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ABSTRACT
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Supervising Professor: Dr. Manfred Huber

Autonomous systems are often difficult to program. Reinforcement learning (RL)

is an attractive alternative, as it allows the agent to learn behavior on the basis of sparse,

delayed reward signals provided only when the agent reaches desired goals.

Recent attempts to address the dimensionality of RL have turned to principled ways

of exploiting temporal abstraction where decisions are not required at each step but

rather invoke the execution of temporally-extended activities which follow their own

policies until termination. This leads naturally to hierarchical control architectures and

associated learning algorithms. This dissertation reviews several approaches to temporal

abstraction and hierarchical organization that machine learning researchers have recently

developed and presents a new method for the autonomous construction of hierarchical

action and state representations in reinforcement learning, aimed at accelerating learning

and extending the scope of such systems.

In this approach, the agent uses information acquired while learning one task to discover
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subgoals for similar tasks. The agent is able to transfer knowledge to subsequent tasks

and to accelerate learning by creating useful new subgoals and by off-line learning of

corresponding subtask policies as abstract actions (options). At the same time, the

subgoal actions are used to construct a more abstract state representation using action-

dependent state space partitioning. This representation forms a new level in the state

space hierarchy and serves as the initial representation for new learning tasks (the decision

layer). In order to ensure that tasks are learnable, value functions are built simultaneously

at different levels of the hierarchy and inconsistencies are used to identify actions to be

used to refine relevant portions of the abstract state space.

This representation serves as a first layer of the hierarchy. In order to estimate the

structure of the state space for learning future tasks, the decision layer is constructed

based on an estimate of the expected time to learn a new task and the system’s experience

with previously learned tasks. Together, these techniques permit the agent to form more

abstract action and state representations over time. Experiments in deterministic and

stochastic domains show that the presented method can significantly outperform learning

on a flat state space representation.
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CHAPTER 1

INTRODUCTION

Markov decision processes (MDPs) are useful ways to model stochastic environ-

ments as there are well established algorithms to solve these models. Even though these

algorithms find an optimal solution for the model, they suffer from high time complexity

when the number of decision points is large.

To address increasingly complex problems, it is necessary to find representations that

are sufficient to address the task while remaining sufficiently compact to permit learning

in an efficient manner. The importance here is put on the state space representation

used in the decision-making process rather than on the one used for sensing and memory

purposes. The idea is that a reduced representation for decision making combined with

the use of increasingly competent actions in the form of policies can dramatically reduce

the number of decision points and can lead to a much more efficient transfer of learning

experiences across situations and tasks.

A number of learning approaches have used specially designed state space representations

to increase the efficiency of learning [18, 20]. Here, particular features are hand-designed

based on the task domain and the capabilities of the learning agent. In autonomous sys-

tems, however, this is generally a difficult task since it is hard to anticipate which parts

of the underlying physical state are important for the given decision-making problem.

Moreover, in hierarchical learning approaches the required information might change

over time as increasingly competent actions become available. The same can be observed

in biological systems where information about all muscle fibers is initially instrumental

to generate strategies for coordinated movement. However, as such strategies become
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established and ready to be used, this low-level information does no longer have to be

consciously taken into account when learning policies for new tasks.

To achieve similar capabilities in artificial agents, state and knowledge representations

should depend on the action set that is currently available, and become increasingly ab-

stract as more higher-level policies become available as actions and less of the low-level

action primitives are required.

A small number of techniques for generating more compact state representations based

on the actions and the reward function have been developed [18, 20]. The work presented

here builds on the ε-reduction technique developed by Dean et al. [18] to derive repre-

sentations in the form of state space partitions that ensure that the utility of a policy

learned in the reduced state space is within a fixed bound of the optimal policy. The

work presented here extends the ε-reduction technique by including policies as actions

and thus using it to find approximate SMDP reductions. Furthermore it derives parti-

tions for individual actions and composes them into representations for any given subset

of the action space. This is further extended by permitting the definition of reward in-

dependent partitions that can be refined once the reward function is known.

To further enhance its capabilities, the agent, in this approach, uses information acquired

while learning one task to improve its performance in similar tasks. The agent is able to

transfer knowledge to subsequent tasks and to accelerate learning by discovering useful

new subgoals and by off-line learning of corresponding subtask policies as abstract actions

(options). At the same time, the subgoal actions are used to construct a more abstract

state representation using action-dependent state space partitioning. This representation

forms a new level in the state space hierarchy and serves as the initial representation (the

decision layer) for new learning tasks. In order to ensure that tasks are learnable, value

functions are built simultaneously at different levels of the hierarchy and inconsistencies

are used to identify actions to be used to refine relevant portions of the abstract state
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space. Furthermore, this approach introduces a new method for estimating the struc-

ture of the state space for learning future tasks. This approach constructs the decision

layer based on an estimate of the expected time to learn a new task based on previously

learned tasks and builds a partition such as to optimize the utility of each action and the

expected time to learn a new task.

1.1 Decision Making Under Uncertainty

One of the basic concepts in stochastic processes is a control process in an envi-

ronment in which there is uncertainty. Solving a control process [16] is considered from

the perspective of an agent that acts in the environment. An agent can be a robot which

navigates a house, a human executing a strategy, or a program which controls traffic

lights.

The goal of decision-making is to find a plan or a policy that maximizes the total benefit

of acting in an environment over a period of time. Decision-making has broad appli-

cations in operations research, artificial intelligence, control theory, management and

scheduling [15].

An example in artificial intelligence is a robot that moves through a grid world like the

mouse and maze problem. The robot has the ability of performing actions such as moving

forward and turning by an angle, and the maze is an environment with different states

as shown in Figure 1.1. The purpose of this representation is to provide the information

necessary to construct a navigation strategy for a given goal location.

Uncertainty is present at all time in this environment. For example, when the robot’s

motors do not function as expected, moving the robot in a wrong direction or moving

it too far. Furthermore the sensors of the robot can be unreliable and provide incorrect

readings from the environment.

The Markov property can be observed in many stochastic systems such as smart homes,
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Figure 1.1. A sample robot navigation environment.

robotics, and control systems and they can thus be modeled as a MDP. While well-known

algorithms exist to solve MDPs and find an optimal solution (policy), the state represen-

tation of these problems are often so large that these algorithms require a large amount

of memory and time.

1.2 Models of Planning

The relationship between the time spent on planning and the time spent on exe-

cuting a plan is a way to distinguish different planning models from each other. Usually,

finding an optimal plan is time consuming. For this reason some planning methods

construct solutions in off-line mode, which permits them to be performed on powerful

computers. When a plan is constructed, it can be relocated to a smaller computer to be

executed on-line. For example, the smaller computer can be a robot with less memory

and a slower processor.

Off-line planning often assumes that complete knowledge of the environment is available

and it considers all outcomes, even those that have a very small chance of occurring.
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Thus, if the number of states is large this process has a high time complexity.

Unlike off-line planning, on-line planning does often not assume complete knowledge of

the environment and the agent tries to construct and refine a plan while acting in the

world. In the extreme case, the agent starts to act with no initial plan and no model of

the environment. This is particularly useful when the state space is large, as the agent

often only needs the information for its next act and does not require complete knowledge

of the environment. Reinforcement Learning [39, 3] is an example of such methods.

1.3 Reinforcement Learning

Reinforcement Learning (RL) [5, 34] is an active area of machine learning research

that is also receiving attention from the fields of decision theory, operations research, and

control engineering. RL algorithms address the problem of how an agent can learn to ap-

proximate an optimal behavioral strategy while interacting directly with its environment.

In control terms, this involves the on-line approximation of solutions to stochastic opti-

mal control problems, usually under conditions of incomplete knowledge of the system

being controlled. Most RL algorithms adapt standard methods of stochastic dynamic

programming (DP) so that they can be used on-line for problems with large state spaces.

By focusing computational effort along behavioral trajectories and by using function ap-

proximation methods for accumulating value function information, RL algorithms have

produced good results on problems that pose significant challenges for standard meth-

ods [7, 18, 10, 36]. However, current RL methods by no means completely circumvent

the curse of dimensionality, i.e. the exponential growth of the number of parameters to

be learned with the size of any compact encoding of system state.

Recent attempts to combat the curse of dimensionality have turned to principled ways

of exploiting temporal abstraction, where decisions are not required at each step, but

rather invoke the execution of temporally extended activities which follow their own
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policies until termination [35]. This leads naturally to hierarchical control architectures

and hierarchical learning algorithms.

Artificial intelligence researchers have addressed the need for large-scale planning and

problem solving by introducing various forms of abstraction into problem solving and

planning systems [28, 19, 9]. Abstraction allows a system to ignore details that are

irrelevant for the task at hand. One of the simplest types of abstraction is the idea of

a “macro operator,” or just a “macro,” which is a sequence of operators or actions that

can be invoked by name as if it was a primitive operator or action. Macros form the

basis of hierarchical specifications of operator or action sequences because macros can

include other macros in their definitions: a macro can “call” other macros. Also familiar

is the idea of a subroutine that can call other subroutines as well as execute primitive

commands. Most of the current research on hierarchical Reinforcement Learning (HRL)

focuses on action hierarchies that follow roughly the same semantics as hierarchies of

macros or subroutines.

One of the fundamental steps toward HRL is to automatically establish subgoals, since

subgoals can be treated as termination states for macro actions. Methods for auto-

matically introducing subgoals have been studied in the context of adaptive production

systems, where subgoals are created based on examinations of problem-solving protocols.

For RL systems, several researchers have proposed methods by which policies learned for

a set of related tasks are examined for commonalities or are probabilistically combined

to form new policies [35]. Subgoal discovery has been addressed by several researchers

[23, 12, 13]. The most closely related research to the subgoal discovery technique intro-

duced here is that of Digney [12] where states that are visited frequently or states where

the reward gradient is high are chosen as subgoals.

The next section describes the contribution of this dissertation. We start by introducing

a method for abstracting the state and action representations using subgoal discovery and
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action dependent decomposition and then introduce a method for ensuring the learnabil-

ity of the tasks that are learnable in the original state and action space. Furthermore,

we introduce a measure for estimating the learning time for new tasks and we use this

measure to automatically construct a representation for the decision layer for learning of

future tasks.

1.4 Contribution of This Research

This research presents a new method for the autonomous construction of hierar-

chical action and state representations in reinforcement learning, aimed at accelerating

learning and extending the scope of such systems. In this approach, the agent uses in-

formation acquired while learning one task to discover subgoals for similar tasks. The

agent is able to transfer knowledge to subsequent tasks and to accelerate learning by

creating useful new subgoals and by off-line learning of corresponding subtask policies

as abstract actions (options) which can be used in subsequent tasks. At the same time,

the subgoal actions are used to construct a more abstract state representation using

action-dependent state space partitioning. This representation forms a new level in the

state space hierarchy and serves as the initial representation (the decision layer) for new

learning tasks. In order to ensure that tasks are learnable, value functions are built

simultaneously at different levels of the hierarchy and inconsistencies are used to iden-

tify actions to be used to refine relevant portions of the abstract state space. Together,

these techniques permit the agent to form more abstract action and state representations

over time. Experiments in deterministic and stochastic domains show that the presented

method can significantly outperform learning on a flat state space representation. The

main contribution of the presented work can be described as a system that consists of

the following four components:

• Sampling-based subgoal discovery.
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• Autonomous state space abstraction.

• Hierarchical learning and refinement method.

• Autonomous hierarchy construction.

1.4.1 Temporal and State Abstraction

To make complex problems more tractable, a number of techniques have been

developed that can be used to reduce a problem’s overall learning complexity. Two of

the most powerful tools in this can be found in temporal and state abstraction techniques

that attempt to reduce the size of the problem by decreasing the number of decision points

or by reducing the representation that has to be considered during learning.

Semi Markov decision processes [35] were originally introduced in order to address the

representation of a hierarchical action space in a MDP by considering the execution of

sequences of actions, i.e. policies. In this framework actions can be primitive or high-

level. A primitive (low-level) action usually takes a constant amount of time while a

high-level action corresponds to the execution of a policy and thus takes varying amounts

of time. Using these different action types, SMDPs facilitate temporal abstraction by

invoking high-level actions such as opening a door, which consists of several primitive

actions like unlock, move and release, and require only one decision to be made for their

entire execution. Based on this concept, the SMDP framework can optimal solutions in

shorter amounts of time than standard MDP techniques.

State abstraction is a group of methods where a single state represents a large group of

states. State abstraction often involves a trade-off between optimality and compactness

and one of the questions that needs to be answered in abstracting the sate space is

the relationship between a solution on the abstract model and a solution on the original

model [7, 18, 10, 36]. One of the main problems in many of the existing techniques is that

they require prior knowledge of the new task (or at least of the corresponding reward) to
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be able to construct appropriate state abstractions. This, in turn can significantly limit

their applicability in real-world domains.

The work presented here presents a novel approach to hierarchical learning that tightly

integrates autonomous temporal and state abstraction to form a system that can profit

from both. To do so, it combines the ability of using the multi-step actions with the

concepts of ε-reduction, leading to a system which can learn bounded optimal policies

on significantly more compact state spaces without requiring prior knowledge of the

reward function of the new task. Here, action and representational knowledge learned in

previous tasks is transferred to new tasks and utilized to significantly improve learning

performance.

1.4.2 Subgoal Discovery

An example that shows the importance of a subgoal, is a room to room navigation

task where the agent should discover the utility of doorways. If the agent discovers that

a doorway is a subgoal it can learn an option to reach the doorway which, in turn, can

accelerate learning of new navigation tasks. The idea of using subgoals is not, however,

limited to grid worlds. For example, for a robot arm to pick up an object, an important

subtask is the recognition of the object and thus being aware of its presence would be a

subgoal.

The main goal of automatic subgoal discovery is to find useful subgoals in the agent’s

state space. Once they are found, options to those subgoals can be learned and added

to the behavioral repertoire of the agent. The approach presented here introduce a novel

approach to subgoal discovery where subgoals are identified as states with particular

structural properties in the context of a given policy. In particular, we define subgoals

as states that, under a given policy, lie on a substantially larger number of paths than

would be expected by looking at its successor states. To efficiently identify such states,
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this approach samples trajectories from a learned policy using Monte Carlo sampling and

uses a statistical significance criterion to select relevant subgoals.

1.4.3 Action Dependent Partitioning

One of the aspects of hierarchical learning is to construct a tree type structure on

the action space, in which actions in higher level sets can be considered as policies in

lower level sets. A second aspect of hierarchical learning approaches is that as new and

more complex actions become available, low-level actions are no longer required to learn

a task and thus can be ignored. The intuition here is that such a policy will involve fewer

decision points and as a result, new tasks can be learned substantially faster.

To take full advantage of this limitation of the action space, it should also be reflected

in the state representation. In particular, once low-level actions are ignored, much more

abstract state representations should be sufficient to address the same tasks. To address

this, the approach presented here introduces a new method for state space partitioning

which allows the efficient construction of an abstract state space which represents the

aspects of the environment that are important for a given set of actions.

1.4.4 Reward Independent Decomposition

In many real world situations the reward information of a new task is not known

beforehand. In this case many of the standard state reduction techniques for MDPs can

not be applied. To address this, this research introduces a new approach which solves

the state decomposition problem in multiple stages. The first stages here assume that

the agent has no knowledge of rewards associated with the new task, and construct an

initial state representation that captures the important aspects of the available actions

independent of the new task. On this representation the system then attempts to learn

a policy and it can be proven that under certain conditions (which basically characterize
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the degree to which the available actions are suitable for the new task) it will succeed

at learning the task, albeit without any guarantees as to the optimality of the learned

solution. On the other hand, the abstract, reward-independent state space promises to

dramatically reduce the learning time as compared to the original state space. More-

over, the approach developed here includes a final phase which performs reward-specific

refinement once reward information becomes available.

1.4.5 Learning Method

The presented work introduces a new method for the autonomous construction

of hierarchical actions and state representations in Reinforcement Learning. In this

approach, the agent uses information acquired while learning one task to discover subgoals

for similar tasks by analyzing the learned policy using Monte Carlo sampling. The agent

is able to transfer knowledge and to accelerate learning of subsequent tasks by creating

new subgoals and by off-line learning corresponding subtask policies as abstract actions

(options). At the same time, the subgoal actions are used to construct a more abstract

state representation using action-dependent state space partitioning. This representation

forms a new level in the state space hierarchy and serves as the initial representation

for new learning tasks. However, this initial representation ensures that a new task is

learnable only if it is addressable using the same subgoals as the initially learned tasks.

To ensure that all new tasks can be learned, this work introduces a new learning method

for hierarchical state representations where value functions are built at different levels

of hierarchy and inconsistencies are used to identify actions to be used to refine relevant

portions of the abstract state space.
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1.4.6 Autonomous Hierarchical Construction

In the previous sections we have introduced the action dependent method for de-

composition of the state space and a new technique for learning on a hierarchical state

representation. So far this approach constructs the abstract space based on a simple

heuristic, in particular all subgoal options are used to build an initial representation

which might later be refined with some of the original actions. To make this more

flexible and efficient, we extend this approach by introducing autonomous hierarchy con-

struction, a new method for estimating the structure of the state space for learning future

tasks by constructing the decision layer based on an estimate of the expected time to

learn a new task according to the set of previously learned tasks and based on the utility

of each action.

1.5 Outline

This dissertation presents powerful new algorithms for solving large MDPs. The

next chapter describes the theoretical aspects related to this work, including reinforce-

ment learning and the algorithms associated to it. Chapter 3 presents the related work

for the research presented in this dissertation, such as temporal and state abstraction,

ε − reduction, and subgoal discovery. Chapter 4 presents the main technical contribu-

tions of this dissertation and Chapter 5 shows the experimental results of this work.

