the predicted output (v4) of the estimated models and v3 

(used to estimate the model parameters) were then calculated and the model with the 

smallest MSE value was selected as the best, Me1. The third step involved subjecting Ma 

to measured MABP (u1) instead of PRBS. Again, all the 55 possible valid ARX models 

with m and n ranging from 1 to 10 were fitted to u1 and resulting Ma output (v5). From 

equation 2.5, MSE between the predicted output (v6) from these models and computed 

output (v5) was then calculated and the model having smallest MSE value was selected 

as the best, Me2. 

In order to compare all three models, Ma, Me1 and Me2, in the fourth and final 

step of the study, Me1  and Me2 were excited with the measured MABP as input (u1) and 

MSE values for the predicted outputs (v2 for  Ma , v7 for Me1, and v8 for Me2) and 

measured CBFV (v1) were calculated based on equation 2.5. This four-step study was 

carried out for all 10 subjects, first with 6 minutes SNI data, and then with all the four 

non-overlapping contiguous 1.5 min sections of the measured 6 minute SNI data. 
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Figure 2.19 Steps 1 to 3 for the ARX modeling methodology for establishing the 
adequacy and efficacy of 1.5 minute MABP as input stimulus 
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Figure 2.20 Step 4 for the ARX modeling methodology for establishing the adequacy 
and efficacy of 1.5 minute MABP as input stimulus 

 

2.3.2 Monte-Carlo Simulations for Windkessel Modeling Schemes 

This study was based on performing 1000 trials Monte-Carlo simulation for 

Windkessel-1 and Windkessel-2 modeling schemes. The block diagram in Figure 2.21 

illustrates the applied methodology. First a simulated Windkessel model (Ma) was 

created with its parameters (R, C, and L), referred as true-parameters, being taken from 

a set of randomly generated numbers in a specific range. The range for these random 

numbers was defined and different for each of the true-parameters of Ma. Ma was 

subjected to input (u1) and the computed output (v1) was measured. Then with u1 and v1, 

a Windkessel estimation of Ma was carried out using one of the modeling schemes, the 

estimated model being called as Me (estimated-parameters). Me was subjected to u1 and 

MSE value between v1 and the predicted output (v2) was calculated from equation 2.5. 

The same process was repeated for a total of 1000 trials, with the true-parameters being 
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different for each trial. The initial estimates of the optimization process for each of the 

two modeling schemes were also taken from another set of random numbers, which also 

were different for each trial. Essentially, the range for generating a random initial 

estimate of a parameter was the range in which its true-parameter was generated. For 

both frequency-domain and time-domain optimization, the lower and the upper 

boundary values (constraints) of a parameter were the lower and the upper limits of the 

range in which the random values for its true-parameter and initial estimate were 

generated.  

 

Figure 2.21 Methodology for Monte-Carlo simulations of Windkessel modeling 
schemes, for establishing the adequacy and efficacy of 1.5 minute  

MABP as input stimulus 
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The Monte-Carlo simulation study was first carried out with u1 as a 1.5 minute 

duration PRBS signal (minimum value of -1, maximum value of +1, initial seed equal to 

zero, and sample time equal to 0.5 seconds), and then with all 10 subjects’ SNI MABP 

data, where u1 was the first 1.5 min section of the measured 6 minute data. In case of 

the u1 being MABP data, the subject data was selected randomly for each trial from the 

group of 10 subjects’ data. This entire investigation was done first with the Windkessel 

estimation in the block diagram (Figure 2.21) as Windkessel-1 modeling scheme and 

then as Windkessel-2 modeling scheme, for Ma being each of the five Windkessel 

models (section 2.2.2). Thus, there were four sets of Monte-Carlo simulation results 

generated for each of the five Windkessel models, (1) with PRBS input and 

Widnkessel-1 modeling scheme; (2) with PRBS input and Widnkessel-2 modeling 

scheme; (3) with MABP input and Widnkessel-1 modeling scheme; and (4) with MABP 

input and Widnkessel-2 modeling scheme. Along with the aim of testing the efficacy of 

using 1.5 minute MABP for linear modeling, this part of the study involving the Monte-

Carlo simulations was an exhaustive test for the algorithms designed for Windkessel-1 

and Windkessel-2 modeling schemes. 

 

2.4 Estimating Cerebral Perfusion Pressure from MABP [18]  

 It has been believed that autoregulation is the mechanism which maintains 

constant cerebral blood flow (CBF) within a wide range of changing cerebral perfusion 

pressure (CPP), and not just the mean arterial blood pressure (MABP), because of the 

fact that intracranial pressure (ICP) and cerebral venous pressure (CVP) do not remain 
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constant at all times, especially during straining conditions like those during a VM 

(phase I, IIa, and IIb). Thus it is suggested that changes in CPP is the actual 

physiological trigger for autoregulation and not MABP, and while modeling of cerebral 

autoregulation, CPP and CBFV should be examined.  

 Hence in the present study, for the purpose of estimating CPP (mmHg) from 

MABP (mmHg) in case of the VNI and VI data for the 10 subjects, the value of the 

expiratory pressure (which approximates changes in intrathoracic pressure and thus 

CVP and ICP) during the VM (30 mmHg) was subtracted from phase IIa, and IIb. It was 

assumed that ICP and CVP are low and remain relatively constant under phase IV 

where there is no straining. Due to the difficulty in estimating transient changes in CPP 

during rapid phase I and phase III of the VM, the pressure values for these phases were 

obtained by cubic spline interpolation§ of the VNI and VI pressure data from which 30 

mmHg has been subtracted for phase IIa, and IIb. The CBFV data remained unchanged. 

The 3-element Windkessel model (Model 1) with Windkessel-1 modeling scheme was 

applied to the CPP and CBFV data taken as the measured input and output respectively, 

for VNI and VI conditions for all 10 subjects. Figure 2.22 illustrates the MABP and 

corresponding CPP for VNI condition of subject number 1. 

                                                 
§ The MATLAB function interp1 was used 
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Figure 2.22 Valsalva maneuver with no infusion (VNI) mean arterial blood pressure 

(MABP) and cerebral perfusion pressure (CPP) data 
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CHAPTER 3 

RESULTS 

 
 
 
 

3.1 Results for Establishing the Adequacy and Efficacy of 1.5 Minute MABP as Input 
Stimulus 

 
 This section presents the results for analysis of the MABP (SNI) and comparison 

of those with the PRBS results, to test if MABP is adequately persistently exciting for 

estimating to yield a linear model. The section includes the results for the tests using 

ARX models (based on ARX-1 modeling scheme) and for Monte-Carlo simulations 

(1000 trials) of Windkessel models (based on Windkessel-1 and Windkessel-2 modeling 

schemes). 

3.1.1 Results for ARX Models 

 From the present study, one MSE value for each of the three models, Ma, Me1 

and Me2, was generated per subject, for each of the 5 data sequences used (one 6 

minutes and four 1.5 minutes) of the MABP (SNI) data. For each of the 10 subjects, 

MSE values for Ma, Me1 and Me2 models were equal for the 6 minutes study. Also, for 

each of the four 1.5 minute studies, the MSE values for Ma, Me1 and Me2 models were 

equal for a given single subject. Table 3.1 shows the MSE values of 10 subjects for all 

the three models, for each type of data set used. Table 3.2 shows the t-test results (Pval) 

for the MSE values of 10 subjects between the 6 minutes study and four 1.5 minute 
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studies. Table 3.3 shows the t-test results (Pval) for the MSE values of 10 subjects 

between the four 1.5 minute studies. The statistical level of significance for the t-tests 

was 0.05. Table 3.4 shows the average orders of numerator (m) and denominator (n) of 

the three models for each type of data set used. 

 

Table 3.1 MSE values of 10 subjects for Ma, Me1 and Me2 

Subject No. 6 min MSE 1st 1.5 min 
MSE 

2nd 1.5 min 
MSE 

3rd 1.5 min 
MSE 

4th 1.5 min 
MSE 

1 0.0131 0.0125 0.0244 0.0205 0.0149 

2 0.0165 0.0404 0.0231 0.0351 0.0195 

3 0.0160 0.0190 0.0119 0.0111 0.0366 

4 0.0350 0.0237 0.0314 0.0617 0.0441 

5 0.0237 0.0280 0.0431 0.0213 0.0122 

6 0.0166 0.0217 0.0464 0.0190 0.0461 

7 0.0229 0.0251 0.0125 0.0507 0.0236 

8 0.0159 0.0214 0.0287 0.0212 0.0094 

9 0.0235 0.0155 0.0084 0.0255 0.0235 

10 0.0107 0.0208 0.0190 0.0166 0.0135 

Average 0.0194 0.0228 0.0249 0.0283 0.0243 

STD 0.0070 0.0076 0.0128 0.0162 0.0134 
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Table 3.2 Comparison (t-test) of MSE values between 6 minute and  
1.5 minute data sets of 10 subjects 

 6 min and 1st 1.5 
min 

6 min and 2nd 1.5 
min 

6 min and 3rd 1.5 
min 

6 min and 4th 1.5 
min 

Pval 0.311465 0.254741 0.136559 0.319139 

 

Table 3.3 Comparison (t-test) of MSE values between four 1.5 minute data sets  
of 10 subjects 

 1st and 2nd 
1.5 min 

1st and 3rd 
1.5 min 

1st and 4th 
1.5 min 

2nd and 3rd 
1.5 min 

2nd and 4th 
1.5 min 

3rd and 4th 
1.5 min 

Pval 0.666059 0.351873 0.758237 0.611198 0.926369 0.561499 

 

Table 3.4 Average numerator (m) and denominator (n) model orders of 10 subjects 

Model Ma Model Me1 Model Me2 
 

m n m n m n 

6 min 7.1 7.1 9.8 9.8 9.8 9.8 

1st 1.5 min 8.5 8.5 10 10 9.9 9.9 

2nd 1.5 min 7.4 7.4 9.2 9.2 9.6 9.6 

3rd 1.5 min 9.7 9.7 10 10 10 10 

4th 1.5 min 9 9 10 10 9.8 9.8 

 

3.1.2 Results of Monte-Carlo Simulations for Windkessel Modeling Schemes 

3.1.2.1 Results for Windkessel-1 Modeling Scheme with PRBS Input 

 This section presents the average MSE values (Table 3.10), true-parameters (Ma) 

and estimated-parameters (Me) (Table 3.5 through Table 3.9) of 1000 trials Monte-

Carlo simulation for Windkessel-1 modeling scheme with PRBS as the input, for each 

of the five Windkessel models. Histograms (Figure 3.1 through Figure 3.10) for true-
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parameter values and estimated-parameter values for the resistance parameter R1 of 

each of the five Windkessel models have also been shown.  

 
Table 3.5 Average values of true-parameters (Ma) and estimated parameters (Me) of 

Model 1 for Windkessel-1 modeling scheme with PRBS as the input 
 

 R1 R2 C1 

Average Ma 10.4230 5.5639 3.0562 

STD Ma 2.0503 1.4206 1.1531 

Average Me 10.3370 5.2361 3.0919 

STD Me 2.0514 1.3909 1.1203 

 

 

 
Figure 3.1 Histogram of true-parameter value for resistance parameter R1 of Model 1  

for Windkessel-1 modeling scheme with PRBS as the input 
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Figure 3.2 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 1 for Windkessel-1 modeling scheme with PRBS as the input 
 

 

Table 3.6 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 2 for Windkessel-1 modeling scheme with PRBS as the input 

 
 R1 R2 C1 R3 C2 

Average Ma 10.4340 5.5388 3.0050 6.9854 4.5769 

STD Ma 2.0706 1.4263 1.1534 1.7559 1.4880 

Average Me 10.2900 4.6537 2.7770 9.5013 4.8921 

STD Me 2.0746 1.1163 0.98681 1.3305 0.93773 
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Figure 3.3 Histogram of true-parameter value for resistance parameter R1 of Model 2  

for Windkessel-1 modeling scheme with PRBS as the input 
 

 
Figure 3.4 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 2 for Windkessel-1 modeling scheme with PRBS as the input 
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Table 3.7 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 3 for Windkessel-1 modeling scheme with PRBS as the input 

 
 R1 R2 C1 C2 L1 

Average Ma 10.4340 5.5388 3.0050 6.9854 4.5769 

STD Ma 2.0706 1.4263 1.1534 1.7559 1.4880 

Average Me 31.4310 5.6463 1.6536 6.7841 4.8131 

STD Me 46.4680 1.5108 1.1092 1.7332 1.5285 

 

 

 
Figure 3.5 Histogram of true-parameter value for resistance parameter R1 of Model 3  

for Windkessel-1 modeling scheme with PRBS as the input 
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Figure 3.6 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 3 for Windkessel-1 modeling scheme with PRBS as the input 
 

 

Table 3.8 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 4 for Windkessel-1 modeling scheme with PRBS as the input 

 
 R1 R2 C1 C2 L1 

Average Ma 10.4340 5.5388 3.0050 6.9854 4.5769 

STD Ma 2.0706 1.4263 1.1534 1.7559 1.4880 

Average Me 10.3180 4.0332 3.2317 6.7029 4.6186 

STD Me 2.0715 0.78857 1.1464 1.7269 1.3515 
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Figure 3.7 Histogram of true-parameter value for resistance parameter R1 of Model 4  

for Windkessel-1 modeling scheme with PRBS as the input 
 

 
Figure 3.8 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 4 for Windkessel-1 modeling scheme with PRBS as the input 
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Table 3.9 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 5 for Windkessel-1 modeling scheme with PRBS as the input 

 
 R1 R2 C1 L1 

Average Ma 10.4930 5.5396 3.0018 4.5158 

STD Ma 2.0558 1.4338 1.1624 1.4556 

Average Me 54.4250 5.3154 2.6686 4.8947 

STD Me 81.6580 1.2342 1.0848 1.5661 

 

 

 
Figure 3.9 Histogram of true-parameter value for resistance parameter R1 of Model 5  

for Windkessel-1 modeling scheme with PRBS as the input 
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Figure 3.10 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 5 for Windkessel-1 modeling scheme with PRBS as the input 
 
 

Table 3.10 Average MSE values for five Windkessel models for Windkessel-1 
modeling scheme with PRBS input 

 
 Model 1 Model 2 Model 3 Model 4 Model 5 

Average MSE 4.5558E-07 1.1422E-06 5.5E-03 3.2178E-006 1.7E-03 

STD 8.3469E-07 1.6167E-06 2.91E-02 1.3678E-005 1.5E-03 

 

3.1.2.2 Results for Windkessel-1 Modeling Scheme with MABP Input 

 This section presents the average MSE values (Table 3.16), true-parameters (Ma) 

and estimated-parameters (Me) (Table 3.11 through Table 3.15) of 1000 trials Monte-

Carlo simulation for Windkessel-1 modeling scheme with first 1.5 minute section of the 

6 minute MABP (SNI) as the input, for each of the five Windkessel models. Histograms 

(Figure 3.11 through Figure 3.20) for true-parameter values and estimated-parameter 
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values for the resistance parameter R1 of each of the five Windkessel models have also 

been shown. 

