# STATISTICAL ANALYSIS OF COMPRESSIVE STRENGTH

# OF CLAY BRICK MASONRY PRISMS

by

# SAMAN AFQAHI ARYANA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

### MASTER OF SCIENCE IN CIVIL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006

Copyright © by Saman Afqahi Aryana 2006

All Rights Reserved

## Dedication

To my late father Dr. M.H. Afghahi who taught me the basics of math, to my mother, Soroush, who always made sure I did my homework in my younger years, and my sister, Sanaz, for her emotional support.

#### **ACKNOWLEDGEMENTS**

I would like to express my gratitude to Dr. John H. Matthys for his support and guidance throughout my thesis. Professor Matthys has mentored me very patiently along the way and I am grateful for that. I would like to extend special thanks to Dr. Doyle Hawkins, Department of Mathematics, for his valuable help. Dr. Hawkins contributed greatly to the statistical analysis of the gathered data. I would also like to thank Dr. Anand Puppala and Dr. Guillermo Ramirez for serving on my committee. This project was partially funded by the Brick Industry Association (BIA), and I would like to thank BIA for their support.

April 7, 2006

#### ABSTRACT

# STATISTICAL ANALYSIS OF COMPRESSIVE STRENGTH OF CLAY BRICK MASONRY PRISMS

Publication No.

Saman A. Aryana, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. John H. Matthys

The *Specification for Masonry Structures* section of the current governing masonry design document in the U.S., reported by the Masonry Standards Joint Committee (MSJC), contains tables that can be used to determine the compressive strength of masonry,  $f'_m$ , as a function of the mortar type and the compressive strength of the unit employed to construct the masonry (option #1). Alternatively, the compressive strength of brick masonry can be established by testing small specimens called prisms according to ASTM standardized procedures for construction and testing (option #2). However, the majority of the data gathered to create the current values for option #1 were generated in studies done prior to 1970. There have been significant changes in materials and procedures since this time frame. Thus, there is a need to

gather and study more recent data that reflect the current type of material typically used at construction sites today, explore various potential influencing factors, and determine how significantly these factors affect the masonry prism compressive strengths. Finally, the results of this study can lead to ways the current design tables can be enhanced, and establish the areas where more research and testing are required.

In this study, clay brick masonry prism test data since 1980 was collected in a database. Several factors that could potentially affect the prism compressive strengths were identified (predictor variables) and their effects were statistically analyzed. These factors consisted of prism height to thickness ratio, brick unit compressive strength, mortar type, hollow versus solid brick units, mortar joint thickness, and the use or absence of grout in prisms. In a factorial design, a number of levels (in this research levels would be combinations of qualitative predictors) are selected by an investigator and experiments are run with all possible combinations. As the dataset in this investigation was observational and not a factorial design certain simplifications had to be made. Also, data for a range of brick unit compressive strength was missing and further testing was performed to fill that gap. Several mathematical models were developed to analyze the data. The models explored the relationship between the prism compressive strength and the predictor variables and the interactions between the predictor variables. Based on this analysis, suggestions were made on how to improve the existing masonry compressive strength design tables to reflect the contemporary material used in construction.

vi

# TABLE OF CONTENTS

| ACKNOWLEDGEMENTS                                                 | iv   |
|------------------------------------------------------------------|------|
| ABSTRACT                                                         | v    |
| LIST OF ILLUSTRATIONS                                            | x    |
| LIST OF TABLES                                                   | xvii |
| Chapter                                                          |      |
| 1. INTRODUCTION                                                  | 1    |
| 1.1 Background                                                   | 1    |
| 1.1.1 Current MSJC Design Values                                 | 1    |
| 2. LITERATURE SURVEY                                             | 6    |
| 2.1 Available Clay Brick Prism Compressive<br>Strength Test Data | 6    |
| 2.1.1 Current Design Values                                      | 8    |
| 2.1.2 Is Any Additional Testing Required?                        | 11   |
| 3. PRISM TESTS                                                   | 14   |
| 3.1 Procedures and Standards                                     | 14   |
| 3.2 Material                                                     | 15   |
| 3.2.1 Brick                                                      | 15   |
| 3.2.2 Mortar                                                     | 19   |
| 3.2.3 Capping                                                    | 27   |

| 3.3 Equipment                                             | 28  |
|-----------------------------------------------------------|-----|
| 3.4 Construction of the Prisms                            | 33  |
| 3.5 Testing the Prisms & the Results                      | 35  |
| 4. STATISTICAL ANALYSIS                                   | 52  |
| 4.1 Prism Compressive Strength: Old and New Data          | 52  |
| 4.1.1 Influencing Factors                                 | 55  |
| 4.1.2 Current Masonry Specification and the Gathered Data | 56  |
| 4.2 Mathematical Modeling                                 | 59  |
| 4.2.1 Model "A"                                           | 61  |
| 4.2.2 Model "B"                                           | 77  |
| 4.2.3 Model "C"                                           | 90  |
| 4.2.4 Model "D"                                           | 102 |
| 4.2.5 Model "E"                                           | 113 |
| 4.2.6 Model "F"                                           | 122 |
| 4.2.7 Model "G"                                           | 131 |
| 4.2.8 Height-to-Thickness Ratio Correction<br>Factors     | 141 |
| 4.3 Summary, Conclusion & Recommendations                 | 142 |
| Appendix                                                  |     |
| A. LITERATURE SURVEY                                      | 149 |
| B. UTA PRISM TEST RESULTS                                 | 188 |
| C. STATISTICAL ANALYSIS                                   | 200 |

| REFERENCES               | 232 |
|--------------------------|-----|
| BIOGRAPHICAL INFORMATION | 236 |

# LIST OF ILLUSTRATIONS

| Figure | Page                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1    | Collected Data from MSJC References:<br>Prism Compressive Strength versus Unit<br>Compressive Strength (Type S Mortar,<br>Commercial & SCPI Laboratories) |
| 2.2    | Prism Compressive Strength versus Unit<br>Compressive Strength (Type S Mortar,<br>Commercial & SCPI Laboratories)(26)                                     |
| 2.3    | Uncorrected Prism Compressive Strength<br>versus Unit Compressive Strength<br>(Type M Mortar, Since 1980)                                                 |
| 2.4    | Uncorrected Prism Compressive Strength<br>versus Unit Compressive Strength<br>(Type S Mortar, Since 1980)                                                 |
| 2.5    | Uncorrected Prism Compressive Strength<br>versus Unit Compressive Strength<br>(Type N Mortar, Since 1980)                                                 |
| 3.1    | Brick Unit "A" 17                                                                                                                                         |
| 3.2    | Brick Unit "B" 18                                                                                                                                         |
| 3.3    | Brick Unit "C"                                                                                                                                            |
| 3.4    | Brick Unit Being Tested                                                                                                                                   |
| 3.5    | Portland Cement                                                                                                                                           |
| 3.6    | Lime                                                                                                                                                      |
| 3.7    | Mortar Cement type S                                                                                                                                      |
| 3.8    | Masonry Cement type S 21                                                                                                                                  |

| 3.9 Masonry Cement type N.                                                                                                             | 21 |
|----------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.10 Mortar Cement type N                                                                                                              | 21 |
| 3.11 Mortar Cubes Being Prepared.                                                                                                      | 24 |
| 3.12 Mortar Cubes Prior to Testing                                                                                                     | 24 |
| 3.13 A Mortar Cube after Testing.                                                                                                      | 25 |
| 3.14 A Mortar Cube after Testing.                                                                                                      | 25 |
| 3.15 Working Surface for Capping.                                                                                                      | 27 |
| 3.16 Capped Prisms                                                                                                                     | 28 |
| 3.17 Heating Unit.                                                                                                                     | 29 |
| 3.18 Heating Unit.                                                                                                                     | 29 |
| 3.19 Boiler Unit                                                                                                                       | 30 |
| 3.20 Level                                                                                                                             | 30 |
| 3.21 Electronic balance.                                                                                                               | 31 |
| 3.22 60 kip Tension & Compression Testing Machine.                                                                                     | 31 |
| 3.23 500 kip Compression Testing Machine                                                                                               | 32 |
| 3.24 Twelve Cubic Feet Mixer                                                                                                           | 32 |
| 3.25 Flow Testing of a Mortar Mix                                                                                                      | 33 |
| 3.26 Brick Units Configured for Construction                                                                                           | 34 |
| 3.27 Certified Mason Building the Prisms                                                                                               | 34 |
| 3.28 Built Prisms Placed in Bags.                                                                                                      | 35 |
| 3.29 Prism with Approximate h/t ratio of Two Built with<br>Brick "A" and Type N Mortar Exhibiting Signs of<br>Conical Mode of Failure. | 36 |

| Brick           | with Approximate h/t ratio of Two Built with<br>"A" and Type S Mortar Exhibiting Signs of<br>al Mode of Failure.                                    | 37 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Brick<br>Vertic | with Approximate h/t ratio of Five Built with<br>"A" and Type N Mortar Exhibiting Signs of<br>al Splitting and Face-Shell Separation Modes<br>lure. | 38 |
| Brick<br>Vertic | with Approximate h/t ratio of Five Built with<br>"A" and Type S Mortar Exhibiting Signs of<br>al Splitting and Face-Shell Separation Modes<br>lure. | 39 |
| Brick           | with Approximate h/t ratio of Two Built with<br>"B" and Type N Mortar Exhibiting Signs of<br>al Mode of Failure.                                    | 40 |
| Brick           | with Approximate h/t ratio of Two Built with<br>"B" and Type S Mortar Exhibiting Signs of<br>al Mode of Failure.                                    | 41 |
| Brick<br>Vertic | with Approximate h/t ratio of Five Built with<br>"B" and Type N Mortar Exhibiting Signs of<br>al Splitting and Face-Shell Separation Modes<br>lure. | 42 |
| Brick<br>Vertic | with Approximate h/t ratio of Five Built with<br>"B" and Type S Mortar Exhibiting Signs of<br>al Splitting and Face-Shell Separation Modes<br>lure. | 43 |
| Brick           | with Approximate h/t ratio of Two Built with<br>"C" and Type N Mortar Exhibiting Signs of<br>al Mode of Failure.                                    | 44 |
| Brick           | with Approximate h/t ratio of Two Built with<br>"C" and Type S Mortar Exhibiting Signs of<br>al Mode of Failure.                                    | 45 |
| Brick<br>Vertic | with Approximate h/t ratio of Five Built with<br>"C" and Type N Mortar Exhibiting Signs of<br>al Splitting and Face-Shell Separation Modes<br>lure. | 46 |
|                 |                                                                                                                                                     |    |

| 3.40 | Prism with Approximate h/t ratio of Five Built with<br>Brick "C" and Type S Mortar Exhibiting Signs of<br>Vortical Splitting and Face Shell Separation Modes |    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | Vertical Splitting and Face-Shell Separation Modes<br>of Failure.                                                                                            | 47 |
| 4.1  | Existing Data since 1980 Literature Survey,<br>Type M Mortar.                                                                                                | 52 |
| 4.2  | Existing Data since 1980 Literature Survey,<br>Type S Mortar.                                                                                                | 53 |
| 4.3  | Existing Data since 1980 Literature Survey,<br>Type N Mortar                                                                                                 | 53 |
| 4.4  | Literature Survey and Additional Testing,<br>Type S Mortar.                                                                                                  | 54 |
| 4.5  | Literature Survey and Additional Testing,<br>Type N Mortar                                                                                                   | 54 |
| 4.6  | Type M Mortar                                                                                                                                                | 57 |
| 4.7  | Type S Mortar.                                                                                                                                               | 57 |
| 4.8  | Type N Mortar                                                                                                                                                | 58 |
| 4.9  | Type M Mortar                                                                                                                                                | 70 |
| 4.10 | Type S Mortar.                                                                                                                                               | 71 |
| 4.11 | Type N Mortar                                                                                                                                                | 71 |
| 4.12 | Types M & S Mortar                                                                                                                                           | 72 |
| 4.13 | Type M Mortar                                                                                                                                                | 75 |
| 4.14 | Type S Mortar.                                                                                                                                               | 76 |
| 4.15 | Type N Mortar                                                                                                                                                | 77 |
| 4.16 | Type M Mortar                                                                                                                                                | 85 |
| 4.17 | Type S Mortar.                                                                                                                                               | 85 |

| 4.18 Type N Mortar       | 86  |
|--------------------------|-----|
| 4.19 Types M & S Mortar. | 86  |
| 4.20 Type M Mortar.      | 88  |
| 4.21 Type S Mortar.      | 89  |
| 4.22 Type N Mortar       | 90  |
| 4.23 Type M Mortar       | 97  |
| 4.24 Type S Mortar.      | 97  |
| 4.25 Type N Mortar       | 98  |
| 4.26 Types M & S Mortar  | 98  |
| 4.27 Type M Mortar       | 100 |
| 4.28 Type S Mortar.      | 101 |
| 4.29 Type N Mortar       | 102 |
| 4.30 Type M Mortar       | 109 |
| 4.31 Type S Mortar.      | 109 |
| 4.32 Type N Mortar       | 110 |
| 4.33 Types M & S Mortar  | 110 |
| 4.34 Type M Mortar       | 111 |
| 4.35 Type S Mortar.      | 112 |
| 4.36 Type N Mortar       | 113 |
| 4.37 Type M Mortar       | 118 |
| 4.38 Type S Mortar.      | 118 |
| 4.39 Type N Mortar       | 119 |

| 4.40 Types M & S Mortar.                                           | . 119 |
|--------------------------------------------------------------------|-------|
| 4.41 Type M Mortar                                                 | . 120 |
| 4.42 Type S Mortar.                                                | . 121 |
| 4.43 Type N Mortar                                                 | . 122 |
| 4.44 Type M Mortar                                                 | . 127 |
| 4.45 Type S Mortar.                                                | . 127 |
| 4.46 Type N Mortar                                                 | . 128 |
| 4.47 Types M & S Mortar.                                           | . 128 |
| 4.48 Type M Mortar                                                 | . 129 |
| 4.49 Type S Mortar.                                                | . 130 |
| 4.50 Type N Mortar                                                 | . 131 |
| 4.51 Type S Mortar.                                                | . 135 |
| 4.52 Type N Mortar                                                 | . 136 |
| 4.53 Type S Mortar.                                                | . 137 |
| 4.54 Type N Mortar                                                 | . 138 |
| 4.55 Fifth Percentile Predictions by All Models,<br>Type M Mortar. | 144   |
| 4.56 Fifth Percentile Predictions by All Models,<br>Type S Mortar. | . 144 |
| 4.57 Fifth Percentile Predictions by All Models,<br>Type N Mortar  | . 145 |

# LIST OF TABLES

| Table | Р                                                                  | age |
|-------|--------------------------------------------------------------------|-----|
| 1.1   | Compressive Strength of Masonry- ACI 530.1-05                      | 2   |
| 1.2   | Prism Compressive Strength Correction Factors-<br>ASTM C 1314-03b. | 4   |
| 3.1   | Clay Brick Unit "A" Properties                                     | 15  |
| 3.2   | Clay Brick Unit "B" Properties                                     | 16  |
| 3.3   | Clay Brick Unit "C" Properties                                     | 16  |
| 3.4   | Mortar Cube Compressive Strength, Brick "A"                        | 22  |
| 3.5   | Mortar Cube Compressive Strength, Brick "B"                        | 23  |
| 3.6   | Mortar Cube Compressive Strength, Brick "C"                        | 23  |
| 3.7   | Properties of Mortar.                                              | 26  |
| 3.8   | Prism Test Results for Brick "A"                                   | 49  |
| 3.9   | Prism Test Results for Brick "B"                                   | 50  |
| 3.10  | OPrism Test Results for Brick "C"                                  | 51  |
| 4.1   | Mathematical Models                                                | 50  |
| 4.2   | Available 32 Combinations                                          | 52  |
| 4.3   | Model "A" Type III SS Values                                       | 57  |
| 4.4   | MSJC Design Values and Results from Model "A"                      | 74  |
| 4.5   | Available 15 Combinations                                          | 80  |

| 4.6  | Model "B" Type III SS Values                                           | 82  |
|------|------------------------------------------------------------------------|-----|
| 4.7  | Available 10 Combinations                                              | 93  |
| 4.8  | Model "C" Type III SS Values                                           | 95  |
| 4.9  | Available 8 Combinations                                               | 105 |
| 4.10 | Model "D" Type III SS Values                                           | 106 |
| 4.11 | Available 3 Combinations                                               | 115 |
| 4.12 | 2 Model "E" Type III SS Values                                         | 116 |
| 4.13 | Available 3 Combinations                                               | 124 |
| 4.14 | Model "F" Type III SS Values                                           | 125 |
| 4.15 | Available 2 Combinations                                               | 133 |
| 4.16 | Model "G" Type III SS Values                                           | 134 |
| 4.17 | MSJC Design Values and Results from Model "G",<br>Types M & S Mortar   | 139 |
| 4.18 | MSJC Design Values and Results from Model "G",<br>Type N Mortar        | 139 |
| 4.19 | Comparison of MSJC Specification and Model "G"<br>(Types M & S Mortar) | 140 |
|      | Comparison of MSJC Specification and Model "G"<br>(Type N Mortar)      | 141 |
| 4.21 | Height-to-Thickness Ratio Correction Factors                           | 142 |
| 4.22 | 2 Model "G" Results and MSJC Design Values                             | 148 |
| A.1  | Literature Survey since 1980                                           | 150 |
| B.1  | UTA Test Results, Brick "A"                                            | 189 |
| B.2  | UTA Test Results, Brick "B"                                            | 193 |

| B.3 | UTA Test Results, Brick "C"                                                                                          | 196 |
|-----|----------------------------------------------------------------------------------------------------------------------|-----|
| C.1 | Model "A" Fifth Percentile Prism Compressive<br>Strength Predictions Targeted at Height-to-Thickness<br>Ratio of Two | 201 |
| C.2 | Model "B" Fifth Percentile Prism Compressive<br>Strength Predictions Targeted at Height-to-Thickness<br>Ratio of Two | 214 |
| C.3 | Model "C" Fifth Percentile Prism Compressive<br>Strength Predictions Targeted at Height-to-Thickness<br>Ratio of Two | 221 |
| C.4 | Model "D" Fifth Percentile Prism Compressive<br>Strength Predictions Targeted at Height-to-Thickness<br>Ratio of Two | 225 |
| C.5 | Model "E" Fifth Percentile Prism Compressive<br>Strength Predictions Targeted at Height-to-Thickness<br>Ratio of Two | 228 |
| C.6 | Model "F" Fifth Percentile Prism Compressive<br>Strength Predictions Targeted at Height-to-Thickness                 | 229 |
| C.7 | Model "G" Fifth Percentile Prism Compressive<br>Strength Predictions Targeted at Height-to-Thickness<br>Ratio of Two | 231 |

#### CHAPTER 1

#### INTRODUCTION

#### 1.1 Background

It is important in masonry design to determine the appropriate ultimate compressive strength of the masonry material. Designers can use an assumed compressive strength (option #1) or have tests (option #2) conducted to establish a more accurate and typically higher value. Option #2 tests are done on masonry prisms, which are small assemblages representing the actual construction, to determine the masonry ultimate compressive strength. The minimum and maximum prism sizes are dictated by the governing code and the capability of the testing apparatus. Once the test results are obtained, they can be used in the design of the masonry.

#### 1.1.1 Current MSJC Design Values

In various design codes one can find tabular values of compressive strength for masonry as a function of the mortar type (M, S, or N as defined in ASTM C 270-03b (29)) and the unit compressive strength. In ACI 530.1-05 (Specification for Masonry Structures)(25), presented in Table 1.1, the compressive strength of masonry is based on the compressive strength of clay masonry units and type of mortar used in construction.

| 1                  | pressive strength of clay<br>its, psi (MPa) | Net area compressive strength |  |  |
|--------------------|---------------------------------------------|-------------------------------|--|--|
| Type M or S mortar | Type N mortar                               | of masonry, psi (MPa)         |  |  |
| 1700 (11.72)       | 2100 (14.48)                                | 1000 (6.90)                   |  |  |
| 3350 (23.10)       | 4150 (28.61)                                | 1500 (10.34)                  |  |  |
| 4950 (34.13)       | 6200 (42.75)                                | 2000 (13.79)                  |  |  |
| 6600 (45.51)       | 8250 (56.88)                                | 2500 (17.24)                  |  |  |
| 8250 (56.88)       | 10,300 (71.02)                              | 3000 (20.69)                  |  |  |
| 9900 (68.26)       |                                             | 3500 (24.13)                  |  |  |
| 13,200 (91.01)     |                                             | 4000 (27.58)                  |  |  |

Table 1.1: Compressive Strength of Masonry- ACI 530.1-05

It is stated in the Commentary on Specification for Masonry Structures, ACI 530.1-05 (26), that compressive strength of clay masonry values in Table 1.1 were derived using Equation 1.1 from Reference # 24.

$$f'_{m} = A(400 + Bf_{u})$$
Equation 1.1

where

A = 1 (inspected masonry)

B = 0.2 for Type N Portland cement-lime mortar, 0.25 for Type S or M Portland cement-lime mortar

 $f_u$  = average compressive strength of brick, psi

 $f'_m$  = specified compressive strength of masonry

(Equation 1.1 is for inch-pound units only)

However, the values in Table 1.1 are based on prisms with height-to-thickness ratios (h/t ratio) of 2 and Equation 1.1 is based on prisms with height-to-thickness ratios of 5. Since smaller h/t ratios yield higher compressive strengths, the values in Table 1.1

represent Equation 1.1 values adjusted by a factor of 1.22 (increase of 22%), see Table 1.2.

The data that is the basis for Equation 1.1 (h/t ratio=5) and Table 1.1 (h/t ratio=2) is from the following sources:

 "Recommended Practice for Engineered Brick Masonry," Brick Institute of America (formerly Structural Clay Products Association), Reston, VA, 1969.

2) Brown. R.H. and Borchelt, J.G., "Compression Tests of Hollow Brick Units and Prisms," Masonry Components to Assemblages, ASTM STP 1063, J.H. Matthys, editor, American Society for Testing and Materials, Philadelphia, PA, 1990, p.p. 263-278. The data presented in source No. 1 is itself based on reports and studies performed earlier than 1970. Therefore, there is a need to investigate the relationship between the

prism strength and the influencing factors using more recent data to either confirm or improve the current masonry compressive strength design table in the MSJC Specification.

American Society for Testing and Materials (ASTM) standard C 1314-03b is the current standard test method for determining the compressive strength of masonry prisms. Under this standard, masonry prisms are to consist of a minimum of two units with a height-to-thickness ratio (h/t, ratio of prism height to least lateral dimension of prism) between 1.3 and 5.0. ASTM C1314-03b offers correction factors for masonry prism compressive strength based on the height-to-thickness ratio of the prisms, see Table 1.2. This standard uses a height-to-thickness ratio of 2 for the basic prism compressive strength, f'm.

| h/t        | 1.3  | 1.5  | 2.0 | 2.5  | 3.0  | 4.0  | 5.0  |
|------------|------|------|-----|------|------|------|------|
| Correction | 0.75 | 0.86 | 1.0 | 1.04 | 1.07 | 1.15 | 1.22 |
| Factor     |      |      |     |      |      |      |      |

Table 1.2: Prism Compressive Strength Correction Factors- ASTM C 1314-03b

Other potential influencing factors should be looked at in conjunction with the h/t ratio to develop the appropriate prism correction factors. In this research the following criteria were attempted to be collected and analyzed for each test:

- Unit properties:
  - o Solid versus hollow,
  - o Unit compressive strength,
- Mortar properties:
  - o Mortar joint thickness,
  - o Mortar mix (Portland cement lime, mortar cement, masonry cement),
  - Mortar type (M, S, or N),
  - o Bedding (full-bed or face-shell),
  - Mortar cube strength,
- Prism properties:
  - o Height-to-thickness ratio,
  - o Ultimate compression load,
  - o Prism compressive strength,
  - o Curing method,
  - o Curing time,
- Grout properties:

- Presence or absence of grout,
- o Grout type (fine, coarse, or self-consolidating),
- o Grout strength.

Due to limited availability of data the most comprehensive mathematical model developed in this research – Model "A" – explores the following predictor variables:

- The compressive strength of the clay masonry units,
- Curing method (moist cured: cured in sealed bags, air cured: cured in room air, and moist/air cured: moist cured for the first seven days and air dried for the remaining of their curing period),
- Curing time (7 or 28 days),
- Mortar type: M, S, or N (compressive strength),
- Presence or lack of grout in the assemblage,
- Units being solid or hollow (solid units have net areas equal to or greater than 75% of their gross areas, and hollow units have net areas less than 75% of their gross areas),
- Mortar joints being face-shell or full-bed (full-bed is when mortar is placed the total face bed of the unit, and face-shell is when mortar is placed on face shells only),
- Height-to-thickness ratio (h/t ratio).

Due to limited information and the current testing standards six other models were developed that either eliminate or ignore certain predictor variables to create less complex mathematical relationships.

#### CHAPTER 2

#### LITERATURE SURVEY

#### 2.1 Available Clay Brick Prism Compressive Strength Test Data

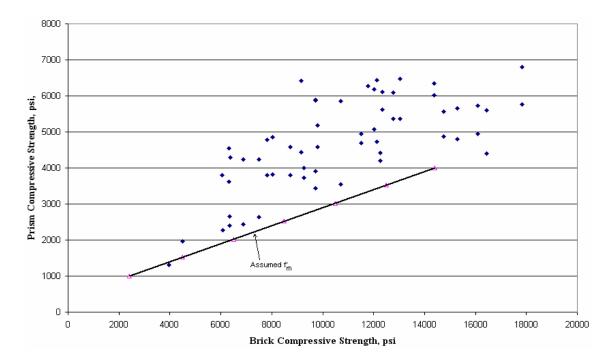
There have been numerous studies done on the behavior of masonry prisms under axial compression. The effects of variables such as the height-to-thickness ratio of the prism, mortar type and grout strength, unit geometry, and various capping compounds have been the point of focus of many researchers. Most of the research reports have been presented and published in various conferences around the globe; however, some are unpublished. Some of the data that is the basis of the formula, the graphs, and the design tables presented in various parts of the Masonry Standards Joint Committee (MSJC) specification were the result of research done by the former Brick Institute of America, now the Brick Industry Association (BIA).

The bulk of the available clay brick prism compressive strength data is contained within the public domain. Various publications and sources were used to compile a thorough database of such data. MSJC has assembled a "Unit Strength Task Group" that is in charge of collecting and analyzing the entire concrete masonry prism compressive strength test results available, and updating the concrete masonry compressive strength design table in the MSJC Specification. Through communication with the chairperson of the Task Group and other BIA personnel, the author was given the opportunity to collect the corresponding data for clay brick prisms. Upon analysis and further required testing, modifications to the existing design table are proposed. The complied database used in this research contains the North American prism test data performed after 1980 to better represent the current material available on the market. The collection of the following information for each test (if available) was agreed upon by the MSJC Unit Strength Task Group.

Unit properties: masonry type (clay or concrete), unit geometry, number of units in prism, unit strength

- Mortar properties: mortar mix (Portland cement-lime, masonry cement, mortar cement), mortar type by specifications or by properties as specified in ASTM C 270-03b (M, S, or N), bedding (face shell, or full mortar bedding), and mortar cube strength.
- Prism Properties: prism height-to-thickness ratio, net area, ultimate load, prism strength, modulus of elasticity, curing method and curing duration.
- Grout: presence or lack of grout.

In an effort to collect all the available test data the following sources were reviewed:


- 1) Proceedings of North American Masonry Conferences,
- 2) Proceedings of Canadian Masonry Symposiums,
- 3) Proceedings of International Brick and Block Masonry Conferences,
- 4) Proceedings of International Masonry Conferences,
- 5) The Masonry Society (TMS) Journals,
- 6) The ASTM Special Technical Publications (STP),

- Unpublished test reports in Research Reports done by BIA formerly known as Structural Clay Products Institute.
- Published & unpublished reports from Atkinson-Noland & Associates, Inc. library.
- 9) Papers from the National Concrete Masonry Association library.
- Specification for Masonry Structures reported by Masonry Standards Joint Committee,
- Commentary on Specification for Masonry Structures reported by Masonry Standards Joint Committee.

The collected data is presented in Appendix A of this report.

#### 2.1.1. Current Design Values

As described earlier in Chapter 1, the Commentary on Specification for Masonry Structures of ACI 530.1-05 presents an equation (Equation 1.1) that is the basis of the values for compressive strength in Table 1.1. There are also two graphs in the aforementioned Specification that show the data points that are the basis for the developed Equation 1.1. The first step in the analysis was to generate a graph using data from the same references used in the MSJC Specification, see Figure 2.1, and compare it with the graph in the Commentary. The prism compressive strengths in Figure 2.1 are not modified using correction factors based on their height-to-thickness ratios. The graph in Figure 2.1 generated by the author and the one from the MSJC Commentary are in agreement. The next step is to compile a database following the



guidelines set for this research and find the areas where further testing might be of needed.

Figure 2.1: Collected Data from MSJC References: Prism Compressive Strength versus Unit Compressive Strength (Type S Mortar, Commercial & SCPI Laboratories).

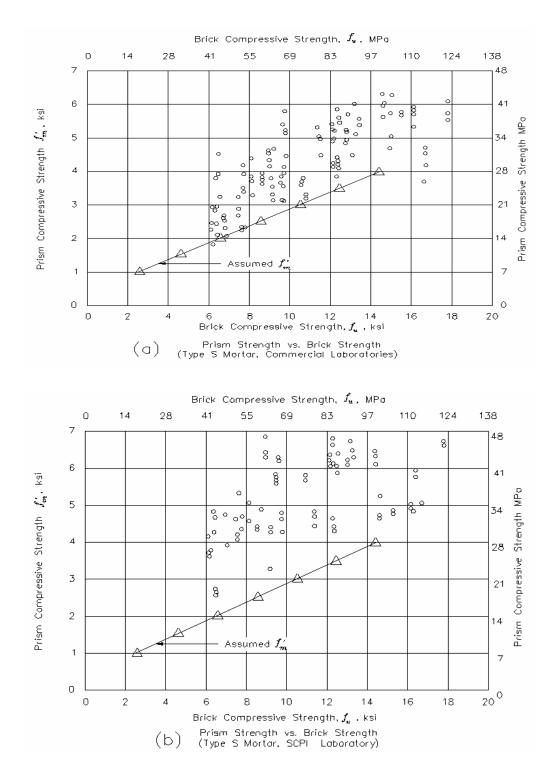



Figure 2.2: Prism Compressive Strength versus Unit Compressive Strength (Type S Mortar, Commercial & SCPI Laboratories)(26).

#### 2.1.2. Is any Additional Testing Required?

Are current values in the MSJC Specification accurate in light of current marketplace materials and test standards? Should they be increased or decreased based on new data? Are there any gaps in the current data that need to be addressed? These are some of the questions that need to be answered to determine whether further testing and analysis are justified.

The clay masonry compressive strength design table in the current MSJC Specification, see Table 1.1, covers a unit compressive strength range of 1,700 psi to 13,200 psi for Types M & S mortars and 2,100 psi to 10,300 psi for Type N mortar, and the associated compressive strengths are based on prisms compressive strengths adjusted to h/t ratio of two. The North American data available after 1980 was used to generate graphs in Figures 2.3, 2.4, and 2.5. As is evident in these graphs, there is a void in prism test data in the lower unit compressive strength ranges. These ranges, described below, are the areas where additional testing should be performed to carry out a more reliable statistical analysis.

- In Figure 2.2, mortar type M, additional data is needed for unit compressive strengths between 4,000 and 8,000 psi.
- In Figure 2.3, mortar type S, additional data is needed for unit compressive strengths between 5,000 and 8,000 psi.
- In Figure 2.4, mortar type N, additional data is needed for unit compressive strengths between 4,000 and 8,000 psi.

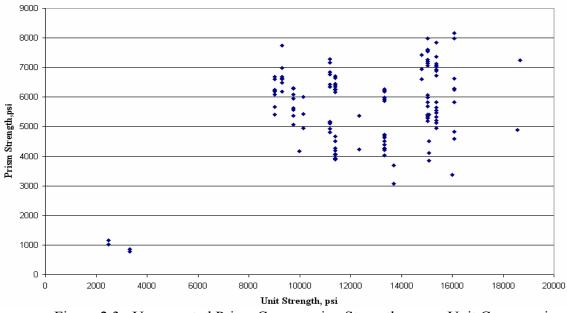



Figure 2.3: Uncorrected Prism Compressive Strength versus Unit Compressive Strength (Type M Mortar, Since 1980).

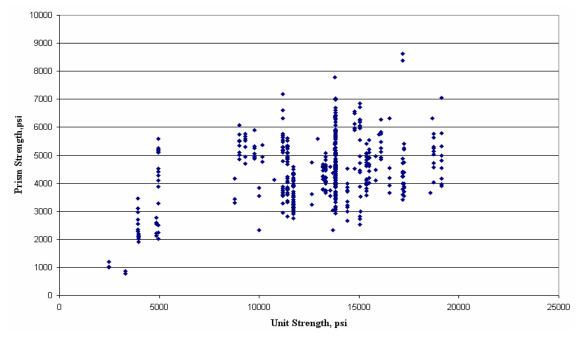



Figure 2.4: Uncorrected Prism Compressive Strength versus Unit Compressive Strength (Type S Mortar, Since 1980).

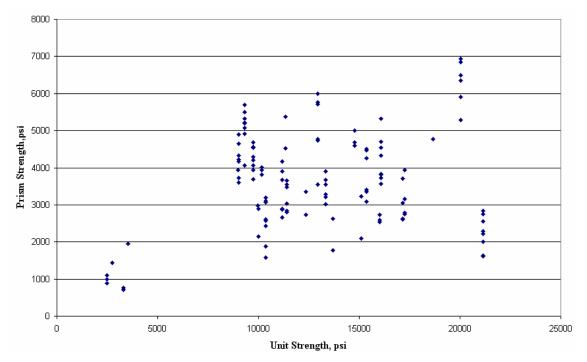



Figure 2.5: Uncorrected Prism Compressive Strength versus Unit Compressive Strength (Type N Mortar, Since 1980).

#### CHAPTER 3

#### PRISM TESTS

#### 3.1 Procedures and Standards

As described in Chapter 2, a range of unit compressive strengths for further prism testing was identified for each mortar type. Three types of brick were chosen for additional testing. Approximately sixty prisms were built with each type of brick; ten prisms for each of the six mortar types. For the ten prisms for each mortar type, five had an approximate heightto-thickness (h/t) ratio of five, and five had an approximate h/t ratio of two.

Overall, a total of 179 (one short of 180 due to insufficient number of available type "C" bricks) prisms were built and tested. All the applicable ASTM standards were followed in building, curing, capping, and testing of the prisms and the components, as follows:

ASTM C1552-03a: Standard Practice for Capping Concrete Masonry Units, Related Units and Masonry Prisms for Compression testing.

ASTM C1314-03b: Standard Test Method for Compressive Strength of Masonry Prisms.

ASTM C270-03b: Standard Specification for Mortar for Unit Masonry.

ASTM C216-04b: Standard Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale).

ASTM C67-03a: Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile.

14

#### 3.2 Material

#### 3.2.1. Brick

The properties of the three types of brick (named A, B, and C) used in prism construction are tabulated in Tables 3.1, 3.2, and 3.3. The units are shown in Figures 3.1, 3.2, and 3.3. All the units used in testing had a net area that exceeded 75% of their gross area. Thus, the compressive strength of the units are calculated based on their gross areas,

Note: The following apply to Tables 3.1, 3.2, and 3.3:

IRA: Initial Rate of Absorption, expressed in grams per minute per 30 in<sup>2</sup>.

Cold Water Abs.: Absorption after unit is submerged in cold water for 24 hrs.

Boiling Water Abs.: Absorption after unit is submerged in boiling water for 5 hrs.

Sat. Coef.: Saturation Coefficient (ratio of cold water absorption to boiling water absorption),

Net/Gross Area: The net area of the unit divided by its gross area.

Gross Area: The area of the unit including the openings (cores).

Net Area: The area of the unit excluding the area of the cores.

Ultimate Compressive Strength: Calculated using the gross area of the unit, psi.

|            |       | Cold Water | Boiling     | Sat.  | Net/Gross | Ultimate      |
|------------|-------|------------|-------------|-------|-----------|---------------|
| Unit Brick | IRA   | Abs., %    | Water Abs., | Coef. | Area, %   | Compressive   |
|            |       |            | %           |       |           | Strength, psi |
| A1         | 29.85 | 12.2       | 16.2        | 0.75  | 85        | 7596          |
| A2         | 30.19 | 11.3       | 15.4        | 0.74  | 84        | 9761          |
| A3         | 20.75 | 9.1        | 12.7        | 0.71  | 86        | 10307         |
| A4         | 30.81 | 12.0       | 16.1        | 0.75  | 86        | 7317          |
| A5         | 30.79 | 11.9       | 16.1        | 0.74  | 86        | 8468          |
| AVERAGE    | 28.48 | 11.3       | 15.3        | 0.74  | 85        | 8690          |
| C.O.V.     | -     | -          | -           | -     | -         | 15.1%         |

Table 3.1: Clay Brick Unit "A" Properties

|            |       | Cold    | Boiling | Sat.  | Net/Gross | Ultimate      |
|------------|-------|---------|---------|-------|-----------|---------------|
| Unit Brick | IRA   | Water   | Water   | Coef. | Area, %   | Compressive   |
|            |       | Abs., % | Abs., % |       |           | Strength, psi |
| B1         | 16.95 | 5.4     | 8.7     | 0.62  | 81        | 8906          |
| B2         | 10.79 | 5.1     | 8.7     | 0.59  | 81        | 7403          |
| B3         | 14.38 | 5.1     | 8.7     | 0.59  | 81        | 7786          |
| B4         | 12.94 | 5.2     | 8.6     | 0.60  | 80        | 8788          |
| B5         | 16.36 | 5.1     | 8.5     | 0.60  | 81        | 7934          |
| AVERAGE    | 14.28 | 5.2     | 8.6     | 0.60  | 81        | 8163          |
| C.O.V.     | -     | -       | -       | -     | -         | 8.0%          |

Table 3.2: Clay Brick Unit "B" Properties

Table 3.3: Clay Brick Unit "C" Properties

|            |       | Cold    | Boiling     | Sat.  | Net/Gross | Ultimate      |
|------------|-------|---------|-------------|-------|-----------|---------------|
| Unit Brick | IRA   | Water   | Water Abs., | Coef. | Area, %   | Compressive   |
|            |       | Abs., % | %           |       |           | Strength, psi |
| C1         | 50.98 | 7.8     | 11.3        | 0.69  | 81        | 4738          |
| C2         | 46.43 | 6.2     | 9.3         | 0.67  | 80        | 5715          |
| C3         | 52.77 | 7.1     | 10.1        | 0.70  | 80        | 5320          |
| C4         | 45.39 | 6.9     | 9.7         | 0.71  | 81        | 5477          |
| C5         | 45.73 | 7.2     | 10.6        | 0.68  | 81        | 5392          |
| AVERAGE    | 48.26 | 7.2     | 8.3         | 0.69  | 81        | 5328          |
| C.O.V.     | -     | -       | -           | -     | -         | 6.8%          |

The capped half bricks in Figures 3.1 and 3.2 were used for compressive strength testing, and the other halves were used to determine the other physical properties of the units. Bricks were capped and tested for their compressive strengths in accordance with the applicable ASTM standards. A brick unit being tested is shown in Figure 3.4.

For brick types "A" and "B" half bricks and for type "C" brick full bricks were used to determine the physical properties of the units shown in Tables 3.1, 3.2 and 3.3.



Figure 3.1: Brick Unit "A".



Figure 3.2: Brick Unit "B".



Figure 3.3: Brick Unit "C".



Figure 3.4: Brick Unit Being Tested.

### 3.2.2. Mortar

Six types of mortar were used in the construction of the prisms. The mortars were prepared using the *Proportion Specification Requirements* of ASTM C270-03b.

The mortar types and the proportions used are as follows:

- Portland Cement-Lime Type S: One part Portland cement, one-half part lime, four and a half part sand,
- Mortar Cement-Type S: One part mortar cement type S, three parts sand,
- Masonry Cement-type S: One part masonry cement type S, three parts sand,
- Portland Cement-Lime Type N: One part Portland cement, one part lime, 6 parts sand,
- Mortar Cement Type N: One part mortar cement type N, three parts sand,
- Masonry Cement Type N: One part masonry cement type N, three parts sand.
   The products used are shown in Figures 3.5 thru 3.10.

- Type I/II Portland Cement manufactured by TXI Operations,
- Morta-Lok Type S Masons Hydrated Lime manufactured by Rockwell Lime Company,
- Hill Country Mortar Cement Type S manufactured by Headwaters Construction Materials,
- Best Masonry Cement Type S manufactured by Headwaters Construction Materials,
- Hill Country Mortar cement Type N manufactured by ISG Resources,
- Masonry Cement Type N manufactured by TXI Operations.




Figure 3.5: Portland Cement Type I/II.

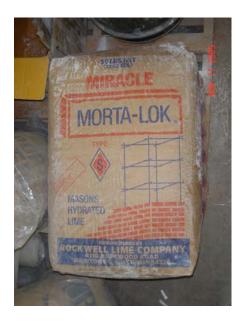



Figure 3.6: Lime.

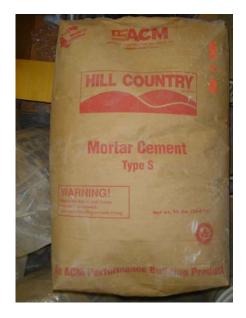



Figure 3.7: Mortar Cement Type S.



Figure 3.8: Masonry Cement Type S.



Figure 3.9: Masonry Cement Type N.



Figure 3.10: Mortar Cement Type N.

Three 2"x2"x2" cubes were prepared for each type of mortar, bag-cured and tested after 28 days along with prisms. The results are shown in Tables 3.4, 3.5, and 3.6 for Bricks "A", "B", And "C", respectively.

Note: The following apply to Tables 3.4, 3.5, and 3.6.

Mortar type S1: Portland cement-lime type S

Mortar type S2: Mortar cement type S

Mortar type S3: Masonry cement type S

Mortar type N1: Portland cement-lime type N

Mortar type N2: Mortar cement type N

Mortar type N3: Masonry cement type N

Mortar cubes being prepared, prior to testing, and after testing are shown in Figures

3.11, 3.12, 3.13, and 3.14.

| Mortar | Cube #1, | Cube #2, | Cube #3, | Average, | Standard   | C.O.V., |
|--------|----------|----------|----------|----------|------------|---------|
| Туре   | psi      | psi      | psi      | psi      | Deviation, | %       |
|        |          |          |          |          | ps1        |         |
| S1     | 2658     | 2850     | 2634     | 2714     | 118.4      | 4.4     |
| S2     | 2150     | 2434     | 2277     | 2287     | 142.3      | 6.2     |
| S3     | 1829     | 1718     | 1755     | 1767     | 56.5       | 3.2     |
| N1     | 1247     | 1207     | -        | 1227     | 28.3       | 2.3     |
| N2     | 1201     | 1241     | 1167     | 1203     | 37.0       | 3.1     |
| N3     | 1230     | 1261     | 1310     | 1267     | 40.3       | 3.2     |

Table 3.4: Mortar Cube Compressive Strength, Brick "A"

| Mortar | Cube #1, | Cube #2, | Cube #3, | Average, | Standard Deviation, | C.O.V., |
|--------|----------|----------|----------|----------|---------------------|---------|
| Туре   | psi      | psi      | psi      | psi      | psi                 | %       |
|        |          |          |          |          |                     |         |
| S1     | 2635     | 2690     | 2786     | 2704     | 76.4                | 2.8     |
| S2     | 1943     | 1730     | 1910     | 1861     | 114.6               | 6.2     |
| S3     | 1363     | 1317     | 1469     | 1383     | 77.9                | 5.6     |
| N1     | 1617     | 1479     | 1457     | 1517     | 86.7                | 5.7     |
| N2     | 1262     | 1212     | 1236     | 1237     | 25.0                | 2.0     |
| N3     | 1042     | 1060     | 1038     | 1047     | 11.7                | 1.1     |

Table 3.5: Mortar Cube Compressive Strength, Brick "B"

Table 3.6: Mortar Cube Compressive Strength, Brick "C"

| Mortar | Cube #1, | Cube #2, | Cube #3, | Average, | Standard   | C.O.V., |
|--------|----------|----------|----------|----------|------------|---------|
| Туре   | psi      | psi      | psi      | psi      | Deviation, | %       |
|        |          |          |          |          | psi        |         |
| S1     | 2101     | 1907     | 1846     | 1952     | 133.2      | 6.8     |
| S2     | 2082     | 1832     | 2122     | 2012     | 157.2      | 7.8     |
| S3     | 1218     | 1260     | 1331     | 1270     | 57.1       | 4.5     |
| N1     | 1170     | 933      | 1103     | 1069     | 122.2      | 11.4    |
| N2     | 867      | 876      | 812      | 851      | 34.6       | 4.1     |
| N3     | 838      | 735      | 656      | 743      | 91.3       | 12.3    |



Figure 3.11: Mortar Cubes Being Prepared.



Figure 3.12: Mortar Cubes Prior to Testing.



Figure 3.13: A Mortar Cube after Testing.



Figure 3.14: A Mortar Cube after Testing.

|               | Water, | Flow, | Cone         | **Air, |
|---------------|--------|-------|--------------|--------|
| * Mortar Type | lbs    | %     | Pentrometer, | %      |
|               |        |       | mm           |        |
| S-1-A         | 32.00  | 137   | 66           | 1.3    |
| S-2-A         | 28.50  | 128   | 58           | 2.7    |
| S-3-A         | 27.75  | 128   | 65           | 2.5    |
| N-1-A         | 35.80  | 125   | 67           | 1.0    |
| N-2-A         | 30.50  | 134   | 69           | 1.5    |
| N-3-A         | 26.20  | 138   | 70           | 11.0   |
| S-1-B         | 31.25  | 129   | 66           | 1.1    |
| S-2-B         | 27.50  | 125   | 66           | 1.1    |
| S-3-B         | 26.0   | 131   | 67           | 2.0    |
| N-1-B         | 33.25  | 118   | 61           | 1.5    |
| N-2-B         | 28.25  | 129   | 65           | 1.9    |
| N-3-B         | 23.75  | 130   | 66           | 10.6   |
| S-1-C         | 31.50  | 121   | 63           | 1.0    |
| S-2-C         | 27.50  | 130   | 60           | 3.0    |
| S-3-C         | 26.50  | 145   | 74           | 1.7    |
| N-1-C         | 31.75  | 122   | 62           | 1.6    |
| N-2-C         | 27.50  | 123   | 61           | 2.8    |
| N-3-C         | 24.75  | 130   | 66           | 11.0   |

Table 3.7: Properties of Mortar

\* The mortar label consists of three characters; the first character is a letter designating whether it is type S or N, the second character is a number (one for Portland cement-lime, two for mortar cement, and three for masonry cement), and the third character is a letter that corresponds with the type of brick, for which the mortar was used.

\*\* Measured using the pressure-meter method.

# 3.2.3. Capping

Top and bottom bearing surfaces of specimens were capped using a transparent piece of glass that was secured and leveled horizontally on a flat working surface, as shown in Figure 3.14. The prisms shown in Figure 3.15 are capped and ready to be tested.



Figure 3.15: Working Surface for Capping.



Figure 3.16: Capped Prisms.

## 3.3 Equipment

The equipments used in this study include but are not limited to the following:

- Heating Unit, Figures 3.17 and 3.18,
- Boiler Unit, Figure 3.19,
- Level, Figure 3.20,
- Electronic Balance, Figure 3.21,
- 60 kip Tension-Compression Testing Machine, Figure 3.22,
- 500 kip Compression Testing Machine, Figure 3.23
- Twelve Cubic Feet Mixer, Figure 3.24.



Figure 3.17: Heating Unit.



3.18: Heating Unit.



Figure 3.19: Boiler Unit.



Figure 3.20: Level.



Figure 3.21: Electronic Balance.



Figure 3.22: 60 kip Tension-Compression Testing Machine.



Figure 3.23: 500 kip Compression Testing Machine.



Figure 3.24: Twelve Cubic Feet Mixer.

## <u>3.4 Construction of the Prisms</u>

The prisms were built by a certified mason. The mason was directed to provide full bed mortar and joints with a thickness of approximately 3/8" for all prisms. The prisms were placed in two plastic bags to be cured in accordance with the applicable ASTM standards. Figures 3.25 thru 3.28 show various functions of the construction.



Figure 3.25: Flow Testing of a Mortar Mix.



Figure 3.26: Brick Units Configured for Construction.



Figure 3.27: Certified Mason Building the Prisms.



Figure 3.28: Built Prisms Placed in Bags.

#### 3.5 Testing the Prisms & the Results

Twenty-Six days after construction, the prisms were removed from the bags and capped on both top and bottom bearing surfaces. The prisms were tested using the 500 kip compression testing machine 28 days after they were built. The prisms were loaded as described in ASTM C1314-03b.

The prisms built with type N mortar failed in a less explosive manner than the ones built with type S mortar. The prisms with approximate h/t ratios of 2 failed in conical or semi-conical modes of failure. The prisms with approximate h/t ratios of 5, failed in a combination of vertical splitting and face-shell separation modes of failure. Most of the prisms with approximate h/t ratios of 5 experienced a vertical crack about the middle of the longer face at about three-quarters of their final compressive loading, which caused the force shown by the equipment as being applied to the specimen to drop slightly and then to continue increasing until failure. Examples of tested prisms are shown in Figures 3.29 thru 3.40. Vertical crack is defined as a crack extending vertically on a face of the prism. Conical and face-shell separation modes of failure are based on the sketches provided in ASTM C 1314-03b (FIG. 4 Sketches of Mode of Failure).



Figure 3.29: Prism with Approximate h/t Ratio of Two Built with Brick "A" and Type N Mortar Exhibiting Signs of Conical Mode of Failure.



Figure 3.30: Prism with Approximate h/t Ratio of Two Built with Brick "A" and Type S Mortar Exhibiting Signs of Conical Mode of Failure.



Figure 3.31: Prism with Approximate h/t Ratio of Five Built with Brick "A" and Type N Mortar Exhibiting Signs of Vertical Splitting and Face-Shell Separation Modes of Failure.



Figure 3.32: Prism with Approximate h/t Ratio of Five Built with Brick "A" and Type S Mortar Exhibiting Signs of Vertical Splitting and Face-Shell Separation Modes of Failure.



Figure 3.33: Prism with Approximate h/t Ratio of Two Built with Brick "B" and Type N Mortar Exhibiting Signs of Conical Mode of Failure.



Figure 3.34: Prism with Approximate h/t Ratio of Two Built with Brick "B" and Type S Mortar Exhibiting Signs of Conical Mode of Failure.



Figure 3.35: Prism with Approximate h/t Ratio of Five Built with Brick "B" and Type N Mortar Exhibiting Signs of Vertical Splitting and Face-Shell Separation Modes of Failure.



Figure 3.36: Prism with Approximate h/t Ratio of Five Built with Brick "B" and Type S Mortar Exhibiting Signs of Vertical Splitting and Face-Shell Separation Modes of Failure.



Figure 3.37: Prism with Approximate h/t Ratio of Two Built with Brick "C" and Type N Mortar Exhibiting Signs of Conical Mode of Failure.



Figure 3.38: Prism with Approximate h/t Ratio of Two Built with Brick "C" and Type S Mortar Exhibiting Signs of Conical Mode of Failure.

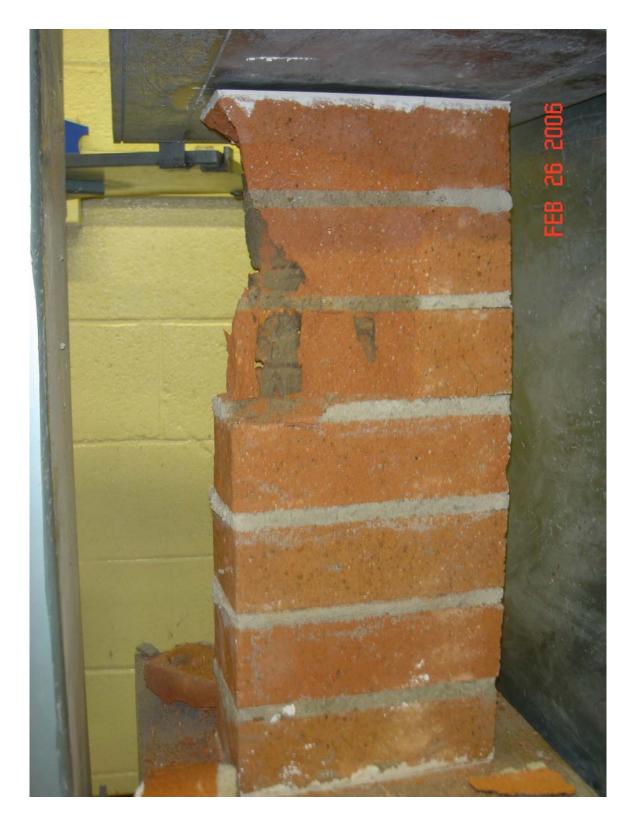



Figure 3.39: Prism with Approximate h/t Ratio of Five Built with Brick "C" and Type N Mortar Exhibiting Signs of Vertical Splitting and Face-Shell Separation Modes of Failure.



Figure 3.40: Prism with Approximate h/t Ratio of Five Built with Brick "C" and Type S Mortar Exhibiting Signs of Vertical Splitting and Face-Shell Separation Modes of Failure.

The results are reported in Appendix B. All brick units were determined to be solid; therefore, the ultimate compressive strengths of the prisms are calculated using their gross area. The summary of the results are presented in Tables 3.8, 3.9, and 3.10.