Chapter 6 finally presents a comparison of the technique with MAXQ, one of the most

popular hierarchical Reinforcement learning techniques, before Chapter 7 concludes this

dissertation.



CHAPTER 2

FORMALISM

Most RL research is based on the formalism of Markov decision processes (MDPs).

Although RL is by no means restricted to MDPs, this discrete-time, countable (in fact,

usually finite) state and action formalism provides the simplest framework in which to

study basic algorithms and their properties. Here we briefly describe this well-known

framework, with a few twists characteristic of how it is used in RL research; additional

details can be found in many references (e.g., Bertsekas and Tsitsiklis [5], Puterman [27],

Ross [29] and Sutton and Barto [34]). A finite MDP models the following type of prob-

lem. At each stage in a sequence of stages, an agent (the controller) observes a system’s

state s, contained in a finite set S, and executes an action (control) a selected from a

finite, non-empty set, As, of admissible actions. The agent receives an immediate re-

ward having expected value R(s, a), and the state at the next stage is s′ with probability

P (s′|s, a). The expected immediate rewards, R(s, a), and the state transition probabili-

ties, P (s′|s, a), s, s′ ∈ S, together comprise what RL researchers often call the one-step

model of action a.

Figure 2.1 illustrates a graphical representation of an MDP with state space {s1, . . . , s8}

and action space {a, b}. The reward at each state is 0 except for state s7 which has a

reward of 10. The arrows represent the transition function.

A (stationary, stochastic) policy π : S × A → [0, 1], specifies that the agent executes

action a with probability π(s, a) whenever it observes state s.

For any policy π and state s ∈ S , the function V π(s) denotes the expected infinite-

horizon discounted return from state s given that the agent uses policy π. Letting st and

13
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Figure 2.1. A graph representation of an MDP.

rt+1 denote the state at stage t and the immediate reward for acting at stage t + 1 this

is defined as:

V π(s) = E{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s, π}

where γ, 0 ≤ γ ≤ 1, is a discount factor. V π(s) is the value of state s under policy π,

and V π is the value function corresponding to π.

This is a discounted MDP. The objective is to find an optimal policy, i.e. a policy, π∗,

that maximizes the value of each state. The unique optimal value function, V ∗, is the

value function corresponding to any of the optimal policies.

Most RL research addresses discounted MDPs since they comprise the simplest class

of MDPs, and here we restrict our attention to discounted problems. However, RL

algorithms have also been developed for MDPs with other definitions of return, such as

average reward MDPs [4].
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Playing important roles in many RL algorithms are action-value functions which assign

values to admissible state-action pairs. Given a policy π, the value of state-action pair,

(s, a), a ∈ As, denoted by Qπ(s, a), is the expected infinite-horizon discounted return for

executing action a in state s and thereafter following π:

Qπ(s, a) = E{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s, at = aπ}

The optimal action-value function, Q∗, assigns to each admissible state-action pair (s, a)

the expected infinite-horizon discounted return for executing action a in state s and

thereafter following an optimal policy. Action-value functions for other definitions of

return are defined analogously.

Dynamic programming (DP) algorithms exploit the fact that value functions satisfy var-

ious Bellman equations, such as [4]:

V π(s) =
∑

a∈A

π(s, a)

[

R(s, a) + γ
∑

s′

P (s′|s, a)V π(s′)

]

and

V ∗(s) =
∑

a∈A

π∗(s, a)

[

R(s, a) + γ
∑

s′

P (s′|s, a)V ∗(s′)

]

(2.1)

for all s ∈ S. Analogous equations exists for Qπ and Q∗. For example, the Bellman

equation for Q∗ is:

Q∗(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a)maxa′∈AQ∗(s′, a′) (2.2)

for all s ∈ S and a ∈ A.

As an example DP algorithm, consider value iteration which successively approximates

V ∗ as follows. At each iteration k, it updates an approximation Vk of V ∗ by applying the

following operation for each state s:

Vk+1(s) = max
a∈As

[

R(s, a) + γ
∑

s′

P (s′|s, a)Vk(s
′)

]

(2.3)
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This operation is called a backup because it updates a state’s value by transferring to it

the information about the approximate values of its possible successor states. Applying

this backup operation once to each state is often called a sweep. Starting with an arbi-

trary initial function V0, the sequence V{k} produced by repeated sweeps converges to V ∗.

A similar algorithm exists for successively approximating Q* using the following backup [4]:

Qk+1(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a) max
a′∈As′

Qk(s
′, a′)

Given V ∗, an optimal policy is any policy that for each state s assigns non-zero probability

only to those actions that realize the maximum on the right-hand side of Equation 2.3.

Similarly, given Q∗, an optimal policy is any policy that for each state s assigns non-zero

probability only to the actions that maximize Q∗(s, a). These maximizing actions are

often called greedy actions, and a policy defined in this way is a (stochastic) greedy policy.

Given sufficiently close approximations of V ∗ and Q∗ obtained by value iteration, optimal

policies are taken to be the corresponding greedy policies. Note that finding greedy

actions via Q∗ does not require access to the one-step action models (the R(s, a) and

P (s′|s, a)) as it does when only V ∗ is available, where the right-hand side of Equation 2.3

has to be evaluated. This is one of the reasons that action-value functions play significant

roles in RL.

In an MDP only the sequential nature of the decision process is relevant, not the amount

of time that passes between decision stages. A generalization of this is the semi-Markov

decision process (SMDP) in which the amount of time between one decision and the

next is a random variable, either real- or integer-valued. In the real-valued case, SMDPs

model continuous-time discrete-event systems (e.g. [7, 20, 32, 36]).

In a discrete-time SMDP decisions can be made only at ( positive) integer multiples of an

underlying time step. In either case, it is usual to treat the system as remaining in each

state for a random waiting time at the end of which an instantaneous transition occurs
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to the next state. Due to its relative simplicity, the discrete-time SMDP formulation

underlies most approaches to hierarchical RL, but there are no significant obstacles to

extending these approaches to the continuous-time case.

Let the random variable t denote the ( positive) waiting time for state s when action a

is executed. The transition probabilities generalize to give the joint probability that a

transition from state s to state s′ occurs after t time steps when action a is executed.

This joint probability can be written as P (s′, t|s, a). The expected immediate rewards,

R(s, a), (which must be bounded) now give the amount of discounted reward expected

to accumulate over the waiting time in state s given action a. The Bellman equations

for V ∗ and Q∗ are

V ∗(s) = max
a∈As

[

R(s, a) +

∞
∑

t=1

γt
∑

s′

P (s′, t|s, a)V ∗(s′)

]

and

Q∗(s, a) = R(s, a) +

∞
∑

t=1

γt
∑

s′

P (s′, t|s, a)maxa′∈AQ∗(s′, a′)

for all s ∈ S [4].

2.1 Reinforcement Learning

DP algorithms have complexity polynomial in the number of states, but they still

require prohibitive amounts of computation for large state sets, such as those that re-

sult from discretizing multi-dimensional continuous spaces or from representing state sets

consisting of all possible configurations of a finite set of structural elements (e.g. possible

configurations of a backgammon board [36]). Many methods have been proposed for

approximating MDP solutions, in particular RL methods that use Monte Carlo, stochas-

tic approximation, and function approximation techniques. Specifically, RL algorithms

combine some, or all, of the following features [4]:
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• Avoid the exhaustive sweeps of DP by restricting computation to states on, or in

the neighborhood of, multiple sample trajectories, either real or simulated. Because

computation is guided along sample trajectories, this approach can exploit situa-

tions in which many states have low probabilities of occurring in actual experience.

• Simplify the basic DP backup by sampling. Instead of generating and evaluating all

of a state’s possible immediate successors, estimate a backup’s effect by sampling

from the appropriate distribution.

• Represent value functions and/or policies more compactly than lookup-table repre-

sentations by using function approximation methods, such as linear combinations

of basis functions, neural networks, or other methods.

The first two features reflect the nature of the approximations usually sought when RL is

used. Instead of policies that are close to optimal uniformly over the entire state space,

RL methods arrive at non-uniform approximations that reflect the behavior of the agent.

The agent’s policy does not need high precision in states that are rarely visited. The

last feature is the least understood aspect of RL, but results exist for the linear case

(notably in Tsitsiklis and Van Roy [38]) and numerous examples illustrate how function

approximation schemes that are nonlinear in the adjustable parameters (e.g. multilayer

neural networks) can be effective for difficult problems (e.g. [7, 20, 32, 36]).

Of the many RL algorithms, perhaps the most widely used are Q-learning [39, 40] and

Sarsa [30] .

Q-learning is based on the DP backup but with the expected immediate reward and the

expected maximum action-value of the successor state respectively replaced by a sample

reward and the maximum action-value for a sample next state. The most common way to

obtain these samples is to generate sample trajectories by simulation or by observing the

actual decision process over time. Suppose the agent observes a current state s, executes
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action a, receives immediate reward r, and then observes a next state s′. The Q-learning

algorithm updates the current estimate, Qk(a, s), of Q∗(s, a) using the following update:

Qk+1(s, a) = (1− αk)Qk(s, a) + αk

[

r + γ max
a′∈As′

Qk(s
′, a′)

]

(2.4)

where αk is a time-varying learning-rate parameter. The values of all the other state-

action pairs remain unchanged at this update. If in the limit the action-values of all

admissible state-action pairs are updated infinitely often, and αk decays with increasing

k while obeying the usual stochastic approximation conditions, then Q{k} converges to

Q∗ with probability 1 [5]. As long as these conditions are satisfied, the policy followed

by the agent during learning is irrelevant. Of course, when Q-learning is being used,

the agent’s policy does matter since one is usually interested in the agent’s performance

throughout the learning process, not just asymptotically. It is usual practice to let the

agent select actions using a policy that is greedy with respect to the current estimate

of Q∗, while also introducing non-greedy “exploratory actions” in an attempt to widely

sample state-action pairs.

Another approach is Sarsa which is similar to Q-learning except that the maximum

action-value for the next state on the right-hand side of 2.4 is replaced by the action-

value of the actual next state-action pair:

Qk+1(s, a) = (1− αk)Qk(s, a) + αk [r + γQk(s
′, a′)] (2.5)

where a′ is the action executed in state s′. (Sutton, [34], called this algorithm Sarsa due

to its dependence on s, a, r, s′, and a′. Equation 2.5 is actually a special case called

Sarsa(0).)

2.2 Reinforcement Learning Algorithms

Two common methods for finding an optimal policy are value iteration and policy

iteration. This section provides an algorithm for each of these methods.
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2.2.1 Value Iteration

One way to find an optimal policy is to find the optimal value function. It can

be determined by a simple iterative algorithm called value iteration that can be shown

to converge to the correct V ∗ values [5]. One important result bounds the performance

of the current greedy policy as a function of the Bellman residual of the current value

function. it says that if the maximum difference between two successive value functions

is less than ε , then the value of the greedy policy, (the policy obtained by choosing, in

every state, the action that maximizes the estimated discounted reward using the current

estimate of the value function) differs from the value function of the optimal policy by

no more than 2εγ

1−γ
in any state [27]. This provides an effective stopping criterion for

the algorithm. Puterman [27] discusses another stopping criterion, based on the span

semi-norm, which may result in earlier termination. Another important result is that the

greedy policy is guaranteed to be optimal in some finite number of steps even though the

value function may not have converged. In practice, the greedy policy is often optimal

long before the value function has converged. The value iteration method starts with an

arbitrary value function, such as V0(s) = R(s, a) for some a ∈ A , and uses this value

function to find the next value function using the following equation:

Vk+1(s) = max
a∈As

[

R(s, a) + γ
∑

s′

P (s′|s, a)Vk(s
′)

]

the optimal value function V ∗ is formed when the value of Vk+1(s)−Vk(s) is small enough

for all s ∈ S . The corresponding optimal policy is:

π∗(s) = argmaxa

[

R(s, a) + γ
∑

s′

P (s′|s, a)V ∗(s′)

]

Algorithm 1 describes this procedure.
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Algorithm 1 Value Iteration

Require: Initialize V arbitrary, e.g, V (s) = 0, ∀s ∈ S

repeat

∆← 0

for each s ∈ S do

v ← V (s)

V (s)← maxa∈As
[R(s, a) + γ

∑

s′ P (s′|s, a)V (s′)]

∆← max(∆, |v − V (s)|)

end for

until ∆ < θ (a small positive number)

Output Policy π(s) = argmaxa [R(s, a) + γ
∑

s′ P (s′|s, a)V ∗(s′)]

2.2.2 Policy Iteration

While value iteration updates the value and the policy at each step, policy iteration

finds a policy and tries to improve it until the policy can not be improved. The policy

iteration algorithm manipulates the policy directly, rather than finding it indirectly via

the optimal value function. The value function of a policy is just the expected infinite

discounted reward that will be gained, at each state, by executing that policy. It can be

determined by solving a set of linear equations. Once we know the value of each state

under the current policy, we consider whether the value could be improved by changing

the first action taken. If it can, we change the policy to take the new action whenever it

is in that situation. This step is guaranteed to strictly improve the performance of the

policy. When no improvements are possible, then the policy is guaranteed to be optimal.

Since there are at most |A||S| distinct policies, and the sequence of policies improves at

each step, this algorithm terminates in at most an exponential number of iterations [27].

Algorithm 2 describes a pseudo-code by which policy iteration can be implemented.
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Algorithm 2 Policy Iteration

Require: Initialize π0 an arbitrary policy

j ← 0

Continue← true

while Continue do

Compute V π

πj+1 ← argmaxa(Vπj
)

if πj = πj+1 then

Continue← false

else

j ← j + 1

end if

end while

return πj



CHAPTER 3

RELATED WORK

Hierarchical approaches to RL generalize the macro idea to closed-loop policies or,

more precisely, closed-loop partial policies because they are generally defined for a subset

of the state set. The partial policies must also have well-defined termination conditions.

These partial policies are sometimes called temporally-extended actions or options [35].

When option policies are learned, they usually are policies for efficiently achieving sub-

goals, where a subgoal is often a state, or a region of the state space, such that reaching

that state or region is assumed to facilitate achieving the overall goal of the task. The

canonical example of a useful subgoal is a doorway in a robot navigation scenario: the

doorway has to be passed through to reach any goal outside the room. Figure 3.1 shows

a SMDP that is derived from a MDP [18].

In this figure the top panel shows the state trajectory over discrete time in the MDP

and the lower panel shows the larger state changes in a SMDP. The filled circles indi-

cate decision points when a new action has to be selected while the empty circles in the

SMDP represent states in which the previously selected multi-step action is still active.

As can be seen, a smaller number of decisions have to be made in the SMDP which

should accelerate learning.

3.1 Temporal Abstraction of SMDPs

Artificial intelligence researchers have addressed the need for large-scale planning

and problem solving by introducing various forms of abstraction into problem solving

and planning systems, e.g., Fikes et al. [28] and Korf [19]. Abstraction allows a system

23
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Figure 3.1. Comparison between MDP and SMDP.

to ignore details that are irrelevant for the task at hand. One of the simplest types of

abstraction is the idea of a “macro-operator,” or just a “macro,” which is a sequence of

operators or actions that can be invoked by name as if it were a primitive operator or

action. Macros form the basis of hierarchical specifications of operator or action sequences

because macros can include other macros in their definition: a macro can “call” other

macros. Also familiar is the idea of a subroutine that can call other subroutines as well

as execute primitive commands. Most of the current research on hierarchical RL focuses

on action hierarchies that follow roughly the same semantics as hierarchies of macros or

subroutines.

From a control perspective, a macro is an open-loop control policy and, as such, is

inappropriate for most interesting control purposes, especially the control of stochastic

systems. Hierarchical approaches to RL generalize the macro idea to closed-loop policies,

or more precisely, closed-loop partial policies because they are generally defined for a

subset of the state set. The partial policies must also have well-defined termination
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conditions. These partial policies are sometimes called temporally-extended actions,

options [35], skills [37] or behaviors [6, 16].

For MDPs, this extension adds to the sets of admissible actions, a ∈ A, sets of activities,

each of which can itself invoke other activities, thus allowing a hierarchical specification

of an overall policy. The original one-step actions, called the “primitive actions,” may

or may not remain admissible. Extensions along these general lines result in decision

processes modeled as Semi Markov Decision Processes (SMDP), where the waiting time

in a state corresponds to the duration of the selected activity. If t is the waiting time

in state s upon execution of activity a, then action a takes t steps to complete when

initiated in state s, where the distribution of the random variable t now depends on the

policies and termination conditions of all of the lower-level activities that comprise action

a.

Sutton et al. [35] formalize this approach to include activities in RL with their notion of

an option. Starting from a finite MDP, which we call the core MDP, the simplest kind

of option consists of a (stationary, stochastic) policy π : S × A → [0, 1], a termination

condition β : S → [0, 1], and an input set I ⊂ S. The option (I, π, β) is available in state

s if and only if s ∈ I. If the option is executed, then actions are selected according to

policy π until the option terminates stochastically according to β. For example, if the

current state is s, the next action is a with probability π(s, a), the environment makes

a transition to state s′, where the option either terminates with probability β(s′) or else

continues, determining the next action a′ with probability π(s′, a′), and so on. When the

option terminates, the agent can select another option.

