
IMPROVED CLASSIFICATION IN FLAT NETWORKS

by

MADHU GANNAPAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2010

 ii

ACKNOWLEDGEMENTS

I express my heartfelt gratitude to Dr. Michael Manry for his guidance and

support during the thesis work. He saw the work from inception to fruition and provided

all the help to make this work possible. I admire his subject expertise, contribution and

devotion to the field of Neural Networks, and incessant help to his students in various

forms viz. teaching, regular laboratory visits, immediate feedback and motivation to

better understand the field of Neural Networks.

The EE coursework at UTA and my undergraduate institute SJCE in India

provided the fillip and toolkit to weave the pieces of this work together. Hence a sincere

thanks to all the teachers who selflessly strive to spread education to whom I dedicate

this work. Thanks to Dr. Qilian Liang and Dr. Soontorn Oraintara for a patient review

of the thesis work.

Finally given the time-dependent boundary conditions this appears an eloquent

pit stop of the unbounded learning journey.

April 15, 2010

 iii

ABSTRACT

IMPROVED CLASSIFICATION IN FLAT NETWORKS

Madhu Gannapal, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Michael T. Manry

It is shown that optimal flat networks can be found as solutions to least squares

problems. An algorithm is presented to improve existing classifier training methods by

changing the desired outputs. The algorithm is based on minimum probability of error.

The algorithm’s performance is compared with those of other algorithms including the

Bayes Gaussian classifier. The Convergence of training and the effects of outliers are

analyzed in all the algorithms presented here.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS ... vi

LIST OF TABLES ... x

Chapter Page

 1. INTRODUCTION …………………………………………………………… 1

 1.1 Neural Networks and Research .. 1

 1.2 Thesis Organization ... 2

 2. FLAT NETWORK REVIEW .. 3

 2.1 Mean Square Error (MSE) Criterion .. 3

 2.2 Algorithm for Efficient Generation of Basis Functions 5

 2.3 Algorithm for Calculating Percentage Classification Error 7

 3. POTENTIAL OPTIMALITY OF REGRESSION .. 8

 3.1 Problems with Regression Based Classifiers 8

 3.2 The potential for MSE-Based Optimal Classifiers 10

 4. BASIC OUTPUT RESET (OR) ALGORITHM [ALGORITHM 1] 12

 4.1 Basic OR Concepts ... 12

 4.2 Iterative Solution for Algorithm 1 .. 14

 v

 4.3 Convergence of Basic algorithm (algorithm1) 15

 4.4 Problems ... 17

 5. OR FOR MINIMUM PROBABILITY ERROR [ALGORITHM 2] 19

 5.1 Algorithm 2 ... 19

 5.2 Iterative solution for Algorithm 2 ... 21

 5.3 Properties of Algorithm2 .. 21

 6. FINAL OR METHOD [ALGORITHM 3] .. 25

 6.1 Algorithm 3 ... 25

 6.2 Iterative Solution for the Algorithm 3 .. 27

 6.3 Analysis of Algorithm 3.. 27

 7. NUMERICAL RESULTS ... 30

 7.1 Gong data file ... 30

 7.2 Comf18 data file ... 34

 7.3 Grng data file .. 39

 7.4 Mushroom data file ... 43

 7.5 Diabetes data file .. 47

 8. CONCLUSIONS ... 51

APPENDIX

 A. GRAM SCHMIDT PROCEDURE ... 52

 B. BAYES GAUSSIAN CLASSIFIER ... 59

REFERENCES .. 63

BIOGRAPHICAL INFORMATION... 66

 vi

LIST OF ILLUSTRATIONS

Figure Page

2.1 FLN structure with L inputs and 2 outputs .. 4

5.1 Minimum Probability of Error Curve .. 24

7.1 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 31

7.2 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 32

7.3 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 32

7.4 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 33

7.5 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 33

7.6 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 34

7.7 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 36

 vii

7.8 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 36

7.9 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 37

7.10 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 37

7.11 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 38

7.12 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 38

7.13 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 40

7.14 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 40

7.15 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 41

7.16 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 41

7.17 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 42

7.18 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 42

 viii

7.19 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 44

7.20 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 44

7.21 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 45

7.22 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 45

7.23 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 46

7.24 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 46

7.25 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 48

7.26 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 1 .. 48

7.27 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 49

7.28 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 2 .. 49

7.29 Training Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 50

 ix

7.30 Validation Percentage Classification Error vs No. of Basis Functions
 Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier
and Binary Case for Degree 3 .. 50

 x

LIST OF TABLES

Table Page

7.1 Comparison of Percentage Classification Error for Gong data file 31

7.2 Comparison of Percentage Classification Error for Comf18 data file 35

7.3 Comparison of Percentage Classification Error for Grng data file 39

7.4 Comparison of Percentage Classification Error for Mushroom data file 43

7.5 Comparison of Percentage Classification Error for Diabetes data file 47

 1

CHAPTER 1

INTRODUCTION

1.1 Neural Networks and Research

Multilayer perceptron (MLP) neural nets [1] have proved useful in many approximation

and classification applications because of their universal approximation properties [2,3],

their relation to optimal approximations [4] and classifiers [5], and the existence of

useful training algorithms such as backpropagation [1]. They have the unique property

that their basis functions develop during training rather than being arbitrarily chosen

ahead of time. However, the MLP has long training time, is sensitive to initial weight

choices, and its training error may not converge to a global minimum. Also, there is a

wide gap between the MLP’s theoretical capabilities and its actual performance with

currently available training algorithms.

In contrast, the functional link network [6] (FLN) has a flat architecture, with pre-

defined basis functions like the trigonometric functions and polynomials. The global

minimum of its error function can be found by solving linear equations [6] or by

techniques such as genetic algorithms [7]. As with other polynomial neural networks

(PNN), fast learning rates are achieved [8] for a given network size. However, with an

increase in the degree of the approximation and the number of inputs there is a

combinatorial explosion in the number of basis functions used during training.

 2

Orthonormal Least Squares has been used by Chen et al. [9] to efficiently find subsets

of center vectors in radial basis functions (RBF) networks. Kamniski and Strumillo [10]

used the modified Gram Schmidt orthonormalization (MGSO) to compute hidden

weights in RBF networks. Surekha and Manry [12] developed the Ordered Functional

Link Network (OFLN) by using MGSO to orthonormalize and order FLN basis

functions according to their contribution to the decrease in the mean square error

(MSE). However, it is difficult to extend OFLN training to classifiers competitive with

Bayes [20] and support vector machine (SVM) [21] classifiers, when desired outputs

are binary.

1.2 Thesis Organization

In this document we develop methods for calculating non-binary desired outputs for flat

classification networks. Chapter 2 describes a notation for flat networks and flat

network training. Chapter 3 explains the theory of non-binary desired outputs. Chapter 4

describes the first method [14] [13] for improving a classifier’s desired outputs and its

limitations and drawbacks. Chapter 5 describes a minimum probability of error

approach and its problems. Chapter 6 explains and analyzes the final method of

improving the classifier.

