
TOWARDS A STRONGER PEER-TO-PEER ANONYMOUS SYSTEM

by

ARJUN R. NAMBIAR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006



Copyright c© by Arjun R. Nambiar 2006

All Rights Reserved



To my Mom Prasanna, Dad K.M.R Nambiar and Anu- the most important people in

my life.



ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Matthew Wright for giving me

a chance to pursue my interest in Network Security, teaching me all I know, and letting

me collaborate with him in this research project. It has been a valuable, eye-opening

experience for me. I would also like to extend my appreciation to the NSF and Dr.Wright

for providing financial support for my studies. He will always be a friend as well as a

mentor, and the person behind any good work I do from now on.

I also wish to thank Dr. Mohan Kumar and Dr. Donggang Liu for their interest

in my research and for taking time to serve in my Thesis committee.

I wish to thank members of the iSEC Lab at UTA, especially to Dr. Donggang

Liu, Madhu Venkateshiah and Hatim Daginawala for all I learnt from them.

I would like to thank Sushant Prasad, who’s been more of a brother than a friend,

and for encouraging and inspiring me to pursue a Thesis.

Most importantly I would like to thank my parents for dedicating their entire life

so as to give me the freedom to discover my path. I would like to thank my kid sister

Anu for her positive and uplifting presence. These three people, more than anyone else,

are responsible for anything good to come out of me.

April 17, 2006

iv



ABSTRACT

TOWARDS A STRONGER PEER-TO-PEER ANONYMOUS SYSTEM

Publication No.

Arjun R. Nambiar, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Matthew K. Wright

Anonymous communications systems on the Internet provides protection against

eavesdroppers and others that seek to link users with their communications. These sys-

tems have many important applications in areas such as law enforcement, intelligence

gathering, business privacy, anonymous publishing, and personal privacy. Currently de-

ployed systems rely on a relatively small set of advertised servers to forward messages

for the user. These systems can suffer from scalability problems, with potentially large

bandwidth and system overhead costs, and the servers themselves can be targets of direct

attacks.

Peer-to-peer anonymous communications systems, such as Tarzan[1] and Mor-

phMix [2], have been proposed as a way to alleviate these problems with a large and

dynamic set of peers acting as servers. This makes direct attacks less effective and in-

creases scalability. Tarzan, however, requires that each peer know the identity of all other

peers, which makes it highly vulnerable to intersection attacks 2.3. MorphMix does not

have this requirement, but it requires that users allow other peers to choose the peers that
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will help forward the users messages; attacker controlled peers will always select other

colluding peers to be on the path. Although the authors of MorphMix propose a collusion

detection scheme, attacker-controlled peers will be able to choose their colluding partners

as forwarding nodes far too often while the detection algorithm is still learning. The fun-

damental problem is one of selecting peers independently at random, to ensure unbiased

path selection, while not distributing lists of all the peers in the system to all other peers.

We propose a new peer-to-peer anonymous communications system using dis-

tributed hash tables (DHTs). Similar to peer-to-peer file-sharing systems that use

DHTs 2.6, our system maps each IP address to a point on the id space using consis-

tent hashing. We further divide the id space into groups, conceptually organized as a

binary tree for purposes of node lookup. Each node has knowledge of all the nodes in its

own group, as well as knowing a limited number of nodes in other groups. This knowledge

is enough to effectively route lookups throughout the system. Nodes use redundancy and

probabilistic checking when performing lookups to prevent malicious nodes from return-

ing false information without detection.

We show that our scheme prevents attackers from biasing path selection, while

incurring moderate overheads, as long as the fraction of malicious nodes is less than

20%. Additionally, the system prevents attackers from obtaining a snapshot of the entire

system until the number of attackers grows too large (e.g. 77% for 10,000 peers and

1024 groups). The number of groups can be used as a tunable parameter in the system,

depending on the number of peers, that can be used to balance performance and security.
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CHAPTER 1

INTRODUCTION

1.1 What is Anonymity

Anonymity is a technological solution to protecting one’s online privacy. With its

potential for monitoring user activity, the Internet is turning into the most pervasive

surveillance system ever. Information that can be obtained by observing you includes

to whom you send emails, what websites you browse, what chatrooms you visit, where

you work, where you shop online and what you buy, what kind of physicians you visit,

etc. Most of this information is trusted to several separate organisations, but there is a

possibility of pooling in their resources to form a dossier on potentially anybody. There

is thus a need for systems that ensure anonymity for these groups. Examples of people

or organisations requiring anonymity include:

• Socially sensitive communicants visiting disease and crime victim chatrooms.

• Corporations trying to hide collaborations of sensitive business units and partners.

• Law enforcement authorities to encourage anonymous tips or for crime watching.

• Government to hide negotiations or procurement patterns.

Slightly more formally, anonymity is the state of being indistinguishable from other

members of a set i.e., each member of the set is as likely the source of the message. This

set is what is called the anonymity set [3]. Anonymity is not absolute. Larger this

anonymity set is, greater is the degree of anonymity offered.

1
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1.2 Anonymity over the Internet

The reason anonymity over the Internet is a problem has a lot to do with the

medium and how the Internet operates. All machines on the Internet use the IP [4] pro-

tocol to communicate. The IP protocol, among its various header fields, has the source

and destination IP address fields for effective two-way routing. These IP addresses can

serve to identify and track communicating parties. Our goal is to hide the sender’s IP

address. As way of comparison, in conventional mail, in order to ensure anonymity one

would omit the return address. Thus, the aim is to create an overlay network that masks

the IP address while allowing real-time bi-directional communication. Information about

the source and destination can be obtained by observing particular data move through

a network, by matching amounts of data or by examining coincidences such as simulta-

neous opening and closing of connections. As a goal, we want to protect users against

traffic analysis [5]. That is, we do not want an adversary capable of monitoring or com-

promising certain parts of the system, to be able to match sender and recipient without

a certain degree of uncertainty.

