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ABSTRACT

SELECTIVE CROSS CORRELATION IN PASSIVE TIMING

ANALYSIS ATTACKS AGAINST LOW-LATENCY MIXES

Titus Abraham, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Matthew Wright

A mix is a communication proxy that hides the relationship between incoming

and outgoing messages. Routing traffic through a path of mixes is a powerful tool

for providing privacy. When mixes are used for interactive communication, such as

VoIP and web browsing, attackers can undermine user privacy by observing timing

information along the path. Mixes can prevent these attacks by inserting dummy

packets (cover traffic) to obfuscate timing information in each stream. Two recently

proposed defenses, defensive dropping and adaptive padding, enhance cover traffic by

ensuring that timing information seen at the sender is very different from that seen

at the receiver.

In this work, we propose Selective Cross Correlation (SCC), an attack that

an eavesdropper could employ to de-anonymize users despite the use of defensive

dropping or adaptive padding. The main insight of our approach is that, with either

defense, the timings at one end of the stream are a subset of the timings at the

other end of the stream. By considering the network conditions and the defensive

mechanism used, SCC can be used to effectively remove the cover traffic, thereby

v



enabling the attacker to correlate both ends of the stream. We conducted real network

experiments and found that SCC greatly improves attacker effectiveness over prior

techniques against both the defenses. With SCC, the attacker is nearly as successful

as when neither defense is applied. This attack demonstrates the need for more robust

defenses against statistical timing attacks.
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CHAPTER 1

INTRODUCTION

Anonymity systems, such as Tor [1] and AN.ON (first described in [2]), can

provide personal privacy and protection for journalists, activists, whistleblowers, law

enforcement officers, and more (see http://www.torproject.org/torusers.html.

en for a discussion of who uses Tor). These systems allow users to connect to the

Internet anonymously via a series of proxies to hide their IP address from would-be

eavesdroppers and the servers, such as Web sites, to which they connect. Connecting

normally, without such a service, allows a user to be tracked, located, and possibly

even identified based on her IP address.

Since these anonymity systems are generally based on the idea of mixes [3], and

they are designed to facilitate real-time communication, such as Web browsing and

SSH, we refer to them as low-latency mixes. We note that users send their traffic

through multiple proxies, chained together in a circuit or path, which prevents any

single proxy from being able to observe everything that the user does. A simple

cryptographic technique called layered encryption allows the user’s IP address to be

hidden from all but the first proxy and the user’s connections to be hidden from all

but the last proxy [3].

In high-latency mixes, which are mixes designed for non-interactive commu-

nication like email, the mixes employ various defenses that make it difficult for an

attacker to attempt to trace the path of a given message. These include delaying

messages so that they are sent in batches, adding fake messages (dummy messages),

and reordering the batch randomly. The attacker would (as far as we know) have to
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compromise every mix along the path to trace a message, thus making it very difficult

to defeat the system. In low-latency mixes, however, such defenses are impractical.

Most applications require TCP connections; packets simply cannot be sent through

a different circuit every time. Further, the latency requirements of these systems

generally prevents much delaying of packets.

This lack of defense means that low-latency mixes are subject to timing analysis,

a type of attack in which the attacker observes the timing of the user’s packets entering

and exiting the circuit. If the packet timings match closely, they are likely to be the

same. This means that the attacker can link the user’s identity (seen entering the

circuit) with her traffic (seen exiting the circuit) without needing to control all of the

mixes on the circuit. In this work, we focus on timing analysis attack and defense in

low-latency mixes.

More specifically, we consider an attacker whose goal is to link the initiator,

the user who sends her traffic along a given circuit, with the responder, the Web site

or other receiver at the end of the circuit. Here the attacker could use a set of com-

promised mixes to observe a subset of the network traffic. Similarly, an eavesdropper

may be able to observe a fraction of all the traffic. In either case, the attacker can

capture packet timings and employ statistical correlation to link an initiator with a

responder. To combat this attack, several defenses have been proposed to remove

statistical correlations and make it more difficult for the attacker. In particular, both

the initiator and the mixes can add or remove dummy packets to confuse an attacker

attempting to correlate the streams.