 3

CHAPTER 2

FLAT NETWORK REVIEW

2.1 Mean Square Error (MSE) criterion

A flat classifier such as the FLN can be designed by minimizing the MSE function

∑ ∑ −=∑=
= ==

M

1i

N

1p

2
pp

v

M

1i

v

)]i(y)i(t[
N

1
)i(EE (1)

 M is the number of classes, Nv denotes the total number of training patterns and E(i) is

the mean-squared error for the ith class. The ith desired output for the pth pattern is

defined as

=∀−

=
=

d

c
p iib

iiforb
)i(t

ic denotes the correct class number, id denotes an incorrect class number and b is a

positive constant such as 1. The ith actual output for the pth pattern is defined as

∑
=

⋅=
L

1k
pp)k(X)k,i(w)i(y (2)

where Xp(k) is the kth basis function for the pth pattern, L is the number of basis

functions and w(i,k) is the weight connecting the kth basis function to the ith output. The

estimated class is that index i for which yp(i) is maximum. If the FLN basis functions

are ordered according to their contribution to the decrease in the MSE then the network

is called OFLN.

 4

FLNs or OFLNs often have fixed number of polynomials or trigonometric basis

functions. An FLN with L inputs and 2 outputs is shown in Figure 2.1

 Figure 2.1 FLN structure with L inputs and 2 outputs

The minimum MSE solution for the output weight matrix W is found by solving

CWR =⋅ T (3)

where r(i,j) is an element of the autocorrelation matrix R, defined as

)j(X)i(X
N
1

)j,i(r p

N

1p
p

v

v

∑ ⋅=
=

 (4)

and where element c(i,j) of the cross –correlation matrix C is defined as

∑ ⋅=
=

vN

1p
pp

v

)j(t)i(X
N

1
)j,i(c (5)

Xp(1)

:

yp(1)

yp(2)

Xp(2)

Xp(5)

Xp(3)

Xp(4)

Xp(L)

 5

A batch type algorithm for solving Eq. (3) is as follows:

(1) In one pass through the training data, accumulate R and C.

(2) Using Orthogonal Least Squares [11] (OLS) solve Eq. (3)

Network design through the solution of Eq. (3) is denoted as flat training. If the desired

outputs are binary or -1’s and 1’s then the network is called as binary case in our

document.

Note that OLS does not use the rows of the auto-correlation matrix(R) that are linearly

dependent on those already processed. Effectively, OLS removes dependent basis

functions Xp(n) forcing R to be nonsingular.

2.2 Algorithm for Efficient Generation of Basis Functions

Algorithm for generating basis functions upto degree 2

Read the input vector xp

Xp(1) ← 1, L ← 1

For 1 ≤ n ≤ N

L ← L+1

Xp(L) ← xp(n)

Z ← xp(n)

For 1 ≤ m ≤ n

L ← L+1

Xp(L) ← Z·xp(m)

End

End

 6

Algorithm for generating basis functions upto degree 3

Read the input vector xp

Xp(1) ← 1, L ← 1

For 1 ≤ n ≤ N

L ← L+1

Xp(L) ← xp(n)

Z ← xp(n)

For 1 ≤ m ≤ n

L ← L+1

Z1 ← Z·xp(m)

Xp(L) ← Z1

For 1 ≤ i ≤ m

L ← L+1

Xp(L) ← Z1·xp(i)

End

End

End

 7

2.3 Algorithm for Calculating Percentage Classification Error

Algorithm for calculating the Probability of Error and Percentage Classification error

(1) Initially Ner = 0, Pe = 0 and Percentage Classification Error = 0

(2) For 1 ≤ p ≤ Nv, read the input vector (Xp) and the correct class (ic)

(3) Find the output vector (yp) using input vector (Xp) and weight matrix (W)

(4) Find the index i for which yp(i) is maximum, that index i is the estimated class

(5) If estimated class = correct class then goto step(7)

(6) Increment Ner

(7) If the entire data file is read then goto step(8) else goto step(2)

(8) Pe=Ner/Nv, Percentage Classification error= (100 x Ner)/ Nv

 8

CHAPTER 3

POTENTIAL OPTIMALITY OF REGRESSION

3.1 Problems with Regression Based Classifiers

Let Nv(i) denote the number of patterns belonging to class i, S(i) denote the set of

patterns that correspond to class i, fx(xp) denote the probability density of feature vector

xp, f(xp|i) the conditional density of feature vector xp given that it belongs to class i and

P(i) the probability that feature vector comes from class i.

The optimal Bayesian discriminant dp(i) for feature vector xp is given as

dp(i) = P(i|xp)

where P(i|xp) is the aposteriori probability given that vector xp belongs to class i. Let the

desired output tp(i) for correct class ic in this case be defined as

tp(i)= δ(i-i c)

Then the expected squared error between network output y(i) and optimal Bayes

discriminant is given by

∑
=

−=
M

1i

2
B]))i(y)i(d[(EE

where E[.] is the Expected operator and and y(i) is a random variable storing the ith

actual network output. Note that yp(i) is the actual ith output when the input vector is xp

 9

Theorem 1: As the training patterns Nv increase, E approaches the (EB + K), where K is

a constant.

Thus E = EB + K, it implies that network with estimated output yp, which minimizes the

MSE yields the optimal Bayes discriminant function in the minimum mean squared

error sense.

Unfortunately; Classifiers designed via regression have the following problems. They

are,

1) Theorem 1 does not mention anything about the network structure.

2) Minimizing EB is not the same as minimizing Pe even though y(i) = d(i) would

minimize Pe .

3) For example, if the actual outputs are better than the desired outputs as yp(ic) > tp(ic)

or yp(id) < tp(id) then the MSE(E) increases but the probability of classification error

decreases.

 4) The weight matrix W obtained by minimizing the MSE is not optimal; the weight

matrix for the SVM or Bayes classifier is not obtained by minimizing the MSE.

One encounters difficulties when trying to design flat classifiers directly. Minimum

Probability of Error (Pe) classifiers known as Bayes classifiers, often assume that the

basis vector Xp is Gaussian. This assumption is clearly wrong in FLN’s because the 2nd

degree basis functions Xp(i)
2 are clearly not Gaussian.

 10

Difficulties with SVM are as follows

1) SVM’s are binary classifiers (two class classifiers), inorder to do multiclass

classification pair wise classifications can be used (one class against all others,

for all classes) [23]

2) The high algorithmic complexity and extensive memory requirements of the

required quadratic programming [24].

3.2 The potential for MSE-Based Optimal Classifiers

Let Wopt denote an output weight matrix for a classifier that is optimal in some sense,

such as the minimum probability of error or Bayes classifier, or the SVM.

Theorem 2: Wopt is the solution to a least squares problem

Proof: Given Wopt, the optimal cross-correlation matrix Copt is found from Eq. (3) as

Toptopt)(WRC ⋅= (6)

From Eq. (5), the optimal cross-correlation matrix Copt can be expressed as

T
Nv

p
tXC)(

N

1
p

1
p

v

opt ∑=
=

 (7)

If Copt and R are known in (6), we can solve for Wopt.

In designing the classifier, we assume that the basis vectors Xp are given and

unchangeable. The only component that is under user control is the desired output

vector tp. C
opt can be found from Eq. (7) by using good desired outputs tp

opt since the

basis vectors Xp are unchangeable. So in order to get Wopt we need to use good desired

 11

outputs tp
opt. We can get good desired outputs tp

opt by changing the desired outputs tp

appropriately.

