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ABSTRACT 

 
ENABLING CONTEXT-AWARE APPLICATIONS 

IN SMART ENVIRONMENTS 

 

Roman Arora, M.S. 

 

The University of Texas at Arlington, 2009 

 

Supervising Professor:  Fillia Makedon 

 Recognizing human activities is an important feature for the development of context-

aware applications that are so fundamental to enabling assistive environments. Only once these 

applications are able to determine the activities that their inhabitants are performing can they 

assist the individuals and their special needs. In order to do this, it is necessary to build models 

that can accurately capture and recognize the observed patterns. Equally important is the need 

to manage and distribute the information that has been inferred, and to provide Quality of 

Service (QoS) guarantees so that context-aware applications can react effectively to emergent 

situations. In this thesis, we explore these two problems of knowledge inference and 

dissemination. We approach the issue of activity recognition from a new perspective, were our 

goal is that of mining rules to complement an existing algorithm's capability to recognize 

activities, and thus improve overall accuracy results. For knowledge dissemination, we propose 

a framework to facilitate QoS in ontology centered context aware pervasive middleware. We 

believe our work validates two potential ways in which to overcome some of the existing 

problems for the proper operation of context-aware applications.   
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CHAPTER 1 

INTRODUCTION 

 

 As the number of elderly people grows, the health care system struggles to find 

alternative ways to provide affordable health care to the aging population. According to the 

United Nations, Dept. of Economic and Social Affairs Population Division, by 2050, the 

percentage of people over the age of 60 is expected to double, and the percentage of those 

over the age of 85 will quadruple [1]. This trend motivates the development of solutions that 

reduce the dependence on healthcare and nursing personnel. By enabling the elderly and 

people with disabilities to live in their homes, it is possible to reduce health care facility and 

hospital dependency while at the same time enhancing an individual's self-reliance, self-

esteem, and comfort by allowing that person to live a much more independent life style. In order 

to do so it is necessary to provide a means to help the individual in their home as they would be 

helped should they be in a care facility. This fact has created a great amount of research 

interest in the development of ubiquitous computing [2] environments capable of providing the 

infrastructure to monitor, recommend, and promote healthy life styles. However, before such 

realization of an assistive environment can be viable, it is necessary to develop the 

infrastructure and techniques that will allow inferring knowledge from the changes in the 

environment, and to manage and disseminate the acquired knowledge to interested agents. 

The problem of inference is that of recognizing the actions or activities that the 

inhabitant is performing at a specific time. Researchers believe that providing pro-active care for 

their aging inhabitants by detecting medical conditions before they become critical can have a 

significant impact on the quality of their lives, and that this detection can be accomplished by 

analyzing variations in the inhabitant's capability to perform Activities of Daily Living (ADL) [3]. 



 

2 

 

In order to enable an assistive environment to recognize the activities taking place, it is 

necessary to extract meaningful information from the low level information obtained from the 

sensors and devices within, and to combine this information to infer high level knowledge, such 

as the activities taking place. There are various challenges in solving the problem of activity 

recognition since there exists a wide set of heterogeneous sensors and devices As the 

scenarios explored increase in complexity, so do the algorithms proposed; each with its 

advantages and disadvantages. 

Another problem is that of managing and distributing the high level knowledge to 

empower context-aware applications [4] and devices. For example, if a person required to have 

their medication three times a day, and the assistive environment is to appropriately operate, it 

is required not only that it detects the activity taking place, but also that the information being 

provided to applications is used as necessary by, for example, contacting a nurse, caregiver or 

family member about the emergent situation. There are again many challenges, as there are 

many possible architectures and frameworks that can be developed to allow applications and 

devices to make smarter decisions in a broader context and in a more macroscopic perspective. 

In many cases the decisions to be taken by such systems require real-time responses which 

may vary from a few seconds to a few nano-seconds. This is often a very difficult task, 

especially when we need to combine huge amounts of data from different sources which may 

also reside in different devices/machines. 

Significant research has been conducted in order to handle the aforementioned 

problems and to build such systems [5]. However, the work is still fragile in real world 

conditions, requiring further research into creating more robust and viable solutions. For this 

reason, in this paper we propose our own strategies to tackle the problems of knowledge 

inference, storage, and dissemination. With respect to inference, we propose a two-level 

framework designed to maintain a low complexity in the algorithms involved in performing 

activity recognition. Instead of proposing ever more complex algorithms, we explore a different 
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approach in which our goal is to design an algorithm that can learn the cases that are 

consistently being misclassified by an activity recognition algorithm, and use this information to 

generate rules that can be applied to correct such cases. With respect to enabling context-

aware applications so that they can operate with the knowledge that the environment has 

acquired, we propose a middleware architecture that relies on the Semantic Web for knowledge 

representation, yet is intended to facilitate Quality of Service (QoS) in order provide 

performance guarantees for applications that need to be responsive in emergent situations, 

such as those that can arise in an assistive environment. 

The rest of the paper is structured as follows. In Chapter 2 we review existing work and 

trends on activity recognition and context-aware computing. In Chapter 3 we discuss our 

proposed two-level activity recognition framework; we present our experiments and evaluate the 

results. In Chapter 4, we propose a QoS-centered context-aware middleware framework for 

applications that need performance guarantees in order to operate smoothly in emergent 

situations. Finally, in Chapter 6 we provide some concluding remarks.   
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CHAPTER 2 

OVERVIEW AND RELATED WORK 

 

 With the technological developments that have taken place in the last few years, the 

possibility of providing automated assistance to people with physical and mental challenges is 

becoming a reality. Sensor technology can be used to sample information, and automatic and 

robotic systems can use the information to aid human subjects. However, in order to build such 

autonomous systems that can monitor and detect medical or behavioral emergent situations we 

require a solution to the problems of knowledge inference, storage, and dissemination. Only 

then can the appropriate actions take place, such as alerting the inhabitant, the caregivers, or 

the family members about the emerging situation. In this chapter, we look into the different data 

collection techniques and algorithms that are being used for activity recognition as well as the 

ongoing efforts in building context aware applications for smart environments. We highlight 

some of the existing challenges and we discuss how we believe they can be overcome. 

 

2.1 Data Collection Techniques 

 There are essentially two paradigms to activity recognition; these are video-based and 

sensor-based activity recognition. In video-based activity recognition, we rely on cameras and 

object recognition algorithms to determine the activities that a user is carrying out. Significant 

work has been done in the field of video-based activity recognition. Robertson, et al. [6] 

achieved activity recognition in video sequences by modeling the problem as a stochastic 

sequence of actions. Lymberopoulos, et al. [7] treated the problem of extracting a 

spatiotemporal human activity model from an assisted living environment using sensor 

networks. They used a data model consisting of <location, time, duration> tuples to derive 
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human activity patterns. Their experiment layout consisted of tracking cameras, door sensors, 

and passive infrared sensors to collect a data set on which they extracted a user's daily 

patterns. Hongeng, et al. [8] represented activities by considering them as a composition of 

action threads, where each thread belonged to a single resident. They exploited trajectory 

movements and shapes and used Bayesian methods to do inference. The key advantage of 

video-based activity recognition systems is that they are very informative sources of data. 

However, they are obtrusive and can introduce potential problems of privacy and security. 

These reasons have led to research using less invasive technologies to do activity recognition. 

In sensor-based activity recognition, we rely on small cost-effective sensor technologies 

that provide small bits of information that when combined can be used to infer the high level 

activities taking place. In the case of wearable-sensors, sensors are attached to the body that 

can capture information regarding the motions different parts of the body are undergoing. 

Patterson, et al. [9] used a combination of RFID gloves and RFID sensors in objects to do 

object-interaction based activity recognition. In their experiment, they used over sixty RFID tags 

placed in kitchen objects to be able to capture the identity of the objects being manipulated. 

Ravi, et al. [10] explored using a single tri-axial accelerometer worn near the pelvic region to do 

activity recognition. Gu, et al. [11] carried out an experiment combining RFID technology and 

body sensors, thus capturing human-object interaction as well as human movement. They used 

a pattern-based data mining approach towards solving the activity recognition problem. Stikic, et 

al. [12] used a combination of RFID tag readers and accelerometers to infer activities. They 

explored different acceleration features and algorithms. Their experimental results show that 

fusing both types of information, RFID and body acceleration, significantly improves accuracy. 

Another form of sensor-based activity recognition is the one in which sensor placement 

is within the environment and not on the inhabitants. Park, et al. [13] experimented with 

detecting human behaviors in an assisted living environment using the longest common 

subsequence algorithm. They define an episode as a sequence of events and compare the 
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current episode taking place against a dictionary of annotated episodes belonging to different 

activities. They used SunSpot [14] technology placed in a miniature smart-apartment. Singla, et 

al. [15] equipped an on-campus apartment with motion, temperature, and item sensors to 

perform activity recognition.  

 

2.2 Activity Recognition 

Many researchers have used probabilistic models to approach the problem of activity 

recognition. Their models differ widely depending on their data collection process, how they 

define activities, and the accuracy metrics they use. Patterson, et al. [9] used a combination of 

Hidden Markov Models (HMM) and Dynamic Bayesian Networks (DBNs). They initially explored 

a single state per activity HMM model. Later, they expanded their HMM to have multiple states 

per activity, however, this did not improve their accuracy results. Finally, they developed an 

object abstraction layer and used DBNs to combine the output of the HMM with their abstraction 

layer to obtain marginal improvements. Wu, et al. [16] explored the use of DBNs to infer the 

most likely activity and object labels in their work. Wilson, et al. [17] also used DBNs to exploit 

the spatial relationships between location and activity for simultaneous resident tracking and 

activity recognition. Singla, et al. [15] used HMMs to model sequential and interleaved activity 

recognition. They developed a data set from twenty volunteers performing a series of eight 

different ADLs in a campus apartment. Wu, et al. [18] used Factorial Conditional Random Fields 

(FCRF) to recognize multiple concurrent activities. Hu, et al. [19] proposed a two-level 

probabilistic framework called CIGAR (Concurrent and Interleaving Goal and Activity 

Recognition) for recognizing both interleaved and concurrent activities. They used Skip Chain 

Conditional Random Fields (SCCRF) to model interleaved tasks and a correlation graph to 

adjust inferred probabilities to model concurrent tasks.  

