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ABSTRACT 

 

INFORMATION THEORETIC, PROBABILISTIC AND MAXIMUM PARTIAL 

SUBSTRUCTURE ALGORITHMS FOR DISCOVERING  

GRAPH-BASED ANOMALIES 

 

Publication No. ______ 

 

William Fred Eberle, PhD. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Lawrence B. Holder  

The ability to mine data represented as a graph has become important in several 

domains for detecting various structural patterns.  One important area of data mining is 

anomaly detection, particularly for fraud.  However, less work has been done in terms 

of detecting anomalies in graph-based data.  While there has been some previous work 

that has used statistical metrics and conditional entropy measurements, the results have 

been limited to certain types of anomalies and specific domains. 

In this work we present graph-based approaches to uncovering anomalies in 

domains where the anomalies consist of unexpected entity/relationship alterations that 

closely resemble non-anomalous behavior.  We have developed three algorithms for the 
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purpose of detecting anomalies in all three types of possible graph changes:  label 

modifications, vertex/edge insertions and vertex/edge deletions.  Each of our algorithms 

focuses on one of these anomalous types, using the minimum description length 

principle to first discover the normative substructure.  Once the common pattern is 

known, each algorithm then uses a different approach to discover particular anomalous 

types.  The first algorithm uses the minimum description length to find substructures 

that closely compress the graph.  The second algorithm uses a probabilistic approach to 

examine substructure extensions and their likelihood of existence.  The third algorithm 

analyzes substructures that come close to matching the normative pattern, but are 

unable to make some of the final extensions. 

Using synthetic and real-world data, we evaluate the effectiveness of each of 

these algorithms in terms of each of the types of anomalies.  Each of these algorithms 

demonstrates the usefulness of examining a graph-based representation of data for the 

purposes of detecting fraud, where some individual or entity is cloaking their illegal 

activities through an attempt at closely resembling legitimate transactions. 
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CHAPTER 1  

INTRODUCTION 

 

Detecting anomalies in various data sets is an important endeavor in data 

mining.  Using statistical approaches has led to various successes in environments such 

as intrusion detection.  Recent research in graph-based anomaly detection has paved the 

way for new approaches that not only compliment the non-graph-based methods, but 

also provide mechanisms for handling data that cannot be easily analyzed with 

traditional data mining approaches.  Using information theoretic, probabilistic and 

maximum partial substructure approaches, we have developed three novel algorithms 

for analyzing graph substructures for the purpose of uncovering all three types of graph-

based anomalies:  modifications, insertions and deletions. 

The key to the algorithms presented in this work lies in our definition of an 

anomaly.  Basing our definition on the assumption that an anomaly is not random, for 

instance in the case of committing fraud, we believe that this type of anomaly should 

only be a minor deviation from the normal pattern.  Because anyone who is attempting 

to commit fraud or hide devious activities would not want to be caught, it only makes 

sense that they would want their activities to look as real as possible.  For example, the 

United Nations Office on Drugs and Crime states the first fundamental law of money 

laundering as “The more successful money-laundering apparatus is in imitating the 
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patterns and behavior of legitimate transactions, the less the likelihood of it being 

exposed.” [Hampton and Levi  1999].  Thus, if some set of data is represented as a 

graph, any nefarious activities should be identifiable by small modifications, insertions 

or deletions to the normative patterns within that graph. 

Our first algorithm uses the minimum description length principle [Rissanen 

1989] to determine the normative pattern, and from that pattern, find patterns that while 

structurally similar, have some relational deviation that is within an acceptable level of 

change.  By determining what substructure minimizes the description length of the 

graph after compressing the instances of the normative pattern, we are able to calculate 

the cost of transformation for instances within the graph that do not exactly match the 

discovered normative pattern, and as such, are indicative of an unexpected change. 