It is usual to assume that for any state in which an option can continue, it can also be

initiated, that is, {s : β(s) < 1} ⊂ I. This implies that an option’s policy only needs

to be defined over its input set I. Note that any action of the core MDP, a primitive

action a ∈ A, is also an option, and it is called a one-step option, with I = {s : a ∈ As}
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and β(s) = 1 for all s ∈ S. Sutton et al. [35] give the example of an option named

open-the-door for a hypothetical robot control system. This option consists of a policy

for reaching, grasping and turning the door knob, a termination condition for recognizing

that the door has been opened, and an input set restricting execution of open-the-door

to states in which a door is within reach.

To allow more flexibility, especially with respect to hierarchical architectures, one must

include semi-Markov options whose policies can set action probabilities based on the

entire history of states, actions, and rewards since the option was initiated [35].

Semi-Markov options include options that terminate after a pre-specified number of time

steps and, most importantly, they are needed when policies over options are considered,

i.e. policies π : S × Os → [0, 1], where Os is the set of admissible options for state s

(which can include all the one-step options corresponding to the admissible primitive

actions in As, i.e. the set of admissible actions for state s).

A policy π over options selects option o in state s with probability π(s, o); o’s policy in

turn selects other options until o terminates. The policy of each of these selected options

selects other options, and so on. Expanding each option down to primitive actions, we

see that any policy π over options determines a conventional policy of the core MDP

which Sutton et al. [35] call the flat (i.e. non-hierarchical) policy corresponding to π,

denoted as flat(π). Flat policies corresponding to policies over options are generally not

Markov even if all the options are Markov. The probability of a primitive action at any

time step depends on the current core state plus the policies of all the options currently

involved in the hierarchical specification. This dependence is made more explicit in the

work of Parr [24] and Dietterich [10]. Using this machinery, one can define hierarchical

options as triples (I, π, β), where I and β are the same as for Markov options but π is a

semi-Markov policy over options.



27

Value functions for option policies can be defined in terms of value functions of semi-

Markov flat policies. For a semi-Markov flat policy π:

V π(s) = E{rt+1 + γrt+2 + . . . + γτ−1rt+τ + . . . |ε(π, s, t)}

where ε(π, s, t) is the event of π being initiated at time t in state s. Note that this value

can depend on the complete history from t onwards, but not on events earlier than t since

π is semi-Markov. Given this definition for flat policies, V flat(π)(s), the value of s for a

policy π over options is defined to be V π(s). Similarly, one can define the option-value

function for π as follows:

Qπ(s, o) = E{rt+1 + γrt+2 + . . . + γτ−1rt+τ + . . . |ε(oπ, s, t)}

where oπ is the semi-Markov policy that follows o until it terminates after τ time steps

and then continues according to oπ.

Adding any set of semi-Markov options to a core finite MDP yields a well-defined discrete-

time SMDP whose actions are the options and whose rewards are the returns delivered

over the course of an option’s execution. Since the policy of each option is semi-Markov,

the distributions defining the next state (the state at an option’s termination), waiting

time, and rewards depend only on the option executed and the state in which its execu-

tion was initiated. Thus, all of the theory and algorithms applicable to SMDPs can be

appropriated for decision making with options.

In their effort to treat options as much as possible as if they were conventional single-

step actions, Sutton et al. [35] introduced the interesting concept of a multi-time model

of an option that generalizes the single-step model consisting of R(s, a) and P (s′|s, a),

s, s′ ∈ S, of a conventional action a. For any option o, let ε(o, s, t) denote the event of o

being initiated in state s at time t. Then the reward part of the multi-time model of o

for any s ∈ S is:

R(s, o) = E{rt+1 + γrt+2 + . . . + γτ−1rt+τ |ε(o, s, t)} (3.1)
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where t + τ is the random time at which o terminates. The state-prediction part of the

model of o for s is:

F (s′|s, o) =
∞

∑

k=1

P (st+k = s′, k|st = s, o)γk (3.2)

for all s ∈ S. Though not itself a probability, F (s′|s, o) is a combination of the probability

that s′ is the state in which o terminates together with a measure of how delayed that

outcome is in terms of γ. The quantities R(s, o) and F (s′|s, o) respectively generalize

the reward and transition probabilities, R(s, a) and P (s′|s, a), of the usual MDP in such

a way that one can write a generalized form of the Bellman optimality equation. If V ∗
O

denotes the optimal value function over an option set o, then

V ∗
O(s) = max

o∈O
[R(s, o) +

∑

s′

F (s′|s, o)V ∗
O(s′)]

which reduces to the usual Bellman optimality equation (Equation 2.1), if all the options

are one-step options, i.e. β(s) = 1, s ∈ S. A Bellman equation can be written for Q∗
o:

Q∗
O(s, o) = R(s, o) +

∑

s′

F (s′|s, o) max
o′∈O

Q∗
O(s′, o′)

for all s ∈ S and o ∈ O.

The DP backup analogous to Equation 2.2 for computing option-values is:

Qk+1(s, o) = R(s, o) +
∑

s′∈S

F (s′|s, o) max
o′∈O

Qk(s
′, o′)

and the corresponding Q-learning update is:

Qk+1(s, o) = (1− αk)Qk(s, o) + αk[r + γτ max
o′∈O

Qk(s
′, o′)]

This update is applied upon the termination of o at state s′ after executing for τ time

steps, and r is the return accumulated during o’s execution.

The primary motivation for the options framework is to permit one to add temporally



29

extended activities to the repertoire of choices available to an RL agent, while at the

same time not precluding planning and learning at the finer grain of the core MDP. The

emphasis is therefore on augmentation rather than simplification of the core MDP. If all

the primitive actions remain in the option set as one-step options, then clearly the space

of realizable policies is unrestricted so that the optimal policies over options are the same

as the optimal policies for the core MDP. But since finding optimal policies in this case

takes more computation via conventional DP than does just solving the core MDP, one

is tempted to ask what one gains from this augmentation of the core MDP. One answer

is to be found in the use of RL methods. For RL, the availability of temporally-extended

activities can dramatically improve the agent’s performance while it is learning, espe-

cially in the initial stages of learning. Options also can facilitate transfer of learning to

related tasks. Of course, only some options can facilitate learning in this way, and a key

question is how does a system designer decide on what options to provide.

On the other hand, if the set of options does not include the one-step options correspond-

ing to all of the primitive actions, then the space of policies over options is a proper subset

of the set of all policies of the core MDP. In this case, the resulting SMDP can be much

easier to solve than the core MDP [4].

3.1.1 Example of a SMDP

Consider the rooms problem, a grid world environment with five rooms and one

hallway illustrated in Figure 3.2. The cells of the grid show the states of the environ-

ment. From any state the robot can perform one of the four actions up, down, left or

right, which have a stochastic effect and will fail 50 percent of the time i.e. with proba-

bility 1
2

they are successful, and the agent moves in any of the other three directions with

probability 1
6
. The reward for each state is zero.

There is a hallway in this environment, designed to let the agent reach other rooms and
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Elevator

Figure 3.2. The Rooms example as a grid world environment.

the elevator. For each room there are policies πi which move the robot along the shortest

path to the hallway or the other rooms.

For example, the policy for one room is shown in Figure 3.3. The termination condition

Elevator

Figure 3.3. The policy of one of the four rooms.

for this policy is zero for states within the room and 1 for states out of the room. The

initiation set I consists of the states in the room.
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This describes a SMDP for the rooms environment with options that move the agent to

a doorway with a single decision. As a result of this reduced number of decision points

to navigate the environment, the SMDP converges significantly faster to a solution for a

navigation task than the flat MDP using only primitive actions.

3.2 State Abstraction

State abstraction or state aggregation refers to a general class of methods where

a single state is used to represent a large group of states. This produces a reduced

state space which is easier to solve using the standard MDP algorithms discussed in this

chapter. Note that state abstraction is common in traditional planning where only the

relevant features of any state, typically some set of state variables, are used to represent

a large class of states where the other variables have ”don’t care” values [24].

Difficult questions for state abstraction in MDPs arise because of the complex value rela-

tionships that can exist between seemingly unrelated states. Where traditional planning

assumes a deterministic model with a goal of achievement, the stochasticity of MDPs

and optimality criteria for MDPs can easily induce an optimal value function that as-

signs different values to every state and an optimal policy that implies some form of

utility relationship between any two states. In some cases it is possible to show that

MDP states can be aggregated without any effect on solution quality [24, 9], but state

abstraction generally involves a tradeoff between optimality and compactness. Difficult

issues that must be resolved are:

• The manner in which a transition model and reward function for the abstract model

are derived from the original model.

• The relationship between the solution to the abstract model and the solution to

the original model.
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Different decisions about these two questions can lead to different tradeoffs between

efficiency and solution quality. Conservative approaches [24, 9] aggregate states if they

have similar reward and transition functions. This approach permits reasonable bounds

on the relationship between the optimal solution to the aggregated model and the optimal

solution to the original model. Unfortunately, such methods also fail to capture some of

the intuitive notion of an aggregated state. For example, it would seem that all states

within a particular room of a house should, at some level of abstraction, be grouped

together as a single ”room” state. The fact that actions might have different effects in

different parts of the room would prevent this. While state abstraction has many pitfalls,

it ultimately must play a role in MDP methods. Since no two situations are ever truly the

same, some implicit temporal abstraction is performed whenever a model is constructed

and irrelevant features are discarded [24].

3.2.1 Bounded Parameter MDPs

The most strongly related work to the abstraction method described in this work is

the method introduced by Dean et al. [9] as a mechanism to derive state space partitions

of a MDP that ensure approximately optimal policies to be learned. These partitions

depend on the action space and the particular reward function of the task. Kim and

Dean, [18] introduced an algorithm to derive a set of such partitions and used it to learn

a policy for the task indicated by the reward function. The resulting policy is ensured

to be within an ε-dependent quality bound. Two shortcomings of this algorithm are

that it does not address temporally abstract actions and that it requires a complete re-

computation of the partitions when a new action is introduced. Moreover, it requires

knowledge of the reward function prior to partitioning, and thus no part of the partition-

ing transfers across tasks.

The reduction technique is based on the framework of Bounded Parameter MDP (BP-
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MDP) [18]. A BPMDP is a four tuple M̂ = (Ŝ, Â, P̂ , R̂) where Ŝ and Â are defined as for

MDPs, and P̂ , R̂ are analogous to P and R in MDPs but assign closed intervals rather

than single values to each state-action pair. That is, for any action a and states s, s′ ∈ S,

the values of R̂(s, a) and P̂ (s′|s, a) are both closed intervals [l, u] where l, u are both real

numbers with l ≤ u and in the case of P̂ we require 0 ≤ l ≤ u ≤ 1. To ensure that P̂

is well-defined we require that for any action a and state s, the sum of the lower bounds

of P̂ (s′|s, a) over all states s′ must be less than or equal to 1 while the upper bounds

must sum to a value greater than or equal to 1. Figure 3.4 illustrates the state-transition

diagram for a simple BPMDP with three states and one action.

An interval value function V̂ is a map from states to closed intervals. A BPMDP

[0.7,0.8]

[0.8,0.92]

[0
.1

,0
.5

]

[0
,0

.1
]

[0
.7

,1
][0

.2
,0

.5
]

Figure 3.4. The state transition diagram for BPMDP.

M̂ = (Ŝ, Â, P̂ , R̂) induces an exact MDP M = (S, A, P, R) where S = Ŝ and A = Â, and

for any action a and states s, s′ ∈ S, R(s, a) and P (s′|s, a) are in the range of R̂(s, a)

and P̂ (s′|s, a) respectively. In a BPMDP M̂ , the interval value V̂π for state s is defined

by the interval:

V̂π(s) =

[

min
P̂ ,R̂

Vπ(s), max
P̂ ,R̂

Vπ(s)

]
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3.2.2 ε-Reduction Method

Dean et al. [8] introduced a family of algorithms that take a MDP and a real value

0 ≤ ε ≤ 1 as an input and compute a Bounded Parameter MDP where each closed inter-

val has a scope less than ε. The states in this MDP correspond to blocks of a partition of

the state space in which the states in the same block have the same proprieties in terms

of transitions and rewards. Let P = {B1, . . . , Bn} be a partition of the state space [8] .

Definition 3.1 [8]: A partition P = {B1, . . . , Bn} of the state space of a MDP M

has the property of ε-approximate stochastic bisimulation homogeneity with respect to

M for 0 ≤ ε ≤ 1 if and only if for each Bi, Bj ∈ P , for each a ∈ A and for each s, s′ ∈ Bi:

|R(s, a)− R(s′, a)| ≤ ε

and
∣

∣

∣

∣

∣

∣

∑

s′′∈Bj

P (s′′|s, a)−
∑

s′′∈Bj

P (s′′|s′, a)

∣

∣

∣

∣

∣

∣

≤ ε

Definition 3.2 [8]: A partition P ′ is a refinement of a partition P if and only if each

block of P ′ is a subset of some block of P. In this case we say that P is coarser than P ′.

Definition 3.3 [8]: The immediate reward partition is the partition in which two states

s, s′ ∈ S, are in the same block if they have the same rewards.

Definition 3.4 [8]: The block Bi of a partition P is ε-stable with respect to block

Bj if and only if for all actions a ∈ A and all states s, s′ ∈ Bi:
∣

∣

∣

∣

∣

∣

∑

s′′∈Bj

P (s′′|s, a)−
∑

s′′∈Bj

P (s′′|s′, a)

∣

∣

∣

∣

∣

∣

≤ ε
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The ε-model reduction algorithm first uses the immediate reward partition as an ini-

tial partition and checks the ε-stability for each block of this partition until there are no

unstable blocks left. For example, when block Bi happens to be unstable with respect

to block Bj, block Bi will be replaced by a set of sub-blocks Bi1 , . . . , Bik such that each

Bim is a maximal sub-block of Bi that is ε-stable with respect to Bj.

Theorem 3.1 [8]: For ε > 0, the partition P founded by the ε-reduction model al-

gorithm from the MDP M ,is coarser than, and thus no larger than M .

Once the ε-stable blocks of the partition have been constructed, the transition and re-

ward function between blocks can be defined. The transition of each block by definition

is the interval with the bounds of maximum and minimum probabilities of all possible

transitions from all states of a block to the states of another block.

P̂ (Bi|Bj, a) =

[

min
s∈Bj

∑

s′∈Bi

P (s′|s, a), max
s∈Bj

∑

s′∈Bi

P (s′|s, a)

]

and

R̂(Bj, a) =

[

min
s∈Bj

R(s, a), max
s∈Bj

R(s, a)

]

3.3 Subgoal Discovery

In the current state-of-the-art, the designer of an RL system typically uses prior

knowledge about the task to add a specific set of options to the set of primitive actions

available to the agent. In some case, complete option policies can be provided; in other

case, option policies can be learned using, for example, intra-option learning methods to-

gether with option-specific reward functions that are provided by the designer [23, 12, 13].
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Providing options and their policies a priori is an opportunity to use background knowl-

edge about the task to try to accelerate learning and/or provide guarantees about system

performance during learning. Perkins and Barto [26], for example, consider collections

of options each of which descends a Lyapunov function. Not only is learning accelerated,

but the goal state is reached on every learning trial while the agent learns to reach the

goal more quickly by approximating a minimum-time policy over these options.

When option policies are learned, they usually are policies for efficiently achieving sub-

goals, where a subgoal is often a state or a region of the state space, such that reaching

that state or region is assumed to facilitate achieving the overall goal of the task. The

canonical example of a useful subgoal is a doorway in a robot navigation scenario: the

doorway has to be passed through to reach any goal outside the room. Given a collection

of subgoals, one can define subgoal-specific reward functions that positively reward the

agent for achieving the subgoal (while possibly penalizing it until the subgoal is achieved).

Options are then defined which terminate upon achieving a subgoal, and their policies

can be learned using the subgoal-specific reward function and standard RL methods. Pre-

cup [35] discusses one way to do this by introducing subgoal values, and Dietterich [10],

proposes a similar scheme using pseudo-reward functions.

A natural question then is how are useful subgoals determined? McGovern and Barto [23]

developed a method for automatically identifying potentially useful subgoals by detecting

regions that the agent visits frequently on successful trajectories but not on unsuccessful

trajectories. An agent using this method selects such regions that appear early in learning

and persist throughout learning, creates options for achieving them, learns their policies,

and at the same time learns a higher-level policy that invokes these options appropriately

to solve the overall task. Experiments with this method suggest that it can be useful

for accelerating learning on single tasks, and that it can facilitate knowledge transfer as

previously-discovered options are reused in related tasks. This approach builds on previ-
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ous work in artificial intelligence that addresses abstraction, particularly that of Iba [17],

who proposed a method for discovering macro-operators in problem solving. Related

ideas have been studied by Digney [12] where states that are visited frequently or states

where the reward gradient is high are chosen as subgoals.

3.3.1 Subgoal Discovery by Using Learned Policies

An example that shows the importance of a subgoal is a room to room navigation

task where the agent should discover the utility of doorways as subgoals. If the agent

discovers that a doorway is a subgoal, then it can learn a policy(option) to reach the

doorway in order to accelerate the task of navigation. The idea of using subgoals is not,

however, limited to grid worlds. For example, for a robot arm attempting to pick up

certain objects, a subtask can be recognizing the objects and thus states in which the

object are found and recognized can be a subgoal [14].

The main goal of automatic subgoal discovery is finding useful subgoals that can be

defined in the agent’s state space. Options to those subgoals are learned and added as

actions. One of the problems with the subgoal discovery techniques presented in the

previous section is that they heavily rely on the identification of successful trajectories

or on the reward. Both of them, however, might be very specific to the already learned

task and might thus not transfer well to other tasks. For this reason, [14] introduced a

method for subgoal discovery which identifies subgoals as states which show a specific

structural property under the learned policy, namely that they form local “funnels”

for state space trajectories under the learned policy. To determine such states, this

approach calculates the number of (potentially distant) predecessors and analyzes them

for statistically significant outliers along policy-derived trajectories. The method here

relies on the tact that in a uniformly connected space, where states have approximately

the same expected number of direct predecessors under a given policy, every state will
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have an approximately equal number of direct predecessors under a given policy, except

for regions near the goal state or close to the boundaries.