Various classifiers with desirable properties can be designed through regression, merely

through the proper choice of the desired output tp
opt.

Assume that Copt is available and that we want to generate the desired output vectors tp.

Rewrite (7) as

=

)N,i(t

)2,i(t

)1,i(t

)N,L(a)2,L(a)1,L(a

)N,2(a)2,2(a)1,2(a

)N,1(a)2,1(a)1,1(a

)L,i(c

)2,i(c

)1,i(c

vv

v

v

Μ

Λ

ΜΟΜΜ

Λ

Λ

Μ
 (8)

where c(i,n) is an element of Copt. The nth row pth column element of the L by Nv matrix

A is Xp(n)/Nv , and t(i,p) denotes an element of tp. Assuming that L < Nv and that A

has rank L, Eq. (8) is an underdetermined set of equations for the vector tp(i) and has

uncountably many exact solutions. Assume that Copt is available and that we want to

generate the desired output vectors tp. Thus it is easy to generate desired output vectors

that produce Copt.

The catch is that this must be done without pre-knowledge of Wopt or Copt. Iterative

algorithms designed to find the desired outputs tp
opt are called OUTPUT RESET (OR)

algorithms and the iterations are called OR iterations.

 12

CHAPTER 4

BASIC OUTPUT RESET (OR) ALGORITHM [ALGORITHM 1]

4.1 Basic OR Concepts

The mean square error E from Eq.(1) is

∑ ∑=
= =

M

1i 1p

2
p

v

Nv

)i(z
N

1
E (9)

where zp(i) = yp(i) - tp(i) denotes the ith class residual error for the pth pattern.

Lemma 1: let q denote an outlier training pattern for a neural net classifier, such that

|yq(i)| is large. Then

∞→
∞→
E lim

)i(yq

Each instance of residual error contains at least two types of bias [14]. The first type of

bias ap is an additive constant, inherent to each output vector. The second type of bias

dp(i) are error components due to individual output values having the correct sign but

magnitude larger than b. We mechanize the removal of biases by introducing a new

desired output vector t′p which is obtained as

t′p(i) = tp(i) + ap + dp(i) and dp(i) is a function of p and i.

Removal of these biases has no immediate affect on the class recognition error count.

 13

Training error to be minimized is

∑∑ −′=′
= =

Nv

1p

M

1i

2
pp

v

)]i(y)i(t[
N
1

E (10)

Our goal now is to find ap, dp(i) and yp(i), that minimize E′, under the following

conditions:

(1) The difference |t′p(ic) - t′p(id)| must be larger than or equal to 2b. Without this

condition, E′ can be minimized by letting the network weights and the difference

|t′p(ic)-t′p(id)| be equal to zero.

(2) Each change made to ap, dp(i) and t′p(i), through changes in the network weights,

must reduce E′ or keep it changed.

A sufficient condition for finding ap is that the gradient of E′ with respect to ap be zero

yielding

∑∑∑∑ −−−−====
====

M

1i
ppp)]i(d)i(z[

M
1

a (11)

Consider the addition of ap to each desired output yp(i). As a result, the distances

between correct class residual zp(ic) and the other zp(id) remain unchanged.

Therefore, the classification error count remains the same, and since ap is specifically

found to minimize E′, Condition 2 is satisfied.

Values for dp(i) are found by minimizing square error term [dp(i) + ap - zp(i)]
2 , yielding

dp(i) = zp(i) - ap. But, in order to satisfy Condition 1, we must also constrain dp(i) such

 14

that dp(ic)≥0 and dp(id)≤0. A non-zero value for dp(i) is said to be an active bias

whereas a zero value is said to be inert. Condition 1 constraints are summarized by

 <−

=
inert: otherwise 0

active:)i(za if a)i(z
)i(d cpppcp

cp (12)

 >−

=
inert: otherwise 0

active:)i(za if a)i(z
)i(d dpppdp

dp (13)

According to (12) and (13), dp(i) is active if the sign of zp(i) is correct but has

magnitude larger than ap.

4.2 Iterative Solution for Algorithm 1

It is not obvious how to simultaneously find the exact values for ap and dp(i). An

approximation method for finding t′p(i) iterates through (11)-(13) until converging on a

stable estimate of ap. An OR flat training algorithm denoted as Algorithm 1 is as

follows:

(1) for each iteration it, where 1≤ i t≤Nit

(2) for each vector Xp, read the correct class(ic) until 1≤p≤Nv

a) Calculate the networks outputs yp(i) using current network weights.

b) Find t′p(i) by iterating through equations (11)-(13) until no change in ap or a

fixed number of iterations Nitr is reached.

c) Accumulate the auto- and cross-correlations needed in the flat training, where

t′p(i) replaces tp(i).

 15

(3) Find the output weights w(i,j) using flat training. Go back to the step (2) for another

iteration, if necessary.

Given Xp, tp(i) a closed form OR for t′p(i) can be found from [13].

4.3 Convergence of Basic algorithm (algorithm1)

Theorem 3: The weights converge in every iteration.

proof:

Let W denote the weight matrix for the current OR iteration and Let W ′ denote the

weight matrix for the previous OR iteration.

1) In each OR iteration, we do the following

W ← W ′

If zp(i) > ap and i = ic(p) , then p∈ Sc(i) and t′p(i) ← yp(i).

If zp(i) < ap and i ≠ ic(p) , then p∈ Sc(i) and t′p(i) ← yp(i).

Else t′p(i) ← tp(i) + ap + dp(i) and p∈ Se(i).

Finding the new desired outputs t′p(i) reduces E′(i) which can be rewritten using Eq.(10)

as

∑
=

+=−′=′
vN

1p
ec

2
pp

v

)i(E)i(E)]i(y)i(t[
N

1
)i(E (14)

2
L

1n
p

)i(Sp

L

1n
pc])n(X)n,i(w)n(X)n,i(w[)i(E

c

∑∑ ∑
=∈ =

′−= ,

2
L

1n
p

)i(Sp
pe])n(X)n,i(w)i(t[)i(E

e

∑∑
=∈

′−′=

 16

2) Solving linear equations in Eq. (14) we get W

CWR =⋅ T (15)

Comments

(1) In each step (1) of section (4.3) E′(i)= Ee(i) since Ec(i) = 0.

(2) E′(i) converges, since it forms a sequence of non-increasing nonnegative numbers.

(3) The convergence of E′(i) implies that its subsequence Ee(i) also converges.

(4) As E′(i) and Ee(i) converge to the same limit, Ec(i) converges to zero in each step (2)

of section (4.3), meaning that

0)i(c
T →eRe

where the nx1 element of vector e is e(n) = w′(i,n) – w(i,n)

(5) For positive definite Rc(i),

W′ - W →0 (16)

Equating ∂E′(i)/∂w(i,k) to zero and using

∑ ⋅=
∈)(p

T
ppc)i(

iSc

XXR ,

∑ ⋅=
∈)(iSp

T
ppe

e

)i(XXR ,

Ce(i)
T\

(i)Sp
pp))i((

e

∑ ′⋅=
∈

tX

we get

]))i(()i()i([)()i())i(()i())i((eeec
TTTT WRCWRCWRWR ′⋅−+′=+′⋅= (17)

 17

and

]))i(()i()i([))i(())i((e
-1 T

e
TT WRCRWW ′⋅−⋅+′= (18)

As WT– W′T→0 according to (16),

ee CWR T = (19)

Since there are a finite number of matrices Ce and Re , W converges.