Most of the research work done so far focuses on developing new models and 

algorithms to tackle the problem of activity recognition. They do so by introducing more powerful 
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and complex implementations to capture more spatial and temporal relationships, and thus 

produce more accurate results. Unlike their work, our focus is on developing an algorithm that 

can work over existing algorithms to improve their accuracy by learning their limitations. Our 

approach is fundamentally different in that we are developing a framework that allows us to use 

simple activity recognition models that have low complexity and low data set training 

requirements to perform activity recognition by complementing them with rules that overcome 

their shortcomings. The advantages of this approach are many, one of which is that we are not 

bound to work on one single algorithm, but that as developments take place in the field we can 

migrate from our base algorithm to another, while maintaining the overall framework structure.  

 

2.3 Context-Aware Applications 

There is significant research regarding the development of applications that use context 

information to make decisions; these are commonly known as context-aware applications. 

Developing such applications is challenging, as different smart environments are composed of 

different hardware and present their own architectural limitations. The solutions proposed have 

been to develop frameworks, middleware, that abstract the physical details of the smart 

environment and provide a high level API to enable applications to have access to context 

information. With the introduction of the Semantic Web [20] and semantic representation of 

knowledge in general there has been a significant turn into using such technologies for 

knowledge management, reasoning and decision making in smart environments and context 

aware applications in general [21]. Ontologies [22] have been used for formal representation of 

concepts and relations between them and structured data representation methods such as 

RDF/XML [23] have been used for description of resources and meta-data. Amongst the 

increasing number of ontology centered middleware, we highlight Construct [24], SOCAM [25], 

COBRA-ONT [26], and Semantic Context Spaces [27]. All these middleware address most of 

the issues identified as important for creating a functional environment, however they do not 
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dwell much in issues of efficiency and performance that arise due to the existing setup, whether 

in terms of resources or in computation costs. While the Semantic Web offers a great 

framework for information management and dissemination, performance issues are often left 

unaddressed. In this work, we approach context-aware applications from the perspective of 

performance and QoS, and we suggest methods that can address the arising issues. 

Following, we explore what we believe are two key problems that must be addressed to 

enable context-aware applications in smart environments. First, we examine the problem of 

knowledge inference in the form of activity recognition; we discuss our proposed two-level 

framework and evaluate our results. Then, we examine the importance of QoS in context-aware 

middleware through examples, and present a framework to provide such functionality in 

middleware that rely on Semantic Web technologies.   
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CHAPTER 3 

ACTIVITY RECOGNITION 

 

Activity recognition is a well-known problem within the research community in which our 

goal is to determine the activity or set of activities that one or more inhabitants are performing 

within an environment. The definition of an activity itself however, is not as well defined, 

generally because human beings can conceive and perform activities in a very wide range of 

ways. Regardless of the interpretation or the variations introduced by specific individuals during 

the execution of an activity, spatial and temporal characteristics are shared amongst the 

different ways in which an activity can be performed. To develop a model that can address the 

problem of activity recognition, a common approach is to rely on learning algorithms that 

generate probabilistic models. The requirement, however, is that an annotated dataset be 

available to train the algorithm and create the model. In this chapter, we define key terms, 

explain a classification for activities based on their temporal characteristics, and describe 

metrics that are used to quantify the validity of a solution. We next describe a probabilistic 

model, and illustrate its shortcomings and the need for better solutions. Then, we present our 

proposed method to overcome those shortcomings and elaborate on its technical aspects. 

Finally, we describe our experimental setup and evaluate the results. 

 

3.1 Problem Definition 

When users interact with an assistive environment, they trigger sensor events. We 

define an event as a response of a sensor when a given condition is satisfied. A common way in 

which sensors produce events is when they exceed a certain threshold. An example would be a 
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light sensor that produces the “On” event when the light exceeds a certain light intensity value, 

and produces an “Off” event when the light intensity drops below a given intensity value. 

 

Definition 1: An event ei is a tuple <id, time, value> where i is the unique sensor id. 

 

An episode is defined as a collection of all the events that were triggered by the same 

person during a finite amount of time. Thus, if our time granularity is a day, we can say that an 

episode contains the sensor events that were triggered by a person throughout the course of his 

daily routine in an assistive environment. 

 

Definition 2: An episode is a time ordered collection of events                       where   

is the id of the last sensor event triggered. 

Definition 3: A dataset D is a collection of episodes. 

 

A contiguous series of sensor events present in an episode are usually triggered while 

performing one single activity. In training data sets, events are labeled according to the activity 

that triggered the event. Therefore, under the assumption that each event only has one activity 

label in the training dataset, we can define    as a sequence of events all of which have the 

same activity label la. We define the functions L, E; and T; where L returns the label of a 

sequence   , E returns a specific event of a sequence   , and T returns the start time of 

sequence   . 

 

Definition 5: We define       as the activity label la assigned to Qi 

Definition 6: We define         as the j
th
 element in sequence     

Definition 7: We define       as the start time of sequence    

Definition 8: We re-define an episode Pk as a sequence of sequences    where: 
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3.1.1 Activity Types 

Activities can be classified into different types according to their temporal pattern of 

execution. We distinguish three types: sequential, interleaved, and concurrent. When a user 

performs an activity sequentially, it means the events triggered from the beginning to the end of 

an activity appear contiguously within an episode. People perform activities in a much more 

complex fashion, where they can stop during the course of an activity to start another one, and 

later at some point in time return to finish the previous activity. We refer to these cases as 

interleaving or interwoven activities. The third case is when a person is carrying out multiple 

activities at the same time. Concurrency can be regarded as a special type of interleaving 

pattern where the activities in question are interleaving very quickly and it would be in our 

nature to refer to them as happening concurrently. The concept of concurrency is important 

when the algorithms evaluating accuracy deal with time-slices rather than with single events.  

 

3.1.2 Accuracy Metrics 

 There exist different metrics to evaluate the performance of an activity recognition 

algorithm. We highlight two metrics: 

 Event accuracy: Label every event in a data set with one or more activity labels and 

then calculate the percentage of correctly labeled events. 

 Time-slice accuracy: Divide all events in a data set into groups based on time. Then, 

label all events taking place in a time-slice and count the percentage of time-slices that 

were properly labeled. 
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A single event can have multiple labels in a data set depending on the researcher‟s criteria 

for the definition of concurrency. Multiple variants exist based on how they penalize the cases of 

partial or improper labeling and the size of the time window used.  

Within these two metrics, three variables need to be measured; these are precision, recall, 

and overall accuracy. 

 Precision: Proportion of the data labeled as activity n that actually was from data 

labeled as activity n in the training data (ground truth). 

o Formula: True Positive / (True Positive + False Positive) 

 Recall: Proportion of the data originally labeled as activity n in the training data set that 

was correctly classified as activity n 

o Formula: True Positive / (True Positive + False Negative) 

 Overall accuracy: Proportion of the data that was correctly labeled 

o Formula: True Positive + True Negative / Total number of events 

 

 Algorithms can evaluate their performance because they rely on an already labeled 

dataset. The common approach is to divide this set into two parts, one called the training set 

and the other one called the test set. A typical strategy to predict the accuracy of an activity 

recognition algorithm in a real scenario is to perform cross-validation during the analysis of the 

algorithm‟s performance. 

 

3.2 Hidden Markov Models 

A Hidden Markov Model (HMM) is a statistical model in which the system being 

modeled is assumed to be a Markov process with unobserved state. While the state is not 

visible, the output dependent of state, known as the observations, are visible. An HMM consists 

of a finite number of states, each of which is associated with a probability distribution over the 

possible observations. An illustration of the general architecture of a HMM is shown in Figure 1. 
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The arrows represent conditional dependencies. At a given time t, the random variable x(t) is 

the hidden state and the random variable y(t) is the observation.  

 

Figure 1 – General architecture of a Hidden Markov Model. 

Two assumptions are made by the model. The first one is the Markov assumption, 

which says that the conditional probability distribution of any hidden state x(t) at time t depends 

only on the value of its preceding hidden state        at time t - 1. Thus, any states prior to 

       have no influence on the values of a state at time t. The second one is the 

independence assumption, which says that the value of the observation y(t) depends only on 

the value of the hidden state x(t) given at time t. 

Hidden Markov Models (HMM) are known to perform well in cases where temporal 

patterns need to be recognized. In the case of activity recognition, sensor event values and their 

relationships are used to train the model. Figure 2 illustrates an example of a single-state per 

activity HMM.  

 

Figure 2 – Single state per activity HMM. 
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In Figure 2, the ellipses are states that represent activities. The small circles represent 

observations about the environment, such as events triggered by infrared, pressure, motion, 

and bed sensors. In the previous example, every activity is represented by a single state. In 

order to build the HMM, a typical strategy is to do statistical analysis of the training set to 

determine the initial probabilities, transition probabilities, and emission probabilities for each 

state. The initial probability of the states represents the likelihood that an episode would start 

with a given activity. The transition probabilities represent the likelihood that given a current 

activity is taking place, another one would follow it. The emission probabilities represent the 

likelihood of observing a given sensor event in a given activity. 

Typical implementations of HMMs for the problem of activity recognition use either a 

single state [9, 15] or multiple states [9] to represent each activity. Determining a strategy to 

divide a single activity into multiple states such that the overall accuracy of the model actually 

improves is a non-trivial problem. Attempts [9] to improve accuracy by increasing the number of 

states do not automatically guarantee an accuracy improvement. Many factors can influence the 

effectiveness of a multiple state per activity model, such as the data or data collection process, 

and the design logic followed to develop the HMM. 