Our second algorithm again determines the normative pattern as the one that 

minimizes the description length of a graph, but instead of looking at changes to this 

pattern we examine the probability of extensions to the pattern.  If the normative pattern 

does not completely compress the graph, meaning there are other vertices and edges 

connected to the normative pattern, we examine each of these extensions in terms of the 

probability of their existence.  If the probability of existence is low enough, we mark 

the instance as anomalous.  We can then compress the graph by this anomalous 

instance, and repeat the process until there are no more extensions to the anomalous 

substructure. 

Our third algorithm uses a trail of pattern expansion to discover the instances 

that are structurally deficient from the normative pattern.  When we attempt to discover 
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the pattern that minimizes the description length of the graph, we maintain a parental 

relationship between the structures.  Once we have discovered the normative pattern, we 

traverse these relationships to find the instance that is the maximum partial 

substructure.  In this case, we are looking for patterns that are unable to extend to the 

normative pattern, and are a maximal representation of that normative pattern.  In other 

words, the maximum partial substructure is found in the instance that requires the 

fewest additions (IF they would have existed) for transforming the instance into an 

instance consisting of the normative structure. 

Up until now, graph-based approaches to fraud detection have been limited to 

specific anomaly types and certain domains.  Taking into account the “mind of the 

fraudster”, we have developed algorithms that can discover any of three types of 

anomalous changes where the illegitimate actions consist of minor changes to a normal 

set of activities. 

The following work represents the development of graph-based anomaly 

detection algorithms for the discovery of anomalies in data represented as a graph.  In 

our work, we assume that an anomaly is a minor deviation from a normative pattern, 

where the instances being considered are connected substructures.  Using the minimum 

description length principle, we have developed algorithms to examine substructures 

that have unexpected modifications, insertions or deletions.  In Chapter 2 we present 

some related work, particularly the more recent research in graph-based anomaly 

detection.  In Chapter 3 we present our definition of a graph-based anomaly, including 

the assumptions we are making regarding the data.  In Chapter 4 we present each of the 
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three algorithms, as well as some small examples to explain their approaches.  In 

Chapter 5 we present our empirical evaluation of the algorithms using synthetic data 

sets.  In Chapter 6 we present results using real-world data, including cargo shipments 

and network intrusions.  Finally, in Chapter 7, we present our conclusions and future 

work. 
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CHAPTER 2  

RELATED WORK 

 

2.1 Anomaly Detection Methods 

In 1987, Dorothy Denning wrote one of the first papers on what was called an 

“intrusion-detection model” [Denning 1987].  It became perhaps one of the most cited 

papers in the area of intrusion detection, where the goal was to define a model by which 

attacks on a network could be identified.  The idea was that through a series of rule-

based pattern matching, one could create a computer program that would detect in near 

real-time whether or not a particular event, or events, broke a specified threshold, or 

what was called a “confidence interval”.  With the evolution of the internet in the 

1990’s, this became an even bigger issue, as attacks on networks were now global and 

not just restricted to a single company’s  internal network or machines [Lee and Stolfo 

1998].  

In the mid 1990’s, the ideas of intrusion detection led to a broader definition: 

anomaly detection.  As Kumar stated in his paper on the subject of intrusion, “Anomaly 

detection attempts to quantify the usual or acceptable behavior and flags other irregular 

behavior as potentially intrusive.” [Kumar 1995]. In 1998, Lane expanded on the 

previous research by also adding in the concept of time and classification layers [Lane 

1998].  Using rule-based detectors, a form of profiling was created, whereby data could 
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be classified into different layers.  There became two approaches to looking at what was 

now being viewed in generic terms as anomalous data.  One was the searching for 

different patterns in a data set, and another was the comparing of two data sets and 

classifying how anomalous they were to each other.  

The next generation of anomaly detection systems (ADSes) followed many 

different directions.  [Maxion and Tan 2000] hypothesized that the difference in data 

regularities affected detector performance and was making it difficult to apply one 

approach to all domains.  They also described the regularity of the data as its intrinsic 

structure.  The notion that entropy, or the measure of uncertainty of a collection of data, 

was starting to be applied to this field.  This also led to considering conditional entropy, 

or the measure of regularity of sequential dependencies, and relative entropy, which 

measured the distance of the regularities between two data sets.  From this concept, 

[Lee and Xiang 2000] discussed the idea of information gain, whereby it was observed 

that the larger the data set (i.e., more information), the more regular it becomes, 

decreasing the conditional entropy.  