1.3 Contribution

Traditional solutions for anonymity are mix-based systems [2.2], which consist of

a small set of advertised servers used specifically to relay messages. These systems can

suffer from scalability problems, with potentially large bandwidth and system overhead

costs, and the servers themselves can be targets of direct attacks. Attempts have been

made to extend these systems to a peer-to-peer environment for scalability among other

reasons. Systems like Crowds[2.4.1], Tarzan[2.4.2] and MorphMix[2.4.3] which are ex-

amples of such systems suffer from certain attacks[2.5]. Our contribution is a proposal
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for a new peer-to-peer anonymous communications system using distributed hash ta-

bles (DHTs)[2.6]. The proposed system gives the user the ability to choose relays from

among all the nodes of the system in spite of having just limited knowledge of the sys-

tem. Nodes use redundancy and distance checking when performing lookups to prevent

malicious nodes from returning false information without detection. We finally show that

the system is resilient to certain attacks that plague the other p2p anonymous systems.

1.4 Thesis Organization

In Chapter 2, we discuss the background concepts and related work to justify the

design decisions explained in our description of the system. In Chapter 3, we present

our proposed system in detail and analyze the security of the system. In Chapter 4,

we explain the simulation setup and aspects of the system that we tested. Section 4.5

presents the results of the simulations and their interpretation. Chapter 5 concludes with

ideas for future work.



CHAPTER 2

BACKGROUND

Anonymity on the Internet is not a new security goal. In this chapter we present

some background on the techniques in use to thwart traffic analysis. We also introduce

key concepts crucial to understanding the reasoning behind some of the design decisions

of our proposed system explained in Chapter 3. We also use this chapter to establish a

nomenclature along the way to be used through this chapter and the rest of the document

for purposes of homogeneity. The node attempting to send a message anonymously is

called the initiator and the intended destination of that message is called the responder.

2.1 Single Proxy

The most intuitive solution to thwart traffic analysis is to add a level of indirection

between the initiator and responder. However with only one level of indirection this is

less suitable for real-time traffic like the Internet, but more for asynchronous traffic like

electronic mail. Examples include Anonymizer [6] and remailers such as the now defunct

Penet remailer [7]. As an example, Anonymizer is essentially a server with a web proxy

that filters out identifying headers and source addresses from web browsers’ requests. So

instead of seeing the initiator’s true identity, a web server only sees the identity of the

Anonymizer server. This provides almost no safeguarding against traffic analysis. The

system has other disadvantages too. It is a single point of failure. Also you have to

trust the proxy, since they are in a position to observe everything. This is a less obvious

decision than it may seem. The proxy may be the target of a legal attack by people in

4
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power via a subpoena. A trivial DoS attack seems feasible too.

2.2 Mix-Based System

Single-proxy systems like Anonymizer do very little to add indirection in the way

of a determined attacker. Chaum presented the idea of mixes [8] between the initiator

and the responder as a way to thwart the attacker. The purpose of a mix is to hide the

correspondences between the messages in its input and those in its output. The order

of arrival is hidden by outputting uniformly sized messages in lexicographically ordered

batches. The messages are encrypted/decrypted at the mix so there is no danger of

correspondence between messages at the input and output simply by appearance. A sin-

gle mix does nothing but hide the correlation between incoming and outgoing messages.

Using just one mix would make the sender dependant solely on the honesty of that one

mix, and so several mixes are used in a chain. The first mix in the chain receives data

from the intitiator, makes some cryptographic transformations and forwards it to the

next mix. The last mix sends it to the responder. To make it resistant to traffic analysis,

the mixes employ fixed-length messages as well as layered encryption of the messages.

A vast number of solutions since have been modifications to this basic approach. Sys-

tems in use that provide anonymous real-time communication like Tor [9], Freedom [10],

Onion-routing [11] are based on mixes. Our system is based on the same approach.

Since our system, like most other solutions, does not provide a lot of functionality of the

original mixes, we use the term proxies when refering to the mix-like intermediate nodes

in our system. While a correct host runs only one honest node, which forwards packets

properly, does not log addressing or timing information, and so on, an adversary can run

potentially many malicious nodes or spoof many fake addresses. A node is malicious if

it modifies, drops, or records packets, analyzes traffic patterns, returns incorrect network
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information, or otherwise does not properly follow the protocols.

In a generic mix-based system, to begin a session between an initiator and a re-

sponder, the initiator’s proxy identifes a series of mixes forming a route through the

network, and creates a virtual circuit(VC) through them. Based on this route, the ini-

tiator’s proxy encrypts first for the responder, then for the preceding mix on the route,

and so on back to the first mix to whom he will send the message. Hence mixes are

said to employ nested encryption. Each proxy knows the previous and the next mix on

the path, but knows nothing about the other mixes or where it lies in the chain. Since

the system uses source routing, the mixes can be chosen over multiple domains so as to

make the job of traffic analysis harder. mixes can be advertised so that they are easily

accessible and individual mixes can be chosen based on trust, administrative domain or

geographical location. However they do suffer from scalability issues. These systems can

suffer from scalability problems as the number of participants increase, with potentially

large bandwidth and system overhead costs. The mixes themselves can also be targets

of direct attacks.

There are different possibilities to organize the co-operation of several mixes. One

is where the sender can choose the mixes that make up her message’s path. This is what is

called the free-route topology. The contrasting setup is where nodes choose mixes from a

set of fixed paths through the network. This is called the mix-cascade topology. [12] and

[13] provide interesting analysis about whether the use of either affects the anonymity

offered by the system. There are valid arguments for and against both of the topologies

and the choice is based on attacker model, requirement of services and the incentives for

participants [14]. Free-route topologies do however provide a larger number of exit and

entry points, and require much less trust which seem more suitable for a dynamic system
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like ours, where nodes can easily join and leave the system.