In order to determine the sequence of activities that took place in an episode, it is 

necessary to determine the most likely states that caused the observations. Two common 

algorithms are listed: 

 Forward-Backward [43]: Algorithm for finding the most likely state s at a given time t 

for a given observation. 

 Viterbi [28]: Algorithm for finding the most likely sequence of states that correspond 

to a sequence of observations. 

 

While the most probable state obtained with the Forward-Backward algorithm is the 

most likely to be correct at a given point in time, the sequence of individually most probable 



 

15 

 

states is not likely to be the most probable sequence. This is because the probabilities for each 

point are calculated independently of each other and thus do not take into account transition 

probabilities between states. The Viterbi algorithm however, does take into account state 

transition probabilities. 

 

3.3 Proposed Method 

In order to model complex relationships and dependencies between events in an 

activity, it is required to increase the number of states and thus the complexity of the Hidden 

Markov Model. Adding such relationships can make the model grow exponentially and be no 

longer tractable. For this reason, we believe the solution is a two-level approach were we allow 

an algorithm to do the first estimation of the data, and then we allow a second algorithm to 

correct more complex event relationships which the first algorithm could not handle. By 

separating the problem of activity recognition into a multi-level problem, we simplify the 

complexity of the algorithms involved in estimating the correct labels for the events observed. 

However, it is important for the second level estimation to correct only the cases that are 

consistently being missed by the first level estimation. Thus, the goal of the second level 

algorithm is to identify frequently incorrect estimations by the first algorithm and execute a 

strategy to re-label the mislabeled events. Figure 3 illustrates the overall architecture of the two-

level framework. 

 

 

Figure 3 - Data flow in the two-level framework for activity recognition. 
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3.3.1 Mining Association Rules     

Our second level algorithm operates by mining rules between the training data and the 

estimations produced by the first level algorithm on the same training data. Once the mining 

process is complete, a dictionary of the most valuable rules is kept and used them to re-

estimate the output produced by the first level algorithm on the test data. We define association 

rule and invalid sequence as follows. 

Table 1 – Symbols. 

ei A tuple <id, time, value> generated by a sensor, where i is the unique sensor id 

la A label for an activity a 

Pk A time ordered collection of events Pk = {e1, e1, e2, e2, ..., ex} where   is the id of the 

last sensor event triggered. 

D A collection of episodes 

Qi A sequence of events all of which have the same activity label     

L(Qi) The activity label in sequence    

E(Qi, j) The j
th
 element in sequence    

      The start time of sequence    

 

Definition 9:  Given a sequence of events    with activity label   , and the sets of events sa 

(antecedent set) and sc (consequent set) we define an association rule r as an implication of the 

form:                                                              .  

Definition 10: Given a sequence of events Qi with activity label   , we define the sequence as 

invalid if it violates the rule r. 

 

In order to mine rules in an efficient way, we propose the following algorithm. For each 

episode belonging to our training dataset D, and for each activity   we create two lists. One 

containing a series of sequences of events that we know belong to the given activity     
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                 , and another list containing the series of sequences of events that were 

improperly labeled as belonging to activity a by the first-level algorithm; we call the second list Li 

= {Q1, Q2, Q3     Qy}. We take each sequence and convert it into a set, so we now have two lists 

of sets Lvs = {s1, s2, ,..., sx} and Lis = {s1, s2.    sy}. For each set    in the invalid list, we use    as 

the antecedent set    of a rule, and we use the subtraction of a valid set    from the invalid set    

as the consequent set    of the rule. If the consequent is an empty set, no rule is created. We 

call the resulting rule a candidate rule, since we have not yet evaluated whether it will be used 

or not on the test set. The intuition behind these operations is to derive event dependencies, 

where the presence of a set of events    strongly correlates with the presence of an event 

    . An example follows. 

Table 2 - Example candidate rules. 
 

Invalid sets for activity 

a in data set d 

Valid sets for activity 

a in data set d 

Candidate rule sets generated 

      

{1,3,20,36}, 
{2,6,13, 20}, 
{4,10,20,30} 

{2, 6, 8, 10}, 
{6, 8} 

{1,3,20,36}, {2,6,8,10} 

{1,3,20,36} {6, 8} 

{2,6,13,20} {8, 10} 

{2,6,13,20} {6,8} 

{4,10,20,30} {2,6,8} 

{4,10,20,30} {6,8} 

 

All candidate rules generated are stored for future use; we refer to them as being in the 

candidate rule pool. Whenever a new candidate rule is to be placed in the pool, we attempt to 

combine it with all existing candidate rules already in the pool. This combination process is 

explained in detail later. In the process, we evaluate the combined rules with a fitness function 

and keep the fittest combined rule. This one then becomes a valid rule and is kept for future use 

in the valid rule pool. The methodology for combining candidate rules, evaluating fitness, and 

combining valid rules is described below. A flowchart description of the process for generating 

rules follows. 
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Figure 4 – The process of generating rules. 

 

The combination process of the new candidate rule with existing candidate rules is as 

follows: For each candidate rule already existing in the pool, we perform an intersection of the 

antecedent sets    of the rules, and a union of the consequent sets    of the rules. The logic 

behind these operations is that when we do an intersection of the antecedents, we are 

guaranteeing that the rule can be applied to the original invalid sequences that gave place to 

the rule. It also helps determine the common events that appear in invalid sequences. By doing 

a union of the consequent sets we make sure that the application of the rule would not violate 
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valid sequences that have all the elements of the antecedent set because they should contain 

at least one of the elements in the consequent set. The candidate rule combination algorithm is 

shown below where    is the antecedent set of a rule and    is the consequent set of a rule. 

 

 

 

The fitness algorithm is responsible for evaluating the expected performance of a rule 

or candidate rule. In order to do so, we run the first level algorithm on the training dataset 

excluding the episode we used to derive the rule and count the number of events that do not 

belong to activity   but where assigned a label for activity   (false positives) and the number of 

events that belong to activity   but were not assigned a label for activity   (false negatives).  We 

now execute a rule we have created for activity   on the same training dataset and repeat the 

label counting process. If the difference between invalid count prior to the execution and after 

the execution of the rule is positive, the rule is valid, and we return this difference as the fitness 

value of the rule. An algorithmic description follows. 
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Once the rule is created, it will be stored in the valid rule pool, however, before this is 

done, it will be compared against all other existing rules that have the same antecedent set    

or whose antecedent set is a superset of the new rule's antecedent set. If there is any other rule 

that matches the criteria, the rules will be combined together. The algorithm for combining rules 

is presented below. 
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 In the event a new rule is a subset of an existing rule, we combine together their 

consequent sets and replace the existing rule with the new rule. The intuition is that wherever 

the existing rule would apply, so would the new rule, therefore, it is not necessary to have both 

rules. However, we need to keep all elements of the consequent set of the existing rule, so that 

the resulting rule does not re-label sequences that would have otherwise been left unmodified 

by the original rule. 

Once we have a set of valid rules, we can apply them to the output of the first level 

algorithm to identify invalid sequences. 

 

3.3.2 Applying Association Rules 

 In practice, it is often the case that a sequence    is missing either the leading or trailing 

events due to incorrect labeling by the first-level algorithm. For this reason, a perfectly valid 
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sequence of events might resemble an invalid sequence and violate a rule   that we have 

determined must apply to sequences of a given activity  . To overcome this situation, we relax 

our association rule to include another set of events on the right hand side. We call this new set 

  , the neighbor set. The neighbor set is determined during the execution of a rule by obtaining 

preceding and following events with any activity label that are within a time   of the sequence 

being evaluated. An illustration follows: 

 

Figure 5 – Potential issues when applying a rule. 

 In Figure 5 we can observe part of an episode in which several sensor events have 

triggered. These events are represented by circles and contain in the middle a descriptive name 

that indicates the source and type of event that took place. These two pieces of information are 

generally used to create a corresponding unique event id. For example, sources M14-M18 

represent motion sensors located in different parts of the assistive environment, and “On” and 

“Off” event types represent whether they have detected movement or whether they have 

stopped detecting movement. The sensor P01 represents the phone sensor, and the “START” 

and “END” identifiers refer to whether the phone was activated or deactivated. As illustrated in 

Figure 5, a sequence of events starting at M15_ON and ending in P01_END have been labeled 

with the same activity label and thus are a sequence   . However, the first level algorithm failed 

to determine that the event P01_START also belongs to the same sequence and therefore 

should have the same label. If our rule where to specify that the consequent set    of the rule 
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for this activity requires the event P01_START, the sequence might accidentally be re-labeled 

even though it is valid for the given activity. To overcome this problem, we rely on the neighbor 

set   . In order to determine the neighbor set, we use a time argument   that is determined by 

the fitness function. The resulting rule is as follows: 

                                                                 

 

3.3.3 Mining Temporal Rules 

Another form of rule explored is the one that imposes a restriction between the temporal 

precedence of a sequence    with activity label    and an event   ; we call this a temporal rule. 

It is of the form:               (  )             

Working with all the different types of events that exist in the dataset would require the 

mining process to be very complex and exhaustive. However, limiting the mining process to 

focus only on a small set of events can be accomplished. In order to determine the events to 

consider for the mining process, we rely on a threshold    to determine when an event is 

considered frequent in a given activity. Once we have identified a frequent event, we mine its 

time relationship with respect to the valid sequences and determine the value of  .   