4.4 Problems

Here we analyze the sensitivity of Algorithm 1 to outliers.

Algorithm 1 is not equivalent to the minimum probability of error approach as it is

sensitive to misclassified outliers.

Lemma 2: For a neural net classifier, trained using E′,

∞→′
−∞→

E lim
)i(y cq

∞→′
+∞→

E lim
)i(y dq

If an outlier is correctly classified then Algorithm 1 contributes a small mean square

error from that particular pattern to the final mean square error which is not a problem,

Let Eo denote the normal value of E′ which is a constant, not counting the effect of

outliers for patterns which are incorrectly classified. Then

o
)i(y

EE lim
cq

→′
+∞→

o
)i(y

EE lim
dq

→′
−∞→

 18

If an outlier is incorrectly classified then Algorithm 1 will contribute a large mean

square error from that particular pattern to the final mean square error which could

change the weights and result in a very bad classifier, so this needs to be avoided.

 19

CHAPTER 5

OR FOR MINIMUM PROBABILITY OF ERROR [ALGORITHM 2]

In this chapter we derive new version of the OR algorithm that solves the problems

described in section 4.2

5.1 Algorithm 2

The goal in this subsection is to develop an OR algorithm in which the MSE is

proportional to the probability of error (E′~Pe). In order to do this, we define t′p as

follows:

Case 1: If pattern p is correctly classified, t′p(i) = yp(i) for all i, so this pattern does not

contribute to E′.

Case 2: If pattern p is incorrectly classified and yp(id)≥yp(ic) for K values of id, then

ε+=′)i(y)i(t cpcp ,

ε−=′))k(i(y))k(i(t dpdp for 1≤k≤K where

b
1K

2
⋅

+
=ε

Else,

)i(y)i(t pp =′

Note that this pattern contributes 2b2 to E′, before the division by Nv.

 20

We can summarize cases (1) and (2) of this section as

=⋅
+

≥≠⋅
+

<=

=

c

cppc

cppd

p

ii and classifiedy incorrectl if : b
1K

2

)(iy(i)y and ii ,classifiedy incorrectl if : b
1K

2
-

)(iy(i)y and ii ifor classifiedcorrectly if :0

)i(d (20)

Using dp(i) from Eq. (20) in t′p(i) we get

t′p(i) = yp(i) + dp(i) (21)

So every incorrectly classified pattern contributes the same value, 2b2, to E′ before the

division by Nv.

Lemma 3: e
2 Pb2E ⋅=′

Each misclassified pattern adds 2b2 to the cumulative squared error, before the division

by Nv.
 If there are Ner such patterns, the cumulative error is 2b2

·Ner. Dividing by Nv we

get

e
2

ver
2 Pb2N/Nb2 ⋅=⋅

 21

5.2 Iterative solution for Algorithm2

The iterative flat training algorithm in this case is as follows:

(1) for each iteration it , where 1≤ i t≤Nit

(2) for each vector Xp, read the correct class(ic) until 1≤p≤Nv

a) Calculate the networks outputs yp(i) using current network weights and

increment it .

b) Find t′p(i) by using Eq. (20) and Eq. (21).

c) Accumulate the auto- and cross-correlations needed in flat training, where t′p(i)

replaces tp(i).

(3). Find the output weight matrix W using flat training. Go back to the step (2) for

another iteration, if necessary.

5.3 Properties of Algorithm 2

In this subsection we show that the weight matrix keeps on changing as long as Pe≠0

which is again illustrated in Figure 5.3.

Lemma 4: The maximum contribution of an outlier pattern to the cumulative squared

error is 2b2.

Therefore algorithm 2 is fairly immune to outliers

 22

Theorem 4: If all patterns are correctly classified during a training iteration, training

stops and the final weight matrix W has been found.

Proof:

Case (1): R is nonsingular

If all the patterns are correctly classified then t′p(i) = yp(i) as in case(1) of section(5.1).

Letting w′(i,n) designate weights which were found in the previous iteration,

∑ =−′∑
−

=
∂

′∂
==

L

1n
ppp

N

1pv

0)k(X)]n(X)n,i(w)i(t[
N

2
)k,i(w

)i(E v

∑ ∑ ∑−′−
=

= = =

vN

1p

L

1n

L

1n
ppp

v

)k(X)]n(X)n,i(w)n(X)n,i(w[
N

2
,

which leads to

0)(T =′−⋅ WWR (22)

The solution to this homogeneous equation is

W = W′

meaning that the weights found in the current iteration equal those from the last

iteration.

Case (2): R is singular

OLS in section (2.1) removes the linearly dependent basis functions and decrements L

until R is nonsingular. Then case (1) in Theorem 4 applies.

 23

Corollary: In each iteration where the cross-correlation matrix equation Cd,

∑=
=

vN

1p

T
pp

v
d N

1
dXC

is not a matrix of zeros, W will change

Proof: Letting t′p(i) = yp(i) + dp(i) as in Eq. (21),

∑ =−′∑
−

=
∂

′∂
==

L

1n
ppp

N

1pv

0)k(X)]n(X)n,i(w)i(t[
N

2
)k,i(w

)i(E v

∑ ∑ ∑−′+
−

=
= = =

vN

1p

L

1n

L

1n
pppp

v

)k(X)]n(X)n,i(w)n(X)n,i(w)i(d[
N

2

which leads to

d
T)(CWWR =′−⋅ , (23)

Since there are a finite number of basis vectors Xp and vectors dp, there are a finite

number of Cd matrices. For misclassified patterns dp has some non zero elements

d
-1TT CRWW +′= (24)

Since R is nonsingular, R-1 Cd
 is not a matrix of zeros, and W changes in every iteration

for which Pe is nonzero.

From the corollary of theorem 4, Algorithm 2 may not halt as long as Pe > 0. As an

example, consider Figure 5.3 a first degree OFLN classifier trained using Algorithm 2.

Since Pe > 0, training does not halt.

 24

 Figure 5.3 Minimum Probability of Error Curve

Some remaining problems with OR are as follows.

(1) The weight matrix W and Pe are not guaranteed to converge as shown in the

corollary to theorem 4.

(2) Correctly classified patterns can become misclassified as the training progresses.

(3) If a pattern is misclassified then the sum of the changes made to the desired

outputs is not zero, i.e.

 ∑ ≠−′
=

M

1i
pp 0)]i(y)i(t[

 25

CHAPTER 6

FINAL OR METHOD [ALGORITHM 3]

In this section we attack problems (2) and (3) of algorithm 2, leading to algorithm 3.

6.1 Algorithm 3

One way to attack problem (2) is that for outputs which satisfy yp(id) < yp(ic) should also

contribute to the MSE .

Case (1): If a pattern p is correctly classified then

≥
−

<
−

−
=

−−

1
2

)i(y)i(y
: if0

1
2

)i(y)i(y
if:e

)i(d
pcp

pcp)]i(y)i(y[
2

a

p

pcp

 (25)

Using dp(i) we get

dppp iiif)i(d)i(y)i(t =+=′

∑
≠
=

−=+=′
M

ii
1i

pcpcpcpcp

c

)]i(d[)i(dwhere)i(d)i(y)i(t

Since we are introducing the terms dp(i)’s, correctly classified patterns also contribute to

the final MSE so this solves problem (2).