Mix-based systems do not ensure anonymity. Different systems are vulnerable

to different attacker models. Broadly the various types of attacks against low-latency

mix-based systems are timing analysis, predecessor attack, and intersection attack. Mix-

based systems used for real-time bidirectional traffic actually does very limited mixing ,

and hence are vulnerable to powerful adversaries. A substantial amount of work has

been published about the various attacks on these systems. [5] categorizes the various

types of traffic analysis attacks. [15] provides a good analysis of the security features

of Onion Routing [16]. Timing analysis is where the attacker studies the timings of

messages moving through the system to find correlations. It may make it possible for two

malicious nodes to colloaborate to determine that they are on the same communication

path. Systems like Tor use no specific techniques to prevent timing analysis. Hence in

such systems when the first and the last mix on the VC are malicious, effective timing

analysis may allow the attacker to link sender and receiver entities. A detailed analysis of

timing analysis in low-latency mix systems is presented in [17].[18] talks about the threat

of a single malicious entity presenting multiple identities, especially . Also as shown

in [19]when a particular initiator continues communication with a particular responder

over path reformations, existing protocols are subject to attack. The predecessor attack

runs simply on the assumption that for an identifiable stream of communications through

an attacker, the initiator is more likely to send the message to the attacker than any other

participant. We talk about the intersection attack in more detail in the next section. [20]

shows the threat from intersection attacks [2.3] and how they can be mitigated in systems

with static routes.
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2.3 Intersection Attack

The basic premise of the intersection attack is that users typically communicate

with a relatively small number of parties. A classic example would be typical browsing

behaviour- most users query the same websites in different session, the pattern is not

random. It is carried out over a period of time. The two things that the attacker needs

to be able to relate messages as belonging to same session as well as knowing which of

the nodes are offline and online at the instant it observes them. The attaker then creates

a set of possible senders for each message. For all messages belonging to the session,

if the attacker intersecting the sets of possible senders will remove users who were not

active during the transmission of all messages. This shrinks the set of suspects possibly

till there is only one user left. The operation used here is an intersection of sets, hence

the name.

2.4 P2P Anonymous System

Mix-based systems suffer from scalability problems since there is a disproportionate

number of mixes to participants. Also, advertised mixes become targets of direct attacks.

Although this is not a traditional client-server relationship, there is a definite hierarchy

among the nodes in the system. Peer-To-Peer(p2p) anonymous systems extend known

mix-based systems to the p2p environment. Nodes communicate through mix proxies

chosen from an open ended pool of nodes 1. Each node is an equal peer, therefore each

node is a possible originator and each node is a possible relay/mix. This increases the

size of the anonymity set. With no inherent hierarchy, there is no unfair load on certain

nodes in the system. Hence, they scale well. There are a few p2p anonymous systems in

existence. We distinguish among them based on the amount of knowledge of the system

1Synonymous with mixes in such a p2p environment.
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that a node has, and show why we think less knowledge makes for a more secure system.

Current P2P anonymous systems include Crowds [21], Tarzan [1] and MorphMix [2].

We briefly introduce each of them below.

2.4.1 Crowds

Crowds consists of a lot of nodes that are run by the users of the system. Web

requests are randomly chained through a number of them before being forwarded to the

web server hosting the requested data. It has a node called a “blender” which maintains

a list of nodes in the system. Nodes choose the next node(proxy) in the circuit randomly

from the entire set of Crowds nodes, since they are all equal peers. The server will see

a connection coming from one of the Crowds users, but will not be able to tell which

one was the original sender. In addition Crowds uses encryption so that some protection

is provided against attackers who intercept a user’s network connection. However, this

encryption does not protect against an attacker who cooperates with one of the nodes

that the user has selected since the encryption key is shared by all nodes part of a

connection. Traffic analysis is also trivial for an attacker who can observe all network

connection since the messages are forwarded without modification and appear the same

on different links. Crowds is named for the notion of blending into a crowd operates

by grouping users into a large and geographically diverse group(crowd) that collectively

issues requests on behalf of its members.

2.4.2 Tarzan

This is another p2p anonymous system based on the IP layer. It is a variant of

onion routing in that it uses onion routing style layered encryption. Tarzan provides

a higher level of practical security in some cases by having nodes select proxies based
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on domains. This means that the attacker cannot overload the network with malicious

nodes from within the same domain since initiating nodes will not select proxies from that

domain with any greater frequency. Attackers could gain an advantage however when

the number of honest domains represented is small. An attacker may be able to operate

nodes with no honest participants. With attackers in a few such domains, attackers could

make it likely to appear on an initiators path despite only operating a few corrupt nodes.

2.4.3 MorphMix

MorphMix is another p2p anonymous system which uses a layered encryption

scheme. It differs with the previous two in that it does not require nodes to have knowl-

edge of the entire system. It consists of an open ended pool of volunteer nodes, with

each node knowing only a small subset. In MorphMix the initiator only chooses the first

proxy in the VC, and then each proxy in the path chooses the next. Nodes use witness

nodes from among the nodes they know in order to act as the third party in the process

of establishing the next hop of the anonymous tunnel. Finally, it also incorporates a

collusion detection scheme to avoid collaborating malicious nodes from choosing the next

proxy from the subset of malicious nodes.

2.5 Attack against p2p anonymous systems

In this section we talk about the attacks against the existing p2p anonymous system

viz. Crowds, Tarzan, and MorphMix. The aim is to introduce the attacks before we

explain how our system mitigates these threats.

2.5.1 Attacks against Tarzan, Crowds

Some peer to peer systems are particularly vulnerable to the intersection attack

explained in Section 2.3. Both Crowds and Tarzan require complete knowledge of the
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system to function. So just placing one node in the system would ensure that the attacker

gets a snapshot of the entire network. A snapshot here refers to the set of all the active

nodes in the system at that instant. This makes them vulnerable to the intersection

attack, since both are dynamic systems. For this reason, we feel the need for a p2p

anonymous system where individual nodes know only a small subset of the entire network,

thus making the intersection attack harder to carry out.