 

Table 3.11 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 1 for Windkessel-1 modeling scheme with MABP as the input 

 
 R1 R2 C1 

Average Ma 10.5070 5.5285 2.9799 

STD Ma 2.0503 1.4220 1.1811 

Average Me 10.8330 5.8900 3.2253 

STD Me 2.2065 1.8608 1.2817 

 

 

 
Figure 3.11 Histogram of true-parameter value for resistance parameter R1 of Model 1  

for Windkessel-1 modeling scheme with MABP as the input 
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Figure 3.12 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 1 for Windkessel-1 modeling scheme with MABP as the input 
 

 

Table 3.12 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 2 for Windkessel-1 modeling scheme with MABP as the input 

 
 R1 R2 C1 R3 C2 

Average Ma 10.4960 5.5047 3.0135 7.0022 4.4622 

STD Ma 1.9900 1.4459 1.1878 1.7104 1.4511 

Average Me 10.8810 5.7555 3.0349 9.3987 4.7755 

STD Me 2.3345 1.9705 1.4158 1.5097 1.3901 
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Figure 3.13 Histogram of true-parameter value for resistance parameter R1 of Model 2  

for Windkessel-1 modeling scheme with MABP as the input 

 

 
Figure 3.14 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 2 for Windkessel-1 modeling scheme with MABP as the input 
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Table 3.13 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 3 for Windkessel-1 modeling scheme with MABP as the input 

 
 R1 R2 C1 C2 L1 

Average Ma 10.4960 5.5047 3.0135 7.0022 4.4622 

STD Ma 1.9900 1.4459 1.1878 1.7104 1.4511 

Average Me 3.8924 4.1657 1.2789 7.7019 4.0221 

STD Me 11.7690 1.3747 0.9050 1.8541 1.2931 

 

 

 
Figure 3.15 Histogram of true-parameter value for resistance parameter R1 of Model 3  

for Windkessel-1 modeling scheme with MABP as the input 
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Figure 3.16 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 3 for Windkessel-1 modeling scheme with MABP as the input 
 

 

Table 3.14 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 4 for Windkessel-1 modeling scheme with MABP as the input 

 
 R1 R2 C1 C2 L1 

Average Ma 10.4960 5.5047 3.0135 7.0022 4.4622 

STD Ma 1.9900 1.4459 1.1878 1.7104 1.4511 

Average Me 10.7200 4.8132 3.5650 5.9863 3.8964 

STD Me 2.3150 2.0204 1.3925 2.1684 1.7830 
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Figure 3.17 Histogram of true-parameter value for resistance parameter R1 of Model 4  

for Windkessel-1 modeling scheme with MABP as the input 

 

 
Figure 3.18 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 4 for Windkessel-1 modeling scheme with MABP as the input 
 

 



 

65 

Table 3.15 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 5 for Windkessel-1 modeling scheme with MABP as the input 

 
 R1 R2 C1 L1 

Average Ma 10.5870 5.5659 3.0049 4.4477 

STD Ma 2.0381 1.4436 1.1774 1.4262 

Average Me 6.1941 5.0987 2.9331 4.1528 

STD Me 13.1390 1.9568 1.5060 1.5386 

 

 

 
Figure 3.19 Histogram of true-parameter value for resistance parameter R1 of Model 5  

for Windkessel-1 modeling scheme with MABP as the input 
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Figure 3.20 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 5 for Windkessel-1 modeling scheme with MABP as the input 
 

Table 3.16 Average MSE values for five Windkessel models for Windkessel-1 
modeling scheme with MABP input 

 
 Model 1 Model 2 Model 3 Model 4 Model 5 

Average MSE 1.6983E-06 2.4799E-06 6.03E-02 9.1161E-06 3.95E-02 

STD 2.9331E-06 3.5338E-06 2.494E-01 2.2350E-05 1.137E-01 

 

3.1.2.3 Results for Windkessel-2 Modeling Scheme with PRBS Input 

 This section presents the average MSE values (Table 3.22), true-parameters (Ma) 

and estimated-parameters (Me) (Table 3.17 through Table 3.21) of 1000 trials Monte-

Carlo simulation for Windkessel-2 modeling scheme with PRBS as the input, for each 

of the five Windkessel models. Histograms (Figure 3.21 through Figure 3.30) for true-

parameter values and estimated-parameter values for the resistance parameter R1 of 

each of the five Windkessel models have also been shown. 
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Table 3.17 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 1 for Windkessel-2 modeling scheme with PRBS as the input 

 
 R1 R2 C1 

Average Ma 10.4230 5.5639 3.0562 

STD Ma 2.0503 1.4206 1.1531 

Average Me 10.4230 5.2845 3.0761 

STD Me 2.0497 1.5010 1.1707 

 

 

 
Figure 3.21 Histogram of true-parameter value for resistance parameter R1 of Model 1  

for Windkessel-2 modeling scheme with PRBS as the input 
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Figure 3.22 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 1 for Windkessel-2 modeling scheme with PRBS as the input 
 

 

Table 3.18 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 2 for Windkessel-2 modeling scheme with PRBS as the input 

 
 R1 R2 C1 R3 C2 

Average Ma 10.4340 5.5388 3.0050 6.9854 4.5769 

STD Ma 2.0706 1.4263 1.1534 1.7559 1.4880 

Average Me 10.4340 4.8745 2.6755 9.6261 4.8651 

STD Me 2.0702 1.1828 1.0138 1.2782 0.9148 
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Figure 3.23 Histogram of true-parameter value for resistance parameter R1 of Model 2  

for Windkessel-2 modeling scheme with PRBS as the input 

 

 
Figure 3.24 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 2 for Windkessel-2 modeling scheme with PRBS as the input 
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Table 3.19 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 3 for Windkessel-2 modeling scheme with PRBS as the input 

 
 R1 R2 C1 C2 L1 

Average Ma 10.4340 5.5388 3.0050 6.9854 4.5769 

STD Ma 2.0706 1.4263 1.1534 1.7559 1.4880 

Average Me 10.4940 5.4479 3.0371 6.9683 4.6976 

STD Me 2.1013 1.4639 1.2332 1.7779 1.4910 

 

 

 
Figure 3.25 Histogram of true-parameter value for resistance parameter R1 of Model 3 

for Windkessel-2 modeling scheme with PRBS as the input 
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Figure 3.26 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 3 for Windkessel-2 modeling scheme with PRBS as the input 
 

 

Table 3.20 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 4 for Windkessel-2 modeling scheme with PRBS as the input 

 
 R1 R2 C1 C2 L1 

Average Ma 10.4340 5.5388 3.0050 6.9854 4.5769 

STD Ma 2.0706 1.4263 1.1534 1.7559 1.4880 

Average Me 10.4450 7.6277 3.3873 7.1113 4.0696 

STD Me 2.0720 0.75853 1.2572 1.8975 1.4601 
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Figure 3.27 Histogram of true-parameter value for resistance parameter R1 of Model 4  

for Windkessel-2 modeling scheme with PRBS as the input 

 

 
Figure 3.28 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 4 for Windkessel-2 modeling scheme with PRBS as the input 
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Table 3.21 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 5 for Windkessel-2 modeling scheme with PRBS as the input 

 
 R1 R2 C1 L1 

Average Ma 10.4930 5.5396 3.0018 4.5158 

STD Ma 2.0558 1.4338 1.1624 1.4556 

Average Me 10.4930 5.5396 3.0018 4.5158 

STD Me 2.0559 1.4338 1.1624 1.4556 

 

 

 
Figure 3.29 Histogram of true-parameter value for resistance parameter R1 of Model 5  

for Windkessel-2 modeling scheme with PRBS as the input 
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Figure 3.30 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 5 for Windkessel-2 modeling scheme with PRBS as the input 
 

Table 3.22 Average MSE values for five Windkessel models for Windkessel-2 
modeling scheme with PRBS input 

 
 Model 1 Model 2 Model 3 Model 4 Model 5 

Average MSE 2.1995E-08 3.1807E-08 4.6E-03 4.6159E-06 7.0492E-11 

STD 1.0012E-07 1.7981E-07 2.92E-02 1.4494E-05 5.9846E-10 

 

3.1.2.4 Results for Windkessel-2 Modeling Scheme with MABP Input 

 This section presents the average MSE values (Table 3.28), true-parameters (Ma) 

and estimated-parameters (Me) (Table 3.23 through Table 3.27) of 1000 trials Monte-

Carlo simulation for Windkessel-2 modeling scheme with first 1.5 minute section of the 

6 minute MABP (SNI) as the input, for each of the five Windkessel models. Histograms 

(Figure 3.31 through Figure 3.40) for true-parameter values and estimated-parameter 
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values for the resistance parameter R1 of each of the five Windkessel models have also 

been shown. 

 

Table 3.23 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 1 for Windkessel-2 modeling scheme with MABP as the input 

 
 R1 R2 C1 

Average Ma 10.5070 5.5285 2.9799 

STD Ma 2.0503 1.4220 1.1811 

Average Me 10.5160 5.5097 3.0334 

STD Me 2.0557 1.6138 1.2273 

 

 

 
Figure 3.31 Histogram of true-parameter value for resistance parameter R1 of Model 1  

for Windkessel-2 modeling scheme with MABP as the input 
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Figure 3.32 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 1 for Windkessel-2 modeling scheme with MABP as the input 
 

 

Table 3.24 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 2 for Windkessel-2 modeling scheme with MABP as the input 

 
 R1 R2 C1 R3 C2 

Average Ma 10.4960 5.5047 3.0135 7.0022 4.4622 

STD Ma 1.9900 1.4459 1.1878 1.7104 1.4511 

Average Me 10.4990 5.4583 2.6018 9.2680 5.1708 

STD Me 1.9917 1.4876 1.0598 1.6538 0.97631 
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Figure 3.33 Histogram of true-parameter value for resistance parameter R1 of Model 2  

for Windkessel-2 modeling scheme with MABP as the input 

 

 
Figure 3.34 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 2 for Windkessel-2 modeling scheme with MABP as the input 
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Table 3.25 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 3 for Windkessel-2 modeling scheme with MABP as the input 

 
 R1 R2 C1 C2 L1 

Average Ma 10.4960 5.5047 3.0135 7.0022 4.4622 

STD Ma 1.9900 1.4459 1.1878 1.7104 1.4511 

Average Me 10.4850 5.4978 3.1251 6.9983 4.4787 

STD Me 1.9953 1.4545 1.2542 1.7113 1.4524 

 

 

 
Figure 3.35 Histogram of true-parameter value for resistance parameter R1 of Model 3  

for Windkessel-2 modeling scheme with MABP as the input 
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Figure 3.36 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 3 for Windkessel-2 modeling scheme with MABP as the input 
 

 

Table 3.26 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 4 for Windkessel-2 modeling scheme with MABP as the input 

 
 R1 R2 C1 C2 L1 

Average Ma 10.4960 5.5047 3.0135 7.0022 4.4622 

STD Ma 1.9900 1.4459 1.1878 1.7104 1.4511 

Average Me 10.7350 7.4248 3.7271 7.4639 4.1468 

STD Me 2.0262 1.1877 1.2832 2.0851 1.6313 
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Figure 3.37 Histogram of true-parameter value for resistance parameter R1 of Model 4  

for Windkessel-2 modeling scheme with MABP as the input 

 

 
Figure 3.38 Histogram of estimated -parameter value for resistance parameter R1 of 

Model 4 for Windkessel-2 modeling scheme with MABP as the input 
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Table 3.27 Average values of true-parameters (Ma) and estimated parameters (Me) of 
Model 5 for Windkessel-2 modeling scheme with MABP as the input 

 
 R1 R2 C1 L1 

Average Ma 10.5870 5.5659 3.0049 4.4477 

STD Ma 2.0381 1.4436 1.1774 1.4262 

Average Me 10.5870 5.5659 3.0049 4.4477 

STD Me 2.0387 1.4437 1.1774 1.4262 

 

 

 
Figure 3.39 Histogram of true-parameter value for resistance parameter R1 of Model 5  

for Windkessel-2 modeling scheme with MABP as the input 
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Figure 3.40 Histogram of estimated-parameter value for resistance parameter R1 of 

Model 5 for Windkessel-2 modeling scheme with MABP as the input 
 

 

Table 3.28 Average MSE values for five Windkessel models for Windkessel-2 
modeling scheme with MABP input 

 
 Model 1 Model 2 Model 3 Model 4 Model 5 

Average MSE 1.2628E-08 2.6668E-08 8.2433E-04 6.5998E-06 2.5043E-10 

STD 3.8493E-08 6.7055E-08 1.33E-02 1.6543E-05 5.1541E-09 

 

 

3.2 Modeling Results for MABP and CBFV Data 

 This section presents the results of applying various linear, lumped parameter 

models and modeling methodologies, discussed in section 2.2, to MABP and CBFV 

data of all the 10 subjects for the four types of data conditions (SNI, SI, VNI, and VI). 
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3.2.1 MSE and Parameter Value Results 

 This section presents MSE values and average parameter values for 10 subjects 

using the ARX models (ARX-1 and ARX-2 modeling schemes described in section 

2.2.1) and the five Windkessel models (Windkessel-1, Windkessel-2, and Windkessel-3 

modeling schemes described in section 2.2.3). 

 Appendix B presents the results for the comparisons based on t-tests (Pval) for 

the MSE values of 10 subjects for four data conditions, between ARX-2, Windkessel-1, 

Windkessel-2 and Windkessel-3 modeling schemes. The statistical level of significance 

for the t-tests was selected to be 0.05. For Windkessel modeling schemes, the 

comparison was done between MSE value results with different schemes for a given 

model. These comparisons were done for all the five Windkessel models. For 

comparing ARX-2 with Windkessel-1 and Windkessel-2 modeling schemes, models 

with the similar order were considered. 

 

3.2.1.1 Results for ARX Models 

 Table 3.29 shows the MSE values of 10 subjects for four conditions of data with 

ARX-1 modeling scheme. Table 3.30 shows the average numerator (m) and 

denominator (n) model orders for the same. Table 3.31, Table 3.33 and Table 3.35 show 

the MSE values of 10 subjects for four conditions of data with ARX-2 modeling 

scheme, for the 1st, 2nd, and 3rd order models respectively. The average model 

parameters (as per the model structure in Equation 1.4) for each of the four data 
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conditions are shown in the Table 3.32, Table 3.34 and Table 3.36, for the 1st, 2nd, and 

3rd order models respectively with ARX-2 modeling scheme. 