 26

Since

∑
=

=
M

1i
p 0)i(d

 this solves problem (3) for correctly classified patterns.

Case (2): if a pattern is incorrectly classified then

For incorrect classes (id’s) we do the following

• if yp(id) < yp(ic)

 (26)

• else

For correct class (ic)

Since we are including dp(id)’s this solves problem (2), we are adding K·ε to yp(ic) and

subtracting ε from K yp(id)’s so the sum of changes to the actual outputs are almost zero

as dp(id)’s are negligible which solves problem (3).

≥
−

<
−

−
=+=′

−−

1
2

)i(y)i(y
if0

1
2

)i(y)i(y
ife

)i(dwhere)i(d)i(y)i(t
dcp

dcp)]i(y)i(y[
2

a

dpdpdpdp

dpcp

b
)1K(K

1
where)(iy)i(t dpdp ⋅

+
=εε−=′

ε⋅+=′ K)i(y)i(t cpcp

 27

6.2 Iterative solution for Algorithm 3

The iterative flat training algorithm in this case is as follows:

1. for each iteration it , where 1≤ i t≤Nit

2. for each vector Xp, read the correct class(ic) until 1≤p≤Nv

a) Calculate the networks outputs yp(i) using current network weights and

increment it .

b) Find t′p(i) by using either cases (1) or (2) depending on whether the pattern is

correctly classified or incorrectly classified.

c) Accumulate the auto- and cross-correlations needed in flat training, where t′p(i)

replaces tp(i).

 3. Find the output weight matrix W using flat training. Go back to the step (2) for

another iteration, if necessary.

6.3 Analysis of Algorithm 3

Here we are analyzing the effects of dp(i) on the convergence of the weight matrix

Condition 1: yp(i) < yp(ic) if i=i d then yp(i)∈Sc(i)

Condition 2: yp(i) ≥yp(ic) if i=i d then yp(i)∈Sd(i)

If a pattern is correctly classified then yp(ic)∈Sc(ic). If the pattern is incorrectly

classified then yp(ic)∈Sd(id) .

 28

We have

∑ −′=′
=

vN

1p

2
pp

v

)]i(y)i(t[
N
1

)i(E ∑ ∑ ∑
∈ = =

+−+′=
)i(S)i(y

L

1n

L

1j

2
ppp

v cp

)]j(X)j,i(w)i(d)n(X)n,i(w[
N

1

∑ ∑∑
∈ ==

−α+′
)i(S)i(y

L

1j

2
pp

L

1n
p

v dp

)]j(X)j,i(w)i()n(X)n,i(w[
N

1

Where

=⋅
+

−

=⋅
+

=α

d

c

p

iiifb
)1K(K

1

iiifb
)1K(K

1
K

)i(

Now

∑ ∑ ∑
= ∈ =

−+=
∂

′∂ L

1n)i(S)i(y

L

1j
pp

v cp

)k,j(R)j,i(w)k(X)i(d
N

1
)k,n(R)n,i('w

)k,i(w

)i(E

∑
∈

α+
)i(S)i(y

pp
v dp

)k(X)i(
N

1

So

0)]k,n(R)]n,i(w)n,i(w[[ec

L

1n
=θ+θ+∑ −′

=

where

∑
∈

=θ
)i(Sp

pp
v

c
c

)k(X)i(d
N

1
 (27)

and

 29

∑
∈

α=θ
)i(Sp

pp
v

e
d

)k(X)i(
N

1
 (28)

So,

∑ θ+θ−=−′
=

L

1n
ec)()k,n(R)]n,i(w)n,i(w[(29)

Here W denotes the weight matrix for the current OR iteration and W′ denotes the

weight matrix for the previous OR iteration. The necessary conditions for the weights to

converge is θc = -θe.

Case 1) If we select dp(i) to be constant for all p and i, then in general |θc| >> |θe| since

all the outputs which satisfy condition 1 will be contributing to the final MSE and so the

weights never converge in Eq. (29) even if we select a large number of OR iterations.

Case 2) if we select dp(i) to be small then in general |θe|>>|θc| and so the weights never

converge as proved in the corollary of theorem 4.

We need to select optimal dp(i) and this can be done by making dp(i) as a function of

[yp(ic)-yp(id)].

If we select dp(i) as an increasing function of [yp(ic) - yp(id)] then as yp(ic) and yp(id)

become better we will be subtracting more and adding more so in this case if a classifier

is very good then we will changing the weights which will never converge. So dp(i)

should be a decreasing function of [yp(ic) - yp(id)] and the slope of the curve

[yp(ic) - yp(id)] shouldn’t decrease too rapidly nor it should remain flat. It is possible to

use decreasing ramp or decreasing exponential.

It is possible that θc = -θe after some OR iterations so that the weights converge and the

percentage classification error remains constant.

 30

CHAPTER 7

NUMERICAL RESULTS

Percentage classification errors of Algorithm 3, Algorithm1 and Bayes Gaussian

classifier for both training data files and validation data files are displayed below and

brief description about the files are also given. For Algorithm 3, a=7 is used in Eq. (25)

and Eq. (26) and 10 OR iterations are used for all the degrees. The description of the

Bayes Gaussian classifier used here is given in appendix B. 10-fold validation is done in

all the cases.

In the table the minimum percentage classification error is shown for the network.

For all the plots shown below, y-axis is the percentage classification error and x-axis is

the number of basis functions.

7.1 Gong data file

 The raw data consists of images from hand printed numerals collected from 6,000

people by the Internal Revenue Service. We randomly chose 600 characters from each

class to generate 6,000 character training data. Images are 32 by 24 binary matrices. An

image scaling algorithm is used to remove size variation in characters. The feature set

contains 16 elements. The 10 classes correspond to 10 Arabic numeral [16].

Total number of patterns=6000

Training patterns=5400, Validation patterns=600.

Inputs=16, Classes=10.

 31

Table 7.1 Comparison of Percentage Classification Error for Gong data file.

Training Validation

Degree 1 Degree 2 Degree 3 Degree 1 Degree 2 Degree 3

Algorithm 3 8.986874 4.888149 3.150305 9.38436 7.004992 6.905158

Algorithm 1 9.755962 5.416898 3.734516 10 7.271215 7.004992

Bayes Gaussian
Classifier

12.78055 7.709373 5.784803 12.89517 8.43594 7.836938

Binary case 13.02274 7.676095 5.794047 13.22795 8.402662 7.836938

Figure 7.1 Training Percentage Classification Error vs No. of Basis Functions
Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case

for Degree 1.

 32

Figure 7.2 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 1.

Figure 7.3 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 2.

 33

Figure 7.4 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 2.

Figure 7.5 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 3.

 34

Figure 7.6 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 3.

7.2 Comf18 Data file

 This training data file is generated segmented images. Each segmented region is

separately histogram equalized to 20 levels. Then the joint probability density of pairs

of pixels separated by a given distance and a given direction is estimated. We use 0, 90,

180 and 270 degrees for the directions and 1, 3 and 5 pixels for the separations. The

density estimates are computed for each classification window. For each separation, the

co-occurrences for the four directions are folded together to form a triangular matrix.