Once we have determined potential violations of our rules, we can use this information 

to further improve on the accuracy results. By determining sequences of events that violate 

rules and re-evaluating them as part of another activity's episode, we can improve recognition 

accuracy. However, this poses a challenge, as while detecting invalid combinations might be 

more intuitive, finding a valid activity label to substitute the current one is a non-trivial problem 

 

3.3.4 Re-labeling Invalid Sequences     

Once the first-level algorithm has estimated the labels for the events in the test dataset, 

we use the second-level algorithm to determine invalid sequences that violate the rules we have 

previously mined from the training dataset. At this moment, we can now proceed and re-label 
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these invalid sequences with a new label with the expectation that the new label assigned will 

be correct and thus that the overall accuracy of the final estimation will be greater. In order to 

determine this new label, we propose various strategies. The first one is to use the Forward-

Backward algorithm to determine for each specific event ej at time t  that belongs to an invalid 

sequence Qi, the most likely state that caused this event. Once we know the most likely state, 

we can infer the corresponding activity, and thus the activity label to assign to ej. In order to 

determine the most likely state, we compute the Forward-Backward probability of the event ej at 

time t for each state, and we pick the state with highest probability that does not correspond to 

the activity of the original invalid label. However, as noted before, the Forward-Backward 

algorithm can determine two states s1 and s2 for times t and t+1 such that the transition 

probabilities between these two states would make such a combination unlikely or impossible. 

In order to overcome this issue, we propose a different variation in which for an invalid 

sequence Qi, we label all events in the sequence with the same activity label, which is the mode 

of the labels that were determined following our previously discussed strategy. Finally, our last 

variation is to choose an activity label only from those activities we believe precede or follow the 

invalid sequence. In order to determine what activity label is most suitable of the preceding or 

following activities, we pick the one whose state returned the highest probability for the given 

event e at time t by based on the Forward-Backward algorithm. 

 

3.4 Experimental Setup 

In order to evaluate our algorithms, we test them using data collected from volunteer 

participants performing activities in our assistive environment testbed. This testbed is a 

miniature apartment located inside the Heracleia laboratory; it includes a kitchen, a dining room, 

one bedroom, and one bathroom. The environment is equipped with motion, acceleration, 

temperature, pressure, switch, light, infrared, and item sensors; placed in a non-obtrusive 

manner. The layout of the apartment is shown in Figure 6. 
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Figure 6 - Heracleia AtHome apartment testbed (@Home). 

 

Most of the sensors provide analog readings; we use different algorithms to convert the 

raw data into events (i.e. On/Off). The sensor key legend is shown in Table 3. 

Table 3 - Sensor key legend. 
 

Abbreviation Sensor Type 

M Motion Sensor (On/Off) 

I Infrared Sensor (On/Off) 

P Pressure Sensor (On/Off) 

L Light Sensor (Sunspot board- Analog) 

A Acceleration (Sunspot board) 

T Temperature (Sunspot board - Analog) 

S Switch (Sunspot board - On/Off) 
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We use two main types of hardware to handle the sensors in our apartment. The first 

type is SunSpot devices [14], which are wireless miniature computers with an embedded sensor 

board. The second type is Phidgets interface kits [29], which are embedded boards to which a 

wide variety of sensors can be attached. In order to operate with the Sunspots and the Phidgets 

interface kits, we rely on two different software applications that have been developed at the 

Heracleia laboratory. The first program is the ApartmentBase [30] data collection tool; the 

second program is the Phidgets sensor tool. Additional information regarding the Phidgets 

sensor tool can be found in Appendix B. 

Additionally, we have placed cameras within the apartment for validation purposes. The 

cameras are not used for activity recognition but for validating the data set annotations. 

Furthermore, participants are instructed to say out loud whenever they are starting a new 

activity, this audio/video is recorded by the cameras to help data set annotations be as accurate 

as possible. 

 

3.4.1 Participant Activities 

Twelve volunteers were instructed to perform eight different activities all belonging to 

either the category of ADLs or instrumental ADLs. They were provided with a description of the 

activities and the layout of the apartment. Their task was to execute all eight activities 

throughout a combination of three different scenarios; morning, evening, and night. Participants 

were allowed to repeat activities so long as these were not within the same scenario. This was 

done in order to be able to differentiate interleaving from cases where a participant performed 

again an activity that was previously completed. In order to guarantee a certain level of 

complexity, participants were requested to perform some interleaving and concurrency 

throughout the execution of the activities. The activities performed are described below. 
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1. Taking medication: Participant opens a drawer containing medication and consumes 

a pill with or without water. He can obtain the water from either the bathroom or the 

kitchen. 

2. Toileting: Here the participant performs hygiene and toileting activities, such as 

washing hands, brushing teeth, grooming, or taking a shower. 

3. Answering phone: Participant responds to a phone call or initiates one.  

4. Sleeping: Here the participant rests on the bed located in the bedroom. 

5. Watching TV: Participant turns on the TV switch, interacts with the TV and remote, 

and turns off the TV switch at the end. 

6. Reading books: Here the participant opens any of the book drawers, extracts books, 

and proceeds to read them in any desired location. At the end, the participant must 

return the books to their original place. 

7. Choosing outfit: Participant changes clothes by opening the clothes drawer. At the 

end, the participant must close the drawer 

8. Cleaning: Participant uses a broomstick to clean the bedroom and/or toilet areas. 

 

The results were recorded through video cameras for annotation and validation 

purposes. Volunteers were requested to mention throughout the course of a scenario whenever 

they were starting or resuming an activity. A researcher was in charge of labeling all events 

collected based on the video and user feedback. A sample data set is shown in Figure 7. 
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Figure 7 – Annotated sensor events example. 

 

3.5 Experimental Results 

In order to validate our algorithms, we tested their accuracy results on two different 

datasets. The first dataset was collected in the Heracleia apartment testbed where a total of 10 

participants performed three different scenarios, on average each 12 minutes long. The second 

dataset belongs to the CASAS Smart Apartment testbed [15]. This data set consists of twenty 

trace files (episodes), each for one volunteer conducting a series of eight different activities. A 

full description of their activities, the average times taken by participants to complete the 

activities, and the average number of sensors triggered per activity are available in [15].  

 

First, we evaluated which of the two algorithms Viterbi or Forward-Backward would 

produce a more accurate labeling for the Hidden Markov Model on the two datasets. Figure 8 

illustrates the results. The Forward-Backward algorithm relies on two different probability 

values; these are called alpha and beta. In order to have beta probabilities, we assigned non-

zero probabilities to all states. When a state had a zero probability observation, we assigned it a 
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small delta value δ = 0.0001. For evaluating the Viterbi algorithm on the dataset, we did not 

modify observation probabilities to be non-zero. 

 

 

Figure 8 – Accuracy comparison for two HMM related algorithms. 

 

Our findings suggest that the Viterbi algorithm outperforms the Forward-Backward 

algorithm in finding the sequence of states that best fits the observed events. We believe this is 

the case because the Viterbi algorithm also captures the likelihood of transitions amongst 

states. In any event, findings suggest that using the Forward-Backward algorithm for re-labeling 

events is a possibly good strategy. 

 

We evaluated the performance of the single state HMM algorithm, the combination of 

HMM with association rules (HMM + AR) and the combination of HMM with temporal rules 
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(HMM + TR) on the CASAS “Interwoven” data set. For our charts, we measure the percentage 

of labels correctly labeled for a given activity vs. the total number of labels assigned for the 

given activity. For overall accuracy, we use the event-accuracy metric. Figure 8 shows the 

results we obtained and Table 4 has the overall accuracy for each algorithm. 

 

 

Figure 9 – Accuracy results on “Interwoven” dataset. 

 

In the chart above we can see the average recognition results obtained testing the 

“Interwoven” dataset using leave-one-out cross validation. The activity names are listed in the x-

axis and the individual activity accuracy is listed on the y-axis. The activities that improved most 

when using the two-level framework approach are “Conversing on Phone” and “Selecting 

Outfit”. 
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Table 4 - Overall accuracy on “Interwoven” dataset. 

Algorithm Overall Accuracy σ 

HMM 77.2%. 7.93 

HMM  + AR 78.2% 7.36 

HMM + TR 80.4% 6.21 

 

From the report produced by our Assistive Room Activity Analyzer tool, described in 

Appendix A, we can observe that rules have been generated, however, only rules for activity 

„Conversing phone‟ have survived the strict criteria of fitness, and have been applied. A total of 

11 rules were created, however only 7 were applied, these are listed in Table 5. The association 

rules applied are exclusively for sequences labeled as „Conversing phone‟, whose activity label 

is the value 4. A list of the valid rules generated is presented below, where events are 

represented with a name consisting of the source and type of event, which are the two types of 

identifiers that are used to form the event‟s unique id. 

Table 5 - Files modified by rules in “Interwoven” dataset. 

File 

name 

Activity Rules applied 

         

p24 4 {M13_ON} {P01_END,P01_START} 

p28 4 {M13_ON} {P01_END} 

p29 4 {M13_ON} {P01_END} 

p32 4 

 

{M15_OFF} 

{M13_ON} 

{P01_END,P01_START} 

{P01_END} 

p34 4 

 

{M13_ON} 

{M14_ON} 

{P01_END,P01_START} 

{P01_END,P01_START} 
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In Table 6, we display the events that were re-labeled by the HMM + TR algorithm on 

the “Interwoven” dataset. The left column lists the name of the episode (trace file) modified. 

Table 6 – “Interwoven” dataset relabeling results. 

Data set Events with 
invalid label 

Events 
tagged 
invalid 

Events relabeled 
correctly 

p04 10 10 8 
p13 55 55 44 
p14 96 96 52 
p15 64 68 46 
p17 0 19 0 
p18 18 18 2 
p19 6 6 6 
p20 36 36 0 
p23 23 27 20 
p24 66 66 41 
p25 27 29 2 
p26 0 0 0 
p27 43 46 37 
p28 16 16 15 
p29 5 5 5 
p30 6 6 6 
p31 39 61 30 
p32 17 22 17 
p33 76 76 7 
p34 46 46 1 

 

We conducted a one tailed paired t-test to compare the performance of the single-state 

per activity HMM and the HMM + TR algorithm. We obtained a p value < 0.002. We can 

observe from the results that temporal rules performed significantly better than the association 

rules. Also, they were able to generate temporal rules for multiple activities that violated 

temporal constraints. We have a 3.5% improvement with temporal rules vs. a 1% improvement 

with association rules. 