Note: The following apply to Tables 3.8, 3.9, and 3.10

N1: Prism built with Portland cement-lime type N,

N2: Prism built with mortar cement type N,

- N3: Prism built with masonry cement type N,
- S1: Prism built with Portland cement-lime type S,
- S2: Prism built with mortar cement type S,
- S3: Prism built with masonry cement type S,

AVE.: Average,

STD. DEV .: Standard deviation,

C.O.V.: Coefficient of Variation,

All h/t ratios are approximate. For exact h/t ratio for each tested specimen refer to Appendix B.

| PRISM   | H/T   | COM  | PRESS | VE STI | RENGT | H, psi | AVE., | STD.      | C.O.V., %   |
|---------|-------|------|-------|--------|-------|--------|-------|-----------|-------------|
| I KISWI | RATIO | #1   | #2    | #3     | #4    | #5     | psi   | DEV., psi | C.O. V., 70 |
| S1      | 2     | 4950 | 4780  | 4806   | 4824  | 4712   | 4814  | 87        | 1.81        |
| S1      | 5     | 3702 | 4106  | 3786   | 3757  | 4590   | 3988  | 372       | 9.32        |
| S2      | 2     | 4116 | 4314  | 4289   | 4318  | 3631   | 4133  | 293       | 7.08        |
| S2      | 5     | 3294 | 3239  | 3684   | 3088  | 3384   | 3338  | 221       | 6.63        |
| S3      | 2     | 4185 | 3997  | 4709   | 3817  | 4144   | 4171  | 334       | 8.00        |
| S3      | 5     | 3905 | 3656  | 3842   | 3901  | 3724   | 3806  | 111       | 2.92        |
| N1      | 2     | 3759 | 3971  | 4042   | 3413  | 4191   | 3875  | 302       | 7.79        |
| N1      | 5     | 3489 | 3923  | 3843   | 3769  | 3639   | 3733  | 172       | 4.60        |
| N2      | 2     | 3642 | 3158  | 3941   | 3766  | 3363   | 3574  | 314       | 8.78        |
| N2      | 5     | 3239 | 3161  | 2979   | 3178  | 3210   | 3153  | 102       | 3.24        |
| N3      | 2     | 3316 | 3127  | 3055   | 3038  | 3216   | 3150  | 116       | 3.68        |
| N3      | 5     | 2634 | 2640  | 2657   | 2753  | 3060   | 2749  | 181       | 6.58        |

Table 3.8: Prism Test Results for Brick "A"

| PRISM | H/T   | COM  | PRESS | VE STI | RENGT | H, psi | AVE., | STD.      | C.O.V., %  |
|-------|-------|------|-------|--------|-------|--------|-------|-----------|------------|
|       | RATIO | #1   | #2    | #3     | #4    | #5     | psi   | DEV., psi | 0.0.1., /0 |
| S1    | 2     | 5284 | 5010  | 5422   | 3378  | 4889   | 4796  | 821       | 17.11      |
| S1    | 5     | 4658 | 4504  | 3779   | 4414  | 4241   | 4319  | 338       | 7.82       |
| S2    | 2     | 3221 | 3968  | 3706   | 3934  | 4132   | 3792  | 354       | 9.33       |
| S2    | 5     | 3310 | 4494  | 4174   | 4065  | 4090   | 4027  | 435       | 10.81      |
| S3    | 2     | 3974 | 5371  | 4719   | 5499  | 4806   | 4874  | 608       | 12.46      |
| S3    | 5     | 4181 | 3801  | 3580   | 4316  | 3425   | 3861  | 381       | 9.88       |
| N1    | 2     | 4034 | 3504  | 4450   | 3754  | 4103   | 3969  | 359       | 9.04       |
| N1    | 5     | 3337 | 3004  | 2575   | 3274  | 3200   | 3078  | 307       | 9.99       |
| N2    | 2     | 4233 | 3514  | 3687   | 3549  | 3583   | 3713  | 298       | 8.01       |
| N2    | 5     | 2344 | 2877  | 2691   | 2683  | 2761   | 2671  | 199       | 7.44       |
| N3    | 2     | 3447 | 2928  | 3253   | 2930  | 2896   | 3091  | 247       | 7.98       |
| N3    | 5     | 2839 | 2317  | 2871   | 2863  | 2724   | 2723  | 234       | 8.60       |

Table 3.9: Prism Test Results for Brick "B"

| PRISM | H/T   | COM  | PRESS | VE STI | RENGT | H, psi | AVE., | STD.      | C.O.V., %  |
|-------|-------|------|-------|--------|-------|--------|-------|-----------|------------|
|       | RATIO | #1   | #2    | #3     | #4    | #5     | psi   | DEV., psi | 0.0.1., /0 |
| S1    | 2     | 3614 | 4782  | 2251   | 3491  | 3592   | 3546  | 896       | 25.28      |
| S1    | 5     | 3744 | 3006  | 2836   | 3394  | -      | 3245  | 352       | 10.84      |
| S2    | 2     | 4097 | 3511  | 2409   | 3775  | 3656   | 3490  | 642       | 18.38      |
| S2    | 5     | 2602 | 3187  | 3389   | 3344  | 3203   | 3145  | 316       | 10.05      |
| S3    | 2     | 2360 | 3564  | 3288   | 3518  | 3612   | 3269  | 523       | 15.99      |
| S3    | 5     | 2753 | 2916  | 2700   | 3026  | 2955   | 2870  | 138       | 4.80       |
| N1    | 2     | 3754 | 3710  | 3572   | 1965  | 3018   | 3204  | 752       | 23.48      |
| N1    | 5     | 2817 | 3014  | 2739   | 2794  | 3148   | 2902  | 172       | 5.93       |
| N2    | 2     | 2803 | 3054  | 3186   | 3068  | 2857   | 2994  | 159       | 5.31       |
| N2    | 5     | 2547 | 3036  | 2354   | 2521  | 2632   | 2618  | 255       | 9.73       |
| N3    | 2     | 2707 | 3303  | 3408   | 3100  | 3228   | 3149  | 271       | 8.62       |
| N3    | 5     | 2951 | 2814  | 3025   | 2943  | 2934   | 2933  | 76        | 2.59       |

Table 3.10: Prism Test Results for Brick "C"

## CHAPTER 4

#### STATISTICAL ANALYSIS

The first step was to examine the existing data, and then complement the existing with new data generated by prism tests conducted in this research. Various graphs were generated and studied using Microsoft Excel, and multiple statistical models were developed with the assistance of Statistical Analysis Software (SAS) developed by SAS Institute Inc.

#### 4.1 Prism Compressive Strength: Old and New Data

The existing information from the literature survey is shown in Figures 4.1, 4.2, and 4.3. These figures reveal the range of data available for each type of mortar.

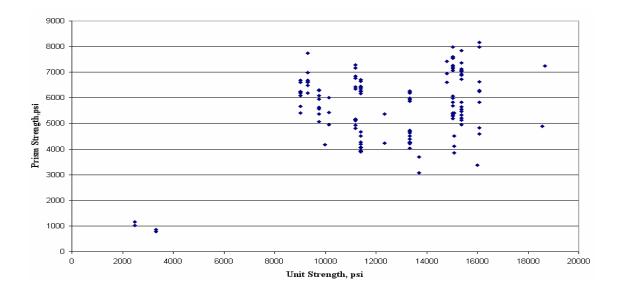



Figure 4.1: Existing Data since 1980 Literature Survey, Type M Mortar.

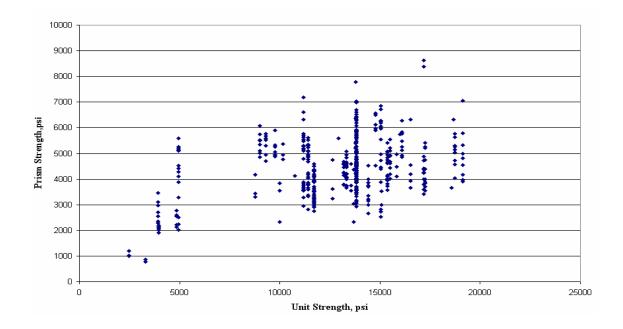



Figure 4.2: Existing Data since 1980 Literature Survey, Type S Mortar.

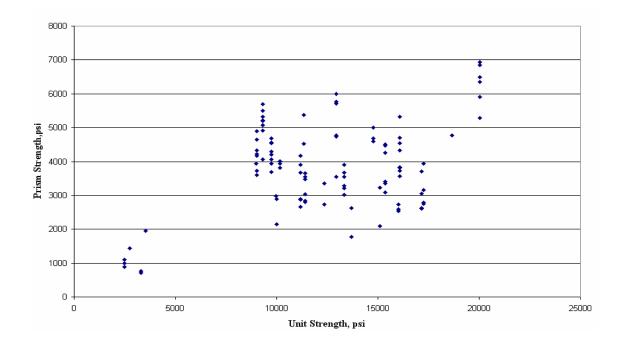
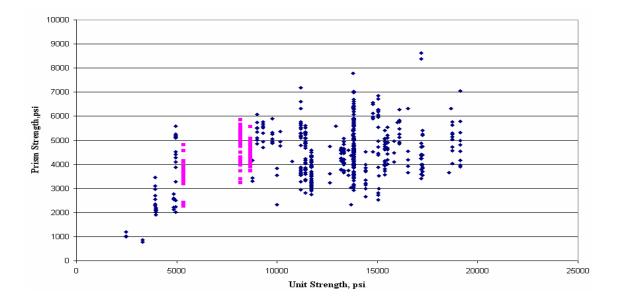




Figure 4.3: Existing Data since 1980 Literature Survey, Type N Mortar.



Figures 4.4 and 4.5 show the information from the literature survey and the results from prism tests done for this research.

Figure 4.4: Literature Survey and Additional Testing, Type S Mortar.

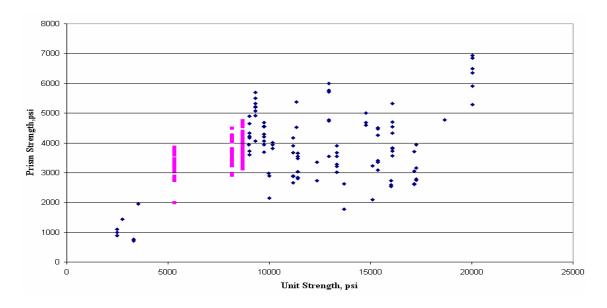



Figure 4.5: Literature Survey and Additional Testing, Type N Mortar.

### 4.1.1 Influencing Factors

The prism strengths shown in Figures 4.1 through 4.5 are not adjusted for their h/t ratios. Other potentially significant variables amongst these prism strengths that are not distinguished so far include:

- Curing method: air dry, moist dry (air-sealed in bags), moist/dry (kept in air-sealed bags for the first seven days and air dried for the remaining of their curing period,
- Curing time: seven or 28 days,
- Mortar type: M, S, or N,
- Grout: presence or lack thereof,
- Solid versus hollow units,
- Face-shell versus full-bed mortar joints.

Overall, there are three curing methods, two curing periods, three mortar types, two grout conditions, two general types of unit, and two types of mortar joints. All the aforementioned variables are qualitative, whereas the unit strength and prism strengths are quantitative. Thus, there are a total of 144 (the product of the number of levels of the qualitative variable) possible combinations of the qualitative variables and the quantitative variables can be explored within each category. However, the available information provides data in 32 of the 144 possible combinations.

The attempt is to explore the relationship between the prism strength (the response variable) to the other variables to reduce the error in a future estimate. Deriving a relationship between a random variable – prism strength – and measured

values of other variables is a process referred to as modeling. The tool for building this model is regression analysis. The regression model enables the researcher to predict values for the response variable in areas where data is not available.

## 4.1.2 Current Masonry Specification and the Gathered Data

As described in Chapter 1 of this report, the current MSJC Specification provides a prism strength based on mortar type and unit strength. The clay masonry unit compressive strengths covered in the Specification as listed in Table 1.1 are from 1,700 psi to 11,515 for types M & S mortar (it is the author's belief that the number 13,200 for unit strength listed in Table 1.1 should be 11,515 psi, which would yield 4,000 psi for the assemblage compressive strength using Equation 1.1) and 2,100 psi to 10,300 psi for type N mortar. It can be deduced that for mortar types M & S, once the units have compressive strengths of 11,515 psi or higher the compressive strength of the assemblage is 4,000 psi, and for mortar type N, once the units have compressive strengths of 10,300 psi or higher the compressive strength of the assemblage is 3,000 psi. However, the numbers in the Specification are based on prism strengths adjusted to h/t ratio of two. Figures 4.6, 4.7, and 4.8 show the gathered data and the tests results for all data adjusted to h/t ratio of two, in combination with the limits set by the Specification as described above. A linear regression that only explores the average prism strength as a linear function of the unit strength in each mortar type category is also shown in each graph.

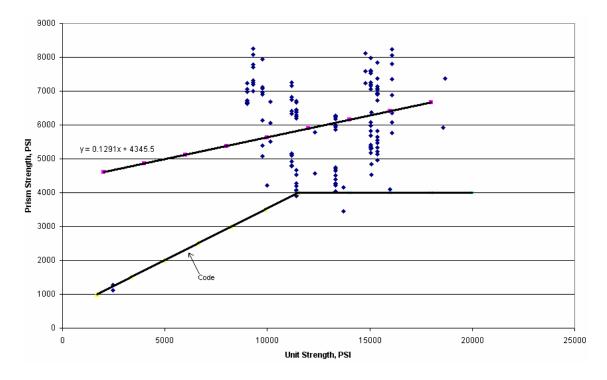



Figure 4.6: Types M Mortar.

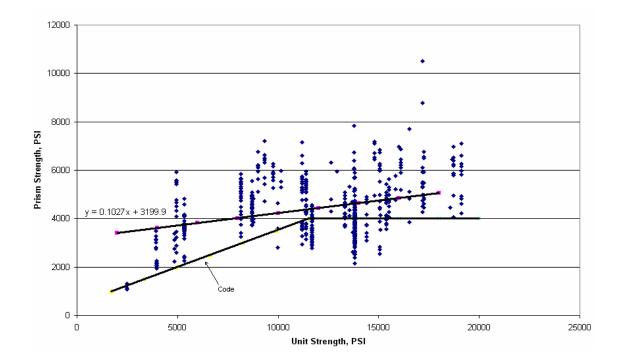



Figure 4.7: Type S Mortar.

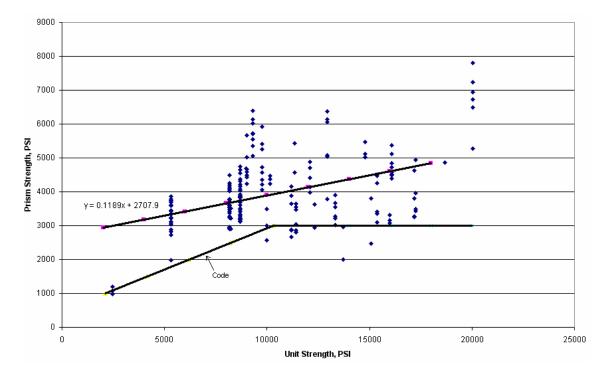



Figure 4.8: Type N Mortar.

The linear regression R<sup>2</sup> (coefficient of determination) for mortar types M, S, and N are 0.072, 0.11, and 0.20, respectively; thus, for type M mortar 7.2%, for type S mortar 11%, and for type N mortar 20% of the total variation in the value of prism strength is explained by variation in unit strength. These regression models predict mean prism strengths as a function of unit strengths. In engineering practice, characteristic (such as fifth quantile) values are typically used to represent statistically reliable values. Also, the data in Figures 4.6, 4.7, and 4.8 are grouped together based on mortar type only and other variables are not accounted for by the regression models. Therefore, a more complicated model needs to be developed to investigate all the variables.

#### 4.2 Mathematical Modeling

The data set consisting of measured values of the criterion variable – prism strength – and the predictor variables – variables whose variation is believed to cause variation in the criterion variable - was compiled. Mathematical models were developed that yielded objective functions, which are explicit functions that are the best fit for the matrix of measured data. Regression was used to minimize the sum of squares of the errors, which are defined as the differences between the predicted and measured values of the criterion variable. The data were analyzed using different models, which are listed below and the variables they explore are tabulated in Table 4.1.

- Model "A" analyzes the entire available data set and explores the largest number of predictor factors and interactions,
- Model "B" examines a modified version of Model "A" data set such that the compressive strengths are based on net area regardless of the size of the openings in the brick unit,
- Model "C" assesses the available data points using only 28 day cured prisms (moist or air-dried),
- Model "D" evaluates the data points for 28-day moist-cured prisms only,
- Model "E" analyzes Model "C" data set, modified such that the compressive strengths are based on net areas regardless of the size of the openings,
- Model "F" analyzes Model "D" data set, modified such that the compressive strengths are based on net areas regardless of the size of the openings,
- Model "G" only examines the data from prism tests conducted at UTA.

| Predictor Variables and Their<br>Interactions | Model "A" | Model "B" | Model "C" | Model "D" | Model "E" | Model "F" | Model "G" |
|-----------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Curing Method                                 | X         | Х         |           |           |           |           |           |
| Curing Time                                   | X         | X         |           |           |           |           |           |
| Mortar Type                                   | X         | X         | Х         | Х         | Х         | Х         | Х         |
| Grout                                         | X         | X         |           |           |           |           |           |
| Units: Solid or Hollow                        | X         |           | Х         | Х         |           |           |           |
| Bedding: Full-bed or face-shell               | X         |           | Х         | Х         |           |           |           |
| $Ln(f_u)$                                     | X         | Х         | Х         | Х         | Х         | Х         | Х         |
| h/t ratio                                     | X         | Х         | Х         | Х         | Х         | Х         | Х         |
| $Ln(f_u)$ & h/t ratio                         | X         | Х         | Х         | Х         | Х         | Х         | Х         |
| * XXX & h/t ratio                             | X         | X         | Х         | Х         | Х         | Х         | Х         |
| * XXX & Ln(f <sub>u</sub> )                   | X         | X         | Х         | Х         | Х         | Х         | Х         |
| * XXX, $Ln(f_u)$ and h/t ratio                | X         | X         | X         | Х         | Х         | Х         | Х         |

Table 4.1: Mathematical Models

\* XXX can be curing method, curing time, mortar type, grout (presence or absence of grout), units being solid or hollow, and full-bed or face-shell bedding depending on the model. If any of the aforementioned factors are accounted for by the model in question, their interactions are also taken into account.

## 4.2.1 Model "A"

As described earlier, out of the 144 possible combinations of the qualitative variables, there exists data in 32 combinations, see Table 4.2. Not all combinations contain a sufficient number of observations. For example, combination #3 contains only two observations and combination #4 contains five observations; however, all five observations are in a small range of unit compressive strength and there is no information available outside that range. Model "A" examines all 32 categories.

The following apply to Tables 4.2 and 4.4.

- Comb.: Counts the number of various combinations for which data is available,
- Cure Method: Curing Method; air dry, moist, moist/dry (cured in an airsealed bag for the first seven days and air cured thereafter),
- Cure Time: Number of days the specimen was cured prior to testing,
- Mortar Type: M, S, or N.
- Grout: "Yes" signifies presence of grout and "No" lack thereof,
- Solid Hollow: Specifies whether the masonry units used in the assemblage were solid or hollow units,
- Mortar Joint: Specifies whether the joint was reported as face-shell or fullbed.
- Freq.: The number of observations available for the corresponding category,
- Prism Strength: The mean of all prism strengths reported for that combination in psi.

| 0 1   | Cure    | Cure | Mortar |       | Solid  | Mortar    | Б     | Prism    |
|-------|---------|------|--------|-------|--------|-----------|-------|----------|
| Comb. | Method  | Time | Туре   | Grout | Hollow | Joint     | Freq. | Strength |
| 1     | Air dry | 28   | М      | No    | Hollow | Faceshell | 16    | 6,275    |
| 2     | Air dry | 28   | М      | No    | Hollow | Fullbed   | 21    | 5,872    |
| 3     | Air dry | 28   | М      | No    | Solid  | Fullbed   | 2     | 5,707    |
| 4     | Air dry | 28   | М      | Yes   | Hollow | Fullbed   | 5     | 3,729    |
| 5     | Air dry | 28   | N      | No    | Hollow | Faceshell | 25    | 3,906    |
| 6     | Air dry | 28   | N      | No    | Hollow | Fullbed   | 21    | 4,110    |
| 7     | Air dry | 28   | N      | No    | Solid  | Fullbed   | 16    | 4,386    |
| 8     | Air dry | 28   | N      | Yes   | Hollow | Fullbed   | 15    | 3,884    |
| 9     | Air dry | 28   | S      | No    | Hollow | Faceshell | 61    | 4,101    |
| 10    | Air dry | 28   | S      | No    | Hollow | Fullbed   | 35    | 4,620    |
| 11    | Air dry | 28   | S      | No    | Solid  | Fullbed   | 26    | 4,261    |
| 12    | Air dry | 28   | S      | Yes   | Hollow | Faceshell | 45    | 4,080    |
| 13    | Air dry | 28   | S      | Yes   | Hollow | Fullbed   | 5     | 3,381    |
| 14    | Air dry | 28   | S      | Yes   | Solid  | Fullbed   | 22    | 3,878    |
| 15    | Air dry | 7    | S      | No    | Solid  | Fullbed   | 10    | 4,378    |
| 16    | Moist   | 28   | М      | No    | Hollow | Faceshell | 42    | 4,899    |
| 17    | Moist   | 28   | М      | No    | Hollow | Fullbed   | 42    | 6,760    |

Table 4.2: Available 32 Combinations

Table 4.2 – continued

| C 1   | Cure      | Cure | Mortar |       | Solid  | Mortar    | Г     | Prism    |
|-------|-----------|------|--------|-------|--------|-----------|-------|----------|
| Comb. | Method    | Time | Туре   | Grout | Hollow | Joint     | Freq. | Strength |
| 18    | Moist     | 28   | N      | No    | Hollow | Faceshell | 15    | 3,087    |
| 19    | Moist     | 28   | N      | No    | Hollow | Fullbed   | 15    | 3,998    |
| 20    | Moist     | 28   | N      | No    | Solid  | Fullbed   | 90    | 3,182    |
| 21    | Moist     | 28   | S      | No    | Hollow | Faceshell | 48    | 3,873    |
| 22    | Moist     | 28   | S      | No    | Hollow | Fullbed   | 78    | 4,641    |
| 23    | Moist     | 28   | S      | No    | Solid  | Fullbed   | 112   | 3,843    |
| 24    | Moist     | 28   | S      | Yes   | Hollow | Fullbed   | 30    | 4,150    |
| 25    | Moist     | 28   | S      | Yes   | Solid  | Fullbed   | 12    | 4,662    |
| 26    | Moist     | 7    | S      | No    | Solid  | Fullbed   | 20    | 3,196    |
| 27    | Moist/dry | 28   | М      | No    | Solid  | Fullbed   | 9     | 4,504    |
| 28    | Moist/dry | 28   | N      | No    | Solid  | Fullbed   | 10    | 3,359    |
| 29    | Moist/dry | 28   | S      | No    | Solid  | Faceshell | 8     | 3,641    |
| 30    | Moist/dry | 28   | S      | No    | Solid  | Fullbed   | 12    | 4,488    |
| 31    | Moist/dry | 7    | S      | No    | Solid  | Faceshell | 2     | 2,887    |
| 32    | Moist/dry | 7    | S      | No    | Solid  | Fullbed   | 12    | 4,453    |

The developed mathematical model "A" explores the relationship between prism strength and the following variables:

- The natural logarithm (Ln) of the compressive strength of the clay masonry units (Ln(f<sub>u</sub>)),
- Curing method,
- Curing time,
- Mortar type,
- Presence or lack of grout in the assemblage,
- Units being solid or hollow,
- Mortar joints being face-shell or full-bed,
- Height-to-thickness ratio (h/t ratio).

There also exist interactions between the variables listed above. The following interactions were included in the model:

- Curing method and h/t ratio,
- Curing method and the natural logarithm of the compressive strength of the clay masonry units,
- Curing method, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Curing time and h/t ratio,
- Curing time and the natural logarithm of the compressive strength of clay masonry units,
- Curing time, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type and h/t ratio,

- Mortar type and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Presence or absence of grout and h/t ratio,
- Presence or absence of grout and the natural logarithm of the compressive strength of clay masonry units,
- Presence or absence of grout, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Units being solid or hollow and h/t ratio,
- Units being solid or hollow and the natural logarithm of the compressive strength of clay masonry units,
- Units being solid or hollow, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Mortar joints being face-shell or full-bed and h/t ratio,
- Mortar joints being face-shell or full-bed and the natural logarithm of the compressive strength of clay masonry units,
- Mortar joints being face-shell or full-bed, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units.

The following relationship between mean prism strength and the predictor variables was established by the model.

 $\begin{array}{lll} \textit{Mean} & \Pr{ism} & \textit{Strength} = -2,066.3 + 7,782.7B_1 + 30,248.8B_2 - 17,681.4B_3 - 26,058.2B_4 + 1,058.3B_5 - 12,966.7B_6 + 17,849.4B_7 + 6,622.4B_8 - 728.6B_9 + 659.5B_{10} + 66.1B_9B_{10} - 6,284.2B_1B_9 - 12,686.6B_2B_9 - 885.5B_1B_{10} - 3,386.8B_2B_{10} + 697B_1B_9B_{10} + 1,418.1B_2B_9B_{10} + 7,735.6B_3B_9 + 2,000.8B_3B_{10} - 881.9B_3B_9B_{10} + 15,936.9B_4B_9 + 938.5B_5B_9 + 2,882B_4B_{10} - 190.3B_5B_{10} - 1,701.8B_4B_9B_{10} - 108.5B_5B_9B_{10} + 3,858.8B_6B_9 + 1,455.7B_6B_{10} - 410.8B_6B_9B_{10} + 1,666.5B_7B_9 - 1,813.5B_7B_{10} - 200.7B_7B_9B_{10} - 7,149.3B_8B_9 - 816.7B_8B_{10} + 811.3B_8B_9B_{10} \end{array}$ 

The distribution of the prism strength values at each unit strength value fits a normal distribution. Thus, the following can be used to deduce the fifth quantile values for the response variable.

$$\xi_{0.05}\left(\stackrel{\wedge}{\mu}, \stackrel{\wedge}{\sigma}\right) = \stackrel{\wedge}{\mu} + \stackrel{\wedge}{\sigma} \xi_{0.05}(0, 1)$$
$$\xi_{0.05}\left(\stackrel{\wedge}{\mu}, \stackrel{\wedge}{\sigma}\right) = Fifth \quad Quantile$$

$$\hat{\mu} = Mean \quad \text{Pr} ism \quad Strength \quad \text{Pr} edicted \quad by \quad the \quad Model.$$

$$\hat{\sigma} = Conditional \quad S \tan dard \quad Deviation = 751.9$$

$$\xi_{0.05}(0,1) = -1.64$$

$$\hat{\xi}_{0.05}(\hat{\mu}, \hat{\sigma}) = \hat{\mu} - 751.9 \times 1.64 = \hat{\mu} - 1,233.1$$

The coefficient of determination  $(R^2)$  for model "A" is 0.68. The relative degree to which the variations of prism strength are explained by the predictor variables and their interactions can be determined by observing the type III sum of squares (type III SS) predicted by the mathematical model. Type III SS for the effect of one variable is the increment in the model when the term in question is the last one fitted in the model. The predictor variables or interactions with relatively larger type III SS values are the terms that explain more of the variation of the prism strengths. The following is generated by model "A".

Table 4.3: Model "A" Type III SS Values

| Source                                       | Type III SS |
|----------------------------------------------|-------------|
| Curing method: air dry, moist, or moist/dry. | 41,047,824  |
| Curing time: 7 or 28 days                    | 5,346,533   |
| Mortar type: M, S, or N                      | 20,245,381  |
| Grout: presence or absence                   | 7,506,783   |
| Units being solid or hollow                  | 9,771,56    |
| Full-bed or face-shell bedding               | 1,257,931   |
| Height-to-thickness ratio                    | 1,095       |

# Table 4.3 – continued

| Source                                                            | Type III SS |
|-------------------------------------------------------------------|-------------|
| Ln(f <sub>u</sub> )                                               | 3,530       |
| Interaction between Ln(f <sub>u</sub> ) & h/t ratio               | 2,000       |
| Interaction between curing method & h/t ratio                     | 8,827,581   |
| Interaction between Ln(f <sub>u</sub> ) & curing method           | 44,734,818  |
| Interaction between $Ln(f_u)$ , h/t ratio, & curing method        | 9,554,435   |
| Interaction between h/t ratio & curing time                       | 2,611,982   |
| Interaction between Ln(f <sub>u</sub> ) & curing time             | 5,920,699   |
| Interaction between Ln(f <sub>u</sub> ), h/t ratio, & curing time | 2,928,838   |
| Interaction between h/t ratio & mortar type                       | 16,830,053  |
| Interaction between Ln(f <sub>u</sub> ) & mortar type             | 22,692,423  |
| Interaction between $Ln(f_u)$ , h/t ratio, & mortar type          | 17,093,633  |
| Interaction between h/t ratio & grout                             | 765,775     |
| Interaction between Ln(f <sub>u</sub> ) & grout                   | 8,448,080   |
| Interaction between Ln(f <sub>u</sub> ), h/t ratio, & grout       | 782,156     |
| Interaction between h/t ratio & solid or hollow units             | 227,519     |
| Interaction between Ln(f <sub>u</sub> ) & solid or hollow units   | 8,944,113   |
| Interaction between $Ln(f_u)$ , h/t ratio, & solid or hollow      | 300,395     |
| Interaction between h/t ratio & face-shell or full-bed            | 4,833,110   |
| Interaction between $Ln(f_u)$ & face-shell or full-bed            | 1,716,633   |
| Interaction between $Ln(f_u)$ , h/t ratio, & face-shell or        | 5 554 120   |
| full-bed bedding                                                  | 5,554,129   |

The variables and interactions that explain most of the variation in prism strength in the model are listed below in descending order of significance.

- Interaction between the natural logarithm of the compressive strength of masonry unit and curing method,
- 2. Curing method,
- Interaction between the natural logarithm of the compressive strength of masonry unit and mortar type,
- 4. Mortar type,
- Interaction between the natural logarithm of the compressive strength of masonry unit, h/t ratio, and mortar type,
- 6. Interaction between h/t ratio and mortar type,
- 7. Units being solid or hollow,
- 8. Interaction between the natural logarithm of the compressive strength of masonry unit and units being solid or hollow.

The average prism strength fifth quantile values across all available categories predicted by model "A" - targeting h/t ratio value of two - and an equation best presenting those values are shown in Figure 4.9, 4.10, and 4.11 for mortar types M, S, N, respectively. The Code values are also shown for each case. Prism strength values cannot be reliably predicted for all ranges of unit compressive strengths due to insufficient test data. There is large gap of type M mortar data for unit strengths of less than approximately 9,000 psi. However, using type S mortar prism strength predictions of the model for type M mortar is conservative. Available data points for mortar types

M and S and the fifth quantile predictions of the model for type S mortar are shown in Figure 4.12. The "x" marks are the available data points associated with the stated mortar type for the applicable model; the "o" marks are used to represent type M mortar data points when shown in conjunction with type S mortar data points on the same graph.; the " $\blacktriangle$ " symbols represent the fifth percentile prism compressive strength predictions by the model; the curve and the corresponding equation are the best fit regression for the aforementioned fifth percentile predicted values; finally, the line representing the compressive strength design values recommended by the MSJC Specification is labeled as "Code".

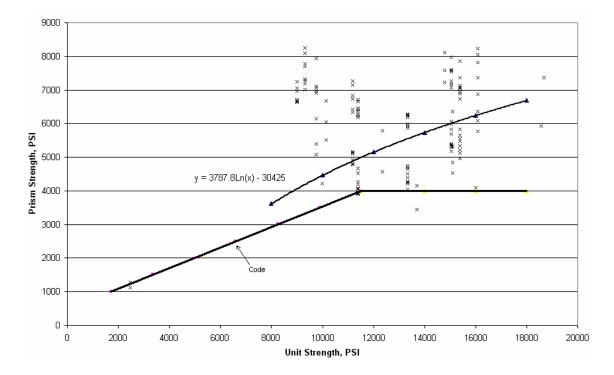



Figure 4.9: Type M Mortar.

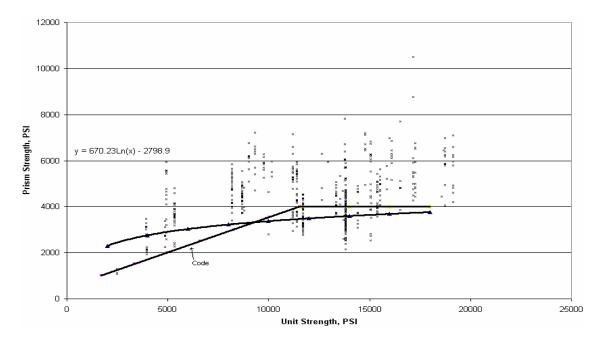



Figure 4.10: Type S Mortar.

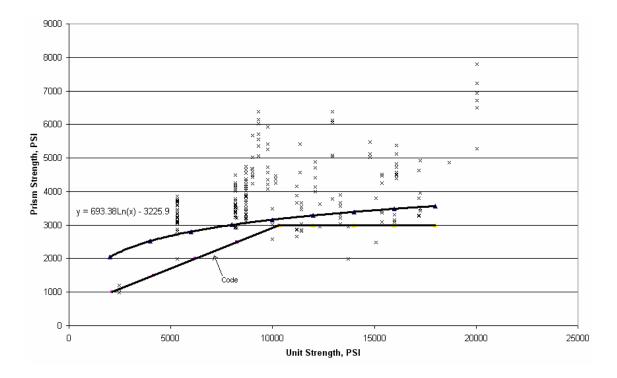



Figure 4.11: Type N Mortar.

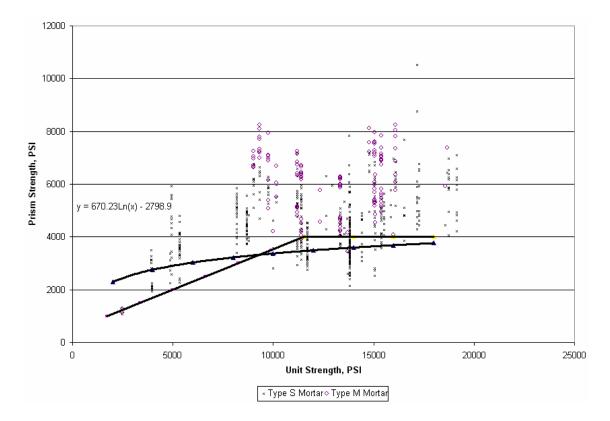



Figure 4.12: Types M and S Mortar.

Equations 4.1 and 4.2 represent the best fit equations for the average prism strength fifth quantile values across all available categories predicted by model "A" - targeting h/t ratio value of two – for mortar type S and N, respectively.

- Equation 4.1 (Type S Mortar)  $f'_{m} = 670.2 \times Ln(f_{u}) 2,799$
- Equation 4.2 (Type N Mortar)  $f'_{m} = 693.4 \times Ln(f_{u}) 3,226$

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

#### 4.2.1.1 Comparison of Model "A" Results and Code Values

In a factorial design, a number of levels (in this research levels would be combinations of qualitative predictors) are selected by an investigator and experiments are run with all possible combinations. The test specimens should preferably be built and tested following the current standards with a level of quality control that would minimize the number of cofounders - confounders are variables that are undetected or not recorded and cause unexplained variations in the response variable across different sets of experiments. This research was not a factorial design and there are bound to be confounders due to the nature of the data; the gathered information come from tests performed by various researchers across North America under different conditions, most of which are not recorded; these tests were done during the past 26 years, through which the governing testing standards have changed multiple times and have affected the test conditions; not all details and used testing standards are recorded in the there are not sufficient data available for each level (combination). sources: Workmanship is a very important factor in the strength of any masonry assemblage. In a factorial design the workmanship would be controlled to be as uniform as possible.

The tests performed at UTA in this study consisted of three types of brick with average compressive strength values ranging from approximately 5,000 to 9,000 psi and mortar types S and N. However, type M mortar has a higher compressive strength and including type M mortar with type S is conservative. Compressive strength of masonry as predicted by model "A" for clay masonry units ranging in compressive strength from 5,000 to 9,000 psi are shown in Table 4.4.

| Compressive Strength of | Compressive Strength of Masonry, psi |            |               |       |  |  |
|-------------------------|--------------------------------------|------------|---------------|-------|--|--|
| Clay Masonry Unit, psi  | Types M &                            | & S Mortar | Type N Mortar |       |  |  |
| Chay Musering Only, por | Model "A"                            | MSJC       | Model "A"     | MSJC  |  |  |
| 5,000                   | 3,107                                | 2,013      | 2,680         | 1,708 |  |  |
| 6,000                   | 3,233                                | 2,318      | 2,806         | 1,952 |  |  |
| 7,000                   | 3,340                                | 2,623      | 2,913         | 2,196 |  |  |
| 8,000                   | 3,433                                | 2,928      | 3,006         | 2,440 |  |  |
| 9,000                   | 3,514                                | 3,233      | 3,087         | 2,684 |  |  |

Table 4.4: MSJC Design Values and Results from Model "A"

### 4.2.1.2 Linear Regression of Model "A" Data Set

The MSJC Specification is based on linear Equation 1.1, which only distinguishes between mortar types and ignores all other potentially influencing variables. A similar linear regression whose result would be comparable to Equation 1.1 was performed. The data in model "A" data set was corrected for their varying h/t ratio using the h/t correction factors presented in Table 2.1 as suggested by ASTM C 1314-03b for varying h/t ratios. The compressive strength values presented in MSJC Specification are based on h/t ratio of two. Therefore, all the prism strengths in model "A" data set were corrected to an h/t ratio of two. All the other variables were ignored and the data was analyzed based on mortar type using linear regression that related prism compressive strength to the compressive strength of the clay masonry unit for each mortar type. Figures 4.13, 4.14, and 4.15 show the data and the prism compressive strength values (50<sup>th</sup> and 5<sup>th</sup> percentiles) along with equations that are best fits for those values for mortar types M, S, and N, respectively.

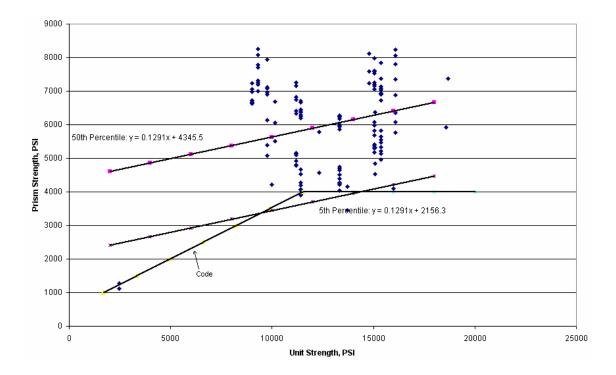



Figure 4.13: Type M Mortar.

Equation 4.3 (Type M Mortar, 50th Percentile) $f'_m = 0.129 \times (f_u) + 4,346$ Equation 4.4 (Type M Mortar, 5th Percentile) $f'_m = 0.129 \times (f_u) + 2,156$  $f'_m$ : specified compressive strength of masonry, psi, $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.072$ .

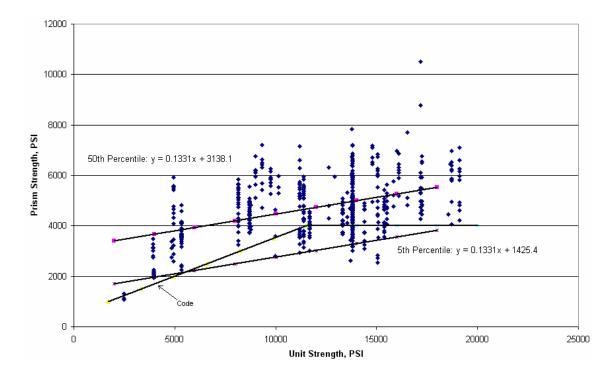



Figure 4.14: Type S Mortar.

Equation 4.5 (Type S Mortar, 50th Percentile) $f'_m = 0.133 \times (f_u) + 3,138$ Equation 4.6 (Type S Mortar, 5th Percentile) $f'_m = 0.133 \times (f_u) + 1,425$  $f'_m$ : specified compressive strength of masonry, psi, $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.195$ .

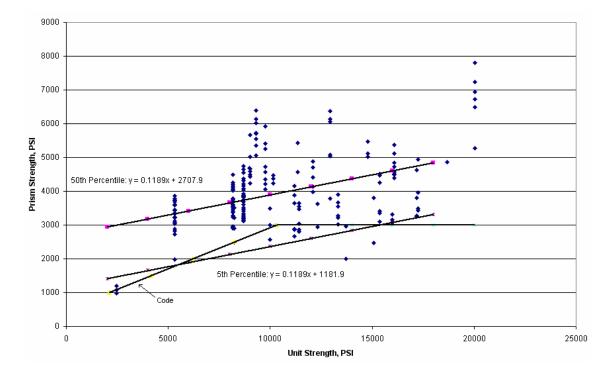



Figure 4.15: Type N Mortar.

Equation 4.7 (Type N Mortar, 50<sup>th</sup> Percentile) Equation 4.8 (Type N Mortar, 5<sup>th</sup> Percentile)  $f'_m = 0.119 \times (f_u) + 2,708$  $f'_m = 0.119 \times (f_u) + 1,182$ 

 $f'_m$ : specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.201$ .

4.2.2 Model "B"

So far once the net area (gross area minus the area of the openings) of a clay masonry unit was in excess of 75% of its gross area, the unit was considered a solid unit and compressive strength was calculated based on the available gross area. However, if the compressive strength of the units are based on net area regardless of the size of the

openings and the compressive strength of the assemblage is based on the net bedded area two of the predictor variables and their interaction with other variables will be irrelevant; the units being solid versus hollow and the mortar joint being full-bed or face-shell.

The predictor variables investigated in Model "B" are as follows:

- The natural logarithm (logarithm base e) of the compressive strength of the clay masonry units,
- o Curing method,
- o Curing time,
- o Mortar type,
- Presence or lack of grout in the assemblage,
- Height-to-thickness ratio (h/t ratio).

There also exist interactions between the variables listed above. The following interactions were included in the model:

- Curing method and h/t ratio,
- Curing method and the natural logarithm of the compressive strength of the clay masonry units,
- Curing method, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Curing time and h/t ratio,
- Curing time and the natural logarithm of the compressive strength of clay masonry units,

- Curing time, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type and h/t ratio,
- Mortar type and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Presence or absence of grout and h/t ratio,
- Presence or absence of grout and the natural logarithm of the compressive strength of clay masonry units,
- Presence or absence of grout, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units.

In Model "B" there are three possible levels for curing method, two for curing time, three for mortar type, and two for grout. Thus, there are a total of 36 possible categories out of which data is available for 15 categories and all are explored by Model "B", as listed in Table 4.5. The following apply to Table 4.5.

- Comb.: Counts the number of various combinations for which data is available,
- Cure Method: Curing Method; air dry, moist, moist/dry (cured in an airsealed bag for the first seven days and air cured thereafter),
- Cure Time: Number of days the specimen was cured prior to testing,
- Mortar Type: M, S, or N,

- Grout: "Yes" signifies presence of grout and "No" lack thereof,
- Freq.: The number of observations available for the corresponding category,
- Prism Strength: The mean of all prism strengths reported for that combination in psi.

| Comb. | Cure      | Cure | Mortar | Grout | Freq. | Prism    |
|-------|-----------|------|--------|-------|-------|----------|
|       | Method    | Time | Туре   |       |       | Strength |
| 1     | Air dry   | 28   | М      | No    | 40    | 5,974    |
| 2     | Air dry   | 28   | М      | Yes   | 4     | 3.698    |
| 3     | Air dry   | 28   | N      | No    | 64    | 4,212    |
| 4     | Air dry   | 28   | N      | Yes   | 13    | 3,629    |
| 5     | Air dry   | 28   | S      | No    | 88    | 4,932    |
| 6     | Air dry   | 28   | S      | Yes   | 42    | 3,887    |
| 7     | Moist/dry | 28   | М      | No    | 9     | 4,504    |
| 8     | Moist/dry | 28   | N      | No    | 10    | 3,359    |
| 9     | Moist/dry | 28   | S      | No    | 24    | 5,034    |
| 10    | Moist/dry | 7    | S      | No    | 12    | 5,227    |
| 11    | Moist     | 28   | М      | No    | 84    | 5,829    |
| 12    | Moist     | 28   | N      | No    | 120   | 3,783    |
| 13    | Moist     | 28   | S      | No    | 266   | 4,731    |
| 14    | Moist     | 28   | S      | Yes   | 60    | 4,182    |
| 15    | Moist     | 7    | S      | No    | 32    | 3,668    |

Table 4.5: Available 15 Combinations

The following relationship between mean prism strength and the predictor variables was established by the model.

 $\begin{array}{ll} Mean \quad \Pr{ism} \quad Strength = -19,832.7 + 2,213.5B_1 - 22,263.9B_2 - 3,864.1B_3 - 21,722.9B_4 - 774B_5 + 26,135.2B_6 - 1,077.2B_9 + 2,371.6B_{10} + 180.5B_9B_{10} + 4,304B_1B_9 + 3880.2B_2B_9 - 147.4B_1B_{10} + 2,534.7B_2B_{10} - 495.3B_1B_9B_{10} - 457.8B_2B_9B_{10} + 397.5B_3B_9 + 546.9B_3B_{10} - 98.3B_3B_9B_{10} + 14,819.7B_4B_9 + 1,928.2B_5B_9 + 2,405.8B_4B_{10} + 14.1B_5B_{10} - 1,592.8B_4B_9B_{10} - 221.3B_5B_9B_{10} - 4,705.3B_6B_9 - 2,677.7B_6B_{10} + 505.2B_6B_9B_{10} \end{array}$ 

$$B10 = Ln(Unit Compressive Strength)$$

The distribution of the prism strength values at each unit strength value fits a normal distribution. Thus, the following can be used to deduce the fifth quantile values for the response variable.

$$\xi_{0.05}\left(\stackrel{\circ}{\mu}, \stackrel{\circ}{\sigma}\right) = \stackrel{\circ}{\mu} + \stackrel{\circ}{\sigma} \xi_{0.05}(0, 1)$$
  
$$\xi_{0.05}\left(\stackrel{\circ}{\mu}, \stackrel{\circ}{\sigma}\right) = Fifth \quad Quantile$$
  
$$\stackrel{\circ}{\mu} = Mean \quad \Pr ism \quad Strength \quad \Pr edicted \quad by \quad the \quad Model.$$
  
$$\stackrel{\circ}{\sigma} = Conditional \quad S \tan dard \quad Deviation = 877.7$$

$$\xi_{0.05}(0,1) = -1.64$$
$$\xi_{0.05}(\hat{\mu}, \hat{\sigma}) = \hat{\mu} - 877.7 \times 1.64 = \hat{\mu} - 1,439.4$$

The coefficient of determination  $(R^2)$  for model "B" is 0.53. The type III sum of squares (Type III SS) generated by model "B" are shown in Table 4.6. The predictor variables or interactions with relatively larger type III SS values are the terms that explain more of the variation of the prism strengths.

Table 4.6: Model "B" Type III SS Values

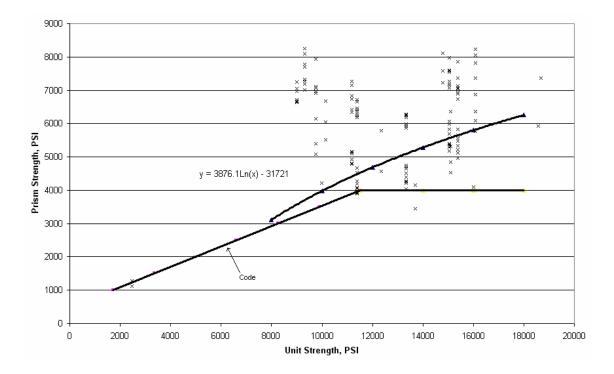
| <u> </u>                                                   | <b>T W G</b> |
|------------------------------------------------------------|--------------|
| Source                                                     | Type III SS  |
| Curing method: air dry, moist, or moist/dry.               | 14,702,021   |
| Curing time: 7 or 28 days                                  | 167,011      |
| Mortar type: M, S, or N                                    | 15,075,803   |
| Grout: presence or absence                                 | 20,825,498   |
| Height-to-thickness ratio                                  | 2,309,193    |
| Ln(f <sub>u</sub> )                                        | 27,977,027   |
| Interaction between Ln(f <sub>u</sub> ) & h/t ratio        | 2,281,147    |
| Interaction between curing method & h/t ratio              | 3,481,444    |
| Interaction between Ln(f <sub>u</sub> ) & curing method    | 15,910,915   |
| Interaction between $Ln(f_u)$ , h/t ratio, & curing method | 4,011,004    |
| Interaction between h/t ratio & curing time                | 5,205        |
| Interaction between Ln(f <sub>u</sub> ) & curing time      | 292,015      |
| Interaction between $Ln(f_u)$ , h/t ratio, & curing time   | 27,545       |
| Interaction between h/t ratio & mortar type                | 15,890,507   |
| Interaction between Ln(f <sub>u</sub> ) & mortar type      | 16,907,594   |
|                                                            |              |

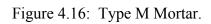
Table 4.6 – continued

| Source                                                      | Type III SS |
|-------------------------------------------------------------|-------------|
| Interaction between $Ln(f_u)$ , h/t ratio, & mortar type    | 16,377,663  |
| Interaction between h/t ratio & grout                       | 1,165,646   |
| Interaction between Ln(f <sub>u</sub> ) & grout             | 19,635,241  |
| Interaction between Ln(f <sub>u</sub> ), h/t ratio, & grout | 1,211,743   |

The variables and interactions that explain most of the variation in prism strength in the model are listed below in descending order of significance.

- 1. Natural logarithm of the compressive strength of masonry unit,
- 2. Presence or absence of grout,
- Interaction between the natural logarithm of the compressive strength of masonry unit and presence or absence of grout,
- Interaction between the natural logarithm of the compressive strength of masonry unit and mortar type,
- Interaction between the natural logarithm of the compressive strength of masonry unit, h/t ratio, and mortar type,
- Interaction between the natural logarithm of the compressive strength of masonry unit and curing method,
- 7. Interaction between h/t ratio and mortar type,
- 8. Mortar type,
- 9. Curing method.


The average prism strength fifth quantile values across all available categories predicted by model "B" - targeting h/t ratio value of two - and an equation best presenting those values are shown in Figure 4.16, 4.17, and 4.18 for mortar types M, S, N, respectively. The Code values are also shown for each case. Prism strength values cannot be reliably predicted for all ranges of unit compressive strengths due to insufficient test data. There is large gap of type M mortar data for unit strengths of less than approximately 9,000 psi. However, using type S mortar prism strength predictions of the model for type M mortar is conservative. Available data points for mortar types M and S and the fifth quantile predictions of the model for type S mortar are shown in Figure 4.19.


Equations 4.9 and 4.10 represent the best fit equations for the average prism strength fifth quantile values across all available categories predicted by model "B" - targeting h/t ratio value of two - for mortar type S and N, respectively.

| Equation 4.9 (Type S Mortar)  | $f'_m = 1,531.7 \times Ln(f_u) - 11,097$     |
|-------------------------------|----------------------------------------------|
| Equation 4.10 (Type N Mortar) | $f'_{m} = 1,484.3 \times Ln(f_{u}) - 10,772$ |

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.





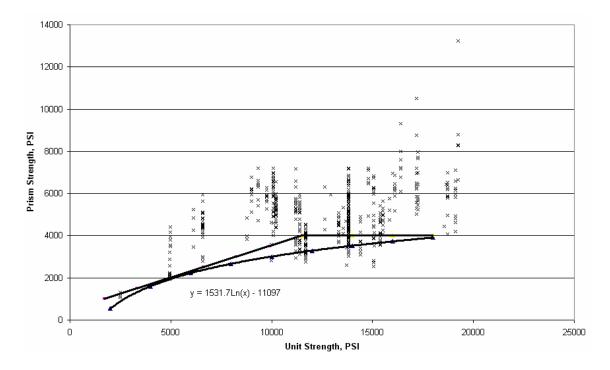
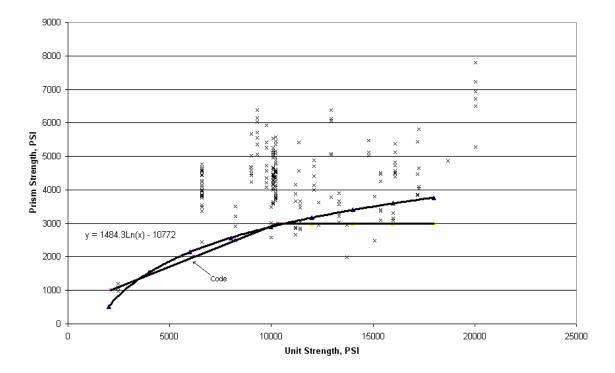
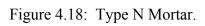





Figure 4.17: Type S Mortar





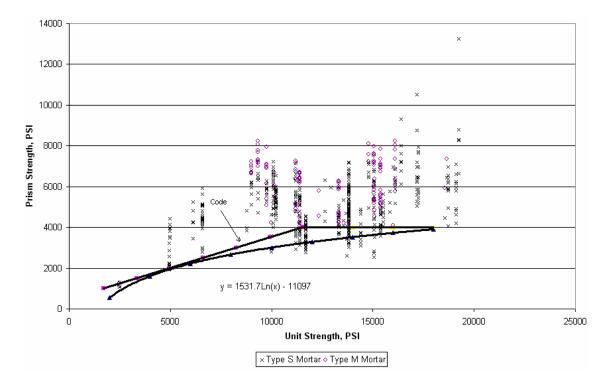



Figure 4.19: Types M & S Mortar.

The prism compressive strength values predicted by Model "B" are generally much closer to the design values from the Code than the data points generated by testing performed for this research. Therefore, this research provides information to update and increase the compressive strength values of masonry in the Code in the range of clay masonry unit compressive strength tested in this study – approximately 5,000 psi to 9,000 psi based on gross area).

4.2.2.1 Linear Regression of Model "B" Data Set

The Model "B" data set were adjusted to h/t value of two based on the correction factors presented in Table 2.1. All the other variables were ignored and the data was analyzed based on mortar type using liner regression that related prism compressive strength to the compressive strength of the clay masonry unit for each mortar type. Figures 4.20, 4.21, and 4.22 show the data and the prism compressive strength values (50<sup>th</sup> and 5<sup>th</sup> percentiles) along with equations that are best fits for those values for mortar types M, S, and N, respectively.

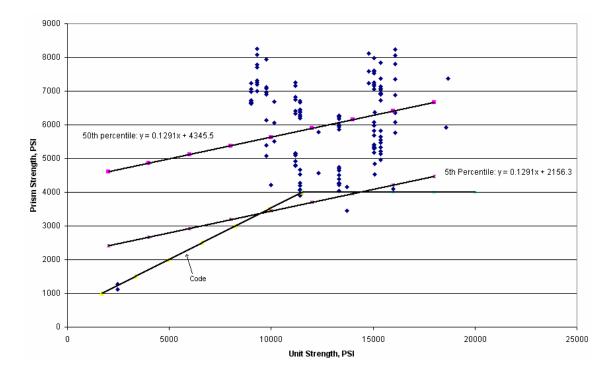



Figure 4.20: Type M Mortar.

Equation 4.11 (Type M Mortar, 50<sup>th</sup> Percentile)

Equation 4.12 (Type M Mortar, 5<sup>th</sup> Percentile)

 $f'_m = 0.129 \times (f_u) + 4,346$  $f'_m = 0.129 \times (f_u) + 2,156$ 

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.072$ .