 
Table 3.29 MSE values for four data conditions of 10 subjects  

with ARX-1 modeling scheme 
 

Subject No. SNI SI VNI VI 

1 0.0125 0.0232 0.0140 0.0277 

2 0.0404 0.0331 0.0248 0.0121 

3 0.0190 0.0399 0.0093 0.0462 

4 0.0237 0.0290 0.0131 0.0386 

5 0.0280 0.0482 0.0287 0.1145 

6 0.0217 0.0397 0.0502 0.0297 

7 0.0251 0.0245 0.0184 0.0436 

8 0.0214 0.0506 0.0126 0.0190 

9 0.0155 0.0264 0.0176 2.8671 

10 0.0208 0.0266 0.0146 0.0143 

Average 0.0228 0.0341 0.0203 0.3213 

STD 0.0076 0.0099 0.0120 0.8950 
 

Table 3.30 Numerator (m) and denominator (n) model orders for four data conditions of 
10 subjects with ARX-1 modeling scheme 

 
 SNI SI VNI VI 

Subject 
No. m n m m n n m n 

1 4 4 10 10 2 2 1 1 

2 8 8 10 10 7 7 10 10 

3 8 8 10 10 9 9 9 9 

4 9 9 1 1 10 10 2 2 

5 10 10 2 2 2 2 6 6 
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   Table 3.30 Continued.  
6 10 10 4 4 2 2 6 6 

7 8 8 10 10 10 10 2 2 

8 9 9 6 6 9 9 2 2 

9 10 10 10 10 2 2 1 1 

10 9 9 3 3 6 6 3 3 

Average 8.5 8.5 6.6 6.6 5.9 5.9 4.2 4.2 

STD 1.8 1.8 3.8 3.8 3.6 3.6 3.3 3.3 

 
 
 

Table 3.31 MSE values for four data conditions of 10 subjects with  
ARX-2 modeling scheme for 1st order model (m=n=1) 

 
Subject No. SNI SI VNI VI 

1 0.0139 0.0262 0.0294 0.0277 

2 0.0503 0.0535 0.0295 0.0237 

3 0.0295 0.0476 0.0123 0.7397 

4 0.0541 0.0290 0.0215 0.0464 

5 0.0536 0.0554 0.0832 0.8201 

6 0.0246 0.0504 0.0610 0.0507 

7 0.0501 0.0274 0.0244 0.0488 

8 0.0401 0.0522 0.0416 0.0215 

9 0.0311 0.0376 0.0206 2.8671 

10 0.0362 0.0332 0.0200 0.0149 

Average 0.0383 0.0412 0.0344 0.4661 

STD 0.0137 0.0117 0.0220 0.8992 
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Table 3.32 Average parameter values for four data conditions of 10 subjects  
with ARX-2 modeling scheme for 1st order model (m=n=1) 

 a1 b0 b1 

SNI Average -0.9424 0.6228 -0.6809 

SNI STD 0.0408 0.2926 0.2845 

SI Average -0.9504 0.41563 -0.4430 

SI STD 0.0195 0.3341 0.3087 

VNI Average -0.9405 0.5385 -0.5804 

VNI STD 0.0393 0.0841 0.0768 

VI Average -0.9665 0.2961 -0.3676 

VI STD 0.0484 0.2605 0.2666 

 

Table 3.33 MSE values for four data conditions of 10 subjects with  
ARX-2 modeling scheme for 2nd order model (m=n=2) 

 
Subject No. SNI SI VNI VI 

1 0.0162 0.0251 0.0140 0.0277 

2 0.0426 0.0394 0.0251 0.0169 

3 0.0211 0.0489 0.0111 0.0526 

4 0.0292 0.0298 0.0164 0.0390 

5 0.0283 0.0482 0.0287 0.1535 

6 0.0257 0.0398 0.0502 0.0463 

7 0.0324 0.0261 0.0253 0.0448 

8 0.0255 0.0548 0.0173 0.0209 

9 0.0267 0.0290 0.0176 95.3820 

10 0.0259 0.0285 0.0149 0.0143 

Average 0.0274 0.0370 0.0221 9.5798 

STD 0.0069 0.0108 0.0114 30.1478 
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Table 3.34 Average parameter values for four data conditions of 10 subjects  
with ARX-2 modeling scheme for 2nd order model (m=n=2) 

 a1 a2 b0 b1 b2 

SNI Average -1.6204 0.6743 0.6679 -1.1657 -1.6204 

SNI STD 0.1045 0.0907 0.2595 0.4542 0.2126 

SI Average -1.4478 0.5283 0.3976 -0.5908 -1.4478 

SI STD 0.1050 0.1154 0.3417 0.5411 0.2324 

VNI Average -1.4289 0.4990 0.5183 -0.7849 -1.4289 

VNI STD 0.1992 0.1678 0.1237 0.2339 0.1667 

VI Average -1.2411 0.2845 0.1340 -0.0397 -1.2411 

VI STD 0.3203 0.3273 0.3606 0.7340 0.4220 

 
 

Table 3.35 MSE values for four data conditions of 10 subjects with  
ARX-2 modeling scheme for 3rd order model (m=n=3) 

 
Subject No. SNI SI VNI VI 

1 0.0154 0.0256 0.0245 0.0326 

2 0.0436 0.0469 0.0253 0.0150 

3 0.0210 0.0470 0.0099 0.0593 

4 0.0282 0.0304 0.0178 0.0483 

5 0.0285 0.0496 0.0481 0.2245 

6 0.0238 0.0420 0.0564 0.0407 

7 0.0332 0.0281 0.0199 0.0553 

8 0.0299 0.0522 0.0169 0.0228 

9 0.0397 0.0331 0.0217 1579.4000 

10 0.0259 0.0266 0.0176 0.0143 

Average 0.0289 0.0381 0.0258 157.9913 

STD 0.0084 0.0104 0.0147 499.4321 
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Table 3.36 Average parameter values for four data conditions of 10 subjects  
with ARX-2 modeling scheme for 3rd order model (m=n=3) 

 a1 a2 a3 b0 b1 b2 b3 

SNI Average -1.8112 1.1465 -0.2958 0.6415 -1.8112 1.1465 -0.2958 

SNI STD 0.1585 0.2370 0.1418 0.2442 0.4435 0.2939 0.1385 

SI Average -1.6178 0.9869 -0.3184 0.3920 -1.6178 0.9869 -0.3184 

SI STD 0.1846 0.2721 0.0930 0.3443 0.5639 0.3918 0.1578 

VNI Average -1.5874 0.9454 -0.3102 0.4928 -1.5874 0.9454 -0.3102 

VNI STD 0.2636 0.2983 0.1357 0.1341 0.3080 0.3088 0.1835 

VI Average -1.2797 0.5084 -0.2000 0.1660 -1.2797 0.5084 -0.2000 

VI STD 0.3885 0.4004 0.1735 0.3165 0.7003 0.4959 0.1032 

 

3.2.1.2 Results for Windkessel Models 

 Table 3.37 through Table 3.46 show the MSE values and average model 

parameters of 10 subjects for four conditions of data with Windkessel-1 modeling 

scheme, considering each of the five Windkessel models (section 2.2.2) consecutively. 

Table 3.47 through Table 3.56 show the MSE values and average model parameters of 

10 subjects for four conditions of data with Windkessel-2 modeling scheme, 

considering each of the five Windkessel models one by one. Table 3.57 and Table 3.58 

show respectively the MSE values and average model parameters of 10 subjects for four 

conditions of data, with Windkessel-3 modeling scheme for Model 1. Table 3.59 

presents the average weights Wt and Wf for the four data conditions, corresponding to 

Windkessel-3 modeling scheme for Model 1.  
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Table 3.37 MSE values for four data conditions of 10 subjects with  
Windkessel-1 modeling scheme for Model 1 

 
Subject No. SNI SI VNI VI 

1 0.0260 0.0277 0.0191 0.0238 

2 0.0587 0.0546 0.0270 0.1504 

3 0.0368 0.0498 0.0179 0.0201 

4 0.0298 0.0351 0.0254 0.0485 

5 0.0771 0.0530 0.0199 0.0363 

6 0.0382 0.0372 0.0735 0.0169 

7 0.0290 0.0321 0.0428 0.0287 

8 0.0533 0.0819 0.0250 0.0341 

9 0.0242 0.0263 0.0227 0.0385 

10 0.0288 0.0279 0.0129 0.0381 

Average 0.0402 0.0426 0.0286 0.0435 

STD 0.0174 0.0175 0.0177 0.0387 

 
 

Table 3.38 Average parameter values for four data conditions of 10 subjects  
with Windkessel-1 modeling scheme for Model 1 

 R1 R2 C1 

SNI Average 1.5329 8.8824 28.3617 

SNI STD 0.7145 6.6301 23.2065 

SI Average 1.9924 9.7894 32.5481 

SI STD 1.4844 6.2837 23.4758 

VNI Average 2.3760 8.1754 16.2462 

VNI STD 2.0864 5.7005 18.0469 

VI Average 1.3973 9.6666 13.1472 

VI STD 1.9086 8.7017 15.0612 
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Table 3.39 MSE values for four data conditions of 10 subjects with  
Windkessel-1 modeling scheme for Model 2 

 
Subject No. SNI SI VNI VI 

1 0.0244 0.0273 0.0189 0.0228 

2 0.0593 0.0531 0.0269 0.1510 

3 0.0362 0.0477 0.0161 0.0147 

4 0.0289 0.0355 0.0269 0.0433 

5 0.0761 0.0576 0.0254 0.0336 

6 0.0376 0.0370 0.0731 0.0165 

7 0.0300 0.0318 0.0463 0.0278 

8 0.0520 0.0957 0.0268 0.0338 

9 0.0261 0.0261 0.0224 0.0725 

10 0.0378 0.0266 0.0198 0.0303 

Average 0.0408 0.0438 0.0303 0.0446 

STD 0.0167 0.0214 0.0172 0.0408 

 
 

Table 3.40 Average parameter values for four data conditions of 10 subjects  
with Windkessel-1 modeling scheme for Model 2 

 R1 R2 C1 R3 C2 

SNI Average 1.5329 26.2551 35.7744 26.2550 35.7744 

SNI STD 0.7145 2.7918 22.9332 2.7919 22.9332 

SI Average 1.9924 26.2119 27.7462 26.2115 27.7461 

SI STD 1.4844 4.1990 21.5947 4.1991 21.5948 

VNI Average 2.3760 25.0278 17.4914 25.0278 17.4914 

VNI STD 2.0864 0.3238 15.3908 0.3238 15.3908 

VI Average 1.3973 27.4183 19.9709 27.4183 19.9773 

VI STD 1.9086 4.8475 15.9619 4.8475 15.9551 
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Table 3.41 MSE values for four data conditions of 10 subjects with  
Windkessel-1 modeling scheme for Model 3 

 
Subject No. SNI SI VNI VI 

1 0.0684 0.0264 0.0176 0.0306 

2 0.0492 0.0515 0.0279 0.1388 

3 0.0388 0.0507 0.0189 0.0176 

4 0.0272 0.0301 0.0269 0.0508 

5 0.0791 0.0640 0.0261 0.0284 

6 0.0423 0.0376 0.1761 0.0173 

7 0.0289 0.0371 0.0451 0.0307 

8 0.0509 0.0899 0.0243 0.0273 

9 0.0234 0.0253 0.0248 0.0477 

10 0.0266 0.0289 0.0191 0.0662 

Average 0.0435 0.0442 0.0407 0.0455 

STD 0.0188 0.0205 0.0482 0.0362 

 
 

Table 3.42 Average parameter values for four data conditions of 10 subjects  
with Windkessel-1 modeling scheme for Model 3 

 R1 R2 C1 C2 L1 

SNI Average 1.5329 20.3869 29.7503 4.7524 19.6246 

SNI STD 0.7145 13.6190 17.6996 10.9252 33.8786 

SI Average 1.9924 16.4572 27.1882 18.4241 30.8701 

SI STD 1.4844 16.4845 19.8806 38.4956 47.5156 

VNI Average 2.3760 25.9372 20.1745 10.0448 12.4469 

VNI STD 2.0864 19.4526 15.8554 31.6071 31.1373 

VI Average 1.3973 19.3522 20.4882 17.6723 24.5257 

VI STD 1.9086 13.3254 14.9148 35.9070 39.0916 
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Table 3.43 MSE values for four data conditions of 10 subjects with  
Windkessel-1 modeling scheme for Model 4 

 
Subject No. SNI SI VNI VI 

1 0.0646 0.0281 0.0188 0.0337 

2 0.0601 0.0488 0.0267 0.1560 

3 0.0368 0.0497 0.0116 0.0144 

4 0.0251 0.0352 0.0268 0.0486 

5 0.0769 0.0651 0.0187 0.0307 

6 0.0371 0.0371 0.0788 0.0166 

7 0.0297 0.0317 0.0485 0.0407 

8 0.0535 0.0991 0.0262 0.0343 

9 0.0246 0.0265 0.0231 0.0766 

10 0.0574 0.0273 0.0185 0.0397 

Average 0.0466 0.0449 0.0298 0.0491 

STD 0.0183 0.0227 0.0198 0.0414 

 
 

Table 3.44 Average parameter values for four data conditions of 10 subjects  
with Windkessel-1 modeling scheme for Model 4 

 R1 R2 C1 C2 L1 

SNI Average 1.5329 25.3912 33.1921 26.1667 24.0506 

SNI STD 0.7145 2.3732 18.6805 8.3929 16.7926 

SI Average 1.9924 26.9083 27.5887 30.5677 24.1092 

SI STD 1.4844 3.3342 16.9141 10.3460 6.7627 

VNI Average 2.3760 21.5490 14.9707 35.7082 30.8593 

VNI STD 2.0864 4.7502 11.8517 15.4627 13.9224 

VI Average 1.3973 22.8528 19.5813 23.0911 32.8060 

VI STD 1.9086 8.9954 18.7893 14.2796 25.4029 
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Table 3.45 MSE values for four data conditions of 10 subjects with  
Windkessel-1 modeling scheme for Model 5 

 
Subject No. SNI SI VNI VI 

1 0.0251 0.0267 0.0219 0.0230 

2 0.0587 0.0536 0.0314 0.1503 

3 0.0283 0.0508 0.0096 0.0146 

4 0.0268 0.0346 0.0252 0.0341 

5 0.0354 0.0632 0.0218 0.0356 

6 0.0290 0.0384 0.0782 0.0166 

7 0.0285 0.0264 0.0458 0.0281 

8 0.0282 0.0818 0.0146 0.0322 

9 0.0170 0.0290 0.0218 0.0712 

10 0.0371 0.0242 0.0213 0.0315 

Average 0.0314 0.0429 0.0292 0.0437 

STD 0.0110 0.0191 0.0198 0.0406 

 
 

Table 3.46 Average parameter values for four data conditions of 10 subjects  
with Windkessel-1 modeling scheme for Model 5 

 R1 R2 C1 L1 

SNI Average 1.5329 23.6617 8.8275 44.7052 

SNI STD 0.7145 0.9367 15.7902 18.2145 

SI Average 1.9924 21.5743 12.3457 36.0597 

SI STD 1.4844 7.5678 16.7438 15.5624 

VNI Average 2.3760 23.3314 7.7868 48.1243 

VNI STD 2.0864 2.7300 8.2423 14.4253 

VI Average 1.3973 23.6883 6.6599 65.1797 

VI STD 1.9086 1.1810 6.4392 27.4140 
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Table 3.47 MSE values for four data conditions of 10 subjects with  
Windkessel-2 modeling scheme for Model 1 