 

33 

 

 

Figure 10 – Accuracy results using single-state HMM for “Heracleia” data set. 

 

When experimenting with the Heracleia dataset, the use of neither association 

generated very few rules and an overall improvement smaller than   .  No temporal rules were 

generated. Our conjecture for the small number of association rules generated is that the data 

set involved too few sensors that were common to many activities. As for the lack of temporal 

rules, we believe this to be because of two reasons. The first one is that the duration of activities 

did not reflect the natural pattern of execution of an activity, as participants were requested to 

keep a similar duration between activities. The second reason is that unlike in the “Interwoven” 

dataset, participants performed activities multiple times per episode, thus, the data has greater 

amount of temporal variation for one single participant‟s execution of each activity. Thus, we 

believe that the algorithms were not capable of exploiting association or temporal relationships 

as effectively as in the case of the “Interwoven” dataset.  
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CHAPTER 4 

QoS IN ONTOLOGY-CENTERED MIDDLEWARE 

 

The Semantic Web [20] and its technologies have widened research and developments 

in many different fields. Context-aware computing has found in ontologies [22] a well-defined 

structure for knowledge representation and reasoning. Numerous architectures have been 

proposed [24,25,26,27] to enable context-aware applications in smart environments, many of 

which use semantic web technologies at their core in order to provide knowledge storage, 

reasoning, and dissemination. These middlewares have been designed to address issues 

identified as important by their authors for creating a functional architecture to enable context-

aware applications. However, they do not dwell much on issues of efficiency and performance. 

In this chapter, we propose an ontology-centered architecture focused on the idea of Quality of 

Service (QoS) and performance. We believe this feature to be critical in order to enable the 

operation and reliability of context-aware applications in assistive environments, where 

emergent situations arise and quick application responses are critical. 

QoS has been extensively studied in application domains such as Networking and 

Multimedia [32,33,34]. In those domains, QoS has been formalized by QoS specification 

languages [35] and specific solutions have been proposed. However, although such solutions 

can be taken into consideration when designing QoS enabled assistive environments, they 

cannot be directly applied due to the more complex nature of context aware applications which 

rely on heterogeneous devices and data types. For that reason, in the next sections we propose 

a framework for the design of middleware that will provide QoS by controlling the behavior of 

the client applications that the system supports using a protocol for in-advance agreements 

which are achieved at the time each client requests service from the system. 
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4.1 Ontology Centered Middleware 

 Ontology centered middleware focuses on providing a unified knowledge and data 

model. Several architectures that follow this principle have been proposed [24,25,26,27]. They 

attempt to simplify application development by providing a useful set of APIs and a robust 

framework for knowledge sharing and derivation. A general architecture design is illustrated in 

Figure 11. 

 

Figure 11 – An example ontology-centered middleware architecture. 

 

Following, we define a few key terms related to ontologies [37] that will be used throughout our 

work. 

 A class defines a group of individuals that belong together because they share some 

properties. 

 A property is a binary relation that specifies class characteristics. 

 An individual is an instance of a class; it has a unique identifier and actual property 

values. 

 Cardinality is a restriction on the number of values an instance of a class can have for a 

given property. 
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  An ontology is a set of axioms which place constraints on a set of classes, their 

properties, instances, and operations, and the types of relationships permitted between 

them. 

 Inference is the process of using ontology axioms to derive additional information based 

on the available data. 

 

In these works [24,25,26,27], authors have identified the following major components 

that a comprehensive middleware should cover: 

 

(i) Sensor discovery and sensor data collection. Any context-aware architecture will 

operate with sensors transmitting data. The protocols used for sensor discovery and data 

collection will play an important role in the overall flexibility and adaptation that the system offers 

to integrate and work with existing hardware. 

 

(ii) Inter-operable model for creating, accessing, and storing ontological data. A common 

model that can be shared by all software applications and middleware services. This is 

accomplished through the use of ontologies, which help define concepts and their 

corresponding properties. In [27], Sensor Wrappers are proposed as a mechanism to convert 

raw data into ontology data while separating sensor hardware specifics from applications. 

Frameworks such as Jena [36] are used to store both the ontologies, and data, generally in 

Semantic Web standard formats such as OWL [37] and RDF [23] triples.  

 

(iii) Ontological inference. The use of ontological reasoning through the language 

constructs available, combined with rule-based reasoning allow for a flexible mechanism to 

derive knowledge. Some widely used inference engines include Jena [36], Pellet [38], and 

Racer [39]. 
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(iv) Ontological data access and dissemination. Data routing, synchronization, and 

dissemination algorithms differ significantly depending on whether the architecture is 

centralized, distributed, or P2P. The query language of preference has become SPARQL [40] 

since its adoption as a W3C standard. Queries are represented as a series of RDF triples 

<Subject, Predicate, Object> where some triple values are left as query variables. 

 

(v) Efficiency. Many strategies are proposed. Efficient persistent data storage in schema-

aware [41] databases is one of the proposals, where a table is created for every single 

<Subject, Predicate> combination. This increases performance time when accessing information 

that is maintained in a database. To reduce inference time, strategies focus on minimizing the 

amount of on-demand reasoning that needs to be carried out and establish mechanisms to take 

advantage of off-line reasoning [31]. Other strategies proposed include data subscription by 

applications and maintaining the data store as minimal as possible [25]. 

 

The previous architectures, however, do not propose methods to allow for QoS and the 

required resource management techniques to accomplish such. Given that inference is a major 

deterrent in performance and limits the viability of such infrastructure for time-sensitive 

applications, we model inference execution time as a maximization problem and provide a 

framework to enable solving the underlying problems in inference time. We look into the 

required aspects [42] to allow for QoS in such architectures. Next, we illustrate examples of 

time-sensitive applications and the problems they face in the traditional ontology centered 

architectures that have been proposed so far. 
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4.2 QoS in Practice 

Following we describe an example of a context-aware scenario in which applications 

require QoS in order to function properly. Our intentions are to highlight some of the existing 

problems with context-aware applications, and later address these in our proposed QoS-aware 

architecture. 

 

4.2.1 Example problem that requires QoS 

We consider the scenario of a smart building used by a company and equipped with 

sensors that are capable of detecting the employee's location and current status. Furthermore, 

the building has an ontology centered middleware architecture in place responsible for 

collecting, transforming and distributing data to satisfy application queries, like portrayed in 

Figure 11. We now consider a series of context-aware applications running in this environment, 

each of which have different QoS requirements and work by requesting data from the 

middleware. The middleware is in charge of managing and distributing the data in appropriate 

formats such that the advantages of a unified representation for concepts and data are 

maintained.  

The first application is an activity reminder; it attempts to periodically update the 

employee with possible activities he wants to carry out. The activities that the employee wants 

to do are initially programmed into his PDA at a given frequency, for example every day, then 

the PDA application will query the middleware to obtain the person's current and past location 

as well as status information to determine how best to organize and execute his day to day 

activities. The reason why this application is time-sensitive is because as you carry out your 

daily activities, you will visit locations and might deviate from the proposed routes, in those 

cases, the application needs to recalculate new routes or schedules that might meet your 

interests. The application must execute in a short period of time, because if it takes time the 

user is not likely to wait, and instead will think by himself what activity to carry out next and 
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ignore the recommendation. For this reason, we think a short response time, like for example 

less than ten seconds, might be acceptable; anything longer might prompt the user to put down 

his PDA and plan his own schedule.  

The second application is an energy efficiency adjustment program; it retrieves current 

location information of all people in the building as well as past location information to establish 

what regions should reduce their energy consumption in the building. As the current location 

information for the employees changes and deviates from the predicted model computed from 

past location information, the energy efficiency program needs to adjust itself. This application is 

also real-time, as updates in the application's behavior should happen in very short periods of 

time so as to avoid energy settings from disrupting users in their day to day activities. We 

consider for example, that this application's response time might need to be around 2 seconds, 

so that it can adjust energy settings in different regions fast enough so as to not trigger a 

negative reaction from employees, or force them to have to do manual adjustments to energy 

related devices.  

A possible representation of the concepts involved in these example applications is 

represented bellow. We distinguish four different ontologies, these are: ActivityEvent, 

LocationEvent, TimeEvent, and Employee. 
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Figure 12 – Sample UML diagram displaying application ontologies. 

 

The idea behind these ontologies is that both applications share the same knowledge 

model, they submit queries requesting the same type of ontology data. 

 

4.2.2 Existing QoS related problems     

 We distinguish two main problems in the applications defined in the previous 

section when used in the currently existing ontology centered middleware architectures. The 

first one is that the existing architectures have no information regarding the access patterns and 

requirements of the different applications; therefore they are unable to provide Quality of 

Service. We believe the solution to this problem is to introduce a QoS negotiation mechanism 

between client application and middleware where the client can agree to certain access 

patterns, and the middleware can agree to carry out multi-resource reservations to guarantee 

query execution times. On the other hand, we want to introduce as minimal a complexity as 

possible to the design of client applications.  

 The second problem, and the main reason why existing work does not dwell in QoS is 

that ontological inference is a computationally expensive task, generally considered intractable, 

and in order to be able to guarantee execution times, it is necessary to impose limitations on the 
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amount of data being processed. For example, in Figure 12, both applications will request for 

LocationEvent and ActivityEvent data. The size of the retrieved data by the client applications 

varies depending on the nature of the data, the amount of data that has been collected so far by 

the sensors, and the requirements of the client application. The solution is indeed to limit the 

size of the data set, and we propose a strategy that allows for great flexibility with the expense 

of introducing the client into the process of sensor data transformation into ontological data.  

There is a conflict of interest by different applications running on the middleware as to 

their expectations on how data should exist in the system to provide their QoS requirements. 