From each of the resulting three matrices, six features are computed: angular second

moment, contrast, entropy, correlation, and the sums of the main diagonal. This results

 35

in 18 features for each classification window [17]. Comf18 data file is split into two

files one for training and another for testing.

Total number of patterns=12392

Training patterns=11153, Validation Patterns=12392

Inputs=18, Classes=4.

Table 7.2 Comparison of Percentage Classification Error for Comf18 data file

Training Validation

Degree 1 Degree 2 Degree 3 Degree 1 Degree 2 Degree 3

Algorithm 3 18.68639 12.89652 10.64617 26.68146 20.26854 19.73305

Algorithm 1 19.55715 13.5908 11.46676 27.04952 20.52704 19.67733

Bayes Gaussian
Classifier

22.73384 15.38874 13.37938 29.96258 23.37269 22.11285

Binary case 21.84336 14.95337 12.97267 29.27139 21.63222 20.59228

 36

Figure 7.7 Training Percentage Classification Error vs No. of Basis Functions
Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case

for Degree 1.

Figure 7.8 Validation Percentage Classification Error vs No. of Basis Functions
Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case

for Degree 1.

 37

Figure 7.9 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 2.

Figure 7.10 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 2.

 38

Figure 7.11 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 3.

Figure 7.12 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 3.

 39

7.3 Grng Data File

 This file is a geometric shape recognition data file consists of four geometric shapes,

ellipse, triangle, quadrilateral, and pentagon. Each shape consists of a matrix of size

64x64. For each shape, 200 triangle patterns were generated using different degrees of

deformation. The deformations include rotation, scaling, translation and oblique

distortion. The feature set is ring-wedge energy (RNG), and it has 16 features [15].Grng

data file is split into two files one for training and another for testing.

Total number of patterns=800

Training patterns=720, Validation patterns=80

Inputs=16, Classes=4.

Table 7.3 Comparison of Percentage Classification Error for Grng data file

Training Validation

Degree 1 Degree 2 Degree 3 Degree 1 Degree 2 Degree 3

Algorithm 3
10.21948 0.233196 0 14.93827 5.308642 5.185185

Algorithm 1
11.82442 0.823045 0 14.69136 5.185185 5.679013

Bayes Gaussian
Classifier 15.56927 2.098765 0.027435 18.51852 5.925926 5.185185

Binary case
15.4321 2.002743 0.027435 19.1358 5.925926 5.061729

 40

Figure 7.13 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 1.

Figure 7.14 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 1.

 41

Figure 7.15 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 2.

Figure 7.16 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 2.

 42

Figure 7.17 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 3.

Figure 7.18 Validation Percentage Classification Error vs No. of Basis Functions
Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case

for Degree 3.

 43

7.4 Mushroom data file

This data set [22] includes descriptions of hypothetical samples corresponding to 23

species of grilled mushrooms in Agaricus and Lepiota family. Each sepecies is

identified as definitely edible, definitely poisonous, or of unknown edibility and not

recommended. This latter class was combined with the poisonous one. The guide

clearly states that there is no simple rule for determing the edibility of a mushroom.

Total number of patterns=8124

Training patterns=7312, Validation patterns=812

Inputs=22, Classes=2.

Table 7.4 Comparison of Percentage Classification Error for Mushroom data file

Training Validation

Degree 1 Degree 2 Degree 3 Degree 1 Degree 2 Degree 3

Algorithm 3 4.68346 0 0 4.696291 0 0

Algorithm 1 5.994664 0 0 6.035889 0 0

Bayes Gaussian
Classifier

6.730899 0 0 6.711565 0 0

Binary case 6.512332 0 0 6.564525 0 0

 44

Figure 7.19 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 1.

Figure 7.20 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 1.

 45

Figure 7.21 Training Percentage Classification Error vs No. of Basis Functions
Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case

for Degree 2.

Figure 7.22 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 2.

 46

Figure 7.23 Training Percentage Classification Error vs No. of Basis Functions
Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case

for Degree 3.

Figure 7.24 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 3.

 47

7.5 Diabetes data file

Diabetes data set [22] contains the distribution for 70 sets of data recorded on diabetes

patients (several weeks’ to months’ worth of glucose, insulin, and lifestyle data per

patient + a description of the problem domain).

Total number of patterns=768

Training patterns= 692, Validation patterns= 76

Inputs=8, Classes=2.

Table 7.5 Comparison of Percentage Classification Error for Diabetes data file

Training Validation

Degree 1 Degree 2 Degree 3 Degree 1 Degree 2 Degree 3

Algorithm 3 21.66614 18.25711 11.8814 23.11688 23.37329 23.37329

Algorithm 1 21.96561 19.58368 14.09212 23.37329 22.60739 23.36663

Bayes Gaussian
Classifier

22.43628 20.1256 15.73235 23.11688 22.34432 22.6024

Binary case 22.09396 19.68342 14.99075 23.24342 22.33933 22.85548

 48

Figure 7.25 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 1.

Figure 7.26 Validation Percentage Classification Error vs No. of Basis Functions
Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case

for Degree 1.

 49

Figure 7.27 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 2.

Figure 7.28 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 2.

 50

Figure 7.29 Training Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 3.

Figure 7.29 Validation Percentage Classification Error vs No. of Basis Functions

Comparison of Algorithm 3, Algorithm 1, Bayes Gaussian Classifier and Binary Case
for Degree 3.

 51

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this document we prove that the Basic OR algorithm (Algorithm1) can handle

correctly classified outliers but cannot handle incorrectly classified outliers. We also

prove the convergence of this algorithm since the MSE in this algorithm is not

proportional to probability of error; we develop a second algorithm in which the MSE is

proportional to the probability of error and immune to outliers. Since the weights in this

algorithm do not converge we fix this problem by developing Algorithm 3 in which

correctly classified patterns also contribute to the MSE and the sum of the changes to

the actual ouputs in a particular pattern are almost zero. We analyze weights changes

for Algorithm 3.

Finally we compare the results of Algorithm 3, Algorithm 1 and a Bayes Gaussian

classifier on both training and validation data on several different data sets. After

comparison, algorithm 3 is found to work

In future we could do the following

(1) Algorithm 1 or Algorithm 3 can be tried for training multilayer perceptrons.

(2) Perhaps Output Reset can be used to design SVMs.

(3) Perhaps Output Reset can be used to design nonlinear networks using the L1

objective function.

 52

APPENDIX A

GRAM SCHMIDT ALGORITHM

 53

The Gram-Schmidt procedure maps a set of linearly dependent vectors to an

orthonormal basis vector set in Euclidian or any inner product space. It is a well-known

standard numerical method [25] and has been used to find optimum choice of Radial

centers for RBF [10], fast computation of weights of RBF network [15], pruning of

MLP [11] and feature selection in piecewise classifier [18]. What few authors did not

realize is that using the Gram-Schmidt procedure allows ordering the basis function in

order of their contribution to minimize the MSE. Using this, the network can be

represented as a monotonically non-increasing function of addition of basis functions

and achieve a faster rate of convergence. Also, orthonormalizing linearly dependent

vectors results in a zero vector is an important step in pruning useless basis functions.

These desirable properties along with the effective representation, system re-

transformation and a fast and distributed iterative solution make it a better candidate

over other learning algorithms.