One such defense is adaptive padding [4]. In adaptive padding, dummy packets

(padding) are added to the stream by the mixes. When the user’s traffic rate is low,

the padding rate increases to prevent statistical correlation based on gaps between

packets. Shmatikov and Wang demonstrated in simulation that this technique was



3

very effective against eavesdroppers. Another such defense is defensive dropping [5].

This defense is employed for constant rate traffic in which cover traffic is generated

from the clients. The cover traffic is dropped at intermediate mixes according to

specific drop rates. This defense has been tested in experiments in the PlanetLab

testbed and has found to be effective for compromised mix model [6].

1.1 Contributions

In Chapter 2, we describe the continuing importance of investigating passive

timing analysis against low-latency mixes. We then describe a model in which these

attacks and defenses can be studied in Chapter 3. Our most important contribution

is to describe and evaluate a new attacker technique based on Statistical Cross Cor-

relation, or (SCC) in Chapter 4. The main insight of this technique is that, with

either defense, the timings at one end of the stream are a subset of the timings at the

other end of the stream. A timing window based on the network jitter observed by

the attacker is used to remove the cover traffic. Having removed the cover traffic, the

attacker can essentially employ a basic statistical correlation to determine whether

the streams actually match.

To validate this technique, we conducted experiments in the DETER network

testbed, using the SubRosa system for evaluating timing analysis attacks and de-

fenses [6] which is detailed in Chapter 5. Finally, in Chapter 6 we present our results

to show that a passive attacker can correlate the streams with high accuracy despite

the use of adaptive padding or defensive dropping.



CHAPTER 2

BACKGROUND

In this chapter, we first describe low-latency anonymity systems, then describe

timing analysis attacks on these systems, and finally describe defenses against timing

attacks.

2.1 Low-Latency Anonymity Systems

The earliest mixes were suitable for high latency applications such as electronic

mail. More recently, there has been work on several low latency mix networks, such

as Web MIXes [7], Tor [1] and Crowds [8]. These systems are targeted at applications

such as secure shell (SSH), VoIP, and web browsing, which require real-time responses.

We now describe how each of these systems works.

Web MIXes is a system for anonymous real-time Internet access [7]. The system

has Java Anonymous Proxy (JAP) on the client side, the MIXes and the cache proxy

on the server side. The user, instead of directly connecting to a web server, uses JAP

to communicate via a logical chain of MIXes that is called ”MIX-cascade” [7] and

uses layered encryption thereby providing anonymity.

Tor is the second generation onion router and it aims to resist eavesdroppers

and limited insider attacks by distributing each transaction over several nodes in the

network [1]. In Tor for a client to establish communication with a destination it

chooses a set of mixes o form a path till destination. This path is called as a circuit.

Client streams are divided into fixed size cells and encrypted layer by layer so that

each Tor server can only know its predecessor and its successor in the circuit. This

4
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ensures that even if one of the Tor servers is compromised, the users’ anonymity is

preserved.

Crowds operates by grouping users into a large and geographically diverse group

that collectively issues requests on behalf of its members [8]. Clients are members

of a peer to peer network. Client requests are routed to a random member of the

crowd called jondo. A jondo may either submit the request to the web server ( the

destination) or forward it another jondo. This ensures that neither the web server

nor other crowd members can identify the source of the request.

2.2 Timing Analysis Attacks

A passive adversary attempts to de-anonymize users by collecting packet in-

formation over a period of time. A simple method to link users is to statistically

correlate their incoming and outgoing streams based on the inter-packet delay or IPD

(the time difference between the arrival of two consecutive packets). However this

task is made difficult due to network jitters and packet drops.

Packet counting [9, 10], as the name suggests, is a technique that involves

counting the number of packets to determine similarity of two streams to link the

sender with the reciever. This idea has been improved by Levine et al. [5] by applying

cross correlation (CC) over packet counts to improve error rates. CC is a measure of

similarity of two wave forms as a function of a time-lag applied to one of them [11].