For example, the previously discussed applications will require the ActivityEvent and 

LocationEvent data set to be of different sizes, matching their desired response times. One 

possible solution to this problem is to introduce the client in the process of transforming raw 

sensor data into ontological data. By allowing the client to participate in the decisions on how 

data should be created, updated, and deleted at the initial point of service negotiation between 

client and server, this issue can be addressed. 

Because these two context-aware, time-sensitive applications have the same interests 

for data and different QoS requirements, they are relevant examples to our proposed work and 

will help illustrate better the solutions proposed.  Both, deriving activities and location 

relationships require the use of an inference engine, and thus both suffer from the time 

complexities of doing inference on large data sets.  

There are many factors that influence the end-to-end delay in either centralized or 

distributed service oriented architectures, generally these are the resources involved in 

providing the services, like network bandwidth, memory, CPU, I/O, and storage space. These 

have been studied in depth by the community as computers and their purposes have evolved. 

Different heuristic algorithms have been proposed for issues such as multi-processor real-time 

task scheduling, resource reservation, and multimedia distribution. However, problems arising 

from the calculations performed in ontology centered middleware architectures have received 
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very little attention, and existing architectures such as Construct [24], SOCAM [25], COBRA 

[26], SCS [27] have focused their attention on non-time critical applications and demonstrating 

the flexibility and value of ontology centered architectures, showing little attention for time 

related issues.  The development and execution of the proposed two applications would lack 

QoS support in any of the above mentioned architectures, and thus would not operate as 

desired. For this reason, we present a different perspective of an ontology centered middleware 

architecture, where it is possible for time-sensitive applications to function.  

We believe there is significant work on resource management, thus, our focus will be to 

study and understand the complexities that arise from inference and its computational 

requirements and how they could be addressed in ontology centered middleware architectures. 

 

4.3 Methodology and Architecture 

In order to allow an ontology centered middleware architecture to provide QoS support 

to context-aware applications, we need to provide an infrastructure to allow applications to 

describe their structure and query patterns; this is generally referred to as QoS specification. In 

Section 4.3.2 we explore our QoS specification format in detail. We characterize an application 

as ultimately consisting of queries, which have end-to-end delay requirements. There are many 

factors that influence the end-to-end delay of an application's queries. Most of them can be 

handled through heuristics and multi-resource reservation, such as those to manage network 

bandwidth, memory usage, task scheduling, and I/O. However, ontology centered middleware 

requires the use of an inference engine, where it is not possible to determine the inference time 

unless the size of the data set used is known. In order to know how much data will be used by a 

query, it is necessary to establish restrictions on how data is generated for the ontologies, and 

their corresponding properties. Each property in an ontology can have a restriction on how 

many data entries can be associated with that property. We call this the cardinality of a 

property. This posses a conflict of interest, as the data restrictions that are necessary for one 
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context aware application might not be suitable for another context-aware application. A 

possible solution would be to have both applications rely on a different set of ontologies with 

different cardinality constraints for their properties, but that would defeat the purpose of an 

ontology centered middleware architecture, whose greatest value is a unified model for 

knowledge and data representation. To solve this problem we propose a trade-off where we 

relax the unity of the data in order to allow some level of QoS support. This is accomplished by 

using Data Transformers, which are further described in Section 4.3.3. This component allows 

the client to have some level of participation on the process of converting raw data into 

ontological data. This is done in order for different applications to be able to modify the same 

sensor data and produce different data while storing it using the same knowledge 

representation. While this might seem counter-intuitive, the goal is to make a fine-grained 

distinction in the different ontological properties used by the applications, where a single 

property can be treated as a set of different <property, cardinality> couples by the 

middleware's inference engine. The challenge is to make this process completely transparent to 

the client application. We elaborate more on this idea in the following sections. The basic flow of 

our proposed middleware would be as follows. 
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Figure 13 – A proposed QoS negotiation mechanism. 

 

1. The client application requests sensor information to the middleware. The sensor 

information describes what sensors are available to the middleware and also provide specifics 

about the sensors, such as for example, unit representation, accuracy, and frequency. The 

client application needs to determine if it understands the data that the sensor is producing and 

if it has in its library of “drivers”, we call this a Data Transformer, one that will be able to convert 

the sensor's raw data into RDF. Data Transformers share some common functionality with the 

Sensor Wrappers introduced in [27], but they go beyond such functionality, their details are 

described in Section 4.3.2 

 

2. Using its own QoS requirements, the client application builds a QoS specification file 

that includes its query access pattern information, details are described in Section 4.3.1. 

Additionally, the specification file includes a list of “Data Transformers” it will need the server to 

install to convert the data appropriately. We imagine the Data Transformers to be written in a 
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format that restricts their access in the server to read appropriate sensor data and to write only 

to the data store, so as to avoid security issues. 

 

3. The server will now perform QoS translation, to analyze and determine if the client 

application requirements can be met. In the case of distributed systems, this will involve 

coordinating with other servers and reserving resources such as CPU time in the task 

scheduler, and other resources such as network bandwidth or disk space. The server will also 

determine further QoS constraints that the client is not able to determine initially, since it does 

not know the current middleware's utilization and resource availability. The major factor that it 

will determine is what cardinality values are acceptable for the different ontologies used by the 

client application, and will govern the creating/update/deletion of ontological data. 

 

4. The server will provide a response either accepting or rejecting the client's request 

and informing him of further constraints he must follow. These constraints are restrictions in the 

cardinality of collections in properties of ontologies. These are not a natural restriction, but 

rather are imposed by the server. 

 

5. The client will now determine if the cardinality constraints imposed are acceptable or 

not, it can then accept the service or attempt to renegotiate with the server, say by introducing 

different QoS requirements. 

 

6. Once the client has accepted, the middleware will go ahead and perform the required 

resource reservations, in terms of allocating and reserving CPU time in its task scheduler, and 

other reservations such as bandwidth, memory, and disk space. 
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4.3.1 Data Use Maximization 

At this point we consider inference execution time as a maximization problem where we 

are given application requirements and the set of ontology properties used by each of its 

queries and we attempt to determine the cardinality constraints that each ontological property 

should have in order to satisfy the QoS. In our approach we assume that we have a set of 

predefined cardinality values for property. This is done so that applications do indeed reuse the 

same type of data, by using an existing property with established cardinality. 

In our system each client application submits queries to the middleware and expects to 

get a reply within a specified time constraint. Also each query response must have been 

calculated using a certain minimum amount of data, in order to be considered a valid response. 

The minimum amount of data and time constraints are agreed during the client-middleware 

agreement negotiation. Because we are using ontologies, we define the minimum amount of 

data in terms of the ontology properties that will be used by the query. The way we define the 

minimum amount of data is through the properties/predicates involved in the query. Ontologies 

consist of different types of properties, and when we query for them, we call them predicates. 

Therefore, each query consists of a number of predicates. The delay of the system's response 

depends on the cardinality of the predicates to be processed, as they affect the amount of data. 

We represent the amount of data as the variable x, and we use the constant value c to 

represent the type of data for the property. There are generally many types of properties, for the 

same cardinality value, the processing of different property types will take different amounts of 

time. We can define the problem of providing QoS by using maximum system resource 

utilization as a maximization problem as follows. 

 

For a given class c and a given property p, let                be a set of cardinality 

values where    is a cardinality value assigned for the class property p to client i. And let 

               be a set of discrete predefined allowed cardinality values where we enforce 
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the constraint that            .  Let                be a set of constants where ci is a 

constant describing the amount of resources used by the middleware to serve client i using one 

unit of data. The value of ci is related to each <client, query, predicate> triplet. Finally, let T = {t1, 

t2,..., tn}  be a set of time constraints where ti is the time constraint specified by the client i. Then: 

    

Maximize: c1x1+c2x2   cnxn 

Subject to: time(ci,xi    ti 

 

Although we define the cardinality variables as variables that can take discrete values 

  , and thus our problem appears to be an instance of Integer Programming, it is not intractable 

because the number   of different possible values is finite and relatively small. 

Each client has been dedicated a specific amount of resources depending only on the 

total number of clients that are being served. Therefore the amount of time that the system 

needs to respond to the client for each specific combination of queries and predicates is 

affected only by the cardinality of the amount of data that the client will be using. 

The goal is to provide as better service as possible to the clients as long as a minimum 

QoS is guaranteed for all the clients. In cases where the number of clients is small and their 

requirements for a minimum QoS is smaller than what the system can provide the system can 

optionally offer an even better service by allowing them to access more data. When new clients 

are added then the system recalculates the amounts (cardinalities) of the data that can be 

accessed by each client up to a point where a minimum amount of data (according to the initial 

agreement) can be accessed by each client and the time constraints are met. After that point 

the middleware system rejects any requests for new client subscriptions. 
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4.3.2 QoS Specification – An Xml Representation 

In our architecture, client applications are required to send QoS specification files when 

establishing an agreement for service. These specification files consist of varied types of 

information, that help the middleware calculate the application's requirements and carry out the 

necessary multi-resource reservations. We define the following concepts that will be used in the 

specification file. 

 

 A context-aware application consists of a series of tasks. 

 Each task consists of a number of states and the corresponding transitions.  

 In each state, a specific set of queries will be executed. 

 Transition between a task's states happens when a series of query result values are 

satisfied. 

 Each query has its own QoS requirements. 

 A state's QoS requirements are satisfied when the QoS requirements of all queries 

taking place in that state are satisfied. 

 A task's QoS requirements are satisfied when the transition between the states that this 

task involves happens within a predefined amount of time, i.e. the QoS of each state is 

satisfied. 

 An application's QoS requirements are satisfied when all the application's states' are 

met. 

 

Thus, each application is described as consisting of Task nodes. In our examples, 

these could map to for example an activity reminder or a route organizer. Each task has its own 

independent behavior and QoS constraints. Task behavior is described by a collection of states, 

and each State consists of a series of queries with their QoS constraints, (i.e. end-to-end delay). 
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Typical application behavior and query pattern change depending on its internal state. Our 

interest is to capture and provide this information to the middleware. 