 

2.2 Graph-based Anomaly Detection Methods 

Recently there has been an impetus towards analyzing multi-relational data 

using graph-theoretic methods.  Not to be confused with the mechanisms for analyzing 

“spatial” data, graph-based data mining approaches are an attempt at analyzing data that 

can be represented as a graph (i.e., vertices and edges).  Yet, while there has been much 

written as it pertains to graph-based intrusion detection [Staniford-Chen et al. 1996], 
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very little research has been accomplished in the area of graph-based anomaly 

detection. 

In 2003, Noble and Cook used the SUBDUE application to look at the problem 

of anomaly detection from both the anomalous substructure and anomalous subgraph 

perspective [Noble and Cook 2003].  They were able to provide measurements of 

anomalous behavior as it applied to graphs from two different perspectives.  Anomalous 

substructure detection dealt with the unusual substructures that were found in an entire 

graph.  In order to distinguish an anomalous substructure from the other substructures, 

they created a simple measurement whereby the value associated with a substructure 

indicated a degree of anomaly.  They also presented the idea of anomalous subgraph 

detection which dealt with how anomalous a subgraph (i.e., a substructure that is part of 

a larger graph) was to other subgraphs.  The idea was that subgraphs that contained 

many common substructures were generally less anomalous than subgraphs that 

contained few common substructures.   In addition, they also explored the idea of 

conditional entropy and data regularity using network intrusion data as well as some 

artificially created data.   

[Lin and Chalupsky 2003] took a different approach and applied what they 

called rarity measurements to the discovery of unusual links within a graph.  Using 

various metrics to define the commonality of paths between nodes, the user was able to 

determine whether a path between two nodes was interesting or not, without having any 

preconceived notions of meaningful patterns.  One of the disadvantages of this approach 

was that while it was domain independent, it assumed that the user was querying the 
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system to find interesting relationships regarding certain nodes.  In other words, the 

unusual patterns had to originate or terminate from a user-specified node. 

The AutoPart system presented a non-parametric approach to finding outliers in 

graph-based data [Chakrabarti 2004].  Part of Chakrabarti’s approach was to look for 

outliers by analyzing how edges that were removed from the overall structure affected 

the minimum descriptive length (MDL) of the graph.  Representing the graph as an 

adjacency matrix, and using a compression technique to encode node groupings of the 

graph, he looked for the groups that reduced the compression cost as much as possible.  

Nodes were put into groups based upon their entropy.   

In 2005, the idea of entropy was also used by [Shetty and Adibi 2005] in their 

analysis of a real-world data set: the famous Enron scandal.  They used what they called 

“event based graph entropy” to find the most interesting people in an Enron e-mail data 

set.  Using a measure similar to what [Noble and Cook 2003] had proposed, they 

hypothesized that the important nodes (or people) were the ones who had the greatest 

effect on the entropy of the graph when they were removed.  Thus, the most interesting 

node was the one that brought about the maximum change to the graph’s entropy.  

However, in this approach, the idea of important nodes did not necessarily mean that 

they were anomalous. 

In the December 2005 issue of SIGKDD Explorations, a couple of different 

approaches to graph-based anomaly detection were presented.  Using just bipartite 

graphs, [Sun et al. 2005] presented a model for scoring the normality of nodes as they 

relate to the other nodes.  Again, using an adjacency matrix, they assigned what they 
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called a “relevance score” such that every node x had a relevance score to every node y, 

whereby the higher the score the more related the two nodes.  The idea was that the 

nodes with the lower normality score to x were the more anomalous ones to that node.  

The two drawbacks with this approach were that it only dealt with bipartite graphs and 

it only found anomalous nodes, rather than what could be anomalous substructures.  In 

[Rattigan and Jensen 2005], they also went after anomalous links, this time via a 

statistical approach.  Using a Katz measurement, they used the link structure to 

statistically predict the likelihood of a link.  While it worked on a small dataset of 

author-paper pairs, their single measurement just analyzed the links in a graph. 