2.5.2 Attacks against MorphMix

MorphMix, as a system, is closest to ours w.r.t certain important design decisions.

It is also a p2p anonymous system where the nodes have only limited knowledge of the

entire system. However in MorphMix the initiator only chooses the first proxy in the

VC, with each proxy in the path chooses the next. Thus one proxy in the path being an

attacker allows it to choose all or some of the rest of the proxies as attackers. MorphMix

does have a collusion detection scheme to detect such a case, but it has an initial learning

phase. The system is vulnerable during this phase. Also, more the attackers in the

network, higher is the possibility of choosing one, but slower is the learning curve. Our

target is thus a p2p anonymous system, with nodes being able to choose proxies on the

path from the complete set of nodes in the system, in spite of limited knowledge of the

system.

2.6 Distributed Hash Tables

A hash table is used to map keys2 onto values and is mainly useful for efficient

lookups. Distributed Hash Table(DHTs) is a distributed infrastructure that provides

hash table-like functionality on an Internet-like scale. A hash table is a table mapping

keys to values, so intuitively a distributed hash table partitions ownership of those keys

2A key is any identifying information, like the name of a resource
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among the nodes in the system. The ownership is partitioned in such a way so as to be

able to efficiently route lookups to the node responsible for the key. Main features of

DHTs are:

• Decentralization: Everyone maintains limited knowledge of the network viz. a small

portion of the entire hash table.

• Scalability: Indexing is not a problem since there is no centralized authority re-

sponsible for the entire hash table. Large increase in the system results in only

minute increments in the portion of the hash table of individual nodes.

• Fault Tolerance The system deals with node departure/failure gracefully. Also since

there’s no centralized authority, there is no single point of failure.

DHTs give us the tool to choose node verifiably at random from the complete

set of nodes in the system inspite of having limited knowledge of the system. Current

DHT-based p2p systems include Chord [22], CAN [23], Pastry [24], Tapestry [].

In order to give the flavor of such systems we provide an overview of the Chord

system. Chord provides fast distributed computation of a hash function mapping keys to

nodes responsible for them. What Chord does is provide a scalable protocol for lookup

in a dynamic p2p system with frequent arrivals and departures. Chord assigns keys

to nodes with consistent hashing. Consistent hashing has the property that with high

probability the hash function balances load. Chord improves the scalability of consistent

hashing by avoiding the requirement that every node know about every other node. A

Chord node needs only a small amount of “routing” information about other nodes, thus

making it more scalable. Because this information is distributed, a node resolves the

hash function by communicating with other nodes. In an N-node network, each node

maintains information about only logN other nodes, and the number of messages required

to resolve a lookup is logN .



CHAPTER 3

SYSTEM DESCRIPTION

To move closer to a practical and secure p2p anonymous communication system,

we propose a new p2p anonymous system using DHTs, briefly introduce the key design

decisions and discuss how the pieces fit together. Following the discussion in section 2.6,

we use DHTs to create a dynamic self-organizing overlay in order to allow nodes to join,

leave and effectively route between all the nodes of the system, while having only limited

knowledge of the complete system. As explained in section 2.5.2, allowing every node to

have only limited knowledge of the system helps protects it from the intersection attack.

As with the p2p paradigm, every node in the proposed system is an equal peer, so each

node is a possible originator as well as a relay. P2P systems means that the attacker

has to cover more surface of attack since the number of entry and exit points are much

larger than in mix-cascades. It also makes the system inherently more scalable, since

every participant is involved in relaying messages and the system does not rely on few

servers to do the relaying as in traditional mix-based systems like Tor [9].

The way we use DHT’s here is similar to some of the p2p file-sharing systems like

Chord [22], CAN [25], etc. Our system maps keys, or identifying information, to ids that

are used within the system for routing. Since the aim of the lookup is to locate nodes,

the keys here are the nodes’ IP addresses. However, we present a novel way to perform

lookups and node joins in a way that provides greater resilience to attacks. Each node

has a list of known nodes, called the contact table, similar to a routing table, which it

uses to resolve lookups throughout the id-space. Since a node keeps routing information

13
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of just these few “ contacts”, it has to contact other nodes in order to resolve a lookup.

The way we organize this id-space and the way we use it to add nodes to the contact table

is crucial to the correctness and security offered by our system. As explained earlier, the

proposed system is similar to a mix-based system, so the anonymity is based on VCs

created with a chain of nodes. We refer to each of the nodes in the chain as a proxy.

Also, since this is based on DHTs, each lookup is resolved by contacting other nodes in

a recursive manner. Each of the nodes contacted during a lookup is called a lookup hop.

3.1 Overview

Since this system is based on the free-route topology [2.2], the initiator chooses the

proxies in the VC. These proxies should be chosen at random from the entire system so as

to make the work of the attacker more difficult. However, since each node does not have

a complete view of the system, we utilize the DHT to do lookups for random nodes. Each

lookup is resolved by recursively contacting a number of other nodes till it reaches the

target node. The lookup algorithm is based on the organisation of the id-space discussed

in section 3.2. section 3.3 describes bootstrap methods in brief, section 3.4 explains

how nodes join the system. With that background, section 3.5 explains the crux of the

system-the lookup, but before explaining the details we take a look at the overall system.

With the system in place, when an initiator needs to communicate with a respon-

der, it first needs to set up a VC. It does so by choosing three ids at random from the

id-space, such that the owner of each of the ids will be a proxy on the VC. It then asks

either all or a subset of its local contacts(depending on the selected redundancy) to do

a lookup for the first id. Since this system is based on an open ended pool of volun-

teer nodes, the possibility of running into malicious nodes during a lookup exists. The

redundancy helps the mitigate that risk. If the node receives different results from the
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separate redundant lookups, it indicates that either one or more of its local contacts or

their lookup-hops are manipulating the results. The node can either choose the result

whose id is closest to the target id1, or it can choose to void all the lookups and choose

another id for lookup. The system also incorporates a distance checking to determine if

a malicious node was returned by a lookup. When a lookup is resolved, the node checks

the offset of the node’s id from the target id specified. The value is then normalized by

the group size. If this offset is within the amount it pre-decides as safe2, it accepts it or

else it discards the id and decides on a new target id and repeats the process. The group

size can be easily determined by dividing the number of points in the id space with the

number of groups in the system. We use loose checking with more redundancy for the

first proxy and tight checking with less redundancy for the later proxies. Either way, at

the end of the process it has the node that will be the first proxy in the VC.