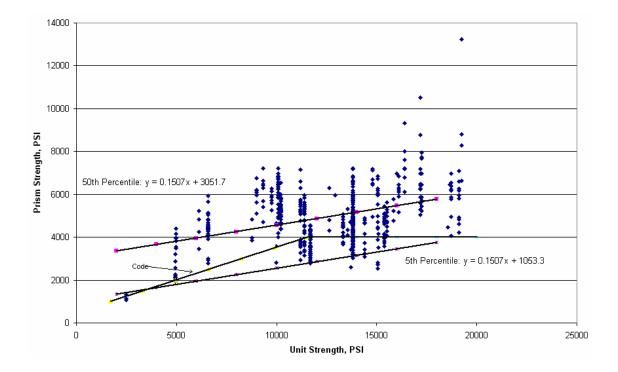



Figure 4.21: Type S Mortar.

Equation 4.13 (Type S Mortar, 50th Percentile) $f'_m = 0.151 \times (f_u) + 3,052$ Equation 4.14 (Type S Mortar, 5th Percentile) $f'_m = 0.151 \times (f_u) + 1,053$  $f'_m$ : specified compressive strength of masonry, psi, $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.148$ .

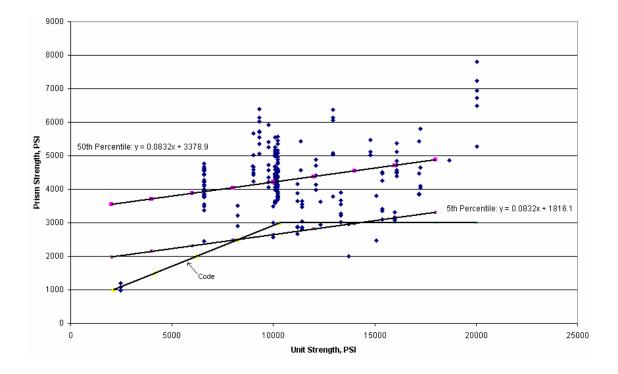



Figure 4.22: Type N Mortar.

Equation 4.15 (Type N Mortar, 50<sup>th</sup> Percentile)  $f'_m = 0.0832 \times (f_u) + 3,379$ Equation 4.16 (Type N Mortar, 5<sup>th</sup> Percentile)  $f'_m = 0.0832 \times (f_u) + 1,816$  $f'_m$ : specified compressive strength of masonry, psi,  $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.085$ .

4.2.3 Model "C"

The governing ASTM standards today require prisms to be moist cured and chances are the prisms would be tested at an age of 28 days. Thus, the data points from prisms tested at 7 days and grouted prisms were excluded from Model "C" data set and the curing method was ignored. Therefore, curing time and curing method are not

predictor variables in Model "C". The data points generated from grouted prisms were few and were excluded to produce a more reliable analysis using fewer variables. The compressive strengths are based on gross area for solid units and net area for hollow units. Units being solid or hollow and mortar joint being full-bed or face-shell are variables in Model "C". The predictor variables investigated are as follows:

- The natural logarithm (logarithm base e) of the compressive strength of the clay masonry units,
- o Mortar type,
- Units being solid or hollow,
- o Mortar joints being face-shell or full-bed,
- Height-to-thickness ratio (h/t ratio).

There also exist interactions between the variables listed above. The following interactions were included in the model:

- Mortar type and h/t ratio,
- The natural logarithm of the compressive strength of clay masonry units and h/t ratio,
- Mortar type and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Units being solid or hollow and h/t ratio,

- Units being solid or hollow and the natural logarithm of the compressive strength of clay masonry units,
- Units being solid or hollow, the natural logarithm of the compressive strength of clay masonry units, and h/t ratio,
- Mortar joints being full-bed or face-shell and h/t ratio,
- Mortar joints being full-bed or face-shell and the natural logarithm of the compressive strength of clay masonry units,
- Mortar joints being full-bed or face-shell, the natural logarithm of the compressive strength of clay masonry units, and h/t ratio.

In Model "C" there are three possible levels for mortar type, two for units being hollow or solid, and two for mortar joints being full-bed or face-shell. Thus, there are a total of 12 possible categories out of which there are data available for 10 categories and all are explored by Model "C", as listed in Table 4.7. The following apply to Table 4.7.

- Comb.: Counts the number of various combinations for which data is available,
- Mortar Type: M, S, or N,
- Solid Hollow: Specifies whether the masonry units used in the assemblage were solid or hollow units,
- Mortar Joint: Specifies whether the joint was reported as face-shell or fullbed.
- Freq.: The number of observations available for the corresponding category,

• Prism Strength: The mean of all prism strengths reported for that combination in psi.

| Comb. | Mortar | Solid  | Mortar Joint | Frag  | Prism    |
|-------|--------|--------|--------------|-------|----------|
| Comb. | Туре   | Hollow | Wortar Joint | Freq. | Strength |
| 1     | М      | Hollow | Face Shell   | 58    | 5,279    |
| 2     | М      | Hollow | Full Bed     | 58    | 6,610    |
| 3     | М      | Solid  | Full Bed     | 11    | 4,723    |
| 4     | N      | Hollow | Face Shell   | 40    | 3,599    |
| 5     | N      | Hollow | Full Bed     | 31    | 4,241    |
| 6     | N      | Solid  | Full Bed     | 116   | 3,363    |
| 7     | S      | Hollow | Face Shell   | 109   | 4,786    |
| 8     | S      | Hollow | Full Bed     | 109   | 4,996    |
| 9     | S      | Solid  | Face Shell   | 8     | 3,641    |
| 10    | S      | Solid  | Full Bed     | 174   | 4,076    |

Table 4.7: Available 10 Combinations

The following relationship between mean prism strength and the predictor variables was established by the model.

 $\begin{aligned} & Mean \quad \text{Pr} ism \quad Strength = -17,314.618,696.5B_4 + 3,000.9B_5 + 25,527.3B_7 + \\ & 1,535.4B_8 + 2,678.2B_9 + 2,393.3B_{10} - 314.4B_9B_{10} + 8,568.3B_4B_9 + 156.7B_5B_9 + \\ & 2,086.3B_4B_{10} - 397.3B_5B_{10} - 901.6B_4B_9B_{10} - 26.4B_5B_9B_{10} - 2,206.8B_7B_9 - \\ & 2,703.7B_7B_{10} + 244.8B_7B_9B_{10} - 3,833.4B_8B_9 - 248N_8B_{10} + 439.2B_8B_9B_{10} \end{aligned}$ 

$$B4 = \begin{cases} 1 \\ 0 \end{cases} Type \ M \ Mortar \\ Otherwise \end{cases} \qquad B5 = \begin{cases} 1 \\ 0 \end{cases} Type \ N \ Mortar \\ Otherwise \end{cases}$$
$$B5 = \begin{cases} 1 \\ 0 \end{cases} Type \ N \ Mortar \\ Otherwise \end{cases}$$
$$B7 = \begin{cases} 1 \\ 0 \end{cases} Hollow \ Units \\ Solid \ Units \end{cases} \qquad B8 = \begin{cases} 1 \\ 0 \end{cases} Face - shell \\ 0 \end{cases} Full - bed$$
$$B9 = \frac{h}{t} \ ratio$$

$$B10 = Ln(Unit Compressive Strength)$$

The distribution of the prism strength values at each unit strength value fits a normal distribution. Thus, the following can be used to deduce the fifth quantile values for the response variable.

$$\xi_{0.05}\left(\stackrel{\circ}{\mu}, \stackrel{\circ}{\sigma}\right) = \stackrel{\circ}{\mu} + \stackrel{\circ}{\sigma} \xi_{0.05}(0, 1)$$
  

$$\xi_{0.05}\left(\stackrel{\circ}{\mu}, \stackrel{\circ}{\sigma}\right) = Fifth \quad Quantile$$
  

$$\stackrel{\circ}{\mu} = Mean \quad \Pr ism \quad Strength \quad \Pr edicted \quad by \quad the \quad Model.$$
  

$$\stackrel{\circ}{\sigma} = Conditional \quad S \tan dard \quad Deviation = 811.2$$
  

$$\xi_{0.05}\left(\stackrel{\circ}{\mu}, \stackrel{\circ}{\sigma}\right) = \stackrel{\circ}{\mu} - 811.2 \times 1.64 = \stackrel{\circ}{\mu} - 1,330.4$$

The coefficient of determination  $(R^2)$  for model "C" is 0.63. The type III sum of squares (Type III SS) generated by model "C" are shown in Table 4.8. The predictor variables or interactions with relatively larger type III SS values are the terms that explain more of the variation of the prism strengths.

| Source                                                       | Type III SS |
|--------------------------------------------------------------|-------------|
| Mortar type: M, S, or N                                      | 11,947,814  |
| Units being solid or hollow                                  | 24,204,203  |
| Full-bed or face-shell bedding                               | 66,669      |
| Height-to-thickness ratio                                    | 2,960,826   |
| Ln(f <sub>u</sub> )                                          | 27,773,119  |
| Interaction between Ln(f <sub>u</sub> ) & h/t ratio          | 3,108,046   |
| Interaction between h/t ratio & mortar type                  | 4,136,836   |
| Interaction between $Ln(f_u)$ & mortar type                  | 13,852,285  |
| Interaction between $Ln(f_u)$ , h/t ratio, & mortar type     | 4,032,851   |
| Interaction between h/t ratio & solid or hollow units        | 770,002     |
| Interaction between $Ln(f_u)$ & solid or hollow units        | 24,036,705  |
| Interaction between $Ln(f_u)$ , h/t ratio, & solid or hollow | 838,985     |
| Interaction between h/t ratio & face-shell or full-bed       | 2,229,237   |
| Interaction between $Ln(f_u)$ & face-shell or full-bed       | 156,009     |
| Interaction between $Ln(f_u)$ , h/t ratio, & face-shell or   | 2,597,498   |

# Table 4.8: Model "C" Type III SS Values

The variables and interactions that explain most of the variation in prism strength in the model are listed below in descending order of significance.

- 1. Natural logarithm of the compressive strength of masonry unit,
- 2. Units being solid or hollow,

- Interaction between the natural logarithm of the compressive strength of masonry unit and units being solid or hollow,
- 4. Interaction between the natural logarithm of the compressive strength of masonry unit and mortar type,
- 5. Mortar type.

The average prism strength fifth quantile values across all available categories predicted by model "C" - targeting h/t ratio value of two - and an equation best presenting those values are shown in Figure 4.23, 4.24, and 4.25 for mortar types M, S, N, respectively. The Code values are also shown for each case. Prism strength values cannot be reliably predicted for all ranges of unit compressive strengths due to insufficient test data. There is large gap of type M mortar data for unit strengths of less than approximately 9,000 psi. However, using type S mortar prism strength predictions of the model for type M mortar is conservative. Available data points for mortar types M and S and the fifth quantile predictions of the model for type S mortar are shown in Figure 4.26.

Equations 4.17 and 4.18 represent the best fit equations for the average prism strength fifth quantile values across all available categories predicted by model "C" - targeting h/t ratio value of two – for mortar type S and N, respectively.

Equation 4.17 (Type S Mortar)  

$$f'_{m} = 1,531.7 \times Ln(f_{u}) - 11,097$$
  
Equation 4.18 (Type N Mortar)  
 $f'_{m} = 1,484.3 \times Ln(f_{u}) - 10,772$ 

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

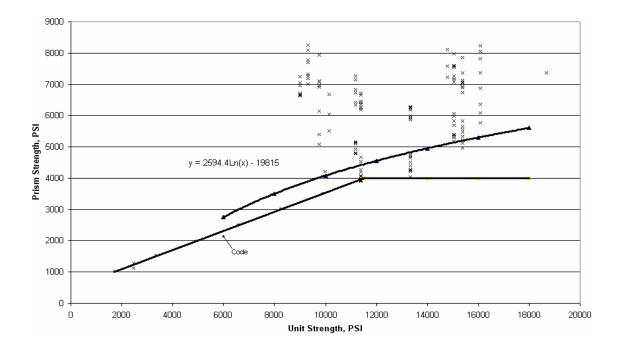



Figure 4.23: Type M Mortar.

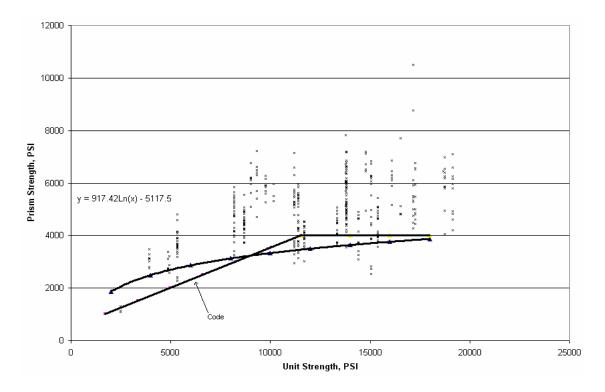



Figure 4.24: Type S Mortar

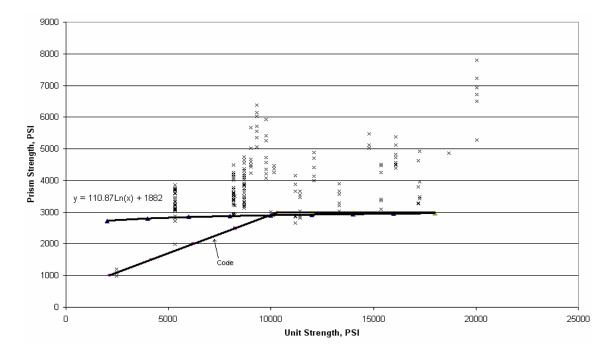



Figure 4.25: Type N Mortar.

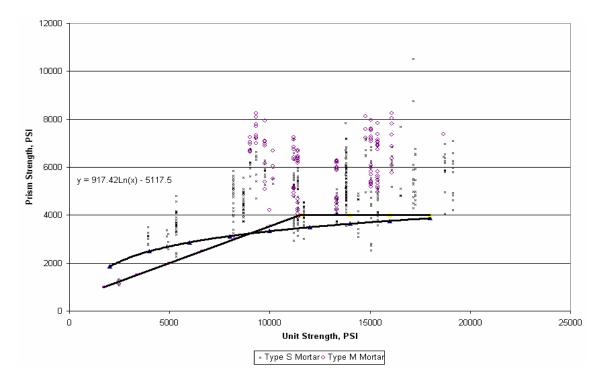



Figure 4.26: Types M & S Mortar.

Model "C" predicts higher prism compressive strengths than the Code values for lower unit compressive strengths. This is true due to the results of the tests performed in this research. A linear regression and 5<sup>th</sup> percentile prism strength predictions using the test results of this research only could clarify the appropriate prism strengths in the range of unit compressive strengths that were used in testing.

## 4.2.3.1 Linear Regression of Model "C" Data Set

The Model "C" data set was adjusted to h/t value of two based on the correction factors presented in Table 2.1. All the other variables were ignored and the data was analyzed based on mortar type using liner regression that related prism compressive strength to the compressive strength of the clay masonry unit for each mortar type. Figures 4.27, 4.28, and 4.29 show the data and the prism compressive strength values (50<sup>th</sup> and 5<sup>th</sup> percentiles) along with equations that are best fits for those values for mortar types M, S, and N, respectively.

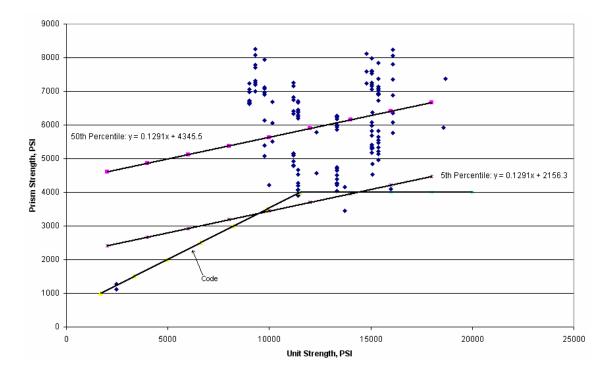



Figure 4.27: Type M Mortar.

Equation 4.17 (Type M Mortar, 50<sup>th</sup> Percentile)  $f'_m = 0.129 \times (f_u) + 4,346$ Equation 4.18 (Type M Mortar, 5<sup>th</sup> Percentile) f'm: specified compressive strength of masonry, psi, f<sub>u</sub>: average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.072$ .

 $f'_m = 0.129 \times (f_u) + 2,156$ 

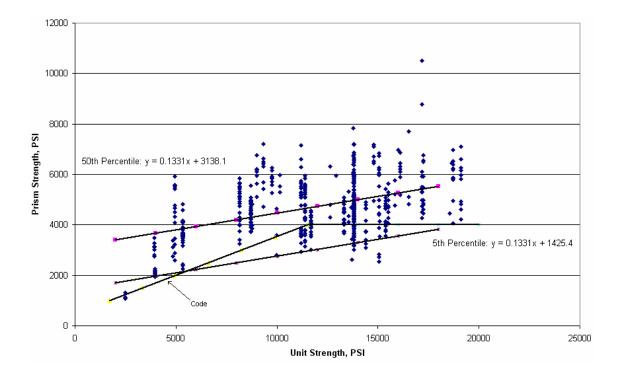



Figure 4.28: Type S Mortar.

Equation 4.19 (Type S Mortar, 50th Percentile) $f'_m = 0.133 \times (f_u) + 3,138$ Equation 4.20 (Type S Mortar, 5th Percentile) $f'_m = 0.133 \times (f_u) + 1,425$  $f'_m$ : specified compressive strength of masonry, psi, $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.195$ .

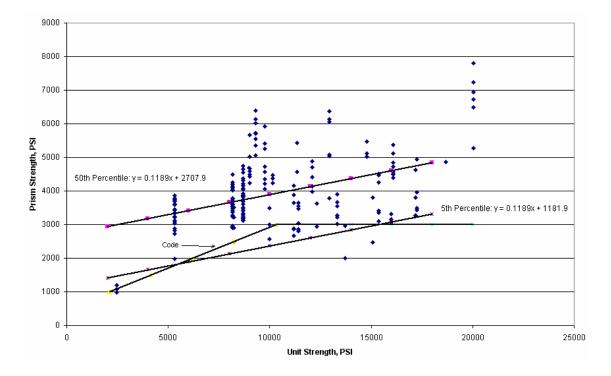



Figure 4.29: Type N Mortar.

Equation 4.21 (Type N Mortar, 50th Percentile) $f'_m = 0.119 \times (f_u) + 2,2708$ Equation 4.22 (Type N Mortar, 5th Percentile) $f'_m = 0.119 \times (f_u) + 1,182$  $f'_m$ : specified compressive strength of masonry, psi,

 $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.201$ .

4.2.4 Model "D"

Model "D" data set consists of data points generated by moist cured prisms that were tested at 28 days. Therefore, curing method is not ignored and is not one of the variables in the analysis. The grouted prisms were excluded from the data set. The compressive strengths are based on gross area for solid units and net area for hollow units. Units being solid or hollow and mortar joint being full-bed or face-shell are variables in Model "D". The predictor variables investigated are as follows:

- The natural logarithm (logarithm base e) of the compressive strength of the clay masonry units,
- o Mortar type,
- o Units being solid or hollow,
- o Mortar joints being face-shell or full-bed,
- Height-to-thickness ratio (h/t ratio).

There also exist interactions between the variables listed above. The following interactions were included in the model:

- Mortar type and h/t ratio,
- The natural logarithm of the compressive strength of clay masonry units and h/t ratio,
- Mortar type and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,
- Units being solid or hollow and h/t ratio,
- Units being solid or hollow and the natural logarithm of the compressive strength of clay masonry units,
- Units being solid or hollow, the natural logarithm of the compressive strength of clay masonry units, and h/t ratio,

- Mortar joints being full-bed or face-shell and h/t ratio,
- Mortar joints being full-bed or face-shell and the natural logarithm of the compressive strength of clay masonry units,
- Mortar joints being full-bed or face-shell, the natural logarithm of the compressive strength of clay masonry units, and h/t ratio.

In Model "D" there are three possible levels for mortar type, two for units being hollow or solid, and two for mortar joints being full-bed or face-shell. Thus, there are a total of 12 possible categories out of which there are data available for 8 categories and all are explored by Model "D", as listed in Table 4.9.

The following apply to table 4.9.

- Comb.: Counts the number of various combinations for which data is available,
- Mortar Type: M, S, or N,
- Solid Hollow: Specifies whether the masonry units used in the assemblage were solid or hollow units,
- Mortar Joint: Specifies whether the joint was reported as face-shell or fullbed.
- Freq.: The number of observations available for the corresponding category,
- Prism Strength: The mean of all prism strengths reported for that combination in psi.

|       | Mortar | Solid  |              | F     | Prism    |
|-------|--------|--------|--------------|-------|----------|
| Comb. | Туре   | Hollow | Mortar Joint | Freq. | Strength |
| 1     | М      | Hollow | Face Shell   | 42    | 4,899    |
| 2     | М      | Hollow | Full Bed     | 42    | 6,760    |
| 3     | Ν      | Hollow | Face Shell   | 15    | 3,087    |
| 4     | N      | Hollow | Full Bed     | 15    | 3,998    |
| 5     | N      | Solid  | Full Bed     | 90    | 3,182    |
| 6     | S      | Hollow | Face Shell   | 48    | 3,873    |
| 7     | S      | Hollow | Full Bed     | 77    | 5,121    |
| 8     | S      | Solid  | Full Bed     | 112   | 3,843    |

Table 4.9: Available 8 Combinations

The following relationship between mean prism strength and the predictor variables was established by the model.

 $\begin{aligned} & Mean \quad \text{Pr} \, ism \quad Strength = -3,016.1 - 23,870.2B_4 + 3,539.3B_5 + 2,981.5B_7 - \\ & 595.5B_8 - 3,606.5B_9 + 789.8B_{10} + 391.5B_9B_{10} + 368,548.9B_4B_9 + 2,802.4B_5B_9 + \\ & 2,657.4B_4B_{10} - 471.2B_5B_{10} - 40,125.4B_4B_9B_{10} - 315.6B_5B_9B_{10} - 126,922.1B_7B_9 - \\ & 219.9B_7B_{10} + 13,041.9B_7B_9B_{10} - 280,291.2B_8B_9 - 108.9N_8B_{10} + 30,113.5B_8B_9B_{10} \end{aligned}$ 

$$B4 = \begin{cases} 1 \\ 0 \end{cases} Type \ M \ Mortar \\ Otherwise \end{cases} \qquad B5 = \begin{cases} 1 \\ 0 \end{cases} Type \ N \ Mortar \\ Otherwise \end{cases}$$
$$B5 = \begin{cases} 1 \\ 0 \end{cases} Type \ N \ Mortar \\ Otherwise \end{cases}$$
$$B7 = \begin{cases} 1 \\ 0 \end{cases} Hollow \ Units \\ Solid \ Units \end{cases} \qquad B8 = \begin{cases} 1 \\ 0 \end{cases} Face - shell \\ 0 \end{cases} Full - bed$$
$$B9 = \frac{h}{t} \ ratio$$

# B10 = Ln(Unit Compressive Strength)

The distribution of the prism strength values at each unit strength value fits a normal distribution. Thus, the following can be used to deduce the fifth quantile values for the response variable.

$$\xi_{0.05}\left(\hat{\mu}, \hat{\sigma}\right) = \hat{\mu} + \hat{\sigma} \xi_{0.05}(0, 1)$$

$$\xi_{0.05}\left(\hat{\mu}, \hat{\sigma}\right) = Fifth \quad Quantile$$

$$\hat{\mu} = Mean \quad \Pr ism \quad Strength \quad \Pr edicted \quad by \quad the \quad Model.$$

$$\hat{\sigma} = Conditional \quad S \tan dard \quad Deviation = 514.8$$

$$\xi_{0.05}\left(\hat{\mu}, \hat{\sigma}\right) = \hat{\mu} - 514.8 \times 1.64 = \hat{\mu} - 844.3$$

The coefficient of determination  $(R^2)$  for model "D" is 0.83. The type III sum of squares (Type III SS) generated by model "D" are shown in Table 4.10. The predictor variables or interactions with relatively larger type III SS values are the terms that explain more of the variation of the prism strengths.

Table 4.10: Model "D" Type III SS Values

| Source                         | Type III SS |
|--------------------------------|-------------|
| Mortar type: M, S, or N        | 4,959,387   |
| Units being solid or hollow    | 116,058     |
| Full-bed or face-shell bedding | 2,533       |

### Table 4.10 - continued

| Source                                                           | Type III SS |
|------------------------------------------------------------------|-------------|
| Height-to-thickness ratio                                        | 100,091     |
| Ln(f <sub>u</sub> )                                              | 6,310,397   |
| Interaction between Ln(f <sub>u</sub> ) & h/t ratio              | 90,623      |
| Interaction between h/t ratio & mortar type                      | 1,266,405   |
| Interaction between $Ln(f_u)$ & mortar type                      | 5,832,629   |
| Interaction between $Ln(f_u)$ , h/t ratio, & mortar type         | 1,292,385   |
| Interaction between h/t ratio & solid or hollow units            | 287,076     |
| Interaction between Ln(f <sub>u</sub> ) & solid or hollow units  | 55,749      |
| Interaction between $Ln(f_u)$ , h/t ratio, & solid or hollow     | 275,004     |
| Interaction between h/t ratio & face-shell or full-bed           | 216,948     |
| Interaction between Ln(f <sub>u</sub> ) & face-shell or full-bed | 7,539       |
| Interaction between $Ln(f_u)$ , h/t ratio, & face-shell or       | 219,493     |

The variables and interactions that explain most of the variation in prism strengths in the model are listed below in descending order of significance.

- 1. Natural logarithm of the compressive strength of masonry unit,
- 2. Interaction between the natural logarithm of the compressive strength of masonry unit and mortar type,
- 3. Mortar type.

The average prism strength fifth quantile values across all available categories predicted by model "D" - targeting h/t ratio value of two - and an equation best

presenting those values are shown in Figure 4.30, 4.31, and 4.32 for mortar types M, S, N, respectively. The Code values are also shown for each case. Prism strength values cannot be reliably predicted for all ranges of unit compressive strengths due to insufficient test data. There is large gap of type M mortar data for unit strengths of less than approximately 9,000 psi. However, using type S mortar prism strength predictions of the model for type M mortar is conservative. Available data points for mortar types M and S and the fifth quantile predictions of the model for type S mortar are shown in Figure 4.33.

Equations 4.23 and 4.24 represent the best fit equations for the average prism strength fifth quantile values across all available categories predicted by model "D" - targeting h/t ratio value of two – for mortar type S and N, respectively.

| Equation 4.23 (Type S Mortar) | $f'_{m} = 602.7 \times Ln(f_{u}) - 2,039$ |
|-------------------------------|-------------------------------------------|
| Equation 4.24 (Type N Mortar) | $f'_m = 135.8 \times Ln(f_u) - 1,466$     |

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

Model "D" predicts higher prism compressive strengths than the Code values for lower unit compressive strengths where testing was performed for this study.

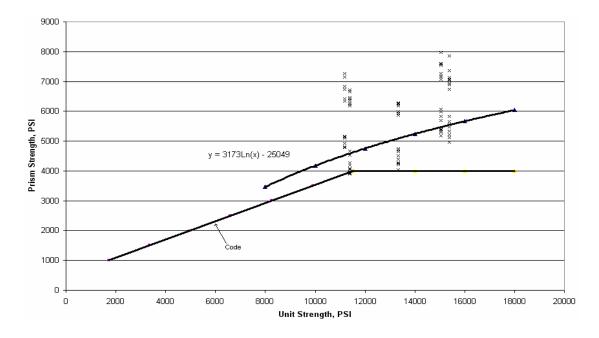



Figure 4.30: Type M Mortar.

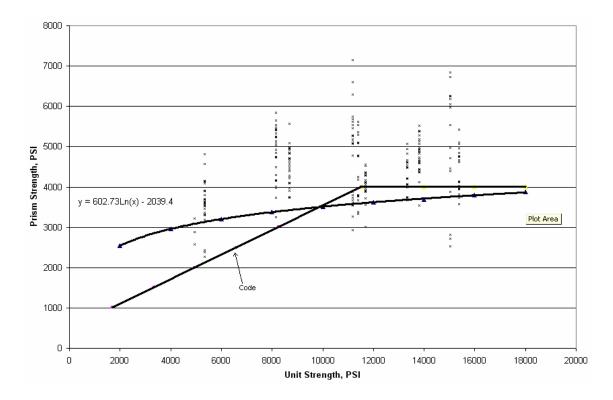



Figure 4.31: Type S Mortar

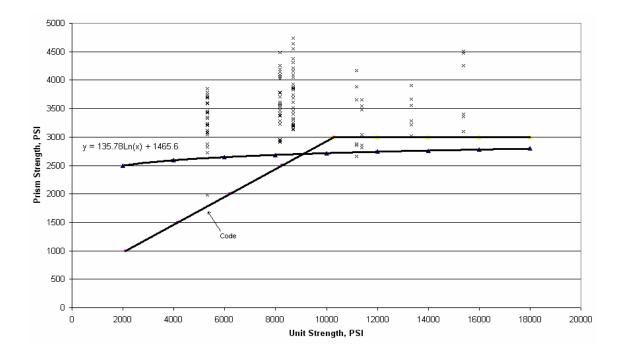



Figure 4.32: Type N Mortar.

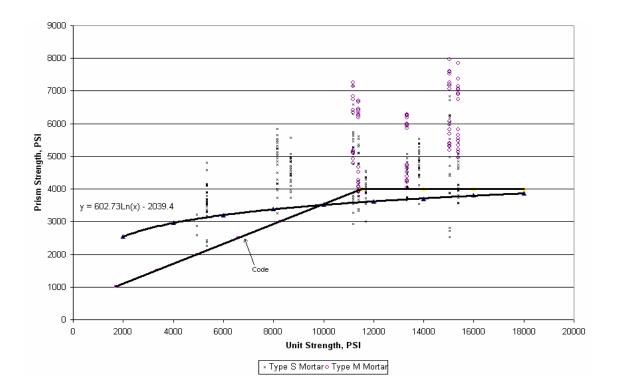



Figure 4.33: Types M & S Mortar.

### 4.2.4.1 Linear Regression of Model "D" Data Set

The Model "D" data set was adjusted to h/t value of two based on the correction factors presented in Table 2.1. All the other variables were ignored and the data was analyzed based on mortar type using liner regression that related prism compressive strength to the compressive strength of the clay masonry unit for each mortar type. Figures 4.34, 4.35, and 4.36 show the data and the prism compressive strength values (50<sup>th</sup> and 5<sup>th</sup> percentiles) along with equations that are best fits for those values for mortar types M, S, and N, respectively.

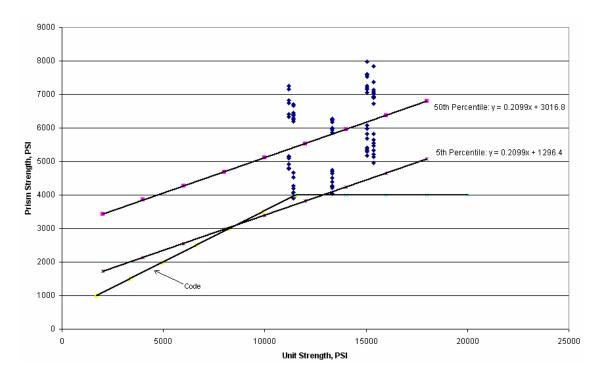



Figure 4.34: Type M Mortar.

Equation 4.23 (Type M Mortar, 50th Percentile) $f'_m = 0.210 \times (f_u) + 3,017$ Equation 4.24 (Type M Mortar, 5th Percentile) $f'_m = 0.210 \times (f_u) + 1,296$ 

f'm: specified compressive strength of masonry, psi,

 $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.108$ .

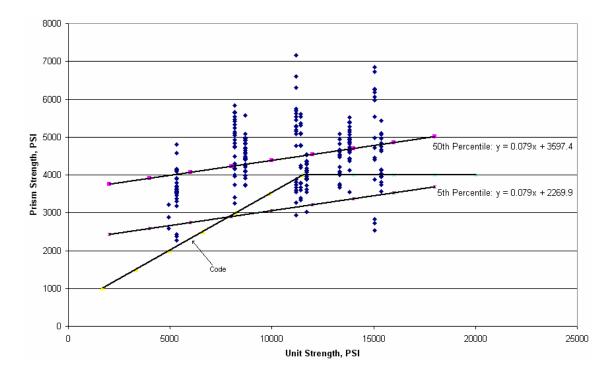



Figure 4.35: Type S Mortar.

| Equation 4.25 (Type S Mortar, 50 <sup>th</sup> Percentile) | $f'_m = 0.079 \times (f_u) + 3,597$ |
|------------------------------------------------------------|-------------------------------------|
| Equation 4.26 (Type S Mortar, 5 <sup>th</sup> Percentile)  | $f'_m = 0.079 \times (f_u) + 2,270$ |
| f'm: specified compressive strength of masonry, psi,       |                                     |

 $f_u\!\!:$  average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.089$ .



Figure 4.36: Type N Mortar.

Equation 4.27 (Type N Mortar, 50<sup>th</sup> Percentile) $f'_m = 0.035 \times (f_u) + 3,231$ Equation 4.28 (Type N Mortar, 5<sup>th</sup> Percentile) $f'_m = 0.035 \times (f_u) + 2,437$  $f'_m$ : specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.047$ .

4.2.5 Model "E"

Model "E" data set is data set for Model "C" modified to reflect the compressive strengths of the units based on the net areas and the assemblage based on net bedded areas regardless of the size of the openings. This adjustment excludes two predictor variables – units being solid or hollow, and mortar joints being face-shell or full-bed.

Also, the data points from prisms cured for 7 days only were excluded and the curing method was ignored as a variable. The predictor variables investigated are as follows:

- The natural logarithm (logarithm base e) of the compressive strength of the clay masonry units,
- o Mortar type,
- Height-to-thickness ratio (h/t ratio).

There also exist interactions between the variables listed above. The following interactions were included in the model:

- Mortar type and h/t ratio,
- The natural logarithm of the compressive strength of clay masonry units and h/t ratio,
- Mortar type and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,

In Model "E" there are three possible levels for mortar type. Thus, there are a total of 3 possible categories out of which there are data available for all three, as listed in Table 4.11. The following apply to Table 4.11.

- Comb.: Counts the number of various combinations for which data is available,
- Mortar Type: M, S, or N,
- Freq.: The number of observations available for the corresponding category,

• Prism Strength: The mean of all prism strengths reported for that combination in psi.

| Comb. | Mortar Type | Freq. | Prism Strength |
|-------|-------------|-------|----------------|
| 1     | М           | 127   | 5,838          |
| 2     | S           | 398   | 4,826          |
| 3     | N           | 187   | 3,910          |

Table 4.11: Available 3 Combinations

The following relationship between mean prism strength and the predictor variables was established by the model.

 $Mean \quad \text{Pr} ism \quad Strength = -5,558.7 - 15,169.1B_4 - 289.8B_5 - 1,594.6B_9 + 1,108.8B_{10} + 169.3B_9B_{10} + 5,875.7B_4B_9 + 1,545.4B_5B_9 + 1,705.1B_4B_{10} - 29.9B_5B_{10} - 609.7B_4B_9B_{10} - 178.6B_5B_9B_{10}$ 

$$B4 = \begin{cases} 1 \\ 0 \end{cases} Type & M & Mortar \\ Otherwise \end{cases} \qquad B5 = \begin{cases} 1 \\ 0 \end{cases} Type & N & Mortar \\ Otherwise \end{cases}$$
$$B9 = \frac{h}{t} ratio$$
$$B10 = Ln(Unit \quad Compressive \quad Strength)$$

The distribution of the prism strength values at each unit strength value fits a normal distribution. Thus, the following can be used to deduce the fifth quantile values for the response variable.

$$\xi_{0.05}\left(\stackrel{\circ}{\mu}, \stackrel{\circ}{\sigma}\right) = \stackrel{\circ}{\mu} + \stackrel{\circ}{\sigma} \xi_{0.05}(0, 1)$$
  

$$\xi_{0.05}\left(\stackrel{\circ}{\mu}, \stackrel{\circ}{\sigma}\right) = Fifth \quad Quantile$$
  

$$\stackrel{\circ}{\mu} = Mean \quad \Pr ism \quad Strength \quad \Pr edicted \quad by \quad the \quad Model.$$
  

$$\stackrel{\circ}{\sigma} = Conditional \quad S \tan dard \quad Deviation = 968.2$$
  

$$\xi_{0.05}\left(\stackrel{\circ}{\mu}, \stackrel{\circ}{\sigma}\right) = \stackrel{\circ}{\mu} - 968.2 \times 1.64 = \stackrel{\circ}{\mu} - 1,587.8$$

The coefficient of determination  $(R^2)$  for model "E" is 0.42. The type III sum of squares (Type III SS) generated by model "E" are shown in Table 4.12. The predictor variables or interactions with relatively larger type III SS values are the terms that explain more of the variation of the prism strengths.

| Table 4.12: | Model "E" Type III S | S Values |
|-------------|----------------------|----------|
| Source      |                      | Type II  |

| Source                                                   | Type III SS |
|----------------------------------------------------------|-------------|
| Mortar type: M, S, or N                                  | 7,333,240   |
| h/t ratio                                                | 398,319     |
| Ln(f <sub>u</sub> )                                      | 54,272,081  |
| Interaction between Ln(f <sub>u</sub> ) & h/t ratio      | 394,241     |
| Interaction between h/t ratio & mortar type              | 2,612,810   |
| Interaction between Ln(f <sub>u</sub> ) & mortar type    | 8,895,374   |
| Interaction between $Ln(f_u)$ , h/t ratio, & mortar type | 2,576,917   |

The variable that explains most of the variation in prism strength in the model is the natural logarithm of the compressive strength of masonry unit. This model ignores the curing method, which causes the curing method to become a potential confounder. The average prism strength fifth quantile values for each mortar type predicted by model "E" - targeting h/t ratio value of two - and an equation best presenting those values are shown in Figure 4.37, 4.38, and 4.39 for mortar types M, S, N, respectively. The Code values are also shown for each case. Prism strength values cannot be reliably predicted for all ranges of unit compressive strengths due to insufficient test data. There is large gap of type M mortar data for unit strengths of less than approximately 9,000 psi. However, using type S mortar prism strength predictions of the model for type M mortar is conservative. Available data points for mortar types M and S and the fifth quantile predictions of the model for type S mortar are shown in Figure 4.40.

Equations 4.29 and 4.30 represent the best fit equations for the average prism strength fifth quantile values across all available categories predicted by model "E" - targeting h/t ratio value of two – for mortar type S and N, respectively.

Equation 4.28 (Type S Mortar)  $f'_{m} = 602.7 \times Ln(f_{u}) - 2,039$ Equation 4.30 (Type N Mortar)  $f'_{m} = 135.8 \times Ln(f_{u}) - 1,466$ 

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

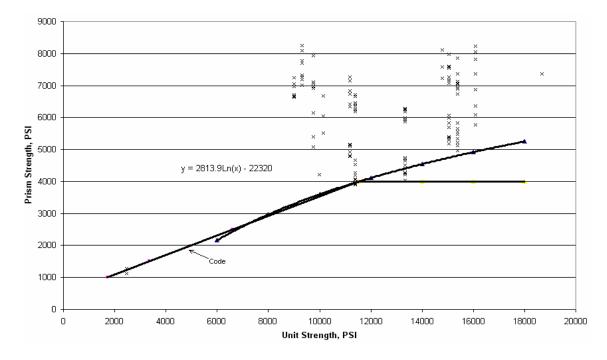



Figure 4.37: Type M Mortar.



Figure 4.38: Type S Mortar

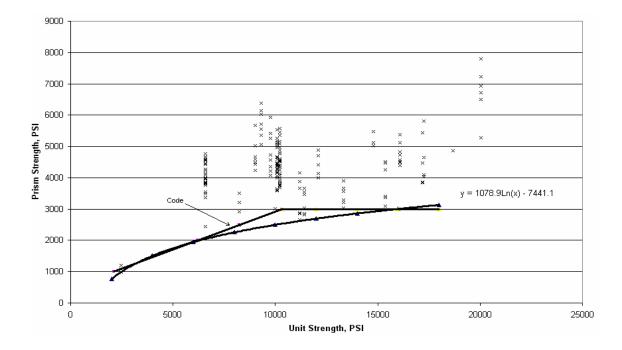



Figure 4.39: Type N Mortar.

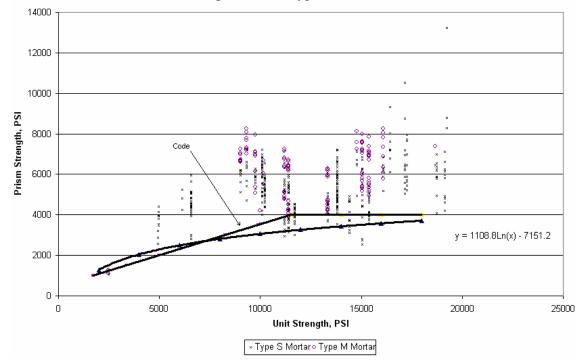



Figure 4.40: Types M & S Mortar.

### 4.2.5.1 Linear Regression of Model "E" Data Set

The Model "E" data set was adjusted to h/t value of two based on the correction factors presented in Table 2.1. The data was analyzed based on mortar type using liner regression that related prism compressive strength to the compressive strength of the clay masonry unit for each mortar type. Figures 4.41, 4.42, and 4.43 show the data and the prism compressive strength values (50<sup>th</sup> and 5<sup>th</sup> percentiles) along with equations that are best fits for those values for mortar types M, S, and N, respectively.

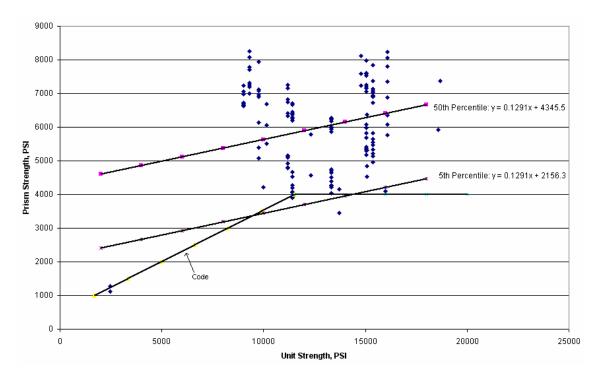



Figure 4.41: Type M Mortar.

Equation 4.29 (Type M Mortar, 50<sup>th</sup> Percentile)  $f'_m = 0.129 \times (f_u) + 4,346$ Equation 4.30 (Type M Mortar, 5<sup>th</sup> Percentile)  $f'_m = 0.129 \times (f_u) + 2,156$  f'm: specified compressive strength of masonry, psi,

 $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.072$ .

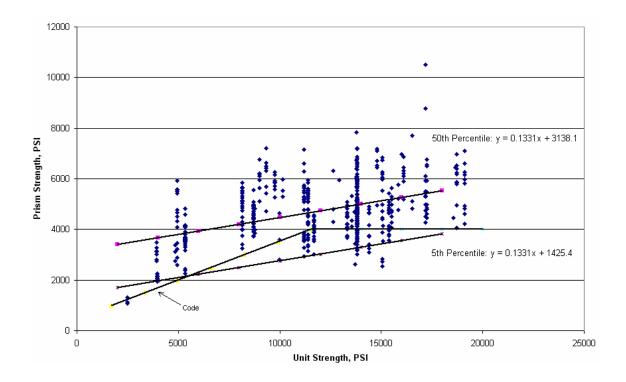



Figure 4.42: Type S Mortar.

| Equation 4.31 (Type S Mortar, 50 <sup>th</sup> Percentile)        | $f'_m = 0.133 \times (f_u) + 3,138$ |
|-------------------------------------------------------------------|-------------------------------------|
| Equation 4.32 (Type S Mortar, 5 <sup>th</sup> Percentile)         | $f'_m = 0.133 \times (f_u) + 1,425$ |
| f' <sub>m</sub> : specified compressive strength of masonry, psi, |                                     |
| f <sub>u</sub> : average compressive strength of brick, psi.      |                                     |

Coefficient of determination  $(R^2) = 0.195$ .

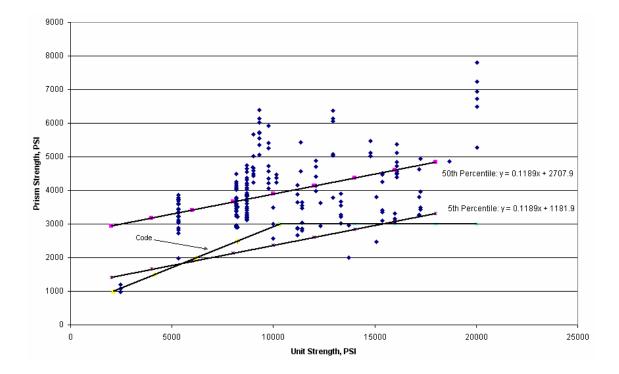



Figure 4.43: Type N Mortar.

| Equation 4.33 (Type N Mortar, 50 <sup>th</sup> Percentile) | $f'_m = 0.119 \times (f_u) + 2,708$ |
|------------------------------------------------------------|-------------------------------------|
| Equation 4.34 (Type N Mortar, 5 <sup>th</sup> Percentile)  | $f'_m = 0.119 \times (f_u) + 1.182$ |

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.201$ .

4.2.6 Model "F"

Model "F" data set is data set for Model "D" modified to reflect the compressive strengths of the units based on the net areas and the assemblage based on net bedded areas regardless of the size of the openings. This adjustment excludes two predictor variables – units being solid or hollow, and mortar joints being face-shell or full-bed. Also, the data points from prisms cured for 7 days or cured in other than moist conditions were excluded. The predictor variables investigated are as follows:

- The natural logarithm (logarithm base e) of the compressive strength of the clay masonry units,
- o Mortar type,
- Height-to-thickness ratio (h/t ratio).

There also exist interactions between the variables listed above. The following interactions were included in the model:

- Mortar type and h/t ratio,
- The natural logarithm of the compressive strength of clay masonry units and h/t ratio,
- Mortar type and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units,

In Model "F" there are three possible levels for mortar type. Thus, there are a total of 3 possible categories out of which there are data available for all three, as listed in Table 4.13. The following apply to table 4.13.

- Comb.: Counts the number of various combinations for which data is available,
- Mortar Type: M, S, or N,

- Freq.: The number of observations available for the corresponding category,
- Prism Strength: The mean of all prism strengths reported for that combination in psi.

| Comb. | Mortar Type | Freq. | Prism Strength |
|-------|-------------|-------|----------------|
| 1     | М           | 84    | 5,829          |
| 2     | S           | 278   | 4,719          |
| 3     | N           | 120   | 3,783          |

Table 4.13: Available 3 Combinations

The following relationship between mean prism strength and the predictor variables was established by the model.

 $\begin{aligned} & Mean \quad \text{Pr}\,ism \quad Strength = 775.1 - 24,977.6B_4 + 5,977.7B_5 - 6,161.8B_9 + 423.6B_{10} + 670.7B_9B_{10} + 104,036.5B_4B_9 + 3,818.8B_5B_9 + 2,749.4B_4B_{10} - 730.8B_5B_{10} - 12,306B_4B_9B_{10} \\ & - 426B_5B_9B_{10} \end{aligned}$ 

$$B4 = \begin{cases} 1 \\ 0 \end{cases} Type & M & Mortar \\ Otherwise \end{cases} \qquad B5 = \begin{cases} 1 \\ 0 \end{cases} Type & N & Mortar \\ Otherwise \end{cases}$$
$$B9 = \frac{h}{t} \text{ ratio}$$
$$B10 = Ln(Unit \quad Compressive \quad Strength)$$

The distribution of the prism strength values at each unit strength value fits a normal distribution. Thus, the following can be used to deduce the fifth quantile values for the response variable.

$$\xi_{0.05}\left(\stackrel{\circ}{\mu},\stackrel{\circ}{\sigma}\right) = \stackrel{\circ}{\mu} + \stackrel{\circ}{\sigma} \xi_{0.05}(0,1)$$

$$\xi_{0.05}\left(\stackrel{\circ}{\mu},\stackrel{\circ}{\sigma}\right) = Fifth \quad Quantile$$

$$\stackrel{\circ}{\mu} = Mean \quad \Pr ism \quad Strength \quad \Pr edicted \quad by \quad the \quad Model.$$

$$\stackrel{\circ}{\sigma} = Conditional \quad S \ tan \ dard \quad Deviation = 848$$

$$\xi_{0.05}\left(\stackrel{\circ}{\mu},\stackrel{\circ}{\sigma}\right) = \stackrel{\circ}{\mu} - 848 \times 1.64 = \stackrel{\circ}{\mu} - 1,390.7$$

The coefficient of determination  $(R^2)$  for model "F" is 0.42. The type III sum of squares (Type III SS) generated by model "F" are shown in Table 4.14. The predictor variables or interactions with relatively larger type III SS values are the terms that explain more of the variation of the prism strengths.

| Source                                                   | Type III SS |
|----------------------------------------------------------|-------------|
| Mortar type: M, S, or N                                  | 8,995,772   |
| h/t ratio                                                | 27,321      |
| Ln(f <sub>u</sub> )                                      | 8,195,510   |
| Interaction between Ln(f <sub>u</sub> ) & h/t ratio      | 34,405      |
| Interaction between h/t ratio & mortar type              | 1,359,137   |
| Interaction between $Ln(f_u)$ & mortar type              | 10,117,805  |
| Interaction between $Ln(f_u)$ , h/t ratio, & mortar type | 1,420,429   |

Table 4.14: Model "F" Type III SS Values

The variables that explain most of the variation in prism strength in the model are the mortar type and the interaction between the natural logarithm of the compressive strength of masonry unit and the mortar type. The average prism strength fifth quantile values for each mortar type predicted by model "F" - targeting h/t ratio value of two - and an equation best presenting those values are shown in Figure 4.44, 4.45, and 4.46 for mortar types M, S, N, respectively. The Code values are also shown for each case. Prism strength values cannot be reliably predicted for all ranges of unit compressive strengths due to insufficient test data. There is large gap of type M mortar data for unit strengths of less than approximately 9,000 psi. However, using type S mortar prism strength predictions of the model for type M mortar is conservative. Available data points for mortar types M and S and the fifth quantile predictions of the model for type S mortar are shown in Figure 4.47.

Equations 4.35 and 4.36 represent the best fit equations for the average prism strength fifth quantile values across all available categories predicted by model "F" - targeting h/t ratio value of two – for mortar type S and N, respectively.

Equation 4.35 (Type S Mortar)  $f'_{m} = 602.7 \times Ln(f_{u}) - 2,039$ Equation 4.36 (Type N Mortar)  $f'_{m} = 135.8 \times Ln(f_{u}) - 1,466$ 

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

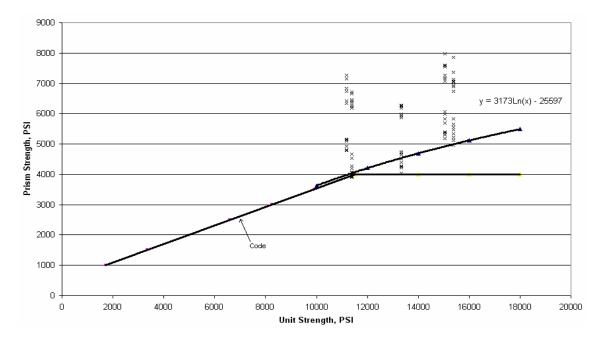



Figure 4.44: Type M Mortar.

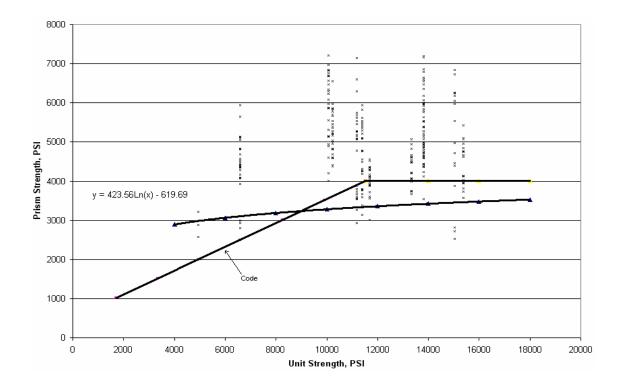



Figure 4.45: Type S Mortar

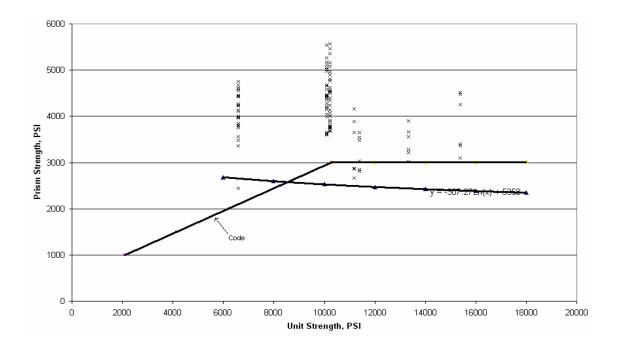
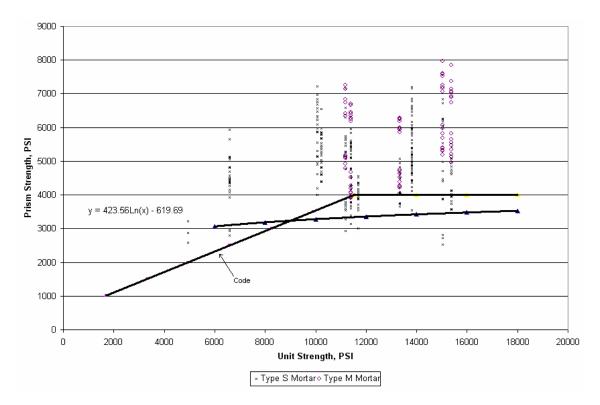





Figure 4.46: Type N Mortar.





### 4.2.6.1 Linear Regression of Model "F" Data Set

The Model "F" data set was adjusted to h/t value of two based on the correction factors presented in Table 2.1. The data was analyzed based on mortar type using liner regression that related prism compressive strength to the compressive strength of the clay masonry unit for each mortar type. Figures 4.48, 4.49, and 4.50 show the data and the prism compressive strength values (50<sup>th</sup> and 5<sup>th</sup> percentiles) along with equations that are best fits for those values for mortar types M, S, and N, respectively.