 

2.3 Using Graph Properties to Discover Anomalous Graphs 

The ability to mine relational data has become important in several domains 

(e.g., counter-terrorism), and a graph-based representation of this data has proven useful 

in detecting various relational, structural patterns [Mukherjee and Holder 2004].  In 

[Eberle and Holder 2006], we analyzed the use of graph properties as a method for 

uncovering anomalies in data represented as a graph.   

While our initial research examined many of the basic graph properties, only a 

few of them proved to be insightful as to the structure of a graph for anomaly detection 

purposes: average shortest path length, density and connectedness. For a measurement 

of density, we chose to use a definition that is commonly used when defining social 

networks [Scott 2000].  For connectedness, we used a definition from [Broder et al. 

2000].  Then, for some of the more complex graph properties, we investigated two 
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measurements.  First, there is the maximum eigenvalue of a graph [Chung et al. 2003].  

Another, which was used in identifying e-mail “spammers”, is the graph clustering 

coefficient [Boykin and Roychowdhury 2005]. 

In order to test these graph properties on synthetic data, we created 6 different 

graph size types consisting of approximately 35, 100, 400, 1000, and 2000 vertices, and 

another being a dense graph of 100 vertices and 1000 edges.  For each of these 

increment sizes, we created 30 non-anomalous graphs.  We then generated 30 

anomalous graphs for each of the graph types and for each of the following structural 

anomalies: add substructure, remove substructure, move edge, and add isolated 

substructure.  

The density (Figure 2.1) of small graphs lessens when an anomalous 

substructure is connected to existing vertices in the graph.  This makes sense, as the 

ratio of actual vertices and edges to the number of possible pairs would increase, 

resulting in a lower density.  This also explains why the density of graphs that contain 

isolated substructures is less, due to containing unconnected vertices.  Also, the removal 

of a substructure results in a wide deviation in the density measurement. The 

connectedness of the smaller graphs varies for each of the different types of anomalies. 

The insertion and isolation anomalies result in lower values, and insertion of an isolated 

substructure has an even greater variation on the measurement.  The same behavior is 

also found in dense graphs. Changes in the clustering coefficient (Figure 2.2) on smaller 

graphs are only evident for inserted isolated anomalous substructures and the anomaly 

of moved edges.  This variance, because of the moved edges, is significant due to the 
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way the deviation changes. As the graphs get larger, the distribution still holds, but the 

coefficient of the graphs with moved edges increases significantly. The average shortest 

path length (Figure 2.3) and eigenvalue (Figure 2.4) metrics behave similarly to the 

above metrics, except that they are better indicators of inserted substructures and moved 

edges. 
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Figure 2.1  Density (mean) of different anomalies on small graphs. 
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Figure 2.3  Average shortest path length (mean) on small graphs. 
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Figure 2.4  Highest eigenvalue (mean) on larger graphs. 

 

We also tested these approaches on data from cargo shipments represented as 

graphs.  When injecting real-world anomalies into the data, no significant deviations are 

displayed using the average shortest path or eigenvalue metrics.  However, there are 

visible differences for the density, connectedness and clustering coefficient 
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measurements. Figures 2.5, 2.6 and 2.7 represent the values for each of the 

corresponding metrics in each test example.  The bottom plot lines in each chart show 

the values on the original cargo data.  As shown, for every test where the anomalous 

examples were randomly interjected into the cargo data, a noticeable deviation occurs in 

the corresponding graph property.   
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Figure 2.5  Density changes on cargo data. 
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Figure 2.6  Connectedness changes on cargo data. 
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Figure 2.7  Clustering coefficient changes on cargo data. 
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Another metric that can be used is the combination of individual measurements 

to provide a clearer view.  For instance, when combining the density, connectedness and 

clustering coefficient measurements, we get values that clearly indicate anomalies.  