 
Subject No. SNI SI VNI VI 

1 0.0449 0.0242 0.0185 0.0340 

2 0.0591 0.0495 0.0270 0.0234 

3 0.0359 0.0473 0.0177 0.0199 

4 0.0268 0.0312 0.0298 0.0464 

5 0.0422 0.0477 0.0175 0.0347 

6 0.0370 0.0368 0.0830 0.0352 

7 0.0290 0.0282 0.0330 0.0572 

8 0.0460 0.0578 0.0226 0.0310 

9 0.0193 0.0252 0.0222 0.0773 

10 0.0349 0.0274 0.0129 0.0426 

Average 0.0375 0.0375 0.0284 0.0402 

STD 0.0113 0.0121 0.0202 0.0169 

 
 

Table 3.48 Average parameter values for four data conditions of 10 subjects  
with Windkessel-2 modeling scheme for Model 1 

 R1 R2 C1 

SNI Average 8.0161 8.2612 33.0462 

SNI STD 10.2749 6.3452 22.3281 

SI Average 8.6681 9.7120 32.7543 

SI STD 15.4876 6.2425 23.5232 

VNI Average 9.1973 8.2614 22.6639 

VNI STD 12.0709 6.3383 20.0251 

VI Average 22.9406 10.3099 23.5276 

VI STD 38.3065 8.2813 23.2020 
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Table 3.49 MSE values for four data conditions of 10 subjects with  
Windkessel-2 modeling scheme for Model 2 

 
Subject No. SNI SI VNI VI 

1 0.0448 0.0233 0.0176 0.0241 

2 0.0591 0.0495 0.0269 0.0234 

3 0.0356 0.0467 0.0166 0.0168 

4 0.0248 0.0332 0.0220 0.0450 

5 0.0422 0.0481 0.0250 0.0223 

6 0.0367 0.0362 0.0839 0.0216 

7 0.0298 0.0282 0.0331 0.0270 

8 0.0455 0.0578 0.0265 0.0187 

9 0.0245 0.0250 0.0211 0.0773 

10 0.0365 0.0264 0.0145 0.0433 

Average 0.0380 0.0374 0.0287 0.0319 

STD 0.0105 0.0122 0.0202 0.0186 

 
 

Table 3.50 Average parameter values for four data conditions of 10 subjects  
with Windkessel-2 modeling scheme for Model 2 

 R1 R2 C1 R3 C2 

SNI Average 7.8713 26.3359 42.9820 26.3359 42.9820 

SNI STD 9.3628 2.7450 15.4970 2.7450 15.4970 

SI Average 12.7735 26.4834 33.5911 26.4833 33.5912 

SI STD 22.6516 4.0237 19.1495 4.0237 19.1495 

VNI Average 7.2064 25.0671 25.4152 25.0671 25.4152 

VNI STD 10.6611 0.3183 15.2766 0.3183 15.2767 

VI Average 20.8110 27.7915 32.7508 27.7915 32.7508 

VI STD 40.1255 4.6252 19.1772 4.6252 19.1772 
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Table 3.51 MSE values for four data conditions of 10 subjects with  
Windkessel-2 modeling scheme for Model 3 

 
Subject No. SNI SI VNI VI 

1 0.0401 0.0260 0.0173 0.0480 

2 0.0540 0.0489 0.0273 0.0226 

3 0.0361 0.0477 0.0181 0.0167 

4 0.0273 0.0301 0.0206 0.0454 

5 0.0481 0.0473 0.0262 0.0340 

6 0.0365 0.0375 0.0991 0.0204 

7 0.0288 0.0281 0.0291 0.0399 

8 0.0335 0.0567 0.0236 0.0272 

9 0.0214 0.0257 0.0247 0.0513 

10 0.0350 0.0411 0.0133 0.0474 

Average 0.0361 0.0389 0.0299 0.0353 

STD 0.0097 0.0111 0.0248 0.0128 

 
 

Table 3.52 Average parameter values for four data conditions of 10 subjects  
with Windkessel-2 modeling scheme for Model 3 

 R1 R2 C1 C2 L1 

SNI Average 15.8771 20.1355 31.2447 4.1391 21.8415 

SNI STD 28.6559 13.9423 15.8133 10.5438 32.7747 

SI Average 21.3474 16.5538 29.1594 20.9048 31.1317 

SI STD 30.9661 16.4512 16.3215 38.0726 47.5442 

VNI Average 8.5425 22.2618 21.0075 11.7651 18.8416 

VNI STD 10.2881 14.0492 14.7906 31.4168 34.5104 

VI Average 14.0066 18.1953 19.4946 14.2211 19.9405 

VI STD 30.3783 12.6804 15.9043 31.8751 31.9251 
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Table 3.53 MSE values for four data conditions of 10 subjects with  
Windkessel-2 modeling scheme for Model 4 

 
Subject No. SNI SI VNI VI 

1 0.0449 0.0250 0.0175 0.0335 

2 0.0587 0.0497 0.0267 0.0234 

3 0.0358 0.0474 0.0177 0.0152 

4 0.0229 0.0317 0.0200 0.0468 

5 0.0422 0.0481 0.0160 0.0333 

6 0.0367 0.0366 0.0836 0.0385 

7 0.0296 0.0281 0.0330 0.0587 

8 0.0449 0.0578 0.0251 0.0341 

9 0.0210 0.0256 0.0231 0.0773 

10 0.0367 0.0269 0.0137 0.0413 

Average 0.0373 0.0377 0.0277 0.0402 

STD 0.0112 0.0120 0.0205 0.0177 

 
 

Table 3.54 Average parameter values for four data conditions of 10 subjects  
with Windkessel-2 modeling scheme for Model 4 

 R1 R2 C1 C2 L1 

SNI Average 7.9718 25.2762 35.0544 26.3504 25.2036 

SNI STD 9.6189 2.3398 16.9732 8.2224 15.6754 

SI Average 12.6025 26.6225 30.0333 30.2972 23.7685 

SI STD 21.7436 3.3404 14.1941 10.4237 7.2445 

VNI Average 7.3461 24.2064 24.0120 26.3904 25.4370 

VNI STD 10.8016 2.9012 17.1942 12.9344 8.4018 

VI Average 38.1045 22.9304 26.8146 22.0406 23.2772 

VI STD 43.7974 7.5044 21.7643 8.7158 15.4406 
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Table 3.55 MSE values for four data conditions of 10 subjects with  
Windkessel-2 modeling scheme for Model 5 

 
Subject No. SNI SI VNI VI 

1 0.0688 0.0241 0.0246 0.0165 

2 0.0588 0.0483 0.0367 0.0195 

3 0.0219 0.0547 0.0071 0.0299 

4 0.0292 0.0344 0.0207 0.0292 

5 0.0443 0.0471 0.0197 0.0163 

6 0.0458 0.0395 0.0852 0.0518 

7 0.0282 0.0300 0.0311 0.0273 

8 0.0487 0.0580 0.0156 0.0129 

9 0.0204 0.0334 0.0149 0.0555 

10 0.0363 0.0308 0.0198 0.0471 

Average 0.0403 0.0400 0.0275 0.0306 

STD 0.0159 0.0114 0.0219 0.0156 

 
 

Table 3.56 Average parameter values for four data conditions of 10 subjects  
with Windkessel-2 modeling scheme for Model 5 

 R1 R2 C1 L1 

SNI Average 7.2792 23.8807 15.6092 33.5468 

SNI STD 10.6041 0.9630 9.1328 9.0880 

SI Average 11.7018 21.4158 17.0747 28.9838 

SI STD 16.4643 7.6545 16.2064 13.7019 

VNI Average 8.1035 23.3604 12.4817 46.5449 

VNI STD 11.8645 1.4264 14.6355 20.7988 

VI Average 21.0600 24.2553 17.6818 46.2396 

VI STD 34.3533 1.0850 17.4619 22.3397 
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Table 3.57 MSE values for four data conditions of 10 subjects with  
Windkessel-3 modeling scheme for Model 1 

 
Subject No. SNI SI VNI VI 

1 0.0365 0.0239 0.0207 0.0273 

2 0.0944 0.0902 0.0526 0.0538 

3 0.0521 0.0503 0.0171 0.0211 

4 0.0279 0.0302 0.0359 0.0531 

5 0.0975 0.0503 0.0282 0.0211 

6 0.0526 0.0419 0.0952 0.0416 

7 0.0291 0.0298 0.0390 0.0580 

8 0.0301 0.0563 0.0231 0.0301 

9 0.0222 0.0391 0.0241 0.0720 

10 0.0446 0.0270 0.0140 0.0579 

Average 0.0487 0.0439 0.0350 0.0436 

STD 0.0269 0.0197 0.0241 0.0179 

 
 

Table 3.58 Average parameter values for four data conditions of 10 subjects  
with Windkessel-3 modeling scheme for Model 1 

 R1 R2 C1 

SNI Average 1.1567 3.8006 44.2428 

SNI STD 0.3219 4.8674 39.8917 

SI Average 1.2516 7.9053 52.1906 

SI STD 0.6362 11.2822 36.0690 

VNI Average 1.1649 10.4179 46.2739 

VNI STD 0.3734 14.5268 39.3100 

VI Average 0.8747 15.6321 42.9288 

VI STD 0.4751 29.9415 36.7434 
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Table 3.59 Average weights (Wt and Wf) for four data conditions of 10 subjects  
with Windkessel-3 modeling scheme for Model 1 

 Wt Wf 

SNI Average 0.3000 0.7000 

SNI STD 0.2981 0.2981 

SI Average 0.2500 0.7500 

SI STD 0.2014 0.2014 

VNI Average 0.2400 0.7600 

VNI STD 0.1350 0.1350 

VI Average 0.3800 0.6200 

VI STD 0.2741 0.2741 
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3.2.2 Graphical Validation Results 

This section presents the plots of measured data and model outputs for CBFV as 

a function of MABP under various modeling methodologies, discussed in section 2.2. 

The frequency responses of the models have also been shown. For comparing 

Windkessel-1 and Windkessel-2 methodologies, the corresponding model output plots 

and frequency response plots have been shown for the same subject, along with the 

measured input (MABP) and output (CBFV) data. Similarly the corresponding ARX-1 

and ARX-2 model output plots and frequency response plots have been shown for the 

same subject, along with the measured data. For Windkessel modeling schemes, the 

comparison was done based on results for the same given model, and models with the 

similar order were considered for generating the corresponding ARX-2 plots. The plots 

for Windkessel-3 modeling scheme have been shown separately. 

Since the results of these studies are numerous (a total of 240 plots), in the 

interest of space, only a few samples of the entire results have been shown. The samples 

were selected to represent good and poor results among the 10 subjects, for each of the 

model type (5 Windkessel models) and for each type of the data condition. The good 

and the poor results among the subjects were selected with the MSE value of the 

Windkessel-1 methodology as the basis in each model and type of data condition. 

Figure 3.41 through Figure 3.64 present the plots for the good results, while Figure 3.65 

through Figure 3.96 present the plots for the poor results. Figure 3.93 through Figure 

3.96 show the plots forWindkessel-3 scheme. 
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3.2.2.1 Plots for the Good Results 

 
Figure 3.41 Plot of the outputs for Model 1 with Windkessel-1 and Windkessel-2 

modeling schemes for SNI data of subject no. 9 
 

 
Figure 3.42 Plot of the frequency responses for Model 1 with Windkessel-1 and 

Windkessel-2 modeling schemes for SNI data of subject no. 9 
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Figure 3.43 Plot of the model outputs with ARX-1 and ARX-2 (1st order model) 

modeling schemes for SNI data of subject no. 9 
 

 
Figure 3.44 Plot of the model frequency responses with ARX-1 and ARX-2  

(1st order model) modeling schemes for SNI data of subject no. 9 
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Figure 3.45 Plot of the outputs for Model 2 with Windkessel-1 and Windkessel-2 

modeling schemes for VI data of subject no. 3 
 

 
Figure 3.46 Plot of the frequency responses for Model 2 with Windkessel-1 and 

Windkessel-2 modeling schemes for VI data of subject no. 3  
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Figure 3.47 Plot of the model outputs with ARX-1 and ARX-2 (2nd order model) 

modeling schemes for VI data of subject no. 3 
 

 
Figure 3.48 Plot of the model frequency responses with ARX-1 and ARX-2  

(2nd order model) modeling schemes for VI data of subject no. 3 
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Figure 3.49 Plot of the outputs for Model 3 with Windkessel-1 and Windkessel-2 

modeling schemes for VNI data of subject no. 1 
 

 
Figure 3.50 Plot of the frequency responses for Model 3 with Windkessel-1 and 

Windkessel-2 modeling schemes for VNI data of subject no. 1 
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Figure 3.51 Plot of the model outputs with ARX-1 and ARX-2 (3rd order model) 

modeling schemes for VNI data of subject no. 1 
 

 
Figure 3.52 Plot of the model frequency responses with ARX-1 and ARX-2  

(3rd order model) modeling schemes for VNI data of subject no. 1 
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Figure 3.53 through Figure 3.56 show plots for SNI data of subject no. 9, employing 

Model 4 (5-element, 3rd order) as compared to Model 1 (3-element, 1st order) results for 

the same subject and data condition in Figure 3.41 through Figure 3.44 

 
Figure 3.53 Plot of the outputs for Model 4 with Windkessel-1 and Windkessel-2 

modeling schemes for SNI data of subject no. 9 

 
Figure 3.54 Plot of the frequency responses for Model 4 with Windkessel-1 and 

Windkessel-2 modeling schemes for SNI data of subject no. 9 
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Figure 3.55 Plot of the model outputs with ARX-1 and ARX-2 (3rd order model) 

modeling schemes for SNI data of subject no. 9 
 

 
Figure 3.56 Plot of the model frequency responses with ARX-1 and ARX-2  

(3rd order model) modeling schemes for SNI data of subject no. 9 
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Figure 3.57 through Figure 3.60 show plots for VI data of subject no. 3, employing 

Model 4 (5-element, 3rd order) as compared to Model 2 (5-element, 2nd order) results for 

the same subject and data condition in Figure 3.47 through Figure 3.50 

 
Figure 3.57 Plot of the outputs for Model 4 with Windkessel-1 and Windkessel-2 

modeling schemes for VI data of subject no. 3 

 
Figure 3.58 Plot of the frequency responses for Model 4 with Windkessel-1 and 

Windkessel-2 modeling schemes for VI data of subject no. 3 
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Figure 3.59 Plot of the model outputs with ARX-1 and ARX-2 (3rd order model) 

modeling schemes for VI data of subject no. 3 
 

 
Figure 3.60 Plot of the model frequency responses with ARX-1 and ARX-2  

(3rd order model) modeling schemes for VI data of subject no. 3 
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Figure 3.61 through Figure 3.64 show plots for VI data of subject no. 3, employing 