A stream is split into non-overlapping windows of equal sizes and packet counting is

done to apply cross correlation. This method works with reasonable error rate in the

presence of multiple constant rate input streams under the condition that the network

exhibits jitter and drops some packets before they arrive at the first mix. This is true

for most Internet connections, as has been shown in real network experiments [6].
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Statistical analysis by using sample variance or sample entropy for IPD can be used

even when traffic has been padded with constant interval times of packets [12].

An active adversary can observe as well as actively perturb the incoming traffic

by means of packet delay or introduction or dropping packets. This technique, called

watermarking [13], is used by an adversary to uniquely identify streams. Watermark-

based correlation is designed to be robust against timing perturbation as it uses

multiple randomly selected IPDs to encode bit information [13]. Houmansadr et al.

use selective correlation to remove watermarking in an active attacker model [14].

The outgoing stream has a one-to-one relation with the watermark and is used to

filter out the watermarked packets. However watermarking can be detected [15] and

thereby passive timing analysis attacks remain relevant and important to measure

and improve anonymity systems [14].

2.3 Timing Analysis Defenses

Although buffering and reordering packets as in high-latency mixes, would cer-

tainly remove most of the statistical properties of a stream, latency requirements

make these defenses infeasible. Web mixes and ISDN mixes use constant rate traffic

along the entire path [5]. Ideally, when all participating nodes send identical constant-

rate traffic, streams are indistinguishable from each other. However, network jitter,

packet drops, and mix-induced delays make these mechanisms vulnerable to cross-

correlation attacks [5]. Some of the recent defenses are based on addition/removal of

cover traffic which changes the statistical properties of the outgoing stream from the

incoming stream thereby making the stream correlation difficult. We now describe

three defenses: Defensive dropping, Adaptive padding and γ buffering.

Defensive dropping is a form of partial-path cover traffic where cover traffic is

dropped at random intermediate mixes [5, 10]. In this scheme the client constructs
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dummy packets that are marked to be dropped by one of the intermediate mixes.

If there is sufficient randomness in the choice of the drop there would be very less

correlation between the incoming stream and the outgoing stream. This defense has

been recently analyzed [6] for timing analysis attack.

Web traffic is bursty, and as a result we tend to find gaps in the streams. Similar

to watermarking, statistical properties can be applied on the pattern of these gaps to

uniquely identify streams. Adaptive padding [4] is a defense in which intermediate

mixes insert dummy packets into the streams to reduce these statistically unlikely

gaps in the stream without adding any latency. Each mix calculates a statistical dis-

tribution of inter-packet arrivals based on previous observation of the clients’ stream.

When a packet arrives before the expected arrival time, calculated based on a statis-

tical distribution, the packet is forwarded and a new inter-packet arrival is calculated.

If a packet does not arrive upon expected arrival time, the gap formed is repaired

by sending dummy packets. Subsequently calculated inter-packet arrivals will be ex-

tended to avoid clustering the estimates to small values. This method ensures that

much of the inherent entropy shown by the clients would be removed.

Shmatikov and Wang show that cross correlation fails when packets are inserted

by the mixes into the client streams. Thus, the packet count at the window of the

outgoing stream is considerably different from that of the incoming stream.

γ buffering [6] is a technique for buffering traffic that can be used to undermine

traffic analysis attacks in low-latency anonymous communications systems. For γ, a

parameter set by the system designer and p, the number of incoming connections,

systems buffers at least γ*p packets before sending the packets as a batch. This

technique is designed to maintain low latencies at the cost of some cover traffic and

can also be adapted for different levels of allowable latencies.
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2.4 SubRosa

SubRosa is a system for studying timing analysis methods and defenses [6].

Unlike prior simulation studies [5, 4], SubRosa allows us to experiment with real

network traffic. This platform emulates a Tor-like network with three components:

Client, Mix, and Sink. The Client acts as the user and is responsible for generating

data on the network. The Sink acts as the recipient. This platform is designed to

collect timing information as observable by an attacker. The Client initially chooses

a random sequence of Mixes and it initiates a circuit building process. After this

process, the Clients then start generating traffic according to the configuration of the

experiment. The Mixes apply the defenses according to the system configuration for

the given experiment.