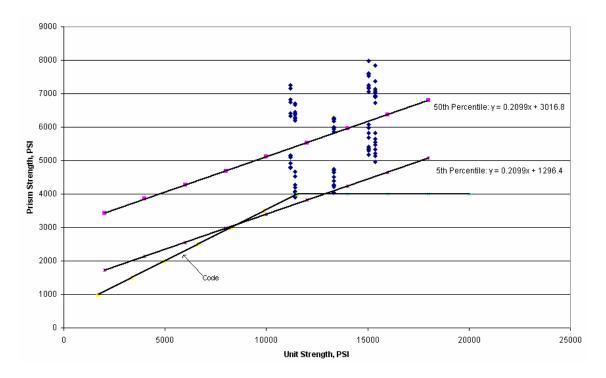



Figure 4.48: Type M Mortar.

| Equation 4.35 (Type M Mortar, 50 <sup>th</sup> Percentile) | $f'_m = 0.210 \times (f_u) + 3,017$ |
|------------------------------------------------------------|-------------------------------------|
| Equation 4.36 (Type M Mortar, 5 <sup>th</sup> Percentile)  | $f'_m = 0.210 \times (f_u) + 1,296$ |

f'm: specified compressive strength of masonry, psi,

## f<sub>u</sub>: average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.108$ .

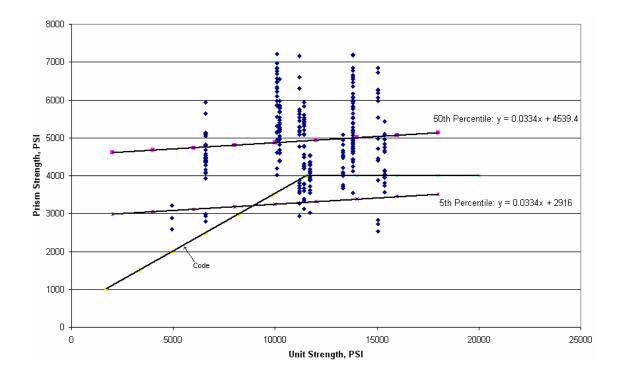



Figure 4.49: Type S Mortar.

Equation 4.37 (Type S Mortar, 50<sup>th</sup> Percentile) Equation 4.38 (Type S Mortar, 5<sup>th</sup> Percentile)  $f'_m = 0.033 \times (f_u) + 4,539$  $f'_m = 0.033 \times (f_u) + 2,916$ 

 $f^{\ast}{}_{m}\!\!:$  specified compressive strength of masonry, psi,

 $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.007$ .

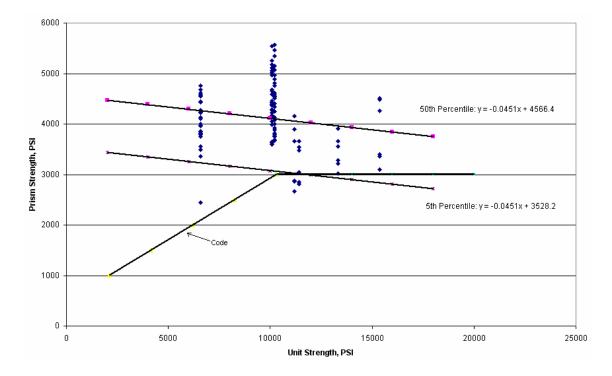



Figure 4.50: Type N Mortar.

Equation 4.39 (Type N Mortar, 50<sup>th</sup> Percentile) Equation 4.40 (Type N Mortar, 5<sup>th</sup> Percentile)  $f'_m = -0.045 \times (f_u) + 4,566$   $f'_m = -0.045 \times (f_u) + 3,528$  $f'_m$ : specified compressive strength of masonry, psi,

 $f_{u\!}: average \ compressive \ strength \ of \ brick, \ psi.$ 

Coefficient of determination  $(R^2) = 0.033$ .

4.2.7 Model "G"

Model "G" examines the data collected only from testing performed for this research. The compressive strengths are based on gross areas. All prisms were moist cured and tested at 28 days. All units were solid and all mortar joints were full-bed. The predictor variables investigated are as follows:

- The natural logarithm (logarithm base e) of the compressive strength of the clay masonry units,
- o Mortar type,
- Height-to-thickness ratio (h/t ratio).

There also exist interactions between the variables listed above. The following interactions were included in the model:

- Mortar type and h/t ratio,
- The natural logarithm of the compressive strength of clay masonry units and h/t ratio,
- Mortar type and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units.

In Model "G" there are two possible levels for mortar type, see Table 4.15.

The following apply to table 4.15.

- Comb.: Counts the number of various combinations for which data is available,
- Mortar Type: M, S, or N,
- Freq.: The number of observations available for the corresponding category,
- Prism Strength: The mean of all prism strengths reported for that combination in psi.

Table 4.15: Available 2 Combinations

| Comb. | Mortar Type | Freq. | Prism Strength |
|-------|-------------|-------|----------------|
| 1     | S           | 89    | 3,867          |
| 2     | Ν           | 89    | 3,173          |

The following relationship between mean prism strength and the predictor variables was established by the model.

 $Mean \quad \Pr{ism} \quad Strength = -14,898.5 + 9,020.2B_5 + 995.1B_9 + 2,139.2B_{10} - 128.9B_9B_{10} + 434.6B_5B_9 - 1,089.4B_5B_{10} - 50.2B_5B_9B_{10}$ 

$$B5 = \begin{cases} 1 \\ 0 \end{cases} Type \quad N \quad Mortar \\ Otherwise \end{cases} \qquad B9 = \frac{h}{t} \text{ ratio}$$
$$B10 = Ln(Unit \quad Compressive \quad Strength)$$

The distribution of the prism strength values at each unit strength value fits a normal distribution. Thus, the following can be used to deduce the fifth quantile values for the response variable.

$$\xi_{0.05}\left(\hat{\mu}, \hat{\sigma}\right) = \hat{\mu} + \hat{\sigma} \,\xi_{0.05}(0, 1)$$
  

$$\xi_{0.05}\left(\hat{\mu}, \hat{\sigma}\right) = Fifth \quad Quantile$$
  

$$\hat{\mu} = Mean \quad \Pr ism \quad Strength \quad \Pr edicted \quad by \quad the \quad Model.$$
  

$$\hat{\sigma} = Conditional \quad S \tan dard \quad Deviation = 473.8$$
  

$$\xi_{0.05}(0, 1) = -1.64$$

$$\xi_{0.05}\left(\hat{\mu},\hat{\sigma}\right) = \hat{\mu} - 473.8 \times 1.64 = \hat{\mu} - 777.0$$

The coefficient of determination  $(R^2)$  for model "G" is 0.56. The type III sum of squares (Type III SS) generated by model "G" are shown in Table 4.16. The predictor variables or interactions with relatively larger type III SS values are the terms that explain more of the variation of the prism strengths.

Source Type III SS Mortar type: M, S, or N 977.875 h/t ratio 326,926 9,627,958  $Ln(f_u)$ Interaction between  $Ln(f_u)$  & h/t ratio 416,432 10,502 Interaction between h/t ratio & mortar type 1,123,717 Interaction between  $Ln(f_u)$  & mortar type Interaction between  $Ln(f_u)$ , h/t ratio, & mortar type 11,066

Table 4.16:Model "G" Type III SS Values

The variable that explains most of the variation in prism strength in the model is the natural logarithm of the compressive strength of masonry unit. The average prism strength fifth quantile values for each mortar type predicted by model "G" - targeting h/t ratio value of two - and an equation best presenting those values are shown in Figure 4.51 and 4.52 for mortar types S and N, respectively. The Code values are also shown for each case. Prism strength values cannot be reliably predicted for all ranges of unit compressive strengths due to insufficient test data. There was no testing done with type M mortar. However, using type S mortar prism strength predictions of the model for type M mortar is conservative.

Equations 4.41 and 4.42 represent the best fit equations for the average prism strength fifth quantile values across all available categories predicted by model "F" - targeting h/t ratio value of two – for mortar type S and N, respectively.

Equation 4.41 (Type S Mortar)  $f'_{m} = 2,139.2 \times Ln(f_{u}) - 15,678$ Equation 4.42 (Type N Mortar)  $f'_{m} = 1,049.7 \times Ln(f_{u}) - 6,658$ 

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

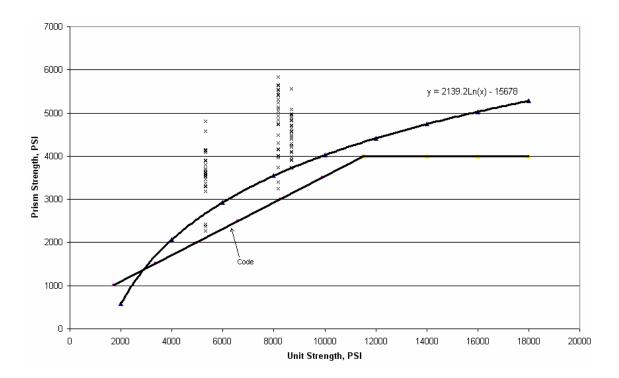



Figure 4.51: Type S Mortar.

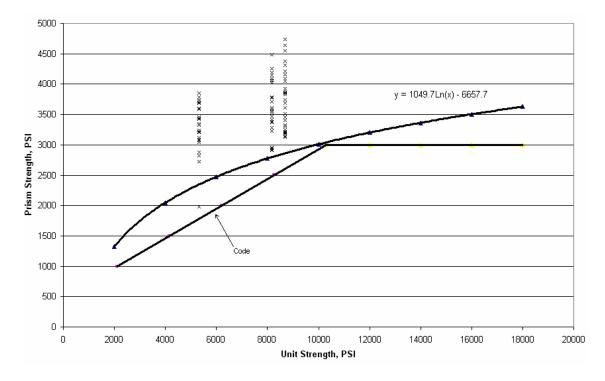



Figure 4.52: Type N Mortar.

### 4.2.7.1 Linear Regression of Model "G" Data Set

The Model "G" data set was adjusted to h/t value of two based on the correction factors presented in Table 2.1. The data was analyzed based on mortar type using liner regression that related prism compressive strength to the compressive strength of the clay masonry unit for each mortar type. Figures 4.53 and 4.54 show the data and the prism compressive strength values (50<sup>th</sup> and 5<sup>th</sup> percentiles) along with equations that are best fits for those values for mortar types S and N, respectively.

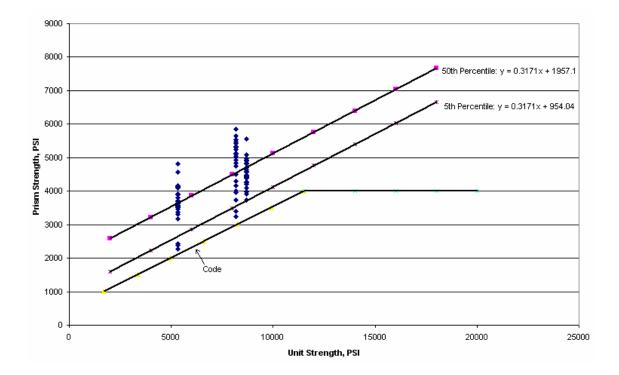



Figure 4.53: Type S Mortar.

| Equation 4.43 (Type S Mortar, 50 <sup>th</sup> Percentile) | $f'_m = 0.317 \times (f_u) + 1,957$ |
|------------------------------------------------------------|-------------------------------------|
| Equation 4.44 (Type S Mortar, 5 <sup>th</sup> Percentile)  | $f'_m = 0.317 \times (f_u) + 954$   |

f'm: specified compressive strength of masonry, psi,

f<sub>u</sub>: average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.372$ .

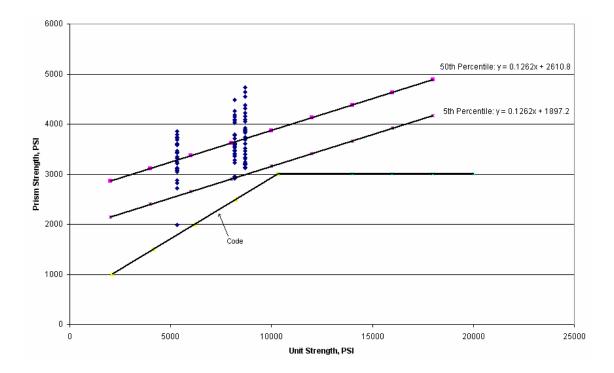



Figure 4.54: Type N Mortar.

Equation 4.45 (Type N Mortar, 50th Percentile) $f'_m = 0.12$ Equation 4.46 (Type N Mortar, 5th Percentile) $f'_m = 0.12$  $f'_m$ : specified compressive strength of masonry, psi, $f_u$ : average compressive strength of brick, psi.

Coefficient of determination  $(R^2) = 0.158$ .

 $f'_m = 0.126 \times (f_u) + 2,611$  $f'_m = 0.126 \times (f_u) + 1,897$  4.2.7.2 Comparison of Linear Regression of Model "G" and Code Values

Compressive strength of masonry as predicted by Model "G" and the linear regression of Model "G" data set for clay masonry units ranging in compressive strength from 5,000 to 9,000 psi are shown in Tables 4.17 and 4.18.

|  | Table 4.17: MSJC Design | Values and Results from M | Model "G", Types M & S Mortar |
|--|-------------------------|---------------------------|-------------------------------|
|--|-------------------------|---------------------------|-------------------------------|

| Compressive       | Compressive Strength of Masonry, psi |       |       |  |  |  |  |
|-------------------|--------------------------------------|-------|-------|--|--|--|--|
| Strength of Clay  | Types M & S Mortar                   |       |       |  |  |  |  |
| Masonry Unit, psi | MSJC Model "G" Linear Regression     |       |       |  |  |  |  |
| 5,000             | 2,013                                | 2,542 | 2,539 |  |  |  |  |
| 6,000             | 2,318                                | 2,932 | 2,856 |  |  |  |  |
| 7,000             | 2,623                                | 3,262 | 3,173 |  |  |  |  |
| 8,000             | 2,928                                | 3,547 | 3,490 |  |  |  |  |
| 9,000             | 3,233                                | 3,799 | 3,807 |  |  |  |  |

Table 4.18: MSJC Design Values and Results from Model "G", Type N Mortar

| Compressive       | Compressive Strength of Masonry, psi |               |       |  |  |  |  |
|-------------------|--------------------------------------|---------------|-------|--|--|--|--|
| Strength of Clay  |                                      | Type N Mortar |       |  |  |  |  |
| Masonry Unit, psi | MSJC Model "G" Linear Regressi       |               |       |  |  |  |  |
| 5,000             | 1,708                                | 2,282         | 2,527 |  |  |  |  |
| 6,000             | 1,952                                | 2,474         | 2,653 |  |  |  |  |
| 7,000             | 2,196                                | 2,636         | 2,779 |  |  |  |  |
| 8,000             | 2,440                                | 2,776         | 2,905 |  |  |  |  |
| 9,000             | 2,680                                | 2,899         | 3,031 |  |  |  |  |

Model "G" is a better predictor of the prism compressive strength than the linear regression because Model "G" examines several predictor variables and the interaction between them. Both Model "G" and the linear regression are reliable in the range of unit compressive strength tabulated in Tables 4.17 and 4.18 (5,000 thru 9,000 psi), due to the average compressive strengths of the clay masonry units used in testing. Model "G" results (Equations 4.41 and 4.42) are used to provide a comparison between the units compressive strengths and the corresponding masonry compressive strength as presented in the MSJC Specification and predicted by model "G" in Tables 4.19 & 4.20.

| Compressive Strength of<br>Clay Masonry Unit, psi | Compressive Strength of Masonry, psi |           |  |  |  |
|---------------------------------------------------|--------------------------------------|-----------|--|--|--|
| (Types M & S Mortar)                              | MSJC                                 | Model "G" |  |  |  |
| 3,350                                             | 1,500                                | 1,685     |  |  |  |
| 4,950                                             | 2,000                                | 2,520     |  |  |  |
| 6,600                                             | 2,500                                | 3,136     |  |  |  |
| 8,250                                             | 3,000                                | 3,613     |  |  |  |
| 9,900                                             | 3,500                                | 4,003     |  |  |  |
| 11,515                                            | 4,000                                | 4,327     |  |  |  |

Table 4.19: Comparison of MSJC Specification and Model "G" (Types M & S Mortar)

| Compressive Strength of<br>Clay Masonry Unit, psi | Compressive Strength of Masonry, psi |           |  |  |  |
|---------------------------------------------------|--------------------------------------|-----------|--|--|--|
| (Type N Mortar)                                   | MSJC                                 | Model "G" |  |  |  |
| 2,100                                             | 1,000                                | 1,372     |  |  |  |
| 4,150                                             | 1,500                                | 2,087     |  |  |  |
| 6,200                                             | 2,000                                | 2,508     |  |  |  |
| 8,250                                             | 2,500                                | 2,808     |  |  |  |
| 10,300                                            | 3,000                                | 3,041     |  |  |  |

Table 4.20: Comparison of MSJC Specification and Model "G" (Type N Mortar)

#### 4.2.8 Height-to-Thickness Ratio Correction Factors

As shown in Table 2.1 there are correction factors suggested by ASTM C 1314-03b for varying h/t ratios. The correction factors in Table 2.1 basically convert the prism compressive strength of a prism with h/t ratio of two to an equivalent prism compressive strength of a prism with h/t ratio of two. Average predicted prism compressive strength values for h/t ratios of two, three, four, and five are extracted from Models "E" and "G". The average prism compressive strength values for various h/t ratios from each model are divided by the average prism compressive strength predicted by that model for h/t ratio of two and the results are compared with the correction factors from Table 2.1, see Table 4.21. The average of the results from the models mentioned above are provided in Table 4.21, and are comparable to the correction factors from ASTM C 1314-03b.

| h/t ratio <sup>1</sup>  | 2.0 | 3.0  | 4.0  | 5.0  |
|-------------------------|-----|------|------|------|
| ASTM C 1314-03b         | 1.0 | 1.07 | 1.15 | 1.22 |
| Model "E" Type N Mortar | 1.0 | 1.06 | 1.13 | 1.21 |
| Model "E" Type S Mortar | 1.0 | 1.02 | 1.05 | 1.08 |
| Model "G" Type N Mortar | 1.0 | 1.07 | 1.15 | 1.25 |
| Model "G" Type S Mortar | 1.0 | 1.05 | 1.10 | 1.16 |
| Average Type N Mortar   | 1.0 | 1.07 | 1.14 | 1.23 |
| Average Type S Mortar   | 1.0 | 1.04 | 1.08 | 1.12 |
| Average                 | 1.0 | 1.05 | 1.11 | 1.18 |

Table 4.21: Height-to-Thickness Ratio Correction Factors

1-"h/t ratio" refers to the ratio of prism height to least lateral dimension of prism.

#### 4.3 Summary, Conclusion & Recommendations

All the North American prism compressive strength data available since 1980 was assembled in a database. The gaps in the data were identified and additional testing was performed. Several mathematical models were built and used to analyze the entire data set or portion of it depending on the purpose of the model. Overall, seven models were developed to examine the data. The fifth quantile predictions by these models are shown graphically in Figures 4.55, 4.56, and 4.57 for mortar types M, S, and N, respectively. These models studied a range of predictor variables and their interactions and explored their relationship with the prism compressive strength values, as shown in

Table 4.1. The list of predictor variables investigated in whole or parts by each model is as follow:

- The natural logarithm of the compressive strength of the clay masonry units,
- Curing method,
- Curing time,
- Mortar type,
- Presence or lack of grout in the assemblage,
- Units being solid or hollow,
- Mortar joints being face-shell or full-bed,
- Height-to-thickness ratio (h/t ratio).

Depending on the model and the data set assessed the predicted values of the prism compressive strengths vary. Examining the design values suggested by the MSJC Specification and comparing them with the fifth percentile prism compressive strength values from the models reveals that lack of data in many categories (levels), the non-factorial characteristics of the data set, and the interactions between the predictor variables cause not only shift but also change in shape of the best fit regression surface between categories. In a factorial design, a number of levels (in this research levels would be combinations of qualitative predictors) are selected by an investigator and experiments are run with all possible combinations. An extended and thorough study based on new test results that have a factorial design and a vigorous quality control to reduce the number and the effects of potential confounders would yield a statistically reliable relationship between the prism compressive strength and the predictor factors.

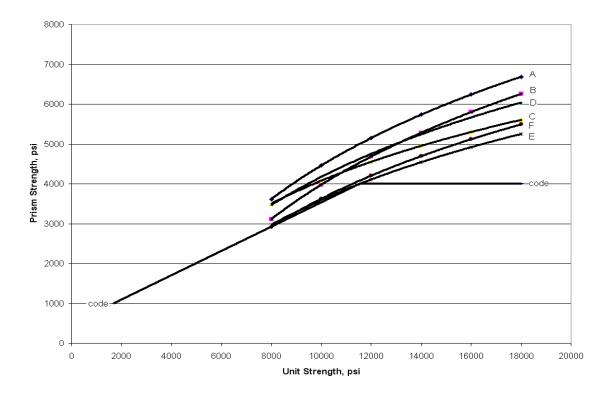



Figure 4.55: Fifth Percentile Predictions by All Models, Type M Mortar.

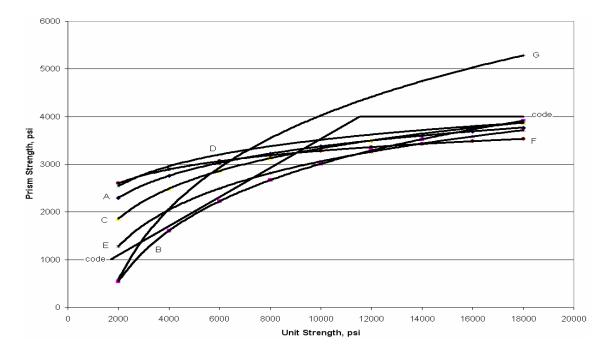



Figure 4.56: Fifth Percentile Predictions by All Models, Type S Mortar.

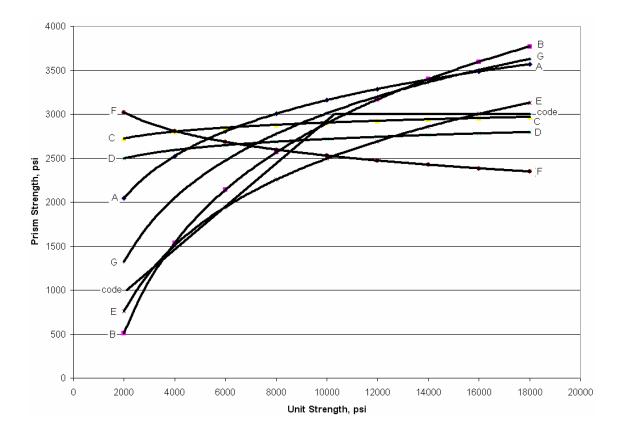



Figure 4.57: Fifth Percentile Predictions by All Models, Type N Mortar.

The most current ASTM standards require prisms to be moist cured for 28 days. A factorial design should be such that all prisms are moist cured for 28 days. Thus, curing method and duration would not be predictor variables. The current MSJC Specification design values are based on h/t ratio of two. Therefore, the number of units in each prism should be such that the resulting h/t ratios are close to two. The correction factors in ASTM C 1314-03b, which are in agreement with the results of this study as shown in Table 4.19, should be used to adjust the recorded prism strengths to h/t ratio of two. Then, h/t ratio would not be a predictor variable. The remaining predictor variables are as follow:

- Unit compressive strength (quantitative variable),
- Mortar type, M, S or N (qualitative variable),
- Presence or absence of grout (qualitative variable),
- Units being solid or hollow (qualitative variable),
- Full-bed or face-shell bedding (qualitative variable).

Other variables of interest such as joint thickness can be included, keeping in mind that every variable added can significantly increase the number of prisms that are required to be built and tested. Additional variables would also increase the amount of information that needs to be recorded and the complicity of the mathematical model needed to analyze the data.

The list above includes three possible values for mortar type, two for grout, two for unit type, and two for bedding type, which would create 24 categories. The range of unit compressive strength to be investigated should include the range covered by MSJC Specification and represent the materials available in the market. A unit compressive strength range of 2,000 to 18,000 psi is suggested for each category. If tests are to be done using units with compressive strengths between 2,000 and 18,000 psi at increments of 2,000 psi and five prisms are to be built with each, there would be a total of 45 prisms built for each category and a total of 1,080 prisms for all categories. Once such a factorial design is complete, the data can be used to build statistically reliable relationships between masonry compressive strength and the investigated predictor variables.

At this point, the largest single study based on current ASTM standards is the subject research. Amongst various models used in this study, Model "G" is the one that analyzes the data generated by this research without inclusion of other data. Model "G" considers various predictor variables and their interactions, and explores their relationship with the prism compressive strength. The predictor variables and interactions investigated are as follows:

- The natural logarithm (logarithm base e) of the compressive strength of the clay masonry units,
- Mortar type,
- Height-to-thickness ratio (h/t ratio).
- Mortar type and h/t ratio,
- The natural logarithm of the compressive strength of clay masonry units and h/t ratio,
- Mortar type and the natural logarithm of the compressive strength of clay masonry units,
- Mortar type, h/t ratio, and the natural logarithm of the compressive strength of clay masonry units.

The variable that explains most of the variation in prism strength in the model is the natural logarithm of the compressive strength of masonry unit. However, due to the clay masonry units used in testing only covering an approximate range of 5,000 to 9,000 psi in mean compressive strength Model "G" cannot be reliably used for clay masonry units with average compressive strengths less than 5,000 psi or more than 9,000 psi. Additional testing would be required to establish mean masonry compressive strengths associated with unit compressive strengths outside the range covered in Table 4.22. The fifth percentile prism compressive strengths targeted at h/t ratio of two predicted by Model "G" are shown and compared with MSJC design values in Tables 4.17, 4.18, and 4.22.

| Compressive  | Compressive Strength of Masonry, psi |            |               |           |  |  |
|--------------|--------------------------------------|------------|---------------|-----------|--|--|
| Strength of  | Mortar Ty                            | vpes M & S | Mortar Type N |           |  |  |
| Clay Masonry | Melo                                 | M- 1-1 "C" | Melo          | Madal "C" |  |  |
| Unit, psi    | MSJC                                 | Model "G"  | MSJC          | Model "G" |  |  |
| 5,000        | 2,013 2,542                          |            | 1,708         | 2,282     |  |  |
| 6,000        | 2,318 2,932                          |            | 1,952         | 2,474     |  |  |
| 7,000        | 2,623                                | 3,262      | 2,196         | 2,636     |  |  |
| 8,000        | 2,928 3,547                          |            | 2,440         | 2,776     |  |  |
| 9,000        | 3,233                                | 3,799      | 2,680         | 2,899     |  |  |

 Table 4.22:
 Model "G" Results and MSJC Design Values

## APPENDIX A

# LITERATURE SURVEY

Note: The following apply to entire Appendix A contents.

- Ref. No.: Refers to the source of the information, which can be found in the "References" section of this report.
- Curing Method:
  - Moist: The prisms were reported to have been cured in moist conditions for the entire duration of their curing period.
  - Dry: The prisms were cured in air-dry conditions for the entire duration of their curing period.
  - Moist/Dry: The prisms were cured in moist conditions for the first seven days and in air-dry conditions for the remaining of their curing period.
- Grout:
  - No: The prisms were not grouted.
  - Yes: The prisms were grouted; in the case of solid units that were grouted, the prisms were double Wythe.
- All the prism strength values are unadjusted for their h/t ratios.
- Compressive strengths area based on gross area for solid units and net area for hollow units.

| Ref.<br>No. | H/T<br>Ratio | Prism<br>Strength,<br>psi | Curing<br>Method | Curing<br>Time,<br>days | Unit<br>Strength,<br>psi | Mortar<br>Type | Grout | Unit<br>Type | Joint<br>Type |
|-------------|--------------|---------------------------|------------------|-------------------------|--------------------------|----------------|-------|--------------|---------------|
| 1           | 5.88         | 2015                      | Moist            | 28                      | 4931                     | S              | No    | Solid        | Full<br>Bed   |
| 1           | 5.88         | 2506                      | Moist            | 28                      | 4931                     | S              | No    | Solid        | Full<br>Bed   |
| 1           | 5.88         | 2248                      | Moist            | 28                      | 4931                     | S              | No    | Solid        | Full<br>Bed   |
| 1           | 2.76         | 4112                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>Bed   |
| 1           | 2.76         | 3274                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>Bed   |
| 1           | 2.76         | 3886                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>Bed   |

Table A.1: Literature Survey since 1980

Table A.1 - continued

| Ref.<br>No. | H/T<br>Ratio | Prism<br>Strength,<br>psi | Curing<br>Method | Curing<br>Time,<br>days | Unit<br>Strength,<br>psi | Mortar<br>Type | Grout | Unit<br>Type | Joint<br>Type |
|-------------|--------------|---------------------------|------------------|-------------------------|--------------------------|----------------|-------|--------------|---------------|
| 1           | 2.81         | 4421                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>Bed   |
| 1           | 2.81         | 4273                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>Bed   |
| 1           | 2.81         | 4514                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>Bed   |
| 1           | 2.91         | 5172                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>bed   |
| 1           | 2.91         | 5104                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>bed   |
| 1           | 2.91         | 5217                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>bed   |
| 1           | 2.88         | 5117                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>bed   |
| 1           | 2.88         | 5265                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>bed   |
| 1           | 2.88         | 5584                      | Moist            | 28                      | 4931                     | S              | Yes   | Solid        | Full<br>bed   |
| 2           | 2.25         | 3520                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |
| 2           | 2.25         | 3370                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |
| 2           | 2.12         | 3210                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |
| 2           | 2.25         | 3100                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |
| 2           | 2.25         | 3220                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |
| 2           | 2.25         | 3100                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |
| 2           | 2.12         | 3240                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |
| 2           | 2.25         | 3450                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |
| 2           | 2.25         | 3090                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |
| 2           | 2.12         | 3480                      | Moist            | 7                       | 11693                    | S              | No    | Solid        | Full<br>bed   |

Table A.1 - continued

|      |       | Prism     | ~ .     | Curing | Unit      |        |       |        |       |
|------|-------|-----------|---------|--------|-----------|--------|-------|--------|-------|
| Ref. | H/T   | Strength, | Curing  | Time,  | Strength, | Mortar | Grout | Unit   | Joint |
| No.  | Ratio | psi       | Method  | days   | psi       | Туре   | Grout | Туре   | Туре  |
| 2    | 2.12  | 2860      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
| _    | 2.12  | 2000      | 110150  | ,      | 11075     | S      | 110   | Sona   | bed   |
| 2    | 2.25  | 3140      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
| _    | 2.20  | 5110      | 110150  | ,      | 11075     | S      | 110   | Sona   | bed   |
| 2    | 2.25  | 3470      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
| _    |       | 0.,0      | 1110100 |        | 11070     | ~      | 110   | 20114  | bed   |
| 2    | 2.12  | 3130      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           | ~      |       | ~~~~~~ | bed   |
| 2    | 2.25  | 2720      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         | -      |           |        |       |        | bed   |
| 2    | 2.12  | 2920      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.12  | 3040      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.12  | 3290      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.25  | 3370      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.12  | 3200      | Moist   | 7      | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.12  | 4510      | Moist   | 28     | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.25  | 4290      | Moist   | 28     | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.12  | 4140      | Moist   | 28     | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.12  | 3880      | Moist   | 28     | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.12  | 2990      | Moist   | 28     | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.25  | 4440      | Moist   | 28     | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |
| 2    | 2.12  | 4080      | Moist   | 28     | 11693     | S      | No    | Solid  | Full  |
|      |       | 2070      |         | •      | 44.535    | ~      |       |        | bed   |
| 2    | 2.12  | 3870      | Moist   | 28     | 11693     | S      | No    | Solid  | Full  |
|      | 0.05  | 2020      |         | 20     | 11(00     |        |       | 0 1.1  | bed   |
| 2    | 2.25  | 3820      | Moist   | 28     | 11693     | S      | No    | Solid  | Full  |
|      |       |           |         |        |           |        |       |        | bed   |

Table A.1 - continued

|      | 1        | Driana    |         | Curring | I Incid   |        |         |           |       |
|------|----------|-----------|---------|---------|-----------|--------|---------|-----------|-------|
| Ref. | H/T      | Prism     | Curing  | Curing  | Unit      | Mortar | Current | Unit      | Joint |
| No.  | Ratio    | Strength, | Method  | Time,   | Strength, | Туре   | Grout   | Туре      | Туре  |
|      | 0.10     | psi       |         | days    | psi       |        |         |           |       |
| 2    | 2.12     | 3580      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          | 2040      |         | • •     | 11.000    | ~      |         | a 111     | bed   |
| 2    | 2.12     | 3840      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | bed   |
| 2    | 2.25     | 3660      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | bed   |
| 2    | 2.12     | 4250      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | bed   |
| 2    | 2.12     | 4310      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | bed   |
| 2    | 2.12     | 4260      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | Bed   |
| 2    | 2.25     | 4040      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | Bed   |
| 2    | 2.12     | 4030      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | Bed   |
| 2    | 2.12     | 3520      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | Bed   |
| 2    | 2.12     | 3930      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | Bed   |
| 2    | 2.25     | 4050      | Moist   | 28      | 11693     | S      | No      | Solid     | Full  |
|      |          |           |         |         |           |        |         |           | Bed   |
| 3    | 2        | 6256      | Moist   | 28      | 15039     | S      | No      | Hollow    | Full  |
|      |          |           |         |         |           |        |         |           | Bed   |
| 3    | 2        | 5538      | Moist   | 28      | 15039     | S      | No      | Hollow    | Full  |
| _    |          |           |         |         |           | ~      |         |           | Bed   |
| 3    | 2        | 5975      | Moist   | 28      | 15039     | S      | No      | Hollow    | Full  |
| 5    | _        | 0370      | 1110150 | -0      | 10000     | 0      | 110     | 110110 11 | Bed   |
| 3    | 2        | 2728      | Moist   | 28      | 15039     | S      | No      | Hollow    | Face  |
| 5    |          | 2720      | 110150  | 20      | 12027     | 5      | 110     | 110110 W  | Shell |
| 3    | 2        | 2821      | Moist   | 28      | 15039     | S      | No      | Hollow    | Face  |
|      | _        | 2021      | 110151  | 20      | 15057     | 5      | 110     | 110110 #  | Shell |
| 3    | 2        | 2532      | Moist   | 28      | 15039     | S      | No      | Hollow    | Face  |
| 5    | <u>_</u> | 2352      | 10151   | 20      | 15057     | 5      | 110     | 110110 W  | Shell |
| 3    | 2        | 6189      | Moist   | 28      | 15039     | S      | No      | Hollow    | Full  |
| 5    |          | 0107      | IVIOISU | 20      | 15057     | 6      | INU     | 110110W   | Bed   |
| 3    | 2        | 6252      | Moist   | 28      | 15039     | S      | No      | Hollow    | Full  |
|      |          | 0252      | 110151  | 20      | 15057     | 6      | INU     | 110110W   | Bed   |
|      |          |           |         |         |           |        |         |           | Deu   |

Table A.1 - continued

|      |       | Prism         |        | Curing          | Unit      |        |          |         |       |
|------|-------|---------------|--------|-----------------|-----------|--------|----------|---------|-------|
| Ref. | H/T   |               | Curing | Curing<br>Time, |           | Mortar | Grout    | Unit    | Joint |
| No.  | Ratio | Strength,     | Method | · · ·           | Strength, | Туре   | Gloui    | Туре    | Туре  |
| 2    | 2     | psi           | Maiat  | days            | psi       | C      | Ma       | Hallary | Ex.11 |
| 3    | 2     | 6058          | Moist  | 28              | 15039     | S      | No       | Hollow  | Full  |
|      | 2     | 2070          |        | 20              | 15020     | G      | N        | TT 11   | Bed   |
| 3    | 2     | 3879          | Moist  | 28              | 15039     | S      | No       | Hollow  | Face  |
|      | 2     | 2072          |        | 20              | 15020     | C      | N        | TT 11   | Shell |
| 3    | 2     | 3872          | Moist  | 28              | 15039     | S      | No       | Hollow  | Face  |
|      | -     | 1200          |        | 20              | 15020     | G      | ٦T       | TT 11   | Shell |
| 3    | 2     | 4399          | Moist  | 28              | 15039     | S      | No       | Hollow  | Face  |
|      | 2     | (70)          |        | 20              | 15020     | C      | N        | TT 11   | Shell |
| 3    | 2     | 6726          | Moist  | 28              | 15039     | S      | No       | Hollow  | Full  |
|      | -     | (0.45         |        | 20              | 15020     | 0      | NT       | TT 11   | Bed   |
| 3    | 2     | 6845          | Moist  | 28              | 15039     | S      | No       | Hollow  | Full  |
|      |       | (2(0          |        | •               | 15020     | 9      | <b>.</b> | XX 11   | Bed   |
| 3    | 2     | 6268          | Moist  | 28              | 15039     | S      | No       | Hollow  | Full  |
|      |       | 40.74         |        | • •             | 1.50.00   | ~      |          | xx 11   | Bed   |
| 3    | 2     | 4974          | Moist  | 28              | 15039     | S      | No       | Hollow  | Face  |
|      |       | 44.50         |        | • •             | 1.50.00   | ~      |          | xx 11   | Shell |
| 3    | 2     | 4458          | Moist  | 28              | 15039     | S      | No       | Hollow  | Face  |
|      |       | 451.6         |        | •               | 15020     | 9      | <b>.</b> | XX 11   | Shell |
| 3    | 2     | 4716          | Moist  | 28              | 15039     | S      | No       | Hollow  | Face  |
|      |       | <b>515</b> 2  |        | •               | 15020     |        | <b>.</b> | XX 11   | Shell |
| 3    | 2     | 7153          | Moist  | 28              | 15039     | М      | No       | Hollow  | Full  |
|      |       | 70 ( 1        |        | •               | 15020     |        | <b>.</b> | XX 11   | Bed   |
| 3    | 2     | 7264          | Moist  | 28              | 15039     | М      | No       | Hollow  | Full  |
|      |       | -             |        | • •             | 1.50.20   |        |          | xx 11   | Bed   |
| 3    | 2     | 7605          | Moist  | 28              | 15039     | М      | No       | Hollow  | Full  |
|      |       |               |        | • •             | 1.50.00   |        |          | xx 11   | Bed   |
| 3    | 2     | 5688          | Moist  | 28              | 15039     | М      | No       | Hollow  | Face  |
|      |       | 60 <b>-0</b>  |        | • •             | 1.50.20   |        |          | xx 11   | Shell |
| 3    | 2     | 6072          | Moist  | 28              | 15039     | М      | No       | Hollow  | Face  |
|      |       |               |        | • •             |           |        |          |         | Shell |
| 3    | 2     | 5404          | Moist  | 28              | 15039     | М      | No       | Hollow  | Face  |
|      |       | <b>7107</b>   |        | •               | 15020     |        | <u> </u> | XX 11   | Shell |
| 3    | 2     | 7197          | Moist  | 28              | 15039     | М      | No       | Hollow  | Full  |
|      |       | <b></b>       |        | •               | 15020     |        |          | xx 11   | Bed   |
| 3    | 2     | 7584          | Moist  | 28              | 15039     | М      | No       | Hollow  | Full  |
|      |       | <b>5</b> 0 (1 |        | •               | 15020     |        |          | XX 11   | Bed   |
| 3    | 2     | 7061          | Moist  | 28              | 15039     | М      | No       | Hollow  | Full  |
|      |       |               |        |                 |           |        |          |         | Bed   |

Table A.1- continued

|      |       | Prism       |          | Curing | Unit         |        |       |           |       |
|------|-------|-------------|----------|--------|--------------|--------|-------|-----------|-------|
| Ref. | H/T   |             | Curing   | Time,  | Strength,    | Mortar | Grout | Unit      | Joint |
| No.  | Ratio | Strength,   | Method   | days   | -            | Туре   | Oloui | Туре      | Туре  |
| 3    | 2     | psi<br>5328 | Moist    | 28     | psi<br>15039 | М      | No    | Hollow    | Face  |
| 5    | 2     | 3328        | worst    | 20     | 13039        | 111    | INO   | попом     | Shell |
| 3    | 2     | 5297        | Moist    | 28     | 15039        | М      | No    | Hollow    | Face  |
| 5    | 2     | 5297        | worst    | 20     | 13039        | 111    | INO   | попом     | Shell |
| 3    | 2     | 5979        | Moist    | 28     | 15039        | М      | No    | Hollow    | Face  |
| 5    | 2     | 5979        | WIOISt   | 20     | 13039        | 111    | INO   | HOHOW     | Shell |
| 3    | 2     | 7264        | Moist    | 28     | 15039        | М      | No    | Hollow    | Full  |
| 5    | 2     | 7204        | WIOISt   | 20     | 13039        | 141    | INU   | TIOHOW    | Bed   |
| 3    | 2     | 7974        | Moist    | 28     | 15039        | М      | No    | Hollow    | Full  |
| 5    | 2     | ///4        | WIOISt   | 20     | 15057        | 141    | 110   | 110110 w  | Bed   |
| 3    | 2     | 7535        | Moist    | 28     | 15039        | М      | No    | Hollow    | Full  |
| 5    | 2     | 1555        | 10150    | 20     | 15057        | 141    | 110   | 110110 W  | Bed   |
| 3    | 2     | 5382        | Moist    | 28     | 15039        | М      | No    | Hollow    | Face  |
| 5    | -     | 5502        | 1010150  | 20     | 10000        | 111    | 110   | 110110 W  | Shell |
| 3    | 2     | 5183        | Moist    | 28     | 15039        | М      | No    | Hollow    | Face  |
| 5    | _     | 0100        | 1110100  |        | 10003        |        | 110   | 110110 () | Shell |
| 3    | 2     | 5826        | Moist    | 28     | 15039        | М      | No    | Hollow    | Face  |
|      |       |             |          |        |              |        |       |           | Shell |
| 3    | 2.02  | 4474        | Moist    | 28     | 15371        | N      | No    | Hollow    | Full  |
|      |       |             |          |        |              |        |       |           | Bed   |
| 3    | 2.02  | 4249        | Moist    | 28     | 15371        | N      | No    | Hollow    | Full  |
|      |       |             |          |        |              |        |       |           | Bed   |
| 3    | 2.02  | 4504        | Moist    | 28     | 15371        | N      | No    | Hollow    | Full  |
|      |       |             |          |        |              |        |       |           | Bed   |
| 3    | 2.02  | 3399        | Moist    | 28     | 15371        | N      | No    | Hollow    | Face  |
|      |       |             |          |        |              |        |       |           | Shell |
| 3    | 2.02  | 3357        | Moist    | 28     | 15371        | N      | No    | Hollow    | Face  |
|      |       |             |          |        |              |        |       |           | Shell |
| 3    | 2.02  | 3089        | Moist    | 28     | 15371        | N      | No    | Hollow    | Face  |
|      |       |             |          |        |              |        |       |           | Shell |
| 3    | 2.01  | 3664        | Moist    | 28     | 13332        | Ν      | No    | Hollow    | Full  |
|      |       |             |          |        |              |        |       |           | Bed   |
| 3    | 2.01  | 3555        | Moist    | 28     | 13332        | Ν      | No    | Hollow    | Full  |
| ļ    |       |             |          |        |              |        |       |           | Bed   |
| 3    | 2.01  | 3903        | Moist    | 28     | 13332        | Ν      | No    | Hollow    | Full  |
|      |       |             | <b>.</b> |        |              |        |       |           | Bed   |
| 3    | 2.01  | 3022        | Moist    | 28     | 13332        | Ν      | No    | Hollow    | Face  |
|      |       |             |          |        |              |        |       |           | Shell |

Table A.1 - continued

|      |       | Prism     |         | Curing | Unit      |        |       |           |             |
|------|-------|-----------|---------|--------|-----------|--------|-------|-----------|-------------|
| Ref. | H/T   | Strength, | Curing  | Time,  | Strength, | Mortar | Grout | Unit      | Joint       |
| No.  | Ratio | psi       | Method  | days   | psi       | Туре   | Grout | Туре      | Туре        |
| 3    | 2.01  | 3212      | Moist   | 28     | 13332     | N      | No    | Hollow    | Face        |
| 2    |       | 0212      | 1110100 |        | 10002     |        | 110   | 110110 11 | Shell       |
| 3    | 2.01  | 3279      | Moist   | 28     | 13332     | N      | No    | Hollow    | Face        |
|      |       |           |         | _      |           |        |       | · ·       | Shell       |
| 3    | 2.01  | 4609      | Moist   | 28     | 13332     | S      | No    | Hollow    | Full        |
|      |       |           |         |        |           |        |       |           | Bed         |
| 3    | 2.01  | 4825      | Moist   | 28     | 13332     | S      | No    | Hollow    | Full        |
|      |       |           |         |        |           |        |       |           | Bed         |
| 3    | 2.01  | 4467      | Moist   | 28     | 13332     | S      | No    | Hollow    | Full        |
|      |       |           |         |        |           |        |       |           | Bed         |
| 3    | 2.01  | 3995      | Moist   | 28     | 13332     | S      | No    | Hollow    | Face        |
|      |       |           |         |        |           |        |       |           | Shell       |
| 3    | 2.01  | 4201      | Moist   | 28     | 13332     | S      | No    | Hollow    | Face        |
|      |       |           |         |        |           |        |       |           | Shell       |
| 3    | 2.01  | 4046      | Moist   | 28     | 13332     | S      | No    | Hollow    | Face        |
|      |       |           |         |        |           |        |       |           | Shell       |
| 3    | 2.01  | 4663      | Moist   | 28     | 13332     | S      | No    | Hollow    | Full        |
|      |       |           |         |        |           |        |       |           | Bed         |
| 3    | 2.01  | 4495      | Moist   | 28     | 13332     | S      | No    | Hollow    | Full        |
|      |       |           |         | • •    |           | ~      |       |           | Bed         |
| 3    | 2.01  | 4538      | Moist   | 28     | 13332     | S      | No    | Hollow    | Full        |
|      | 0.01  | 2525      |         | •      | 10000     | 9      | ) Y   | XX 11     | Bed         |
| 3    | 2.01  | 3725      | Moist   | 28     | 13332     | S      | No    | Hollow    | Face        |
| 2    | 2.01  | 2740      | M       | 20     | 12222     | C      | NT    | TT 11     | Shell       |
| 3    | 2.01  | 3748      | Moist   | 28     | 13332     | S      | No    | Hollow    | Face        |
| 2    | 2.01  | 2((0      | Maint   | 20     | 12222     | C      | N.    | TT - 11   | Shell       |
| 3    | 2.01  | 3660      | Moist   | 28     | 13332     | S      | No    | Hollow    | Face        |
| 3    | 2.01  | 4607      | Moist   | 20     | 12222     | C      | No    | Hallow    | Shell       |
| 5    | 2.01  | 4607      | worst   | 28     | 13332     | S      | No    | Hollow    | Full<br>Bed |
| 3    | 2.01  | 4936      | Moist   | 28     | 13332     | S      | No    | Hollow    | Full        |
| 5    | 2.01  | 4730      | IVIOISU | 20     | 15552     | 5      | INU   | TIOHOW    | Bed         |
| 3    | 2.01  | 5074      | Moist   | 28     | 13332     | S      | No    | Hollow    | Full        |
| 5    | 2.01  | 5074      | 10151   | 20     | 15552     | 6      | 110   | 110110 W  | Bed         |
| 3    | 2.01  | 4077      | Moist   | 28     | 13332     | S      | No    | Hollow    | Face        |
|      | 2.01  | 10//      | 110151  | 20     | 15552     | 5      | 110   | 110110 W  | Shell       |
| 3    | 2.01  | 4208      | Moist   | 28     | 13332     | S      | No    | Hollow    | Face        |
|      | 2.01  | .200      | 110100  | _0     | 10000     | 5      | 110   | 110110 11 | Shell       |
| L    |       | l         |         |        |           |        |       |           |             |

Table A.1 - continued

|      |       | Prism     |         | Curing | Unit      |             |       |           |               |
|------|-------|-----------|---------|--------|-----------|-------------|-------|-----------|---------------|
| Ref. | H/T   | Strength, | Curing  | Time,  | Strength, | Mortar      | Grout | Unit      | Joint         |
| No.  | Ratio | psi psi   | Method  | days   | psi       | Туре        | Grout | Туре      | Туре          |
| 3    | 2.01  | 4053      | Moist   | 28     | 13332     | S           | No    | Hollow    | Face          |
| _    |       |           |         | _      |           |             |       | · ·       | Shell         |
| 3    | 2.01  | 5990      | Moist   | 28     | 13332     | М           | No    | Hollow    | Full          |
|      |       |           |         |        |           |             |       |           | Bed           |
| 3    | 2.01  | 6258      | Moist   | 28     | 13332     | М           | No    | Hollow    | Full          |
|      |       |           |         |        |           |             |       |           | Bed           |
| 3    | 2.01  | 5930      | Moist   | 28     | 13332     | М           | No    | Hollow    | Full          |
|      |       |           |         |        |           |             |       |           | Bed           |
| 3    | 2.01  | 4507      | Moist   | 28     | 13332     | М           | No    | Hollow    | Face          |
|      |       |           |         |        |           |             |       |           | Shell         |
| 3    | 2.01  | 4219      | Moist   | 28     | 13332     | М           | No    | Hollow    | Face          |
|      |       |           |         |        |           |             |       |           | Shell         |
| 3    | 2.01  | 4262      | Moist   | 28     | 13332     | М           | No    | Hollow    | Face          |
|      |       |           |         |        |           |             |       |           | Shell         |
| 3    | 2.01  | 6232      | Moist   | 28     | 13332     | М           | No    | Hollow    | Full          |
|      |       |           |         | • •    |           |             |       |           | Bed           |
| 3    | 2.01  | 6271      | Moist   | 28     | 13332     | М           | No    | Hollow    | Full          |
|      | 2.01  | 5070      |         | 20     | 12220     |             | NT    | TT 11     | Bed           |
| 3    | 2.01  | 5978      | Moist   | 28     | 13332     | М           | No    | Hollow    | Full          |
| 3    | 2.01  | 1255      | Maint   | 20     | 12222     | м           | Ma    | Hallow    | Bed           |
| 3    | 2.01  | 4255      | Moist   | 28     | 13332     | Μ           | No    | Hollow    | Face<br>Shell |
| 3    | 2.01  | 4636      | Moist   | 28     | 13332     | М           | No    | Hollow    | Face          |
| 5    | 2.01  | 4030      | WIOISt  | 20     | 15552     | 1 <b>V1</b> | INU   | HOHOW     | Shell         |
| 3    | 2.01  | 4386      | Moist   | 28     | 13332     | М           | No    | Hollow    | Face          |
| 5    | 2.01  | -300      | WIOISt  | 20     | 15552     | 141         | 110   | 110110 W  | Shell         |
| 3    | 2.01  | 5988      | Moist   | 28     | 13332     | М           | No    | Hollow    | Full          |
| 5    | 2.01  | 2700      | 1110150 | -0     | 10002     | 1.1         | 110   | 110110 11 | Bed           |
| 3    | 2.01  | 6180      | Moist   | 28     | 13332     | М           | No    | Hollow    | Full          |
| 5    |       | 0100      | 1110100 |        | 10002     |             | 110   | 11011011  | Bed           |
| 3    | 2.01  | 5860      | Moist   | 28     | 13332     | М           | No    | Hollow    | Full          |
|      |       | • •       |         | -      |           |             |       |           | Bed           |
| 3    | 2.01  | 4737      | Moist   | 28     | 13332     | М           | No    | Hollow    | Face          |
|      |       |           |         |        |           |             |       |           | Shell         |
| 3    | 2.01  | 4698      | Moist   | 28     | 13332     | М           | No    | Hollow    | Face          |
|      |       |           |         |        |           |             |       |           | Shell         |
| 3    | 2.01  | 4030      | Moist   | 28     | 13332     | М           | No    | Hollow    | Face          |
|      |       |           |         |        |           |             |       |           | Shell         |

Table A.1 - continued

|      |       | D.        | [      | <u> </u> | TT. 1     |        |       |        |       |
|------|-------|-----------|--------|----------|-----------|--------|-------|--------|-------|
| Ref. | H/T   | Prism     | Curing | Curing   | Unit      | Mortar |       | Unit   | Joint |
| No.  | Ratio | Strength, | Method | Time,    | Strength, | Туре   | Grout | Туре   | Туре  |
|      |       | psi       |        | days     | psi       |        |       |        |       |
| 3    | 1.96  | 7283      | Moist  | 28       | 11188     | М      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |
| 3    | 1.96  | 7169      | Moist  | 28       | 11188     | М      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |
| 3    | 1.96  | 6852      | Moist  | 28       | 11188     | М      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |
| 3    | 1.96  | 5147      | Moist  | 28       | 11188     | М      | No    | Hollow | Face  |
|      |       |           |        |          |           |        |       |        | Shell |
| 3    | 1.96  | 5176      | Moist  | 28       | 11188     | М      | No    | Hollow | Face  |
|      |       |           |        |          |           |        |       |        | Shell |
| 3    | 1.96  | 4809      | Moist  | 28       | 11188     | М      | No    | Hollow | Face  |
|      |       |           |        |          |           |        |       |        | Shell |
| 3    | 1.96  | 5553      | Moist  | 28       | 11188     | S      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |
| 3    | 1.96  | 5197      | Moist  | 28       | 11188     | S      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |
| 3    | 1.96  | 5470      | Moist  | 28       | 11188     | S      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |
| 3    | 1.96  | 3740      | Moist  | 28       | 11188     | S      | No    | Hollow | Face  |
|      |       |           |        |          |           |        |       |        | Shell |
| 3    | 1.96  | 2942      | Moist  | 28       | 11188     | S      | No    | Hollow | Face  |
|      |       |           |        |          |           |        |       |        | Shell |
| 3    | 1.96  | 3562      | Moist  | 28       | 11188     | S      | No    | Hollow | Face  |
|      |       |           |        |          |           |        |       |        | Shell |
| 3    | 1.96  | 5173      | Moist  | 28       | 11188     | S      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |
| 3    | 1.96  | 5095      | Moist  | 28       | 11188     | S      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |
| 3    | 1.96  | 5300      | Moist  | 28       | 11188     | S      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |
| 3    | 1.96  | 3616      | Moist  | 28       | 11188     | S      | No    | Hollow | Face  |
|      |       |           |        |          |           |        |       |        | Shell |
| 3    | 1.96  | 3680      | Moist  | 28       | 11188     | S      | No    | Hollow | Face  |
|      |       |           |        |          |           |        |       |        | Shell |
| 3    | 1.96  | 3281      | Moist  | 28       | 11188     | S      | No    | Hollow | Face  |
|      |       |           |        |          |           |        |       |        | Shell |
| 3    | 1.96  | 5704      | Moist  | 28       | 11188     | S      | No    | Hollow | Full  |
|      |       |           |        |          |           |        |       |        | Bed   |