Consider a vector X whose elements Xn are basis functions. Its corresponding

orthonormal mapping is X′ where X and X′∈ℜN. By the definition of orthonormality,

vector X′ is orthonormal only if it satisfies the following condition:

jiif1

jiif0)j(X)i(X
N

1
)j(X)i(X p

N

1p
p

v

v

==

≠=′′>=′′< ∑
= (A.1)

 54

where X′(i) is the ith element of the vector X′ and < X′(i)X ′(j)> denotes the inner

product of X′(i) and X′(j). Here X′p(i) refers to the pth example value of ith orthonormal

function X′(i).

Also ||X(i)|| is defined as

2

1
N

1p

2
p

v

v

)i(X
N

1
||)i(X||

= ∑

=
 (A.2)

Then by the standard Gram-Schmidt procedure, X′(k) is calculated as:

||)1(X||

)1(X
)1(X =′ (A.3)

||)1(X)1(X)2(X)2(X||

)1(X)1(X)2(X)2(X
)2(X

′>′<−

′>′<−
=′ (A.4)

……..

||)i(X)i(X)k(X)k(X||

)i(X)i(X)k(X)k(X
)k(X

1k

1i

1k

1i

∑

∑
−

=

−

=

′>′<−

′>′<−
=′ for 1 ≤ k ≤ L (A.5)

A.1 General approach towards Gram-Schmidt Procedure

An iterative solution to the Gram-Schmidt procedure is given here. A represents a lower

triangular LxL orthonormal transformation matrix such that:

XAX ⋅=′ (A.6)

 55

Thus the mth orthonormal function can be obtained from X and A by

∑
=

=′
m

1i

)i(X)i,m(a)m(X for 1 ≤ m ≤ L (A.7)

Let R be the auto-correlation matrix as defined earlier, where its elements r(i,j) is

defined as

∑
=

=
vN

1p
pp

v

)j(X)i(X
N

1
)j,i(r for 1≤ i,j ≤ L (A.8)

Then from (A.6 – A.8),

2
1

)1,1(r

1

||)1(X||

1
)1,1(a == (A.9)

)1(X)1,1(a)1(X ⋅=′ (A.10)

)2(X)2,2(a)1(X)1,2(a)2(X ⋅+⋅=′ (A.11)

Let X′(2) be equal to

||)2(Z||

)2(Z
)2(X =′ (A.12)

Then Numerator of X′(1) is

)1(X)1,1(a)1(b)2(X)1(X)1(b)2(X)2(Z ⋅⋅−=′⋅−= (A.13)

where

)1,1(r)1,1(a)2(X)1(X)1(b ⋅>=⋅′=< (A.14)

Writing Z(2) as

)2(X)2(c)1(X)1(c)k(X)k(c)2(Z
2

1k

+==∑
=

 (A.15)

 56

Here,

)1,1(a)1(b)1(c −= (A.16)

c(2)=1 (A.17)

Also,

||)1(X)1(b)2(X),1(X)1(b)2(X||||)2(Z|| >′−′−<= (A.18)

[]2
1

2)1(b)2,2(r||)2(Z|| −=∴ (A.19)

Equating (A.12) and (A.15)

2
1

])1(b)2,2(r[

)2(X)2(c)1(X)1(c
)]2(X)2,2(a)1(X)1,2(a[)2(X

2−

+
=+=′ (A.20)

2
1

])1(b)2,2(r[

)1,1(a)1(b
)1,2(a

2−

−
= (A.21)

2
1

])1(b)2,2(r[

1
)2,2(a

2−
= (A.22)

An iterative approach for finding the a(i,j) coefficients can be extended as follows:

For 1 ≤ m ≤ L, perform the following operations

∑
=

⋅=
i

1q
)m,q(r)q,i(a)i(b for 1 ≤ i ≤ m-1 (A.23)

1)m(c = (A.24)

∑
−

=

⋅−=
1m

ki

)k,i(a)i(b)k(c for 1 ≤ k ≤ m-1 (A.25)

 57

∑
−

=

−

=
1m

1i

2

1
2)]i(b)m,m(r[

)k(c
)k,m(a for 1 ≤ k ≤ m

(A.26)

A.2 Solving for the Orthonormal System Weights

When the basis functions X are transformed to X′, the system is mapped into new

weights w′(k,i) for the kth estimated output yp(k) and ith orthonormal basis function X′(i)

for given training dataset with Nv patterns.

∑
=

′⋅′=
L

1i
pp)i(X)i,k(w)k(y (A.27)

for 1 ≤p ≤ Nv. The MSE in terms of the new weights for Nv desired values of yk can be

written as

∑ ∑
= =

′⋅′−=
vN

1p

L

1i

2
pp

v
k)]i(X)i,k(w)k(y[

N

1
E for 1 ≤ k ≤ M. (A.28)

Taking partial derivative w.r.t. the variable w′(k,m), L equations in L unknowns are

obtained, thus there would be a unique solution with only a global minimum. Using

(A.7) the orthonormal weights are given by

∑
=

⋅=′
m

1i

)i,k(c)i,m(a)m,k(w for 1 ≤ k ≤ M, 1 ≤ m ≤ L
(A.2

9)

where c(k,i) is an element of the cross-correlation matrix (C).

 58

A.3 Re-mapping Weights from Orthonormal System

To understand the mapping relationship in terms of the original system and to avoid

additional computation of orthonormalizing the basis functions for validation and real-

time processing, it is important to represent the system in terms of the original weights.

An efficient mapping orthonormal weights to the original system weights is achieved by

equating Eq. (2) and (A.28) and then substituting for X′ from (A.7)

)j,i(a)j,k(w)i,k(w
L

1j
⋅′= ∑

=

 (A.31)

 59

APPENDIX B

BAYES GAUSSIAN CLASSIFIER

 60

The Bayes Gaussian Classifier [20] is a Bayes classifier where the conditional pdf f(X|i)

is assumed to be Gaussian. Most of the data available in the real world is approximately

Gaussian because of the “Central Limit Theorem” [19], so this classifier is often

applicable.

B.1 Derivation of Bayes discriminant

The conditional probability density is given as,

)()(
2

1

i

ii
T

i

2
1

2
N e

||)2(

1
)i|(f

mXAmX

C
X

−−−

π
= for 1 ≤ i ≤ Nc (B.1)

where A i is the inverse covariance matrix and Ci is the covariance matrix calculated as,

∑
=

−−=
)i(N

i)p(i:p
ipip

v
i

v

c

)]m(m)m(X)][n(m)n(X[
)i(N

1
)m,n(C for 1 ≤ n,m ≤ N (B.2)

Here Nv(i) is the number of patterns belonging to the ith class and mi is the mean input

vector belonging to the ith class and is calculated as,

∑
=

=
)i(N

i)p(i:p
p

v
i

v

c

)n(X
)i(N

1
)n(m (B.3)

The Bayes discriminant [20] is calculated as,

π

−−−⋅
−=

2

1

i
2

N

ipi
T

ipi

||)2(

)]()(
2

1
exp[P

ln2)i(d

C

mXAmX
 for 1 ≤ i ≤ Nc (B.4)

where Pi is the probability of occurrence for the ith class and Nc = M = number of

outputs = number of classes.