CHAPTER 3

MODEL

In this chapter, we present the system and the attacker model to analyze the

attacks and defenses.

3.1 System model

To analyze the threats posed by timing analysis attacks on low-latency mixes,

we consider Tor-like network topology in which users send traffic through randomly

selected mixes. Users may use cover traffic (constant rate cover) while the mixes may

add cover traffic depending on the defense used. For timing analysis, we consider

traffic only from the user to the responder. Similar attacks and strategies can be

applied in the return direction.

3.2 Attacker model

For passive timing analysis attacks, we consider two types of attacker models

– compromised mixes and eavesdropper. In the compromised mixes model as shown

in Figure 3.1(a), the initial and final mixes in the circuit are compromised and can

collaborate to perform a timing analysis attack. This allows the attacker to link the

identities of the sender and the receiver [16]. The outgoing stream of the first mix

is correlated with the incoming stream of the last mix. The eavesdropper model of

attack assumes that the attacker can monitor the incoming stream for the first mix

and outgoing stream of the last mix as shown in Figure 3.1(b). The two streams are

then correlated to compromise the anonymity of the system.

9
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(a)

(b)

Figure 3.1. Attacker Model (a) Compromised mixes (b) Eavesdropper.



CHAPTER 4

SELECTIVE CROSS CORRELATION

In this chapter, we discuss the main insight used in selective cross correlation

(SCC), followed by a description of how SCC works and how we measure its effec-

tiveness.

As described in Chapter 2.3, injection of packets by adaptive padding or drop-

ping of cover traffic by defensive dropping makes cross correlation ineffective. How-

ever, in both the defenses, actual packet timings are preserved. In adaptive padding,

the resulting outgoing stream effectively consists of cover traffic superimposed on the

original stream, whereas in defensive dropping, the output stream (actual traffic) is

a subset of the input stream (actual traffic with cover traffic). SCC exploits this

property to identify and remove cover traffic. We also can generalize SCC for any

defenses that involve either insertion of cover traffic or removal of cover traffic.

Selective cross correlation was first applied in unmasking of multifocal ERG [17]

in vision research. We apply SCC to network streams by extracting the sequence of

timing values from both the incoming and outgoing streams. The subset stream

would be taken as the input stream while the superset stream would be taken as the

output stream. We divide the two streams into non-overlapping windows of time,

the filter window W of size s and count the number of packets received during each

window interval. We compare the count of packets in the incoming stream window

to the corresponding outgoing stream window. Absence of packets in the incoming

stream window is an indicator of the presence of cover traffic in the outgoing stream

11
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Figure 4.1. Selective Cross Correlation.

window. This process is repeated for the entire length of the streams. All suspect

cover traffic is filtered.

Cross correlation is then applied on the filtered stream and the input stream

to calculate the correlation value κ. If κ is below a threshold value, the streams

are considered unrelated. Since adaptive padding is used for web traffic, we tend to

find gaps in the stream that may be padded by the mixes. We use a sliding filter

window in SCC of size s ∈ {0.35, 1.0} seconds to remove cover traffic. The minimum

filter window should be twice the average jitter present in the network so as to avoid

removing actual packets. In defensive dropping, however since the packets are being

generated at a constant rate we choose the filter window according to the rate.

As shown in Figure 4.1, (Wi)incoming and (Wi)outgoing represent the ith filter

window in the incoming and outgoing streams, respectively. A given filter window

Wi is a composition of actual user traffic, cover traffic, and gaps (Wg) in the traffic.