Table A.1 - continued

|      |       | Prism     |         | Curing | Unit      |        |       |           |       |
|------|-------|-----------|---------|--------|-----------|--------|-------|-----------|-------|
| Ref. | H/T   | Strength, | Curing  | Time,  | Strength, | Mortar | Grout | Unit      | Joint |
| No.  | Ratio | psi       | Method  | days   | psi       | Туре   | Grout | Туре      | Туре  |
| 3    | 1.96  | 5764      | Moist   | 28     | 11188     | S      | No    | Hollow    | Full  |
| 5    | 1.70  | 5704      | WIOISt  | 20     | 11100     | 5      | 110   | 110110 W  | Bed   |
| 3    | 1.96  | 5638      | Moist   | 28     | 11188     | S      | No    | Hollow    | Full  |
| 5    | 1.70  | 5050      | WIOISt  | 20     | 11100     | 5      | 110   | 110110 W  | Bed   |
| 3    | 1.96  | 3558      | Moist   | 28     | 11188     | S      | No    | Hollow    | Face  |
|      | 1.70  | 5550      | WICISt  | 20     | 11100     | 5      | 110   | 110110 W  | Shell |
| 3    | 1.96  | 3889      | Moist   | 28     | 11188     | S      | No    | Hollow    | Face  |
| 5    | 1.70  | 5007      | WIOISt  | 20     | 11100     | 5      | 110   | 110110 W  | Shell |
| 3    | 1.96  | 3810      | Moist   | 28     | 11188     | S      | No    | Hollow    | Face  |
| 5    | 1.90  | 5010      | 1110150 | 20     | 11100     | S      | 110   | 110110 11 | Shell |
| 3    | 1.96  | 7174      | Moist   | 28     | 11188     | S      | No    | Hollow    | Full  |
| 5    | 1.70  | , , , ,   | 1120100 |        | 11100     | ~      | 110   | 110110 () | Bed   |
| 3    | 1.96  | 6317      | Moist   | 28     | 11188     | S      | No    | Hollow    | Full  |
| _    |       |           |         |        |           | ~      |       |           | Bed   |
| 3    | 1.96  | 6615      | Moist   | 28     | 11188     | S      | No    | Hollow    | Full  |
| _    |       |           |         | _      |           |        |       | · ·       | Bed   |
| 3    | 1.96  | 5092      | Moist   | 28     | 11188     | S      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 1.96  | 4788      | Moist   | 28     | 11188     | S      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 1.96  | 5283      | Moist   | 28     | 11188     | S      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 1.96  | 6756      | Moist   | 28     | 11188     | М      | No    | Hollow    | Full  |
|      |       |           |         |        |           |        |       |           | Bed   |
| 3    | 1.96  | 6429      | Moist   | 28     | 11188     | М      | No    | Hollow    | Full  |
|      |       |           |         |        |           |        |       |           | Bed   |
| 3    | 1.96  | 6355      | Moist   | 28     | 11188     | Μ      | No    | Hollow    | Full  |
|      |       |           |         |        |           |        |       |           | Bed   |
| 3    | 1.96  | 4801      | Moist   | 28     | 11188     | М      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 1.96  | 4933      | Moist   | 28     | 11188     | М      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 1.96  | 5112      | Moist   | 28     | 11188     | Μ      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 1.96  | 3665      | Moist   | 28     | 11188     | Ν      | No    | Hollow    | Full  |
|      | 4.0   | · ·       |         | • •    | 4 4 4 5 - |        |       |           | Bed   |
| 3    | 1.96  | 4175      | Moist   | 28     | 11188     | Ν      | No    | Hollow    | Full  |
|      |       |           |         |        |           |        |       |           | Bed   |

Table A.1 - continued

|      |       | Prism       |         | Curing | Unit      |        |       |              |       |
|------|-------|-------------|---------|--------|-----------|--------|-------|--------------|-------|
| Ref. | H/T   |             | Curing  | Curing |           | Mortar | Crout | Unit         | Joint |
| No.  | Ratio | Strength,   | Method  | Time,  | Strength, | Туре   | Grout | Туре         | Type  |
| 2    | 1.0(  | psi<br>2000 | Maiat   | days   | psi       |        | NI-   |              | E11   |
| 3    | 1.96  | 3900        | Moist   | 28     | 11188     | Ν      | No    | Hollow       | Full  |
|      | 1.0.0 | 2((0        |         | 20     | 11100     |        |       | TT 11        | Bed   |
| 3    | 1.96  | 2668        | Moist   | 28     | 11188     | Ν      | No    | Hollow       | Face  |
|      | 1.0.6 | • • • • •   |         | • •    |           |        |       | <b>TT</b> 11 | Shell |
| 3    | 1.96  | 2889        | Moist   | 28     | 11188     | Ν      | No    | Hollow       | Face  |
|      |       |             |         |        |           |        |       | 44           | Shell |
| 3    | 1.96  | 2866        | Moist   | 28     | 11188     | Ν      | No    | Hollow       | Face  |
|      |       |             |         |        |           |        |       |              | Shell |
| 3    | 2.02  | 5063        | Moist   | 28     | 15371     | S      | No    | Hollow       | Full  |
|      |       |             |         |        |           |        |       |              | Bed   |
| 3    | 2.02  | 4664        | Moist   | 28     | 15371     | S      | No    | Hollow       | Full  |
|      |       |             |         |        |           |        |       |              | Bed   |
| 3    | 2.02  | 4947        | Moist   | 28     | 15371     | S      | No    | Hollow       | Full  |
|      |       |             |         |        |           |        |       |              | Bed   |
| 3    | 2.02  | 3735        | Moist   | 28     | 15371     | S      | No    | Hollow       | Face  |
|      |       |             |         |        |           |        |       |              | Shell |
| 3    | 2.02  | 4024        | Moist   | 28     | 15371     | S      | No    | Hollow       | Face  |
|      |       |             |         |        |           |        |       |              | Shell |
| 3    | 2.02  | 3941        | Moist   | 28     | 15371     | S      | No    | Hollow       | Face  |
|      |       |             |         |        |           |        |       |              | Shell |
| 3    | 2.02  | 4618        | Moist   | 28     | 15371     | S      | No    | Hollow       | Full  |
|      |       |             |         |        |           |        |       |              | Bed   |
| 3    | 2.02  | 4839        | Moist   | 28     | 15371     | S      | No    | Hollow       | Full  |
|      |       |             |         |        |           |        |       |              | Bed   |
| 3    | 2.02  | 4743        | Moist   | 28     | 15371     | S      | No    | Hollow       | Full  |
| _    |       | .,          |         |        |           | ~      |       |              | Bed   |
| 3    | 2.02  | 3562        | Moist   | 28     | 15371     | S      | No    | Hollow       | Face  |
| 5    |       | 0002        | 1120100 |        | 100,1     | ~      | 110   | 110110 //    | Shell |
| 3    | 2.02  | 3567        | Moist   | 28     | 15371     | S      | No    | Hollow       | Face  |
| 5    | 2.02  | 5507        | 10150   | 20     | 15571     | 5      | 110   | 110110 W     | Shell |
| 3    | 2.02  | 3803        | Moist   | 28     | 15371     | S      | No    | Hollow       | Face  |
| 5    | 2.02  | 5005        | 10151   | 20     | 155/1     | 5      | 110   | 110110 W     | Shell |
| 3    | 2.02  | 5088        | Moist   | 28     | 15371     | S      | No    | Hollow       | Full  |
| 5    | 2.02  | 5000        | 10151   | 20     | 155/1     | 5      | 110   | 110110 W     | Bed   |
| 3    | 2.02  | 4750        | Moist   | 28     | 15371     | S      | No    | Hollow       | Full  |
| 5    | 2.02  | 4/30        | WIDISt  | 20     | 155/1     | 5      | INU   | 110110W      | Bed   |
| 3    | 2.02  | 5421        | Moist   | 28     | 15371     | S      | No    | Hollow       | Full  |
| 5    | 2.02  | JH21        | WI01St  | 20     | 155/1     | 5      | INU   | 110110W      | Bed   |
|      |       |             |         |        |           |        |       |              | Deu   |

Table A.1 - continued

|      |       | Prism       |         | Curing          | Unit         |        |       |           |       |
|------|-------|-------------|---------|-----------------|--------------|--------|-------|-----------|-------|
| Ref. | H/T   |             | Curing  | Curing<br>Time, | Strength,    | Mortar | Grout | Unit      | Joint |
| No.  | Ratio | Strength,   | Method  | days            | Ŭ,           | Туре   | Oloui | Туре      | Туре  |
| 3    | 2.02  | psi<br>3961 | Moist   | 28              | psi<br>15371 | S      | No    | Hollow    | Face  |
| 5    | 2.02  | 3901        | Moist   | 28              | 133/1        | 3      | INO   | попом     | Shell |
| 3    | 2.02  | 4138        | Moist   | 28              | 15371        | S      | No    | Hollow    | Face  |
| 5    | 2.02  | 4130        | worst   | 28              | 133/1        | 3      | INO   | попом     | Shell |
| 3    | 2.02  | 4108        | Moist   | 28              | 15371        | S      | No    | Hollow    | Face  |
| 5    | 2.02  | 4100        | WOISt   | 20              | 15571        | 5      | INU   | 110110 w  | Shell |
| 3    | 2.02  | 7128        | Moist   | 28              | 15371        | М      | No    | Hollow    | Full  |
| 5    | 2.02  | /120        | wioist  | 20              | 15571        | 111    | 110   | 110110 w  | Bed   |
| 3    | 2.02  | 7360        | Moist   | 28              | 15371        | М      | No    | Hollow    | Full  |
| 5    | 2.02  | 7500        | WICISt  | 20              | 15571        | 141    | 110   | 110110 W  | Bed   |
| 3    | 2.02  | 7840        | Moist   | 28              | 15371        | М      | No    | Hollow    | Full  |
| 5    | 2.02  | 7010        | 1110150 | 20              | 10071        | 111    | 110   | 110110 W  | Bed   |
| 3    | 2.02  | 5821        | Moist   | 28              | 15371        | М      | No    | Hollow    | Face  |
|      |       | 0021        | 1120100 |                 | 10071        |        | 110   | 110110 () | Shell |
| 3    | 2.02  | 5640        | Moist   | 28              | 15371        | М      | No    | Hollow    | Face  |
| _    |       |             |         | _               |              |        |       | · ·       | Shell |
| 3    | 2.02  | 5546        | Moist   | 28              | 15371        | М      | No    | Hollow    | Face  |
|      |       |             |         |                 |              |        |       |           | Shell |
| 3    | 2.02  | 7062        | Moist   | 28              | 15371        | М      | No    | Hollow    | Full  |
|      |       |             |         |                 |              |        |       |           | Bed   |
| 3    | 2.02  | 6920        | Moist   | 28              | 15371        | М      | No    | Hollow    | Full  |
|      |       |             |         |                 |              |        |       |           | Bed   |
| 3    | 2.02  | 6889        | Moist   | 28              | 15371        | Μ      | No    | Hollow    | Full  |
|      |       |             |         |                 |              |        |       |           | Bed   |
| 3    | 2.02  | 5463        | Moist   | 28              | 15371        | М      | No    | Hollow    | Face  |
|      |       |             |         |                 |              |        |       |           | Shell |
| 3    | 2.02  | 4954        | Moist   | 28              | 15371        | М      | No    | Hollow    | Face  |
|      |       |             |         |                 |              |        |       |           | Shell |
| 3    | 2.02  | 5121        | Moist   | 28              | 15371        | Μ      | No    | Hollow    | Face  |
|      |       |             |         |                 |              |        |       |           | Shell |
| 3    | 2.02  | 7032        | Moist   | 28              | 15371        | М      | No    | Hollow    | Full  |
|      |       |             |         |                 |              |        |       |           | Bed   |
| 3    | 2.02  | 6722        | Moist   | 28              | 15371        | М      | No    | Hollow    | Full  |
|      | 0.05  | (0.0.1      |         | • • •           | 1 = 2 = 1    |        |       | TT 11     | Bed   |
| 3    | 2.02  | 6926        | Moist   | 28              | 15371        | М      | No    | Hollow    | Full  |
|      | 2.02  | 5227        |         | 20              | 15251        |        | N     | TT 11     | Bed   |
| 3    | 2.02  | 5327        | Moist   | 28              | 15371        | М      | No    | Hollow    | Face  |
|      |       |             |         |                 |              |        |       |           | Shell |

Table A.1 - continued

|      |       | Prism     |         | Curing | Unit      |        |       |           |       |
|------|-------|-----------|---------|--------|-----------|--------|-------|-----------|-------|
| Ref. | H/T   | Strength, | Curing  | Time,  | Strength, | Mortar | Grout | Unit      | Joint |
| No.  | Ratio | psi       | Method  | days   | psi       | Туре   | Gloui | Туре      | Туре  |
| 3    | 2.02  | 5333      | Moist   | 28     | 15371     | М      | No    | Hollow    | Face  |
| 5    | 2.02  | 5555      | WIOISt  | 20     | 15571     | 111    | 110   | 110110 w  | Shell |
| 3    | 2.02  | 5209      | Moist   | 28     | 15371     | М      | No    | Hollow    | Face  |
| 5    | 2.02  | 5207      | WIOISt  | 20     | 15571     | 111    | 110   | 110110 w  | Shell |
| 3    | 2.02  | 4474      | Moist   | 28     | 15371     | N      | No    | Hollow    | Full  |
| 5    | 2.02  |           | wioist  | 20     | 15571     | 11     | 110   | 110110 w  | Bed   |
| 3    | 2.02  | 4249      | Moist   | 28     | 15371     | N      | No    | Hollow    | Full  |
| 5    | 2.02  | 7477      | wioist  | 20     | 15571     | 14     | 110   | 110110 W  | Bed   |
| 3    | 2.02  | 4504      | Moist   | 28     | 15371     | N      | No    | Hollow    | Full  |
| 5    | 2.02  | 1501      | WIOISt  | 20     | 15571     | 1      | 110   | 110110 W  | Bed   |
| 3    | 2.02  | 3399      | Moist   | 28     | 15371     | N      | No    | Hollow    | Face  |
| 5    | 2.02  | 5577      | WIOISt  | 20     | 15571     | 1      | 110   | 110110 W  | Shell |
| 3    | 2.02  | 3357      | Moist   | 28     | 15371     | N      | No    | Hollow    | Face  |
| 5    | 2.02  | 5567      | 1110150 | -0     | 10071     | 1,     | 110   | 110110 11 | Shell |
| 3    | 2.02  | 3089      | Moist   | 28     | 15371     | N      | No    | Hollow    | Face  |
| _    |       |           |         |        |           |        |       |           | Shell |
| 3    | 2.03  | 3647      | Moist   | 28     | 11400     | N      | No    | Hollow    | Full  |
| _    |       |           |         | _      |           |        |       | · ·       | Bed   |
| 3    | 2.03  | 3468      | Moist   | 28     | 11400     | N      | No    | Hollow    | Full  |
|      |       |           |         |        |           |        |       |           | Bed   |
| 3    | 2.03  | 3539      | Moist   | 28     | 11400     | N      | No    | Hollow    | Full  |
|      |       |           |         |        |           |        |       |           | Bed   |
| 3    | 2.03  | 3033      | Moist   | 28     | 11400     | N      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 2.03  | 2847      | Moist   | 28     | 11400     | N      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 2.03  | 2803      | Moist   | 28     | 11400     | N      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 2.03  | 5085      | Moist   | 28     | 11400     | S      | No    | Hollow    | Full  |
|      |       |           |         |        |           |        |       |           | Bed   |
| 3    | 2.03  | 5078      | Moist   | 28     | 11400     | S      | No    | Hollow    | Full  |
|      |       |           |         |        |           |        |       |           | Bed   |
| 3    | 2.03  | 5291      | Moist   | 28     | 11400     | S      | No    | Hollow    | Full  |
|      |       |           |         |        |           |        |       |           | Bed   |
| 3    | 2.03  | 4243      | Moist   | 28     | 11400     | S      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |
| 3    | 2.03  | 4175      | Moist   | 28     | 11400     | S      | No    | Hollow    | Face  |
|      |       |           |         |        |           |        |       |           | Shell |

Table A.1 - continued

| Ref. |       | Pricm              |         | Curing          | Unit      |             |          | 1        |               |
|------|-------|--------------------|---------|-----------------|-----------|-------------|----------|----------|---------------|
| Rel. | H/T   | Prism<br>Strength, | Curing  | Curing<br>Time, | Strength, | Mortar      | Grout    | Unit     | Joint         |
| No.  | Ratio | psi                | Method  | days            | psi       | Туре        | Giout    | Type     | Туре          |
| 3    | 2.03  | 3762               | Moist   | 28              | 11400     | S           | No       | Hollow   | Face          |
| 5    | 2.05  | 5702               | WOISt   | 20              | 11400     | 5           | 110      | 110110 W | Shell         |
| 3    | 2.03  | 5349               | Moist   | 28              | 11400     | S           | No       | Hollow   | Full          |
| 5    | 2.05  | 0017               | 1010150 | 20              | 11100     | 5           | 110      | 110110 W | Bed           |
| 3    | 2.03  | 5525               | Moist   | 28              | 11400     | S           | No       | Hollow   | Full          |
|      |       |                    |         |                 |           | ~           |          |          | Bed           |
| 3    | 2.03  | 5602               | Moist   | 28              | 11400     | S           | No       | Hollow   | Full          |
|      |       |                    |         |                 |           |             |          |          | Bed           |
| 3    | 2.03  | 3669               | Moist   | 28              | 11400     | S           | No       | Hollow   | Face          |
|      |       |                    |         |                 |           |             |          |          | Shell         |
| 3    | 2.03  | 3590               | Moist   | 28              | 11400     | S           | No       | Hollow   | Face          |
|      |       |                    |         |                 |           |             |          |          | Shell         |
| 3    | 2.03  | 3777               | Moist   | 28              | 11400     | S           | No       | Hollow   | Face          |
|      |       |                    |         |                 |           |             |          |          | Shell         |
| 3    | 2.03  | 5095               | Moist   | 28              | 11400     | S           | No       | Hollow   | Full          |
|      |       |                    |         |                 |           |             |          |          | Bed           |
| 3    | 2.03  | 4775               | Moist   | 28              | 11400     | S           | No       | Hollow   | Full          |
|      |       |                    |         |                 |           |             |          |          | Bed           |
| 3    | 2.03  | 4762               | Moist   | 28              | 11400     | S           | No       | Hollow   | Full          |
|      |       |                    | •       |                 |           |             |          |          | Bed           |
| 3    | 2.03  | 3378               | Moist   | 28              | 11400     | S           | No       | Hollow   | Face          |
|      | 2.02  | 2225               |         | •               | 11400     | 9           | <b>.</b> | XX 11    | Shell         |
| 3    | 2.03  | 3325               | Moist   | 28              | 11400     | S           | No       | Hollow   | Face          |
|      | 2.02  | 2700               | M . 1   | 20              | 11400     | C           | N        | TT 11    | Shell         |
| 3    | 2.03  | 3790               | Moist   | 28              | 11400     | S           | No       | Hollow   | Face          |
| 2    | 2.02  | 6174               | Maint   | 20              | 11400     | М           | Na       | Hallow   | Shell<br>Full |
| 3    | 2.03  | 6174               | Moist   | 28              | 11400     | Μ           | No       | Hollow   |               |
| 3    | 2.03  | 6648               | Moist   | 28              | 11400     | М           | No       | Hollow   | Bed<br>Full   |
| 5    | 2.05  | 0040               | WOISt   | 20              | 11400     | 1 <b>V1</b> | INU      | TIOHOW   | Bed           |
| 3    | 2.03  | 6696               | Moist   | 28              | 11400     | М           | No       | Hollow   | Full          |
|      | 2.05  | 0070               | 10151   | 20              | 11400     | 141         | 110      | 110110 W | Bed           |
| 3    | 2.03  | 4286               | Moist   | 28              | 11400     | М           | No       | Hollow   | Face          |
|      | 2.05  | 1200               | 1010151 | 20              | 11100     | 141         | 110      | 110110 W | Shell         |
| 3    | 2.03  | 4061               | Moist   | 28              | 11400     | М           | No       | Hollow   | Face          |
|      |       |                    | 1.10100 |                 | 11.00     | 1.1.1       | 1.0      |          | Shell         |
| 3    | 2.03  | 4664               | Moist   | 28              | 11400     | М           | No       | Hollow   | Face          |
|      |       |                    |         |                 |           |             |          |          | Shell         |

Table A.1 - continued

|          |       | Prism     |            | Curing | Unit      |        |       |           |               |
|----------|-------|-----------|------------|--------|-----------|--------|-------|-----------|---------------|
| Ref.     | H/T   | Strength, | Curing     | Time,  | Strength, | Mortar | Grout | Unit      | Joint         |
| No.      | Ratio | psi       | Method     | days   | psi       | Туре   | Oloui | Туре      | Туре          |
| 3        | 2.03  | 6273      | Moist      | 28     | 11400     | М      | No    | Hollow    | Full          |
| 5        | 2.05  | 0275      | WIOISt     | 20     | 11400     | 141    | 110   | 110110 w  | Bed           |
| 3        | 2.03  | 6398      | Moist      | 28     | 11400     | М      | No    | Hollow    | Full          |
| 5        | 2.05  | 0570      | wioist     | 20     | 11400     | 141    | 110   | 110110 w  | Bed           |
| 3        | 2.03  | 6644      | Moist      | 28     | 11400     | М      | No    | Hollow    | Full          |
| 5        | 2.05  | 0011      | WIOISt     | 20     | 11100     | 111    | 110   | 110110 W  | Bed           |
| 3        | 2.03  | 3909      | Moist      | 28     | 11400     | М      | No    | Hollow    | Face          |
| 5        | 2.03  | 5707      | 1110150    | -0     | 11100     |        | 110   | 110110 11 | Shell         |
| 3        | 2.03  | 3897      | Moist      | 28     | 11400     | М      | No    | Hollow    | Face          |
|          |       |           |            |        |           |        |       |           | Shell         |
| 3        | 2.03  | 3929      | Moist      | 28     | 11400     | М      | No    | Hollow    | Face          |
|          |       |           |            | _      |           |        |       | · ·       | Shell         |
| 3        | 2.03  | 6444      | Moist      | 28     | 11400     | М      | No    | Hollow    | Full          |
|          |       |           |            |        |           |        |       |           | Bed           |
| 3        | 2.03  | 6353      | Moist      | 28     | 11400     | М      | No    | Hollow    | Full          |
|          |       |           |            |        |           |        |       |           | Bed           |
| 3        | 2.03  | 6238      | Moist      | 28     | 11400     | М      | No    | Hollow    | Full          |
|          |       |           |            |        |           |        |       |           | Bed           |
| 3        | 2.03  | 4054      | Moist      | 28     | 11400     | М      | No    | Hollow    | Face          |
|          |       |           |            |        |           |        |       |           | Shell         |
| 3        | 2.03  | 4261      | Moist      | 28     | 11400     | М      | No    | Hollow    | Face          |
|          |       |           |            |        |           |        |       |           | Shell         |
| 3        | 2.03  | 4513      | Moist      | 28     | 11400     | Μ      | No    | Hollow    | Face          |
|          |       |           |            |        |           |        |       |           | Shell         |
| 4, 5     | 6.28  | 3597      | Air        | 28     | 12100     | Ν      | No    | Hollow    | Face          |
|          | 6.9.6 | 2111      | Dry        | • •    | 10100     |        | 2.1   | xx 11     | Shell         |
| 4, 5     | 6.36  | 3144      | Air        | 28     | 12100     | Ν      | No    | Hollow    | Face          |
| 4.5      | ( 20  | 2201      | Dry        | 20     | 10100     | N      |       | TT 11     | Shell         |
| 4, 5     | 6.20  | 3381      | Air        | 28     | 12100     | Ν      | No    | Hollow    | Face          |
| 4.5      | ( ) ( | 2052      | Dry        | 20     | 10100     | NT     | N     | TT 11     | Shell         |
| 4, 5     | 6.24  | 3053      | Air        | 28     | 12100     | Ν      | No    | Hollow    | Face          |
| 1 5      | 6.32  | 2720      | Dry        | 20     | 12100     | NT     | Na    | Hallarr   | Shell         |
| 4, 5     | 0.32  | 3720      | Air<br>Dry | 28     | 12100     | Ν      | No    | Hollow    | Face<br>Shell |
| 4, 5     | 6.28  | 2456      | Dry<br>Air | 28     | 8220      | N      | No    | Hollow    | Face          |
| 4, 5     | 0.20  | 2430      | Dry        | 20     | 0220      | IN     | INU   | 110110W   | Shell         |
| 4, 5     | 6.33  | 2214      | Air        | 28     | 8220      | N      | No    | Hollow    | Face          |
| т, Ј     | 0.55  | 2217      | Dry        | 20     | 0220      | ΤN     | 110   | 110110 W  | Shell         |
| <u> </u> |       |           | Diy        |        |           |        |       |           | Shen          |

Table A.1 - continued

|      |       | Prism     |            | Curing | Unit      |        |       |           |               |
|------|-------|-----------|------------|--------|-----------|--------|-------|-----------|---------------|
| Ref. | H/T   | Strength, | Curing     | Time,  | Strength, | Mortar | Grout | Unit      | Joint         |
| No.  | Ratio | psi       | Method     | days   | psi       | Туре   | Grout | Туре      | Туре          |
| 4, 5 | 6.32  | 1894      | Air        | 28     | 8220      | N      | No    | Hollow    | Face          |
| ., e | 0.02  | 1051      | Dry        |        | 00        |        | 110   | 11011011  | Shell         |
| 4, 5 | 6.21  | 2690      | Air        | 28     | 8220      | N      | No    | Hollow    | Face          |
| ,    |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.28  | 5040      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.43  | 4800      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.34  | 4880      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.38  | 5690      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.42  | 5900      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       | 44.00     | Dry        | • •    | 10010     | ~      |       | xx 11     | Shell         |
| 6    | 2.37  | 4130      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
| 6    | 0.00  | 51(0      | Dry        | 20     | 12010     | 0      | N     | TT 11     | Shell         |
| 6    | 2.33  | 5160      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
| 6    | 2.41  | 5700      | Dry        | 20     | 12010     | C      | Na    | Hollow    | Shell         |
| 6    | 2.41  | 5790      | Air        | 28     | 13810     | S      | No    | Hollow    | Face<br>Shell |
| 6    | 2.35  | 4610      | Dry<br>Air | 28     | 13810     | S      | No    | Hollow    | Face          |
| 0    | 2.33  | 4010      | Dry        | 20     | 13010     | 3      | INU   | HOHOW     | Shell         |
| 6    | 2.36  | 6310      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
| 0    | 2.50  | 0510      | Dry        | 20     | 15010     | 5      | 110   | 110110 W  | Shell         |
| 6    | 2.22  | 6080      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
| Ũ    |       | 0000      | Dry        | -0     | 12010     | 5      | 110   | 110110 11 | Shell         |
| 6    | 2.40  | 5480      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.30  | 5420      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.28  | 5870      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.34  | 6400      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.39  | 6980      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |
| 6    | 2.33  | 5630      | Air        | 28     | 13810     | S      | No    | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |       |           | Shell         |

Table A.1 - continued

|      |       | Prism        | ~ .          | Curing | Unit      |        |       |              |               |
|------|-------|--------------|--------------|--------|-----------|--------|-------|--------------|---------------|
| Ref. | H/T   | Strength,    | Curing       | Time,  | Strength, | Mortar | Grout | Unit         | Joint         |
| No.  | Ratio | psi          | Method       | days   | psi       | Туре   | Grout | Туре         | Туре          |
| 6    | 2.33  | 5840         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
| -    |       |              | Dry          | _      |           |        |       |              | Shell         |
| 6    | 2.36  | 5920         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
|      |       |              | Dry          |        |           |        |       |              | Shell         |
| 6    | 2.34  | 5860         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
|      |       |              | Dry          |        |           |        |       |              | Shell         |
| 6    | 2.37  | 6440         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
|      |       |              | Dry          |        |           |        |       |              | Shell         |
| 6    | 2.42  | 6180         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
|      |       |              | Dry          |        |           |        |       |              | Shell         |
| 6    | 2.33  | 6700         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
|      |       |              | Dry          |        |           |        |       |              | Shell         |
| 6    | 2.37  | 7020         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
|      |       |              | Dry          |        |           |        |       |              | Shell         |
| 6    | 2.32  | 5680         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
|      |       |              | Dry          |        |           |        |       |              | Shell         |
| 6    | 2.38  | 6610         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
| 6    | 0.01  |              | Dry          | • •    | 10010     | ~      |       | <b>XX 11</b> | Shell         |
| 6    | 2.31  | 5100         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
| 6    | 0.01  | <b>57</b> 00 | Dry          | 20     | 12010     | 0      | NT    | TT 11        | Shell         |
| 6    | 2.31  | 5790         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
| (    | 2.42  | (200         | Dry          | 20     | 12010     | G      | NT    | TT 11        | Shell         |
| 6    | 2.43  | 6280         | Air          | 28     | 13810     | S      | No    | Hollow       | Face          |
| 6    | 2.20  | 6510         | Dry          | 20     | 12010     | S      | No    | Hallow       | Shell         |
| 6    | 2.30  | 6510         | Air          | 28     | 13810     | S      | No    | Hollow       | Face<br>Shell |
| 6    | 2.29  | 4680         | Dry<br>Moist | 28     | 13810     | S      | No    | Hollow       | Full          |
| 0    | 2.29  | 4000         | worst        | 20     | 13010     | 5      | INU   | HOHOW        | Bed           |
| 6    | 2.31  | 4500         | Moist        | 28     | 13810     | S      | No    | Hollow       | Full          |
| 0    | 2.31  | 4300         | WIOISt       | 20     | 13010     | 5      | 110   | 110110 w     | Bed           |
| 6    | 2.27  | 4650         | Moist        | 28     | 13810     | S      | No    | Hollow       | Full          |
| Ŭ    | 2.21  | 1020         | 110151       | 20     | 15010     | 5      | 110   | 110110 #     | Bed           |
| 6    | 2.26  | 4980         | Moist        | 28     | 13810     | S      | No    | Hollow       | Full          |
| č    | 2.20  | .,00         | 1,10100      | _0     | 12010     |        | 110   | 110110 11    | Bed           |
| 6    | 2.33  | 3460         | Moist        | 28     | 13810     | S      | No    | Hollow       | Full          |
| -    |       | 2.00         |              |        |           | ~      |       |              | Bed           |
| 6    | 2.20  | 1700         | Maint        | 20     | 12010     | S      | Na    | Hollow       |               |
|      | 2.29  | 4780         | Moist        | 28     | 13810     | 3      | No    | DOLLOW       | Full          |

Table A.1 - continued

|      |       | Prism     |            | Curing | Unit      |        |            |           |               |
|------|-------|-----------|------------|--------|-----------|--------|------------|-----------|---------------|
| Ref. | H/T   | Strength, | Curing     | Time,  | Strength, | Mortar | Grout      | Unit      | Joint         |
| No.  | Ratio | psi       | Method     | days   | psi       | Туре   | Oloui      | Type      | Type          |
| 6    | 2.30  | 4350      | Moist      | 28     | 13810     | S      | No         | Hollow    | Full          |
| 0    | 2.50  | -JJJ0     | withst     | 20     | 15010     | 5      | 110        | 110110 W  | Bed           |
| 6    | 2.32  | 5020      | Moist      | 28     | 13810     | S      | No         | Hollow    | Full          |
| Ũ    | 2.52  | 0020      | 110150     | 20     | 12010     | 5      | 110        | 110110 11 | Bed           |
| 6    | 2.31  | 4280      | Moist      | 28     | 13810     | S      | No         | Hollow    | Full          |
|      |       |           |            | _      |           |        |            | · ·       | Bed           |
| 6    | 2.30  | 5280      | Moist      | 28     | 13810     | S      | No         | Hollow    | Full          |
|      |       |           |            |        |           |        |            |           | Bed           |
| 6    | 2.37  | 4150      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |            |           | Shell         |
| 6    | 2.36  | 3420      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |            |           | Shell         |
| 6    | 2.36  | 3130      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |            |           | Shell         |
| 6    | 2.39  | 3700      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |            |           | Shell         |
| 6    | 2.37  | 3540      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      |       |           | Dry        | • •    |           | ~      |            |           | Shell         |
| 6    | 2.43  | 3700      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      | 2.40  | 4220      | Dry        | 20     | 10010     | G      | <b>X</b> 7 | XX 11     | Shell         |
| 6    | 2.48  | 4220      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
| (    | 2.44  | 2(00      | Dry        | 20     | 12010     | C      | V          | TT - 11   | Shell         |
| 6    | 2.44  | 3680      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
| 6    | 2.35  | 3560      | Dry<br>Air | 28     | 13810     | S      | Yes        | Hollow    | Shell<br>Face |
| 0    | 2.33  | 5500      |            | 20     | 13010     | 3      | 165        | HOHOW     | Shell         |
| 6    | 2.45  | 3980      | Dry<br>Air | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      | 2.43  | 5700      |            | 20     | 13010     | 6      | 103        | 110110 W  | Shell         |
| 6    | 2.46  | 3070      | Dry<br>Air | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      | 2.10  | 2070      | Dry        | 20     | 12010     | 5      | 105        | 110110 #  | Shell         |
| 6    | 2.43  | 4010      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      |       |           | Dry        |        |           | ~      | - ••       |           | Shell         |
| 6    | 2.44  | 3170      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      |       |           | Dry        | _      |           | _      |            |           | Shell         |
| 6    | 2.41  | 3410      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |            |           | Shell         |
| 6    | 2.50  | 2920      | Air        | 28     | 13810     | S      | Yes        | Hollow    | Face          |
|      |       |           | Dry        |        |           |        |            |           | Shell         |

Table A.1 - continued

| DC   | II/T  | Prism     | с ·    | Curing | Unit      |        |       | TT     | <b>T</b> • 4 |
|------|-------|-----------|--------|--------|-----------|--------|-------|--------|--------------|
| Ref. | H/T   | Strength, | Curing | Time,  | Strength, | Mortar | Grout | Unit   | Joint        |
| No.  | Ratio | psi       | Method | days   | psi       | Туре   |       | Туре   | Туре         |
| 6    | 2.41  | 3480      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    | _      |           |        |       | · ·    | Shell        |
| 6    | 2.35  | 4130      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    | _      |           |        |       | · ·    | Shell        |
| 6    | 2.28  | 3940      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.35  | 3910      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.34  | 4510      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.30  | 5060      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.29  | 5610      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.33  | 5560      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.35  | 5750      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.39  | 4260      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.41  | 4610      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.46  | 4480      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    |        |           |        |       |        | Shell        |
| 6    | 2.40  | 5070      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       |           | Dry    | • •    |           | ~      |       |        | Shell        |
| 6    | 2.41  | 4250      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      |       | 10 (0     | Dry    | •      | 10010     | 9      | * *   | XX 11  | Shell        |
| 6    | 2.38  | 4260      | Air    | 28     | 13810     | S      | Yes   | Hollow | Face         |
|      | 0.24  | 27(0      | Dry    | 20     | 12010     | C      | 37    | TT 11  | Shell        |
| 6    | 2.34  | 3760      | Moist  | 28     | 13810     | S      | Yes   | Hollow | Full         |
|      | 2.22  | 1400      | Maint  | 20     | 12010     | C      | V     | Haller | Bed          |
| 6    | 2.33  | 4490      | Moist  | 28     | 13810     | S      | Yes   | Hollow | Full<br>Pod  |
| 6    | 2.25  | 2500      | Maint  | 20     | 12010     | C      | Vaa   | Hollow | Bed          |
| 6    | 2.35  | 3590      | Moist  | 28     | 13810     | S      | Yes   | nonow  | Full<br>Bed  |
| 6    | 2.34  | 3880      | Moist  | 28     | 13810     | S      | Yes   | Hollow | Bed<br>Full  |
| 0    | 2.34  | 3000      | wioist | 20     | 13010     | 3      | 1 65  | TIONOW | Bed          |
| L    |       |           |        |        |           |        |       |        | Deu          |

Table A.1 - continued

|      |       | Driene            |         | Curring | I Incid          |        |       |           |             |
|------|-------|-------------------|---------|---------|------------------|--------|-------|-----------|-------------|
| Ref. | H/T   | Prism<br>Strongth | Curing  | Curing  | Unit<br>Strongth | Mortar | Crowt | Unit      | Joint       |
| No.  | Ratio | Strength,         | Method  | Time,   | Strength,        | Туре   | Grout | Туре      | Туре        |
| (    | 0.01  | psi               | Maiat   | days    | psi              |        | V     |           |             |
| 6    | 2.31  | 3850              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| (    | 2.22  | 2220              |         | 20      | 12010            | G      | N/    | TT 11     | Bed         |
| 6    | 2.33  | 3320              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| 6    | 2.20  | 4520              | Maint   | 20      | 12010            | C      | Var   | Hallary   | Bed         |
| 6    | 2.30  | 4520              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
|      | 2.24  | 4600              | Maiat   | 20      | 12010            | C      | V     | TT-11     | Bed         |
| 6    | 2.34  | 4680              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| 6    | 2.22  | 4410              | Maint   | 20      | 12010            | S      | Var   | Hallary   | Bed         |
| 6    | 2.32  | 4410              | Moist   | 28      | 13810            | 3      | Yes   | Hollow    | Full        |
| 6    | 2.31  | 4430              | Moist   | 28      | 13810            | S      | Var   | Hollow    | Bed<br>Full |
| 6    | 2.31  | 4430              | worst   | 28      | 13810            | 3      | Yes   | попом     | Bed         |
| 6    | 2.34  | 4340              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| 0    | 2.34  | 4340              | worst   | 28      | 13810            | 3      | res   | попом     | Bed         |
| 6    | 2.30  | 4100              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| 0    | 2.30  | 4100              | WOISt   | 20      | 13010            | 3      | 105   | HOHOW     | Bed         |
| 6    | 2.32  | 4520              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| 0    | 2.32  | 4320              | WOISt   | 20      | 13010            | 5      | 105   | 110110 w  | Bed         |
| 6    | 2.33  | 4990              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| 0    | 2.55  | 4770              | WIOISt  | 20      | 13010            | 5      | 105   | 110110 w  | Bed         |
| 6    | 2.35  | 3870              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| 0    | 2.55  | 5070              | wioist  | 20      | 15010            | 5      | 105   | 110110 W  | Bed         |
| 6    | 2.29  | 4130              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| Ū    | 2.27  | 1150              | WIOISt  | 20      | 15010            | 5      | 105   | 110110 W  | Bed         |
| 6    | 2.34  | 3910              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| Ũ    | 2.3 . | 5710              | 1110150 | -0      | 12010            | 5      | 105   | 110110 11 | Bed         |
| 6    | 2.33  | 3630              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| Ũ    | 2.00  | 0000              | 1120100 |         | 10010            | ~      | 1.00  | 110110 () | Bed         |
| 6    | 2.33  | 3790              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
| -    |       | • • • •           |         |         |                  | ~      |       |           | Bed         |
| 6    | 2.37  | 4170              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
|      | •     |                   |         | -       |                  |        | - ~   |           | Bed         |
| 6    | 2.37  | 4640              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
|      |       |                   |         |         |                  |        |       |           | Bed         |
| 6    | 2.30  | 4760              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
|      |       |                   |         |         |                  |        |       |           | Bed         |
| 6    | 2.35  | 4560              | Moist   | 28      | 13810            | S      | Yes   | Hollow    | Full        |
|      |       |                   |         |         |                  |        |       |           | Bed         |

Table A.1 - continued

|      |                | Prism     |            | Curing | Unit      |        |       |           |             |
|------|----------------|-----------|------------|--------|-----------|--------|-------|-----------|-------------|
| Ref. | H/T            | Strength, | Curing     | Time,  | Strength, | Mortar | Grout | Unit      | Joint       |
| No.  | Ratio          | psi       | Method     | days   | psi       | Туре   | Grout | Туре      | Туре        |
| 6    | 2.27           | 4460      | Moist      | 28     | 13810     | S      | Yes   | Hollow    | Full        |
| Ŭ    | 2.27           | 1100      | WIOISt     | 20     | 15010     | 5      | 105   | 110110 W  | Bed         |
| 6    | 2.35           | 4570      | Moist      | 28     | 13810     | S      | Yes   | Hollow    | Full        |
| Ũ    | 2.50           | 1070      | 1110150    | 20     | 12010     | S      | 105   | 110110 11 | Bed         |
| 6    | 2.35           | 5270      | Moist      | 28     | 13810     | S      | Yes   | Hollow    | Full        |
|      |                |           |            |        |           | ~      |       |           | Bed         |
| 6    | 2.36           | 4670      | Moist      | 28     | 13810     | S      | Yes   | Hollow    | Full        |
| _    |                |           |            | _      |           |        |       | · ·       | Bed         |
| 6    | 2.36           | 4600      | Moist      | 28     | 13810     | S      | Yes   | Hollow    | Full        |
|      |                |           |            |        |           |        |       |           | Bed         |
| 6    | 2.25           | 4250      | Moist      | 28     | 13810     | S      | Yes   | Hollow    | Full        |
|      |                |           |            |        |           |        |       |           | Bed         |
| 6    | 2.33           | 4240      | Moist      | 28     | 13810     | S      | Yes   | Hollow    | Full        |
|      |                |           |            |        |           |        |       |           | Bed         |
| 7    | 2.14           | 4533      | Air        | 28     | 16090     | N      | No    | Hollow    | Full        |
|      |                |           | Dry        |        |           |        |       |           | Bed         |
| 7    | 2.14           | 5324      | Air        | 28     | 16090     | Ν      | No    | Hollow    | Face        |
|      |                |           | Dry        |        |           |        |       |           | Shell       |
| 7    | 3.28           | 4320      | Air        | 28     | 16090     | Ν      | No    | Hollow    | Full        |
|      |                |           | Dry        |        |           |        |       |           | Bed         |
| 7    | 3.28           | 4692      | Air        | 28     | 16090     | Ν      | No    | Hollow    | Face        |
|      |                |           | Dry        |        |           |        |       |           | Shell       |
| 7    | 4.43           | 3724      | Air        | 28     | 16090     | Ν      | No    | Hollow    | Full        |
|      |                |           | Dry        | • •    |           |        |       |           | Bed         |
| 7    | 4.43           | 3821      | Air        | 28     | 16090     | Ν      | No    | Hollow    | Face        |
|      |                | 2.5.0     | Dry        | • •    | 1.000     |        | 2.7   | xx 11     | Shell       |
| 7    | 5.57           | 3560      | Air        | 28     | 16090     | Ν      | No    | Hollow    | Full        |
|      | <del>-</del> - | 2027      | Dry        | 20     | 1 ( 0 0 0 | N      | ) T   | TT 11     | Bed         |
| 7    | 5.57           | 3837      | Air        | 28     | 16090     | Ν      | No    | Hollow    | Face        |
| 7    | 2.1.4          | 5107      | Dry        | 20     | 1(000     | G      | NT    | TT 11     | Shell       |
| 7    | 2.14           | 5127      | Air        | 28     | 16090     | S      | No    | Hollow    | Full        |
| 7    | 2.14           | 5020      | Dry        | 20     | 16000     | 5      | NT -  | II.all    | Bed         |
| 7    | 2.14           | 5830      | Air        | 28     | 16090     | S      | No    | Hollow    | Face        |
| 7    | 2 20           | 5770      | Dry        | 20     | 16000     | c      | No    | Hallow    | Shell       |
| /    | 3.28           | 5770      | Air<br>Dry | 28     | 16090     | S      | No    | Hollow    | Full<br>Bed |
| 7    | 3.28           | 6274      | Dry<br>Air | 28     | 16090     | S      | No    | Hollow    | Bed<br>Face |
| /    | 5.20           | 02/4      |            | 20     | 10090     | 5      | INU   | TIOHOW    | Shell       |
|      |                |           | Dry        |        |           |        |       |           | Shell       |

Table A.1 - continued

|      |            | Prism     |            | Curing | Unit      |        |       |           |               |
|------|------------|-----------|------------|--------|-----------|--------|-------|-----------|---------------|
| Ref. | H/T        | Strength, | Curing     | Time,  | Strength, | Mortar | Grout | Unit      | Joint         |
| No.  | Ratio      | psi       | Method     | days   | psi       | Туре   | Grout | Туре      | Туре          |
| 7    | 4.43       | 5266      | Air        | 28     | 16090     | S      | No    | Hollow    | Full          |
| ,    |            | 0200      | Dry        |        | 10090     | ~      | 110   | 110110 11 | Bed           |
| 7    | 4.43       | 5469      | Air        | 28     | 16090     | S      | No    | Hollow    | Face          |
|      |            |           | Dry        |        |           |        |       |           | Shell         |
| 7    | 5.57       | 4852      | Air        | 28     | 16090     | S      | No    | Hollow    | Full          |
|      |            |           | Dry        |        |           |        |       |           | Bed           |
| 7    | 5.57       | 4927      | Air        | 28     | 16090     | S      | No    | Hollow    | Face          |
|      |            |           | Dry        |        |           |        |       |           | Shell         |
| 7    | 2.14       | 7976      | Air        | 28     | 16090     | М      | No    | Hollow    | Full          |
|      |            |           | Dry        |        |           |        |       |           | Bed           |
| 7    | 2.14       | 8158      | Air        | 28     | 16090     | М      | No    | Hollow    | Face          |
|      |            |           | Dry        |        |           |        |       |           | Shell         |
| 7    | 3.28       | 5819      | Air        | 28     | 16090     | М      | No    | Hollow    | Full          |
|      |            |           | Dry        |        |           |        |       |           | Bed           |
| 7    | 3.28       | 6296      | Air        | 28     | 16090     | М      | No    | Hollow    | Face          |
|      |            |           | Dry        |        |           |        |       |           | Shell         |
| 7    | 4.43       | 6617      | Air        | 28     | 16090     | Μ      | No    | Hollow    | Full          |
|      |            |           | Dry        |        |           |        |       |           | Bed           |
| 7    | 4.43       | 6238      | Air        | 28     | 16090     | М      | No    | Hollow    | Face          |
|      |            | 4.500     | Dry        | • •    | 1 ( 0 0 0 |        |       | xx 11     | Shell         |
| 7    | 5.57       | 4580      | Air        | 28     | 16090     | М      | No    | Hollow    | Full          |
|      | <b>-</b> - | 4021      | Dry        | 20     | 1(000     |        | N     | TT 11     | Bed           |
| 7    | 5.57       | 4831      | Air        | 28     | 16090     | М      | No    | Hollow    | Face          |
| 7    | 2.04       | 4550      | Dry        | 20     | 0750      | N      | NI-   | TT - 11   | Shell         |
| 7    | 2.04       | 4552      | Air        | 28     | 9750      | Ν      | No    | Hollow    | Full          |
| 7    | 2.04       | 4210      | Dry        | 20     | 0750      | N      | No    | Hallow    | Bed           |
| /    | 2.04       | 4210      | Air<br>Dru | 28     | 9750      | Ν      | No    | Hollow    | Face<br>Shell |
| 7    | 3.44       | 3946      | Dry<br>Air | 28     | 9750      | N      | No    | Hollow    | Full          |
| /    | 3.44       | 3940      | Dry        | 20     | 9750      | 1      | INU   | HOHOW     | Bed           |
| 7    | 3.44       | 3681      | Air        | 28     | 9750      | N      | No    | Hollow    | Face          |
| /    | 5.44       | 5001      | Dry        | 20     | 7750      | ΤN     | 110   | 110110 W  | Shell         |
| 7    | 4.14       | 4533      | Air        | 28     | 9750      | N      | No    | Hollow    | Full          |
|      | 1.17       | 1000      | Dry        | 20     | 7750      | 11     | 110   | 110110 W  | Bed           |
| 7    | 4.14       | 4070      | Air        | 28     | 9750      | N      | No    | Hollow    | Face          |
| ,    |            |           | Dry        | _0     | 2700      |        | 110   | 110110 11 | Shell         |
| 7    | 5.61       | 4691      | Air        | 28     | 9750      | N      | No    | Hollow    | Full          |
|      |            |           | Dry        | -      |           |        |       |           | Bed           |

Table A.1 - continued

| D.C  |       | Prism     | a .    | Curing | Unit      |        |       | <b>TT</b> • |       |
|------|-------|-----------|--------|--------|-----------|--------|-------|-------------|-------|
| Ref. | H/T   | Strength, | Curing | Time,  | Strength, | Mortar | Grout | Unit        | Joint |
| No.  | Ratio | psi       | Method | days   | psi       | Туре   | 01000 | Туре        | Туре  |
| 7    | 5.61  | 4290      | Air    | 28     | 9750      | N      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |
| 7    | 2.04  | 5248      | Air    | 28     | 9750      | S      | No    | Hollow      | Full  |
|      |       |           | Dry    |        |           |        |       |             | Bed   |
| 7    | 2.04  | 5900      | Air    | 28     | 9750      | S      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |
| 7    | 3.44  | 5322      | Air    | 28     | 9750      | S      | No    | Hollow      | Full  |
|      |       |           | Dry    |        |           |        |       |             | Bed   |
| 7    | 3.44  | 5060      | Air    | 28     | 9750      | S      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |
| 7    | 4.14  | 5048      | Air    | 28     | 9750      | S      | No    | Hollow      | Full  |
|      |       |           | Dry    |        |           |        |       |             | Bed   |
| 7    | 4.14  | 4920      | Air    | 28     | 9750      | S      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |
| 7    | 5.61  | 4968      | Air    | 28     | 9750      | S      | No    | Hollow      | Full  |
|      |       |           | Dry    |        |           |        |       |             | Bed   |
| 7    | 5.61  | 4870      | Air    | 28     | 9750      | S      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |
| 7    | 2.04  | 5073      | Air    | 28     | 9750      | Μ      | No    | Hollow      | Full  |
|      |       |           | Dry    |        |           |        |       |             | Bed   |
| 7    | 2.04  | 5378      | Air    | 28     | 9750      | М      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |
| 7    | 3.44  | 6306      | Air    | 28     | 9750      | М      | No    | Hollow      | Full  |
|      |       |           | Dry    |        |           |        |       |             | Bed   |
| 7    | 3.44  | 5558      | Air    | 28     | 9750      | М      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |
| 7    | 4.14  | 6096      | Air    | 28     | 9750      | М      | No    | Hollow      | Full  |
|      |       |           | Dry    |        |           |        |       |             | Bed   |
| 7    | 4.14  | 5954      | Air    | 28     | 9750      | Μ      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |
| 7    | 5.61  | 6289      | Air    | 28     | 9750      | Μ      | No    | Hollow      | Full  |
|      |       |           | Dry    |        |           |        |       |             | Bed   |
| 7    | 5.61  | 5630      | Air    | 28     | 9750      | Μ      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |
| 7    | 2.04  | 4230      | Air    | 28     | 9012      | Ν      | No    | Hollow      | Full  |
|      |       |           | Dry    |        |           |        |       |             | Bed   |
| 7    | 2.04  | 4650      | Air    | 28     | 9012      | Ν      | No    | Hollow      | Face  |
|      |       |           | Dry    |        |           |        |       |             | Shell |

Table A.1 - continued

| DC       | II/T  | Prism     | с ·    | Curing | Unit      |        |       | <b>T</b> T | <b>T</b> • 4 |
|----------|-------|-----------|--------|--------|-----------|--------|-------|------------|--------------|
| Ref.     | H/T   | Strength, | Curing | Time,  | Strength, | Mortar | Grout | Unit       | Joint        |
| No.      | Ratio | psi       | Method | days   | psi       | Туре   |       | Туре       | Туре         |
| 7        | 3.11  | 4160      | Air    | 28     | 9012      | N      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |
| 7        | 3.11  | 4650      | Air    | 28     | 9012      | N      | No    | Hollow     | Face         |
|          |       |           | Dry    |        |           |        |       |            | Shell        |
| 7        | 4.15  | 4330      | Air    | 28     | 9012      | N      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |
| 7        | 4.15  | 4890      | Air    | 28     | 9012      | Ν      | No    | Hollow     | Face         |
|          |       |           | Dry    |        |           |        |       |            | Shell        |
| 7        | 5.18  | 3730      | Air    | 28     | 9012      | Ν      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |
| 7        | 5.18  | 3600      | Air    | 28     | 9012      | Ν      | No    | Hollow     | Face         |
|          |       |           | Dry    |        |           |        |       |            | Shell        |
| 7        | 2.04  | 5090      | Air    | 28     | 9012      | S      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |
| 7        | 2.04  | 6080      | Air    | 28     | 9012      | S      | No    | Hollow     | Face         |
|          |       |           | Dry    |        |           |        |       |            | Shell        |
| 7        | 3.11  | 5520      | Air    | 28     | 9012      | S      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |
| 7        | 3.11  | 5750      | Air    | 28     | 9012      | S      | No    | Hollow     | Face         |
|          |       |           | Dry    |        |           |        |       |            | Shell        |
| 7        | 4.15  | 4850      | Air    | 28     | 9012      | S      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |
| 7        | 4.15  | 5350      | Air    | 28     | 9012      | S      | No    | Hollow     | Face         |
|          |       |           | Dry    |        |           |        |       |            | Shell        |
| 7        | 5.18  | 5490      | Air    | 28     | 9012      | S      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |
| 7        | 5.18  | 5010      | Air    | 28     | 9012      | S      | No    | Hollow     | Face         |
|          |       |           | Dry    |        |           |        |       |            | Shell        |
| 7        | 2.04  | 6690      | Air    | 28     | 9012      | М      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |
| 7        | 2.04  | 6610      | Air    | 28     | 9012      | М      | No    | Hollow     | Face         |
| <u> </u> |       |           | Dry    |        |           |        |       |            | Shell        |
| 7        | 3.11  | 6230      | Air    | 28     | 9012      | Μ      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |
| 7        | 3.11  | 6180      | Air    | 28     | 9012      | М      | No    | Hollow     | Face         |
|          |       |           | Dry    |        |           |        |       |            | Shell        |
| 7        | 4.15  | 6080      | Air    | 28     | 9012      | М      | No    | Hollow     | Full         |
|          |       |           | Dry    |        |           |        |       |            | Bed          |