Definition 3.5 [14] : A state s is a direct predecessor to state s′ if under the learned

policy the action in state s can lead to s′, i.e. P (s′|s, a) > 0.

Definition 3.6 [14] : Let s1, . . . , sn be the direct predecessor of state s. The Count

metric for a state s under a learned policy is given by the sum of the count metrics of all

the direct predecessors of s weighted by the transition probability plus the sum of the

probabilities of all direct predecessors to lead to s.

Let C(s) represents the count of predecessors for a state s under a given policy o, and

Ct(s) be the count of predecessors that can reach s in exactly t steps. then:

C1(s) =
∑

s′ 6=s

P (s|s′, o(s′)) (3.3)

and

Ct+1(s) =
∑

s′ 6=s

P (s|s′, o(s′))Ct(s
′) (3.4)

C(s) =

n
∑

i=1

Ci(s) (3.5)

where n is such that Cn+1 = Cn or n = |S|, whichever is smaller. The condition s′ 6= s

prevents the counting of self loops and P (s|s′, o(s′)) is the probability of reaching state

s from state s′ by executing action o(s′). In order to calculate the ratio along a path

under a given policy, let C(s1) be the predecessor count for the initial state of the path

and C(st) be the count for the state that the agent will be in after t steps. Then we can

compute:

∆t = C(st)− C(st−1) (3.6)

In order to identify the subgoals, the gradient ratio ∆t/∆t+1 is computed. If ∆t < ∆t+1

then the ratio is less than 1 and the state does not fit the criterion. However, if ∆t > ∆t+1

and the ratio is greater than a specified threshold, then state s′ is a potential candidate
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Figure 3.5. The grid world for the example.

for a subgoal. The threshold here depends largely on the characteristics of the state space

but can often be computed independent of the particular environment.

3.3.2 Example

Figure 3.5 [14] shows a four-room example environment on a 20× 20 grid. For this

experiment, the goal state was placed in the lower right portion and each trial started

from the same state in the left upper corner as shown in Figure 3.5.

The action space consists of eight primitive actions (North, East, South, West, North-

west, Northeast, Southwest and Southeast). The world is deterministic and each action

succeeds in moving the agent in the chosen direction. With every action the agent re-

ceives a negative reward of −1 for a straight action and −1.2 for a diagonal action. In

addition, the agent gets a reward of +10 when it reaches the goal state. Here, the learn-
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Figure 3.6. Extracted subgoals in the example.

ing method is Q-learning and the predecessor count for every state is computed using

Equations 3.3, 3.4 and 3.5. The agent then evaluates the ratio of gradients along the

count curve by choosing random paths, and picks the states in which the ratio is higher

than a specified threshold as a subgoal states. For example, the count curve is calculated

along one path illustrated in Figure 3.5. The value for the gradient ratio at step 4 along

this trajectories is 1.444 while it is 95.0 at step 6 (which is a subgoal). Extracted subgoals

are illustrated in Figure 3.6.

3.4 Approaches to Hierarchical Reinforcement Learning

Parr [24] and Parr and Russell [25] developed an approach to hierarchically struc-

turing MDP policies called Hierarchies of Abstract Machines or HAMs. Like the options
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formalism, HAMs exploit the theory of SMDPs, but the emphasis is on simplifying com-

plex MDPs by restricting the class of realizable policies rather than expanding the action

choices. In this respect, as pointed out by Parr [24], it has much in common with the mul-

tilayer approach for controlling large Markov chains that considered a two-layer structure

in which the lower level controls the plant via one of a set of pre-defined regulators. The

higher level, the supervisor, monitors the behavior of the plant and intervenes when its

state enters a set of boundary states. In the options framework, each option corresponds

to a low-level regulator, and when the option set does not contain the one-step options

corresponding to all primitive actions, the same simplification results. HAMs extend this

idea by allowing policies to be specified as hierarchies of stochastic finite-state machines.

Dietterich [11] developed another approach to hierarchical RL called the MAXQ Value

Function Decomposition. Like options and HAMs, this approach also relies on the the-

ory of SMDPs. Unlike options and HAMs, however, the MAXQ approach does not rely

directly on reducing the entire problem to a single SMDP. Instead, a hierarchy of SMDPs

is created whose solutions can be learned simultaneously [4].

3.4.1 MAXQ Value Function Decomposition

Dietterich [11] developed an approach to hierarchical RL called the MAXQ Value

Function Decomposition, which we call simply MAXQ. The MAXQ approach starts with

a decomposition of a core MDP M into a set of subtasks {M0, . . . , Mn}. The subtasks

form a hierarchy with M0 being the root subtask, which means that solving M0 solves

M . Actions taken in solving M0 consist of either executing primitive actions or policies

that solve other subtasks, which can in turn invoke primitive actions or policies of other

subtasks, etc.

The structure of the hierarchy is summarized in a task graph, an example of which is

given in Figure 3.7 for a Taxi problem that Dietterich used as an illustration. Each
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West

Root

Get Put

NavigatePickup Dropoff

North South East

Figure 3.7. A task graph for the taxi problem [11].

episode of the overall task consists of picking up, transporting, and dropping off a pas-

senger. The overall problem, corresponding to the root node of the graph, is decomposed

into the subtask Get, which is the subtask of going to the passenger’s location and picking

them up, and the subtask Put, which is the subtask of going to the passenger’s desti-

nation and dropping them off. These subtasks, in turn, are respectively decomposed

into the primitive actions Pickup or Dropoff which ,respectively, pick up and drop off

a passenger, and the subtask Navigate(t), which consists of navigating to one of the

locations indicated by the parameter t. (A parameterized subtask like this is shorthand

for multiple copies of the subtask, one for each value of the parameter.) This subtask

Navigate(t) is decomposed into the primitive actions that are moves North, South, East,

or West. The subtasks and primitive actions into which a subtask mi is decomposed are

called the “children” of Mi. An important aspect of a task graph is that the order in

which a subtask’s children are shown is arbitrary and the choice that the higher level

controller makes depends on its policy. The graph just restricts the action choices that

can be made at each level.

Each subtask, Mi, consists of three components. First, it has a subtask policy, pi, that

can select other subtasks from the set of Mi ’s children. Here, as with options, primitive
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actions are special cases of subtasks. In addition, the subtask policies are assumed to be

deterministic. Second, each subtask has a termination predicate that partitions the state

set, s, of the core MDP into si, the set of active states, in which Mi’s policy can execute,

and ti, the set of termination states, which, when entered causes the policy to terminate.

Third, each subtask mi has a pseudo-reward function that assigns reward values to the

states in ti. The pseudo-reward function is only used during learning, which we discuss

after first describing how the task graph hierarchy allows value functions to be decom-

posed.

A subtask is very much like a hierarchical option, Ii, πi, βi, with the addition of a pseudo-

reward function. The policy over options, Mi, corresponds to the subtask’s πi; the

termination condition, βi, in this case assigns to states termination probabilities of only

1 or 0; and the option’s input set Ii corresponds to si. Unlike the option formalism,

however, which treats semi-Markov options, MAXQ explicitly adds a component to each

state that gives the current contents, K, of a pushdown stack containing the names and

parameter values of the hierarchy of calling subtasks, as in subroutine handling of ordi-

nary programming languages. At any time step, the top of the stack contains the name

of the subtask currently being executed. Thus, while a subtask’s policy is non-Markov

with respect to the state set of the core MDP, it is Markov with respect to this aug-

mented state set. As a consequence, each subtask policy has to assign actions to every

combination, [s, K], of core state s and stack contents K.

Given a hierarchical decomposition of M into n subtasks as given by a task graph, a

hierarchical policy is defined to be π = {π0, . . . , πn}, where πi is the policy of Mi.

Given this, one can write a Bellman equation for the SMDP corresponding to subtask

Mi:

V π(i, s) = V π(πi(s), s) +
∑

s′,t

P π
i (s′, t|s, πi(s))γ

tV π(i, s′)
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where V π(i, s′) is the expected return for completing subtask Mi starting in state s′ and

V π(a, s) is the selected immediate reward of executing a in state s.

The action-value function, Q, can be extended to apply to subtasks: for hierarchical

policy π, Qπ(i, s, a) is the expected return for action a (a primitive action or a child

subtask) being executed in subtask Mi and then π being followed until Mi terminates.

In terms of this subtask action-value function, this observation takes the form:

Qπ(i, s, a) = V π(a, s) +
∑

s′,t

P π
i (s′, t|s, a)γtQπ(i, s′, π(s′))

3.4.2 Hierarchical Abstract Machines

Parr [24] developed an approach to hierarchically structuring MDP policies called

Hierarchies of Abstract Machines or HAMs. Like the options formalism, HAMs exploit

the theory of SMDPs, but the emphasis is on simplifying complex MDPs by restricting

the class of realizable policies rather than expanding the action choices. In this respect,

as pointed out in [24], it has much in common with the multilayer approach for con-

trolling large Markov chains which considered a two-layer structure in which the lower

level controls the plant via one of a set of pre-defined regulators. The higher level, the

supervisor, monitors the behavior of the plant and intervenes when its state enters a set

of boundary states [4].

Intervention takes the form of switching to a new low-level regulator. This is not unlike

many hybrid control methods except that the low-level process is formalized as a finite

MDP and the supervisor’s task as a finite SMDP. The supervisor’s decisions occur when-

ever the plant reaches a boundary state, which effectively “erases” the intervening states

from the supervisor’s decision problem, thereby reducing its complexity. In the options

framework, each option corresponds to a low-level regulator, and when the option set

does not contain the one-step options corresponding to all primitive actions, the same
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simplification results. HAMs extend this idea by allowing policies to be specified as hi-

erarchies of stochastic finite-state machines.

The idea of the HAM approach is that policies of a core MDP are defined as programs

which execute based on their own states as well as the current states of the core MDP.

Departing somewhat from Parr’s [24] notation, let M be a finite MDP with state set S

and action sets As,s ∈ S. A HAM policy is defined by a collection of stochastic finite-

state machines, {hi}, with state sets si, stochastic transition functions δi, and input sets

all equal to M ’s state set, s. Each machine hi also has a stochastic function Ii : S → Si

that sets the initial state of M in the manner described below. Each hi has four types

of states: action, call, choice, and stop. An action state generates an action of the core

MDP, M , based on the current state of M and the current state of the currently exe-

cuting machine, say hi. That is, at time step t, the action is at = π(mi
t, st) ∈ As, where

mt
i is the current state of hi and st is the current state of M . A call state suspends

execution of the currently executing hi and initiates execution of another machine, say

hj , where j is a function of hi’s state mt
i. Upon being called, the state of hj is set to

Ij(st). A choice state nondeterministically selects a next state of hi. Finally, a stop state

terminates execution of hi and returns control to the machine that called it (whose exe-

cution commences where it was suspended). Meanwhile, the core MDP, upon receiving

an action, makes a transition to a next state according to its transition probabilities and

generates an immediate reward [4].

If no action is generated at step t, then M remains in its current state. Parr defines a

HAM H to be the initial machine together with the closure of all machine states in all

machines reachable from the possible initial states of the initial machine. Let us call this

state set SH . For convenience, he also assumes that the initial machine does not have

a stop state and that there are no infinite, i.e. probability 1, loops that do not contain

action states. This ensures that the core MDP continues to receive primitive actions.
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Figure 3.8 [24] shows a simple HAM state-transition diagram similar to an example given

in the previous section for controlling a simple simulated mobile robot. This HAM runs

until the robot reaches an intersection. Whenever an obstacle is encountered, a choice

state is entered that allows the robot to decide to back away from the obstacle by calling

the machine back-off or to try to get around the obstacle by calling the machine follow-

wall. Each of these machines has its own state-transition structure, possibly containing

additional choice and call states. When this HAM is selected, it deterministically starts

by calling the follow-wall machine.

The composition of a HAM H and an MDP M , as described above, yields a discrete-time

Figure 3.8. State-transition structure of a simple HAM Parr [24].
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SMDP denoted by H ◦M . The state set of H ◦M is S × SH , and its transitions are

determined by the parallel actions of the transition functions of H and M . The only ac-

tions of H ◦M are the choices allowed in the choice points of H ◦M , which are the states

whose H components are choice states. These actions change only the HAM component

of each state. This is an SMDP because after a choice is made, the composition of H

and M runs autonomously until another choice point is reached [4].

All the primitive actions to M during this period are fully determined by the action states

of H . The expected immediate rewards of H ◦M are the expected returns accumulated

during these periods between choice points, and they are determined by the immediate

rewards of M together with rewards of zero for the time steps in which M ’s state does not

change. Thus, one can think of a HAM as a method for delineating a possibly drastically

restricted set of policies for M . This restriction is determined by the prior knowledge

that the HAM’s designer, or programmer, has about what might be good ways to control

M .



CHAPTER 4

HIERARCHICAL ACTIONS AND STATE SPACE CONSTRUCTION

This section describes the main contribution of this dissertation. In this approach,

the agent uses information acquired while learning one task to discover subgoals for sim-

ilar tasks. The agent is able to transfer knowledge to subsequent tasks and to accelerate

learning by creating useful new subgoals and by off-line learning of corresponding subtask

policies as abstract actions (options). At the same time, the subgoal actions are used to

construct a more abstract state representation using action-dependent state space par-

titioning. This representation forms a new level in the state space hierarchy and serves

as the initial representation for new learning tasks. In order to ensure that tasks are

learnable, value functions are built simultaneously at different levels of the hierarchy and

inconsistencies are used to identify actions to be used to refine relevant portions of the

abstract state space. Together, these techniques permit the agent to form more abstract

action and state representations over time. Figure 4.1 illustrates these procedures.

4.1 Autonomous Subgoal Discovery

In this section we introduce our subgoal discovery algorithm and we show how it

can be improved using Monte Carlo sampling. The discovered subgoals will be used in

the next section in order to build a more abstract state space which is action dependent.

An example that shows the importance of a subgoal is a room to room navigation task

where the agent should discover the utility of doorways. If the agent discovers that a

doorway is a subgoal it can learn an option to reach the doorway which, in turn, can

accelerate learning of new navigation tasks. The idea of using subgoals is not, however,

48
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Initial State/Action Model
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Actions:
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Figure 4.1. Overview of the approach for hierarchical state and action abstraction. Here,
boxes indicate state/action models where the transition diagram indicates the action
dependent state space model and the action set to its left represents the action set used
for its construction. Policies listed at the bottom of a box indicate the policies learned
in the corresponding step. Starting from an initial MDP and action set, the agent first
learns a task policy π0. Using this policy, it extracts subgoals and corresponding subgoal
policies, π1 and π2, which are used to build a new, more efficient representation. To
ensure that the new task is learnable, the system maintains a separate value function for
the original state space and determines if there are significant inconsistencies between this
value function and the one derived on the abstract partition space. When an inconsistency
between the values for the best actions (in this case ak, am, an) in both representations
is discovered, these actions are used to refine the block in the abstract state partition in
which the inconsistency was discovered, resolving the inconsistency.
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limited to grid worlds. For example, for a robot arm to pick up an object, an important

subtask is the recognition of the object and thus being aware of its presence would be a

subgoal.

4.1.1 Subgoal Discovery Using a Count Metric

The main goal of automatic subgoal discovery is to find useful subgoals in the

agent’s state space. Once they are found, options to those subgoals can be learned and

added to the behavioral repertoire of the agent. In the approach presented here, sub-

goals are identified as states with particular structural properties in the context of a

given policy. In particular, we define subgoals as states that, under a given policy, lie on

a substantially larger number of paths than would be expected by looking at its succes-

sor states. In other words, we are looking for states that form a “funnel” for state space

trajectories under the learned policy. This method is based on the subgoal discovery

method introduced by Goel and Huber [14] which was presented in Sections 3.4.1 and

3.4.2. However, while their subgoal discovery method discovers useful subgoals, it needs

to compute the count metric exhaustively. This section describes an extension to the

subgoal discovery method introduced by Goel and Huber [14] which uses Monte Carlo

sampling in order to accelerate the task of finding subgoals.

Definition 4.1: A state s′ is a direct predecessor of state s, if under a learned pol-

icy the action a in state s′ can lead to state s i.e. P (s|s′, a) > 0.

Definition 4.2: The count metric for state s under a learned policy, π, is the sum

over all possible state space trajectories weighed by their accumulated likelihood to pass

through state s.



51

Definition 4.3: The normalized count metric Ĉ∗
π(s) for state s under a learned policy

π is the average number of times that a state s is encountered on a state space trajectory.