Similar results are evident when applying different combinations on the synthetic data 

sets. 

The issue with this approach is that while graphs are indicated as anomalous, 

this does not provide the specific anomaly within what could be a very large graph of 

data.  However, the algorithms presented in this work will rectify that problem by not 

only indicating a graph contains an anomaly, but more importantly, they will discover 

the specific anomaly and its pertinent structure within the graph. 

 

2.4 Graph-Based Pattern Discovery 

While not specific to anomaly detection, there are several approaches to 

handling just the discovery of the normative pattern in data that is represented as a 

graph.  One approach called gSpan returns all frequent substructures in a database that 

is represented as a graph [Yan and Han 2002].  Using a depth-first search on the input 

graphs, the algorithm constructs a hierarchical search tree based upon the DFS code 

assigned to each graph.  Then, from its canonical tree structure, the algorithm performs 

a pre-order traversal of the tree in order to discover the frequent subgraphs. 

Another approach is found in FSG, which is similar to gSpan in that it returns 

all of the frequent subgraphs (substructures) in a database of transactions that have been 

represented as a graph [Kuramochi and Karypis 2004].   However, unlike gSpan, FSG 
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uses an Apriori-style breadth-first search.  The algorithm takes the input graphs and 

performs a level-by-level search, growing patterns one edge at a time. The core of the 

FSG algorithm lies in its candidate generation and counting that are used to determine 

the frequent subgraphs. 

In order to mine large graphs for frequent subgraphs, Huan et al. proposed a 

maximal frequent subgraphs approach called SPIN as an improvement to gSpan [Huan 

et al. 2004].  By mining only subgraphs that are not part of any other frequent 

subgraphs, they are able to reduce the number of mined patterns by orders of 

magnitude.  This is accomplished by first mining all frequent trees from a graph, and 

then reconstructing all maximal subgraphs from the mined trees.  Zeng et al. looked at 

the problem of dense graphs by mining the properties of quasi-cliques [Zeng et al. 

2006].  Using a system called Cocain, they propose several optimization techniques for 

pruning the unpromising and redundant search spaces.  To help combat the subgraph 

isomorphism issue, Gudes et al. proposed a new Apriori-based algorithm using disjoint 

paths [Gudes et al. 2006].  Following a breadth-first enumeration and what they called 

an “admissible support measure”, they are able to prune candidate patterns without 

checking their support, significantly reducing the search space.  MARGIN is another 

maximal subgraph mining algorithm that focuses on the more promising nodes in a 

graph [Thomas et al. 2006].  This is accomplished by searching for promising nodes in 

the search space along the “border” of frequent and infrequent subgraphs, thus reducing 

the number of candidate patterns. 
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The goal of SUBDUE is to return the substructures that compress the graph the 

best [Holder et al. 1994].  Using a beam search (a limited length queue of the best few 

patterns that have been found so far), the algorithm grows patterns one edge at a time, 

continually discovering what substructures best compress the description length of the 

input graph.  The core of the SUBDUE algorithm is in its compression strategy.  After 

extending each substructure by one edge, it evaluates each extended substructure based 

upon its compression value (the higher the better).  A list is maintained of the best 

substructures, and this process is continually repeated until either there are no more 

substructures to compress or a user-specified limit is reached. 

While each of these approaches is successful at pattern discovery, we will use 

the SUBDUE compression evaluation technique as the basis for our underlying 

discovery of the normative patterns.  While the gSpan application is not publicly 

available, there are a few reasons why we found FSG to not be an ideal candidate for 

our implementation.  One reason for our choice of pattern learner lies with the format 

expected by the FSG application.  SUBDUE can effectively discover normative patterns 

whether it is given all transactions or data as one entire graph, or if each transaction is 

defined as individual subgraphs. As a graph data miner, FSG shows the frequency of a 

pattern based upon the number of transactions defined in the graph input file.  So, if a 

graph is not delineated by individual transactions, the frequency of every pattern is 1, 

and thus very difficult to determine which pattern is the most frequent.  However, in 

some later work by Kuromachi and Karypis, they improve upon this with an approach 

called Grew that is able to better handle large graphs that consist of connected 
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subgraphs [Kuromachi and Karypis 2004].  Another reason lies in the FSG approach to 

determining the normative pattern based upon frequency.  While tests on various graphs 

showed SUBDUE and FSG returned the same normative pattern, when the tests 

involved a graph where the normative pattern is not found across all transactions (e.g., 

noise), the frequent pattern is not found unless the FSG support percentile is reduced.  