 61

Eq. (B.4) can be rewritten as

iipi
T

ip B)()()i(d +−−= mXAmX for 1 ≤ i ≤ Nc (B.5)

Where

)Pln(2ln)2ln(NB ii
2

N

i ⋅−+π⋅= C

If we assume the same covariance matrix for each class then

2

N

ii
T

pp
T

ii
T

ip
T

p

)2ln(Nln

)Pln(2)i(d

π⋅++

⋅−⋅⋅−⋅⋅−⋅⋅+⋅⋅=

C

mAXXAmmAmXAX
 (B.6)

)]Pln(2[2)i(d ii
T

ip
T

i ⋅−⋅⋅+⋅⋅⋅−= mAmXAm for 1 ≤ i ≤ Nc (B.7)

we get

ip k)i(d +⋅= Xw i for 1 ≤ i ≤ Nc (B.8)

Where

Amw ⋅⋅−= T
ii 2 and

)Pln(2k ii
T

ii ⋅−⋅⋅= mAm

We find the value of i such that d(i) is minimum. The resulting value of i is our estimate

of ic.

In Eq. (B.1 - B.8) instead of Xp we could use X′p since X′p is orthonormal

transformation of Xp. Since we are using X′p all the basis functions are orthonormal to

each other as in Eq. (A.1) so the covariance matrix will be a diagonal matrix for the

 62

entire data file, so we will be using the same covariance matrix (diagonal matrix) for all

the classes which is an assumption. So Eq. (B.8) is now rewritten as

 ip k)i(d ′+⋅′= Xw i for 1 ≤ i ≤ Nc (B.9)

Where

imw ⋅−=′ 2i and

∑
=

⋅−=⋅−⋅=′
L

1n
i

2
iii

T
ii)Pln(2)]n(m[)Pln(2k mm

 63

REFERENCES

[1] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Learning representations by back-

propagating errors, Nature, pp. 533-536, 1986.

[2] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks Are

Universal Approximators.” Neural Networks, Vol. 2, No. 5, 1989, pp. 359-366.

[3] K. Hornik, M. Stinchcombe, and H. White, “Universal Approximation of an

Unknown Mapping and its Derivatives Using Multilayer Feedforward Networks,”

Neural Networks, vol. 3, 1990, pp. 551-560.

[4] Michael T. Manry, Steven J. Apollo, and Qiang Yu, "Minimum Mean Square

Estimation and Neural Networks," Neurocomputing, vol. 13, September 1996, pp.

59-74.

[5] Dennis W. Ruck, Steven K. Rogers, Matthew Kabrisky, Mark E. Oxley and Bruce

W. Suter, “The Multilayer Perceptron as an approximation to a Bayes optimal

discriminant function,” IEEE Trans Neural Networks, TNN-1(4):296-298, 1990.

[6] Y. H. Pao and Y. Takefuji, “Functional-Link Net Computing: Theory, System

Architecture, and Functionalities,” IEEE Computer, Vol. 25, No. 5, 1992, pp. 76 -

79.

[7] J. Macias.A., A. Sierra., F. Corbacho, "Evolving and assembling functional link

networks", IEEE Trans. on Evolutionary Computation, Vol. 5, No. 1, 2001, pp. 54-

65

 64

[8] M. Klassen, Y. H. Pao., V. Chen, "Characteristics of the functional link net: a higher

order delta rule net", IEEE Con. Neural Networks, Vol. 1, 1988, pp. 507-513.

[9] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning

algorithm for radial basis function networks,” IEEE Trans. Neural Networks, vol. 2,

1991, pp. 302–309.

[10] W. Kaminski and P. Strumillo, "Kernel Orthonormalization in Radial Basis

Function Neural Networks," IEEE Trans. Neural Networks, Vol. 8, No. 5, 1997, pp.

1177-1183.

[11] F. J. Maldonado, M. T. Manry, T. Kim, "Finding optimal neural network basis

function subsets using the Schmidt procedure", Proc. of IJCNN, Vol. 1, 2003, pp.

444 – 449.

[12] Saurabh Sureka, Michael T. Manry, “A Functional Link Network With Ordered

Basis Functions”. IJCNN 2007: pp 1708-1713.

[13] R.G. Gore, J.Li, M.T. Manry, L. M. Liu, C. Yu and J.Wei, ”Iterative Design Of

Neural Network Classifiers Through Regression”,International Journal on Artificial

Intelligence Tools, Vol. 14, Nos. 1 & 2 (2005) ,281-301

[14] L.M. Liu, M.T. Manry, F. Amar, M.S. Dawson, and A.K. Fung, “Iterative

Improvement of Image Classifiers Using Relaxation,” 28th ASILOMAR Conference

on Signals, Systems and Computers, Vol. 2, pp.902-906, 1995.

[15] H.C.Yau and M. T. Manry, “Iterative Improvement of a Nearest Neighbor

Classifier,” Neural Networks, Vol.4, Number 4, pp.517-524, 1991.

[16] W. Gong, H. C. Yau, and M. T. Manry, “Non-Gaussian Feature Analyses Using a

Neural Network,” Progress in Neural Networks, vol. 2, 1994, pp. 253-269.

 65

[17] R. R. Bailey, E. J. Pettit, R. T. Borochoff, M. T. Manry, and X. Jiang, “Automatic

Recognition of USGS Land Use/Cover Categories Using Statistical and Neural

Network Classifiers,” Proceedings of SPIE OE/Aerospace and Remote Sensing,

April 12-16, 1993, Orlando Florida.

[18] J. Li, M. T. Manry, P. Narasimha, C. Yu, “Feature Selection Using a Piecewise

Linear Network”, IEEE Trans. Neural Networks, Vol 17, No. 5, 2006, pp.1101-

1115.

[19] Athanasios Papoulis, “Probability, Random Variables, and Stochastic Processes”,

second edition. New York: McGraw- Hill.

[20] Jimy Shah, M. T. Manry, “Sequences of Bayes Gaussian Classifiers”,

Univeristy of Texas, Arlington, December 2007.

[21] Pramod Lakshmi Narasimha, M. T. Manry, “Sequences of Near-Optimal Feed

Forward Neural Networks”, Univeristy of Texas, Arlington, August 2007.

[22] D. N .A. Asuncion, “UCI machine learning repository,” 2007 [Online].

Available:http://www.ics.uci.edu/~mlearn/MLRepository.html

[23] Burgess, C. (1998). From simple associations to the building blocks of language:

Modeling meaning in memory with the HAL model. Behavior Research Methods,

Instruments, & Computers, 30, 188 - 198.

[24] Bishop CM, Tipping ME. Bayesian regression and classification. Suykens J

Horvath G Basu S Micchelli C Vandewalle J eds. Advances in Learning Theory:

Methods, Models and Applications(NATO Science Series. Series III, Computer and

Systems Sciences Vol. 190). 2003;267–285. IOS Press Amsterdam.

[25] Gilbert Strang, Introduction To Linear Algebra, Wesley-Cambridge Press, 1993.

 66

BIOGRAPHICAL INFORMATION

Madhu Gannapal received his Bachelor of Engineering from Sri Jayachamarajendra

College of Engineering (SJCE), Mysore India in 2007. He obtained his Master’s degree

from the University of Texas at Arlington, USA in May 2010 under the Department of

Electrical Engineering. His current research interests include image processing, pattern

recognition, software development and speech recognition.