Let Ĉ∗
π(s) be the normalized count for state s and Ĉt

π(s) be the likelihood of a trajectory

passing through state s at time t, then:

Ĉ1
π(s) =

1

|S|
∑

s′ 6=s

P (s|s′, π(s′))

where S is a number of states and

Ĉt
π(s) =

∑

s′ 6=s

P (s|s′, π(s′))Ĉt−1
π (s′)

Ĉ∗
π(s) =

n
∑

i=1

Ĉi
π(s) (4.1)

where n is such that Ĉn
π (s) = Ĉn+1

π (s) or n = |S|. The condition s′ 6= s prevents

the counting of self loops and P (s|s′, π(s′)) is the probability of reaching state s from

state s′ by executing action π(s′). The standard count metric can be obtained from the

normalized count metric, since C∗
π(s) = |S|Ĉ∗

π(s). The slope of C∗
π(st) along a path, ρ,

under policy π is:

∆π(st) = C∗
π(st)− C∗

π(st−1)

where st is the tth state along the path. In order to identify subgoals, the gradient ra-

tio ∆π(st)/ max(1, ∆π(st+1)) is computed for states where ∆π(st) > 0 1. A state st is

considered a potential subgoal candidate if the gradient ratio is greater than a specified

threshold µ > 1. Appropriate values for this user-defined threshold depend largely on

the characteristics of the state space and result in a number of subgoal candidates that is

inversely related to the value of µ. This approach is an extension of the criterion in [14]

1Alternatively, the gradient ratio could also be computed using the normalized count metric as

∆̂π(st)/ max(1/|S|, ∆̂π(st+1)) where ∆̂π(st) = Ĉπ

∗

(st)− Ĉπ

∗

(st−1).
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with max(1, ∆π(st+1)) addressing the effects of potentially obtaining negative gradients

due to nondeterministic transitions. In this approach we focus our attention on state

spaces that are regular, i.e., every state has approximately the same expected number

of direct predecessors according to a learned policy, but it could easily be extended to

irregular state spaces.

4.1.1.1 Detecting Significant States

To make this subgoal discovery completely autonomous it is important to be able

to automatically detect states that have gradient ratios that are significantly larger than

expected, and thus to automatically determine the detection threshold µ. Assuming that

there are a small number of subgoals as compared to the size of the space, the theory of the

t-test is applied here to compute a threshold. Based on this assumption it can be stated

that the distribution of gradient ratios over the entire space represents approximately

the distribution in a space free of subgoals. Another assumption made here is that the

gradient ratios at any state are randomly drawn from the cumulative distribution of

the gradient ratios which has a mean of ν and a standard deviation of σ. Given this

assumption, it can be tested using a t-test whether the gradient ratio distribution at any

state belongs to the cumulative distribution and its affirmation means that the state is

not a subgoal. To run a t-test for a given state s, the mean, ρ, of a sample of gradient

ratios of size N is computed by randomly choosing N trajectories going through state s

under the learned policy. Then Equation 4.2 is used to compute the t value.

t =
ρ− ν

σ/
√

N
(4.2)

To avoid performing a t-test at every state, a slightly different approach is taken here.

Based on the desired p value (the probability of obtaining a particular sample result given
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the null hypothesis), the sample mean ρ required to pass the test is computed using the

t-test formula (Equation 4.2).

The value for ρ determined in this fashion plays the role of threshold, µ, required in

this approach because in order for the t-test to provide a positive result for the sample

distribution at a given state s, there should be at least one path through s along which

the gradient ratio at state s is equal or greater than ρ.

4.1.1.2 Detecting Subgoals Using Monte Carlo Sampling

While the subgoal discovery technique provides a way to automatically detect states

that have significant structural property and form local “funnels” in the state space, the

complexity of computing and evaluating the count metric can be prohibitive in large

state spaces. To address this, the method has been augmented with an approach that

permits the calculation of the count metric using Monte Carlo sampling.

Definition 4.4 Let H = {h1, ..., hN} be N sample trajectories induced by policy π, then

the sampled normalized count metric, Ĉ∗
H(s), for each state s that is on the path of at

least one path hi can be calculated as the average of the accumulated likelihoods of each

path, hi, 1 ≤ i ≤ N .

If we need to estimate the value of Ĉ∗
π(s) from independent, identically distributed (i.i.d)

samples induced by policy π, then after taking N samples hi, i ∈ {1, . . . , N} we have:

Ĉ∗
H(s) =

1

N

∑

i

C∗
hi

(s)

The expected value of this estimator is Ĉ∗
π(s). As in the case of the exhaustive count

metric, the standard sampled count metric C∗
H(st) can be computed from the normalized

sampled count metric as C∗
H(st) = |S|Ĉ∗

H(st). Theorem 4.2 shows that for a sufficient
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number of samples the difference between count metrics computed exhaustively and by

using Monte Carlo sampling can be arbitrarily small and as a result Monte Carlo sam-

pling gives us a good estimate of count metric. Note, that this theorem applies equally

to the count metrics and the normalized count metrics.

Theorem 4.1 (Bernstein [31]) Let ξ1, ξ2, . . . be independent random variables with

means Eξi, bounded by some constant Eξi ≤ a, a > 0. Also let V ar(MN ) = Eξ2
1 + . . . +

Eξ2
N ≤ L and ZN = Eξ1 + . . . + EξN . Then the partial sum MN = ξ1 + . . . + ξN obeys

the following inequality for all εN > 0:

Pr

(
∣

∣

∣

∣

1

N
MN −

1

N
ZN

∣

∣

∣

∣

> εN

)

≤ 2exp

(

−1

2

ε2
NN

L + aεN

)

The following theorem shows that for a large number of samples the difference between

C∗
π and C∗

H would be smaller than a real value εN and thus subgoal discovery by using

Monte Carlo sampling can find the same subgoals that are discovered by exhaustive com-

putation of the count metric, when the number of samples is sufficiently large.

Theorem 4.2 In a regular space,for sample size

N ≥ maxt C
∗
H(st)

ε2
N

2(1 + εN )ln(
2

1− p
) (4.3)

it is true that

|C∗
H(st)− C∗

π(st)| ≤ εN
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with probability p.

Proof: Let ξi = C∗
hi

(st) then Eξi = E[C∗
hi

(st)]. Let

ZN =

Eξ1 + . . . + EξN =

E[C∗
h1

(st)] + . . . + E[C∗
hN

(st)] =

E[C∗
h1

(st) + . . . + C∗
hN

(st)]

since ξi are independent.

Thus

1

N
ZN =

1

N
E[C∗

h1
(st) + . . . + C∗

hN
(st)] = E[C∗

H(st)] = C∗
π(st).

Let

a = max
t

C∗
H(st)

then |Eξi| ≤ a, a > 0. Also for

MN = Eξ1 + . . . + EξN

we have

V ar(MN) = Eξ2
1 + . . . + Eξ2

N ≤ N(max
t

C∗
H(st))

2.

Let

L = N(max
t

C∗
H(st))

2

and according to Bernstein’s inequality:

Pr (|C∗
H(st)− C∗

π(st)| > εN) ≤

2exp

(

−1

2

ε2
NN

maxt C∗
H(st)2 + maxt C∗

H(st)εN

)
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then

Pr (|C∗
H(st)− C∗

π(st)| > εN) ≤ 2exp

(

−1

2

ε2
NN

maxt C
∗
H(sT )εN

)

by letting

1− p = Pr (|C∗
H(st)− C∗

π(st)| > εN )

we have

1− p ≤ 2exp

(

−1

2

ε2
NN

maxt C∗
H(st)εN

)

After solving for N , we get the statement of theorem 4.2.2

Given the result of Theorem 4.2, it can be shown that for a sufficient large number

of samples, subgoals discovered by Monte Carlo sampling will likely find the same sub-

goals as the exhaustive subgoal discovery method.

Theorem 4.3 Let H = {h1, ..., hN} be N sample trajectories induced by policy π with N

selected according to Equation 4.3. If

∆H(st)

max(1, ∆H(st+1))
> µ +

2εN

max(1, ∆H(st+1))

then

∆π(st)

max(1, ∆π(st+1))
> µ

with probability ≥ p.

Proof: Let

N ≥ maxt C
∗
H(st)

ε2
N

2(1 + εN )ln(
2

1− p
)
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then |C∗
H(st)− C∗

π(st)| ≤ εN and Similarly |C∗
H(st+1)− C∗

π(st+1)| ≤ εN , thus

|∆π(st)−∆H(st)| =

|C∗
π(st)− C∗

π(st+1)− C∗
H(st) + C∗

H(st+1)| ≤

|C∗
π(st)− C∗

H(st)|+ |C∗
π(st+1)− C∗

H(st+1)| ≤

2εN

and

−2εN ≤ ∆π(st)−∆H(st) ≤ 2εN

and

∆π(st)− 2εN ≤ ∆H(st) ≤ ∆π(st) + 2εN

Similarly we can show that

∆π(st+1)− 2εN ≤ ∆H(st+1) ≤ ∆π(st+1) + 2εN (4.4)

by dividing inequality Equation 4.4 by max(1, ∆H(st+1)) we have:

∆H(st)

max(1, ∆H(st+1))
≤ ∆π(st) + 2εN

max(1, ∆H(st+1))
(4.5)

if

∆H(st)

max(1, ∆H(st+1))
> µ +

2εN

max(1, ∆H(st+1))

then according to Equation 4.5

∆π(st) + 2εN

max(1, ∆H(st+1))
≥ µ +

2εN

max(1, ∆H(st+1))

and as a result ∆π(st)
max(1,∆π(st+1))

> µ.2

Theorem 4.3 implies that for a sufficiently large sample size the exhaustive and the

sampling method predict the same subgoals with high probability. The main advantage
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of the Monte Carlo sampling method can be seen in the lower computational complex-

ity as the size of the state space increases and its ability to trade off computation time

against precision in finding the desired subgoals.

4.1.2 Example

Figure 4.2(a) shows a two-room example environment on a 10 × 6 grid. For this

experiment, the goal state is placed in the upper right hand portion (gray cell) and each

trial is started from the same state in the lower left corner. The action space consists of

eight primitive actions (North, East, South, West, Northwest, Northeast, Southwest and

Southeast). The world is deterministic and each action succeeds in moving the agent in

the chosen direction. With every action the agent receives a negative reward of −1 for

a straight action and −1.2 for a diagonal action. In addition, the agent receives a reward

of +10 when it reaches the goal state. Policy π is learned using Q-learning and the count

metric for every state is computed. The agent then evaluates the gradient ratio along

the count curve by choosing 10 random trajectories according to π, and picks the states

in which the ratio is higher than the specified threshold as subgoal states. Figure 4.2(b)

shows the values of the gradient ratio for each state. In this example, the gradient ratio

is less than 3 in all states except the doorway where it is 3. The mean of the distribution

of gradient ratios over the state space is 0.43 and the standard deviation is 0.57. Using

t-test and probability 0.025 the threshold µ is chosen to be 1.8 resulting in the discovery

of one subgoal in the location of the doorway. This subgoal could now be used to learn

similar tasks in this environment.

4.2 Action Dependent State Abstraction

Once potential subgoals are discovered, options that terminate in the subgoal states

can be learned and added as abstract actions to the action hierarchy available to the agent.
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(a)

(b)

Figure 4.2. (a) A two room environment with a connecting doorway. The goal is illus-
trated in gray and the line shows a sample trajectory. (b) Cells are shaded according to
the gradient ratio over 10 trajectories with higher ratios indicated by lighter shading.

In addition, these options can be used to build a more compact representation of the state

space. Abstraction is achieved here by partitioning the state space of the original MDP

into blocks of states that have similar properties (i.e. transition probabilities and reward

values).

ε-reductions were introduced by Dean et al. [9] as a mechanism to derive state space

partitions of a MDP that ensure approximately optimal policies to be learned. These

partitions depend on the action space and the particular reward function of the task.

Kim and Dean, [18] introduced an algorithm to derive a set of such partitions and used

it to learn a policy for the task indicated by the reward function. The resulting policy is
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ensured to be within an ε-dependent quality bound.

Two shortcomings of this algorithm are that it does not address temporally abstract

actions and that it requires a complete re-computation of the partitions when a new

action is introduced. In addition it requires knowledge of the reward function prior to

partitioning, and thus no part of the partitioning transfers across tasks.

4.2.1 Multi-Phase State Space Partitioning for SMDPs

To address the issues of ε-reduction, the algorithm introduced in this section derives

partitions with the same approximate optimality properties for the SMDP framework. In

addition, it derives them in multiple phases, the first of which derives separate partitions

for all actions in a reward-independent fashion using the action’s subgoal or termination

states as the initial partition for subsequent probability-based refinement. These parti-

tions can be completely precomputed at the time the actions are acquired. In the second

phase, the action-specific partitions for a relevant subset of the actions are selected,

intersected, and used for a second reward-independent, transition probability-based re-

finement step. Again, this phase is task-independent and can thus be performed off-line

and its resul can be transferred to new tasks. The third stage finally refines the reuslt

of the previous stage using the task-specific reward, once it becones available. Overall,

this construction process allows the system to effectively transfer state abstractions even

prior to having knowledge of the specific task to be learned, and permits fast adaptation

to changing action sets. Furthermore, itmaintains the bounded optimality guarantees of

the ε-reduction method [18].

The method introduced here also provides for extensions to ε-reduction that permit its

use with options in an SMDP framework. Overall, this approach first constructs the

options oi = (Ii, πi, βi) according to the discovered subgoals. It then computes the tran-

sition probability function F (s|s′, oi) and the reward function R(s, oi) using Equations 3.1
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and 3.2. The transition function can here be completely pre-computed at the time when

the policy itself is learned and as a result, only the discounted reward estimate has to be

re-computed for each new learning task.

4.2.1.1 ε, δ-Reduction for SMDPs

To address temporal abstraction and the previously learned subgoal options within

the state space reduction framework, two extensions have been added to the ε-reduction

framework. The first provides more flexibility in terms of the system reward functions by

decoupling the BPMDP bounds on transition probabilities and rewards. The second ex-

tends the definitions to accomodate SMDP options, providing a framework for Bounded

Parameter Semi-Markov Decision Processes (BPSMDP).

Definition 4.4: A partition P = {B1, . . . , Bn} of the state space of an SMDP has ap-

proximate stochastic bisimulation homogeneity if and only if for each Bi, Bj ∈ P , for

each s, s′ ∈ Bi, and for all actions oi ∈ O:
∣

∣

∣

∣

∣

∣

∑

s′′∈Bj

F (s′′|s, oi(s))−
∑

s′′∈Bj

F (s′′|s′, oi(s
′))

∣

∣

∣

∣

∣

∣

≤ δ (4.6)

and

|R(s, oi)− R(s′, oi)| ≤ ε (4.7)

where 0 ≤ δ ≤ 1 and ε ≥ 0.

Definition 4.5: A block Bi is δ-stable with respect to block Bj if and only if Inequality 4.6

holds. Bi is δ-stable if Bi is δ-stable with respect to all blocks of P .

To form partitions, an initial partition can be formed here either according to the reward
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criterion in Inequality 4.7 or according to an alternate termination criterion. Each block

is constructed according to its available options and it is checked for δ-stability and un-

stable blocks are split until no unstable blocks remain. When a block Bk is found to be

unstable with respect to block Bl, we replace Bk by a set of sub-blocks Bk1
, . . . , Bkm

such

that Bki
is a maximal sub-block of Bk that is δ-stable with respect to Bl. This process,

when started from the initial reward partition, will result in a state space model that has

bounded optimality properties similar to the ones of standard ε-reduction [18] and can

be used to learn new tasks more efficiently.

However, this reduction algorithm requires that the reward function of the task that

should be learned is known prior to partitioning and that the action set is constant. If

either the reward or the set of actions changes, this basic algorithm would have to be

re-run from scratch.

In many real world situations, however, the reward might not be known a priori. More-

over, in the hierarchical learning approach presented here, new actions are frequently

added to the system in the form of subgoal options. As a consequence, a more efficient

partitioning algorithm is required which can transfer knowledge more efficiently when

actions change, and which can deal with situations where the reward is unknown or only

partially known.

4.2.1.2 Multi-Phase, Action-Dependent Partitioning of the State Space

The intuition behind learning subgoal options and using them in an SMDP ac-

tion hierarchy is that complex policies will involve fewer decision points and as a result

can be learned substantially faster. In hierarchical learning systems, it is thus useful to

remove primitive actions from consideration as more complex actions become available

and capable of addressing new problems. To take full advantage of newly learned action

capabilities, such a limitation of the action space should also reflect in the state repre-
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sentation. In particular, once low-level actions can be ignored, much more abstract state

representations should be sufficient to address the same tasks. However, it is generally

not known beforehand at which point lower level actions can be safely ignored without

compromising the set of tasks that can be addressed. The state reduction technique

has therefore to be flexible and able to adjust to changes in the action space efficiently

without incurring the overhead of completely re-computing a partition.

To permit such flexibility, and to facilitate modifications in the action space, the parti-

tioning approach introduced here first derives partitions on a per-action basis independent

of the task reward. The blocks of the final partition are then formed by intersecting all

blocks for each oi that are used in the new learning task, followed by a refining stage that

achieves δ-stability for the intersections [1, 2]. This reduces the overhead required when

the action set changes to the intersection and the final refinement step. Furthermore,

it is still independent of the task reward and thus transfers accros tasks. If the reward

structure becomes available, the third phase of the partitioning technique further refines

the partition using the reward criterion in Inequality 4.7.

Given a particular subset of options, an appropriate abstract state space representation

for the learning task can here be derived which is stable according to the criteria in In-

equalities 4.6 and 4.7. Furthermore, representation changes due to changes in the action

set can be performed efficiently and a simple mechanism can be provided to use the

previously learned value function as a starting point when such representation changes

occur. This is particularly important if actions are added over time to permit refinement

of the initially learned policy by permitting finer-grained decisions.

In the first phase, the multi-phase partitioning approach derives a partition Pi for each

action oi. To do this, it first generates a partition consisting of a termination and a

non-termination block. In particular, given {s1, ..., sn} as the discovered subgoals and

{o1, ..., on} as the corresponding subgoal options, initial partitions for the options oi are
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derived as Pi = {B1
i , B

2
i } where B1

i = {si} and B2
i = {s|s ∈ S, s 6= si}. This termination

partition for action oi is then refined until all blocks are δ-stqable for action oi.