Table A.1 - continued

|      | Ι        | Prism     |            | Curing | Unit         |        |       |          |             |
|------|----------|-----------|------------|--------|--------------|--------|-------|----------|-------------|
| Ref. | H/T      | Strength, | Curing     | Time,  | Strength,    | Mortar | Grout | Unit     | Joint       |
| No.  | Ratio    | psi       | Method     | days   | psi          | Туре   | Oloui | Туре     | Туре        |
| 7    | 4.15     | 6240      | Air        | 28     | 9012         | М      | No    | Hollow   | Face        |
| ,    | т.15     | 0240      | Dry        | 20     | 7012         | 141    | 110   | 110110 W | Shell       |
| 7    | 5.18     | 5400      | Air        | 28     | 9012         | М      | No    | Hollow   | Full        |
| ,    | 5.10     | 5400      | Dry        | 20     | 7012         | 141    | 110   | 110110 W | Bed         |
| 7    | 5.18     | 5660      | Air        | 28     | 9012         | М      | No    | Hollow   | Face        |
| ,    | 5.10     | 5000      | Dry        | 20     | 5012         | 111    | 110   | 110110 W | Shell       |
| 7    | 2.05     | 5700      | Air        | 28     | 9311         | N      | No    | Hollow   | Full        |
| ,    | 2.00     | 2700      | Dry        | 20     | <i>J</i> J11 | 1,     | 110   | 110110 W | Bed         |
| 7    | 2.05     | 5330      | Air        | 28     | 9311         | N      | No    | Hollow   | Face        |
| -    |          |           | Dry        |        |              |        |       |          | Shell       |
| 7    | 3.32     | 5070      | Air        | 28     | 9311         | N      | No    | Hollow   | Full        |
|      |          |           | Dry        |        |              |        |       |          | Bed         |
| 7    | 3.32     | 5210      | Air        | 28     | 9311         | N      | No    | Hollow   | Face        |
|      |          |           | Dry        |        |              |        |       |          | Shell       |
| 7    | 4.16     | 5500      | Air        | 28     | 9311         | N      | No    | Hollow   | Full        |
|      |          |           | Dry        |        |              |        |       |          | Bed         |
| 7    | 4.16     | 5190      | Air        | 28     | 9311         | N      | No    | Hollow   | Face        |
|      |          |           | Dry        |        |              |        |       |          | Shell       |
| 7    | 5.40     | 4920      | Air        | 28     | 9311         | Ν      | No    | Hollow   | Full        |
|      |          |           | Dry        |        |              |        |       |          | Bed         |
| 7    | 5.40     | 4060      | Air        | 28     | 9311         | Ν      | No    | Hollow   | Face        |
|      |          |           | Dry        |        |              |        |       |          | Shell       |
| 7    | 2.05     | 4690      | Air        | 28     | 9311         | S      | No    | Hollow   | Full        |
|      |          |           | Dry        |        |              |        |       |          | Bed         |
| 7    | 2.05     | 5670      | Air        | 28     | 9311         | S      | No    | Hollow   | Face        |
|      |          |           | Dry        |        |              |        |       |          | Shell       |
| 7    | 3.32     | 4940      | Air        | 28     | 9311         | S      | No    | Hollow   | Full        |
|      |          |           | Dry        | • •    |              | ~      |       |          | Bed         |
| 7    | 3.32     | 5760      | Air        | 28     | 9311         | S      | No    | Hollow   | Face        |
|      |          |           | Dry        | • •    | 0011         | ~      | 2.7   | xx 11    | Shell       |
| 7    | 4.16     | 5520      | Air        | 28     | 9311         | S      | No    | Hollow   | Full        |
|      | 4.1.6    | 5500      | Dry        | 20     | 0211         | C      | N     | TT 11    | Bed         |
| 7    | 4.16     | 5590      | Air        | 28     | 9311         | S      | No    | Hollow   | Face        |
| 7    | 5 40     | 5210      | Dry        | 20     | 0211         | C      | Na    | Hallarr  | Shell       |
| 7    | 5.40     | 5310      | Air<br>Dry | 28     | 9311         | S      | No    | Hollow   | Full<br>Bed |
| 7    | 5.40     | 5776      | Dry<br>Air | 28     | 9311         | S      | No    | Hollow   | Face        |
| /    | 5.40     | 5770      |            | 20     | 7311         | 3      | INU   | TIOHOW   | Shell       |
|      | <u> </u> |           | Dry        |        |              |        |       |          | Shell       |

Table A.1 - continued

|      |       | Prism     |        | Curing | Unit                                    |        |       |           |       |
|------|-------|-----------|--------|--------|-----------------------------------------|--------|-------|-----------|-------|
| Ref. | H/T   | Strength, | Curing | Time,  | Strength,                               | Mortar | Grout | Unit      | Joint |
| No.  | Ratio | psi       | Method | days   | psi                                     | Туре   | Grout | Туре      | Туре  |
| 7    | 2.05  | 6980      | Air    | 28     | 9311                                    | М      | No    | Hollow    | Full  |
| ,    | 2.05  | 0700      | Dry    | 20     | 7511                                    | 111    | 110   | 110110 W  | Bed   |
| 7    | 2.05  | 7750      | Air    | 28     | 9311                                    | М      | No    | Hollow    | Face  |
| ,    | 2.05  | 1150      | Dry    | 20     | 7511                                    | 111    | 110   | 110110 W  | Shell |
| 7    | 3.32  | 6630      | Air    | 28     | 9311                                    | М      | No    | Hollow    | Full  |
| ,    | 5.52  | 0050      | Dry    | 20     | <i>J</i> J11                            | 171    | 110   | 110110 W  | Bed   |
| 7    | 3.32  | 6680      | Air    | 28     | 9311                                    | М      | No    | Hollow    | Face  |
| ,    | 5.52  | 0000      | Dry    | -0     | <i>yyyyyyyyyyyyy</i>                    | 1.1    | 110   | 110110 11 | Shell |
| 7    | 4.16  | 6190      | Air    | 28     | 9311                                    | М      | No    | Hollow    | Full  |
| ,    |       | 0190      | Dry    |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        | 110   | 110110 () | Bed   |
| 7    | 4.16  | 6630      | Air    | 28     | 9311                                    | М      | No    | Hollow    | Face  |
|      |       |           | Dry    |        |                                         |        |       |           | Shell |
| 7    | 5.40  | 6480      | Air    | 28     | 9311                                    | М      | No    | Hollow    | Full  |
|      |       |           | Dry    | _      |                                         |        |       | · ·       | Bed   |
| 7    | 5.40  | 6610      | Air    | 28     | 9311                                    | М      | No    | Hollow    | Face  |
|      |       |           | Dry    |        |                                         |        |       |           | Shell |
| 7    | 2.07  | 5762      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |                                         |        |       |           | Bed   |
| 7    | 2.07  | 4044      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Face  |
|      |       |           | Dry    |        |                                         |        |       |           | Shell |
| 7    | 3.17  | 4578      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |                                         |        |       |           | Bed   |
| 7    | 3.17  | 5764      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Face  |
|      |       |           | Dry    |        |                                         |        |       |           | Shell |
| 7    | 4.27  | 5029      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |                                         |        |       |           | Bed   |
| 7    | 4.27  | 5290      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Face  |
|      |       |           | Dry    |        |                                         |        |       |           | Shell |
| 7    | 5.30  | 4718      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |                                         |        |       |           | Bed   |
| 7    | 5.30  | 5623      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Face  |
|      |       |           | Dry    |        |                                         |        |       |           | Shell |
| 7    | 5.30  | 5147      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |                                         |        |       |           | Bed   |
| 7    | 5.30  | 5266      | Air    | 28     | 18730                                   | S      | No    | Hollow    | Face  |
|      |       |           | Dry    |        |                                         |        |       |           | Shell |
| 7    | 2.10  | 3226      | Air    | 28     | 14405                                   | S      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |                                         |        |       |           | Bed   |

Table A.1 - continued

|      |       | Prism         |            | Curing | Unit      |        |          |           |               |
|------|-------|---------------|------------|--------|-----------|--------|----------|-----------|---------------|
| Ref. | H/T   | Strength,     | Curing     | Time,  | Strength, | Mortar | Grout    | Unit      | Joint         |
| No.  | Ratio | psi           | Method     | days   | psi       | Туре   | Grout    | Туре      | Туре          |
| 7    | 2.10  | 3709          | Air        | 28     | 14405     | S      | No       | Hollow    | Face          |
| ,    | 2.10  | 5705          | Dry        | 20     | 11100     | 5      | 110      | 110110 W  | Shell         |
| 7    | 3.17  | 3149          | Air        | 28     | 14405     | S      | No       | Hollow    | Full          |
|      |       | • • • •       | Dry        |        |           | ~      |          |           | Bed           |
| 7    | 3.17  | 4518          | Air        | 28     | 14405     | S      | No       | Hollow    | Face          |
|      |       |               | Dry        |        |           |        |          |           | Shell         |
| 7    | 4.25  | 2657          | Air        | 28     | 14405     | S      | No       | Hollow    | Full          |
|      |       |               | Dry        |        |           |        |          |           | Bed           |
| 7    | 4.25  | 4000          | Air        | 28     | 14405     | S      | No       | Hollow    | Face          |
|      |       |               | Dry        |        |           |        |          |           | Shell         |
| 7    | 5.28  | 3002          | Air        | 28     | 14405     | S      | No       | Hollow    | Full          |
|      |       |               | Dry        |        |           |        |          |           | Bed           |
| 7    | 5.28  | 3865          | Air        | 28     | 14405     | S      | No       | Hollow    | Face          |
|      |       |               | Dry        |        |           |        |          |           | Shell         |
| 7    | 5.28  | 3352          | Air        | 28     | 14405     | S      | No       | Hollow    | Full          |
|      |       |               | Dry        |        |           |        |          |           | Bed           |
| 7    | 5.28  | 3747          | Air        | 28     | 14405     | S      | No       | Hollow    | Face          |
|      |       |               | Dry        |        |           |        |          |           | Shell         |
| 7    | 2.11  | 4177          | Air        | 28     | 19120     | S      | No       | Hollow    | Full          |
|      |       |               | Dry        | • •    |           | ~      |          |           | Bed           |
| 7    | 2.11  | 7047          | Air        | 28     | 19120     | S      | No       | Hollow    | Face          |
|      | 2.1.6 | 45.40         | Dry        | •      | 10100     | G      | <b>.</b> | XX 11     | Shell         |
| 7    | 3.16  | 4549          | Air        | 28     | 19120     | S      | No       | Hollow    | Full          |
|      | 2.16  | 5 <b>7</b> 05 | Dry        | 20     | 10100     | 0      | N        | TT 11     | Bed           |
| 7    | 3.16  | 5785          | Air        | 28     | 19120     | S      | No       | Hollow    | Face          |
| 7    | 4.21  | 20(0          | Dry        | 20     | 10120     | C      | NI-      | TT - 11   | Shell         |
| 7    | 4.21  | 3960          | Air        | 28     | 19120     | S      | No       | Hollow    | Full          |
| 7    | 4.21  | 4985          | Dry<br>Air | 20     | 10120     | S      | No       | Hollow    | Bed           |
| /    | 4.21  | 4703          | Dry        | 28     | 19120     | 3      | INO      | HOHOW     | Face<br>Shell |
| 7    | 5.26  | 3893          | Air        | 28     | 19120     | S      | No       | Hollow    | Full          |
| /    | 5.20  | 5075          | Dry        | 20     | 19120     | 5      | INU      | TIOHOW    | Bed           |
| 7    | 5.26  | 4822          | Air        | 28     | 19120     | S      | No       | Hollow    | Face          |
|      | 5.20  | 1022          | Dry        | 20     | 17140     | 5      | 110      | 110110 W  | Shell         |
| 7    | 5.26  | 5330          | Air        | 28     | 19120     | S      | No       | Hollow    | Full          |
|      | 0.20  | 2330          | Dry        | 20     | 17120     | 5      | 110      | 110110 00 | Bed           |
| 7    | 5.26  | 4978          | Air        | 28     | 19120     | S      | No       | Hollow    | Face          |
|      |       |               | Dry        | -      |           |        |          |           | Shell         |

Table A.1 - continued

| D.C       |       | Prism         | а ·        | Curing | Unit      |        |         | TT .          | <b>T</b> • 4 |
|-----------|-------|---------------|------------|--------|-----------|--------|---------|---------------|--------------|
| Ref.      | H/T   | Strength,     | Curing     | Time,  | Strength, | Mortar | Grout   | Unit          | Joint        |
| No.       | Ratio | psi           | Method     | days   | psi       | Туре   |         | Туре          | Туре         |
| 8         | 4.16  | 4490          | Air        | 28     | 15844     | S      | Yes     | Hollow        | Face         |
|           |       |               | Dry        |        |           |        |         |               | Shell        |
| 8         | 4.16  | 4100          | Air        | 28     | 15844     | S      | Yes     | Hollow        | Face         |
|           |       |               | Dry        |        |           |        |         |               | Shell        |
| 8         | 4.16  | 4970          | Air        | 28     | 15844     | S      | Yes     | Hollow        | Face         |
|           |       |               | Dry        |        |           |        |         |               | Shell        |
| 8         | 3.05  | 4370          | Air        | 28     | 13676     | S      | Yes     | Hollow        | Face         |
|           |       |               | Dry        |        |           |        |         |               | Shell        |
| 8         | 3.05  | 4370          | Air        | 28     | 13676     | S      | Yes     | Hollow        | Face         |
|           |       |               | Dry        |        |           |        |         |               | Shell        |
| 8         | 3.05  | 4370          | Air        | 28     | 13676     | S      | Yes     | Hollow        | Face         |
|           |       |               | Dry        |        |           |        |         |               | Shell        |
| 9         | 2.0   | 6936          | Air        | 28     | 20044     | Ν      | No      | Solid         | Full         |
|           |       |               | Dry        |        |           |        |         |               | Bed          |
| 9         | 2.0   | 6499          | Air        | 28     | 20044     | Ν      | No      | Solid         | Full         |
|           |       |               | Dry        |        |           |        |         |               | Bed          |
| 9         | 2.0   | 5281          | Air        | 28     | 20044     | Ν      | No      | Solid         | Full         |
|           | 2.05  | 60 <b>F</b> 0 | Dry        | • •    | ••••      |        | <b></b> | a 1:1         | Bed          |
| 9         | 3.87  | 6850          | Air        | 28     | 20044     | Ν      | No      | Solid         | Full         |
|           | 2.07  | (250          | Dry        | 20     | 20044     | N      | ) T     | 0.111         | Bed          |
| 9         | 3.87  | 6350          | Air        | 28     | 20044     | Ν      | No      | Solid         | Full         |
|           | 2.07  | 5000          | Dry        | 20     | 20044     | NT     | N       | 0.1.1         | Bed          |
| 9         | 3.87  | 5900          | Air        | 28     | 20044     | Ν      | No      | Solid         | Full         |
| 10        | 2 70  | 20(0          | Dry        | 7      | 102(2     | N      | NI-     | 0.1:1         | Bed          |
| 10,       | 3.79  | 3069          | Air        | 7      | 10362     | Ν      | No      | Solid         | Full         |
| 11        | 3.79  | 3069          | Dry<br>Air | 7      | 10362     | N      | No      | Solid         | Bed<br>Full  |
| 10,<br>11 | 5.79  | 3009          |            | /      | 10302     | IN     | INO     | Solid         | Bed          |
| 10,       | 3.79  | 3193          | Dry<br>Air | 28     | 10362     | N      | No      | Solid         | Full         |
| 10,       | 5.17  | 5175          | Dry        | 20     | 10302     | 1 N    | INU     | Solia         | Bed          |
| 10,       | 3.79  | 3193          | Air        | 28     | 10362     | N      | No      | Solid         | Full         |
| 10,       | 5.19  | 5175          | Dry        | 20     | 10302     | 1 N    | 110     | Soliu         | Bed          |
| 10,       | 3.79  | 2616          | Air        | 7      | 10362     | N      | No      | Solid         | Full         |
| 11        | 5.17  | 2010          | Dry        | /      | 10502     | 11     | 110     | 50110         | Bed          |
| 10,       | 3.79  | 2616          | Air        | 7      | 10362     | N      | No      | Solid         | Full         |
| 11        | 5.17  | 2010          | Dry        | ,      | 10502     | 11     | 110     | 50110         | Bed          |
| 10,       | 3.79  | 3098          | Air        | 28     | 10362     | N      | No      | Solid         | Full         |
| 11        |       |               | Dry        | _0     |           | - 1    |         | ~ ~ ~ ~ ~ ~ ~ | Bed          |

Table A.1 - continued

|             |       | Prism     |            | Curing | Unit            |        |       |       |             |
|-------------|-------|-----------|------------|--------|-----------------|--------|-------|-------|-------------|
| Ref.        | H/T   | Strength, | Curing     | Time,  | Strength,       | Mortar | Grout | Unit  | Joint       |
| No.         | Ratio | psi       | Method     | days   | psi             | Туре   | Grout | Туре  | Туре        |
| 10,         | 3.79  | 3098      | Air        | 28     | 10362           | N      | No    | Solid | Full        |
| 11          | 5.15  | 2070      | Dry        | -0     | 10502           | 1,     | 110   | Sona  | Bed         |
| 10,         | 3.79  | 2436      | Air        | 7      | 10362           | N      | No    | Solid | Full        |
| 11          |       |           | Dry        | -      |                 |        |       |       | Bed         |
| 10,         | 3.79  | 2436      | Air        | 7      | 10362           | N      | No    | Solid | Full        |
| 11          |       |           | Dry        |        |                 |        |       |       | Bed         |
| 10,         | 3.79  | 2579      | Air        | 28     | 10362           | N      | No    | Solid | Full        |
| 11          |       |           | Dry        |        |                 |        |       |       | Bed         |
| 10,         | 3.79  | 2579      | Air        | 28     | 10362           | N      | No    | Solid | Full        |
| 11          |       |           | Dry        |        |                 |        |       |       | Bed         |
| 10,         | 3.79  | 1587      | Air        | 7      | 10362           | Ν      | No    | Solid | Full        |
| 11          |       |           | Dry        |        |                 |        |       |       | Bed         |
| 10,         | 3.79  | 1587      | Air        | 7      | 10362           | Ν      | No    | Solid | Full        |
| 11          |       |           | Dry        |        |                 |        |       |       | Bed         |
| 10,         | 3.79  | 1889      | Air        | 28     | 10362           | Ν      | No    | Solid | Full        |
| 11          |       |           | Dry        |        |                 |        |       |       | Bed         |
| 10,         | 3.79  | 1889      | Air        | 28     | 10362           | Ν      | No    | Solid | Full        |
| 11          |       |           | Dry        |        |                 |        |       |       | Bed         |
| 10,         | 3.64  | 2559      | Air        | 7      | 21145           | Ν      | No    | Solid | Full        |
| 11          |       |           | Dry        |        |                 |        |       | ~     | Bed         |
| 10,         | 3.64  | 2559      | Air        | 7      | 21145           | Ν      | No    | Solid | Full        |
| 11          | 2.64  | 0740      | Dry        | •      | 01145           |        | 27    | 0.111 | Bed         |
| 10,         | 3.64  | 2748      | Air        | 28     | 21145           | Ν      | No    | Solid | Full        |
| 11          | 2.64  | 0740      | Dry        | 20     | 01145           | N      |       | 0 1:1 | Bed         |
| 10,         | 3.64  | 2748      | Air        | 28     | 21145           | Ν      | No    | Solid | Full        |
| 11          | 2 ( 4 | 2200      | Dry        | 7      | 21145           | N      | N.    | 0.111 | Bed         |
| 10,         | 3.64  | 2290      | Air        | 7      | 21145           | Ν      | No    | Solid | Full        |
| 11          | 2.64  | 2200      | Dry<br>Air | 7      | 21145           | N      | No    | Salid | Bed         |
| 10,<br>11   | 3.64  | 2290      |            | /      | 21145           | Ν      | No    | Solid | Full<br>Bed |
| $11 \\ 10,$ | 3.64  | 2210      | Dry<br>Air | 28     | 21145           | N      | No    | Solid | Full        |
| 10,         | 5.04  | 2210      | Air<br>Dry | 20     | 21143           | IN     | INU   | Solid | Bed         |
| 10,         | 3.64  | 2210      | Air        | 28     | 21145           | N      | No    | Solid | Full        |
| 10,         | 5.04  | 2210      | Dry        | 20     | 21143           | 1 N    | INU   | Solid | Bed         |
| 10,         | 3.64  | 2012      | Air        | 7      | 21145           | N      | No    | Solid | Full        |
| 11          | 5.04  | 2012      | Dry        | /      | 21173           | 1 N    | 110   | Sond  | Bed         |
| 10,         | 3.64  | 2012      | Air        | 7      | 21145           | N      | No    | Solid | Full        |
| 11          | 5.04  | 2012      | Dry        | /      | <u><u> </u></u> | 11     | 110   | Sond  | Bed         |
| 11          |       |           | Dry        |        |                 |        |       |       | Deu         |

Table A.1 - continued

|      |         | Prism     | a :        | Curing | Unit      |        |       | <b>T</b> T <b>*</b> /                   | <b>.</b>    |
|------|---------|-----------|------------|--------|-----------|--------|-------|-----------------------------------------|-------------|
| Ref. | H/T     | Strength, | Curing     | Time,  | Strength, | Mortar | Grout | Unit                                    | Joint       |
| No.  | Ratio   | psi       | Method     | days   | psi       | Туре   | 01000 | Туре                                    | Туре        |
| 10,  | 3.64    | 2833      | Air        | 28     | 21145     | N      | No    | Solid                                   | Full        |
| 11   |         |           | Dry        |        |           |        |       |                                         | Bed         |
| 10,  | 3.64    | 2833      | Air        | 28     | 21145     | N      | No    | Solid                                   | Full        |
| 11   |         |           | Dry        |        |           |        |       |                                         | Bed         |
| 10,  | 3.64    | 1606      | Air        | 7      | 21145     | N      | No    | Solid                                   | Full        |
| 11   |         |           | Dry        |        |           |        |       |                                         | Bed         |
| 10,  | 3.64    | 1606      | Air        | 7      | 21145     | Ν      | No    | Solid                                   | Full        |
| 11   |         |           | Dry        |        |           |        |       |                                         | Bed         |
| 10,  | 3.64    | 1624      | Air        | 28     | 21145     | Ν      | No    | Solid                                   | Full        |
| 11   |         |           | Dry        |        |           |        |       |                                         | Bed         |
| 10,  | 3.64    | 1624      | Air        | 28     | 21145     | Ν      | No    | Solid                                   | Full        |
| 11   |         |           | Dry        |        |           |        |       |                                         | Bed         |
| 12   | 2.91    | 5765      | Air        | 28     | 12936     | Ν      | Yes   | Hollow                                  | Full        |
|      |         |           | Dry        |        |           |        |       |                                         | Bed         |
| 12   | 4.57    | 3946      | Air        | 28     | 8974      | Ν      | Yes   | Hollow                                  | Full        |
|      |         |           | Dry        |        |           |        |       |                                         | Bed         |
| 12   | 2.13    | 4523      | Air        | 28     | 11344     | Ν      | Yes   | Hollow                                  | Full        |
| 10   | • • • • |           | Dry        | • •    | 1000 (    |        |       | xx 11                                   | Bed         |
| 12   | 2.91    | 5704      | Air        | 28     | 12936     | Ν      | Yes   | Hollow                                  | Full        |
| 10   | 0.10    | 5070      | Dry        | 20     | 11244     | NT     | 37    | TT 11                                   | Bed         |
| 12   | 2.13    | 5373      | Air        | 28     | 11344     | Ν      | Yes   | Hollow                                  | Full        |
| 10   | 2.01    | 47745     | Dry        | 20     | 10026     | NT     | 17    | TT 11                                   | Bed         |
| 12   | 2.91    | 4745      | Air        | 28     | 12936     | Ν      | Yes   | Hollow                                  | Full        |
| 12   | 2.01    | 5505      | Dry        | 20     | 12026     | C      | Var   | Hallarr                                 | Bed         |
| 12   | 2.91    | 5595      | Air        | 28     | 12936     | S      | Yes   | Hollow                                  | Full<br>Bed |
| 12   | 2.91    | 5993      | Dry<br>Air | 28     | 12936     | N      | Yes   | Hollow                                  | Full        |
| 12   | 2.91    | 5995      |            | 20     | 12930     | 1      | 105   | HOHOW                                   | Bed         |
| 12   | 2.91    | 3551      | Dry<br>Air | 28     | 12936     | N      | Yes   | Hollow                                  | Full        |
| 12   | 2.71    | 5551      | Dry        | 20     | 12750     | 1 N    | 105   | 110110W                                 | Bed         |
| 12   | 2.91    | 4774      | Air        | 28     | 12936     | N      | Yes   | Hollow                                  | Full        |
| 12   | 2.71    | 1// 7     | Dry        | 20     | 12/30     | 11     | 105   | 110110 #                                | Bed         |
| 13   | 2.1     | 3464      | Air        | 7      | 3920      | S      | No    | Solid                                   | Full        |
| 15   |         | 2.01      | Dry        | ,      | 2720      | 2      | 110   | 20114                                   | Bed         |
| 13   | 2.8     | 2967      | Air        | 7      | 3920      | S      | No    | Solid                                   | Full        |
|      |         |           | Dry        | ,      |           | ~      |       | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | Bed         |
| 13   | 3.5     | 2710      | Air        | 7      | 3920      | S      | No    | Solid                                   | Full        |
| 1    |         |           |            |        |           |        |       |                                         |             |

Table A.1 - continued

| Ref. | H/T   | Prism            | Curing        | Curing        | Unit             | Mortar | _        | Unit  | Joint       |
|------|-------|------------------|---------------|---------------|------------------|--------|----------|-------|-------------|
| No.  | Ratio | Strength,<br>psi | Method        | Time,<br>days | Strength,<br>psi | Туре   | Grout    | Туре  | Туре        |
| 13   | 4.3   | 2352             | Air           | 7             | 3920             | S      | No       | Solid | Full        |
| 10   |       |                  | Dry           | ,             | 0,20             | ~      | 110      | 20114 | Bed         |
| 13   | 5.0   | 2292             | Air           | 7             | 3920             | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               | • / = •          | ~      |          |       | Bed         |
| 13   | 2.1   | 7773             | Air           | 7             | 13780            | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               |                  |        |          |       | Bed         |
| 13   | 2.8   | 6367             | Air           | 7             | 13780            | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               |                  |        |          |       | Bed         |
| 13   | 3.5   | 5435             | Air           | 7             | 13780            | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               |                  |        |          |       | Bed         |
| 13   | 4.3   | 5184             | Air           | 7             | 13780            | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               |                  |        |          |       | Bed         |
| 13   | 5.0   | 5236             | Air           | 7             | 13780            | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               |                  |        |          |       | Bed         |
| 13   | 2.8   | 3105             | Air           | 28            | 3920             | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               |                  |        |          |       | Bed         |
| 13   | 5.0   | 2553             | Air           | 28            | 3920             | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               |                  |        |          |       | Bed         |
| 13   | 2.8   | 5396             | Air           | 28            | 13780            | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               |                  |        |          |       | Bed         |
| 13   | 5.0   | 4206             | Air           | 28            | 13780            | S      | No       | Solid | Full        |
|      |       |                  | Dry           |               |                  |        |          |       | Bed         |
| 14   | 3.57  | 4850             | Moist/        | 7             | 11400            | S      | No       | Solid | Full        |
|      |       |                  | Dry           | _             | 11100            | ~      |          | a 111 | Bed         |
| 14   | 3.57  | 3820             | Moist/        | 7             | 11400            | S      | No       | Solid | Full        |
| 1.4  | 0.57  | 40.50            | Dry           |               | 11400            |        | <u> </u> | 0.111 | Bed         |
| 14   | 3.57  | 4870             | Moist/        | 7             | 11400            | S      | No       | Solid | Full        |
| 1.4  | 2.57  | 4(70             | Dry<br>Moist/ | 7             | 11400            | G      | N        | 0 1.1 | Bed         |
| 14   | 3.57  | 4670             |               | 7             | 11400            | S      | No       | Solid | Full        |
| 1.4  | 2.57  | 4020             | Dry<br>Maint/ | 7             | 11400            | G      | N.       | 0.111 | Bed         |
| 14   | 3.57  | 4030             | Moist/        | 7             | 11400            | S      | No       | Solid | Full<br>Rod |
| 1 /  | 3.57  | 1000             | Dry<br>Moist/ | 7             | 11400            | C      | No       | Salid | Bed         |
| 14   | 5.57  | 4080             | Moist/<br>Dry | 7             | 11400            | S      | No       | Solid | Full<br>Bed |
| 14   | 3.57  | 4970             | Moist/        | 7             | 11400            | S      | No       | Solid |             |
| 14   | 5.57  | 49/0             | Dry           | /             | 11400            | 5      | INO      | Solid | Full<br>Bed |
| 14   | 3.57  | 4920             | Moist/        | 7             | 11400            | S      | No       | Solid | Full        |
| 14   | 5.57  | 7720             | Dry           | /             | 11400            | 5      | INU      | Sond  | Bed         |
|      | 1     |                  | DIY           |               |                  |        |          |       | Deu         |

Table A.1 - continued

| DC   | II/T  | Prism                | с ·        | Curing | Unit      |        |       | TT .     | <b>T</b> • 7 |
|------|-------|----------------------|------------|--------|-----------|--------|-------|----------|--------------|
| Ref. | H/T   | Strength,            | Curing     | Time,  | Strength, | Mortar | Grout | Unit     | Joint        |
| No.  | Ratio | psi                  | Method     | days   | psi       | Туре   |       | Туре     | Туре         |
| 14   | 3.57  | 4230                 | Moist/     | 7      | 11400     | S      | No    | Solid    | Full         |
|      |       |                      | Dry        |        |           |        |       |          | Bed          |
| 14   | 3.57  | 4330                 | Moist/     | 7      | 11400     | S      | No    | Solid    | Full         |
|      |       |                      | Dry        |        |           |        |       |          | Bed          |
| 14   | 3.57  | 2810                 | Moist/     | 7      | 11400     | S      | No    | Solid    | Full         |
|      |       |                      | Dry        |        |           |        |       |          | Bed          |
| 14   | 3.57  | 3860                 | Moist/     | 7      | 11400     | S      | No    | Solid    | Full         |
|      |       |                      | Dry        |        |           |        |       |          | Bed          |
| 15   | 5.2   | 2219                 | Moist/     | 28     | 4844      | S      | No    | Solid    | Face         |
|      |       |                      | Dry        |        |           |        |       |          | Shell        |
| 15   | 5.0   | 2553                 | Moist/     | 28     | 4844      | S      | No    | Solid    | Face         |
|      |       |                      | Dry        |        |           |        |       |          | Shell        |
| 15   | 2.8   | 2596                 | Moist/     | 28     | 4844      | S      | No    | Solid    | Face         |
|      |       |                      | Dry        |        |           |        |       |          | Shell        |
| 15   | 2.8   | 2118                 | Moist/     | 7      | 4844      | S      | No    | Solid    | Face         |
|      |       |                      | Dry        |        |           |        |       |          | Shell        |
| 15   | 5.0   | 2770                 | Moist/     | 28     | 4844      | S      | No    | Solid    | Face         |
|      |       |                      | Dry        |        |           |        |       |          | Shell        |
| 15   | 5.1   | 3931                 | Moist/     | 28     | 16534     | S      | No    | Solid    | Face         |
|      |       |                      | Dry        |        |           |        |       |          | Shell        |
| 15   | 5.0   | 4192                 | Moist/     | 28     | 16534     | S      | No    | Solid    | Face         |
|      |       |                      | Dry        |        |           |        |       |          | Shell        |
| 15   | 2.8   | 4554                 | Moist/     | 28     | 16534     | S      | No    | Solid    | Face         |
|      |       |                      | Dry        |        |           |        |       |          | Shell        |
| 15   | 2.8   | 3655                 | Moist/     | 7      | 16534     | S      | No    | Solid    | Face         |
|      |       |                      | Dry        |        |           |        |       |          | Shell        |
| 15   | 5.0   | 6309                 | Moist/     | 28     | 16534     | S      | No    | Solid    | Face         |
| 1.6  |       | <b>2</b> 00 <b>-</b> | Dry        | • •    | 1.50.15   | ~      |       | a 111    | Shell        |
| 16   | 5.43  | 3887                 | Air        | 28     | 17245     | S      | No    | Solid    | Full         |
| 16   | 5.40  | 2.422                | Dry        | 20     | 17170     | G      | ) T   | 0.111    | Bed          |
| 16   | 5.43  | 3423                 | Air        | 28     | 17172     | S      | No    | Solid    | Full         |
| 16   | 5.40  | 4200                 | Dry        | 20     | 17045     | G      | NT    | Q - 1' 1 | Bed          |
| 16   | 5.43  | 4380                 | Air        | 28     | 17245     | S      | No    | Solid    | Full         |
| 16   | 5 4 2 | 2020                 | Dry        | 20     | 17170     | C      | No    | Sol: J   | Bed          |
| 16   | 5.43  | 3989                 | Air<br>Dry | 28     | 17172     | S      | No    | Solid    | Full<br>Rod  |
| 16   | 5.43  | 3553                 | Dry        | 28     | 17245     | S      | No    | Solid    | Bed          |
| 16   | 5.45  | 5555                 | Air<br>Dry | 20     | 1/243     | 5      | No    | Solid    | Full<br>Bed  |
|      |       |                      | Dry        |        |           |        |       |          | Bed          |

Table A.1 - continued

|      |       | Prism     |               | Curing | Unit      |        |       |          |             |
|------|-------|-----------|---------------|--------|-----------|--------|-------|----------|-------------|
| Ref. | H/T   | Strength, | Curing        | Time,  | Strength, | Mortar | Grout | Unit     | Joint       |
| No.  | Ratio | psi       | Method        | days   | psi       | Туре   | 01040 | Туре     | Туре        |
| 16   | 5.43  | 3597      | Air           | 28     | 17172     | S      | No    | Solid    | Full        |
|      |       |           | Dry           |        |           |        |       |          | Bed         |
| 16   | 5.43  | 3698      | Air           | 28     | 17245     | S      | No    | Solid    | Full        |
|      |       |           | Dry           |        |           |        |       |          | Bed         |
| 16   | 5.43  | 4264      | Air           | 28     | 17172     | S      | No    | Solid    | Full        |
|      |       |           | Dry           |        |           |        |       |          | Bed         |
| 16   | 5.43  | 3989      | Air           | 28     | 17245     | S      | No    | Solid    | Full        |
|      |       |           | Dry           |        |           |        |       |          | Bed         |
| 16   | 5.43  | 3800      | Air           | 28     | 17172     | S      | No    | Solid    | Full        |
|      |       |           | Dry           |        |           |        |       |          | Bed         |
| 16   | 5.43  | 3844      | Moist/        | 28     | 17245     | S      | No    | Solid    | Full        |
|      |       |           | Dry           |        |           |        |       |          | Bed         |
| 16   | 5.43  | 4409      | Moist/        | 28     | 17172     | S      | No    | Solid    | Full        |
|      |       |           | Dry           |        |           |        |       |          | Bed         |
| 16   | 5.43  | 4743      | Moist/        | 28     | 17245     | S      | No    | Solid    | Full        |
|      |       |           | Dry           |        |           |        |       |          | Bed         |
| 16   | 5.43  | 4728      | Moist/        | 28     | 17172     | S      | No    | Solid    | Full        |
| 1.6  | 5.40  | 59.50     | Dry           | •      | 172.45    | 9      | 27    | 0.111    | Bed         |
| 16   | 5.43  | 5250      | Moist/        | 28     | 17245     | S      | No    | Solid    | Full        |
| 1.6  | 5.40  | 10.00     | Dry           | 20     | 17170     | G      |       | 0.111    | Bed         |
| 16   | 5.43  | 4366      | Moist/        | 28     | 17172     | S      | No    | Solid    | Full        |
| 1(   | 5.42  | 5207      | Dry<br>Maint/ | 20     | 17245     | G      | N.    | Q - 1: J | Bed         |
| 16   | 5.43  | 5207      | Moist/        | 28     | 17245     | S      | No    | Solid    | Full<br>Bed |
| 16   | 5.43  | 4235      | Dry<br>Moist/ | 28     | 17172     | S      | No    | Solid    | Full        |
| 10   | 5.45  | 4255      | Dry           | 20     | 1/1/2     | 3      | INO   | Solid    | Bed         |
| 16   | 5.43  | 5410      | Moist/        | 28     | 17245     | S      | No    | Solid    | Full        |
| 10   | 5.45  | 5410      |               | 20     | 1/245     | 5      | 110   | Sond     | Bed         |
| 16   | 5.43  | 4888      | Dry<br>Moist/ | 28     | 17172     | S      | No    | Solid    | Full        |
| 10   | 5.45  | -1000     | Dry           | 20     | 1/1/2     | 5      | 110   | Solid    | Bed         |
| 16   | 5.43  | 3162      | Air           | 28     | 17245     | N      | No    | Solid    | Full        |
| 10   | 0.15  | 2102      | Dry           | _0     | 1,210     |        | 110   | 20110    | Bed         |
| 16   | 5.43  | 3046      | Air           | 28     | 17172     | N      | No    | Solid    | Full        |
| - 0  |       |           | Dry           |        |           | - ,    |       |          | Bed         |
| 16   | 5.43  | 2785      | Air           | 28     | 17245     | N      | No    | Solid    | Full        |
|      |       |           | Dry           | -      |           |        |       |          | Bed         |
| 16   | 5.43  | 2611      | Air           | 28     | 17172     | N      | No    | Solid    | Full        |
|      |       |           | Dry           |        |           |        |       |          | Bed         |

Table A.1 - continued

| Ref. | H/T   | Prism     | Curing           | Curing | Unit      | Mortar |       | Unit  | Joint |
|------|-------|-----------|------------------|--------|-----------|--------|-------|-------|-------|
| No.  | Ratio | Strength, | Curing<br>Method | Time,  | Strength, |        | Grout |       |       |
| INO. | Katio | psi       | Method           | days   | psi       | Туре   |       | Туре  | Туре  |
| 16   | 5.43  | 2741      | Air              | 28     | 17245     | N      | No    | Solid | Full  |
|      |       |           | Dry              |        |           |        |       |       | Bed   |
| 16   | 5.43  | 2625      | Air              | 28     | 17172     | N      | No    | Solid | Full  |
|      |       |           | Dry              |        |           |        |       |       | Bed   |
| 16   | 5.43  | 3945      | Air              | 28     | 17245     | N      | No    | Solid | Full  |
|      |       |           | Dry              |        |           |        |       |       | Bed   |
| 16   | 5.43  | 3698      | Air              | 28     | 17172     | Ν      | No    | Solid | Full  |
|      |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 7420      | Moist/           | 28     | 14785     | Μ      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 6935      | Moist/           | 28     | 14785     | Μ      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 6613      | Moist/           | 28     | 14785     | Μ      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 6130      | Moist/           | 28     | 14785     | S      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 4520      | Moist/           | 28     | 14785     | S      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 5900      | Moist/           | 28     | 14785     | S      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 5960      | Moist/           | 28     | 14785     | S      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 6500      | Moist/           | 28     | 14785     | S      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 6574      | Moist/           | 28     | 14785     | S      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 4675      | Moist/           | 28     | 14785     | N      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 4590      | Moist/           | 28     | 14785     | N      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 5000      | Moist/           | 28     | 14785     | N      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.3   | 4590      | Moist/           | 28     | 14785     | N      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.35  | 1159      | Moist/           | 28     | 2477      | М      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |
| 17,  | 3.35  | 1015      | Moist/           | 28     | 2477      | М      | No    | Solid | Full  |
| 18   |       |           | Dry              |        |           |        |       |       | Bed   |

Table A.1 - continued

|           | <b>T T</b> ( <b>T</b> ) | Prism     | <i>a</i> ·    | Curing | Unit      |        |          | <b>.</b> |             |
|-----------|-------------------------|-----------|---------------|--------|-----------|--------|----------|----------|-------------|
| Ref.      | H/T                     | Strength, | Curing        | Time,  | Strength, | Mortar | Grout    | Unit     | Joint       |
| No.       | Ratio                   | psi       | Method        | days   | psi       | Туре   |          | Туре     | Туре        |
| 17,       | 3.35                    | 1015      | Moist/        | 28     | 2477      | М      | No       | Solid    | Full        |
| 18        |                         |           | Dry           |        |           |        |          |          | Bed         |
| 17,       | 3.35                    | 1024      | Moist/        | 28     | 2477      | S      | No       | Solid    | Full        |
| 18        |                         |           | Dry           |        |           |        |          |          | Bed         |
| 17,       | 3.35                    | 1189      | Moist/        | 28     | 2477      | S      | No       | Solid    | Full        |
| 18        |                         |           | Dry           |        |           |        |          |          | Bed         |
| 17,       | 3.35                    | 987       | Moist/        | 28     | 2477      | S      | No       | Solid    | Full        |
| 18        |                         |           | Dry           |        |           |        |          |          | Bed         |
| 17,       | 3.35                    | 894       | Moist/        | 28     | 2477      | Ν      | No       | Solid    | Full        |
| 18        |                         |           | Dry           |        |           |        |          |          | Bed         |
| 17,       | 3.35                    | 1098      | Moist/        | 28     | 2477      | Ν      | No       | Solid    | Full        |
| 18        |                         |           | Dry           |        |           |        |          |          | Bed         |
| 17,       | 3.35                    | 987       | Moist/        | 28     | 2477      | Ν      | No       | Solid    | Full        |
| 18        |                         |           | Dry           |        |           |        |          |          | Bed         |
| 17,       | 3.55                    | 6000      | Moist/        | 28     | 10152     | М      | No       | Solid    | Full        |
| 18        |                         |           | Dry           |        |           |        |          |          | Bed         |
| 17,       | 3.55                    | 4952      | Moist/        | 28     | 10152     | М      | No       | Solid    | Full        |
| 18        | 2.55                    | 5.42.0    | Dry           | 20     | 10150     |        | <b>.</b> | 0.111    | Bed         |
| 17,       | 3.55                    | 5430      | Moist/        | 28     | 10152     | М      | No       | Solid    | Full        |
| 18        | 2.55                    | 4052      | Dry           | 20     | 10150     | C      | N        | 0.1.1    | Bed         |
| 17,       | 3.55                    | 4952      | Moist/        | 28     | 10152     | S      | No       | Solid    | Full        |
| 18        | 2 5 5                   | 17()      | Dry<br>Maint/ | 20     | 10150     | C      | NI-      | 0.1:1    | Bed         |
| 17,<br>18 | 3.55                    | 4762      | Moist/        | 28     | 10152     | S      | No       | Solid    | Full        |
| 17,       | 3.55                    | 5362      | Dry<br>Moist/ | 28     | 10152     | S      | No       | Solid    | Bed<br>Full |
| 17,       | 5.55                    | 5502      | Dry           | 20     | 10132     | 3      | INO      | Solid    | Bed         |
| 17,       | 3.55                    | 3933      | Moist/        | 28     | 10152     | N      | No       | Solid    | Full        |
| 18        | 5.55                    | 5755      |               | 20     | 10132     | 11     | 110      | Solid    | Bed         |
| 17,       | 3.55                    | 3810      | Dry<br>Moist/ | 28     | 10152     | N      | No       | Solid    | Full        |
| 18        | 5.00                    | 5010      | Dry           | 20     | 10102     | 11     | 110      | Sona     | Bed         |
| 17,       | 3.55                    | 4015      | Moist/        | 28     | 10152     | N      | No       | Solid    | Full        |
| 18        | 2.22                    |           | Dry           |        |           | .,     | 110      | 20114    | Bed         |
| 19,       | 2.25                    | 2100      | Air           | 28     | 3957      | S      | Yes      | Solid    | Full        |
| 20        |                         |           | Dry           | -      |           |        |          |          | Bed         |
| 19,       | 2.25                    | 2025      | Air           | 28     | 3957      | S      | Yes      | Solid    | Full        |
| 20        | _                       | _         | Dry           | _      |           | _      |          |          | Bed         |
| 19,       | 2.21                    | 1902      | Air           | 28     | 3957      | S      | Yes      | Solid    | Full        |
| 20        |                         |           | Dry           |        |           |        |          |          | Bed         |

Table A.1 - continued

|           |       | Prism     | ~ .        | Curing | Unit      |        |       |          |             |
|-----------|-------|-----------|------------|--------|-----------|--------|-------|----------|-------------|
| Ref.      | H/T   | Strength, | Curing     | Time,  | Strength, | Mortar | Grout | Unit     | Joint       |
| No.       | Ratio | psi       | Method     | days   | psi       | Туре   | 01000 | Туре     | Туре        |
| 19,       | 2.25  | 2094      | Air        | 28     | 3957      | S      | Yes   | Solid    | Full        |
| 20        |       |           | Dry        |        |           |        |       |          | Bed         |
| 19,       | 2.21  | 2092      | Air        | 28     | 3957      | S      | Yes   | Solid    | Full        |
| 20        |       |           | Dry        |        |           |        |       |          | Bed         |
| 19,       | 2.3   | 2009      | Air        | 28     | 3957      | S      | Yes   | Solid    | Full        |
| 20        |       |           | Dry        |        |           |        |       |          | Bed         |
| 19,       | 2.29  | 2205      | Air        | 28     | 3957      | S      | Yes   | Solid    | Full        |
| 20        |       |           | Dry        |        |           |        |       |          | Bed         |
| 19,       | 2.32  | 2154      | Air        | 28     | 3957      | S      | Yes   | Solid    | Full        |
| 20        |       |           | Dry        |        |           |        |       |          | Bed         |
| 19,       | 2.3   | 2109      | Air        | 28     | 3957      | S      | Yes   | Solid    | Full        |
| 20        |       |           | Dry        |        |           |        |       |          | Bed         |
| 19,       | 2.3   | 2009      | Air        | 28     | 3957      | S      | Yes   | Solid    | Full        |
| 20        |       |           | Dry        |        |           |        |       |          | Bed         |
| 19,       | 2.22  | 4200      | Air        | 28     | 15507     | S      | Yes   | Solid    | Full        |
| 20        |       |           | Dry        |        |           |        |       |          | Bed         |
| 19,       | 2.22  | 4008      | Air        | 28     | 15507     | S      | Yes   | Solid    | Full        |
| 20        | 0.10  | 4.600     | Dry        | •      | 15505     | 9      | **    | 0.111    | Bed         |
| 19,       | 2.19  | 4682      | Air        | 28     | 15507     | S      | Yes   | Solid    | Full        |
| 20        | 2.22  | 4.422     | Dry        | 20     | 15507     | C      | N7    | 0.111    | Bed         |
| 19,       | 2.22  | 4433      | Air        | 28     | 15507     | S      | Yes   | Solid    | Full        |
| 20        | 2.20  | 4(20      | Dry        | 20     | 15507     | C      | V     | Q - 1: 4 | Bed         |
| 19,<br>20 | 2.20  | 4620      | Air        | 28     | 15507     | S      | Yes   | Solid    | Full        |
| 19,       | 2.22  | 5098      | Dry<br>Air | 28     | 15507     | S      | Yes   | Solid    | Bed<br>Full |
| 20        | 2.22  | 3098      | Dry        | 20     | 15507     | 3      | res   | Solid    | Bed         |
| 19,       | 2.22  | 4896      | Air        | 28     | 15507     | S      | Yes   | Solid    | Full        |
| 20        | 2.22  | -070      | Dry        | 20     | 15507     | 5      | 105   | Sond     | Bed         |
| 19,       | 2.22  | 5221      | Air        | 28     | 15507     | S      | Yes   | Solid    | Full        |
| 20        | 2.22  | 5221      | Dry        | 20     | 15507     | 5      | 105   | bolla    | Bed         |
| 19,       | 2.22  | 5549      | Air        | 28     | 15507     | S      | Yes   | Solid    | Full        |
| 20        |       | 0015      | Dry        | _0     | 10007     | 5      | 105   | 20110    | Bed         |
| 19,       | 2.22  | 4912      | Air        | 28     | 15507     | S      | Yes   | Solid    | Full        |
| 20        |       |           | Dry        | -      | ,         |        |       |          | Bed         |
| 21        | 5.48  | 8383      | Air        | 28     | 17172     | S      | Yes   | Solid    | Full        |
|           |       |           | Dry        |        |           |        |       |          | Bed         |
| 21        | 2.25  | 8615      | Air        | 28     | 17172     | S      | Yes   | Solid    | Full        |
|           |       |           | Dry        |        |           |        |       |          | Bed         |

Table A.1 - continued

|      |       | Prism     |        | Curing | Unit      |        |       |           |       |
|------|-------|-----------|--------|--------|-----------|--------|-------|-----------|-------|
| Ref. | H/T   | Strength, | Curing | Time,  | Strength, | Mortar | Grout | Unit      | Joint |
| No.  | Ratio | psi       | Method | days   | psi       | Туре   | Gibut | Туре      | Туре  |
| 22   | 4.9   | 3375      | Air    | 28     | 15998     | М      | Yes   | Hollow    | Full  |
|      | т.)   | 5515      | Dry    | 20     | 15770     | 141    | 105   | 110110 W  | Bed   |
| 22   | 4.9   | 4882      | Air    | 28     | 18568     | М      | No    | Hollow    | Full  |
|      | т.)   | 4002      | Dry    | 20     | 10500     | 141    | 110   | 110110 W  | Bed   |
| 22   | 4.9   | 3669      | Air    | 28     | 18568     | S      | Yes   | Hollow    | Full  |
|      | 1.5   | 5007      | Dry    | 20     | 10200     | 5      | 105   | 110110 W  | Bed   |
| 22   | 4.9   | 5743      | Air    | 28     | 15998     | S      | No    | Hollow    | Full  |
|      | ,     | 0 / 10    | Dry    | -0     | 10770     | 5      | 110   | 110110 11 | Bed   |
| 22   | 4.9   | 2545      | Air    | 28     | 15998     | N      | Yes   | Hollow    | Full  |
|      | ,     | 20.00     | Dry    |        | 10,770    |        | 1.00  | 11011011  | Bed   |
| 22   | 4.9   | 2598      | Air    | 28     | 15998     | N      | Yes   | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 4.9   | 2725      | Air    | 28     | 15998     | N      | No    | Hollow    | Full  |
|      |       |           | Dry    | _      |           |        |       | · ·       | Bed   |
| 22   | 3.7   | 3068      | Air    | 28     | 13703     | М      | Yes   | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 3.7   | 3694      | Air    | 28     | 13703     | М      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 3.7   | 2318      | Air    | 28     | 13703     | S      | Yes   | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 3.7   | 3039      | Air    | 28     | 13703     | S      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 3.7   | 1769      | Air    | 28     | 13703     | N      | Yes   | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 3.7   | 2621      | Air    | 28     | 13703     | Ν      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 3.1   | 4234      | Air    | 28     | 12337     | М      | Yes   | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 3.1   | 5362      | Air    | 28     | 12337     | М      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 3.1   | 2737      | Air    | 28     | 12337     | Ν      | Yes   | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 3.1   | 3359      | Air    | 28     | 12337     | Ν      | No    | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |
| 22   | 4.4   | 4118      | Air    | 28     | 15088     | М      | Yes   | Hollow    | Full  |
|      |       | 20.55     | Dry    | •      | 1.5000    |        | **    | XX 11     | Bed   |
| 22   | 4.4   | 3852      | Air    | 28     | 15088     | М      | Yes   | Hollow    | Full  |
|      |       |           | Dry    |        |           |        |       |           | Bed   |

Table A.1 - continued

| Ref. | H/T   | Prism<br>Strength, | Curing | Curing<br>Time, | Unit<br>Strength, | Mortar | Grout | Unit   | Joint |
|------|-------|--------------------|--------|-----------------|-------------------|--------|-------|--------|-------|
| No.  | Ratio | psi                | Method | days            | psi               | Туре   |       | Туре   | Туре  |
| 22   | 4.4   | 4518               | Air    | 28              | 15088             | Μ      | No    | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 22   | 4.4   | 5406               | Air    | 28              | 15088             | М      | No    | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 22   | 4.4   | 2994               | Air    | 28              | 15088             | S      | Yes   | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 22   | 4.4   | 3519               | Air    | 28              | 15088             | S      | No    | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 22   | 4.4   | 2099               | Air    | 28              | 15088             | Ν      | Yes   | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 22   | 4.4   | 3224               | Air    | 28              | 15088             | Ν      | No    | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 22   | 4.8   | 2331               | Air    | 28              | 9993              | S      | Yes   | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 22   | 4.8   | 3842               | Air    | 28              | 9993              | S      | No    | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 22   | 4.8   | 2138               | Air    | 28              | 9993              | Ν      | Yes   | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 22   | 4.8   | 2891               | Air    | 28              | 9993              | Ν      | No    | Hollow | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 23   | 2.16  | 4177               | Air    | 28              | 9979              | М      | No    | Solid  | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 23   | 2.16  | 3539               | Air    | 28              | 9979              | S      | No    | Solid  | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 23   | 2.16  | 2973               | Air    | 28              | 9979              | Ν      | No    | Solid  | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 23   | 2.27  | 7237               | Air    | 28              | 18666             | М      | No    | Solid  | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 23   | 2.27  | 6324               | Air    | 28              | 18666             | S      | No    | Solid  | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |
| 23   | 2.27  | 4772               | Air    | 28              | 18666             | Ν      | No    | Solid  | Full  |
|      |       |                    | Dry    |                 |                   |        |       |        | Bed   |

## APPENDIX B

## UTA PRISM TEST RESULTS

Note: The following apply to entire Appendix B contents.

- Brick Type: Three types of brick were tested at UTA, "A", "B", and "C".
- Curing Method:
  - Moist: The prisms were reported to have been cured in moist conditions for the entire duration of their curing period.
  - Dry: The prisms were cured in air-dry conditions for the entire duration of their curing period.
  - Moist/Dry: The prisms were cured in moist conditions for the first seven days and in air-dry conditions for the remaining of their curing period.
- Grout:
  - No: The prisms were not grouted.
  - Yes: The prisms were grouted; in the case of solid units that were grouted, the prisms were double Wythe.