The resulting output stream after the removal of cover traffic (i.e. filtered stream) is

denoted by fStream.
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Algorithm 1 Selective Cross Correlation

fStream = ∅

(Wincoming)← Windows of the incoming stream

(Woutgoing)← Windows of the outgoing stream

for (Win,i,Wout,i) ∈ Wincoming ×Woutgoing do

if Num-Packets (Win,i) > 0 then

fStream = fStream ∪ p; p ∈ Wout,i

end if

end for

As described in Algorithm 1, the cover traffic is removed in outgoing stream by

eliminating (Wi)outgoing where (Wi)incoming ∈ Wg.

4.1 Effectiveness of SCC

The effectiveness of SCC can be measured by the amount of correct filtrations

done on the outgoing stream. Due to network jitter, a packet of (Wi)incoming may fall

into (Wi+1)outgoing, which would be removed by SCC if (Wi+1)incoming ∈ Wg. Similarly

a packet of cover traffic of (Wi)outgoing can also fall into (Wi+1)outgoing which would

not be removed by SCC if (Wi+1)incoming /∈ Wg. There may be windows Wi for which

mixed traffic is present and not filtered off by SCC. We show in Chapter 6.4 that

these constitute a small fraction of the traffic and that SCC can filter most of the

cover traffic. Thus, correlation can be still done very easily for web traffic.



CHAPTER 5

EXPERIMENT DESIGN

In this chapter, we first describe the test bed that we used for our experiments.

Then we describe how we generated traffic for our experiments, and parameters used

for the defenses tested.

5.1 DETER

DETER [18] is a network security test bed that provides a controlled environ-

ment in which users can setup network topologies and run a variety of computer

security experiments. The network topology used for the experiments is shown in

Figure 5.1. We chose a flower topology as we could represent the petals as LANs and

the core as the Internet. The clients are nodes present in the LANs and mixes are

nodes present in the Internet. Since the LANs have cross traffic different from each

other both core and petal nodes have independent cross traffic.

5.2 Traffic Generation

In the experiments conducted, Clients generate constant rate traffic for baseline

and web traffic for adaptive padding. For constant rate traffic, packets were generated

every 100 milliseconds. For the user generated web traffic, we used HTTP traces from

the National Laboratory for Applied Network Research (NLANR) [?]. We also used

traces from University of North Carolina at Chapel Hill. To segregate HTTP traces,

we isolate HTTP streams using the destination port number. In the Internet, there

is cross traffic with different characteristics and a variety of protocols. To generate

14
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Figure 5.1. Network topology in DETER.

this cross traffic we used SEER, a traffic generator tool available in DETER. The link

capacity in DETER is 100 Mbps. The Mixes have cross traffic varying from 50-85

Mbps on their links. In the flower topology, every petal has independent cross traffic

varying from 65 to 95Mbps. Figure 5.2(a) shows different cross traffic for every petal

in the topology and Figure 5.2(b) shows the individual cross traffic of the mixes. Each

graph of the figure shows the incoming and outgoing traffic present on the link of the

nodes.

5.3 Defenses Tested

We ran experiments with 26 Clients and 5 Mixes, where each of the Clients

randomly chose three of the Mixes as a part of the circuit. Timing analysis is done

based on 10-minute runs and one minute of the experiments, since Tor uses the same

circuit for all connections happening in a period of ten minutes [19].
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Clients generate constant-rate traffic in which packets get generated at every

100 milliseconds and sent to the destination through the Mixes. No defense against

timing analysis is employed in the Mixes, just like in real Tor nodes [1].

Defensive dropping is initiated by the Clients. Clients at random would mark

the nodes to be dropped at intermediate Mixes. The drop command is set at the

header of the packet. Each of the intermediate nodes inspects its header and drops

the packet if the drop command is set. Drop Rates of 20% and 50% have been used

in the experiments.

We implemented adaptive padding on Sub Rosa. Though the first Mix does

repairs all the gaps, intermediate Mixes also provide adaptive padding so that, in

theory even a compromised Mix won’t be able to de-anonymize the stream. In adap-

tive padding , after a packet has been received , a new expected inter-packet interval

is selected only from higher bins, ie. those associated with long intervals [4]. This

collection of bins are known as High-Bins Set (HBS). After the previously choosen

expected inter-packet interval has expired without receiving packets and a dummy

packet has been sent, the next interval is selected from lower bins, ie. those associ-

ated with shorter intervals known as Low-Bins set (LBS). These HBS and LBS can

be configured based on observed characteristics. In our experiments we have LBS as

bins ranging from 1-11 and HBS above bin 11.