The second phase then selects all partitions for a given set of actions, intersects them

and refines them further until the result is δ-stable for all actions in the selected ac-

tion set. In particular, let M be a SMDP with a set of n different actions o1, . . . , on

and let P1, ..., Pn be the action dependent partitions corresponding to each action, where

Pi = {B1
i , ..., B

mi

i } for i ∈ W = {i|oi ∈ O}. Define Φ = P1 × P2 × . . .× Pn, as the cross

product of all partitions. Each element of Φ has the form φj = (B
σ1(j)
1 , . . . , B

σn(j)
n ) where

σj is a function with domain Φ and range 1, . . . , mi. Each element φj ∈ Φ corresponds

to a B̄ = ∩i∈AB
σi(j)
1 . Since Bk

i ∩ Bl
i = ∅ for all 1 ≤ k, l ≤ mi, Φ is a partition over all

actions.

Given a particular subset of actions, a partition for a learning task can thus be derived

as the set of all nonempty blocks resulting form the intersection of the subsets for the

participating actions. A block in the resulting partition can here be represented by a

vector over the actions involved, where each entry indicates the index of the block within

the corresponding single action partition. Once the initial blocks are constructed by

the above algorithm, these blocks will be refined until they are δ-stable according to

Definition 4.6. Changes in the action set therefore do not require a recalculation of the

individual partitions but only changes in the length of the vectors representing new states

and a recalculation of the final refinement step. This means that changes in the action

set can be performed efficiently and a simple mechanism can be provided to use the

previously learned value function even beyond the change of actions and to use it as a

starting point for subsequent additional learning.

Once this action-dependent but reward-independent partition has been derived, the third

phase of the partitioning process uses reward information for the new learning task as

it becomes available to further refine this partition using the criterion in Inequalities 4.6
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and 4.7.

This last phase is the only task-specific partitioning phase and can thus only be per-

formed once task information is available. All other phases can be performed off-line and

thus facilitate the efficient transfer not ony of subgoal and action information but also of

abstraction knowledge to new tasks.

4.2.1.3 Task-Solvability on Reward Independent Partitions

Real environments usually do not provide all the necessary information for an agent,

and the agent needs to find out these details by itself. For example, it is common that

an agent does not have full information of the reward structure. In these situations, con-

structing the immediate reward partition is not possible and no reward refinement can

be performed prior to learning. In these situations the multi-phase partitioning approach

presented in the previous section can still construct a reward-independent partition by

distinguishing terminal states for available actions from non-terminal states and refining

them using the transition probabilities by executing the first two partitioning phases. If

the reward structure becomes available later on, it can further refine this partition using

the reward and transition criterion.

The advantage of this construction is that the learning process can already utilize and

benefit from the reward-independent partition while learning the task and potentially

performing the reward abstraction. Furthermore, whenever a change in the reward cri-

teria (and thus in the task) occurs, only the final refinement part has to be recomputed.

To fully appreciate the benefit and potential of this initial, task-independent partition,

Theorem 4.4 (below) shows that under certain conditions this task-independent, action-

specific state representation is sufficient to ensure that the new task can be learned. In

particular, this theorem shows that if the goal is reachable by subgoal options and a task
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is learnable on the original state space, then this task can also be learned in the abstract

state space.

Theorem 4.4: For any policy π for which the goal G can be represented as a conjunc-

tion of terminal sets (subgoals) of the available actions in the original MDP M , there

is a policy πP in the reduced MDP, MP , that achieves G as long as for each state st

in M for which there exists a path to G , there exists a path such that F (G|st, πP (st)) > δ.

Proof: The blocks of partition Φ = {B1, ..., Bn} have the following property
∣

∣

∣

∣

∣

∣

∑

s∈Bj

F (s|s1, oi(s1))−
∑

s∈Bj

F (s|s2, oi(s2))

∣

∣

∣

∣

∣

∣

≤ δ (4.8)

For every policy π that fulfills the requirements of the proposition, there exists a policy

πΦ in partition space such that for each n ∈ ℵ, if there is a path of length n from state

s0 to a goal state G, under policy π, then there is a path for block Bs0
containing s0 to

block BG containing G, under policy πΦ.

Case k = 1: if F (G|s0, π(s0)) > δ then by inequality 4.8 for all s ∈ Bs0
,

∣

∣

∣

∣

∣

∑

s′∈BG

F (s′|s0, π(s0))−
∑

s′∈BG

F (s′|s, π(s0))

∣

∣

∣

∣

∣

≤ δ

thus ∀s ∈ Bs0
we have

F (G|s, π(s0)) > F (G|s0, π(s0))− δ > 0.

where policy πΦ is such that πΦ(Bs0
) = π(s0), then F (BG|Bs0

, πΦ(Bs0
)) > 0.

Case k = n− 1: Assume for each path of length less than or equal to n− 1 that reaches

state G from s0 under policy π, there is a path under policy πΦ in the partition space.

Case k = n: Each path that reaches to G from s0 under policy π in n steps contains a path

with n−1 steps, that reaches G from s1 under policy π. By induction hypothesis, there is
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a policy πΦ that leads to BG from Bs1
. Now if s0 is an element of Bsn

∪Bsn−1
∪, . . . ,∪Bs1

,

the blocks already chosen by paths with length less than or equal n− 1 , then there is a

policy πΦ that leads to BG from Bs0
under policy πΦ and the policy πΦ(Bs0

) is already

defined. But if s0 /∈ Bsn
∪ Bsn−1

∪, ...,∪Bs1
then by induction hypothesis it has only to

be shown that there is a policy πΦ that fulfills the induction hypothesis and which leads

from Bs0
to Bs1

such that F (Bs1
|Bs0

, π(s0)) > 0. By inequality 4.8 ∀s1, s2 ∈ Bs0
we have

|
∑

s′∈BG

F (s|s0, πi(s0))−
∑

s′∈BG

F (s′|s, πi(s0))| ≤ δ

thus

F (Bs1
|Bs0

, πΦ(Bs0
)) =

∑

s′∈Bs1

F (s′|s, π(s0))

≥
∑

s0∈Bs1

F (s′|s0, π(s0))− δ > 0.2

This suggests that, if competent actions are available and the correct action set can be

selected, a policy can often be learned even before the complete reward structure has

been experienced. As a consequence the multi-phase partitioning technique promises to

provide significant improvement in learning performance as compared to ε-reduction or

flat state space techniques by providing a compact state space which encodes important

functional aspects of the action set.

4.2.2 Example

In this example we assume a grid world with a mobile robot which can perform four

primitive deterministic actions: LEFT, RIGHT, UP and DOWN. Rewards for actions

that lead the agent to another cell are assumed to be -1 and the state marked with * has

a reward of 20. The goal of the agent is to find the state marked with *. The bold bars in
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the grid world represent obstacles for the robot. In order to construct an option we define

a policy with each action. The termination condition is hitting the wall and the option

repeats each action until it terminates. Figure 4.3 shows this scenario. Furthermore, let

δ = 1 and ε = 20 for the multi-phase partitioning using the four options.

Figure 4.4 shows the possible partitions for the four options. Each partition in these

*

Figure 4.3. Grid world with a mobile robot which can perform four primitive deterministic
actions: LEFT, RIGHT, UP and DOWN. Rewards for actions that lead the agent to
another cell are assumed to be -1 and the state marked with * has a reward of 20. The
goal of the agent is to find the state marked with *. The bold bars in the grid world
represent obstacles for the robot. In order to construct an option we define a policy with
each action. The termination condition is hitting the wall and the option repeats each
action until it terminates.

figures is divided only in two blocks as all the states satisfy the probability criterion but

state * is different from the other states in terms of the reward criterion. Let Bj
i be block

j for partition i derived by option oi.
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Figure 4.4. Blocks for options UP, RIGHT, LEFT and DOWN. Each partition is divided
only in two blocks as all states satisfy the probability criterion, but state * is different
from the other states in terms of the reward criterion.

These blocks can be combined by intersecting them in order to derive a partition

that consists of new blocks that are defined for each option. For example:

B1 = B1
1 ∩ B1

4 ∩B1
2 ∩B1

3

B2 = B2
1 ∩ B1

4 ∩B1
2 ∩B1

3

(4.9)
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Figure 4.5(a) illustrates the intersection of the partitions. These blocks form the initial

blocks for the reduction technique. The result of refinement is illustrated in Figure 4.5(b).

While performing an action on each state the result would be another block instead of

a state so each block of Figure 4.5(b) can be considered a single state in the resulting

state space. Now if the agent is in block B1 and executes the action RIGHT the agent

will arrive in a state in block B6.

(a)

(b)

Figure 4.5. (a) Intersection of blocks (b) Blocks of partition after final refinement.
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4.3 Learning by Computing Reward Variation

While the theorem in Section 4.2.1.3 shows that under certain conditions a new

task is learnable on an abstract partition space with a reduced, higher-level action set,

its conditions require that the goal of the new task is addressable by the selected actions

and that the actions are sufficient to construct a policy. Although this would be easy

to achieve by simply including all primitive actions, this would dramatically reduce the

abstraction capabilities of the partitioning method and likely result in a partition where

blocks correspond largely to single states or very small sets of states. As a result, the

state space partitioning would likely yield only a very limited preformance gain.

To address this, this section proposes two methods aimed at making the goal achievable

in the partition space generated by the multi-phase method even without all primitive

actions, and to speed up the learning task on the partition space. The first method

is proposing to do so by adding additional subgoals before performing the partitioning

and the second method is to refine the action space after performing the two phase

partitioning.

4.3.1 Subgoals and Rewards

The potential candidates for subgoals in the presented method are those states

whose ratio of predecessor counts are greater than a user defined threshold. However,

it is possible that this method does not find all necessary subgoals. In particular, in

order to learn the task after partitioning, the goal states must belong to the set of all

subgoals. This requirement may not be met by the autonomous subgoal discovery and

hence additional observations need to be taken. First we consider that the task is known

before learning it. An example of this kind of task is when a robot arm should pick up an

object. In this situation the goal state is known and can be added to the set of subgoals.

The second case is when the task is not known a priori and the task of the agent is to
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maximize its expected reward over time. In this situation the reward structure plays an

important role and we need to look at the reward variations in order to add states with

potentially high reward as subgoals. The reason for this consideration is the fact that

the agent needs to have a defined option for capturing all states with high rewards in

order to maximize its overall expected reward.

Let Ř = {R(s, a)|s ∈ S, a ∈ A}, and ř = min Ř, then for each state s and for all

actions a ∈ A(s), if R(s, a) > ř then state s needs to be considered as a subgoal. In this

way, there exists a path from every state to those states that have a reward larger than

the minimum reward. Note that, even though this method adds more subgoals to the

subgoals found be the autonomous subgoal discovery method, it assures the reachability

of the goal (i.e. maximizing the expected reward). The blocks of this partition are such

that all subgoals including the goal state are reachable as stated in Theorem 4.4.

4.3.2 Refining the Action Space After Partitioning

Let P = {B1, . . . , Bn} be the partition space constructed with the multi-phase

method, then the action space available for P consists of A, all original actions available

on the original MDP M , and the multiple step actions o1, . . . , ok, the options constructed

according to the extracted subgoals found by the autonomous subgoal discovery method.

In order to speed up the learning process we need to ignore the unnecessary actions (if

possible). Consider a block Bi which neither consists of a goal state nor any state with

a noticeable reward. If we ignore the underlying actions in this block then the agent

does not need to search Bi and the agent can jump from Bi to a block Bj with available

options. This can be done using the minimum reward value described in the previous

section.

Let Ř = {R(s, a)|s ∈ S, a ∈ A}, and ř = min Ř. If for each block Bi, state s ∈ Bi,

and action a ∈ A, the reward R(s, a) ≤ ř then all the underlying actions in Bi can be
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removed and only multiple step actions need to be considered in Bi. The reason for this

is that executing underlying actions in Bi neither helps finding a goal state nor makes a

significant change in maximizing the reward.

The main advantage of this method is that, given that the reward information is available,

construction of the refinement is simple. On the other hand, use of this reward criterion

can lead to a significant increase in the state space even when not required because

refinement will happen even in situations where the reward state causing a split does not

actually contribute to the final policy that is learned.

4.3.3 Learning by Solving Inconsistencies

Action dependent partitioning builds a representation that forms a new level in the

state space hierarchy which serves as the initial representation for new learning tasks. In

this section we introduce a method to ensure that tasks are learnable in this initial rep-

resentation. The method described in this section simultaneously builds value functions

on the flat MDP and the abstract representation derived using multi-phase partitioning

(and thus at different levels of the hierarchy) which are then monitored for inconsistencies

that identify actions that should contribute to the final policy and thus be used to refine

relevant portions of the abstract state space.

Let P = {B1, . . . , Bn} be a partition for state space S derived by the action-dependent

partitioning method using subgoals {s1, . . . , sk} and let {o1, . . . , ok} be the options to

these subgoals. If the goal state G of the task belongs to the set of subgoals {s1, . . . , sk}

and if task G is achievable on the flat MDP using only the options, then G is achievable

by options {o1, . . . , ok} on the abstract state space partition, and the task is learnable

according to Theorem 4.4. However, if G /∈ {s1, . . . , sk} then the task may not be solv-

able using only the options that terminate at subgoals. The proposed approach solves

this problem by maintaining a separate value function for the core MDP while learning a



74

new task on the partition space derived from only the subgoal options. During learning

the agent has access to the original actions as well as to all options, but makes decisions

only based on the abstract partition space information.

While the agent tries to solve the task on the abstract partition space, it computes the

difference in Q-values between the best actions in the current state in the abstract state

space and in the original state space. If the difference is larger than a constant value

(given by Theorem 4.5, described below), then there is a significant difference between

different states underlying the particular block that was not captured by the subgoal

options. This approach is similar to McCallum’s utile distinction memory [21] which

combines Hidden Markov Models (HMMs) and Q-learning to solve tasks with only a few

fields by splitting “inconsistent” HMM states whenever the agent fails to predict their

utilities. In the presented learning method, a similar idea is used which determines in-

consistent model states based on Q-value inconsistencies.

Theorem 4.5 [18] shows that if blocks are stable with respect to all actions, the difference

between the Q-values in the partition space and in the original state space is bounded

by a constant value.

Theorem 4.5 [18]: Given an MDP M = (S, A, T, R) and a partition P of the state

space MP , the optimal value function of M given as V ∗ and the optimal value function

of MP given as V ∗
P satisfy the bound on the distance

‖ V ∗ − V ∗
P ‖∞≤ 2

(

1 +
γ

1− γ
max{ε, δ}

)

This theorem ensures bounded optimality of the policy learned on the partition space if

all required actions are available during refinement, but also provides a method to detect

situations in which this condition is not fulfilled.
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Let M = (S, A, P, R) be a MDP and MP be the corresponding reduced MDP with

P = {B1, . . . , Bn}, where Bi, 1 ≤ i ≤ n, are δ-stable (and they are possibly stable

according to Inequality 4.7). This method maintains two separate tables for computing

V and VP , where VP is the value function for MP . If V (s)−VP (s) > 2(1+ γ

1−γ
max{ε, δ})

for s ∈ Bi then the primitive action that achieves the highest value on the original state

in the MDP will be added to the action space of the states in block Bi, i.e.

ABi
← ABi

∪ {a|max
a

V (s)} ∀s ∈ Bi

and block Bi is refined according to Inequalities 4.6 and 4.7 until it is stable for the new

action set. Once no such significant difference exists, the goal will be achievable in the

resulting state space according to Theorem 4.4 and the learned policy will be within the

abovelisted bound of optimality. This procedure is illustrated in Figure 4.6.

While this method, as opposed to the one presented in Section 4.3.2, has to maintain a

B

B

B

1

2

3

Figure 4.6. An abstract state space with 3 blocks (B1, B2, B3). Options are shown using
dotted curves and original actions are illustrated with solid lines. The black cell in block
B3 is the goal state. Since the Q-value in block B3 is significantly smaller than the one of
the underlying goal state this block is refined using the options and the primitive actions.

second, substantially larger value function, it will perform state space splits only if the
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existing actions are not sufficient to represent a bounded optimal policy. As a result,

this method frequently results in a significantly smaller final state space partition. In

addition, since learning is driven by the abstract state space partition (the decision layer),

learning time is largely determined by the complexity of this representation, promising

larger performance gains in terms of learning time.

4.4 Autonomous Hierarchy Construction

In the multi-phase partitioning and hierarchical learning method discussed in the

previous section, it has so far been assumed that either the correct set of actions for

constructing an abstract state space is available or that, as a simple heuristic, all subgoal

options are selected as the relevant action set. While the latter can lead to good results

when used in conjunction with the learning method in Section 4.4, it might lead to an

ever increasing action set if a large sequence of tasks is to be learned. In particular,

this heuristic has the limitation that it can never remove an option from the action set

used for multi-phase partitioning, even if it is not used for any of the tasks. To address

this limitation, this section presents a method aimed at automatically constructing the

abstract representation based on the information contained in the previously learned task

policies.

In order to estimate the structure of the state space for learning future tasks, we construct

the decision layer here based on an estimate of the expected time to learn a new task

according to previously learned tasks. Let Π = {π1, . . . , πn} be the set of previously

learned polices and Pi = {Bi,1, . . . , Bi,n} be the corresponding partitions. Also let the

triple Ti = (πi, Pi, Qi) be a task on partition Pi = {Bi,1, . . . , Bi,n} with policy πi and the

Q-function Qi. The expected number of experiences required to learn a task, with high
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probability, on partition P with action set O using a DP-based version of Q-learning

is [33]:

Tconv(P, O) = c|P |2|O|

where c is a constant and it is assumed that the task is learnable on P with action set

O.