All the prism strength values are unadjusted for their h/t ratios.

| Brick<br>Type. | H/T<br>Ratio | Prism<br>Strength,<br>psi | Curing<br>Method | Curing<br>Time,<br>days | Unit<br>Strength,<br>psi | Mortar<br>Type | Grout | Unit<br>Type | Joint<br>Type |
|----------------|--------------|---------------------------|------------------|-------------------------|--------------------------|----------------|-------|--------------|---------------|
| А              | 2.41         | 3759                      | Moist            | 28                      | 8690                     | Ν              | No    | Solid        | Full<br>Bed   |
| А              | 2.42         | 3971                      | Moist            | 28                      | 8690                     | N              | No    | Solid        | Full<br>Bed   |
| А              | 2.41         | 4042                      | Moist            | 28                      | 8690                     | Ν              | No    | Solid        | Full<br>Bed   |
| А              | 2.41         | 3413                      | Moist            | 28                      | 8690                     | Ν              | No    | Solid        | Full<br>Bed   |
| А              | 2.42         | 4191                      | Moist            | 28                      | 8690                     | N              | No    | Solid        | Full<br>Bed   |
| А              | 4.84         | 3489                      | Moist            | 28                      | 8690                     | Ν              | No    | Solid        | Full<br>Bed   |
| А              | 4.82         | 3923                      | Moist            | 28                      | 8690                     | Ν              | No    | Solid        | Full<br>Bed   |
| А              | 4.82         | 3843                      | Moist            | 28                      | 8690                     | Ν              | No    | Solid        | Full<br>Bed   |

Table B.1: UTA Test Results, Brick "A"

Table B.1 - continued

| Brick | H/T   | Prism            | Curing | Curing        | Unit             | Mortar |       | Unit  | Joint       |
|-------|-------|------------------|--------|---------------|------------------|--------|-------|-------|-------------|
| Type. | Ratio | Strength,<br>psi | Method | Time,<br>days | Strength,<br>psi | Туре   | Grout | Туре  | Туре        |
| А     | 4.81  | 3769             | Moist  | 28            | 8690             | N      | No    | Solid | Full        |
| Α     | 4.77  | 3639             | Moist  | 28            | 8690             | N      | No    | Solid | bed<br>Full |
|       | 0.00  | 2642             |        | 20            | 0070             | N      | N     | 0.1.1 | bed         |
| A     | 2.38  | 3642             | Moist  | 28            | 8690             | Ν      | No    | Solid | Full<br>bed |
| А     | 2.40  | 3158             | Moist  | 28            | 8690             | N      | No    | Solid | Full        |
| A     | 2.38  | 3941             | Moist  | 28            |                  | N      | No    | Solid | bed<br>Full |
| A     | 2.38  | 5941             | wioist | 20            | 8690             | 1      | INU   | Soliu | bed         |
| Α     | 2.38  | 3766             | Moist  | 28            | 0(00             | N      | No    | Solid | Full        |
|       |       |                  |        |               | 8690             |        |       |       | bed         |
| Α     | 2.42  | 3363             | Moist  | 28            | 8690             | Ν      | No    | Solid | Full        |
|       | 1.00  | 2220             |        | 20            |                  | N      | ) T   | 0.111 | bed         |
| A     | 4.88  | 3239             | Moist  | 28            | 8690             | Ν      | No    | Solid | Full<br>bed |
| A     | 4.89  | 3161             | Moist  | 28            | 0.000            | N      | No    | Solid | Full        |
|       |       |                  |        |               | 8690             |        |       |       | bed         |
| А     | 4.87  | 2979             | Moist  | 28            | 8690             | N      | No    | Solid | Full        |
|       |       |                  |        | • •           | 0070             |        |       | ~     | bed         |
| A     | 4.88  | 3178             | Moist  | 28            | 8690             | Ν      | No    | Solid | Full        |
| A     | 4.88  | 3210             | Moist  | 28            |                  | N      | No    | Solid | bed<br>Full |
| A     | 4.00  | 5210             | wioist | 20            | 8690             | 1      | INU   | Soliu | bed         |
| Α     | 2.38  | 3316             | Moist  | 28            | 8690             | N      | No    | Solid | Full        |
|       |       |                  |        |               | 8090             |        |       |       | bed         |
| A     | 2.35  | 3127             | Moist  | 28            | 8690             | Ν      | No    | Solid | Full        |
|       | 2 20  | 2055             |        | 20            |                  | N      | NI    | 0.1.1 | bed         |
| A     | 2.38  | 3055             | Moist  | 28            | 8690             | Ν      | No    | Solid | Full<br>bed |
| Α     | 2.41  | 3038             | Moist  | 28            | 8690             | N      | No    | Solid | Full        |
|       |       |                  |        |               | 0070             |        |       |       | bed         |
| Α     | 2.38  | 3216             | Moist  | 28            | 8690             | Ν      | No    | Solid | Full        |
| Δ.    | 4.85  | 2634             | Moist  | 28            |                  | N      | No    | Solid | bed<br>Full |
| A     | 4.83  | 2034             | worst  | 20            | 8690             | IN     | INU   | Solid | Full<br>bed |
| Α     | 4.86  | 2640             | Moist  | 28            | 8690             | N      | No    | Solid | Full        |
|       |       |                  |        |               | 0090             |        |       |       | bed         |

Table B.1 - continued

| Brick | H/T   | Prism            | Curing | Curing        | Unit             | Mortar | ~     | Unit  | Joint       |
|-------|-------|------------------|--------|---------------|------------------|--------|-------|-------|-------------|
| Type. | Ratio | Strength,<br>psi | Method | Time,<br>days | Strength,<br>psi | Туре   | Grout | Туре  | Туре        |
| А     | 4.88  | 2657             | Moist  | 28            | 8690             | N      | No    | Solid | Full<br>bed |
| A     | 4.85  | 2753             | Moist  | 28            | 8690             | N      | No    | Solid | Full<br>bed |
| А     | 4.81  | 3060             | Moist  | 28            | 8690             | N      | No    | Solid | Full<br>bed |
| Α     | 2.38  | 4950             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| А     | 2.38  | 4780             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| А     | 2.38  | 4806             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| A     | 2.41  | 4824             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| A     | 2.38  | 4712             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| A     | 4.88  | 3702             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| A     | 4.88  | 4106             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| A     | 4.88  | 3786             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| A     | 4.9   | 3757             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| A     | 4.89  | 4590             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| A     | 2.35  | 4116             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| Α     | 2.38  | 4314             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| А     | 2.36  | 4289             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| А     | 2.38  | 4318             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| A     | 2.38  | 3631             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |
| А     | 4.84  | 3294             | Moist  | 28            | 8690             | S      | No    | Solid | Full<br>bed |

Table B.1 - continued

| Brick<br>Type. | H/T<br>Ratio | Prism<br>Strength,<br>psi | Curing<br>Method | Curing<br>Time,<br>days | Unit<br>Strength,<br>psi | Mortar<br>Type | Grout | Unit<br>Type | Joint<br>Type |
|----------------|--------------|---------------------------|------------------|-------------------------|--------------------------|----------------|-------|--------------|---------------|
| A              | 4.84         | 3239                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| A              | 4.87         | 3684                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| A              | 4.89         | 3088                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| A              | 4.85         | 3384                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| A              | 2.34         | 4185                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| A              | 2.37         | 3997                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| A              | 2.34         | 4709                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| A              | 2.33         | 3817                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| А              | 2.34         | 4144                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| А              | 4.79         | 3905                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| А              | 4.84         | 3656                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| А              | 2.38         | 3842                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| А              | 2.36         | 3901                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |
| А              | 4.79         | 3724                      | Moist            | 28                      | 8690                     | S              | No    | Solid        | Full<br>bed   |

| Brick<br>Type. | H/T<br>Ratio | Prism<br>Strength,<br>psi | Curing<br>Method | Curing<br>Time,<br>days | Unit<br>Strength,<br>psi | Mortar<br>Type | Grout | Unit<br>Type | Joint<br>Type |
|----------------|--------------|---------------------------|------------------|-------------------------|--------------------------|----------------|-------|--------------|---------------|
| В              | 2.10         | 4034                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 2.12         | 3504                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 2.12         | 4450                      | Moist            | 28                      | 8164                     | N              | No    | Solid        | Full<br>bed   |
| В              | 2.13         | 3754                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 2.14         | 4103                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 5.50         | 3337                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 5.51         | 3004                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 5.50         | 2575                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 5.44         | 3274                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 5.55         | 3200                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 2.09         | 4233                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 2.15         | 3514                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 2.10         | 3687                      | Moist            | 28                      | 8164                     | N              | No    | Solid        | Full<br>bed   |
| В              | 2.14         | 3549                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 2.12         | 3583                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 5.51         | 2344                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 5.52         | 2877                      | Moist            | 28                      | 8164                     | N              | No    | Solid        | Full<br>bed   |
| В              | 5.51         | 2691                      | Moist            | 28                      | 8164                     | Ν              | No    | Solid        | Full<br>bed   |
| В              | 5.49         | 2683                      | Moist            | 28                      | 8164                     | N              | No    | Solid        | Full<br>bed   |

Table B.2: UTA Test Results, Brick "B".

Table B.2 - continued

| Brick | H/T   | Prism            | Curing  | Curing        | Unit             | Mortar | C I   | Unit  | Joint       |
|-------|-------|------------------|---------|---------------|------------------|--------|-------|-------|-------------|
| Type. | Ratio | Strength,<br>psi | Method  | Time,<br>days | Strength,<br>psi | Туре   | Grout | Туре  | Туре        |
| В     | 5.51  | 2761             | Moist   | 28            | 8164             | N      | No    | Solid | Full<br>bed |
| В     | 2.10  | 3447             | Moist   | 28            | 0164             | N      | No    | Solid | Full        |
|       |       |                  |         |               | 8164             |        |       |       | bed         |
| В     | 2.12  | 2928             | Moist   | 28            | 8164             | Ν      | No    | Solid | Full<br>bed |
| В     | 2.12  | 3253             | Moist   | 28            | 0164             | N      | No    | Solid | Full        |
|       |       |                  |         |               | 8164             |        |       |       | bed         |
| В     | 2.13  | 2930             | Moist   | 28            | 8164             | Ν      | No    | Solid | Full        |
| В     | 2.12  | 2896             | Moist   | 28            |                  | N      | No    | Solid | bed<br>Full |
| D     | 2.12  | 2890             | worst   | 28            | 8164             | IN     | INO   | Solid | bed         |
| В     | 5.45  | 2839             | Moist   | 28            | 0174             | N      | No    | Solid | Full        |
|       |       |                  |         |               | 8164             |        |       |       | bed         |
| В     | 5.51  | 2317             | Moist   | 28            | 8164             | Ν      | No    | Solid | Full        |
| В     | 5.53  | 2871             | Moist   | 28            |                  | N      | No    | Solid | bed<br>Full |
| D     | 5.55  | 20/1             | WOISt   | 20            | 8164             | 1      | INO   | Solid | bed         |
| В     | 5.50  | 2863             | Moist   | 28            | 8164             | N      | No    | Solid | Full        |
|       | - 10  |                  |         | • •           | 0101             |        |       | a 111 | bed         |
| В     | 5.49  | 2724             | Moist   | 28            | 8164             | Ν      | No    | Solid | Full<br>bed |
| В     | 2.10  | 5284             | Moist   | 28            |                  | S      | No    | Solid | Full        |
|       |       | <b>v-</b> 0.     | 1120100 |               | 8164             | ~      | 110   | 00114 | bed         |
| В     | 2.09  | 5010             | Moist   | 28            | 8164             | S      | No    | Solid | Full        |
|       | 0.10  |                  |         | • •           | 0101             | ~      |       | a 111 | bed         |
| В     | 2.13  | 5422             | Moist   | 28            | 8164             | S      | No    | Solid | Full<br>bed |
| В     | 2.10  | 3378             | Moist   | 28            | 0164             | S      | No    | Solid | Full        |
|       |       |                  |         |               | 8164             |        |       |       | bed         |
| В     | 2.13  | 4889             | Moist   | 28            | 8164             | S      | No    | Solid | Full        |
| В     | 5.49  | 4658             | Moist   | 28            |                  | S      | No    | Solid | bed<br>Full |
| D     | 5.47  | 4030             | WIDISt  | 20            | 8164             | 6      | INU   | Solid | bed         |
| В     | 5.50  | 4504             | Moist   | 28            | 0164             | S      | No    | Solid | Full        |
|       |       | -                |         | _             | 8164             | _      |       |       | bed         |
| В     | 5.49  | 3779             | Moist   | 28            | 8164             | S      | No    | Solid | Full        |
|       |       |                  |         |               |                  |        |       |       | bed         |

Table B.2 - continued

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Brick | H/T   | Prism | Curing           | Curing | Unit  | Mortar |       | Unit   | Joint |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|------------------|--------|-------|--------|-------|--------|-------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |       | -     | Curing<br>Method |        |       |        | Grout |        |       |
| B         5.50         4241         Moist         28         8164         S         No         Solid         Full bed           B         2.12         3221         Moist         28         8164         S         No         Solid         Full bed           B         2.12         3221         Moist         28         8164         S         No         Solid         Full bed           B         2.13         3968         Moist         28         8164         S         No         Solid         Full bed           B         2.11         3706         Moist         28         8164         S         No         Solid         Full bed           B         2.13         3934         Moist         28         8164         S         No         Solid         Full bed           B         5.50         3310         Moist         28         8164         S         No         Solid         Full bed           B         5.51         4494         Moist         28         8164         S         No         Solid         Full bed           B         5.52         4090         Moist         28         8164         S | D     | 5 50  |       | Moist            |        | psi   |        | No    |        | Eu11  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D     | 5.50  | 4414  | WIOISt           | 20     | 8164  | 5      | INU   | Soliu  |       |
| B         2.12         3221         Moist         28 $8164$ S         No         Solid         Full bed           B         2.13         3968         Moist         28 $8164$ S         No         Solid         Full bed           B         2.13         3968         Moist         28 $8164$ S         No         Solid         Full bed           B         2.11         3706         Moist         28 $8164$ S         No         Solid         Full bed           B         2.13         3934         Moist         28 $8164$ S         No         Solid         Full bed           B         2.13         4132         Moist         28 $8164$ S         No         Solid         Full bed           B         5.50         3310         Moist         28 $8164$ S         No         Solid         Full bed           B         5.51         4494         Moist         28 $8164$ S         No         Solid         Full bed           B         5.50         4065         Moist         28 $8164$                                                                                                                                 | В     | 5 50  | 4241  | Moist            | 28     |       | S      | No    | Solid  |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |       |       |                  | _      | 8164  |        |       |        |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В     | 2.12  | 3221  | Moist            | 28     | 0164  | S      | No    | Solid  |       |
| B         2.11         3706         Moist         28         8164         S         No         Solid         Full bed           B         2.13         3934         Moist         28         8164         S         No         Solid         Full bed           B         2.13         4132         Moist         28         8164         S         No         Solid         Full bed           B         2.13         4132         Moist         28         8164         S         No         Solid         Full bed           B         5.50         3310         Moist         28         8164         S         No         Solid         Full bed           B         5.51         4494         Moist         28         8164         S         No         Solid         Full bed           B         5.49         4174         Moist         28         8164         S         No         Solid         Full bed           B         5.50         4065         Moist         28         8164         S         No         Solid         Full bed           B         2.12         3974         Moist         28         8164         S |       |       |       |                  |        | 8104  |        |       |        | bed   |
| B         2.11         3706         Moist         28         8164         S         No         Solid         Full bed           B         2.13         3934         Moist         28         8164         S         No         Solid         Full bed           B         2.13         4132         Moist         28         8164         S         No         Solid         Full bed           B         2.13         4132         Moist         28         8164         S         No         Solid         Full bed           B         5.50         3310         Moist         28         8164         S         No         Solid         Full bed           B         5.51         4494         Moist         28         8164         S         No         Solid         Full bed           B         5.49         4174         Moist         28         8164         S         No         Solid         Full bed           B         5.50         4065         Moist         28         8164         S         No         Solid         Full bed           B         2.12         3974         Moist         28         8164         S | В     | 2.13  | 3968  | Moist            | 28     | 8164  | S      | No    | Solid  | Full  |
| B         2.13         3934         Moist         28         8164         S         No         Solid         Full bed           B         2.13         4132         Moist         28         8164         S         No         Solid         Full bed           B         2.13         4132         Moist         28         8164         S         No         Solid         Full bed           B         5.50         3310         Moist         28         8164         S         No         Solid         Full bed           B         5.51         4494         Moist         28         8164         S         No         Solid         Full bed           B         5.49         4174         Moist         28         8164         S         No         Solid         Full bed           B         5.50         4065         Moist         28         8164         S         No         Solid         Full bed           B         2.12         3974         Moist         28         8164         S         No         Solid         Full bed           B         2.11         5371         Moist         28         8164         S |       |       |       |                  |        | 0104  |        |       |        |       |
| B         2.13         3934         Moist         28         8164         S         No         Solid         Full bed           B         2.13         4132         Moist         28         8164         S         No         Solid         Full bed           B         2.13         4132         Moist         28         8164         S         No         Solid         Full bed           B         5.50         3310         Moist         28         8164         S         No         Solid         Full bed           B         5.51         4494         Moist         28         8164         S         No         Solid         Full bed           B         5.49         4174         Moist         28         8164         S         No         Solid         Full bed           B         5.52         4090         Moist         28         8164         S         No         Solid         Full bed           B         2.12         3974         Moist         28         8164         S         No         Solid         Full bed           B         2.11         5371         Moist         28         8164         S | В     | 2.11  | 3706  | Moist            | 28     | 8164  | S      | No    | Solid  |       |
| B         2.13         4132         Moist         28         8164         S         No         Solid         Full bed           B         5.50         3310         Moist         28         8164         S         No         Solid         Full bed           B         5.50         3310         Moist         28         8164         S         No         Solid         Full bed           B         5.51         4494         Moist         28         8164         S         No         Solid         Full bed           B         5.49         4174         Moist         28         8164         S         No         Solid         Full bed           B         5.50         4065         Moist         28         8164         S         No         Solid         Full bed           B         5.52         4090         Moist         28         8164         S         No         Solid         Full bed           B         2.12         3974         Moist         28         8164         S         No         Solid         Full bed           B         2.11         5371         Moist         28         8164         S |       | 2.12  | 2024  | M                | 20     |       | G      | N     | 0.1.1  |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В     | 2.13  | 3934  | Moist            | 28     | 8164  | 5      | NO    | Solid  |       |
| B $5.50$ $3310$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.51$ $4494$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.51$ $4494$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.49$ $4174$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.50$ $4065$ Moist $28$ $8164$ SNoSolidFull<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B     | 2 1 3 | /132  | Moist            | 28     |       | S      | No    | Solid  |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D     | 2.13  | 4152  | WIOISt           | 20     | 8164  | 5      | INU   | Solid  |       |
| B $5.51$ $4494$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.49$ $4174$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.49$ $4174$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.50$ $4065$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.52$ $4090$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.12$ $3974$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $5371$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $4719$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.09$ $5499$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.10$ $4806$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.49$ $4181$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.44$ $3801$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.44$ $3801$ Moist $28$ $8164$ SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                           | В     | 5.50  | 3310  | Moist            | 28     | 01.64 | S      | No    | Solid  |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |       |                  |        | 8164  | ~      |       |        |       |
| B $5.49$ $4174$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.50$ $4065$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.50$ $4065$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.52$ $4090$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.12$ $3974$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $5371$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $4719$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.09$ $5499$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.10$ $4806$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.49$ $4181$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.44$ $3801$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.44$ $3801$ Moist $28$ $8164$ SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В     | 5.51  | 4494  | Moist            | 28     | 0164  | S      | No    | Solid  |       |
| B $5.50$ $4065$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.52$ $4090$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.12$ $3974$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.12$ $3974$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $5371$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $4719$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.09$ $5499$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.10$ $4806$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.49$ $4181$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.44$ $3801$ Moist $28$ $8164$ SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |       |                  |        | 8104  |        |       |        | bed   |
| B $5.50$ $4065$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.52$ $4090$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.12$ $3974$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.12$ $3974$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $5371$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $4719$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.09$ $5499$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.10$ $4806$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.49$ $4181$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.44$ $3801$ Moist $28$ $8164$ SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В     | 5.49  | 4174  | Moist            | 28     | 8164  | S      | No    | Solid  | Full  |
| B $5.52$ $4090$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.12$ $3974$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.12$ $3974$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $5371$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $4719$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.09$ $5499$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.10$ $4806$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.49$ $4181$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.44$ $3801$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.44$ $3801$ Moist $28$ $8164$ SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |       |                  |        | 0104  |        |       |        |       |
| B $5.52$ $4090$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.12$ $3974$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $5371$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $5371$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.11$ $4719$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.09$ $5499$ Moist $28$ $8164$ SNoSolidFull<br>bedB $2.10$ $4806$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.49$ $4181$ Moist $28$ $8164$ SNoSolidFull<br>bedB $5.44$ $3801$ Moist $28$ $8164$ SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В     | 5.50  | 4065  | Moist            | 28     | 8164  | S      | No    | Solid  |       |
| B2.123974Moist288164SNoSolidFull<br>bedB2.115371Moist288164SNoSolidFull<br>bedB2.114719Moist288164SNoSolidFull<br>bedB2.095499Moist288164SNoSolidFull<br>bedB2.104806Moist288164SNoSolidFull<br>bedB5.494181Moist288164SNoSolidFull<br>bedB5.443801Moist288164SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 5.50  | 4000  |                  | 20     |       | C      | N     | 0.111  |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В     | 5.52  | 4090  | Moist            | 28     | 8164  | 8      | No    | Solid  |       |
| B2.115371Moist28 $8164$ SNoSolidFull<br>bedB2.114719Moist28 $8164$ SNoSolidFull<br>bedB2.095499Moist28 $8164$ SNoSolidFull<br>bedB2.095499Moist28 $8164$ SNoSolidFull<br>bedB2.104806Moist28 $8164$ SNoSolidFull<br>bedB5.494181Moist28 $8164$ SNoSolidFull<br>bedB5.443801Moist28 $8164$ SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B     | 2.12  | 307/  | Moist            | 28     |       | S      | No    | Solid  |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D     | 2.12  | 3974  | WIOISt           | 20     | 8164  | 5      | INU   | Solid  |       |
| B2.114719Moist28 $8164$ SNoSolidFull<br>bedB2.095499Moist28 $8164$ SNoSolidFull<br>bedB2.095499Moist28 $8164$ SNoSolidFull<br>bedB2.104806Moist28 $8164$ SNoSolidFull<br>bedB5.494181Moist28 $8164$ SNoSolidFull<br>bedB5.443801Moist28 $8164$ SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В     | 2.11  | 5371  | Moist            | 28     |       | S      | No    | Solid  |       |
| B       2.09       5499       Moist       28       8164       S       No       Solid       Full bed         B       2.10       4806       Moist       28       8164       S       No       Solid       Full bed         B       2.10       4806       Moist       28       8164       S       No       Solid       Full bed         B       5.49       4181       Moist       28       8164       S       No       Solid       Full bed         B       5.44       3801       Moist       28       8164       S       No       Solid       Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | -     |       |                  | _      | 8164  |        |       |        |       |
| B2.095499Moist288164SNoSolidFull<br>bedB2.104806Moist288164SNoSolidFull<br>bedB5.494181Moist288164SNoSolidFull<br>bedB5.443801Moist288164SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В     | 2.11  | 4719  | Moist            | 28     | 0164  | S      | No    | Solid  | Full  |
| B       2.10       4806       Moist       28       8164       S       No       Solid       Full bed         B       5.49       4181       Moist       28       8164       S       No       Solid       Full bed         B       5.49       4181       Moist       28       8164       S       No       Solid       Full bed         B       5.44       3801       Moist       28       8164       S       No       Solid       Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |       |                  |        | 8104  |        |       |        | bed   |
| B       2.10       4806       Moist       28       8164       S       No       Solid       Full bed         B       5.49       4181       Moist       28       8164       S       No       Solid       Full bed         B       5.49       4181       Moist       28       8164       S       No       Solid       Full bed         B       5.44       3801       Moist       28       8164       S       No       Solid       Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В     | 2.09  | 5499  | Moist            | 28     | 8164  | S      | No    | Solid  |       |
| B         5.49         4181         Moist         28         8164         S         No         Solid         Full bed           B         5.44         3801         Moist         28         8164         S         No         Solid         Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |       |                  |        |       |        |       | ~      |       |
| B         5.49         4181         Moist         28         8164         S         No         Solid         Full<br>bed           B         5.44         3801         Moist         28         8164         S         No         Solid         Full<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B     | 2.10  | 4806  | Moist            | 28     | 8164  | S      | No    | Solid  |       |
| B         5.44         3801         Moist         28         8164         S         No         Solid         Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D     | 5 40  | 4101  | Maint            | 20     | -     | C      | NT-   | Q_1: J |       |
| B 5.44 3801 Moist 28 8164 S No Solid Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | В     | 5.49  | 4181  | MOIST            | 28     | 8164  | 8      | INO   | Solid  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R     | 5 44  | 3801  | Moist            | 28     |       | S      | No    | Solid  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 5.44  | 5001  | 10151            | 20     | 8164  | 6      | INU   | Solid  | bed   |

Table B.2 - continued

| Brick<br>Type. | H/T<br>Ratio | Prism<br>Strength,<br>psi | Curing<br>Method | Curing<br>Time,<br>days | Unit<br>Strength,<br>psi | Mortar<br>Type | Grout | Unit<br>Type | Joint<br>Type |
|----------------|--------------|---------------------------|------------------|-------------------------|--------------------------|----------------|-------|--------------|---------------|
| В              | 5.50         | 3580                      | Moist            | 28                      | 8164                     | S              | No    | Solid        | Full          |
|                |              |                           |                  |                         | 0104                     |                |       |              | bed           |
| В              | 5.51         | 4316                      | Moist            | 28                      | 8164                     | S              | No    | Solid        | Full          |
|                |              |                           |                  |                         | 8104                     |                |       |              | bed           |
| В              | 5.50         | 3425                      | Moist            | 28                      | 0164                     | S              | No    | Solid        | Full          |
|                |              |                           |                  |                         | 8164                     |                |       |              | bed           |

Table B.3: UTA Test Results, Brick "C"

| Brick<br>Type. | H/T<br>Ratio | Prism<br>Strength,<br>psi | Curing<br>Method | Curing<br>Time,<br>days | Unit<br>Strength,<br>psi | Mortar<br>Type | Grout | Unit<br>Type | Joint<br>Type |
|----------------|--------------|---------------------------|------------------|-------------------------|--------------------------|----------------|-------|--------------|---------------|
| C              | 2.12         | 3754                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| C              | 2.12         | 3710                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 2.11         | 3572                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 2.12         | 1965                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 2.12         | 3018                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 5.11         | 2817                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 5.06         | 3014                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 5.05         | 2739                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 5.07         | 2794                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 5.06         | 3148                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 2.10         | 2803                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 2.08         | 3054                      | Moist            | 28                      | 5328                     | Ν              | No    | Solid        | Full<br>bed   |
| С              | 2.11         | 3186                      | Moist            | 28                      | 5328                     | N              | No    | Solid        | Full<br>bed   |

Table B.3 - continued

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Brick    | H/T   | Prism            | Curing | Curing        | Unit             | Mortar | Caract | Unit     | Joint |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------------------|--------|---------------|------------------|--------|--------|----------|-------|
| C         2.10         2857         Moist         28         5328         N         No         Solid         Full bed           C         5.08         2547         Moist         28         5328         N         No         Solid         Full bed           C         5.08         2547         Moist         28         5328         N         No         Solid         Full bed           C         5.08         3036         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2354         Moist         28         5328         N         No         Solid         Full bed           C         5.06         2521         Moist         28         5328         N         No         Solid         Full bed           C         5.06         2632         Moist         28         5328         N         No         Solid         Full bed           C         2.09         2707         Moist         28         5328         N         No         Solid         Full bed           C         2.09         3408         Moist         28         5328         N | Type.    | Ratio | Strength,<br>psi | -      | Time,<br>days | Strength,<br>psi | Туре   | Grout  | Туре     | Туре  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C        | 2.09  | 3068             | Moist  | 28            | 5328             | Ν      | No     | Solid    |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С        | 2.10  | 2857             | Moist  | 28            | 5328             | N      | No     | Solid    | Full  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 5.00  | 2547             |        | 20            |                  | NT     | N      | 0.1.1    |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C        | 5.08  | 2547             | Moist  | 28            | 5328             | IN     | INO    | Solia    |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С        | 5.08  | 3036             | Moist  | 28            | 5328             | N      | No     | Solid    |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                  |        | • •           | 0020             |        |        | a 111    |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C        | 5.03  | 2354             | Moist  | 28            | 5328             | Ν      | No     | Solid    |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u> | 5.06  | 2521             | Maint  | 20            |                  | N      | Na     | Salid    |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C        | 5.00  | 2321             | WOISt  | 28            | 5328             | IN     | INO    | Solid    |       |
| C         2.09         2707         Moist         28         5328         N         No         Solid         Full bed           C         2.09         3303         Moist         28         5328         N         No         Solid         Full bed           C         2.09         3303         Moist         28         5328         N         No         Solid         Full bed           C         2.09         3408         Moist         28         5328         N         No         Solid         Full bed           C         2.09         3408         Moist         28         5328         N         No         Solid         Full bed           C         2.08         3100         Moist         28         5328         N         No         Solid         Full bed           C         2.07         3228         Moist         28         5328         N         No         Solid         Full bed           C         5.01         2814         Moist         28         5328         N         No         Solid         Full bed           C         5.01         3025         Moist         28         5328         N | C        | 5.06  | 2632             | Moist  | 28            |                  | N      | No     | Solid    |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C        | 5.00  | 2052             | withst | 20            | 5328             | 11     | 110    | Solid    |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С        | 2.09  | 2707             | Moist  | 28            | <b>522</b> 0     | N      | No     | Solid    |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                  |        |               | 5328             |        |        |          |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С        | 2.09  | 3303             | Moist  | 28            | 5328             | N      | No     | Solid    | Full  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                  |        |               | 5528             |        |        |          |       |
| C2.083100Moist285328NNoSolidFull<br>bedC2.073228Moist285328NNoSolidFull<br>bedC5.022951Moist285328NNoSolidFull<br>bedC5.012814Moist285328NNoSolidFull<br>bedC5.012814Moist285328NNoSolidFull<br>bedC5.013025Moist285328NNoSolidFull<br>bedC5.032943Moist285328NNoSolidFull<br>bedC5.032934Moist285328NNoSolidFull<br>bedC2.093614Moist285328NNoSolidFull<br>bedC2.094782Moist285328SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C        | 2.09  | 3408             | Moist  | 28            | 5328             | Ν      | No     | Solid    |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~        |       |                  |        | • •           | 0020             |        |        | ~        |       |
| C         2.07         3228         Moist         28         5328         N         No         Solid         Full bed           C         5.02         2951         Moist         28         5328         N         No         Solid         Full bed           C         5.02         2951         Moist         28         5328         N         No         Solid         Full bed           C         5.01         2814         Moist         28         5328         N         No         Solid         Full bed           C         5.01         3025         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2943         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2934         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2934         Moist         28         5328         N         No         Solid         Full bed           C         2.09         3614         Moist         28         5328         S | C        | 2.08  | 3100             | Moist  | 28            | 5328             | Ν      | No     | Solid    |       |
| C $5.02$ $2951$ Moist $28$ $5328$ NNoSolidFull<br>bedC $5.01$ $2814$ Moist $28$ $5328$ NNoSolidFull<br>bedC $5.01$ $2814$ Moist $28$ $5328$ NNoSolidFull<br>bedC $5.01$ $3025$ Moist $28$ $5328$ NNoSolidFull<br>bedC $5.03$ $2943$ Moist $28$ $5328$ NNoSolidFull<br>bedC $5.03$ $2934$ Moist $28$ $5328$ NNoSolidFull<br>bedC $5.03$ $2934$ Moist $28$ $5328$ NNoSolidFull<br>bedC $2.09$ $3614$ Moist $28$ $5328$ SNoSolidFull<br>bedC $2.09$ $4782$ Moist $28$ $5328$ SNoSolidFull<br>bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 2.07  | 2220             | Maint  | 20            |                  | NT     | NI-    | Q - 1: 4 |       |
| C         5.02         2951         Moist         28         5328         N         No         Solid         Full bed           C         5.01         2814         Moist         28         5328         N         No         Solid         Full bed           C         5.01         2814         Moist         28         5328         N         No         Solid         Full bed           C         5.01         3025         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2943         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2934         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2934         Moist         28         5328         N         No         Solid         Full bed           C         2.09         3614         Moist         28         5328         S         No         Solid         Full bed           C         2.09         4782         Moist         28         5328         S | C        | 2.07  | 3228             | Moist  | 28            | 5328             | IN     | INO    | Solid    |       |
| C         5.01         2814         Moist         28         5328         N         No         Solid         Full bed           C         5.01         2814         Moist         28         5328         N         No         Solid         Full bed           C         5.01         3025         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2943         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2934         Moist         28         5328         N         No         Solid         Full bed           C         5.03         2934         Moist         28         5328         N         No         Solid         Full bed           C         2.09         3614         Moist         28         5328         S         No         Solid         Full bed           C         2.09         4782         Moist         28         5328         S         No         Solid         Full bed                                                                                       | C        | 5.02  | 2951             | Moist  | 28            |                  | N      | No     | Solid    |       |
| C       5.01       2814       Moist       28       5328       N       No       Solid       Full bed         C       5.01       3025       Moist       28       5328       N       No       Solid       Full bed         C       5.01       3025       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2943       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       2.09       3614       Moist       28       5328       S       No       Solid       Full bed         C       2.09       4782       Moist       28       5328       S       No       Solid       Full bed                                                                                                                                                                                                                                                     | C        | 5.02  | 2751             | withst | 20            | 5328             | 1 4    | 110    | Sond     |       |
| C       5.01       3025       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2943       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2943       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       2.09       3614       Moist       28       5328       S       No       Solid       Full bed         C       2.09       4782       Moist       28       5328       S       No       Solid       Full bed                                                                                                                                                                                                                                                                                                                                                                 | С        | 5.01  | 2814             | Moist  | 28            | 5220             | N      | No     | Solid    |       |
| C       5.03       2943       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       2.09       3614       Moist       28       5328       S       No       Solid       Full bed         C       2.09       4782       Moist       28       5328       S       No       Solid       Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       |                  |        |               | 5328             |        |        |          |       |
| C       5.03       2943       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       2.09       3614       Moist       28       5328       S       No       Solid       Full bed         C       2.09       4782       Moist       28       5328       S       No       Solid       Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С        | 5.01  | 3025             | Moist  | 28            | 5220             | Ν      | No     | Solid    | Full  |
| C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       2.09       3614       Moist       28       5328       S       No       Solid       Full bed         C       2.09       3614       Moist       28       5328       S       No       Solid       Full bed         C       2.09       4782       Moist       28       5328       S       No       Solid       Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |       |                  |        |               | 3328             |        |        |          | bed   |
| C       5.03       2934       Moist       28       5328       N       No       Solid       Full bed         C       2.09       3614       Moist       28       5328       S       No       Solid       Full bed         C       2.09       3614       Moist       28       5328       S       No       Solid       Full bed         C       2.09       4782       Moist       28       5328       S       No       Solid       Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C        | 5.03  | 2943             | Moist  | 28            | 5328             | Ν      | No     | Solid    |       |
| C         2.09         3614         Moist         28         5328         S         No         Solid         Full bed           C         2.09         4782         Moist         28         5328         S         No         Solid         Full bed           C         2.09         4782         Moist         28         5328         S         No         Solid         Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |                  |        |               | 5520             |        |        | ~        |       |
| C         2.09         3614         Moist         28         5328         S         No         Solid         Full bed           C         2.09         4782         Moist         28         5328         S         No         Solid         Full bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C        | 5.03  | 2934             | Moist  | 28            | 5328             | N      | No     | Solid    |       |
| C         2.09         4782         Moist         28         5328         S         No         Solid         Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 2.00  | 2614             | Maint  | 20            | -                | C      | NT-    | Q_1: J   |       |
| C 2.09 4782 Moist 28 5328 S No Solid Full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 2.09  | 3014             | WIOISt | 28            | 5328             | 5      | INO    | Solid    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C        | 2 09  | 4787             | Moist  | 28            |                  | S      | No     | Solid    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 2.09  | 7/02             | 110151 | 20            | 5328             | 6      | 110    | Solid    | bed   |

Table B.3 - continued

| Brick | H/T   | Prism            | Curing | Curing        | Unit             | Mortar |       | Unit  | Joint       |
|-------|-------|------------------|--------|---------------|------------------|--------|-------|-------|-------------|
| Type. | Ratio | Strength,<br>psi | Method | Time,<br>days | Strength,<br>psi | Туре   | Grout | Туре  | Туре        |
| С     | 2.09  | 2251             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 2.11  | 3491             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 2.09  | 3592             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 5.03  | 3744             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 5.07  | 3006             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 5.03  | 2836             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 5.06  | 3394             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 2.09  | 4097             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 2.08  | 3511             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 2.09  | 2409             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 2.08  | 3775             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 2.09  | 3656             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 5.04  | 2602             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 5.03  | 3187             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| C     | 5.03  | 3389             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 5.04  | 3344             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 5.02  | 3203             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 2.09  | 2360             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |
| С     | 2.09  | 3564             | Moist  | 28            | 5328             | S      | No    | Solid | Full<br>bed |

Table B.3 - continued

| Brick<br>Type. | H/T<br>Ratio | Prism<br>Strength,<br>psi | Curing<br>Method | Curing<br>Time,<br>days | Unit<br>Strength,<br>psi | Mortar<br>Type | Grout | Unit<br>Type | Joint<br>Type |
|----------------|--------------|---------------------------|------------------|-------------------------|--------------------------|----------------|-------|--------------|---------------|
| C              | 2.09         | 3288                      | Moist            | 28                      | 5328                     | S              | No    | Solid        | Full<br>bed   |
| C              | 2.11         | 3518                      | Moist            | 28                      | 5328                     | S              | No    | Solid        | Full<br>bed   |
| С              | 2.09         | 3612                      | Moist            | 28                      | 5328                     | S              | No    | Solid        | Full<br>bed   |
| С              | 5.06         | 2753                      | Moist            | 28                      | 5328                     | S              | No    | Solid        | Full<br>bed   |
| С              | 5.06         | 2916                      | Moist            | 28                      | 5328                     | S              | No    | Solid        | Full<br>bed   |
| С              | 5.03         | 2700                      | Moist            | 28                      | 5328                     | S              | No    | Solid        | Full<br>bed   |
| С              | 5.05         | 3026                      | Moist            | 28                      | 5328                     | S              | No    | Solid        | Full<br>bed   |
| С              | 5.03         | 2955                      | Moist            | 28                      | 5328                     | S              | No    | Solid        | Full<br>bed   |

## APPENDIX C

## STATISTICAL ANALYSIS

The following definitions apply to all tables in Appendix C.

f'm: Fifth percentile compressive strength of masonry as predicted by the model, psi,

f<sub>u</sub>: average compressive strength of brick, psi,

Face stands for face-shell and full for full-bed mortar joints,

"se" is the standard error for the fifth percentile prism compressive strength predicted

by the model.

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f' <sub>m</sub> | se    |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|-----------------|-------|
| Air dry          | 28                      | М              | No    | Hollow          | Face            | 2,000  | -1,285.5        | 961.2 |
| Air dry          | 28                      | М              | No    | Hollow          | Face            | 4,000  | 1,128.3         | 607.1 |
| Air dry          | 28                      | М              | No    | Hollow          | Face            | 6,000  | 2,540.3         | 403.4 |
| Air dry          | 28                      | М              | No    | Hollow          | Face            | 8,000  | 3,542.1         | 264.3 |
| Air dry          | 28                      | М              | No    | Hollow          | Face            | 10,000 | 4,319.2         | 168.0 |
| Air dry          | 28                      | М              | No    | Hollow          | Face            | 12,000 | 4,954.1         | 118.0 |
| Air dry          | 28                      | М              | No    | Hollow          | Face            | 14,000 | 5,490.9         | 125.3 |
| Air dry          | 28                      | М              | No    | Hollow          | Face            | 16,000 | 5,955.9         | 165.8 |
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 18,000 | 6,366.1         | 214.0 |
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 2,000  | -1,700.4        | 940.9 |
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 4,000  | 1,279.5         | 591.5 |
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 6,000  | 3,022.6         | 391.6 |
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 8,000  | 4,259.4         | 257.1 |
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 10,000 | 5,218.7         | 168.3 |

Table C.1: Model "A" Fifth Percentile Prism Compressive Strength PredictionsTargeted at Height-to-Thickness Ratio of Two

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f'm      | se      |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|----------|---------|
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 12,000 | 6,002.5  | 129.6   |
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 14,000 | 6,665.2  | 143.7   |
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 16,000 | 7,239.2  | 184.5   |
| Air dry          | 28                      | М              | No    | Hollow          | Full            | 18,000 | 7,745.6  | 231.5   |
| Air dry          | 28                      | М              | No    | Solid           | Full            | 2,000  | -5,765.7 | 1,045.6 |
| Air dry          | 28                      | М              | No    | Solid           | Full            | 4,000  | -1,528.9 | 663.2   |
| Air dry          | 28                      | М              | No    | Solid           | Full            | 6,000  | 949.6    | 445.0   |
| Air dry          | 28                      | М              | No    | Solid           | Full            | 8,000  | 2,708.0  | 298.8   |
| Air dry          | 28                      | М              | No    | Solid           | Full            | 10,000 | 4,072.0  | 202.1   |
| Air dry          | 28                      | М              | No    | Solid           | Full            | 12,000 | 5,186.5  | 156.8   |
| Air dry          | 28                      | М              | No    | Solid           | Full            | 14,000 | 6,128.7  | 164.9   |
| Air dry          | 28                      | М              | No    | Solid           | Full            | 16,000 | 6,944.9  | 203.9   |
| Air dry          | 28                      | М              | No    | Solid           | Full            | 18,000 | 7,664.9  | 252.2   |
| Air dry          | 28                      | М              | Yes   | Hollow          | Full            | 2,000  | 201.76   | 1,086.5 |
| Air dry          | 28                      | М              | Yes   | Hollow          | Full            | 4,000  | 2,172.6  | 684.9   |
| Air dry          | 28                      | М              | Yes   | Hollow          | Full            | 6,000  | 3,325.5  | 455.1   |
| Air dry          | 28                      | М              | Yes   | Hollow          | Full            | 8,000  | 4,143.5  | 300.3   |
| Air dry          | 28                      | М              | Yes   | Hollow          | Full            | 10,000 | 4,778.0  | 197.3   |
| Air dry          | 28                      | М              | Yes   | Hollow          | Full            | 12,000 | 5,296.4  | 150.4   |
| Air dry          | 28                      | М              | Yes   | Hollow          | Full            | 14,000 | 5,734.7  | 163.64  |
| Air dry          | 28                      | М              | Yes   | Hollow          | Full            | 16,000 | 6,114.4  | 209.0   |
| Air dry          | 28                      | М              | Yes   | Hollow          | Full            | 18,000 | 6,449.3  | 262.3   |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f' <sub>m</sub> | se    |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|-----------------|-------|
| Air dry          | 28                      | N              | No    | Hollow          | Face            | 2,000  | 2,478.6         | 807.1 |
| Air dry          | 28                      | N              | No    | Hollow          | Face            | 4,000  | 2,762.9         | 505.5 |
| Air dry          | 28                      | N              | No    | Hollow          | Face            | 6,000  | 2,929.2         | 333.8 |
| Air dry          | 28                      | N              | No    | Hollow          | Face            | 8,000  | 3,047.1         | 219.7 |
| Air dry          | 28                      | N              | No    | Hollow          | Face            | 10,000 | 3,138.6         | 147.1 |
| Air dry          | 28                      | N              | No    | Hollow          | Face            | 12,000 | 3,213.4         | 120.0 |
| Air dry          | 28                      | N              | No    | Hollow          | Face            | 14,000 | 3,276.6         | 135.9 |
| Air dry          | 28                      | N              | No    | Hollow          | Face            | 16,000 | 3,331.4         | 171.8 |
| Air dry          | 28                      | N              | No    | Hollow          | Face            | 18,000 | 3,379.7         | 212.3 |
| Air dry          | 28                      | N              | No    | Hollow          | Full            | 2,000  | 2,063.7         | 845.0 |
| Air dry          | 28                      | N              | No    | Hollow          | Full            | 4,000  | 2,914.0         | 528.2 |
| Air dry          | 28                      | N              | No    | Hollow          | Full            | 6,000  | 3,411.5         | 348.3 |
| Air dry          | 28                      | N              | No    | Hollow          | Full            | 8,000  | 3,764.4         | 229.4 |
| Air dry          | 28                      | N              | No    | Hollow          | Full            | 10,000 | 4,038.1         | 155.3 |
| Air dry          | 28                      | N              | No    | Hollow          | Full            | 12,000 | 4,261.8         | 129.8 |
| Air dry          | 28                      | N              | No    | Hollow          | Full            | 14,000 | 4,450.9         | 148.2 |
| Air dry          | 28                      | N              | No    | Hollow          | Full            | 16,000 | 4,614.7         | 186.4 |
| Air dry          | 28                      | N              | No    | Hollow          | Full            | 18,000 | 4,759.2         | 229.0 |
| Air dry          | 28                      | N              | No    | Solid           | Full            | 2,000  | -2,001.6        | 619.8 |
| Air dry          | 28                      | N              | No    | Solid           | Full            | 4,000  | 105.72          | 392.6 |
| Air dry          | 28                      | N              | No    | Solid           | Full            | 6,000  | 1,338.4         | 267.6 |
| Air dry          | 28                      | N              | No    | Solid           | Full            | 8,000  | 2,213.0         | 190.5 |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f'm     | se      |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|---------|---------|
| Air dry          | 28                      | N              | No    | Solid           | Full            | 10,000 | 2,891.5 | 148.9   |
| Air dry          | 28                      | N              | No    | Solid           | Full            | 12,000 | 3,445.8 | 138.8   |
| Air dry          | 28                      | N              | No    | Solid           | Full            | 14,000 | 3,914.4 | 151.2   |
| Air dry          | 28                      | N              | No    | Solid           | Full            | 16,000 | 4,320.4 | 174.6   |
| Air dry          | 28                      | N              | No    | Solid           | Full            | 18,000 | 4,678.5 | 201.6   |
| Air dry          | 28                      | N              | Yes   | Hollow          | Full            | 2,000  | 3,965.9 | 1,053.3 |
| Air dry          | 28                      | N              | Yes   | Hollow          | Full            | 4,000  | 3,807.2 | 659.7   |
| Air dry          | 28                      | N              | Yes   | Hollow          | Full            | 6,000  | 3,714.4 | 435.0   |
| Air dry          | 28                      | N              | Yes   | Hollow          | Full            | 8,000  | 3,648.5 | 284.9   |
| Air dry          | 28                      | N              | Yes   | Hollow          | Full            | 10,000 | 3,597.5 | 187.8   |
| Air dry          | 28                      | N              | Yes   | Hollow          | Full            | 12,000 | 3,555.7 | 149.7   |
| Air dry          | 28                      | N              | Yes   | Hollow          | Full            | 14,000 | 3,520.4 | 169.7   |
| Air dry          | 28                      | N              | Yes   | Hollow          | Full            | 16,000 | 3,489.9 | 217.2   |
| Air dry          | 28                      | N              | Yes   | Hollow          | Full            | 18,000 | 3,462.9 | 270.5   |
| Air dry          | 28                      | S              | No    | Hollow          | Face            | 2,000  | 2,866.9 | 754.0   |
| Air dry          | 28                      | S              | No    | Hollow          | Face            | 4,000  | 3,283.0 | 479.0   |
| Air dry          | 28                      | S              | No    | Hollow          | Face            | 6,000  | 3,526.4 | 320.9   |
| Air dry          | 28                      | S              | No    | Hollow          | Face            | 8,000  | 3,699.2 | 213.3   |
| Air dry          | 28                      | S              | No    | Hollow          | Face            | 10,000 | 3,833.1 | 138.9   |
| Air dry          | 28                      | S              | No    | Hollow          | Face            | 12,000 | 3,942.6 | 99.2    |
| Air dry          | 28                      | S              | No    | Hollow          | Face            | 14,000 | 4,035.1 | 101.0   |
| Air dry          | 28                      | S              | No    | Hollow          | Face            | 16,000 | 4,115.3 | 129.4   |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f'm      | se    |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|----------|-------|
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 18,000 | 4,186.0  | 165.2 |
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 2,000  | 2,451.9  | 799.4 |
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 4,000  | 3,434.2  | 506.1 |
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 6,000  | 4,008.7  | 338.3 |
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 8,000  | 4,416.4  | 225.4 |
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 10,000 | 4,732.6  | 145.0 |
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 12,000 | 4,991.0  | 114.2 |
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 14,000 | 5,209.4  | 120.9 |
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 16,000 | 5,398.6  | 152.0 |
| Air dry          | 28                      | S              | No    | Hollow          | Full            | 18,000 | 5,565.5  | 189.9 |
| Air dry          | 28                      | S              | No    | Solid           | Full            | 2,000  | -1,613.4 | 619.8 |
| Air dry          | 28                      | S              | No    | Solid           | Full            | 4,000  | 625.9    | 393.2 |
| Air dry          | 28                      | S              | No    | Solid           | Full            | 6,000  | 1,935.7  | 267.3 |
| Air dry          | 28                      | S              | No    | Solid           | Full            | 8,000  | 2,865.1  | 188.0 |
| Air dry          | 28                      | S              | No    | Solid           | Full            | 10,000 | 3,586.0  | 142.9 |
| Air dry          | 28                      | S              | No    | Solid           | Full            | 12,000 | 4,175.0  | 129.3 |
| Air dry          | 28                      | S              | No    | Solid           | Full            | 14,000 | 4,673.0  | 139.8 |
| Air dry          | 28                      | S              | No    | Solid           | Full            | 16,000 | 5,104.3  | 162.5 |
| Air dry          | 28                      | S              | No    | Solid           | Full            | 18,000 | 5,484.8  | 189.3 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Face            | 2,000  | 4,769.0  | 883.2 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Face            | 4,000  | 4,176.2  | 561.7 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Face            | 6,000  | 3,829.4  | 376.9 |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f'm     | se    |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|---------|-------|
| Air dry          | 28                      | S              | Yes   | Hollow          | Face            | 8,000  | 3,583.3 | 250.9 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Face            | 10,000 | 3,392.5 | 163.6 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Face            | 12,000 | 3,236.5 | 116.1 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Face            | 14,000 | 3,104.7 | 117.0 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Face            | 16,000 | 2,990.5 | 149.5 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Face            | 18,000 | 2,889.7 | 191.1 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Full            | 2,000  | 4,354.1 | 916.7 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Full            | 4,000  | 4,327.3 | 581.4 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Full            | 6,000  | 4,311.7 | 388.8 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Full            | 8,000  | 4,300.6 | 258.0 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Full            | 10,000 | 4,292.0 | 168.3 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Full            | 12,000 | 4,284.9 | 121.9 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Full            | 14,000 | 4,279.0 | 126.2 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Full            | 16,000 | 4,273.8 | 161.5 |
| Air dry          | 28                      | S              | Yes   | Hollow          | Full            | 18,000 | 4,269.3 | 205.3 |
| Air dry          | 28                      | S              | Yes   | Solid           | Full            | 2,000  | 288.8   | 443.9 |
| Air dry          | 28                      | S              | Yes   | Solid           | Full            | 4,000  | 1,519.0 | 284.7 |
| Air dry          | 28                      | S              | Yes   | Solid           | Full            | 6,000  | 2,238.7 | 201.4 |
| Air dry          | 28                      | S              | Yes   | Solid           | Full            | 8,000  | 2,749.3 | 155.3 |
| Air dry          | 28                      | S              | Yes   | Solid           | Full            | 10,000 | 3,145.3 | 135.6 |
| Air dry          | 28                      | S              | Yes   | Solid           | Full            | 12,000 | 3,468.9 | 135.1 |
| Air dry          | 28                      | S              | Yes   | Solid           | Full            | 14,000 | 3,742.5 | 146.0 |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f' <sub>m</sub> | se    |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|-----------------|-------|
| Air dry          | 28                      | S              | Yes   | Solid           | Full            | 16,000 | 3,979.5         | 162.3 |
| Air dry          | 28                      | S              | Yes   | Solid           | Full            | 18,000 | 4,188.5         | 180.5 |
| Air dry          | 7                       | S              | No    | Solid           | Full            | 2,000  | 859.9           | 908.6 |
| Air dry          | 7                       | S              | No    | Solid           | Full            | 4,000  | 1,712.2         | 553.6 |
| Air dry          | 7                       | S              | No    | Solid           | Full            | 6,000  | 2,210.8         | 358.8 |
| Air dry          | 7                       | S              | No    | Solid           | Full            | 8,000  | 2,564.6         | 242.9 |
| Air dry          | 7                       | S              | No    | Solid           | Full            | 10,000 | 2,839.0         | 192.7 |
| Air dry          | 7                       | S              | No    | Solid           | Full            | 12,000 | 3,063.2         | 200.4 |
| Air dry          | 7                       | S              | No    | Solid           | Full            | 14,000 | 3,252.7         | 239.5 |
| Air dry          | 7                       | S              | No    | Solid           | Full            | 16,000 | 3,416.9         | 288.3 |
| Air dry          | 7                       | S              | No    | Solid           | Full            | 18,000 | 3,561.8         | 338.0 |
| Moist            | 28                      | М              | No    | Hollow          | Face            | 2,000  | 2,168.3         | 963.6 |
| Moist            | 28                      | М              | No    | Hollow          | Face            | 4,000  | 2,848.4         | 611.6 |
| Moist            | 28                      | М              | No    | Hollow          | Face            | 6,000  | 3,246.2         | 407.9 |
| Moist            | 28                      | М              | No    | Hollow          | Face            | 8,000  | 3,528.4         | 266.8 |
| Moist            | 28                      | М              | No    | Hollow          | Face            | 10,000 | 3,747.3         | 165.0 |
| Moist            | 28                      | М              | No    | Hollow          | Face            | 12,000 | 3,926.2         | 103.3 |
| Moist            | 28                      | М              | No    | Hollow          | Face            | 14,000 | 4,077.4         | 101.2 |
| Moist            | 28                      | М              | No    | Hollow          | Face            | 16,000 | 4,208.4         | 141.2 |
| Moist            | 28                      | М              | No    | Hollow          | Face            | 18,000 | 4,324.0         | 190.3 |
| Moist            | 28                      | М              | No    | Hollow          | Full            | 2,000  | 153.4           | 940.0 |
| Moist            | 28                      | М              | No    | Hollow          | Full            | 4,000  | 2,999.5         | 596.4 |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f' <sub>m</sub> | se    |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|-----------------|-------|
| Moist            | 28                      | М              | No    | Hollow          | Full            | 6,000  | 3,728.5         | 397.4 |
| Moist            | 28                      | М              | No    | Hollow          | Full            | 8,000  | 4,245.6         | 259.7 |
| Moist            | 28                      | М              | No    | Hollow          | Full            | 10,000 | 4,646.8         | 160.2 |
| Moist            | 28                      | М              | No    | Hollow          | Full            | 12,000 | 4,974.6         | 99.9  |
| Moist            | 28                      | М              | No    | Hollow          | Full            | 14,000 | 5,251.7         | 98.3  |
| Moist            | 28                      | М              | No    | Hollow          | Full            | 16,000 | 5,491.8         | 137.7 |
| Moist            | 28                      | М              | No    | Hollow          | Full            | 18,000 | 5,703.5         | 185.9 |
| Moist            | 28                      | N              | No    | Hollow          | Face            | 2,000  | 5,932.5         | 825.1 |
| Moist            | 28                      | N              | No    | Hollow          | Face            | 4,000  | 4,482.9         | 516.9 |
| Moist            | 28                      | N              | No    | Hollow          | Face            | 6,000  | 3,635.0         | 340.9 |
| Moist            | 28                      | N              | No    | Hollow          | Face            | 8,000  | 3,033.4         | 223.1 |
| Moist            | 28                      | N              | No    | Hollow          | Face            | 10,000 | 2,566.8         | 146.6 |
| Moist            | 28                      | N              | No    | Hollow          | Face            | 12,000 | 2,185.5         | 116.2 |
| Moist            | 28                      | N              | No    | Hollow          | Face            | 14,000 | 1,863.1         | 131.6 |
| Moist            | 28                      | N              | No    | Hollow          | Face            | 16,000 | 1,583.9         | 168.7 |
| Moist            | 28                      | N              | No    | Hollow          | Face            | 18,000 | 1,337.6         | 210.6 |
| Moist            | 28                      | N              | No    | Hollow          | Full            | 2,000  | 5,517.6         | 858.3 |
| Moist            | 28                      | N              | No    | Hollow          | Full            | 4,000  | 4,634.1         | 539.4 |
| Moist            | 28                      | N              | No    | Hollow          | Full            | 6,000  | 4,117.3         | 356.4 |
| Moist            | 28                      | N              | No    | Hollow          | Full            | 8,000  | 3,750.7         | 232.6 |
| Moist            | 28                      | N              | No    | Hollow          | Full            | 10,000 | 3,466.2         | 149.3 |
| Moist            | 28                      | N              | No    | Hollow          | Full            | 12,000 | 3,233.9         | 111.3 |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f' <sub>m</sub> | se    |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|-----------------|-------|
| Moist            | 28                      | N              | No    | Hollow          | Full            | 14,000 | 3,037.4         | 123.7 |
| Moist            | 28                      | N              | No    | Hollow          | Full            | 16,000 | 2,867.2         | 161.8 |
| Moist            | 28                      | N              | No    | Hollow          | Full            | 18,000 | 2,717.1         | 205.4 |
| Moist            | 28                      | N              | No    | Solid           | Full            | 2,000  | 1,452.2         | 385.0 |
| Moist            | 28                      | N              | No    | Solid           | Full            | 4,000  | 1,825.8         | 220.8 |
| Moist            | 28                      | N              | No    | Solid           | Full            | 6,000  | 2,044.3         | 137.4 |
| Moist            | 28                      | N              | No    | Solid           | Full            | 8,000  | 2,199.3         | 101.9 |
| Moist            | 28                      | N              | No    | Solid           | Full            | 10,000 | 2,319.6         | 105.0 |
| Moist            | 28                      | N              | No    | Solid           | Full            | 12,000 | 2,417.9         | 127.6 |
| Moist            | 28                      | N              | No    | Solid           | Full            | 14,000 | 2,500.9         | 154.9 |
| Moist            | 28                      | N              | No    | Solid           | Full            | 16,000 | 2,572.9         | 182.0 |
| Moist            | 28                      | N              | No    | Solid           | Full            | 18,000 | 2,636.4         | 207.5 |
| Moist            | 28                      | S              | No    | Hollow          | Face            | 2,000  | 6,320.7         | 773.7 |
| Moist            | 28                      | S              | No    | Hollow          | Face            | 4,000  | 5,003.1         | 491.0 |
| Moist            | 28                      | S              | No    | Hollow          | Face            | 6,000  | 4,232.3         | 327.7 |
| Moist            | 28                      | S              | No    | Hollow          | Face            | 8,000  | 3,685.4         | 215.1 |
| Moist            | 28                      | S              | No    | Hollow          | Face            | 10,000 | 3,261.3         | 134.9 |
| Moist            | 28                      | S              | No    | Hollow          | Face            | 12,000 | 2,914.7         | 88.3  |
| Moist            | 28                      | S              | No    | Hollow          | Face            | 14,000 | 2,621.7         | 88.1  |
| Moist            | 28                      | S              | No    | Hollow          | Face            | 16,000 | 2,367.8         | 119.4 |
| Moist            | 28                      | S              | No    | Hollow          | Face            | 18,000 | 2,143.9         | 158.1 |
| Moist            | 28                      | S              | No    | Hollow          | Full            | 2,000  | 5,905.8         | 814.0 |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f' <sub>m</sub> | se      |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|-----------------|---------|
| Moist            | 28                      | S              | No    | Hollow          | Full            | 4,000  | 5,154.2         | 517.7   |
| Moist            | 28                      | S              | No    | Hollow          | Full            | 6,000  | 4,714.6         | 346.1   |
| Moist            | 28                      | S              | No    | Hollow          | Full            | 8,000  | 4,402.7         | 227.0   |
| Moist            | 28                      | S              | No    | Hollow          | Full            | 10,000 | 4,160.8         | 140.5   |
| Moist            | 28                      | S              | No    | Hollow          | Full            | 12,000 | 3,963.1         | 86.3    |
| Moist            | 28                      | S              | No    | Hollow          | Full            | 14,000 | 3,795.9         | 81.6    |
| Moist            | 28                      | S              | No    | Hollow          | Full            | 16,000 | 3,651.2         | 114.5   |
| Moist            | 28                      | S              | No    | Hollow          | Full            | 18,000 | 3,523.4         | 155.8   |
| Moist            | 28                      | S              | No    | Solid           | Full            | 2,000  | 1,840.4         | 386.1   |
| Moist            | 28                      | S              | No    | Solid           | Full            | 4,000  | 2,345.9         | 221.9   |
| Moist            | 28                      | S              | No    | Solid           | Full            | 6,000  | 2,641.6         | 135.4   |
| Moist            | 28                      | S              | No    | Solid           | Full            | 8,000  | 2,851.4         | 93.4    |
| Moist            | 28                      | S              | No    | Solid           | Full            | 10,000 | 3,014.1         | 91.3    |
| Moist            | 28                      | S              | No    | Solid           | Full            | 12,000 | 3,147.1         | 112.1   |
| Moist            | 28                      | S              | No    | Solid           | Full            | 14,000 | 3,259.5         | 139.1   |
| Moist            | 28                      | S              | No    | Solid           | Full            | 16,000 | 3,356.8         | 166.2   |
| Moist            | 28                      | S              | No    | Solid           | Full            | 18,000 | 3,445.7         | 191.7   |
| Moist            | 28                      | S              | Yes   | Hollow          | Full            | 2,000  | 7,808.0         | 1,160.7 |
| Moist            | 28                      | S              | Yes   | Hollow          | Full            | 4,000  | 6,047.4         | 740.7   |
| Moist            | 28                      | S              | Yes   | Hollow          | Full            | 6,000  | 5,017.6         | 497.7   |
| Moist            | 28                      | S              | Yes   | Hollow          | Full            | 8,000  | 4,286.9         | 329.7   |
| Moist            | 28                      | S              | Yes   | Hollow          | Full            | 10,000 | 3,720.1         | 208.2   |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f'm     | se      |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|---------|---------|
| Moist            | 28                      | S              | Yes   | Hollow          | Full            | 12,000 | 3,257.0 | 132.6   |
| Moist            | 28                      | S              | Yes   | Hollow          | Full            | 14,000 | 2,865.5 | 123.0   |
| Moist            | 28                      | S              | Yes   | Hollow          | Full            | 16,000 | 2,526.3 | 165.4   |
| Moist            | 28                      | S              | Yes   | Hollow          | Full            | 18,000 | 2,227.2 | 221.8   |
| Moist            | 28                      | S              | Yes   | Solid           | Full            | 2,000  | 3,742.6 | 667.2   |
| Moist            | 28                      | S              | Yes   | Solid           | Full            | 4,000  | 3,239.1 | 417.5   |
| Moist            | 28                      | S              | Yes   | Solid           | Full            | 6,000  | 2,944.5 | 280.5   |
| Moist            | 28                      | S              | Yes   | Solid           | Full            | 8,000  | 2,735.6 | 197.2   |
| Moist            | 28                      | S              | Yes   | Solid           | Full            | 10,000 | 2,573.4 | 155.2   |
| Moist            | 28                      | S              | Yes   | Solid           | Full            | 12,000 | 2,441.0 | 149.7   |
| Moist            | 28                      | S              | Yes   | Solid           | Full            | 14,000 | 2,329.0 | 168.3   |
| Moist            | 28                      | S              | Yes   | Solid           | Full            | 16,000 | 2,232.0 | 197.1   |
| Moist            | 28                      | S              | Yes   | Solid           | Full            | 18,000 | 2,146.5 | 228.7   |
| Moist            | 7                       | S              | No    | Solid           | Full            | 2,000  | 4,313.7 | 1,047.9 |
| Moist            | 7                       | S              | No    | Solid           | Full            | 4,000  | 3,432.3 | 638.4   |
| Moist            | 7                       | S              | No    | Solid           | Full            | 6,000  | 2,916.7 | 408.1   |
| Moist            | 7                       | S              | No    | Solid           | Full            | 8,000  | 2,550.9 | 261.6   |
| Moist            | 7                       | S              | No    | Solid           | Full            | 10,000 | 2,267.1 | 184.6   |
| Moist            | 7                       | S              | No    | Solid           | Full            | 12,000 | 2,035.3 | 181.7   |
| Moist            | 7                       | S              | No    | Solid           | Full            | 14,000 | 1,839.3 | 226.1   |
| Moist            | 7                       | S              | No    | Solid           | Full            | 16,000 | 1,669.5 | 284.3   |
| Moist            | 7                       | S              | No    | Solid           | Full            | 18,000 | 1,519.7 | 343.3   |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f' <sub>m</sub> | se      |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|-----------------|---------|
| Moist/Dry        | 28                      | М              | No    | Solid           | Full            | 2,000  | -6,818          | 1,250.7 |
| Moist/Dry        | 28                      | М              | No    | Solid           | Full            | 4,000  | -1,967          | 792.3   |
| Moist/Dry        | 28                      | М              | No    | Solid           | Full            | 6,000  | 870.4           | 552.2   |
| Moist/Dry        | 28                      | М              | No    | Solid           | Full            | 8,000  | 2,883.6         | 420.1   |
| Moist/Dry        | 28                      | М              | No    | Solid           | Full            | 10,000 | 4,445.2         | 366.8   |
| Moist/Dry        | 28                      | М              | No    | Solid           | Full            | 12,000 | 5,721.1         | 370.8   |
| Moist/Dry        | 28                      | М              | No    | Solid           | Full            | 14,000 | 6,799.8         | 407.8   |
| Moist/Dry        | 28                      | М              | No    | Solid           | Full            | 16,000 | 7,734.3         | 458.9   |
| Moist/Dry        | 28                      | М              | No    | Solid           | Full            | 18,000 | 8,558.5         | 514.4   |
| Moist/Dry        | 28                      | N              | No    | Solid           | Full            | 2,000  | -3,054          | 1,073.1 |
| Moist/Dry        | 28                      | N              | No    | Solid           | Full            | 4,000  | -332.5          | 678.3   |
| Moist/Dry        | 28                      | N              | No    | Solid           | Full            | 6,000  | 1,259.2         | 480.1   |
| Moist/Dry        | 28                      | N              | No    | Solid           | Full            | 8,000  | 2,388.6         | 381.8   |
| Moist/Dry        | 28                      | N              | No    | Solid           | Full            | 10,000 | 3,264.6         | 353.4   |
| Moist/Dry        | 28                      | N              | No    | Solid           | Full            | 12,000 | 3,980.3         | 369.9   |
| Moist/Dry        | 28                      | N              | No    | Solid           | Full            | 14,000 | 4,585.5         | 409.0   |
| Moist/Dry        | 28                      | N              | No    | Solid           | Full            | 16,000 | 5,109.7         | 456.9   |
| Moist/Dry        | 28                      | N              | No    | Solid           | Full            | 18,000 | 5,572.1         | 506.9   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Face            | 2,000  | -2,251          | 1,088.6 |
| Moist/Dry        | 28                      | S              | No    | Solid           | Face            | 4,000  | 36.4            | 687.7   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Face            | 6,000  | 1,374.2         | 484.5   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Face            | 8,000  | 2,323.4         | 381.5   |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f' <sub>m</sub> | se      |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|-----------------|---------|
| Moist/Dry        | 28                      | S              | No    | Solid           | Face            | 10,000 | 3,059.6         | 349.2   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Face            | 12,000 | 3,661.2         | 363.7   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Face            | 14,000 | 4,169.8         | 402.2   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Face            | 16,000 | 4,610.3         | 450.3   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Face            | 18,000 | 4,998.9         | 500.7   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Full            | 2,000  | -2,665          | 1,041.2 |
| Moist/Dry        | 28                      | S              | No    | Solid           | Full            | 4,000  | 1,87.6          | 659.7   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Full            | 6,000  | 1,856.5         | 468.7   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Full            | 8,000  | 3,040.6         | 374.4   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Full            | 10,000 | 3,959.1         | 347.2   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Full            | 12,000 | 4,709.5         | 362.9   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Full            | 14,000 | 5,344.0         | 400.3   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Full            | 16,000 | 5,893.7         | 446.2   |
| Moist/Dry        | 28                      | S              | No    | Solid           | Full            | 18,000 | 6,378.5         | 494.3   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Face            | 2,000  | 222.7           | 1,327.2 |
| Moist/Dry        | 7                       | S              | No    | Solid           | Face            | 4,000  | 1,122.8         | 827.4   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Face            | 6,000  | 1,649.3         | 568.1   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Face            | 8,000  | 2,022.9         | 431.4   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Face            | 10,000 | 2,312.6         | 385.7   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Face            | 12,000 | 2,549.4         | 403.5   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Face            | 14,000 | 2,749.6         | 453.7   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Face            | 16,000 | 2,922.9         | 516.0   |