Model 5 (4-element, 2nd order) as compared to Model 4 (5-element, 3rd order) results for 

the same subject and data condition in Figure 3.57 through Figure 3.60 

 
Figure 3.61 Plot of the outputs for Model 5 with Windkessel-1 and Windkessel-2 

modeling schemes for VI data of subject no. 3 

 
Figure 3.62 Plot of the frequency responses for Model 5 with Windkessel-1 and 

Windkessel-2 modeling schemes for VI data of subject no. 3 
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Figure 3.63 Plot of the model outputs with ARX-1 and ARX-2 (2nd order model) 

modeling schemes for VI data of subject no. 3 
 

 
Figure 3.64 Plot of the model frequency responses with ARX-1 and ARX-2  

(2nd order model) modeling schemes for VI data of subject no. 3 
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3.2.2.2 Plots for the Poor Results 

 
Figure 3.65 Plot of the outputs for Model 1 with Windkessel-1 and Windkessel-2 

modeling schemes for VI data of subject no. 2 
 

 
Figure 3.66 Plot of the frequency responses for Model 1 with Windkessel-1 and 

Windkessel-2 modeling schemes for VI data of subject no. 2 
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Figure 3.67 Plot of the model outputs with ARX-1 and ARX-2 (1st order model) 

modeling schemes for VI data of subject no. 2 
 

 
Figure 3.68 Plot of the model frequency responses with ARX-1 and ARX-2  

(1st order model) modeling schemes for VI data of subject no. 2 
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Figure 3.69 Plot of the outputs for Model 2 with Windkessel-1 and Windkessel-2 

modeling schemes for SNI data of subject no. 5 
 

 
Figure 3.70 Plot of the frequency responses for Model 2 with Windkessel-1 and 

Windkessel-2 modeling schemes for SNI data of subject no. 5 
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Figure 3.71 Plot of the model outputs with ARX-1 and ARX-2 (2nd order model) 

modeling schemes for SNI data of subject no. 5 
 

 
Figure 3.72 Plot of the model frequency responses with ARX-1 and ARX-2  

(2nd order model) modeling schemes for SNI data of subject no. 5 
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Figure 3.73 Plot of the outputs for Model 3 with Windkessel-1 and Windkessel-2 

modeling schemes for VNI data of subject no. 6 
 

 
Figure 3.74 Plot of the frequency responses for Model 3 with Windkessel-1 and 

Windkessel-2 modeling schemes for VNI data of subject no. 6 
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Figure 3.75 Plot of the model outputs with ARX-1 and ARX-2 (3rd order model) 

modeling schemes for VNI data of subject no. 6 
 

 
Figure 3.76 Plot of the model frequency responses with ARX-1 and ARX-2  

(3rd order model) modeling schemes for VNI data of subject no. 6 
 
 
 
 



 

120 

Figure 3.77 through Figure 3.80 show plots for SNI data of subject no. 5, employing 

Model 4 (5-element, 3rd order) as compared to Model 2 (5-element, 2nd order) results for 

the same subject and data condition in Figure 3.69 through Figure 3.72 

 
Figure 3.77 Plot of the outputs for Model 4 with Windkessel-1 and Windkessel-2 

modeling schemes for SNI data of subject no. 5 

 
Figure 3.78 Plot of the frequency responses for Model 4 with Windkessel-1 and 

Windkessel-2 modeling schemes for SNI data of subject no. 5 
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Figure 3.79 Plot of the model outputs with ARX-1 and ARX-2 (3rd order model) 

modeling schemes for SNI data of subject no. 5 
 

 
Figure 3.80 Plot of the model frequency responses with ARX-1 and ARX-2  

(3rd order model) modeling schemes for SNI data of subject no. 5 
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Figure 3.81 through Figure 3.84 show plots for VI data of subject no. 2, employing 

Model 4 (5-element, 3rd order) as compared to Model 1 (3-element, 1st order) results for 

the same subject and data condition in Figure 3.65 through Figure 3.68 

 
Figure 3.81 Plot of the outputs for Model 4 with Windkessel-1 and Windkessel-2 

modeling schemes for VI data of subject no. 2 

 
Figure 3.82 Plot of the frequency responses for Model 4 with Windkessel-1 and 

Windkessel-2 modeling schemes for VI data of subject no. 2 
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Figure 3.83 Plot of the model outputs with ARX-1 and ARX-2 (3rd order model) 

modeling schemes for VI data of subject no. 2 
 

 
Figure 3.84 Plot of the model frequency responses with ARX-1 and ARX-2  

(3rd order model) modeling schemes for VI data of subject no. 2 
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Figure 3.85 through Figure 3.88 show plots for VNI data of subject no. 6, employing 

Model 5 (4-element, 2nd order) as compared to Model 3 (5-element, 3rd order) results for 

the same subject and data condition in Figure 3.73 through Figure 3.76 

 
Figure 3.85 Plot of the outputs for Model 5 with Windkessel-1 and Windkessel-2 

modeling schemes for VNI data of subject no. 6 

 
Figure 3.86 Plot of the frequency responses for Model 5 with Windkessel-1 and 

Windkessel-2 modeling schemes for VNI data of subject no. 6 
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Figure 3.87 Plot of the model outputs with ARX-1 and ARX-2 (2nd order model) 

modeling schemes for VNI data of subject no. 6 
 

 
Figure 3.88 Plot of the model frequency responses with ARX-1 and ARX-2  

(2nd order model) modeling schemes for VNI data of subject no. 6 
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Figure 3.89 through Figure 3.92 show plots for VI data of subject no. 2, employing 

Model 5 (4-element, 2nd order) as compared to Model 4 (5-element, 3rd order) results for 

the same subject and data condition in Figure 3.81 through Figure 3.84 

 
Figure 3.89 Plot of the outputs for Model 5 with Windkessel-1 and Windkessel-2 

modeling schemes for VI data of subject no. 2 

 
Figure 3.90 Plot of the frequency responses for Model 5 with Windkessel-1 and 

Windkessel-2 modeling schemes for VI data of subject no. 2 
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Figure 3.91 Plot of the model outputs with ARX-1 and ARX-2 (2nd order model) 

modeling schemes for VI data of subject no. 2 
 

 
Figure 3.92 Plot of the model frequency responses with ARX-1 and ARX-2  

(2nd order model) modeling schemes for VI data of subject no. 2 
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3.2.2.3 Plots for Windkessel-3 Modeling Scheme  

 
Figure 3.93 Plot of the output for Model 1 with Windkessel-3 modeling scheme  

for SNI data of subject no. 9 
 

 
Figure 3.94 Plot of the frequency response for Model 1 with Windkessel-3 modeling 

scheme for SNI data of subject no. 9 
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Figure 3.95 Plot of the output for Model 1 with Windkessel-3 modeling scheme  

for VI data of subject no. 2 
 

 
Figure 3.96 Plot of the frequency response for Model 1 with Windkessel-3 modeling 

scheme for VI data of subject no. 2 
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3.3 Modeling Results for CPP and CBFV Data 

 This section presents the results of applying 3-element Windkessel model 

(Model 1) with Windkessel-1 modeling scheme to CPP and CBFV data taken as the 

measured input and output respectively, for VNI and VI conditions for all 10 subjects. 

Table 3.60 shows the MSE values of 10 subjects for the same. Table 3.61 shows the 

average parameter values for Model 1. Table 3.62 presents the comparison based on t-

tests (Pval) for the MSE values of 10 subjects for VNI and VI data conditions, between 

MABP-CBFV and CPP-CBFV results, both analyzed using Windkessel-1 modeling 

scheme for Model 1. The statistical level of significance for the t-tests was selected to 

be 0.05. Figure 3.97 illustrates the model output plot and Figure 3.98 shows the 

frequency response of the model for one subject. 

Table 3.60 MSE values for VNI and VI data conditions of CPP-CBFV data of 10 
subjects with Windkessel-1 modeling scheme for Model 1 

 
Subject No. VNI VI 

1 0.0184 0.0162 

2 0.0354 0.0495 

3 0.0140 0.0358 

4 0.0272 0.0288 

5 0.0162 0.0226 

6 0.0824 0.0171 

7 0.0829 0.0160 

8 0.0259 0.0291 

9 0.0197 0.0096 

10 0.0168 0.0217 

Average 0.0339 0.0246 

STD 0.0265 0.0116 
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Table 3.61 Average parameter values for VNI and VI data conditions of CPP-CBFV 
data of 10 subjects with Windkessel-1 modeling scheme for Model 1 

 
 R1 R2 C1 

VNI Average 3.2620 10.5894 24.0239 

VNI STD 5.8253 7.6332 21.8810 

VI Average 2.4657 17.4151 19.9499 

VI STD 2.8540 29.5489 19.8028 

 
 

Table 3.62 Comparison (t-test) of MSE values of 10 subjects for VNI and VI data 
conditions between MABP-CBFV and CPP-CBFV using  

Windkessel-1 modeling scheme for Model 1 
 

 VNI VI 

Pval 0.607796 0.168638 

 

 
Figure 3.97 Plot of the output for Model 1 with Windkessel-1 modeling scheme  

for CPP-CBFV VI data of subject no. 2 
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Figure 3.98 Plot of the frequency response for Model 1 with Windkessel-1 modeling 

scheme for CPP-CBFV VI data of subject no. 2 
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CHAPTER 4 

DISCUSSION AND LIMITATIONS 

 

 

This section presents the important implications and discussions for the results 

presented in chapter 3. Limitations to the present study have also been briefly described. 

   

4.1 Discussion for the Results of Testing the Adequacy and Efficacy of 1.5 Minute 
MABP as Input Stimulus 

 
 
4.1.1 ARX Models 

 Results from the present study show that for each of the 10 subjects, MSE 

values for Ma, Me1 and Me2 models equal for the 6 minutes study. Also, for each of the 

four 1.5 minute studies, the MSE values for Ma, Me1 and Me2 models were equal for a 

given subject. It should be noted that the models Ma, Me1 and Me2 for each of the 10 

subjects did not necessarily have identical parameters or similar orders, as is reflected in 

Table 3.4. However, it is noted that the average order for models derived using MABP 

and PRBS are essentially the same, regardless of what data length (i.e. 6 or 1.5 minute) 

is used. It can be concluded that beat-to-beat MABP sequence is as effective as PRBS 

for parametric identification of linear models. Results in Table 3.1 show that MSE 

values for 1.5 minute duration studies are comparable with that of 6 minutes study. The 
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t-test results in Table 3.2 and Table 3.3 also suggest that temporal location of the four 

1.5 minute sections from the 6 minutes data has no significance. This is based on the 

observation that for all the cases the Pval is greater than the statistical level of 

significance (0.05). Hence, it is apparent that a segment of 1.5 minute duration of 

MABP is adequate for parametric system identification of cerebral autoregulation. 

4.1.2 Monte-Carlo Simulation for Windkessel Models 

This section discusses Windkessel-1 and Windkessel-2 modeling schemes on 

the basis of Monte-Carlo simulation results (estimated-parameters and MSE values) for 

the five models for both PRBS and MABP input. Comparing the two modeling 

techniques, the performance of Windkessel-2 scheme was apparently better than 

Windkessel-1 scheme, based on the average MSE values and comparison of true-

parameters (Ma) and estimated-parameters (Me). However, results from both schemes 

point that MABP sequence is as effective and efficient as PRBS for parametric 

identification of linear models, and also that 1.5 minute duration is adequate for the 

same. 

4.1.2.1 Windkessel-1 Modeling Scheme 

 Results from the present study show that for Model 1, Model 2 and Model 4, the 

estimated parameters (Me) were reasonably close to the parameters obtained for model 

Ma, using PRBS or MABP as input. This is also reflected in the histograms of true-

parameter values and estimated parameter values for the resistance parameter R1 for 

each of these three models. For both PRBS and MABP input, the resistance parameter 

R1 of Model 3 and Model 5 were poorly estimated, which is reflected in their 
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corresponding true-parameter value and estimated-parameter value histograms. For the 

same reason the average MSE values for models 3 and 5 were poor and not comparable 

to the average MSE values of the other three models, as is shown in Table 3.10 and 

Table 3.16. However, this being the case for both MABP and PRBS input, the average 

MSE values for respective models in both cases (Table 3.10 and Table 3.16) are similar 

and comparable. Noting that both the PRBS and MABP were 1.5 minute duration 

sequences, it can be concluded that MABP sequence is as good as PRBS for parametric 

identification of linear models, and also that a duration of 1.5 minute is adequate for the 

same. 

 The poor estimates of the true-parameter value of R1 in case of Model 3 and 

Model 5 for both PRBS and MABP can be explained from limitation of the Windkessel-

1 modeling scheme. The basis of this scheme is the evaluating R1 from the model 

transfer function, as explained in section 2.2.3.2. This type of approach of extracting R1 

by applying the limit of frequency ω tending to infinity to the modulus of the transfer 

function is an approximation, because the actual signal (MABP, CBFV) is the case of 

this study is sampled at 2 Hz (section 2.1.4). Hence the highest frequency point of the 

measured impedance curve, Zm, is at only 1 Hz and not infinity, which may result in 

poor estimation of resistance parameter R1, by extracting its value from that point 

(Equations 2.11, 2.12, and 2.13). This in turn is reflected by higher MSE values for the 

cases where R1 is poorly estimated. Furthermore, this approximation technique is 

affected by presence of noise in the Zm. 
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4.1.2.2 Windkessel-2 Modeling Scheme 

Results from the present study show that for all the five models, the estimated 

parameters (Me) were reasonably close to the true-parameters (Ma), for the PRBS as 

well as MABP input. This is also reflected in the histograms of true-parameter value 

and estimated parameter value for the resistance parameter R1 for each of these three 

models. For both PRBS and MABP input, the Ma and Ma were exactly the same (up to 

the fourth place of the decimal) for Model 5, as is reflected in Table 3.21 and Table 3.27 

and Figure 3.29, Figure 3.30, Figure 3.39, and Figure 3.40. Also, the average MSE 

values for the five models for both PRBS and MABP input (Table 3.22 and Table 3.28) 

are fairly close. Noting that both the PRBS and MABP were 1.5 minute duration 

sequences, it can be concluded that MABP sequence is as good as PRBS for parametric 

identification of linear models, and also that a duration of 1.5 minute is adequate for the 

same.   

 Apart from establishing the effectiveness and adequacy of 1.5 minute MABP 

sequence, the Monte-Carlo simulation results play an important role in establishing the 

effectiveness and accuracy of Windkessel models and modeling schemes. The 

simulation serves as an exhaustive test for the Windkessel estimation algorithms, testing 

the estimation techniques on a large number of randomly simulated parameters, with 

other factors, like the initial estimates for optimization routines, also being random. 
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   4.2 Discussion of the Modeling Results for MABP and CBFV Data 

This section discusses and compares the ARX-1, ARX-2, Windkessel-1, 

Windkessel-2, and Windkessel-3 modeling schemes on the basis of MSE values of 10 

subjects for the four data conditions (i.e. SNI, SI, VNI, VI), and plots illustrated in 

section 3.2.2. 