The expected time required to learn task Ti on state representation P (including the

refinement process) can be obtained by calculating the number of experiences that are

needed for learning Ti on partition P plus the amount of time that is need to refine a

block P , that is:

E[tTi
|P ] = tconv(P, O) +

∑

Bj∈P

Prefine(Bj |Ti)tconv({Bi,k|Bi,k ∩Bj 6= ∅}, O)

We compute the likelihood that a block Bj has to be refined during the exploration and

learning of task Ti with the following equation:

Prefine(Bj|Ti) =
∑

Bi,k:Bi,k∩Bj 6=∅

Prefine(Bj |Bi,k, Ti)P (Bi,k|Ti)

where

Prefine(Bj |Bi,k, Ti) =











1 if maxa(Qi(Bi,k, a) > maxa∈OBi,k
(Qi(Bi,k, a))) + L

0 otherwise

where L = 2(1 + ( γ

1−γ
)) max{ε, δ} and Prefine(Bj |Bi

k, Ti) is the probability that block Bj

has to be refined during the exploration and learning of Ti due to encountering block

Bi,k which is at least partially contained in Bj and for which an action a which is not

contained in the currently considered action set OBi,k, with significantly higher value

should then be included using the hierarchical learning scheme described in Section 4.4.

We compute the expected time required to learn a task randomly chosen from the distri-
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bution of previously learned tasks according to an importance distribution U(Ti) which

indicates the weight that should be put on each tasks by:

E[tlearn|P ] =
∑

i

U(Ti)
∑

i U(Ti)
E[tTi

|P ]

Algorithm 3 illustrates the process of autonomous hierarchy construction, in particular

this is a greedy algorithm that finds action-dependent partitions that have the smallest

expected learning time given previously learned tasks. The reason for the greedy approach

is to reduce the complexity sufficiently to make it tractable. This approach is very similar

to McCullum’s U-tree algorithm [22] except that splits are driven not by reward but by

the expected learning time metric derived before. This procedure can be done either

by splitting the blocks separately or by limiting the inclusion of actions across the state

space. While the latter saves us more computational time, the former will give us more

nuanced splits.
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Algorithm 3 Autonomous Hierarchy Construction

Require: O0 = ∅, P0 = {s}

n = 0

repeat

for all Bj in Pn and oi ∈ O − On,Bj
do

Pn+1,(i,j) = Pn where Bj is refined with oi

end for

(k, l) = argmin(b,c)E[tlearn|Pn+1,(b,c)]

Pn+1 = Pn+1,(k,l)

B = Bl

for all Bi ∈ Pn do

for all Bj ∈ Pn+1, Bj ⊆ Bi do

if Bi = B then

On+1,Bj
= On,B ∪ {ok}

else

On+1,Bj
= On,Bi

end if

end for

end for

n = n + 1

until E[tlearn|Pn] ≥ E[tlearn|Pn−1]

return Pn−1

END



CHAPTER 5

EMPIRICAL RESULTS

This section describes experimental results in stochastic and deterministic domains.

The first experiment has been performed on a grid world in order to investigate the result

of subgoal discovery and action-dependent partitioning in deterministic domains.

The second experiment shows the evaluation of action-dependent partitioning on a stochas-

tic domain and shows how an agent can use information acquired while learning one task

to discover subgoals for similar tasks. The agent is able to transfer knowledge to sub-

sequent tasks and to accelerate learning by creating useful new subgoals and by off-line

learning of corresponding subtask policies as abstract actions (options). At the same

time, the subgoal actions are used to construct a more abstract state representation us-

ing action-dependent state space partitioning.

The third experiment shows the result of the presented approach in a game domain that

is more complex and more similar to real environments. While all these experiments

use the heuristic of using all subgoal actions to construct the abstract decision layer,

the fourth experiment in the same game domain investigates the autonomous hierarchy

construction approach in order to illustrate the construction of an approximate partition

using the information of the previously learned polices.

5.1 Autonomous Subgoal Discovery and Hierarchical Learning

This section describes experiments for subgoal discovery and hierarchical learning in

three different setups. The results of the experiments in this section show that the action-

80
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dependent partitioning method and autonomous hierarchical learning can significantly

outperform the learning time on the flat state space.

5.1.1 Experiments in a Deterministic Domain

To illustrate the result of the multi-phase partitioning method using subgoal dis-

covery, a number of experiments have been performed with randomly changing goal

locations in a chosen environment. This environment consists of three connected grid

worlds in order to illustrate a 3-D environment. Each of these grid worlds consists of

different randomly chosen rooms. The connection between these rooms are stairways.

Discovered subgoals are compared to hand-design subgoals (doorways and entrances to

the hallways), in order to evaluate the efficiency of the subgoal discovery method. The

hand-designed subgoals which serve also as the terminal states of the available options

for the corresponding experiments are illustrated in black in Figure 5.1.

The actions for each of the subgoal states are multi-step actions which terminate when

they reach the subgoal in the same room. The actions for the stairways are multi-step

actions consisting of a sequence of GoUp and GoDown actions. The underlying deter-

ministic actions are GoUp, GoDown, GoLeft and GoRight. The reward of the goal state

is +100. In the following experiment, a sequence of two tasks is learned. The first task is

a navigation task where the system is rewarded when it reaches a fixed location, while the

second is an object retrieval and delivery task where the system is rewarded for picking

up and delivering an object.

5.1.2 Subgoal Discovery and Action-Dependent Partitioning

In order to extract the subgoals in the environment illustrated in Figure 5.1, Q-

learning has been used to learn a policy for a defined goal in order to compute the counts
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Figure 5.1. A three room environment connected by stairways (dark curves), simulating
a deterministic grid world. The black cells indicate the hand-designed subgoals. The
main task for the agent is to navigate this environment and find an object.

of predecessors for every state using Equation 4.1. The mean of the distribution of gradi-

ent ratios over the space is 5.427, the standard deviation is 18.09, and using the t-test and

a p value of 0.025, the computed threshold is 35. Once the subgoals have been extracted

using this threshold and subgoal options have been learned, this state space has been

partitioned according to the multi-phase method with ε = 10 and δ = 0.3.

The number of extracted subgoals is less than the total number of hand designed sub-

goals and thus the number of options learned with extracted subgoals is smaller than the

number of options learned using predefined subgoals.

In order to show the efficiency of the subgoal discovery method, the learning performance

using the hierarchical learning approach with automatically discovered subgoals is com-

pared to the one with the one with hand-designed subgoals.
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Figure 5.2. Comparison of optimal policy (policy derived from original state space and
original actions) and policies derived with options to manual subgoals and discovered
subgoals before partitioning the state space.

Figure 5.2 shows the difference between the average of 50 different policies computed on

the original MDP and on the SMDPs constructed based on the hand designed subgoals

and the subgoals extracted with the subgoal discovery method. These results show

that the difference in values of policies is small and thus executing the tasks on the

constructed SMDPs is almost optimal. However, the average Q-value converges in 300

iterations in the constructed SMDPs while the Q-values in the MDP converge only after

500 iterations. In addition, it can be seen that the system with automatically discovered

subgoals performs almost as well as the one with hand-designed subgoals, illustrating the

utility of the used subgoal criterion.

As illustrated in Figure 5.3 the performance difference between the MDP and the hier-
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archical systems is even more significant in the partition space where partitions are built

using the multi-phase partitioning approach with hand-design subgoals or with subgoals

derived with the subgoal discovery method. Much of this additional performance gain is

probably due to the substantially lower number of blocks in partitions (approximately 63)

as compared to the number of states in the underlying MDP (2900). As a consequence,

the Q-values in partition spaces converge already after 30 iterations.

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

Number of Iterations

Manual Subgoals
Subgoal Discovery

Flat MDP

Figure 5.3. Comparison of optimal policy (policy derived from original state space and
original actions) and policies derived with options to manual subgoals and discovered
subgoals after partitioning the state space.
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5.1.3 Subgoal Discovery Using Reward Variation and Sampling

Autonomous subgoal discovery determines subgoal states as states with local struc-

tural properties in the state space. However, as discussed previously, it is possible that

this does not find all subgoals necessary to solve any new task using only the subgoal

options. In particular, it does not guarantee that the goal states of new tasks belong to

the set of detected subgoals and hence additional observations need to be taken. In the

experiments presented in the previous section, hierarchical learning with refinement was

used to address this by refining individual blocks as inconsistencies between the low-level

and the high-level value function are detected. In this section the same experiments

are repeated using the reward variation approach presented in Section 4.3.1 instead of

the hierarchical learning and refinement technique to investigate the overhead of on-line

detection of inconsistencies.

When using reward variation to ensure learnability using subgoal options on the par-

tition space derived using multi-phase partitioning, we first consider that the task is

known before learning it. Let the minimum reward be ř = 0, and thus for each state s

and for all actions a ∈ As, if R(s, a) > 0 then s will be added to the set of subgoals. In

this way, there exists a path from every state to those states that have a reward greater

than 0. Note that while this method adds more subgoals to the subgoals found be the

autonomous subgoal discovery method, it also assures the reachability of the goal (i.e.

maximizing the expected reward). The blocks of the partition are such that all subgoals,

including the goal state are, reachable as stated in the Theorem 4.4.

Using these subgoals the state space is partitioned according to the procedure described

in the previous section. Figure 5.4 shows the differences between the average of 50 differ-

ent policies learned in the core MDP and on the SMDPs with subgoal action constructed

based on the hand-designed subgoals and based on the subgoals extracted with the sub-

goal discovery method and the reward variation method.
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These results show, similar to the experiments in the previous section, that the difference
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Figure 5.4. Comparison of the policies and learning time before partitioning.

in the values of the policies are small, and thus executing the tasks on the constructed

SMDPs is almost optimal. However the average Q-values converge in 300 iterations on

the constructed SMDPs while they require approximately 500 iterations in the original

MDP. As illustrated in Figure 5.5 this difference is more significant if the partition space

is used, where partitions are build from the subgoal options derived from hand-design

subgoals or using the subgoal discovery and reward variation methods. As the num-

ber of blocks in each partition is substantially smaller than the number of states in the

original state space, the Q-values in the partition spaces converge significantly faster.
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Figure 5.5. Comparison of the policies after partitioning.

Comparing the results with the ones in the previous section also shows that in this en-

vironment the hierarchical learning method with refinement and the reward variation

technique perform approximately equally well. This is probably due to the fact that

there are only a very limited number of reward states in this environment, allowing

reward variation to achieve a very compact subgoal set.

5.1.4 Experiment in a Stochastic Domain

The main goal of this experiment is to show the potential of hierarchical learning

with autonomous subgoal discovery using Monte Carlo sampling and action-dependent

partitioning for accelerating learning in a stochastic environment. The main learning
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task of the agent is to find an object in a randomly chosen cell, to pick it up, and drop

it in another randomly chosen state. Figure 5.6 illustrates the environment for this ex-

periment. The state space, similar to the deterministic environments in the previous

experiments, consists of three grid worlds that are connected through stairways (arrows).

The dark cells represent obstacles and the actions are GoNorth, GoEast, GoSouth, GoW-

est, GoUp, GoDown, OpenArm, CloseArm, Pickup and Drop. The available actions for

stairways are macro actions defined by sequences of GoUp or GoDown where the size of

each sequence is 10.

The cost for each single step action is −1, and each action for navigation succeeds with

Figure 5.6. A three room environment connected by stairways (arrows), simulating a 3D
grid world. The black cells indicate the obstacles. The main task for the agent is to
navigate this environment and find an object. Once the agent finds the object it must
pick it up, move it to another randomly chosen locations and drop it off.

probability 0.5 and with probability 0.25 causes the agent to move to the sides. Actions
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OpenArm, CloseArm, Pickup and Drop always succeed with probability 1. The reward

in the goal state is 100. In this experiment, the agent first learns a policy to move from

a fixed starting location to a particular goal point. It then uses this policy to extract

subgoals by generating random samples according to the policy. These subgoals are sub-

sequently used to learn subgoal options which, in turn are used as abstract actions and

to partition the state space using the multi-phase partitioning approach.

To evaluate the performance of the sampling-based subgoal discovery method, the count

metric is first computed exhaustively, resulting in a mean of the distribution of gradient

ratios over the space of 8.839 with a standard deviation of 20.12. Using the t-test cri-

terion and a probability value of 0.025, this results in a threshold µ of 30 which is then

used to extract 42 subgoal states.

In order to determine subgoal states by Monte Carlo sampling, it is important to draw

the correct number of samples to assure that the resulting subgoal states will be almost

the same as the ones derived using the exhaustive calculation method while minimiz-

ing the computational overhead of deriving the trajectories. One way to determine the

number of sample trajectories needed would be to calculate an a priori upper bound

using the result in Equation 4.3. In order to do this, a priori conservative estimates for

maxt C
∗
H(st) and for the threshold εN have to be determined. Assuming that the normal

count metric is used, the a priori, worst case estimate for maxt C
∗
H(st) would be n|S|,

where n is the maximum length of a until it either terminates or the likelihood of its

final state becomes negligible. If the assumption is made that the policy π does not

create loops, then the estimate for maxt C
∗
H(st) can be reduced to |S| since each state

can lie at most once on each trajectory. Using this term (in this experiment this implies

maxt C
∗
H(st) = |S| = 3600) in Equation 4.3 and using εN = 5 ≥ |C∗

H(st) − C∗
π(st)| and
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a probability value of 0.9, this would lead to a worst case estimate for the number of

samples of

N ≥ 3600

25
× 2(1 + 5)ln

2

1− 0.9
= 5176

However, since this a priori value does not take into account any of the characteristics

of the state space and requires a guarantee of being correct within the given probability

limit, this estimate generally significantly overestimates the actual number of samples

required while forcing the selection of a frequently unreasonably low threshold. As a

result, this a priori estimate is often not an efficient criterion to determine the number

of samples.

Rather than using this a priori estimate, the same criterion from Equation 4.3 cold be

used in an empirical fashion to monitor if sufficient samples have been taken. In this

case, the actual value for maxt C
∗
H(st) computed from the current samples can be used

instead of the a priori estimate and sampling can continue until the inequality holds

for the current number of samples and values for maxt C
∗
H(st). Similarly, other on-line

monitoring techniques can be used to observe the convergence of the count metric or of

the gradient ratios to stop the sampling process.

In this experiments, the sampling process converges after collecting approximately 140

samples. At this point we compute the count metric and gradient ratio according to the

collected samples and choose the threshold µ ≥ 30 + 2×2
2.1

= 31.9. Figure 5.7 illustrates

the number of subgoals that are discovered using Monte Carlo sampling. As illustrated

in this figure, the total number of samples that are needed to learn almost all of the

subgoals is 140. Figure 5.8 shows that the total time spent on subgoal discovery for these

140 samples is less than 30 seconds, which is 5 times faster than using the entire state

space for extracting the subgoals. The extracted subgoals in this experiment consist

of a set of doorways, opening and closing points of stairways, and the states indicating
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Figure 5.7. Number of samples needed to discover all useful subgoals.
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Figure 5.8. Comparison between the run times for subgoal discovery using the entire
state space and Monte Carlo sampling.
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that the agent is holding the object.

Figure 5.9 shows the quality of the learned policies and the acceleration of learning

with and without refinement of abstract states based on Q-value inconsistencies. This
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Figure 5.9. Comparison of policies derived in partition space and the original state space.
The policies using the options to subgoals in the partition space converge significantly
faster than the optimal policy in the original state space with only the original actions.
Note that the policy in partition space is not optimal but within a fixed bound from the
optimal policy.

experiment shows that when the goal state is not reachable with a subgoal option, learning

is impossible without further refinement. However, according to Theorems 4.2 and 4.3,

further refinement of the blocks that have inconsistencies between their flat and partition

space value functions ensures the achieveablity of the goal state. The comparison of
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the number of states in the original state space and partition spaces is illustrated in

Figure 5.10.
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Figure 5.10. Number of states in the partition spaces constructed before and after re-
solving inconsistencies. When an inconsistency between the value functions of each state
space is found, the blocks that cause the inconsistencies will be split according to the
action that achieves the highest value in the original state and will be refined according
to Criterions 4.6 and 4.7.

5.1.5 Experiment in the Game Domain

To further evaluate the approach, it has been implemented on the Urban Combat

Testbed (UCT), a computer game. For the experiments presented here, the agent is given

the abilities to move through the environment, shown in Figure 5.11, and to retrieve and

deposit objects.

The actions are GoUp, GoDown, TurnLeft, TurnRight, PickUp and DropOff. The cost
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Figure 5.11. The game domain where the agent is able to navigate the environment
in order to construct the action dependent partition. The agent is able to transfer the
knowledge acquired from leaning a task to learn subsequent tasks.

for each single step action is −1 and each action for navigation succeeds with probability

1. The reward in the goal state where the agent can pick up and drop off the object

is 100. The state is here characterized by the agent’s pose as well as by a set of local

object percept, resulting in an effective state space with 20, 000 states. The agent is first

presented with a reward function to learn to move to a specific location. Once this task

is learned, subgoals are extracted by generating random sample trajectories as shown in

Figure 5.12.

As in the previous experiment, the count metric is first calculated exhaustively to provide

an evaluation for the sampled subgoal discovery technique. In this case the mean of the

distribution of gradient ratios over the space can be determined to be 23.934 with a

standard deviation of 42.26. Using these values for the t-test and a probability value of

0.025 the threshold µ is calculated to be 40 and 29 subgoals can be found.

As described in the previous section, a conservative a priori estimate for the number

of samples required for Monte Carlo-based subgoal discovery could be derived using
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Figure 5.12. Number of samples needed to discover all useful subgoals.