It establishes a connection with that node, and through that connection asks this

first proxy to perform a lookup for the second id. The reason the initiator goes through

the first proxy to resolve the lookup is to not expose the relationship of the initiator

and later proxies. By going through the first proxy, the first proxy would not be able

to deduce if the lookup was from the initiator or if the initiator itself was a proxy on

some other node’s VC. Now the first proxy goes through the same process to resolve

the lookup and sends the result to the initiator. In this way the initiator sets up a VC

consisting of three intermediate proxies. This VC is kept alive for a small time period,

say three minutes, during which the initiator uses it for all communication. Note that

this only sets up an anonymous connection. The intiator can choose to identify itself

1Since the owner of an id is the first node whose id is greater than the target id.
2The number of nodes in the system helps it decide the approximate separation of ids from their

owners.
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to the responder within the message. After the time period, the VC can be destroyed

and another one can be used. The process of creating another VC can be done before

the destruction of the first VC, so as to seamlessly move over fresh communication over

the new pipe. Long standing connections could still be used for applications like remote

login. The setting up of the VC, apart from the choice of proxies on the path, is similar

to that of Tor [9].

3.2 Organisation of the id-space

The strength of DHTs is that a node can choose any other node in the system

with only limited knowledge of the system. As explained earlier, our system maps IP

addresses to id points. We use consistent hashing to map the IP address to a point on

the id-space. Each node is said to “own” the id-space between its id and the id of the

previous node in the id-space, i.e., it is responsible for the preceeding segment of the

id-space. For purposes of lookup and adding nodes to the contact table, we divide the

entire id space into groups. Each group is a contiguous portion of the id-space and is

cyclic, i.e., the ends of the id-space of groups wrap around. All the nodes whose id’s fall

within a certain group know all the rest of the nodes within that group. Further let us

say that a node ’n’ belongs to a group if the id obtained by hashing n’s IP lies in the

id-space of that group. The notion of group also helps us define the concept of neighbors

and distant nodes on the id-space. Nodes within the same group are called neighbors,

while those in other groups are said to be distant nodes.

Groups are conceptually organized in the form of a binary tree. Let the number of

groups be G. Then the first log2(G) bits of all id’s in each group are the same. Thus,

as an example, for an id-space divided into 8 groups, the first 3 bits(log2(8) = 3) of each
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id in group 0 would be 000, group 1 would be 001 and so on. So let us define the group

number as the first log2(G) bits of each id within a group. What this binary structure

also does is help to add nodes to the contact tables in a logical, verifiable, yet random

manner. The height of the binary tree gives us the number of distant nodes present in

a contact table. The first few entries in the contact table are all the rest of the nodes

in the same group. So if a group has a population of p, the first p − 1 contacts are

neighbours. Lets call them the local contacts and the distant nodes in the contact table

as the global contacts. To choose the global contacts, for each contact, you go one level

up in the binary tree and choose one node randomly from the other subtree that doesn’t

include itself. So for group 0(we’ll call it G0), we go one level up and then choose from

the subtree, thus choosing a node randomly from the right sub-tree i.e G1. Similarly for

the next global contact, we go another level higher and choose a node randomly from the

right sub-tree viz.G2 and G3, and so on. So to summarize, each node’s contacts would

include all the nodes from the same group, one node from the next group, another from

the next two, another from the next four and so on3. This way each node has log2(G)

global contacts. A feature of this scheme is that it gives a node more knowledge of nearby

nodes and progressively less knowledge as one moves further in the id-space.

3.3 Bootstrap nodes

We haven’t focused on the problem of bootstrapping during the modeling of the

system. Most of the analysis is done with the assumption that the system already contains

a few hundred nodes. However it is not hard to imagine a query for the name of the

system to a central server yielding a set of nodes, among which one is chosen. Once

you obtain even a single node in the system, the process of joining becomes a process of

following the steps explained below. The name resolution for the system could change

3In increasing powers of 2.
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periodically by an established method in order to introduce randomness in the choice

and to avoid malicious nodes compromising the process. Alternatively, a node could join

through a trusted friend. The friend could supply the joining node with a list of nodes

in the system, which the node could use to join the system. This eliminates the risk of

the bootstrap node being malicious.

3.4 Node Joins

The process of joining is similar to it’s counterparts in other p2p file sharing systems

like CAN, Chord. The process is best explained in steps as follows:

• Obtain a set of bootstrap nodes.

• Hash its own IP so as to obtain its corresponding id on the id-space.

• Perform a lookup for its id through a subset of the bootstrap nodes.

• The node returned by the lookup is it’s successor in the id-space, and also one of

it’s neighbours.

• Populate the local portion of the contact table.

• Send an update message signed by the successor to its successor as well as its

predecessor, which then let the message propogate throughout the group.

• Populate the global portion of the contact table.

• As nodes contact their global contacts within this group the information propogates

across the network, thus updating the network view of other nodes in the system.

3.4.1 Populating Finger Tables

The task of populating the contact table is divided into the task of filling local as

well as the global portions of the contact table. The local portion is all the neighbours of

the node. For a joining node this is obtained by copying it from its successor. Updates
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from other joining nodes keep this portion up-to-date. The steps in order to populate

the global portion are:

• Ascertain the values for its own group number(P) and number of groups(G).

• The number of global contacts is g = log2G.