4.2.1 ARX Models 

The ARX-1 modeling scheme results in average model orders of 8.5, 6.6, 5.9, 

and 4.2 for respectively the SNI, SI, VNI, and VI data sets (Table 3.30). It is important 

to note that for ARX-1 scheme and for 1st, 2nd, and 3rd order models of ARX-2 scheme, 

for subject no. 9, VI data (1.5 minute) the models produced unstable model outputs, as 

is reflected by the corresponding MSE values in Table 3.29, Table 3.31, Table 3.33, and 

Table 3.35.  In the same context, the MSE value was lowest for the 1st order model and 

highest for the 3rd order model. This is also shown in Table 3.30 for ARX-1 scheme, 

where for subject no. 9, VI case, the best model among 1st to 10th order models turned 

out to be a 1st order model.  

Even though the average MSE values for ARX-1 scheme are lower than 1st, 2nd, 

and 3rd order models of ARX-2 scheme, the MSE values for ARX-1 scheme (Table 

3.29) are close to the MSE values produced by the 1st order model of ARX-2 modeling 

scheme (Table 3.31), and if the MSE value of the model for subject no. 9, VI case, is 

ignored for both ARX-1 and ARX-2 scheme, the MSE values are relatively close for 

ARX-1 scheme and all the three models of ARX-2 scheme. This, combined with the 

fact that in Table 3.30 one can find a number of models with orders 4 or less, implies 
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that for ARX estimation, the increase of the model order doesn’t improve the MSE 

value substantially. Moreover, an increase in order and may deteriorate the MSE value, 

as in VI case of subject no. 9 for the present study.  

4.2.2 Windkessel Models 

 From the results in Appendix B, it is clear that there is no significant difference 

between the MSE values produced by Windkessel-1, Windkessel-2 and Windkessel-3 

modeling schemes for the four data conditions of 10 subjects, for each of the five 

models. This is based on the t-test comparisons of the three modeling schemes with 

each other for a given model, which resulted in Pval is greater than the statistical level of 

significance (0.05). However, in terms of the average MSE values of the five models for 

Windkessel-1 and Windkessel-2 modeling schemes and of Model 1 for Windkessel-3 

modeling scheme (section 3.2.1.2), for a given model, Widkessel-2 scheme produced 

lower average MSE values than Windkessel-1 and Windkessel-3 schemes. It is 

important to note that within the five models for the four data conditions, the average 

MSE values were relatively close for all the five models, this being true for both 

Windkessel-1 and Windkessel-2 scheme. It is also relevant to mention that the average 

values of the weights Wt and Wf for the four data conditions (Table 3.59), 

corresponding to Windkessel-3 modeling scheme for Model 1, show that for achieving 

a lower MSE value in time domain, the algorithm tried to improve frequency domain 

response of the model to fit it better to the measured one. This inference is based on the 

result that the average value of weighing-parameter for frequency domain MSE (Wf) 
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was higher, and almost double the average value of weighing-parameter for the time 

domain MSE (Wt), for all the four data conditions. 

 Comparing MSE values for ARX-2 with Windkessel-1 and Windkessel-2 

schemes for models with similar order, the results in Appendix B demonstrated 

significant difference in SNI data condition for Windkessel Model 2, Model 3, Model 4 

and Model 5. This is based on the t-test results where Pval is smaller than the statistical 

level of significance (0.05). This is also reflected by the average MSE values for SNI 

data condition with Windkessel-1 and Windkessel-2 schemes for all the five models, 

which were higher than the ARX-2 scheme models of similar order for SNI data set.  

For rest of the ARX-2 scheme comparisons with the three Windkessel schemes, no 

significant level of difference was observed. Comparing the ARX-1 methodology with 

the Windkessel schemes, the average MSE values for SNI, SI and VNI data conditions 

for ARX-1 modeling technique were lower than the corresponding average MSE values 

of the three Windkessel modeling schemes for all the five models. 

4.2.3 Graphical Validation  

 Section 3.2.2 presented samples of the time-domain output and frequency 

response plots as good and poor results based on MSE value of the Windkessel-1 

methodology in each model and type of data condition. Visually observing the plots for 

good results in section 3.2.2.1, Figure 3.41 shows that Model 1 for both Windkessel-1 

and Windkessel-2 scheme followed the measured output of SNI data for subject no. 9 

pretty well. In terms of frequency response, Windkessel-1 scheme matched the 

measured magnitude response better than Windkessel-2 scheme, and as is expected, 
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Windkessel-1 scheme magnitude almost meets the measured magnitude response curve 

at the highest frequency point of 1 Hz. For the same subject and data condition, ARX-1 

and ARX-2 plots in Figure 3.43 were also quite comparable to each other, as well as to 

both of the Windkessel plots in Figure 3.41. But ARX-1 scheme produces a better 

frequency response comparable to measured one (Figure 3.44), which may be due to 

higher order models associated with ARX-1 scheme. In Figure 3.45, for VI data of 

subject no. 3, Model 2 for both the Windkessel schemes produces a good fit of the 

measured output. For the same subject and data condition, the two ARX schemes in 

Figure 3.47 did not follow the measured output as well as the Windkessel schemes. It is 

important to note here that Windkessel schemes had a magnitude response which 

matched the measured response better at the low frequencies (0.0 – 0.2 Hz), as seen in 

Figure 3.46, and ARX schemes produced a magnitude response which matched the 

measured one better at the high frequencies (0.6 – 1.0 Hz), as seen in Figure 3.48. 

Figure 3.49 shows how the Model 3 for the two Windkessel schemes followed the 

measured output for VNI data of subject no. 1. For the same subject and data condition, 

the two ARX schemes in Figure 3.51 followed the low-frequency changes better, 

including the high peaks and the low dips of the measured output. This is somewhat 

evident from the comparison of the magnitude responses of Windkessel schemes in 

Figure 3.50 and ARX schemes in Figure 3.52. Figure 3.53 and Figure 3.55 illustrate the 

model outputs of Model 4 for Windkessel schemes and of 3rd order model for ARX-2 

scheme respectively, for SNI data of subject no. 9. It is worthwhile to note that the 

responses in both these figures are comparable to the responses of Figure 3.41 and 
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Figure 3.43, for the same subject and data condition; however the model in the latter 

case is lower in order and number of elements than the model in the former case, for the 

ARX-2 and both of the Windkessel schemes. Also, the frequency responses of the two 

cases are quite similar. A similar observation can be made while comparing the Figure 

3.45 with Figure 3.57, and Figure 3.47 with Figure 3.59, for VI data of subject no. 3. 

Model 5 in Figure 3.61 for VI data of subject no. 3 followed the measured output better 

in case of Windkessel-1 scheme. The difference in the magnitude response at low 

frequencies (0.0 – 0.1 Hz) of the two Windkessel schemes in Figure 3.62 is prominent. 

The two ARX schemes in Figure 3.63 could not perform as good as the Windkessel 

schemes. 

  Visually observing the plots for poor results in section 3.2.2.2, Model 1 for both 

Windkessel schemes in Figure 3.65 failed to follow the measured output for VI data of 

subject no. 2. Also, the model frequency responses for same in Figure 3.66 did not 

match the measured response. For the same subject and data condition, ARX-1 

modeling scheme in Figure 3.67 produced a better result, which also is evident from the 

frequency response of ARX-1 model in Figure 3.68. Figure 3.69 shows that Model 2 for 

Windkessel-1 scheme had a comparatively better result than Windkessel-2 scheme, for 

SNI data of subject no. 5; this can also be seen in the magnitude response of 

Windkessel-1 scheme in Figure 3.70. For the same subject and data condition, both 

ARX-1 and ARX-2 modeling scheme in Figure 3.71 produced a superior result than 

Windkessel schemes. A similar observation can be made for the Windkessel results for 

Model 3 in Figure 3.73 and ARX results in Figure 3.75, for VNI data of subject no. 6. 
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Figure 3.77 and Figure 3.79 for SNI data of subject no. 5 shows that going to a higher 

order and higher element model did not produce any improvements in the model fit to 

the measured data, as compared to Figure 3.69 and Figure 3.71 respectively for the 

same subject and data condition. Likewise, a similar observation can be made while 

comparing the Windkessel results for Model 4 for VI data of subject no. 2 in Figure 

3.81 and for Model 1 in Figure 3.65, for the same subject and data condition. Figure 

3.85 shows that Model 5 for Windkessel-1 scheme had a comparatively better result 

than Windkessel-2 scheme, for VNI data of subject no. 6. For the same subject and data 

condition, both ARX-1 and ARX-2 modeling scheme in Figure 3.87 produced a 

superior result than Windkessel schemes. Figure 3.89 for VI data of subject no. 2 shows 

no improvements for Model 5 with Windkessel schemes, as compared to Figure 3.65 

and Figure 3.81. Again, both ARX schemes in Figure 3.91 produced better results for 

the same subject and data condition. Plot for Model 1 with Windkessel-3 modeling 

scheme in Figure 3.93 has no significant difference as compared to Windkessel-1 and 

Windkessel-2 schemes in Figure 3.41 and Figure 3.53. However, Model 1 with 

Windkessel-3 scheme in Figure 3.95 for VI data of subject no. 2 shows significant 

improvement when compared to Figure 3.65, Figure 3.81 and Figure 3.89. 

 From the MSE value comparisons and discussion of the plots, it is clear that in 

Windkessel schemes, Windkessel-1 modeling scheme is superior to Windkeseel-2 

modeling scheme. The apparent reason for which is the magnitude response in case on 

Windkessel-1 scheme which is forced to the match the measured magnitude response 

curve, Zm, by extracting the resistance parameter R1 form Zm and fixing its value by not 
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optimizing it. For results with Model 1, Windkessel-3 scheme seems promising in terms 

of graphical validation results, but the average MSE values for the four data conditions 

in this scheme is larger than Windkessel-1 and Windkessel-2 schemes for Model 1. 

Comparing the five Windkessel models, there was no significant difference in the MSE 

values for both Windkessel-1 and Windkessel-2 schemes (Appendix B). In the plots for 

good results where the model response followed the measured output closely, for the 

same subject and data condition higher element models produced no significant 

improvement. This was also the case when the model output did not follow the 

measured output well. The two ARX schemes are comparable to each other in terms of 

average MSE values and the proximity of the model output to the measured output, but 

are better than the Windkessel schemes in both the MSE results and the proximity of the 

model output to the measured output, ignoring the case for VI data of subject no. 9, 

where both the ARX schemes produced unstable models.  

 Comparing MSE values and parameter values of the data conditions with and 

without infusion (i.e. SNI vs. SI, VNI vs. VI) for the five Windkessel models with 

Windkessel-1 modeling scheme (Appendix B), it can be seen that there was no 

significant difference observed. Also, the comparison results of MSE values and 

parameter values of the data conditions with and without infusion for 1st order model 

with ARX-1 modeling scheme showed a lack of significance for most of the p values 

(Appendix B). The statistical level of significance for all of these results was taken as 

0.05. These outcomes show that the blockade of autonomic neural activity by drug 

infusion in the measured data could not be reproduced by the models in their MSE and 
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parameter values of the models, even though the effect of blockade can be observed in 

the spontaneous (SNI, SI) as well as Valsalva maneuver (VNI, VI) conditions of the 

measured data (Figures 2.1 through 2.4) in terms of MABP and CBFV values and the 

four recognized Valsalva maneuver phases (section 2.1.3). This indicates that ganglion 

blockade did not have a noteworthy effect on the MSE and parameter values of the 

ARX and Windkessel models. 

 

4.3 Discussion of the Modeling Results for CPP and CBFV Data 

 Table 3.60 presents the MSE values associated with Windlkessel-1 scheme of 

Model 1 for CPP-CBFV VNI and VI data of 10 subjects. Comparing the average MSE 

values with the corresponding average MSE values for MABP-CBFV data in Table 

3.37, there was a slight deterioration in the average MSE value for VNI case of CPP-

CBFV data, but the VI case showed improvement. However, results for the comparison 

(t-test) of CPP-CBFV and MABP-CBFV in Table 3.62 show a Pval greater than 0.05 for 

VNI and VI, indicating no significant level of difference for the two cases. Plot in 

Figure 3.97 for VI data of subject no. 2 shows no significant improvement when 

compared to Figure 3.65, Figure 3.81 and Figure 3.89. These results weaken the 

conjecture of using CPP-CBFV data for linear modeling of cerebral autoregulation to 

yield better results as compared to using MABP-CBFV data. 
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4.4 Limitations 

 All of the modeling methods discussed in the present study rely on the 

assumption that the dynamic autoregulatory mechanism can be approximated by a 

linear system, ignoring several nonlinearities, like those related to fluid flow. It has been 

assumed that the MABP and CBFV are correlated without taking into account any 

phase lag or feedback action between them. Another presumption is that the middle 

cerebral artery (MCA), where CBFV is measured, does not change its diameter. This 

presumption was important to this study as the TCD technique used measures velocity 

of blood flow in the MCA, rather than the volumetric or mass flow rate of blood in 

MCA. Also, regarding the measurement of MABP in finger using 

photoplethysmography technique, the arterial pressure waveforms in the finger may be 

different from that in the MCA due to pressure wave reflection and amplification in the 

peripheral vascular bed. With respect to the CPP-CBFV data, the estimation of CPP was 

done from the MABP data, whereas, to assess changes in CPP, MABP should be 

measured simultaneously with ICP and/or CVP. With respect to results from the present 

study, an important limitation is that for Windkessel models, different parameter values 

associated with the resistive (R), capacitive (C) and inductive (L) elements could result 

into similar and comparable MSE values. This indicates that these model parameters are 

not distinctive and unique. 