Equation 4.3. In this case, let εN = 5, maxt C
∗
H(st) = |S| = 20000, and the probability

be 0.9. Then the worst case estimate for the number of samples could be derived as

N ≥ 20000

25
× 2(1 + 5)ln

2

1− 0.9
= 28759

However, as previously discussed this is an overly conservative estimate since it does not

make any assumptions about the environment and the sampling process. Instead, a mon-

itoring process is used again which monitors the convergence of the sampling process. As

the number of samples increases, the system identifies an increasing number of subgoals

until, after approximately 2600 samples the sampling process converges (see Figure 5.12.

After collecting the samples, we compute the count metric and gradient ratio according

to the collected samples and we choose a threshold of µ ≥ 40 + 5×2
4.6

= 42.17 in order to

select the same subgoals that are discovered by calculating the count metric exhaustively.

Using these subgoal states, subgoal options are learned and the state space is partitioned

using the multi-phase method with ε = 20 and δ = 1. On the resulting partition space,
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the main task of moving to a location, picking up the object there, and delivering it to

a different location is learned using the hierarchical learning method with on-line refine-

ment due to value function inconsistencies. Figure 5.13 shows the number of states in

the partition space (the decision layer) during the learning process.

Figure 5.14 shows the quality of the learned policy and the acceleration of learning with
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Figure 5.13. Number of Blocks during learning with refinement according to inconsisten-
cies.

and without refinement of abstract states based on Q-value inconsistencies. These

graphs show that while the use of discovered subgoal options alone within the SMDP

framework can yield significant improvement in learning performance, the additional use

of the multi-phase partitioning approach with its resulting reduction in the state space

size used for learning leads to another significant acceleration of the learning process.
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Figure 5.14. Comparison of policies for core MDP, subgoal option SMDP, and with
action-dependent partitioning.

5.2 Autonomous Hierarchy Construction

In order to show the automatic construction of the decision layer, another experi-

ment consisting of a sequence of five different tasks is learned in the same game environ-

ment used for the previous experiment. The first task is to navigate the environment, i.e.

the agent learns how to move from one location to another location. The second task is

to navigate the environment and pick up an object. The goal of third task is to navigate

a different region of the environment, and in the fourth task the agent learns how to

navigate and drop off an object in another location. The fifth task is a combination of

the capabilities required for the first four tasks in that the agent has to learn to navigate

the environment, to pick up an object, and to drop it off in another location.

At each step in this task sequence, all subgoal options discovered in the previously learned
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tasks are available to the agent and it uses Algorithm 3 described in the Section 4.3.3

to derive a partition space which attempts to minimize the expected learning and refine-

ment time based on the previously learned policies.

Figures 5.15, 5.16, 5.17 and 5.18 show the learning performance for the second, third,

fourth, and fifth task on the automatically constructed state space hierarchy compared

against the learning performance on the core MDP with no knowledge transfer. Task one

is not displayed here since, as the first task, it has inherently to be learned on the core

MDP in the presented approach as no prior subgoals or reward information is available.
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Figure 5.15. Learning curves for the first task. The agent learns to navigate the environ-
ment and the information acquired by learning this task will be used for constructing a
partition for the next task ,i.e, the navigation and pickup tasks.
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Figure 5.16. Learning curves for the Third task, i.e., the navigation and pickup tasks. The
information acquired by learning this task and the first task will be used for constructing
a partition for the fourth task.

Figure 5.19 shows the number of blocks in the final partition at the decision layer

for tasks two, three, four, and five. As in the case of the learning curves, task one is

not included here as it is learned on the core MDP and thus on a state space consisting

of 20000 states. This graph shows that the number of blocks constructed to learn a new

task seems initially to increase but then, as more learned tasks are available to gauge the

importance of different actions (and thus state space splits), it seems to decrease although

the complexity of the tasks to be learned actually increases. One possible rationale for

this could be seen in the fact that the metric used to evaluate the estimated learning time

is initially prone to over fitting the small number of problems available to evaluate it. As

more learned tasks become available for evaluation, splits due to over fitting (i.e. ones

that only match a very small subset of the tasks) will be increasingly penalized by the
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Figure 5.17. Learning curves for the fourth task, i.e., the second navigation task. The
information acquired by learning this task and the previous two tasks will be used for
constructing a partition for the fifth task.

metric, leading to a focusing on partitions that represent largely the common properties

of larger subsets of the already learned tasks.

To analyze the efficiency of automatic hierarchy construction using estimated learning

time, the partition space constructed for task five has been compared to the one result-

ing from multi-phase partitioning using only the available subgoal options. Figure 5.20

shows the size of the initial partition spaces for both cases as well as their development

during learning and refinement. This figure shows that while the automatically con-

structed decision layer had significantly more blocks initially (72 versus 43 for the case

of partitioning using only subgoals), the final partition size after learning is only slightly

larger. This suggests that a number of the initial splits made by the automatic hierarchy

construction were actually beneficial for the new learning task, indicating that the auto-
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Figure 5.18. Learning Curves for the fifth task, i.e., the navigation and dropoff tasks. A
new partition will be constructed by using a history of previously learned tasks for future
subsequent tasks.

matic construction method can detect important aspects of the state and action space

and translate them into an appropriate representation.

Figure 5.21 illustrates the learning curves comparing the performance for task five using

the automatically constructed state space hierarchy and the system where the decision

layer is constructed only from the available subgoal actions. These graphs shows that

for this problem both methods to derive the abstract partition space lead to the same

learning performance. In both cases, a policy that is within the pre-set bound of optimal

is learned within approximately 450 iterations (as opposed to more than 5000 iterations

when using the core MDP). This shows that the initially larger partition space of the

automatic hierarchy construction approach using the estimated learning time metric does

not lead to a decrease in performance. On the other hand, this problem does also not
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Figure 5.19. Number of blocks constructed for learning task two through five.

seem to lead to an undue burden for the method that selects all subgoal options to con-

struct the decision layer, suggesting that in this domain the set of irrelevant subgoal

options does not increase rapidly.

5.3 Summary of the Experimental Results in the Game Domain

The experiments in the game domain show the complete procedure of the research

presented in this dissertation. In these experiments, the agent starts by learning an

arbitrary task and uses the information acquired while learning this task to extract

information for discovering useful subgoals. The agent uses the discovered subgoals in

order to learn options to the discovered subgoals and to construct an initial abstract

representation according to action-dependent partitioning method. In order to ensure

that tasks can be learned in this abstract representation, relevant portions of the abstract
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Figure 5.20. Number of blocks in the decision layer for task five before and during learning
and refinement for the automatically constructed state hierarchy and for the case where
only subgoal options are used to derive the initial partition.

state space are refined whenever there is an inconsistency between the value functions in

flat and abstract representations.

The constructed initial abstract representation serves as a first layer of the hierarchy. In

order to estimate the structure of the state space for learning future tasks, the decision

layer is constructed based on an estimate of the expected time to learn a new task and

the system’s experience with previously learned tasks. To do so, five tasks have been

learned in this domain and the policy derived by solving each task has been added to the

set of policies. The previously learned polices (previous experiences) have been used to

estimate the structure of the state space for learning the fifth task, resulting in a decision

layer that is more relevant for the solution of subsequent tasks.
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Figure 5.21. Learning on a partition space obtained by autonomous hierarchy construc-
tion method by using the first four tasks. This experiment shows how a new partition
can be constructed by using a history of previously learned tasks while it ensures that
the new policy is within a fixed bound from the optimal policy.



CHAPTER 6

Comparison with MAXQ Decomposition

Dietterich [11] developed an approach to hierarchical RL called the MAXQ Value

Function Decomposition, which is also called the MAXQ method. Like options and

HAMs, this approach relies on the theory of SMDPs. Unlike options and HAMs, how-

ever, the MAXQ approach does not rely directly on reducing the entire problem to a

single SMDP. Instead, a hierarchy of SMDPs is created whose solution can be learned

simultaneously. The MAXQ approach starts with a decomposition of a core MDP M into

a set of subtasks {M0, . . . , Mn}. The subtasks form a hierarchy with M0 being the root

subtask, which means that solving M0 solves M . Actions taken in solving M0 consist of

either executing primitive actions or policies that solve other subtasks, which can in turn

invoke primitive actions or policies of other subtasks, etc.

The structure of the hierarchy is summarized in a task graph, an example of which is given

in Figure 3.7 for a Taxi problem that Dietterich used as an illustration. Each episode of

the overall task consists of picking up, transporting, and dropping off a passenger. The

overall problem, corresponding to the root node of the graph, is decomposed into the

subtask Get, which is the subtask of going to the passenger’s location and picking them

up, and the subtask Put, which is the subtask of going to the passenger’s destination

and dropping them off. These subtasks, in turn, are respectively decomposed into the

primitive actions Pickup or Dropoff, which respectively pick up and drop off a passenger,

and the subtask Navigate(t), which consists of navigating to one of the locations indi-

cated by the parameter t. (A subtask parameterized like this is shorthand for multiple

copies of the subtask, one for each value of the parameter.) This subtask Navigate(t) is

105
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decomposed into the primitive actions that are GoNorth, GoSouth, GoEast, or GoWest.

The subtasks and primitive actions into which a subtask mi is decomposed are called

the “children” of Mi. An important aspect of a task graph is that the order in which a

subtask’s children are shown is arbitrary and the choice the higher level controller makes

depends on its policy. The graph just restricts the action choices that can be made at

each level.

Each subtask, Mi, consists of three components. First, it has a subtask policy, pi, that

can select other subtasks from the set of Mi ’s children. Here, as with options, primitive

actions are special cases of subtasks. We also assume the subtask policies are determin-

istic. Second, each subtask has a termination predicate that partitions the state set, s,

of the core MDP into si, the set of active states in which Mi’s policy can execute, and ti,

the set of termination states which, when entered, causes the policy to terminate. Third,

each subtask mi has a pseudo-reward function that assigns reward values to the states

in ti. The pseudo-reward function is only used during learning.

In order to compare our results with the MAXQ decomposition method we use Parr’s

domain [24] illustrated in Figure 6.1. This maze has a high-level structure (i.e. a series

of hallways and intersections) and a low-level structure (a series of obstacles that must

be avoided in order to move through the hallways and intersections). In each trial the

agent starts in the top left corner, and it must move to any state in the bottom right

corner room. The agent has the usual four primitive actions, GoNorth, GoSouth, GoEast,

and GoWest. The actions are stochastic; with probability 0.8, they succeed, but with

probability 0.1 the action will move to the left and with probability 0.1 the action will

move to the right instead (e.g. a GoNorth action will move east with probability 0.1 and

west with probability 0.1). If an action would collide with a wall or an obstacle, it has

no effect.

The maze is structured as a series of rooms, each containing a 12×12 block of states (and
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various obstacles). Some rooms are parts of hallways because they contain walls on two

opposite sides, and they are open on the other two sides. Other rooms are intersections

where two or more hallways meet.

To test the representational power of the action dependent method, we want to see how

Figure 6.1. Parr’s domain for comparison with MAXQ [24].

well it can represent the prior knowledge that MAXQ is able to represent. We begin by

describing MAXQ for this maze task, and then we will compare it to the hierarchical

action-dependent method.

The subtasks in MAXQ are hand-designed and are defined as follows:

• Root. It must choose a direction d and invoke Go. It terminates when the agent

enters a terminal state. This is also its goal condition (of course).

• Go(d, r). The parameter r is bound to the current 12×12 room in which the agent is

located. Go terminates when the agent enters the room at the end of the hallway in
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direction d or when it leaves the desired hallway (e.g. in the wrong direction). The

goal condition for Go is satisfied only if the agent reaches the desired intersection.

• ExitInter(d, r). This terminates when the agent has exited room r. The goal

condition is that the agent exit room r in direction d.

• ExitHall(d, r). This terminates when the agent has exited the current hall (into

some intersection). The goal condition is that the agent has entered the desired

intersection in direction d.

• Sniff(d, r). Sniff has two child subtasks, ToWall and FollowWall.

• ToWall(d). This is equivalent to part of Sniff , and it terminates when there is

a wall in front of the agent in direction d. The goal condition is the same as the

termination condition.

• FollowWall(d, p). It moves in direction p until the wall in direction d ends (or until

it is stuck in a corner with walls in both directions d and p). The goal condition is

the same as the termination condition.

• BackOne(d, x, y). This moves the agent one step backwards (in the direction op-

posite to d. It needs the starting x and y position in order to tell when it has

succeeded. It terminates if it has moved at least one unit in direction d or if there

is a wall in this direction. Its goal condition is the same as its termination condition.

• PerpThree(p, x, y). This moves the agent three steps in the direction p. It needs

the starting x and y positions in order to tell when it has succeeded. It terminates

when it has moved at least three units in the direction p or if there is a wall in that

direction. The goal condition is the same as the termination condition.

• Move(d). This is a parameterized primitive action. It executes one primitive move

in direction d and terminates immediately.

MAXQ uses this information to learn a task as described in Section 3.6.1.

To address this experiment with the hierarchical learning approach introduced in this
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dissertation, the agent first learns a policy to move from a fixed starting location to a

particular goal point. It then uses this policy to extract subgoals according to the au-

tonomous, sampling-based subgoal discovery method described in Section 4.1.1. After

subgoals are extracted, the approach is presented with the same learning problem as

MAXQ which it addresses using the subgoal options and multi-phase partitioning with

the hierarchical learning method.

After learning the first task using Q-learning, the subgoal discovery approach forst gen-

erates a set of random trajectories according to the learned policy in order to compute

the count metric. Then it uses the t-test criterion to determine the significance threshold

µ and uses it, together with the sampled trajectories to determine the set of subgoals.

In this case, the method converges after 140 sample trajectories, leading to a distribu-

tion of gradient ratios with a mean of approximately 7.3 and a standard deviation of

approximately 18.2. Using these values and a p value of 0.025, the threshold µ for the

sampling-based approach is determined as 32 and the set of subgoals is extracted accord-

ingly followed by the learning of corresponding subgoal options.

After the subgoals are extracted, the hierarchical learning technique is presented with

the same learning problem as MAXQ and two experiments are performed. In the first

experiment only the subgoal options are transferred to the new task and a standard

SMDP policy is learned using the original state space representation. For the second ex-

periment, the multi-phase partitioning technique is used with the set of learned subgoal

options to first construct a reward-independent state space partition for the new learning

task. Starting with this initial partition, the hierarchical learning approach is then used

to learn a bounded optimal policy for the new task.

Figure 6.2 shows the comparison between the MAXQ decomposition and the learning of

an SMDP with the sampling-base subgoal discovery but without action-dependent parti-

tioning. This experiment illustrates that MAXQ will outperform an SMDP with options
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Figure 6.2. Comparison of policies derived with the MAXQ method and with a SMDP
with sampling-based subgoal discovery.

to the subgoals that are discovered by sampling-based subgoal discovery. The reason for

this is that while subgoals are hand designed in the MAXQ decomposition, the sampling-

based method is fully autonomous and does not rely on human decision. As a result,

subgoal discovery generates additional subgoal policies that are not required for the task

at hand and might not find the optimal option set. Figure 6.3 illustrates the comparison

between learning time in MAXQ and the BPSMDP constructed by the action-dependent

partitioning method. This experiment shows that action-dependent partitioning can sig-

nificantly outperform the MAXQ decomposition since it constructs state and temporal

abstractions resulting in a more abstract state space. In this form, it can transfer the

information contained in previously learned policies for solving subsequent tasks.
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CHAPTER 7

CONCLUSION

This dissertation presents an efficient method for constructing a hierarchical state

and action space for SMDPs. To do this, it first discovers subgoals by analyzing previ-

ously learned policies for states with particular structural properties. Once subgoals are

derived, it learns options to achieve these subgoals off-line and includes these into the ac-

tion space available to the agent. Using the subgoal options, it then uses action-dependent

state space partitioning to derive an abstract state space. Learning of subsequent tasks

is addressed on the abstract state space. To ensure that the new task is learnable, the

system presented here maintains a separate value function for the original state space

and determines if there are significant inconsistencies between this value function and

the one derived on the abstract partition space. When an inconsistency between the

values for the best actions in both representations is discovered, the original actions are

used to refine the block in the abstract state partition in which the inconsistency was

discovered, resolving the inconsistency. This representation serves as a first layer of the

hierarchy. In order to estimate the structure of the state space for learning future tasks,

the decision layer will be constructed based on the expected time to learn a new task

according to previously learned tasks. Together, these techniques permit the agent to

form more abstract action and state representations over time.

The experimental results presented in this dissertation illustrate how an autonomous hi-

erarchy can be constructed by using the action-dependent partitioning method. These

experiments show a significant reduction in the number of states in the abstract state

space, resulting in faster convergence of the value function. Furthermore, these experi-
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ments show a procedure to estimate the structure of the state space for learning future

tasks and to construct the decision layer based on the expected time to learn a new task

according to previously learned tasks.

One of the future goals is to find even more efficient machine learning methods for con-

trol tasks. Algorithms can be developed for statistical generalization and reasoning about

the algorithms that learn to incrementally scale up to analyze even more complex tasks.

Discovering hierarchy in task structure and world structure is an important means in

achieving this end. Algorithms need to be developed that learn to reason about their

environment in a combinatorial way and learn to develop more cognitive internal repre-

sentations that mimic relational structures. Integration of more powerful representations

such as factorial HMMs and POMDPs are a potential follow-up to this work. Smarter

hierarchical algorithms must be found to deal with larger tasks, and research must be

directed at more intelligent representational design not only for incorporating hierarchy

but also for sharing substructures.
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