The issue then is knowing what support percentile should be used for a specific run. 

Specifying 100% support will result in the normative pattern being lost if the pattern is 

not found in at least one transaction, while using a lower percentile may result in other 

(smaller) normative patterns being found.  In short, SUBDUE allows us to find the 

normative pattern in data that may be less regular or contain some noise.  As will be 

shown in the following section, this is critical to the success of discovering anomalies. 
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CHAPTER 3  

GRAPH-BASED ANOMALIES 

 

Webster defines an anomaly as “a deviation from the common rule, type, or 

form.” [Webster 1989].  Webster’s Thesaurus states that the word “anomaly” can also 

be termed “peculiarity, unconformity, exception,…, irregularity” [Webster 1971]. 

    

3.1 Definition of Graph-Based Anomaly 

Setting up fraudulent web-sites, “phishing” for credit cards, stealing calling 

cards, and creating bogus bank accounts are just some of the countless examples of 

scams that have succumb everyone from the individual investor to large corporations.  

In every case, the fraudster has attempted to swindle their victim and hide their dealings 

within a morass of data that has become proverbially known as the “needle in the 

haystack”.  Yet, even when the data is not relatively large in size, the ability to discover 

the nefarious actions is still ultimately difficult due to the mimicry of the perpetrator. 

Before we lay the groundwork for our definition of a graph-based anomaly, we 

need to put forth a framework for the definition of a graph.  In general, a graph is a set 

of nodes and a set of links, where each link connects either two nodes or a node to itself.  

More formally, we use the following definitions:  
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Definition:  A graph G = (V,E,L) is a mathematical structure consisting of three 

sets V, E and L.  The elements of V are called vertices (or nodes), 

the elements of E are the edges (or links) between the vertices, and 

the elements of L are the string labels assigned to each of the 

elements of V and E.   

Definition:  A vertex (or node) is an entity (or item) in a graph.  For each vertex 

there is a labeled vertex pair (v,l) where v is a vertex in the set V of 

vertices and l is a string label in the set L of labels. 

Definition:  An edge (or link) is a labeled relation between two vertices called 

its endpoints.  For each edge there is a labeled edge pair (e, l) 

where e is an edge in the set E of edges and l is a string label in the 

set L of labels. 

Definition:   An edge can be directed or undirected.  A directed edge is an edge, 

one of whose endpoints is designated as the tail, and whose other 

endpoint is designated as the head. An undirected edge is an edge 

with two unordered endpoints. A multi-edge is a collection of two 

or more edges having identical endpoints. 

 

 [Gross and Yellen 1999] [West 2001] 

 

Much research has been done recently using graph-based representations of 

data.  Using vertices to represent entities such as people, places and things, and edges to 
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represent the relationships between the entities, such as friend, lives and owns, allows 

for a much richer expression of data than is present in the standard textual or tabular 

representation of information.  Representing various data sets like telecommunications 

call records, financial information and social networks in a graph form allow us to 

discover structural properties in data that are not evident using traditional data mining 

methods. 

The idea behind the approach presented in this work is to find anomalies in 

graph-based data where the anomalous substructure (at least one edge or vertex) in a 

graph is part of (or attached to or missing from) a non-anomalous substructure, or the 

normative pattern.  This definition of an anomaly is unique in the arena of graph-based 

anomaly detection, as well as non-graph-based anomaly detection.  The concept of 

finding a pattern that is "similar" to frequent, or good, patterns, is different from most 

approaches that are looking for unusual or “bad” patterns.  While other non-graph-based 

data mining approaches may aide in this respect, there does not appear to be any 

existing approaches that directly deal with this scenario.   