 
 
 

 



 

146 

 

 

CHAPTER 5 

CONCLUSION AND DIRECTIONS FOR FUTURE WORK 

 

 

5.1 Conclusions 

 The present study is focused on employing single input single output linear 

lumped parametric models (ARX and Windkessel) to beat-to-beat mean arterial blood 

pressure (MABP) considered as input to the model, and cerebral blood flow velocity 

(CBFV) considered as output of the model. For some models and modeling 

methodologies, the data consisted of cerebral perfusion pressure (CPP, estimated from 

MABP) and CBFV. The measurement of the data from the subjects was done while the 

subjects were performing Valsalva maneuver with and without the use of trimethaphan 

for ganglion blockade, the infusion of which essentially removes the autonomic neural 

activity. The main objective of this study was to examine the relative performance and 

limitations of the above mentioned linear modeling options and to demonstrate newer 

modeling methodologies for them. Another purpose of this study was to examine and 

establish the efficacy of beat-to-beat blood pressure time sequence in serving as an 

input stimulus, and to investigate the use of a short data segment of 1.5 minute changes 

in MABP for obtaining linear model estimation of cerebral autoregulation.  
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 Results from chapter 3 and their discussion in chapter 4 suggest that linear 

system method for parametric identification of pressure-flow relationship of cerebral 

circulation is feasible. The models used for the present study had very simple and basic 

mechanisms and structures, but were still able to reproduce the measured data. Even 

though the modeling methodologies for the study were not restricted to lower order 

systems, and examined even 10th ordered systems in case of ARX models and higher 

element models in case of Windkessel models, results indicate that lower order ARX 

models (1st, 2nd, and 3rd order models for ARX-2 scheme) and 3-element Windkessel 

model (Model 1) may be adequate. Among the ARX and Windkessel methodologies, 

ARX modeling schemes produced superior results. Windkessel-1 modeling scheme 

turns out to be better than Windkeseel-2 modeling scheme. Also, for results with Model 

1, Windkessel-3 scheme seems promising in terms of graphical validation results. The 

results of using CPP-CBFV data did not prove to be better than MABP-CBFV data 

results, for Model 1 with Windkessel-1 scheme. Comparing MSE values and parameter 

values of the data conditions with and without infusion (i.e. SNI vs. SI, VNI vs. VI) for 

the five Windkessel models with Windkessel-1 modeling scheme and for 1st order 

model with ARX-1 modeling scheme, it can be seen that the ganglion blockade did not 

have a significant effect on the MSE and parameter values of the ARX and Windkessel 

models. 

 From the results of testing the adequacy and efficacy of 1.5 minute MABP as 

input stimulus by ARX models, it can be concluded that a data segment of 1.5 minute 

duration of changes in MABP is adequate for parametric system identification of 
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cerebral circulation. This conclusion is strengthened by the results for Monte-Carlo 

simulations of Windkessel models using Windkessel-1 and Windkessel-2 schemes with 

MABP and PRBS as inputs. Hence it is clear that a segment of 1.5 minute duration of 

MABP is effective and adequate for estimating linear models of cerebral autoregulation. 

 

5.2 Directions for Future Work 

 Even though the various modeling methodologies employed in the present study 

were able to model the cerebral circulation data in conjunction with Valsalva maneuver 

for ganglion blockade, all of them were linear parametric modeling techniques. Hence it 

would be of interest for future investigation to determine if other modeling techniques 

involving non-parametric techniques, non-linear analysis or neural network modeling 

can improve the time-domain and frequency-domain response of the models. Also, the 

present study was limited to applying Windkessel-3 modeling scheme to Model 1 using 

CPP-CBFV data. Future work can involve applying this scheme to other models as 

well. Some other important points to be considered for future investigation of the 

MABP-CBFV data include analyzing the coherence levels of input and output, and 

residual analysis of the data and model to examine a feedback relationship between 

MABP and CBFV. Also, it would be of immense interest to quantitatively analyze the 

results for the parameters of various models in the present study to extract clinical 

findings and implications from them. This may be useful for identifying patients at risk 

for cerebrovascular events. Clearly, more number of subjects will be required for this 

type of study. 
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APPENDIX A 
 
 

DATA ANALYSIS ALGORITHMS AND PROGRAMS 
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A1 Program Used for ARX-1 Modeling Scheme described in Section 2.2.1.1 
 
 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

% estimation of model for system order from 1 to 10, and then selection of 
% best model on the basis of MSE 
subname = 
{'Brian','Dak','Danial','Danny','Fennig','Janet','Ronnie','Sandra','Steve','Vineet'}
;  % subject files 
addfix={'abpcbfv_sni','abpcbfv_si','abpcbfv_vni','abpcbfv_vi'}; % data 
condition 
subcase_vni=[1,1,1,2,1,2,2,2,2,3]; 
subcase_vi= [3,3,1,4,4,1,2,4,3,3]; 
h=waitbar(0,'Please wait..........') 
for ct=1:4 
    for vr1 =  1:10  
        waitbar(((10*(ct-1))+vr1)/40,h); 
        vr2=char(strcat(subname(vr1),addfix(ct))); 
        if (ct==3) 
            vr2=strcat(vr2,num2str(subcase_vni(vr1))); 
        end 
        if (ct==4) 
            vr2=strcat(vr2,num2str(subcase_vi(vr1))); 
        end 
        a1=load (strcat(vr2,'rsmp.m'),'-ascii');          
        u1=dtrend(a1(:,2)); 
        u1_=u1./(max(u1)-min(u1)); % MABP  
        v2=0; 
        for var1=1:length(a1(:,1)) 
            v2(var1,1)=0.1257*a1(var1,1);  
        end 
        v1=dtrend(v2); 
        v2_=v1./(max(v1)-min(v1)); % CBFV 
        z1 = [v2_ u1_];   
        par=0; 
        ctr=0; 
   for no = 2:11 % numerator order  
            for do = 1:10 % denominator order  
                if (no-1) <= do 
                    ctr=ctr+1; 
                    th2=arx(z1,[do,no,0]); % ARX identification 
                    th1=sett(th2,0.5); 
                    [NUM,DEN] = TH2TF(th1,1); 
                    tmp3=zeros(1,22);
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   A1 Continued. 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

    for tmp4=1:length(NUM) 
                        tmp3(1,tmp4+(11-length(NUM)))=NUM(1,tmp4); 
                    end 
                    for tmp4=1:length(DEN) 
                        tmp3(1,tmp4+(22-length(DEN)))=DEN(1,tmp4); 
                    end 
                    par(ctr,1:22)=tmp3; 
                end 
            end 
        end 

% calculation of MSE values for model for system order from 1 to 10 for   
the subject for selection of best model 

        ctr=0; 
        mse=0; 
        tmp5=par;          
        for no = 2:11 
            for do = 1:10 
                if (no-1) <= do 
                    ctr=ctr+1; 
                    n(1,1:11)=tmp5(ctr,1:11); 
                    d(1,1:11)=tmp5(ctr,12:22); 
                    tmp1=0; 
                    for tmp2=1:length(u1_) 
                        tmp1(tmp2,1)=tmp2*0.5; 
                    end 
                    P1=[tmp1 u1_];  % input to the simulink model 
                    Timespan=[0.5 length(u1_)/2]; 
                    sim('ARX_analysis',Timespan); 

 msetime=(sum((v2_(1:length(v2_),1)-           
v1_(1:length(v1_),1)).^2))/length(v1_); 

                    mse(ctr,1)=msetime; 
                end 
            end 
        end 
        mse1=min(mse); 
        par1=tmp5(find(mse==mse1),:); 
        save(strcat(vr2,'_ARX.m'),'par1','-ascii'); 
    end 
end 
close(h); 
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A2 Program Used for Monte-Carlo Simulation of Model 1 for Windkessel-1 Modeling 
Scheme with MABP (SNI) as Input described in Section 2.2.3.2 and Section 2.3.2 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

% Monte Carlo Simulation 
subname = 
{'Brian','Dak','Danial','Danny','Fennig','Janet','Ronnie','Sandra','Steve','Vineet'}
;  % subject files 
rand('state',0); 
h=waitbar(0,'Simulation in progress..........') 
for itr=1:1:1000 % 1000 trial simulation  
   waitbar(itr/1000) 
   randm3=rand(1,1); 

vr1=round((randm3*9)+1); % random selection of subject SNI data     
between subjects 1-10 

   vr2=char(strcat(subname(vr1),'abpcbfv_sni')); 
   a1=load (strcat(vr2,'rsmp.m'),'-ascii');          
   u1=dtrend(a1(:,2)); 
   u1_=u1./(max(u1)-min(u1)); % MABP 
   tmp1=0; 
   for tmp2=1:length(u1_) 
       tmp1(tmp2,1)=tmp2*0.5; 
   end 
   P1=[tmp1 u1_];  % input to the simulink model 
   Timespan=[0.5 length(u1_)/2]; 
   randm1=rand(3,1); 
   Rs=(randm1(1,1)*7)+7; % parameter R1 
   Rp=(randm1(2,1)*5)+3; % parameter R2 
   Cap=(randm1(3,1)*4)+1; % parameter C1 
   a=(Cap*Rs*Rp); 
   b=(Rs+Rp); 
   c=(Cap*Rp); 
   sim('mcarlo_sim',Timespan); 
   w=hanning(512); 
   Syx=xcorr(v1_,u1_); 
   Sxx=xcorr(u1_);          
   Pmu1 = psd(Sxx,512,2,w,256); 
   Pmv1 = psd(Syx,512,2,w,256); 
   Suf=0; 
   Svf=0; 
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   A2 Continued. 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 for k=1:length(Pmu1) 
       Suf(k,1)=(Pmu1(k,1))^0.5; 
       Svf(k,1)=(Pmv1(k,1))^0.5; 
    end 
    Z1m1 = Svf./Suf; 
    for var1=1:256 
       fr(var1,1)=2*(var1/512); % Fs = 2 Hz 
    end 
    Z1m=Z1m1(1:256,1); % measured impedance 
 randm2=rand(2,1); 
    % frequency-domain optimization 
    Rs1a = 1/Z1m(256,1); % extraction of R1 from Z1m 

options=optimset('MaxFunEvals',1000000,'MaxIter',1000000,'TolFun',1.e-
10,'TolCon',1.e-1,'TolX',1.e-10);  

    x1=0; 
x1=fminimax(@optfun_olufsen3,[(randm2(1,1)*5)+3,(randm2(2,1)*4)+1]
,[],[],[],[],[3,1],[8,5],[],options,Z1m,Rs1a); 

    x1(1,3)=x1(1,2); 
    x1(1,2)=x1(1,1); 
    x1(1,1)=Rs1a; 
 % time-domain optimization 

options=optimset('MaxFunEvals',1000000,'MaxIter',1000000,'TolFun',1.e-
10,'TolCon',1.e-1,'TolX',1.e-10);  

    x=0; 
    x=fminimax(@optfun_subjects4,[x1(1,2),x1(1,3)],[],[],[],[],[3,1],[8,5],[], 
 options,u1_,v1_,Rs1a); 

y2=idsim(u1_,thc2thd(poly2th(1,[1/Rs1a 1/(x(1,2)*x(1,1)*Rs1a)],1,1,[1 
(x(1,1)+Rs1a)/(x(1,2)*x(1,1)*Rs1a)],1,0),0.5));            
mse1(itr,1)= (sum((y2(1:length(y2),1)- 
v1_(1:length(v1_),1)).^2))/length(v1_);     % storing the MSE value for 
time domain                  

  param1(itr,1)= Rs; % storing the true parameters for respective run 
  param1(itr,2)= Rp; 
  param1(itr,3)= Cap; 

param2(itr,1)= Rs1a; % storing the estimated parameters for respective 
run 

  param2(itr,2)= x(1,1); 
  param2(itr,3)= x(1,2); 
end 
close(h) 
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   A2 Continued. 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

A3 Program Used for Monte-Carlo Simulation of Model 1 for Windkessel-2 Modeling 
Scheme with MABP (SNI) as Input described in Section 2.2.3.3 and Section 2.3.2 

 
 

 

 

 

 

 

 
 

   

save true_parameters.m param1 -ascii 
save estimated_parameters.m param2 -ascii 
save mse_timedomain.m mse1 -ascii  
save mse_freqdomain.m mse2 -ascii 
% function used for frequency-domain optimization 
%x1(1)=R2 
%x1(2)=C1 
function f = optfun_olufsen3(x1,Z1m,Rs1a)        
for k=1:256 
    w(k,1)=2*(k/512); 
    Zw(k,1)=abs((1+i*(w(k,1)*x1(2)*x1(1)))/(x1(1)+Rs1a+i*(w(k,1)*x1(2)* 
    Rs1a*x1(1))));   
end 
f = sum((Zw(1:256,1)-Z1m(1:256,1)).^2);  
% function used for time-domain optimization 
%x(1)=R2 
%x(2)=C1 
function f = optfun_subjects4(x,u1_,v1_,Rs1a)                 
y1=idsim(u1_,c2d(poly2th(1,[1/Rs1a 1/(x(2)*x(1)*Rs1a)],1,1, 
[1 (x(1)+Rs1a)/(x(2)*x(1)*Rs1a)],1,0),0.5));          
f = sum(((y1(1:length(y1),1)-v1_(1:length(v1_),1)).^2)); 

%Monte Carlo Simulation 
subname = 
{'Brian','Dak','Danial','Danny','Fennig','Janet','Ronnie','Sandra','Steve','Vineet'}
;  % subject files 
rand('state',0); 
h=waitbar(0,'Simulation in progress..........') 
for itr=1:1:1000 % 1000 trial simulation  
   waitbar(itr/1000) 
   randm3=rand(1,1); 
   vr1=round((randm3*9)+1); % random selection of subject SNI data  
   vr2=char(strcat(subname(vr1),'abpcbfv_sni')); 
   a1=load (strcat(vr2,'rsmp.m'),'-ascii');          
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   A3 Continued. 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   u1=dtrend(a1(:,2)); 
   u1_=u1./(max(u1)-min(u1)); % MABP 
   tmp1=0; 
   for tmp2=1:length(u1_) 
       tmp1(tmp2,1)=tmp2*0.5; 
   end 
   P1=[tmp1 u1_];  % input to the simulink model 
   Timespan=[0.5 length(u1_)/2]; 
   randm1=rand(3,1); 
   Rs=(randm1(1,1)*7)+7; % parameter R1 
   Rp=(randm1(2,1)*5)+3; % parameter R2 
   Cap=(randm1(3,1)*4)+1; % parameter C1 
   a=(Cap*Rs*Rp); 
   b=(Rs+Rp); 
   c=(Cap*Rp); 
   sim('mcarlo_sim',Timespan);     
   w=hanning(512); 
   Syx=xcorr(v1_,u1_); 
   Sxx=xcorr(u1_);          
   Pmu1 = psd(Sxx,512,2,w,256); 
   Pmv1 = psd(Syx,512,2,w,256); 
   Suf=0; 
   Svf=0; 
   for k=1:length(Pmu1) 
      Suf(k,1)=(Pmu1(k,1))^0.5; 
      Svf(k,1)=(Pmv1(k,1))^0.5; 
   end 
   Z1m1 = Svf./Suf;  
   for var1=1:256 
      fr(var1,1)=2*(var1/512); % Fs = 2 Hz 
   end 
   Z1m=Z1m1(1:256,1); % measured impedance 
   randm2=rand(2,1); 
   % frequency-domain optimization  
   Rs1a = 1/Z1m(256,1); % extraction of R1 from Z1m   

options=optimset('MaxFunEvals',1000000,'MaxIter',1000000,'TolFun', 
   1.e-10,'TolCon',1.e-1,'TolX',1.e-10);  
   x1=0; 
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   A3 Continued. 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  x1=fminimax(@optfun_olufsen3_2,[(randm2(1,1)*5)+3,(randm2(2,1)*4)+1] 
  ,[],[],[],[],[3,1],[8,5],[],options,Z1m,Rs1a); 
   x1(1,3)=x1(1,2); 
   x1(1,2)=x1(1,1); 
   x1(1,1)=Rs1a; 
   % time-domain optimization 