Table C.1 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | Solid<br>Hollow | Mortar<br>Joint | $f_u$  | f' <sub>m</sub> | se      |
|------------------|-------------------------|----------------|-------|-----------------|-----------------|--------|-----------------|---------|
| Moist/Dry        | 7                       | S              | No    | Solid           | Face            | 18,000 | 3075.9          | 580.8   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Full            | 2,000  | -192.2          | 1,355.0 |
| Moist/Dry        | 7                       | S              | No    | Solid           | Full            | 4,000  | 1274.0          | 844.5   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Full            | 6,000  | 2131.6          | 578.5   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Full            | 8,000  | 2740.1          | 436.6   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Full            | 10,000 | 3212.1          | 387.6   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Full            | 12,000 | 3597.8          | 404.2   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Full            | 14,000 | 3923.8          | 454.8   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Full            | 16,000 | 4206.3          | 518.2   |
| Moist/Dry        | 7                       | S              | No    | Solid           | Full            | 18,000 | 4455.4          | 584.4   |

Table C.2: Model "B" Fifth Percentile Prism Compressive Strength PredictionsTargeted at Height-to-Thickness Ratio of Two

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | $f_u$  | f <sub>m</sub> | se      |
|------------------|-------------------------|----------------|-------|--------|----------------|---------|
| Air dry          | 28                      | М              | No    | 2,000  | 482.0          | 1,039.6 |
| Air dry          | 28                      | М              | No    | 4,000  | 2,214.4        | 654.6   |
| Air dry          | 28                      | М              | No    | 6,000  | 3,227.8        | 433.9   |
| Air dry          | 28                      | М              | No    | 8,000  | 3,946.8        | 285.1   |
| Air dry          | 28                      | М              | No    | 10,000 | 4,504.5        | 185.6   |

Table C.2 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | fu     | f <sub>m</sub> | se      |
|------------------|-------------------------|----------------|-------|--------|----------------|---------|
| Air dry          | 28                      | М              | No    | 12,000 | 4,960.2        | 140.3   |
| Air dry          | 28                      | М              | No    | 14,000 | 5,345.4        | 153.9   |
| Air dry          | 28                      | М              | No    | 16,000 | 5,679.2        | 198.4   |
| Air dry          | 28                      | М              | No    | 18,000 | 5,973.5        | 250.1   |
| Air dry          | 28                      | М              | Yes   | 2,000  | -5,300.1       | 1,169.9 |
| Air dry          | 28                      | М              | Yes   | 4,000  | -1,711.7       | 738.2   |
| Air dry          | 28                      | М              | Yes   | 6,000  | 387.4          | 492.2   |
| Air dry          | 28                      | М              | Yes   | 8,000  | 1,876.7        | 328.3   |
| Air dry          | 28                      | М              | Yes   | 10,000 | 3,031.9        | 222.0   |
| Air dry          | 28                      | М              | Yes   | 12,000 | 3,975.8        | 176.6   |
| Air dry          | 28                      | М              | Yes   | 14,000 | 4,773.8        | 191.8   |
| Air dry          | 28                      | М              | Yes   | 16,000 | 5,465.1        | 238.9   |
| Air dry          | 28                      | М              | Yes   | 18,000 | 6,074.9        | 294.8   |
| Air dry          | 28                      | Ν              | No    | 2,000  | 3,251.1        | 814.0   |
| Air dry          | 28                      | Ν              | No    | 4,000  | 3,325.6        | 513.6   |
| Air dry          | 28                      | Ν              | No    | 6,000  | 3,369.2        | 343.6   |
| Air dry          | 28                      | Ν              | No    | 8,000  | 3,400.1        | 231.9   |
| Air dry          | 28                      | Ν              | No    | 10,000 | 3,424.1        | 162.2   |
| Air dry          | 28                      | N              | No    | 12,000 | 3,443.7        | 135.5   |
| Air dry          | 28                      | N              | No    | 14,000 | 3,460.3        | 147.9   |
| Air dry          | 28                      | N              | No    | 16,000 | 3,474.6        | 180.1   |
| Air dry          | 28                      | Ν              | No    | 18,000 | 3,487.3        | 218.1   |

Table C.2 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | fu     | f' <sub>m</sub> | se    |
|------------------|-------------------------|----------------|-------|--------|-----------------|-------|
| Air dry          | 28                      | Ν              | Yes   | 2,000  | -2,531.1        | 885.0 |
| Air dry          | 28                      | N              | Yes   | 4,000  | -600.5          | 553.1 |
| Air dry          | 28                      | N              | Yes   | 6,000  | 528.8           | 367.1 |
| Air dry          | 28                      | N              | Yes   | 8,000  | 1,330.0         | 248.5 |
| Air dry          | 28                      | N              | Yes   | 10,000 | 1,951.5         | 181.0 |
| Air dry          | 28                      | Ν              | Yes   | 12,000 | 2,459.3         | 164.3 |
| Air dry          | 28                      | N              | Yes   | 14,000 | 2,888.7         | 186.3 |
| Air dry          | 28                      | Ν              | Yes   | 16,000 | 3,260.6         | 225.2 |
| Air dry          | 28                      | Ν              | Yes   | 18,000 | 3,588.6         | 268.4 |
| Air dry          | 28                      | S              | No    | 2,000  | 3,918.3         | 805.4 |
| Air dry          | 28                      | S              | No    | 4,000  | 3,983.1         | 512.5 |
| Air dry          | 28                      | S              | No    | 6,000  | 4,020.9         | 345.8 |
| Air dry          | 28                      | S              | No    | 8,000  | 4,047.8         | 234.7 |
| Air dry          | 28                      | S              | No    | 10,000 | 4,068.7         | 162.0 |
| Air dry          | 28                      | S              | No    | 12,000 | 4,085.7         | 128.1 |
| Air dry          | 28                      | S              | No    | 14,000 | 4,100.1         | 133.1 |
| Air dry          | 28                      | S              | No    | 16,000 | 4,112.6         | 161.3 |
| Air dry          | 28                      | S              | No    | 18,000 | 4,123.6         | 197.0 |
| Air dry          | 28                      | S              | Yes   | 2,000  | -1,863.9        | 609.4 |
| Air dry          | 28                      | S              | Yes   | 4,000  | 56.93           | 386.7 |
| Air dry          | 28                      | S              | Yes   | 6,000  | 1,180.53        | 264.4 |
| Air dry          | 28                      | S              | Yes   | 8,000  | 1,977.7         | 189.1 |

Table C.2 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | fu     | f' <sub>m</sub> | se      |
|------------------|-------------------------|----------------|-------|--------|-----------------|---------|
| Air dry          | 28                      | S              | Yes   | 10,000 | 2,596.1         | 148.7   |
| Air dry          | 28                      | S              | Yes   | 12,000 | 3,101.3         | 138.9   |
| Air dry          | 28                      | S              | Yes   | 14,000 | 3,528.5         | 150.7   |
| Air dry          | 28                      | S              | Yes   | 16,000 | 3,898.5         | 173.2   |
| Air dry          | 28                      | S              | Yes   | 18,000 | 4,224.9         | 199.4   |
| Moist/dry        | 28                      | М              | No    | 2,000  | -3,609.2        | 1,248.7 |
| Moist/dry        | 28                      | М              | No    | 4,000  | -17.7           | 790.7   |
| Moist/dry        | 28                      | М              | No    | 6,000  | 2,083.1         | 543.8   |
| Moist/dry        | 28                      | М              | No    | 8,000  | 3,573.7         | 398.6   |
| Moist/dry        | 28                      | М              | No    | 10,000 | 4,729.9         | 328.9   |
| Moist/dry        | 28                      | М              | No    | 12,000 | 5,674.6         | 320.5   |
| Moist/dry        | 28                      | М              | No    | 14,000 | 6,473.3         | 351.3   |
| Moist/dry        | 28                      | М              | No    | 16,000 | 7,165.2         | 400.0   |
| Moist/dry        | 28                      | М              | No    | 18,000 | 7,775.4         | 454.6   |
| Moist/dry        | 28                      | N              | No    | 2,000  | -840.1          | 1,027.9 |
| Moist/dry        | 28                      | N              | No    | 4,000  | 1,093.5         | 646.1   |
| Moist/dry        | 28                      | N              | No    | 6,000  | 2,224.6         | 448.7   |
| Moist/dry        | 28                      | N              | No    | 8,000  | 3,027.1         | 344.4   |
| Moist/dry        | 28                      | N              | No    | 10,000 | 3,649.5         | 308.0   |
| Moist/dry        | 28                      | N              | No    | 12,000 | 4,158.1         | 318.7   |
| Moist/dry        | 28                      | N              | No    | 14,000 | 4,588.2         | 354.5   |
| Moist/dry        | 28                      | Ν              | No    | 16,000 | 4,960.6         | 400.1   |

Table C.2 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | f <sub>u</sub> | f'm     | Se       |
|------------------|-------------------------|----------------|-------|----------------|---------|----------|
| Moist/dry        | 28                      | N              | No    | 18,000         | 5,289.2 | 448.3    |
| Moist/dry        | 28                      | S              | No    | 2,000          | -172.9  | 956.7    |
| Moist/dry        | 28                      | S              | No    | 4,000          | 1,750.9 | 604.9    |
| Moist/dry        | 28                      | S              | No    | 6,000          | 2,876.3 | 424.6    |
| Moist/dry        | 28                      | S              | No    | 8,000          | 3,674.8 | 330.7    |
| Moist/dry        | 28                      | S              | No    | 10,000         | 4,294.1 | 298.6    |
| Moist/dry        | 28                      | S              | No    | 12,000         | 4,800.1 | 308.4    |
| Moist/dry        | 28                      | S              | No    | 14,000         | 5,228.0 | 340.6    |
| Moist/dry        | 28                      | S              | No    | 16,000         | 5,598.6 | 381.9    |
| Moist/dry        | 28                      | S              | No    | 18,000         | 5,925.5 | 425.6    |
| Moist/dry        | 7                       | S              | No    | 2,000          | -465.7  | 1,232.22 |
| Moist/dry        | 7                       | S              | No    | 4,000          | 1,079.1 | 760.2    |
| Moist/dry        | 7                       | S              | No    | 6,000          | 1,982.7 | 508.3    |
| Moist/dry        | 7                       | S              | No    | 8,000          | 2,623.8 | 367.0    |
| Moist/dry        | 7                       | S              | No    | 10,000         | 3,121.1 | 312.7    |
| Moist/dry        | 7                       | S              | No    | 12,000         | 3,527.4 | 325.4    |
| Moist/dry        | 7                       | S              | No    | 14,000         | 3,871.0 | 373.5    |
| Moist/dry        | 7                       | S              | No    | 16,000         | 4,168.6 | 434.3    |
| Moist/dry        | 7                       | S              | No    | 18,000         | 4,431.0 | 497.1    |
| Moist            | 28                      | М              | No    | 2,000          | -611.1  | 956.8    |
| Moist            | 28                      | М              | No    | 4,000          | 1,223.4 | 607.6    |
| Moist            | 28                      | М              | No    | 6,000          | 2,296.6 | 405.6    |

Table C.2 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | fu     | f' <sub>m</sub> | Se    |
|------------------|-------------------------|----------------|-------|--------|-----------------|-------|
| Moist            | 28                      | М              | No    | 8,000  | 3,058.0         | 265.9 |
| Moist            | 28                      | М              | No    | 10,000 | 3,648.6         | 165.6 |
| Moist            | 28                      | М              | No    | 12,000 | 4,131.1         | 105.5 |
| Moist            | 28                      | М              | No    | 14,000 | 4,539.1         | 103.6 |
| Moist            | 28                      | М              | No    | 16,000 | 4,892.5         | 142.4 |
| Moist            | 28                      | М              | No    | 18,000 | 5,204.2         | 190.7 |
| Moist            | 28                      | N              | No    | 2,000  | 2,158.0         | 545.6 |
| Moist            | 28                      | Ν              | No    | 4,000  | 2,334.7         | 330.6 |
| Moist            | 28                      | Ν              | No    | 6,000  | 2,438.0         | 210.9 |
| Moist            | 28                      | Ν              | No    | 8,000  | 2,511.3         | 137.4 |
| Moist            | 28                      | Ν              | No    | 10,000 | 2,568.2         | 103.2 |
| Moist            | 28                      | Ν              | No    | 12,000 | 2,614.7         | 107.1 |
| Moist            | 28                      | Ν              | No    | 14,000 | 2,654.0         | 132.1 |
| Moist            | 28                      | Ν              | No    | 16,000 | 2,688.0         | 163.0 |
| Moist            | 28                      | Ν              | No    | 18,000 | 2,718.0         | 194.0 |
| Moist            | 28                      | S              | No    | 2,000  | 2,825.2         | 476.2 |
| Moist            | 28                      | S              | No    | 4,000  | 2,992.1         | 297.6 |
| Moist            | 28                      | S              | No    | 6,000  | 3,089.7         | 195.8 |
| Moist            | 28                      | S              | No    | 8,000  | 3,159.0         | 128.0 |
| Moist            | 28                      | S              | No    | 10,000 | 3,212.8         | 84.8  |
| Moist            | 28                      | S              | No    | 12,000 | 3,256.7         | 69.0  |
| Moist            | 28                      | S              | No    | 14,000 | 3,293.8         | 79.2  |

Table C.2 - continued

| Curing<br>Method | Curing<br>Time,<br>days | Mortar<br>Type | Grout | f <sub>u</sub> | f' <sub>m</sub> | Se      |
|------------------|-------------------------|----------------|-------|----------------|-----------------|---------|
| Moist            | 28                      | S              | No    | 16,000         | 3,325.9         | 101.1   |
| Moist            | 28                      | S              | No    | 18,000         | 3,354.3         | 125.4   |
| Moist            | 28                      | S              | Yes   | 2,000          | -2,957.0        | 1,012.9 |
| Moist            | 28                      | S              | Yes   | 4,000          | -934.0          | 647.0   |
| Moist            | 28                      | S              | Yes   | 6,000          | 249.3           | 436.3   |
| Moist            | 28                      | S              | Yes   | 8,000          | 1,088.9         | 292.0   |
| Moist            | 28                      | S              | Yes   | 10,000         | 1,740.2         | 190.4   |
| Moist            | 28                      | S              | Yes   | 12,000         | 2,272.3         | 131.6   |
| Moist            | 28                      | S              | Yes   | 14,000         | 2,722.2         | 126.9   |
| Moist            | 28                      | S              | Yes   | 16,000         | 3,111.9         | 161.3   |
| Moist            | 28                      | S              | Yes   | 18,000         | 3,455.7         | 207.8   |
| Moist            | 7                       | S              | No    | 2,000          | 2,532.4         | 1,587.7 |
| Moist            | 7                       | S              | No    | 4,000          | 2,320.2         | 969.6   |
| Moist            | 7                       | S              | No    | 6,000          | 2,196.1         | 616.5   |
| Moist            | 7                       | S              | No    | 8,000          | 2,108.1         | 381.8   |
| Moist            | 7                       | S              | No    | 10,000         | 2,039.8         | 239.4   |
| Moist            | 7                       | S              | No    | 12,000         | 1,984.0         | 213.4   |
| Moist            | 7                       | S              | No    | 14,000         | 1,936.8         | 279.3   |
| Moist            | 7                       | S              | No    | 16,000         | 1,895.9         | 370.9   |
| Moist            | 7                       | S              | No    | 18,000         | 1,859.9         | 463.0   |

| Mortar | Solid  | Mantan Iaint | ſ                         | c               |       |
|--------|--------|--------------|---------------------------|-----------------|-------|
| Туре   | Hollow | Mortar Joint | $\mathbf{f}_{\mathrm{u}}$ | f' <sub>m</sub> | se    |
| М      | Hollow | Face         | 2,000                     | 1,330.4         | 983.1 |
| М      | Hollow | Face         | 4,000                     | 2,389.5         | 623.0 |
| М      | Hollow | Face         | 6,000                     | 3,008.9         | 414.9 |
| М      | Hollow | Face         | 8,000                     | 3,448.5         | 271.2 |
| М      | Hollow | Face         | 10,000                    | 3,789.4         | 168.5 |
| М      | Hollow | Face         | 12,000                    | 4,068.0         | 108.5 |
| М      | Hollow | Face         | 14,000                    | 4,303.5         | 109.4 |
| М      | Hollow | Face         | 16,000                    | 4,507.5         | 150.6 |
| М      | Hollow | Face         | 18,000                    | 4,687.5         | 200.6 |
| М      | Hollow | Full         | 2,000                     | 1,679.9         | 975.0 |
| М      | Hollow | Full         | 4,000                     | 2,910.8         | 617.9 |
| М      | Hollow | Full         | 6,000                     | 3,630.8         | 411.5 |
| М      | Hollow | Full         | 8,000                     | 4,141.7         | 269.1 |
| М      | Hollow | Full         | 10,000                    | 4,538.0         | 167.4 |
| М      | Hollow | Full         | 12,000                    | 4,861.8         | 108.3 |
| М      | Hollow | Full         | 14,000                    | 5,135.5         | 109.3 |
| М      | Hollow | Full         | 16,000                    | 5,372.6         | 150.0 |
| М      | Hollow | Full         | 18,000                    | 5,581.8         | 199.5 |
| М      | Solid  | Full         | 2,000                     | -3,297.0        | 960.0 |
| М      | Solid  | Full         | 4,000                     | -192.0          | 605.5 |
| М      | Solid  | Full         | 6,000                     | 1,624.3         | 403.7 |
| М      | Solid  | Full         | 8,000                     | 2,913.0         | 269.5 |
| М      | Solid  | Full         | 10,000                    | 3,912.5         | 183.2 |

Table C.3: Model "C" Fifth Percentile Prism Compressive Strength PredictionsTargeted at Height-to-Thickness Ratio of Two

Table C.3 - continued

| Mortar | Solid  | Mantan Islant | £      | £       |       |
|--------|--------|---------------|--------|---------|-------|
| Туре   | Hollow | Mortar Joint  | $f_u$  | f'm     | se    |
| М      | Solid  | Full          | 12,000 | 4,729.3 | 147.4 |
| М      | Solid  | Full          | 14,000 | 5,419.8 | 160.6 |
| М      | Solid  | Full          | 16,000 | 6,017.9 | 199.4 |
| М      | Solid  | Full          | 18,000 | 6,545.6 | 245.2 |
| N      | Hollow | Face          | 2,000  | 4,150.7 | 841.8 |
| N      | Hollow | Face          | 4,000  | 3,488.2 | 526.8 |
| N      | Hollow | Face          | 6,000  | 3,100.7 | 347.2 |
| N      | Hollow | Face          | 8,000  | 2,825.8 | 227.6 |
| N      | Hollow | Face          | 10,000 | 2,612.6 | 151.3 |
| N      | Hollow | Face          | 12,000 | 2,438.3 | 122.9 |
| N      | Hollow | Face          | 14,000 | 2,291.0 | 140.0 |
| Ν      | Hollow | Face          | 16,000 | 2,163.4 | 178.1 |
| N      | Hollow | Face          | 18,000 | 2,050.8 | 220.7 |
| N      | Hollow | Full          | 2,000  | 4,500.1 | 849.3 |
| N      | Hollow | Full          | 4,000  | 4,009.6 | 532.6 |
| N      | Hollow | Full          | 6,000  | 3,722.6 | 352.1 |
| N      | Hollow | Full          | 8,000  | 3,519.0 | 231.8 |
| N      | Hollow | Full          | 10,000 | 3,361.1 | 154.6 |
| N      | Hollow | Full          | 12,000 | 3,232.1 | 124.4 |
| N      | Hollow | Full          | 14,000 | 3,123.0 | 139.9 |
| N      | Hollow | Full          | 16,000 | 3,028.5 | 177.3 |
| N      | Hollow | Full          | 18,000 | 2,945.1 | 219.8 |
| Ν      | Solid  | Full          | 2,000  | -476.7  | 378.8 |

Table C.3 - continued

| Mortar | Solid  | Mantan Islant | ſ                         | £               |       |
|--------|--------|---------------|---------------------------|-----------------|-------|
| Туре   | Hollow | Mortar Joint  | $\mathbf{f}_{\mathrm{u}}$ | f' <sub>m</sub> | se    |
| N      | Solid  | Full          | 4,000                     | 906.8           | 222.4 |
| N      | Solid  | Full          | 6,000                     | 1,716.1         | 143.7 |
| N      | Solid  | Full          | 8,000                     | 2,290.3         | 109.4 |
| N      | Solid  | Full          | 10,000                    | 2,735.7         | 109.3 |
| N      | Solid  | Full          | 12,000                    | 3,100.0         | 127.6 |
| Ν      | Solid  | Full          | 14,000                    | 3,407.3         | 151.6 |
| N      | Solid  | Full          | 16,000                    | 3,673.8         | 176.3 |
| N      | Solid  | Full          | 18,000                    | 3,908.9         | 199.8 |
| S      | Hollow | Face          | 2,000                     | 4,169.4         | 776.8 |
| S      | Hollow | Face          | 4,000                     | 3,782.4         | 493.4 |
| S      | Hollow | Face          | 6,000                     | 3,556.0         | 329.9 |
| S      | Hollow | Face          | 8,000                     | 3,395.3         | 217.3 |
| S      | Hollow | Face          | 10,000                    | 3,270.7         | 137.3 |
| S      | Hollow | Face          | 12,000                    | 3,168.9         | 91.0  |
| S      | Hollow | Face          | 14,000                    | 3,082.8         | 90.4  |
| S      | Hollow | Face          | 16,000                    | 3,008.3         | 120.9 |
| S      | Hollow | Face          | 18,000                    | 2,942.5         | 159.2 |
| S      | Hollow | Full          | 2,000                     | 4,518.9         | 806.8 |
| S      | Hollow | Full          | 4,000                     | 4,303.7         | 512.8 |
| S      | Hollow | Full          | 6,000                     | 4,177.9         | 342.9 |
| S      | Hollow | Full          | 8,000                     | 4,088.6         | 225.7 |
| S      | Hollow | Full          | 10,000                    | 4,019.3         | 141.9 |
| S      | Hollow | Full          | 12,000                    | 3,962.7         | 92.2  |

Table C.3 - continued

| Mortar | Solid  | Martan Laint | c      | r               |       |
|--------|--------|--------------|--------|-----------------|-------|
| Туре   | Hollow | Mortar Joint | $f_u$  | f' <sub>m</sub> | se    |
| S      | Hollow | Full         | 14,000 | 3,914.8         | 90.4  |
| S      | Hollow | Full         | 16,000 | 3,873.4         | 122.1 |
| S      | Hollow | Full         | 18,000 | 3,836.8         | 162.1 |
| S      | Solid  | Face         | 2,000  | -807.4          | 995.1 |
| S      | Solid  | Face         | 4,000  | ,79.6           | 626.5 |
| S      | Solid  | Face         | 6,000  | 1,549.4         | 416.6 |
| S      | Solid  | Face         | 8,000  | 2,166.6         | 276.9 |
| S      | Solid  | Face         | 10,000 | 2,645.3         | 187.2 |
| S      | Solid  | Face         | 12,000 | 3,036.4         | 150.7 |
| S      | Solid  | Face         | 14,000 | 3,367.1         | 165.8 |
| S      | Solid  | Face         | 16,000 | 3,653.6         | 207.2 |
| S      | Solid  | Face         | 18,000 | 3,906.2         | 255.4 |
| S      | Solid  | Full         | 2,000  | -458.0          | 348.2 |
| S      | Solid  | Full         | 4,000  | 1,200.9         | 204.7 |
| S      | Solid  | Full         | 6,000  | 2,171.3         | 131.4 |
| S      | Solid  | Full         | 8,000  | 2,859.8         | 97.7  |
| S      | Solid  | Full         | 10,000 | 3,393.8         | 95.6  |
| S      | Solid  | Full         | 12,000 | 3,830.2         | 111.4 |
| S      | Solid  | Full         | 14,000 | 4,199.1         | 133.1 |
| S      | Solid  | Full         | 16,000 | 4,518.7         | 155.5 |
| S      | Solid  | Full         | 18,000 | 4,800.6         | 177.1 |

| Mortar | Solid  | Mortar | £      | c               |         |
|--------|--------|--------|--------|-----------------|---------|
| Туре   | Hollow | Joint  | $f_u$  | f° <sub>m</sub> | se      |
| М      | Hollow | Face   | 2,000  | -1,643.6        | 1,127.6 |
| М      | Hollow | Face   | 4,000  | 518.0           | 705.5   |
| М      | Hollow | Face   | 6,000  | 1,782.5         | 460.4   |
| М      | Hollow | Face   | 8,000  | 2,679.6         | 289.6   |
| М      | Hollow | Face   | 10,000 | 3,375.5         | 164.8   |
| М      | Hollow | Face   | 12,000 | 3,944.1         | 92.3    |
| М      | Hollow | Face   | 14,000 | 4,424.8         | 110.3   |
| М      | Hollow | Face   | 16,000 | 4,841.2         | 172.4   |
| М      | Hollow | Face   | 18,000 | 5,208.5         | 237.2   |
| М      | Hollow | Full   | 2,000  | -220.4          | 1,127.6 |
| М      | Hollow | Full   | 4,000  | 2,016.7         | 705.5   |
| М      | Hollow | Full   | 6,000  | 3,325.3         | 460.4   |
| М      | Hollow | Full   | 8,000  | 4,253.7         | 289.6   |
| М      | Hollow | Full   | 10,000 | 4,973.9         | 164.8   |
| М      | Hollow | Full   | 12,000 | 5,562.3         | 92.3    |
| М      | Hollow | Full   | 14,000 | 6,059.8         | 110.3   |
| М      | Hollow | Full   | 16,000 | 6,490.8         | 172.4   |
| М      | Hollow | Full   | 18,000 | 6,870.9         | 237.2   |
| Ν      | Hollow | Face   | 2,000  | 1,985.7         | 1,097.5 |
| N      | Hollow | Face   | 4,000  | 1,978.7         | 677.3   |
| N      | Hollow | Face   | 6,000  | 1,974.6         | 434.5   |
| N      | Hollow | Face   | 8,000  | 1,971.7         | 268.0   |
| Ν      | Hollow | Face   | 10,000 | 1,969.5         | 153.7   |

Table C.4: Model "D" Fifth Percentile Prism Compressive Strength PredictionsTargeted at Height-to-Thickness Ratio of Two

Table C.4 - continued

| Mortar | Solid  | Mortar | C              | <b>C</b>        |         |
|--------|--------|--------|----------------|-----------------|---------|
| Туре   | Hollow | Joint  | f <sub>u</sub> | f" <sub>m</sub> | se      |
| N      | Hollow | Face   | 12,000         | 1,967.6         | 108.9   |
| N      | Hollow | Face   | 14,000         | 1,966.1         | 145.9   |
| N      | Hollow | Face   | 16,000         | 1,964.7         | 209.3   |
| N      | Hollow | Face   | 18,000         | 1,963.5         | 273.3   |
| N      | Hollow | Full   | 2,000          | 3,408.9         | 863.7   |
| N      | Hollow | Full   | 4,000          | 3,477.4         | 545.0   |
| N      | Hollow | Full   | 6,000          | 3,517.4         | 361.5   |
| N      | Hollow | Full   | 8,000          | 3,545.8         | 236.0   |
| N      | Hollow | Full   | 10,000         | 3,567.9         | 149.0   |
| N      | Hollow | Full   | 12,000         | 3,585.9         | 104.0   |
| N      | Hollow | Full   | 14,000         | 3,601.1         | 111.3   |
| N      | Hollow | Full   | 16,000         | 3,614.3         | 148.5   |
| N      | Hollow | Full   | 18,000         | 3,625.9         | 192.3   |
| N      | Solid  | Full   | 2,000          | 2,098.5         | 333.3   |
| N      | Solid  | Full   | 4,000          | 2,319.3         | 180.2   |
| N      | Solid  | Full   | 6,000          | 2,448.5         | 103.7   |
| N      | Solid  | Full   | 8,000          | 2,540.2         | 78.8    |
| N      | Solid  | Full   | 10,000         | 2,611.3         | 94.3    |
| N      | Solid  | Full   | 12,000         | 2,669.4         | 122.9   |
| N      | Solid  | Full   | 14,000         | 2,718.5         | 152.3   |
| N      | Solid  | Full   | 16,000         | 2,761.1         | 179.7   |
| N      | Solid  | Full   | 18,000         | 2,798.6         | 204.7   |
| S      | Hollow | Face   | 2,000          | 2,027.7         | 1,045.1 |

Table C.4 - continued

| Mortar | Solid  |              | C      | m               |       |
|--------|--------|--------------|--------|-----------------|-------|
| Туре   | Hollow | Mortar Joint | $f_u$  | f' <sub>m</sub> | se    |
| S      | Hollow | Face         | 4,000  | 2,347.3         | 649.7 |
| S      | Hollow | Face         | 6,000  | 2,534.3         | 420.1 |
| S      | Hollow | Face         | 8,000  | 2,666.9         | 260.2 |
| S      | Hollow | Face         | 10,000 | 2,769.8         | 144.3 |
| S      | Hollow | Face         | 12,000 | 2,853.8         | 82.4  |
| S      | Hollow | Face         | 14,000 | 2,924.9         | 109.4 |
| S      | Hollow | Face         | 16,000 | 2,986.5         | 170.5 |
| S      | Hollow | Face         | 18,000 | 3,040.8         | 232.1 |
| S      | Hollow | Full         | 2,000  | 3,450.9         | 829.4 |
| S      | Hollow | Full         | 4,000  | 3,845.9         | 525.1 |
| S      | Hollow | Full         | 6,000  | 4,077.0         | 348.6 |
| S      | Hollow | Full         | 8,000  | 4,241.0         | 225.9 |
| S      | Hollow | Full         | 10,000 | 4,368.2         | 136.2 |
| S      | Hollow | Full         | 12,000 | 4,472.1         | 80.3  |
| S      | Hollow | Full         | 14,000 | 4,560.0         | 79.5  |
| S      | Hollow | Full         | 16,000 | 4,636.1         | 117.1 |
| S      | Hollow | Full         | 18,000 | 4,703.2         | 161.3 |
| S      | Solid  | Full         | 2,000  | 2,140.4         | 318.0 |
| S      | Solid  | Full         | 4,000  | 2,687.9         | 176.7 |
| S      | Solid  | Full         | 6,000  | 3,008.1         | 103.5 |
| S      | Solid  | Full         | 8,000  | 3,235.4         | 72.7  |
| S      | Solid  | Full         | 10,000 | 3,411.6         | 79.4  |
| S      | Solid  | Full         | 12,000 | 3,555.6         | 102.5 |

Table C.4 - continued

| Mortar | Solid  | Mortor Joint | f      | f'm     | 60    |
|--------|--------|--------------|--------|---------|-------|
| Туре   | Hollow | Mortar Joint | $f_u$  | 1 m     | se    |
| S      | Solid  | Full         | 14,000 | 3,677.4 | 128.3 |
| S      | Solid  | Full         | 16,000 | 3,782.8 | 152.8 |
| S      | Solid  | Full         | 18,000 | 3,875.8 | 175.5 |

 Table C.5: Model "E" Fifth Percentile Prism Compressive Strength Predictions

 Targeted at Height-to-Thickness Ratio of Two

| Mortar Type | $\mathbf{f}_{u}$ | f' <sub>m</sub> | se    |
|-------------|------------------|-----------------|-------|
| М           | 2,000            | -932.2          | 981.1 |
| М           | 4,000            | 1,018.3         | 621.9 |
| М           | 6,000            | 2,159.2         | 414.6 |
| М           | 8,000            | 2,968.7         | 272.0 |
| М           | 10,000           | 3,596.6         | 170.9 |
| М           | 12,000           | 4,109.7         | 113.5 |
| М           | 14,000           | 4,543.4         | 115.1 |
| М           | 16,000           | 4,919.2         | 155.2 |
| М           | 18,000           | 5,250.6         | 204.3 |
| N           | 2,000            | 759.8           | 540.7 |
| N           | 4,000            | 1,507.7         | 329.2 |
| N           | 6,000            | 1,945.1         | 212.8 |
| N           | 8,000            | 2,255.5         | 143.1 |
| N           | 10,000           | 2,496.3         | 112.3 |
| N           | 12,000           | 2,693.0         | 116.6 |

Table C.5 - continued

| Mortar Type | $f_u$  | f' <sub>m</sub> | se    |
|-------------|--------|-----------------|-------|
| N           | 14,000 | 2,859.3         | 140.0 |
| N           | 16,000 | 3,003.4         | 169.2 |
| N           | 18,000 | 3,130.5         | 198.9 |
| S           | 2,000  | 1,276.9         | 441.2 |
| S           | 4,000  | 2,045.5         | 277.5 |
| S           | 6,000  | 2,495.1         | 185.2 |
| S           | 8,000  | 2,814.1         | 125.1 |
| S           | 10,000 | 3,061.5         | 88.6  |
| S           | 12,000 | 3,263.7         | 76.2  |
| S           | 14,000 | 3,434.6         | 84.4  |
| S           | 16,000 | 3,582.7         | 102.5 |
| S           | 18,000 | 3,713.3         | 123.4 |

Table C.6: Model "F" Fifth Percentile Prism Compressive Strength PredictionsTargeted at Height-to-Thickness Ratio of Two

| Mortar Type | $f_u$  | f' <sub>m</sub> | se      |
|-------------|--------|-----------------|---------|
| М           | 2,000  | -1,480.1        | 1,579.4 |
| М           | 4,000  | 719.3           | 988.8   |
| М           | 6,000  | 2,005.8         | 645.9   |
| М           | 8,000  | 2,918.6         | 407.0   |
| М           | 10,000 | 3,626.6         | 232.7   |
| М           | 12,000 | 4,205.1         | 131.3   |
| М           | 14,000 | 4,694.2         | 155.1   |

Table C.6 - continued

| Mortar Type | $\mathbf{f}_{u}$ | f' <sub>m</sub> | se    |
|-------------|------------------|-----------------|-------|
| М           | 16,000           | 5,117.9         | 241.2 |
| М           | 18,000           | 5,491.6         | 331.6 |
| N           | 2,000            | 3,022.5         | 622.3 |
| N           | 4,000            | 2,809.5         | 372.0 |
| N           | 6,000            | 2,684.9         | 232.8 |
| N           | 8,000            | 2,596.5         | 148.1 |
| N           | 10,000           | 2,527.9         | 112.4 |
| N           | 12,000           | 2,471.9         | 123.4 |
| N           | 14,000           | 2,424.5         | 156.7 |
| N           | 16,000           | 2,383.5         | 194.8 |
| N           | 18,000           | 2,347.3         | 232.0 |
| S           | 2,000            | 2,599.8         | 507.2 |
| S           | 4,000            | 2,893.4         | 316.9 |
| S           | 6,000            | 3,065.1         | 208.6 |
| S           | 8,000            | 3,186.9         | 136.8 |
| S           | 10,000           | 3,281.5         | 91.5  |
| S           | 12,000           | 3,358.7         | 75.5  |
| S           | 14,000           | 3,424.0         | 86.6  |
| S           | 16,000           | 3,480.5         | 109.8 |
| S           | 18,000           | 3,530.4         | 135.6 |

| Mortar Type | $f_u$  | f'm    | se    |
|-------------|--------|--------|-------|
| N           | 2,000  | 1321.2 | 447.8 |
| N           | 4,000  | 2048.8 | 217.7 |
| N           | 6,000  | 2474.4 | 105.4 |
| N           | 8,000  | 2776.4 | 95.9  |
| N           | 10,000 | 3010.7 | 146.2 |
| N           | 12,000 | 3202.0 | 200.4 |
| N           | 14,000 | 3363.9 | 249.4 |
| N           | 16,000 | 3504.0 | 293.2 |
| N           | 18,000 | 3627.7 | 332.3 |
| S           | 2,000  | 2581.7 | 445.1 |
| S           | 4,000  | 2064.4 | 216.9 |
| S           | 6,000  | 2931.8 | 105.0 |
| S           | 8,000  | 3547.1 | 94.2  |
| S           | 10,000 | 4024.5 | 143.5 |
| S           | 12,000 | 4414.5 | 197.2 |
| S           | 14,000 | 4744.3 | 245.8 |
| S           | 16,000 | 5029.9 | 289.1 |
| S           | 18,000 | 5281.9 | 327.9 |

Table C.7: Model "G" Fifth Percentile Prism Compressive Strength PredictionsTargeted at Height-to-Thickness Ratio of Two

## REFERENCES

- Ewing, B. D., and M. J. Kowalsky. "Compressive Behavior of Unconfined and Confined Clay Brick Masonry." <u>ASCE Journal of Structural Engineering</u>, April 2004.
- Crouch, L. K., R. C. Henderson, and W. A. Sneed Jr. "Development of an Unbonded Capping System for Clay Masonry Prisms." <u>ASTM STP 1356</u>: <u>Masonry: Materials, Testing, and Applications</u>, 1999.
- 3. "General Shale Reports. "Brick Institute of America, 1994-1995.
- Bennett, R. M., K. A. Boyd, and R. D. Flanagan. "Compressive Properties of Structural Clay Tile Prisms." Journal of Structural Engineering, July 1997.
- Boyd, K. A. "Compressive Strength and Constitutive Behavior of Clay Tile Prisms." <u>Master of Science Thesis at the University of Tennessee at Knoxville</u>, 1993.
- Thomas, R. D., and M. J. Scolforo. "Evaluation of the Compressive Strength of Masonry by Prism Sampling." <u>TMS Journal</u>, 1995.
- 7. Brown, R. H., and J. G. Borchelt. "Compression Tests of Hollow Brick Units and Prisms." <u>ASTM STP 1063</u>: <u>Masonry: Components to Assemblages</u>, 1990.
- Young, J. M., and R. H. Brown. "Compressive Stress Distribution of Grouted Hollow Clay Masonry under Strain Gradient." <u>NSF Funded Research</u>, Department of Civil Engineering, Clemson University, 1988.

- Chen, H. L., and S. P. Shah. "Test of Model Masonry Single Pier under Dynamic Shaking and Quasi-static Cycling Loading." <u>ASTM STP 992:</u> <u>Masonry: Materials, Design, Construction, and Maintenance</u>, 1988.
- Matthys, J. H., J. T. Houston, and A. Dehghani. "An Investigation of an Extended Plastic Life Mortar." <u>ASTM STP 992: Masonry: Materials, Design,</u> <u>Construction, and Maintenance</u>, 1988.
- Dehghani, A. "Extended Plastic Phase Mortar Study." <u>Master of Science Thesis</u> at the University of Texas at Arlington, 1985.
- Atkinson, R. H., and G. R. Kingsley. "A Comparison of the Behavior of Clay and Concrete Masonry in Compression." <u>NSF Funded Research by Atkinson-</u> Noland & Associates, 1985.
- 13. Maurenbrecher, A. H. P. "Effect of Test Procedures on Compressive Strength of masonry Prisms." <u>Third North American Masonry Conference</u>, 1985.
- Abrams, D. P., J. L. Noland, R. H. Atkinson, and P. Waugh. "Response of Clay Unit Masonry to repeated Compressive Forces." <u>Third North American Masonry</u> <u>Conference</u>, 1985.
- Maurenbrecher, A. H. P. "Axial Compression Tests on Masonry Walls and Prisms." <u>Third North American Masonry Conference</u>, 1985.
- Drysdale, R. G., and E. Gazzola. "Influence of Mortar Properties on the tensile Bond Strength of Brick Masonry." <u>Seventh International Brick Masonry</u> <u>Conference</u>, 1985.

- Atkinson, R. H., J. L. Noland, D. P. Abrams, and W. S. McNary. "A Deformation Failure Theory for Stack-Bond Brick Masonry Prisms in Compression." <u>Third North American Masonry Conference</u>, 1985.
- McNary, W. S. "Basic Properties of Clay Unit Masonry in Compression." <u>Master of Science Thesis at the University of Colorado at Boulder</u>, 1984.
- Matthys, J. H. "An Ultimate Strength Investigation of Reinforced Brick Masonry Beams." <u>Third North American Masonry Conference</u>, 1985.
- Chanprichar, B. "An Ultimate Strength Investigation of Reinforced Brick Masonry Beams." <u>PhD Dissertation at the University of Texas at Arlington</u>, 1984.
- 21. Drysdale, R. G., and H. E. Wong. "Interpretation of the Compressive Strength of Masonry Prisms." <u>National Concrete Masonry Association</u>, 1980.
- Brown, R. H., and A. R. Whitlock. "Compressive Strength of Grouted Hollow Brick Prisms." <u>ASTM STP 778: Masonry: Materials, Properties, and</u> Performance, 1982.
- Hamid, A. A., and R. G. Drysdale. "Behavior of Brick Masonry under Combined Shear and Compression Loading." <u>Second Canadian Masonry</u> <u>Symposium</u>, 1980.
- 24. Structural Clay Products Institute (now BIA). "Recommended Practice for Engineered Brick Masonry," McLean, VA, 1969.
- 25. Masonry Standards Joint Committee. "Specification for Masonry Structures (ACI 530.1-05/ASCE 5-05/TMS 402-05)," 2005.

- Masonry Standards Joint Committee. "Commentary on Specification for Masonry Structures (ACI 530.1-05/ASCE 6-05/TMS 602-05)," 2005.
- 27. American Society of Testing and Materials, "Standard Practice for Capping Concrete Masonry units, Related Units and masonry Prisms for Compression Testing," ASTM C 1552-03a, Annual Book of ASTM Standards, 2005.
- 28. American Society of Testing and Materials, "Standard Test Method for Compressive Strength of masonry Prisms," ASTM C 1314-03b, Annual Book of ASTM Standards, 2005.
- 29. American Society of Testing and Materials, "Standard Specification for Mortar for Unit Masonry," ASTM C 270-03b, Annual Book of ASTM Standards, 2005.
- 30. American Society of Testing and Materials, "Standard Specification for Facing Brick (Solid Masonry units Made from Clay or Shale)," ASTM C 216-04b, Annual Book of ASTM Standards, 2005.
- 31. American Society of Testing and Materials, "Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile," ASTM C 67-03a, Annual Book of ASTM Standards, 2005.
- Box, George E. P., W. G. Hunter, and J. S. Hunter. <u>Statistics for Experimenters</u>.
   2<sup>nd</sup> Ed. Hoboken: John Wiley & Sons, 2005.
- Ayyub, Bilal M., and R. H. McCuen. <u>Probability, Statistics, and Reliability for</u> Engineers and Scientists. 2<sup>nd</sup> Ed. Boca Raton: Chapman & Hall, 2002.

## **BIOGRAPHICAL INFORMATION**

Saman Afqahi Aryana received his Bachelor of Science in Civil Engineering from the University of Texas at Arlington in December of 2003. He immediately pursued his graduate studies amid his full time position as a civil engineer in training in a consulting firm in Dallas, TX. He was awarded Master of Science Degree in Civil Engineering at the University of Texas at Arlington in May 2006. Saman's area of concentration in his graduate studies is structures.