In γ buffering, γ is multiplied with the number of active circuits on the node to

obtain the number of packets to buffer, before queuing it on the send queue. γ is a

configurable parameter of the Mixis and is initialized at the start of the application.

We have choosen γ to be 40 based on previously conducted experiments on Planet

Lab [6].
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(a)

(b)

Figure 5.2. Traffic Configuration in DETER (a) Client (b) Mixes.



CHAPTER 6

RESULTS AND DISCUSSION

We now show the relative effectiveness of CC and SCC against the defenses in

both attacker models. For evaluating the detection results, we use Receiver Operator

Characteristic (ROC) curves. In an ROC curve, the x-axis is the false positive rate

and the y-axis is the detection rate; the curve varies according to the correlation

threshold. Different ROC curves are plotted on same graphs for relative comparisons.

Adaptive padding, is meant to only provide effective defense for short-lived

connections, e.g. one minute long [4]. In general, as the amount of data grows, the

greater the statistical pattern that can be observed by the attacker for his attacks;

Shmatikov and Wang argue that few practical defenses can be expected to hide all

patterns for long periods of time [4]. Thus, we also tested CC and SCC against adap-

tive padding and other defenses with short-lived connections where the observation

time was set to one minute.

6.1 Compromised Mix Model with CC

We first present results from the compromised model with cross correlation for

both 1 minute traffic and 10 minutes traffic as shown in Figure 6.1.

Baseline is based on constant cover traffic and modified only by network jitter

and packet drop. Thus, the statistical property of the outgoing and the incoming

streams remain almost same, resulting in a 95% detection rate in the 10 minute

traffic. We however see a detection rate of 85% in 1 minute traffic which can be

18
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attributed to the lesser statistical properties that can be sampled from the shorter

stream.

Adaptive padding is also ineffective in this model. As adaptive padding is based

on filling up the gaps in bursty web traffic, most of these gaps are filled at very first

mix (compromised mix) as shown in Figure 6.2. Thus, the statistical properties of

the outgoing stream of the first mix and the incoming stream of the last mix would

be identical. This results in better detection 6.1(a) as compared to the baseline, since

adaptive padding is for web traffic, which is inherently bursty. In the 10 minute traffic

we see a 100% detection rate due to more statistical properties we can sample from.

In the case of 20% and 50% defensive dropping, intermediate mixes are respon-

sible for dropping packets. As a result, the statistical properties of the incoming and

outgoing streams for these mixes are distinct. In partial buffering we see that with

time correlation between streams decrease which can be attributed to the buffering

mechanism followed by this defense. Both defensive dropping and partial buffering

shows a .49 error rate for the 10 minute traffic.

6.2 Eavesdropper Model with CC

We now present result from experiments in the eavesdropper model with cross

correlation for both 1 minute traffic and 10 minutes traffic as shown in Figure 6.3.

Here the attacker can only collect timing information from the incoming stream of

the first mix and the outgoing stream of the last mix.

In this model, adaptive padding is much more effective against cross correlation,

as the eavesdropper does not know which packets are padding. Confirming the results

of Shmatikov and Wang [4], the statistical properties of the outgoing stream are not

easily linked to the incoming stream, resulting in .48 error rate. A noteworthy point is

that both defensive dropping and partial buffering is performed only by intermediate
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mixes, so effect of both the defenses in both the models remains the same. As a

result in comparison to the compromised mix model, baseline, defensive dropping

and partial buffering results are nearly identical.

6.3 Compromised Mix Model with SCC

We now present results from experiments for SCC in compromised model for

both 1 minute traffic and 10 minutes traffic as shown in Figure 6.4.