options=optimset('MaxFunEvals',1000000,'MaxIter',1000000,'TolFun', 
1.e-  10,'TolCon',1.e-1,'TolX',1.e-10);  

   x=0; 
   x=fminimax(@optfun_subjects4_2,[x1(1,1),x1(1,2),x1(1,3)],[],[],[],[], 
   [7,3,1],[14,8,5],[],options,u1_,v1_); 

y2=idsim(u1_,thc2thd(poly2th(1,[1/x(1,1) 1/(x(1,3)*x(1,2)*x(1,1))],1,1,[1   
(x(1,2)+x(1,1))/(x(1,3)*x(1,2)*x(1,1))],1,0),0.5));            
mse1(itr,1)= (sum((y2(1:length(y2),1)-   
v1_(1:length(v1_),1)).^2))/length(v1_);     % storing the MSE value for time 
domain                 

   param1(itr,1)= Rs; % storing the true parameters for respective run 
   param1(itr,2)= Rp; 
   param1(itr,3)= Cap; 
   param2(itr,1)= x(1,1);  % storing the estimated parameters for respective run 
   param2(itr,2)= x(1,2); 
   param2(itr,3)= x(1,3); 
end 
close(h) 
save true_parameters.m param1 -ascii 
save estimated_parameters.m param2 -ascii 
save mse_timedomain.m mse1 -ascii  
save mse_freqdomain.m mse2 –ascii 
% function used for frequency-domainoptimization 
%x1(1)=R2 
%x1(2)=C1 
function f = optfun_olufsen3_2(x1,Z1m,Rs1a)        
for k=1:256 
    w(k,1)=2*(k/512); 
    Zw(k,1)=abs((1+i*(w(k,1)*x1(2)*x1(1)))/(x1(1)+Rs1a+i*(w(k,1)*x1(2)* 
    Rs1a*x1(1))));   
end 
f = sum((Zw(1:256,1)-Z1m(1:256,1)).^2); 
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A4 Program Used for Model 1 with Windkessel-3 Modeling Scheme  

described in Section 2.2.3.4  
 
 

 

 

 

 

 

 
 

   
 

 
 

 

 
 

 

 

 

% function used for time-domain optimization 
%x(1)=R1 
%x(2)=R2 
%x(3)=C1 
function f = optfun_subjects4_2(x,u1_,v1_)                 
y1=idsim(u1_,c2d(poly2th(1,[1/x(1) 1/(x(3)*x(2)*x(1))],1,1, 
[1 (x(2)+x(1))/(x(3)*x(2)*x(1))],1,0),0.5));         
f = sum(((y1(1:length(y1),1)-v1_(1:length(v1_),1)).^2)); 

 subname = 
{'Brian','Dak','Danial','Danny','Fennig','Janet','Ronnie','Sandra','Steve','Vineet'}
;  % subject files 
addfix={'abpcbfv_sni','abpcbfv_si','abpcbfv_vni','abpcbfv_vi'}; 
subcase_vni=[1,1,1,2,1,2,2,2,2,3]; 
subcase_vi= [3,3,1,4,4,1,2,4,3,3]; 
h=waitbar(0,'Please wait..........') 
for ct = 1:4 
    for vr1 = 1:10 
        waitbar(((10*(ct-1))+vr1)/40,h); 
        vr2=char(strcat(subname(vr1),addfix(ct))); 
        if (ct==3) 
            vr2=strcat(vr2,num2str(subcase_vni(vr1))); 
        end 
        if (ct==4) 
            vr2=strcat(vr2,num2str(subcase_vi(vr1))); 
        end 
        a1=load (strcat(vr2,'rsmp.m'),'-ascii');          
        u1=dtrend(a1(:,2)); 
        u1_=u1./(max(u1)-min(u1)); % MABP 
        v2=0; 
        for var1=1:length(a1(:,1)) 
            v2(var1,1)=0.1257*a1(var1,1);         
   end 
        v1=dtrend(v2); 
        v1_=v1./(max(v1)-min(v1)); % CBFV 
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        w=hanning(512); 
        Syx=xcorr(v1_,u1_); 
        Sxx=xcorr(u1_);          
        Pmu1 = psd(Sxx,512,2,w,256); 
        Pmv1 = psd(Syx,512,2,w,256); 
        Suf=0; 
        Svf=0; 
        for k=1:length(Pmu1) 
            Suf(k,1)=(Pmu1(k,1))^0.5; 
            Svf(k,1)=(Pmv1(k,1))^0.5; 
        end 
        Z1m1 = Svf./Suf;  
        for var1=1:256 
            fr(var1,1)=2*(var1/512); % Fs = 2 Hz 
        end 
        Z1m=Z1m1(1:256,1); % measured impedance 
        ctr=1; 
        for wgtime = 0.1:0.1:0.9 % weighting parameter for time MSE 
            wgfreq = 1-wgtime; % weighing parameter for frequency MSE 
            options=optimset('MaxFunEvals',1000000,'MaxIter',1000000, 

'TolFun',1.e-1,'TolCon',1.e-1,'TolX',1.e-1);  
            x=0; 
            x=fgoalattain(@freqtime_fun1,[10.6,5.4,3.3],[0,0], 

[wgtime,wgfreq],[],[],[],[],[0.01,0.01,0.01],[100,100,100],[], 
options,u1_,v1_,Z1m); 

  y2=idsim(u1_,thc2thd(poly2th(1,[1/x(1,1) /(x(1,3)*x(1,2)*x(1,1))],1,1, 
  [1 (x(1,2)+x(1,1))/(x(1,3)*x(1,2)*x(1,1))],1,0),0.5));            

mse_tmp1= (sum((y2(1:length(y2),1)- 
v1_(1:length(v1_),1)).^2))/length(v1_);      

            if (ctr == 1) 
                mse_tmp2 = mse_tmp1; 
                wg1=[wgtime,wgfreq]; 
                par=[x(1,1) x(1,2) x(1,3)]; 
            elseif (mse_tmp1 < mse_tmp2) 
                mse_tmp2 = mse_tmp1; 
                wg1=[wgtime,wgfreq]; 
                par=[x(1,1) x(1,2) x(1,3)]; 
            end 
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         ctr=ctr+1; 
        end 
        x=par; 
   y2=idsim(u1_,thc2thd(poly2th(1,[1/x(1,1) 1/(x(1,3)*x(1,2)*x(1,1))],1,1, 
   [1 (x(1,2)+x(1,1))/(x(1,3)*x(1,2)*x(1,1))],1,0),0.5));            

mse1=(sum((y2(1:length(y2),1)-v1_(1:length(v1_),1)).^2))/length(v1_);    
% storing the MSE value for time domain                 

        wg(((ct-1)*10)+vr1,:)=wg1; % storing the weights 
        save(strcat(vr2,'_par.m'),'par','-ascii'); 
        save(strcat(vr2,'_msetimefreq.m'),'mse1','mse2','-ascii');           
    end 
end 
save('weights_1.m','wg','-ascii'); 
close(h); 
% function used for optimization 
%x(1)=R1 
%x(2)=R2 
%x(3)=C1 
function f = freqtime_fun1(x,u1_,v1_,Z1m)        
for k=1:256 
    w(k,1) = 2*(k/512); 
    Zw(k,1) = abs((1+i*(w(k,1)*x(3)*x(2)))/(x(2)+x(1) 
 +i*(w(k,1)*x(3)*x(1)*x(2))));   
end 
y1 = idsim(u1_,c2d(poly2th(1,[1/x(1) 1/(x(3)*x(2)*x(1))],1,1,[1 
(x(2)+x(1))/(x(3)*x(2)*x(1))],1,0),0.5));          
f = [sum(((y1(1:length(y1),1)-v1_(1:length(v1_),1)).^2)), 
sum((Zw(1:256,1)-Z1m(1:256,1)).^2)];      
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COMPARISON OF MSE AND PARAMETER VALUES 
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Table B1 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (1st order model) and Windkessel-1 (Model 1) modeling schemes 

 
 SNI SI VNI VI 

Pval 0.795561 0.846517 0.528716 0.171701 

 

Table B2 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (2nd order model) and Windkessel-1 (Model 2) modeling schemes 
 

 SNI SI VNI VI 

Pval 0.035873 0.380281 0.226517 0.343361 

 

Table B3 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (3rd order model) and Windkessel-1 (Model 3) modeling schemes 
 

 SNI SI VNI VI 

Pval 0.043953 0.423494 0.371526 0.343403 

 
 
Table B4 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (3rd order model) and Windkessel-1 (Model 4) modeling schemes 
 

 SNI SI VNI VI 

Pval 0.043953 0.423494 0.371526 0.343403 

 

Table B5 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (2nd order model) and Windkessel-1 (Model 5) modeling schemes 
 

 SNI SI VNI VI 

Pval 0.009435 0.338753 0.303466 0.343577 
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Table B6 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (1st order model) and Windkessel-2 (Model 1) modeling schemes 

 
 SNI SI VNI VI 

Pval 0.882653 0.493889 0.537134 0.168465 

 

Table B7 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (2nd order model) and Windkessel-2 (Model 2) modeling schemes 
 

 SNI SI VNI VI 

Pval 0.017622 0.926783 0.37839 0.342751 

 

Table B8 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (3rd order model) and Windkessel-2 (Model 3) modeling schemes 
 

 SNI SI VNI VI 

Pval 0.093488 0.876214 0.658093 0.343373 

 

Table B9 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (3rd order model) and Windkessel-2 (Model 4) modeling schemes 
 

 SNI SI VNI VI 

Pval 0.074718 0.928205 0.821422 0.343388 

 

Table B10 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (2nd order model) and Windkessel-2 (Model 5) modeling schemes 
 

 SNI SI VNI VI 

Pval 0.036894 0.544073 0.494593 0.342687 
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Table B11 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between Windkessel-1 and Windkessel-2 modeling schemes for Model 1 

 
 SNI SI VNI VI 

Pval 0.68782 0.464833 0.981423 0.805173 

 

Table B12 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between Windkessel-1 and Windkessel-2 modeling schemes for Model 2 

 
 SNI SI VNI VI 

Pval 0.649444 0.425047 0.856225 0.38808 

 

Table B13 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between Windkessel-1 and Windkessel-2 modeling schemes for Model 3 

 
 SNI SI VNI VI 

Pval 0.286579 0.48866 0.541137 0.416529 

 

Table B14 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between Windkessel-1 and Windkessel-2 modeling schemes for Model 4 

 
 SNI SI VNI VI 

Pval 0.193247 0.393005 0.815817 0.542089 

 

Table B15 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between Windkessel-1 and Windkessel-2 modeling schemes for Model 5 

 
 SNI SI VNI VI 

Pval 0.169342 0.691807 0.864143 0.359314 
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Table B16 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between ARX-2 (1st order model) and Windkessel-3 (Model 1) modeling schemes 

 
 SNI SI VNI VI 

Pval 0.297809 0.719612 0.95119 0.171572 

 

Table B17 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between Windkessel-1 and Windkessel-3 modeling schemes for Model 1 

 
 SNI SI VNI VI 

Pval 0.413835 0.87383 0.509365 0.996521 

 

Table B18 Comparison (t-test) of MSE values of 10 subjects for four data conditions 
between Windkessel-2 and Windkessel-3 modeling schemes for Model 1 

 
 SNI SI VNI VI 

Pval 0.24869 0.396462 0.516817 0.664909 

 

Table B19 Comparison (t-test) of MSE values of 10 subjects between infusion and  
no-infusion data conditions for Model 1 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.763949 0.288703 

 

Table B20 Comparison (t-test) of R1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 1 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.393828 0.288282 
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Table B21 Comparison (t-test) of R2 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 1 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.757161 0.656618 

 

Table B22 Comparison (t-test) of C1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 1 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.69311 0.681824 

 

Table B23 Comparison (t-test) of MSE values of 10 subjects between infusion and  
no-infusion data conditions for Model 2 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.730341 0.325159 

 

Table B24 Comparison (t-test) of R1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 2 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.393828 0.288282 

 

Table B25 Comparison (t-test) of R2 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 2 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.978729 0.153842 
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Table B26 Comparison (t-test) of R3 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 2 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.978581 0.153842 

 

Table B27 Comparison (t-test) of C1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 2 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.430827 0.727742 

 

Table B28 Comparison (t-test) of C2 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 2 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.430826 0.727007 

 

Table B29 Comparison (t-test) of MSE values of 10 subjects between infusion and  
no-infusion data conditions for Model 3 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.938366 0.802229 

 

Table B30 Comparison (t-test) of R1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 3 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.393828 0.288282 
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Table B31 Comparison (t-test) of R2 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 3 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.568589 0.390295 

 
 

Table B32 Comparison (t-test) of C1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 3 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.764379 0.964158 

 
 

Table B33 Comparison (t-test) of C2 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 3 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.304284 0.620317 

 
 

Table B34 Comparison (t-test) of L1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 3 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.550687 0.455087 

 
 

Table B35 Comparison (t-test) of MSE values of 10 subjects between infusion and  
no-infusion data conditions for Model 4 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.855139 0.204928 
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Table B36 Comparison (t-test) of R1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 4 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.393828 0.288282 

 
 

Table B37 Comparison (t-test) of R2 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 4 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.257989 0.691529 

 
 

Table B38 Comparison (t-test) of C1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 4 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.491042 0.52144 

 
 

Table B39 Comparison (t-test) of C2 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 4 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.310584 0.074284 

 
 

Table B40 Comparison (t-test) of L1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 4 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.992003 0.834781 
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Table B41 Comparison (t-test) of MSE values of 10 subjects between infusion and  
no-infusion data conditions for Model 5 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.12183 0.326871 

 

Table B42 Comparison (t-test) of R1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 5 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.393828 0.288282 

 
 

Table B43 Comparison (t-test) of R2 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 5 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.408513 0.710861 

 
 

Table B44 Comparison (t-test) of C1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 5 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.634658 0.7375 

 
 

Table B45 Comparison (t-test) of L1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for Model 5 with Windkessel-1 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.269113 0.104187 
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Table B46 Comparison (t-test) of MSE values of 10 subjects between infusion and  
no-infusion data conditions for 1st order model with ARX-2 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.617352 0.163342 

 

Table B47 Comparison (t-test) of a1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for 1st order model with ARX-2 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.583461 0.203746 

 

Table B48 Comparison (t-test) of b0 parameter values of 10 subjects between infusion 
and no-infusion data conditions for 1st order model with ARX-2 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.157702 0.01745 

 
 

Table B49 Comparison (t-test) of b1 parameter values of 10 subjects between infusion 
and no-infusion data conditions for 1st order model with ARX-2 modeling scheme 

 
 SNI-SI VNI-VI 

Pval 0.090033 0.034714 
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