• The function uses a binary search type algorithm. Initialize values of high and

low as the extremities of the search range(in terms of groups). Here low = 0 and

high = G − 1.

• Repeat the following steps for each of the global contacts starting from the last

down to the first i.e g − 1 down to 0.

– mid = d(low + high)/2e

– If P < mid ⇒ the node is in the left half of the subtree under consideration;

∗ Choose a node from the right half. Therefore choose an id from the range

of groups(mid,high).

∗ Change the search range for next iteration: high = mid− 1. Continue to

next iteration.

– Else, if P ≥ mid ⇒ the node is in the right half of the subtree under consid-

eration.

∗ Choose a node from the left half. Therefore choose an id from the range

of groups(low,mid − 1).

∗ Change the search range for next iteration: low = mid. Continue to next

iteration.

3.5 Lookups

Lookups are performed in various situations: a)When a node needs to join the

network, it performs a lookup for it’s id point to find it’s successor in the network, b)When

a node is populating the global portion of its contact table, c)When a node chooses a
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proxy in the VC. In all the above cases the node performs a lookup for a certain id in the

id-space. During lookup, a node may choose a subset of the local portion of its contact

table, asking each of them to perform lookups independantly. This type of redundant

lookup is done to reduce the possibility that a malicious node, appearing on the path in a

subset of the lookups, has an influence on the result of the lookup. This redundancy is a

tunable parameter with a tradeoff of security vs. performance. Since the system is based

on DHTs, a series of lookup hops are needed up to resolve a lookup. A node chooses the

next lookup hop in the series as the contact that is in the same portion of the id-space

as the target id. Each consecutive lookup hop brings the lookup closer to the eventual

target id. The process of choosing the next lookup hop continues till we get a node in

the same group as the target id. Once that happens, the node looks at the local portion

of its contact table for the node that owns the target id. The choice of each lookup hop

is based on the following algorithm.

• Ascertain the values for its own group number(P), number of groups(G), the group

number of the target id(T).

• The number of global contacts is g = log2 G.

• The function uses a binary search type algorithm. Initialize values of high and

low as the extremities of the search range(in groups). At the start, low = 0 and

high = G − 1.

• Repeat the following steps for contact values g − 1 down to 0, until you find the

contact that is the next lookup hop.

– mid = d(low + high)/2e.

– If P < mid ⇒ the node is in the left half of the subtree under consideration,

∗ Check which half the target id is in. i.e T < mid or T ≥ mid

∗ If T is in the same half as P,i.e T < mid this contact can’t be the next

lookup-hop since it is in the other half, so continue to the next iteration.
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Change the value of the search range for the next iteration, so high =

mid − 1.

∗ Else if T ≥ mid ⇒, T is in the other half as P, this contact is the next

lookup-hop.

– If P ≥ mid ⇒ the node is in the right half of the subtree under consideration;

∗ Check which half the target id is in. i.e T < mid or T ≥ mid

∗ If T is in the same half as P, i.e., T ≥ mid this contact cannot be the next

lookup hop since it is in the other half, so continue to the next iteration.

Change the value of the search range for the next iteration, so low = mid.

∗ If T < mid ⇒, T is in the other half as P, this contact is the next lookup

hop.

3.6 Security Analysis

In this section we aim to analyze the security of the system. Generally mix-based

systems are analyzed for the types of attacks they are vulnerable to. Our system is a

mix-based system with anonymous tunnel creation along the lines of Tor, Onion Routing,

etc. The system is thus inherently vulnerable to some of the attacks that Tor-like systems

are vulnerable to[section 2.2]. However p2p anonymous systems like Crowds, Tarzan, and

MorphMix have introduced other avenues for the attackers[2.5]. In this section we focus

on showing that our system mitigates some of the threats that exisitng p2p anonymous

systems face.

3.6.1 Intersection Attack

The intersection attack[2.3] requires that the attacker has full knowledge of the

system. In our proposed system, the nodes need not have full knowledge in order to

function effectively. It is possible however, for collaborating malicious nodes to pool
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their individual knowledge of the system in order to accumulate complete system knowl-

edge. We now aim to quantify the amount of resources they need in order to get that

information. Since each node knows of all the rest of the nodes in the group, the goal of

the attacker would be to place at least one node in each group. That way when the nodes

collaborate and pool information they have information of all the nodes in the system.

The problem then, is to estimate how many nodes it takes to ensure at least one node in

each group. The problem equates to the classic balls-in-bins problem referred to in ran-

domized algorithms [26]. On an average it takes Glog2(G)4 attackers to have one in each

node, and to do the same with high probability it takes twice the number, i.e., 2Glog2(G).

The hash function means that the attacker cannot modify or change the id space

and where his nodes go. If he owns an IP address, he could place another node in the

system, but that is true for any p2p system. We do not address the problem of individual

nodes presenting multiple identities in the system- the Sybil attack [18], but do note

that the attacker would not be able to choose a part of the id-space to concentrate the

malicious nodes at. Also, the last proxy is only dependent on the second to last proxy

(second proxy in Tor [9]). So only if the second to last proxy is an attacker can the

attacker influence the choice of the last proxy. This happens either by the X%5 that the

attacker owns the node normally, or by the additional chance that an attacker who owns

the previous proxy can influence the choice of this proxy to be an attacker too.

3.6.2 Choice of Proxies

We have seen that MorphMix doesn’t require nodes to know of all the other nodes

in the system. However in not knowing all other nodes, it leaves the participant nodes

4The log is base 2 since the groups are organized as a binary tree.
5X refers to the percentage of malicious nodes in the system.
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vulnerable to choosing a malicious node for a proxy and that node compromising the rest

of the circuit. The strength of the system is the ability to choose nodes randomly from

the entire set of nodes without knowing all of them, but the drawback is that some of the

nodes chosen could be malicious. That seems an expected fallout when one chooses nodes

at random from among unknown nodes. The best one can do is hope that the selection

of nodes is uniformly at random i.e., the chance of choosing a malicious node as a proxy

is just about the same as the percentage of malicious nodes in the system. That is our

goal. For a system of with n nodes and c malicious nodes, our goal is that the chance

of choosing a malicious node is not any more than c/n. As we show in section 4.6, our

system provides results close to this. To minimize the risk of malicous nodes influencing

the choice of the next proxy, we use redundancy and distance checking to attempt to

identify malicious nodes returned from lookup requests.