Generally speaking it is very hard for an application developer to know exactly how big 

or small should the cardinalities be. Initially, property cardinalities will be set according to some 

predefined values, and then, based on statistical observations on the data and usage patterns, 

these values will be adapted to optimize performance.  

Figure 14 illustrates how the QoS information is specified in an XML file. We can 

observe the hierarchy relationships and we can distinguish QoS requirements at the query level 

 

 

Figure 14 – An example XML QoS specification file. 
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 However, in order for a client application to be able to operate effectively with a given 

cardinality constraint, it needs to be able to determine how sensor data is mapped onto 

ontological data. For this purpose, we present the concept of the Data Transformer. 

 

4.3.3 The Data Transformer Architecture 

Proposed research on ontology centered middleware focuses on many issues, but puts 

little stress on how data generation affects performance. The assumption is generally that all 

applications share a big set of data that has been gathered by sensors, and then transforms this 

data and distributes it to the client application when needed. Our approach deviates tangentially 

from such architectures, we consider that data generation is the key problem to reasoning 

performance and thus we propose a completely different mechanism on how data should be 

generated. In order to do this we introduce in the QoS specification file a complex node called 

the “Data Transformer” whose goal is to control the creation, update, and deletion of statements 

from the data store. The data transformers are provided by the client and act as “drivers”. Once 

the client application has queried the middleware for sensor types, it identifies from the list of 

data transformers if it knows how to manipulate the sensors available so as to generate the 

desired ontology statements. If this is possible, it will then send these Data Transformer nodes 

in its QoS Specification, else, application developers are responsible for obtaining and possibly 

developing these “drivers” from sensor descriptor files. The Data Transformer node consists of 

the following elements; first, it contains a list of all the ontologies that will be used to map raw 

data to statements. For each ontology, it will retrieve from the middleware the established 

cardinality constraints and use these to determine how it should create/update/delete 

ontological data. 

We present a mechanism by which for example, the two previously discussed 

applications could have different cardinalities for LocationEvent data, one requiring there to be 

at least 500 instances, and another requiring at least 5000 instances, where instance here 
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refers to when an object is created out of an ontology and corresponds to data entries. Clearly, 

if both applications where to share the same data, this would present a conflict, since the data 

does not map as well for both applications and will create processing delays that might be 

acceptable by one application and not by the other one. The purpose of the data transformer is 

to be able to isolate both uses of the same property LocationEvent, in such a way that we do 

not need to make distinctions, so as to be able for both to use the same ontologies, yet at the 

same time to have both applications use a different data set for this property. We accomplish 

this by using a schema-aware database in which tables are generated for every RDF <Subject, 

Predicate> combination. Additionally, different tables are created for the same <Subject, 

Predicate> combination when this predicate has multiple cardinalities. 

First, the Data Transformer is registered for a given type of sensor data. Upon collecting 

such data, the middleware runs the data transformer. The transformer is thus responsible for 

converting the raw data into statements. Then, at the point where persistent storage is going to 

be carried out, the data transformer uses its configuration to select the appropriate table under 

which the data will be stored. For example, the first application could use for its inference the 

table <Employee, hasLocationEnvet#500> while the second application will store it in a table 

called <Employee, hasLocationEvent#5000>. 

The advantages of having two different data transformers on the same type of data is 

that both of them have full access and rights on the creation/deletion/update of the data without 

having to overlap or cause conflicts. The disadvantage is that the overall amount of data we 

store is much greater and that we sacrifice some unity in the way data is stored for a given 

ontology. This is required though, as it is not possible to expect all applications to have same 

purposes for the same data. Nonetheless, any other approach in which there would be an 

interest in distinguishing the data between these two applications would eventually require more 

statements and therefore more data. So we believe this is a trade off that will always be 

necessary.  
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CHAPTER 5 

 
CONCLUSION 

 

 In this thesis, we have examined two problems related to developing context aware 

applications for assistive environments. The first one is that of inferring the context in the 

environment to allow for proper actions to take place in emergent situations. This problem of 

activity recognition has been widely explored in the past. However, not much work has 

approached the problem from the same perspective as we have. While experimental results 

show small improvements in activity recognition accuracy, we believe that the two-level 

framework provides a potential unlike other approaches in that it can be used to leverage 

algorithm complexity in the lower layers of inference. We also believe that with the expansion of 

rules and their structure it will be possible to achieve further accuracy improvements and that 

the result will encourage the use of such a type of framework. 

With regards to the problem of providing QoS in smart environments which are built 

using ontology-centered middleware architectures; we believe that the best way to ensure QoS 

in such environments is to enforce a mechanism to be able to control the amount of data that is 

being distributed to client applications. We believe providing differentiated services, where a 

client application can participate in the decision of how data is to be generated and can 

negotiate its requirements in terms of QoS is the key to enabling prediction of system's behavior 

and response times. For that reason we propose a framework that uses a negotiation 

mechanism between the client applications and the middleware system which ensures that all 

applications that have been granted service will have at least a minimum QoS. Furthermore, 
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when the minimum QoS for each application has been met but the system has not consumed 

the total amount of available resources we suggest a method to distribute those resources to 

the client applications in a way that maximizes the system's utilization and provides an 

improved service to the clients. Finally, we give an example for the formulation of the 

negotiation method between the client applications and the middleware system and we explain 

how the client applications can participate in the data transformation from the initial raw formats 

to ontological representations in order to improve efficiency. Preliminary experimental results on 

a prototype [44] of the architecture proposed suggest the viability of such a design. 

We believe that this research lays the groundwork for two new approaches to enabling 

context-aware computing. We hope that the research community finds insights in the work we 

have conducted and that the collaboration and further investigation can bring us closer to 

making context-aware assistive environments a viable and robust technology. 
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APPENDIX A 

 
 

ASSISTIVE ROOM ACTIVITY ANALYZER TOOL 
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Assistive Room Activity Analyzer 

 The Assistive Room Activity Analyzer is a tool developed throughout the course of this 

research with the goal of presenting a simple and intuitive interface for the development of 

assistive environment experiments. It incorporates a series of algorithms and functionality to 

allow researchers to concentrate on the algorithmic work, and at the same time to have valuable 

visuals and UI features to evaluate their work quickly and efficiently. This application is publicly 

available for use by the research community. 

 

 

Figure A1 – The Assistive Room Activity Analyzer Tool.  
 

The application is written in the Java programming language and consists of several 

modules. The core module provides basic functionality to create and evaluate algorithms based 

on HMM implementations. The plugins module is designed to enable developers to create their 

own algorithms and just plug them as a separate jar file into the application. In order to develop 
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a plugin that will work with the application, it is necessary to implement a series of Java 

interfaces.  The structures module provides a series of class files and convenience methods 

that abstract the specifics of different assistive environment designs and data types, allowing 

the developer to operate conceptually with a high level abstraction of the environment‟s 

functionality. Finally, the ui module provides different predefined frames and panels that 

facilitate the visual representation and inspection of algorithm results. 

 In order to use the application, it is only necessary to have a Java Runtime Environment 

1.6+ installed in a computer system and to follow these steps: 

1. Execute the Assistive Environment Activity Analyzer tool 

2. Using the application‟s menubar, load an existing experiment configuration file. Two 

different experiment configuration files are available by default, these are CSH and 

HAH. These represent the CASAS Smart Home and the Heracleia Apartment @Home 

3. Once the experiment is loaded, the design panel will display an image of the assistive 

environment and the sensor configuration setup 

4. In order to modify the environment, interact with the different buttons and shapes 

available in the different panels. 

5. To evaluate an activity recognition algorithm, it is necessary to load a dataset. Go to the 

menubar, and select the “Load dataset…” menu item, then select a any dataset 

configuration file available in the experiment folder. 

6. In order to evaluate an algorithm, click on the “Analysis” tab, select the algorithm 

options, and click on the “Analysis” button. 
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APPENDIX B 
 
 

ATHOME APARTMENT TESTBED
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Heracleia AtHome 

The Heracleia AtHome apartment testbed (@Home) is a miniature apartment located 

within the Heracleia laboratory and consisting of one bedroom, one bathroom, a kitchen, a 

dining area, and a living room. In order to collect the dataset used for the experiments in this 

research, the environment was fitted with a variety of sensor technologies. Following, we 

provide illustrations for the hardware used. 

 

 

Figure B1 – SunSpot minicomputers equipped with temperature, light, and acceleration 
sensors. 

 

The above image shows one of the main components used for collecting data in the 

apartment testbed. Sunspots are small computers equipped with radio and sensor technology 

that can transmit wireless information. In our setup, we used SunSpots in various places, such 

as the bedroom cabinets and drawers, the TV, the toilet, and the shower curtain. These devices 

were programmed with thresholds to detect events of different types based on their location or 

placement. 
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Figure B2 – Pressure mat. 

 

Pressure mats were used to detect the physical presence of participants within the 

miniature environment. Five pressure mats were placed, two near the bed, one next to the TV 

chair, one at the entrance of the toilet, and one next to the entrance of the bedroom. 

 

 

Figure B3 – Phidgets interface kit with motion and infrared sensors. 

 

Three infrared sensors were placed in the toilet, in positions to detect a user‟s presence 

next to the sink, and another to detect interaction with the toilet towel stand. Motion sensors 

were placed near the sink and by the TV chair. 

 



 

60 

 

 

In order to convert the raw sensor values from the sensors attached to the Phidgets 

device into events, we developed the Phidgets sensor tool; illustrated in Figure B4. 

 

 

Figure B4 – Phidgets sensor tool. 

 

The Phidget‟s sensor tool is a java based program that relies on third party libraries in order to 

read the incoming data from the sensors. The program uses a series of predefined threshold 

values and logic to determine when an event should be triggered based on the raw sensor data. 