As seen from the previous results, we see that the detection rate increases with

more traffic with which more statistical properties can be sampled. We see that the

detection rate for defensive dropping has increased from 49% to 65% and 45% in both

the 10 minute and 1 minute traffic. Even the detection rate for adaptive padding has

increased from 85% to 90% in the 1 minute traffic. This leap in detection rate can be

attributed to the filtering of padding by SCC.

We also tested partial buffering with SCC. This defense being based on buffering

makes SCC ineffective against it as there is no cover traffic to be removed and due to

the buffering it removes many actual packets. Thus as expected we get a detection

rate of 49% for partial buffering. Baseline remains identical as with CC results.

6.4 Eavesdropper Model with SCC

We next tested SCC in the eavesdropper modelfor both 1 minute traffic and 10

minutes traffic as shown in Figure 6.5.

SCC achieves a very high detection rate against adaptive padding with very

few false positives. The success rate is nearly as good as in the compromised mix

scenario. We see that the detection rate is 85% and 100% for 1 minute and 10 minute

traffic respectively. The detection rate of SCC increases the more the data (in terms
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of time) that is made available to it. This can be attributed to the the nature of SCC

- the longer a stream, the greater the statistical properties that can be identified and

extracted resulting in improved detection. The key to SCC’s effectiveness is its ability

to remove padding packets from the outgoing stream. In Figure 6.6, we see that SCC

was able to remove 96% of the padding, while incorrectly removing only 7.7% of non-

padding packets. Baseline, defensive dropping and partial buffering results remain

identical as in the compromised model for SCC.
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(a)

(b)

Figure 6.1. Compromised Model: ROC for CC with: (a) 1 minute observation
(b) 10 minutes observation.
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Figure 6.2. Average padding done by mixes in adaptive padding.
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(a)

(b)

Figure 6.3. Eavesdropper Model: ROC for CC with: (a) 1 minute observation (b)
10 minutes observation.
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(a)

(b)

Figure 6.4. Compromised Model: ROC for SCC with: (a) 1 minute observation
(b) 10 minutes observation.
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(a)

(b)

Figure 6.5. Eavesdropper Model: ROC for SCC (a) 1 minute observation (b) 10
minutes observations.
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Figure 6.6. Eavesdropper Model: Effectiveness of SCC in percentage of packets
removed.



CHAPTER 7

CONCLUSION

In this thesis, we proposed selective cross correlation (SCC), a novel technique

that a passive attacker can use to de-anonymize users and link them with their com-

munications. The technique works despite the use of defenses that involve insertion

or removal of cover traffic, which was effective against other passive attacks and some

active attacks. We conducted network experiments to show that the attacker can use

SCC to get very good correlation results between the streams, even for short-lived

connections. With this, we show that passive attacks against low-latency anonymity

systems remain effective and important to study, and there is a pressing need to come

up with new defenses against timing analysis.
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SUBROSA CONFIGURATION
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In this appendix, we present the configuration parameters for adaptive padding

as used in SubRosa for the experiments, presented in this thesis.

Table A.1. SubRosa configuration: adaptive padding

Section Parameter Value Default Description

Server

SendBufferType Integer 0 0 – No buffering, 1 – Fixed
number of packets, 2 – pack-
ets based on γ multiplier, 3
– Adaptive padding

AdaptiveCount Integer 100 Count of IPDs to be read
from the file

AdaptiveDistributionFile String ”” File having the IPDs
DontPickAboveBin Integer 10 For random low we

shouldn’t be picking above
this Bin

DontPickBelowBin Integer 0 For random low we
shouldn’t be picking below
this Bin

DontPickAboveBinHigh Integer 30 For random high we
shouldnt be picking above
this Bin

DontPickBelowBinHigh Integer 0 For random high we
shouldnt be picking above
this Bin

RenewThreshold Integer 100 No. of tries before new
IPDs are read for client dis-
tribution

Client
PacketGenerationType Integer 1 Packet Generation: 1 –

Constant, 2 – Exponential,
3 – Web Traffic

IPDDistribution String ”” File having the IPDs for
Web traffic
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