Again, since our system is based on a Tor-like VCs, the attacks against them are

still valid here. Hence timing analysis and the global passive adversary are also valid

threats to our system. Avoiding those threats is beyond the scope of this thesis.



CHAPTER 4

SIMULATIONS

We performed a number of experiments aimed at testing the effectiveness as well

as security of the system. We used a 30-bit hash space and considered systems of 1000

and 10,000 nodes. We used 128 and 256 groups for 1000 nodes and 256/512/1024 groups

for 10,000 nodes. For each test, we simulated 1000 separate systems and made 1000

lookups per system. The system was simulated in Java. Most of the tests were to check

the system under varying degrees of attack. Hence we tested with the percentage of

malicious nodes changing from 0 to 20. We capped the tests at 20% malicious nodes to

simulate a realistic scenario. Beyond 20% malicious nodes, we believe it would just be a

matter of time before the entire system was compromised. 20% malicious nodes indicates

a high fraction of total nodes in the system, realizable especially with the employment

of bot-nets.

4.1 Routing

We now test our earlier claim that the id-space is organized such that it provides

greater resilience to attackers. There are two places where we could encounter a malicious

node.

• When a node chooses an id at random for one of the proxies on the VC, that id

could be owned by a malicious node.

• While performing a lookup for an id, nodes need to communicate with other nodes

in order to resolve the lookup. The lookup is performed in a recursive manner and

any of the lookup hops could be malicious, thus potentially affecting the result of

24
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the lookup.

In order to perform a lookup we chose one node at random from the set of all nodes.

Lets call this the source node. We then chose an id at random from the entire id-space.

We call this the target id. The source node was then asked to perform a lookup for the

target id. The chance that the target id we chose is owned by a malicious node should

approximately be the chance that we pick a malicious node from the set of nodes. We

cannot avoid the fact that we will intermittently choose malicious target ids when we

choose ids at random in an open system like ours. What we need to ensure is that over a

number of lookups, this fraction should be equal to the percentage of malicious nodes in

the system. What we also want to test is the case where we choose “honest” target ids,

but during the lookup we encounter malicious nodes as lookup hops. These malicious

lookup hops hold the potential to affect the result of the lookup. In our tests of the

strength of routing in the system, if we chose an honest target id and the lookup hops

turned out to be malicious nodes, we considered that the lookup failed. It must be noted

that we used redundancy here to minimize the number of cases where that happened.

So successful lookups were those where both the target id was honest and not all of

the redundant lookups failed. We checked the percentage of the total lookups that were

successful, and compared the results with the number of lookups with honest target ids.

The difference- the percentage of lookups that failed gives us an idea of how resilient the

system was to attackers randomly distributed1 over the id-space. In a practical scenario,

if a few, but not all of the redundant lookups were to fail, the node could distinguish the

right result from the wrong one as the closest node whose id is greater than the id being

lookup up.

1The hash function used ensures that the attackers are randomly distributed.
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4.2 Redundancy

We use redundancy to minimize the effect of running into malicious node while

looking up an id. The amount of redundancy we choose is a tunable parameter to balance

security vs. performance. More the number of redundant lookups, higher is the chance of

getting a successful lookup in spite of a subset of the lookups having encountering one or

more malicious lookup hops. However, as can be imagined, more the number of lookups,

worse is the performance of the system and more is the overhead of lookup messages in

the network. Here we try different values of redundancy to pick the least value which

does not degrade the security significantly.

4.3 Average Maximum Path Length

When a lookup is performed for an id, the node performing the lookup contacts

a number of lookup hops in order to resolve the lookup. The number of lookup hops

contacted to resolve the lookup is what we call the path length here. Since the system

provides security through redundancy, we need to check how much security costs the

system. Thus, when a node needs to resolve a lookup, it asks all or a subset of it’s

neighbours to perform the lookup for it. Since all the redundant lookup requests are shot

simultaneously, the delay is equal to the delay introduced by the redundant lookup with

the maximum path length. We calculate this average over all the lookups, so as to get

an estimate of the amount of delay introduced by the system.

4.4 Detecting Wrong Results

When a node performs a lookup, the result could be tainted due to one or more

malicious lookup hops. We chose a number of different id points at random, and observed

their “owners” with the aim to devise a safe way of estimating whether the result returned
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is correct. The aim is to ensure security of the system in the face of malicious nodes,

but at the same time, not increase the false positives so much as to create unnecessary

burden on the system2.

In the following sections, we present and analyze the results of the simulations

aimed at testing the system w.r.t the aspects listed in this chapter.

4.5 Results

In this chapter we present the results of the simulations aimed at testing the system

w.r.t aspects explained in the previous part of this chapter.

4.6 Lookup Success

For the first set of experiments we kept the redundancy at 5 i.e., for groups where

the number of local contacts exceeded 5, only 5 of the local contacts were asked to do

the lookup. As can be seen from Figure 4.1, about 20% of the target ids were owned

by malicious nodes when there were 20% malicious nodes in the system. The value

was seen to be consistently equal to the percentage of malicious nodes in the system as

we incremented it from 0 to 20%. This shows the resilience of the system. The hash

function means that malicious nodes are randomly distributed through the id space since

the attacker cannot influence where it goes on the id-space. We see that even for the case

of 20% malicious nodes in the system, the number of failed lookups amounted to less

than 6%. This proves our assertion that the system is inherently resilient to attackers.