The application is designed for quick operation; it includes functionality to create and load 

sensor setup configurations, and to save the resulting events into files. Furthermore, it provides 

a logging panel to report in the event of unexpected errors or faulty situations. 



 

61 

 

 

REFERENCES 

[1] United Nations, “World Population Prospects: The 2008 Revision, Highlights,” Department of 
Economic and Social Affairs, Population Division (2009), Working Paper No. 
ESA/P/WP.210  

 
[2] M. Weiser, “Some computer science issues in ubiquitous computing,” Commun. ACM,  vol. 

36, 1993, pp. 75-84. 
 
[3] S. Iwarsson, V. Horstmann, and U. Sonn, “Assessment of dependence in daily activities 

combined with a self-rating of difficulty,” Journal of Rehabilitation Medicine, vol. 41, Feb. 
2009, pp. 150-156. 

 
[4] B. Schilit, N. Adams, R. Want, and others, “Context-aware computing applications,” 

Proceedings of the workshop on mobile computing systems and applications, 1994, pp. 
85–90. 

 
[5] V. Metsis, Z. Le, Y. Lei, and F. Makedon, “Towards an evaluation framework for assistive 

environments,” Proceedings of the 1st international conference on PErvasive 
Technologies Related to Assistive Environments, 2008, p. 12. 

 
[6] N. Robertson and I. Reid, “A general method for human activity recognition in video,” 

Computer Vision and Image Understanding, vol. 104, 2006, pp. 232–248. 
 
[7] D. Lymberopoulos, A. Bamis, and A. Savvides, “Extracting spatiotemporal human activity 

patterns in assisted living using a home sensor network,” Proceedings of the 1st 
international conference on PErvasive Technologies Related to Assistive Environments, 
2008, p. 29. 

 
[8] S. Hongeng, R. Nevatia, and F. Bremond, “Video-based event recognition: activity 

representation and probabilistic recognition methods,” Computer Vision and Image 
Understanding, vol. 96, Nov. 2004, pp. 129-162. 

 
[9] D. Patterson, D. Fox, H. Kautz, and M. Philipose, “Fine-grained activity recognition by 

aggregating abstract object usage,” Ninth IEEE International Symposium on Wearable 
Computers, 2005, pp. 44–51. 

 
[10] N. Ravi, N. Dandekar, P. Mysore, and M.L. Littman, “Activity recognition from 

accelerometer data,” Proceedings of the National Conference on Artificial Intelligence, 
2005, p. 1541. 

 
[11] T. Gu, Z. Wu, X. Tao, H.K. Pung, and J. Lu, “epSICAR: An Emerging Patterns based 

approach to sequential, interleaved and Concurrent Activity Recognition,” Proceedings of 
the 2009 IEEE International Conference on Pervasive Computing and Communications-
Volume 00, 2009, pp. 1–9. 

 



 

62 

 

 

[12] M. Stikic, T. Huynh, K. Van Laerhoven, and B. Schiele, “ADL recognition based on the 
combination of RFID and accelerometer sensing,” 2nd International Conference on 
Pervasive Computing Technologies for Healthcare, 2008. 

 
[13] K. Park, E. Becker, J.K. Vinjumur, Z. Le, and F. Makedon, “Human behavioral detection 

and data cleaning in assisted living environment using wireless sensor networks,” 
Proceedings of the 2nd International Conference on PErvsive Technologies Related to 
Assistive Environments, 2009, p. 7. 

 
[14] R.B. Smith, “SPOTWorld and the Sun SPOT,” Proceedings of the 6th international 

conference on Information processing in sensor networks, 2007, p. 566. 
 
[15] G. Singla, D.J. Cook, and M. Schmitter-Edgecombe, “Tracking Activities in Complex 

Settings Using Smart Environment Technologies.” 
 
[16] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J.M. Rehg, “A scalable approach to 

activity recognition based on object use,” Proceedings of Int’l conference on computer 
vision, 2007. 

 
[17] D.H. Wilson and C. Atkeson, “Simultaneous tracking and activity recognition (STAR) using 

many anonymous, binary sensors,” The Third International Conference on Pervasive 
Computing, 2005, pp. 62–79. 

 
[18] T. Wu, C. Lian, and J.Y. Hsu, “Joint recognition of multiple concurrent activities using 

factorial conditional random fields,” AAAI Workshop PAIR 2007, 2007. 
 
[19] D.H. Hu and Q. Yang, “CIGAR: Concurrent and interleaving goal and activity recognition,” 

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI), 2008, 
pp. 1363–1368. 

 
[20] T. Berners-Lee and J. Hendler, “Scientific publishing on the semantic web,” Nature, vol. 

410, 2001, pp. 1023–1024. 
 
[21] G. Chen and D. Kotz, “A survey of context-aware mobile computing research,” Dartmouth 

College, 2000. 
 
[22] T.R. Gruber and others, “Toward principles for the design of ontologies used for knowledge 

sharing,” International Journal of Human Computer Studies, vol. 43, 1995, pp. 907–928. 
 
[23] O. Lassila and R.R. Swick, “Resource Description Framework (RDF) Model and Syntax 

Specification, W3C Recommendation 22 February 1999,” W3C Recommendation. See 
http://www. w3. org/TR/REC-rdf-syntax, 1999. 

 
[24] L. Coyle, S. Neely, G. Stevenson, M. Sullivan, S. Dobson, P. Nixon, and G. Rey, “Sensor 

fusion-based middleware for smart homes,” International Journal of Assistive Robotics 
and Mechatronics, vol. 8, 2007, pp. 53–60. 

 
[25] T. Gu, X.H. Wang, H.K. Pung, and D.Q. Zhang, “An ontology-based context model in 

intelligent environments,” Proceedings of Communication Networks and Distributed 
Systems Modeling and Simulation Conference, 2004. 



 

63 

 

 

 
[26] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive computing 

environments,” The Knowledge Engineering Review, vol. 18, 2004, pp. 197–207. 
 
[27] T. Gu, H.K. Pung, and D. Zhang, “A semantic p2p framework for building context-aware 

applications in multiple smart spaces,” Lecture Notes in Computer Science, vol. 4808, 
2007, p. 553. 

 
[28] A. Viterbi, “Error bounds for convolutional codes and an asymptotically-optimum decoding 

algorithm,” IEEE Transactions on Information Theory, 1967, 13(2):260-269  
 
[29] S. Greenberg and C. Fitchett, “Phidgets: easy development of physical interfaces through 

physical widgets,” Proceedings of the 14th annual ACM symposium on User interface 
software and technology, 2001, pp. 209–218. 

 
[30] E. Becker, Z. Le, K. Park, Y. Lin, and F. Makedon, “Event-based experiments in an 

assistive environment using wireless sensor networks and voice recognition,” Proceedings 
of the 2nd International Conference on PErvsive Technologies Related to Assistive 
Environments, 2009, p. 17. 

 
[31] A. Agostini, C. Bettini, and D. Riboni, “Loosely coupling ontological reasoning with an 

efficient middleware for context-awareness,” Proceedings of the Second Annual 
International Conference on Mobile and Ubiquitous Systems: Networking and Services 
(MobiQuitous 2005), 2005, pp. 175–182. 

 
[32] X. Gu and K. Nahrstedt, “An event-driven, user-centric, QoS-aware middleware framework 

for ubiquitous multimedia applications,” Proceedings of the 2001 international workshop 
on Multimedia middleware, 2001, pp. 64–67. 

 
[33] S. Shenker, C. Partridge, and R. Guerin, Specification of guaranteed quality of service, 

RFC 2212, September 1997, 1995. 
 
[34] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia 

applications,” IEEE Journal on Selected areas in communications, vol. 14, 1996, pp. 
1228–1234. 

 
[35] J. Jin and K. Nahrstedt, “QoS specification languages for distributed multimedia 

applications: A survey and taxonomy,” IEEE MULTIMEDIA, 2004, pp. 74–87. 
 
[36] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson, “Jena: 

implementing the semantic web recommendations,” Proceedings of the 13th international 
World Wide Web conference on Alternate track papers & posters, 2004, pp. 74–83. 

 
[37] M. Dean, G. Schreiber, S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D.L. 

McGuinness, P.F. Patel-Schneider, and L.A. Stein, “OWL web ontology language 
reference,” W3C Recommendation February,  vol. 10, 2004. 

 
[38] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical owl-dl 

reasoner,” Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5, 
2007, pp. 51–53. 



 

64 

 

 

 
[39] V. Haarslev and R. Möller, “Racer: A core inference engine for the semantic web,” 

Proceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools, 
2003, pp. 27–36. 

 
[40] E. Prud‟Hommeaux, A. Seaborne, and others, “SPARQL query language for RDF,” W3C 

working draft, vol. 4, 2006. 
 
[41] Y. Theoharis, V. Christophides, and G. Karvounarakis, “Benchmarking database 

representations of rdf/s stores,” Lecture notes in computer science, vol. 3729, 2005, p. 
685. 

 
[42] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, “QoS-aware middleware for ubiquitous and 

heterogeneous environments,” IEEE Communications Magazine, vol. 39, 2001, pp. 140–
148. 

 
[43] G.D. Forney Jr, “The forward-backward algorithm,” Proceedings of the 34th Allerton 

Conference on Communications, Control and Computing, 1996, pp. 432–446. 
 
[44] R. Arora, V. Metsis, R. Zhang, and F. Makedon, “Providing QoS in ontology centered 

context aware pervasive systems,” Proceedings of the 2nd International Conference on 
PErvasive Technologies Related to Assistive Environments, 2009, p. 8 

 

 



 

65 

 

 

BIOGRAPHICAL INFORMATION 

 

Roman Arora started his bachelor‟s degree in Computer Science Engineering at the 

University of Texas At Arlington in the year 2002 and completed it in the year 2006. He returned 

to the University of Texas At Arlington to pursue a master's degree in Computer Science 

Engineering on January of 2008 and completed his degree on December of 2009. 

 