2When nodes detect an incorrect resolution to a lookup, they void the lookup and chooses another

id and go through the process of lookup all over again
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Figure 4.1 Lookup success
System details: 1,000 nodes, 128 groups, Redundancy=5.
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4.7 Redundancy

The next set of experiments were to check the amount of redundancy required by

the system to give reasonable results and to show the effect of redundancy on the success

of a lookup. Figure 4.2 shows that as we increased the redundancy from 4 to 5 the

number of failed lookups decreased by 2.44% and a further 1.57% as we increased the

redundancy from 5 to 6. As the redundancy in the system is increased, nodes ask more

of their local contacts to do lookups. This gives them a better chance of finding a path

with no malicious lookup hops. However they do bear the burden of an extra lookup.

Table 4.1 shows the increase in the number of messages exchanged as the value of redun-

dancy is increased. As soon as the increase in security is not significant as compared to

the overhead of the extra lookup, the extra redundancy can be done away with.
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Figure 4.2 Percentage of Failed Lookups vs Redundancy
System details: 1,000 nodes, 128 groups, 20% malicious nodes

Next we did experiments to check general statistics of lookups and the system.

Table 4.1 shows information like the average minimum and maximum group population,

the number of messages exchanged to perform lookups as well as the average maximum

pathlength. The number of messages indicates the overhead the redundancy places on

the system. The average maximum pathlength indicates the delay induced in the system.

Since the lookups are similar to a binary search on the groups, we expect the number of

lookup hops to be about log2(G). The results show that to be true. Here each of the

group members asked to do a redundant lookup is considered the first lookup hop.Of

course, the other values in the table remain the same since the redundancy doesn’t affect

any of them.
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Table 4.1 Group, Path, Message Statistics. System Details: 1000 nodes, 128 groups, 10%
malicious nodes.

Redundancy Avg. min. Avg max. Avg. messages Avg. max
group size group size sent pathlength

4 1.68 15.85 39.63 8.92
5 1.74 15.94 48.53 8.94
6 1.68 15.98 56.42 8.94
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Figure 4.3 Distance Checking
System details: 1000 nodes, 128 groups.

Table 4.2 Percentage Malicious Nodes For Intersection Attack

Nodes/Groups % Malicious Nodes

1000/128 70
10,000/1024 77
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Table 4.3 Distance checking

Max. False False Negatives
offset Positives 5% 10% 15% 20%

0.5 2.0% 9.2% 17.0% 24.2% 29.9%
0.1 45.8% 0.95% 2.0% 2.9% 3.8%
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Figure 4.4 Lookup Success With Distance Checking
System details: 1,000 nodes, 128 groups.

We also checked how well distance checking worked. Figure 4.3 shows how the

separation between ids and their corresponding owners are distributed. The values are

normalized by the groupsizes. Table 4.3 shows the results in numerical format. False

positives mean that the honest pick was out-of-bounds. False negatives mean that the

picked attacker was in-bounds. The false positive rate is high, but that just means

checking several random ids until you get a good one. At 50%, you would check 2 on

average and no more than 10 with 99.9% probability. Also for false negatives, the real

threat is much lower than the figures show. As shown in Figure 4.1, at 20% malicious
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nodes in the system, only about 6% lookups turn false, so even if we pick the highest

value of false negatives in the table i.e.,29.9%, it implies that 29.9% of those 6%, i.e.

1.8% of the total lookups returned malicious nodes and went undetected. This can be

seen in Figure 4.4. With the offset set at 0.5 of group size, there are a few false negatives,

but we still avoid a lot of malicious nodes as compared to when there was no distance

checking. If we set the offset to a lot stricter 0.1 of group size, we eliminate almost all

the undetected malicious nodes.

In order to better illustrate the effectiveness of the distance checking we plotted the

percentage of failed lookups for redundancy values of 3 and 4, with and without distance

checking. The figure 4.5 shows the significant decrease in the number of failed lookups

once distance checking is employed. Another point to be noted is that the offset in this
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case is taken to be 0.5 of a group size, yet the drop in failed lookups is significant.

We spoke earlier about how many nodes an attacker needed to have in the system in

order to be able to perform the intersection attack. We mentioned the value in terms of a

formula. What table 4.2 does is show the percentage of malicious nodes that the attacker

needs to inject in order to have one node in each group. The values are calculated for

more common values of number of groups and nodes. For a system containing 10,000

nodes with 1024 groups the attacker needs to own 77% of the nodes in the system. The

values we see are too high and hence we can deduce that the system is resilient to the

intersection attack.



CHAPTER 5

CONCLUSION

In this thesis we propose a p2p anonymous communication overlay system based

on DHTs. It is based on free-route topology, so the attacker needs to cover more surface

in order to observe since there are a larger number of entry and exit points in the system.

Since it is based on DHTs it makes for a scalable dynamic system. Due to the use of

consistent hash function, attackers cannot influence where the nodes fall on the id space.

We have shown that the way the system is organised makes it inherently resilient to

attackers. The system uses redundant lookups to mitigate the risk of finding attackers on

the path. This redundancy is a tunable parameter to balance performance and security.

The system also uses distance checking to determine malicious nodes returned by lookups.

We show that with a slightly strict offset, we can reduce the false negatives to 3.8% in

a system containing 20% malicious nodes. Nodes have limited knowledge of the system,

while still being able to choose proxies at random from the entire system. This helps

protect it from the intersection attack. We also show that for an attacker to try to

perform the intersection attack, he’d have to control a ridiculously large fraction of the

system.

5.1 Future Work

An attacker proxy may attempt to get a fellow attacker as the next proxy by sending

back nodes that are too far, when closer nodes exist, so that you choose new points that

might be owned by or close to an attacker. We would have liked to have a method to be

able to verify lookup resolutions without giving up the property of nodes having partial

34
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knowledge. Also, as we mentioned earlier, since the system is based on Tor- the attacks

against Tor are still valid here. Hence, timing analysis and the global passive adversary

are still threats here.
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