 
Definition:  Given a graph G with a normative substructure S, a substructure S’ 

and a d that is the difference between S and S’, let C(d) be the cost 

of the difference and P(d) be the probability of the difference.  

Then the graph G is considered anomalous if 0 < A(S’) <= X, 

where X is a user-defined threshold and A(S’) = C(d) * P(d) is the 

anomaly score. 
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The importance of this definition lies in its relationship to fraud detection (i.e., any sort 

of deceptive practices that are intended to illegally obtain or hide information).  If a 

person or entity is attempting to commit fraud, they will do all they can to hide their 

illicit behavior.  To that end, their approach would be to convey their actions as close to 

legitimate actions as possible.  That makes this definition of an anomaly extremely 

relevant. 

 

3.2 Anomaly Types 

For a graph-based anomaly, there are several situations that might occur: 

 

1. The label on a vertex is different than was expected. 

2. The label on an edge is different than was expected. 

3. A vertex exists that is unexpected. 

4. An edge exists that is unexpected. 

5. An expected vertex is absent. 

6. An expected edge between two vertices (or a self-edge to a vertex) is 

   absent. 

 

It is also evident that these same situations can be applied to a substructure (i.e., 

multiple vertices and edges), and will be addressed as such.  In essence, there are three 

general categories of anomalies: modification, insertions and deletions.  Modifications 
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would constitute the first two situations; insertions would consist of the third and fourth 

situation; and deletions would categorize the last two situations. 

In this work, we will not be addressing the possible scenario of a change in the 

directedness of an edge.  While directed edges are allowed, we will not introduce any 

anomalies that consist of change in an edge’s direction.  There is also the situation 

where a graph changes over time.  [Coble et al. 2005] addressed this dimension in their 

paper that proposed an iterative approach to substructure discovery, as well as how it 

related to anomaly detection.  [Cortes et al. 2003] examined the temporal evolution of 

large dynamic graphs at it related to telecommunication’s fraud detection.  Also, [Ide 

and Kashima 2005] addressed the problem of anomaly detection from a time sequence 

of graphs using the principle eigenvector of the eigenclusters of the graph.  The 

dimension of analyzing graphs over time is beyond the scope of this work, but the 

approaches presented here can be applied to graphs changing over time as well. 

 

3.3 Assumptions 

Many of the graph-based anomaly detection (or intrusion detection) approaches 

up to now have assumed that the data exhibits a power-law distribution.  For example, 

much of the data that has been used in previous analysis has used items like the world-

wide web, social networks, or other sources that convey a power-law behavior 

[Faloutsos et al. 1999].  The advantage of the approaches presented in this work is that 

it does not assume the data consists of a power-law behavior.  In fact, no standard 

distribution model is assumed to exist.  All that is required is that the data is regular, 



 

 24

which in general means that the data is “predictable”. While there are many data sets 

that are not regular in nature, many of the real-world data sets that are examined for 

fraudulent activity, such as telecommunications call traffic, financial transactions and 

shipping manifests, consist of user transactions that exhibit regular patterns of behavior. 

In order to address our definition of an anomaly, we make the following 

assumptions about the data: 

 
Assumption 1:  The majority of a graph consists of a normative pattern. 

 
In general, the more regular the data (or graph), the more predictable it is to discover 

anomalies.  If a graph were irregular, the ability to distinguish between anomalies and 

noise would be prohibitive. 

 
Assumption 2:  No more than X% of the normative pattern is altered in the case 

of an anomaly. 

 
Since our definition implies that an anomaly constitutes a minor change to the prevalent 

substructure, we can choose a small percentage (e.g., 10%) to represent the most a 

substructure would be changed in a fraudulent action. 

  
Assumption 3:  Anomalies consist of one or more modifications, insertions or 

deletions. 
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As was described in Section  3.2, there are only three types of changes that can be made 

to a graph.  Therefore, anomalies that consist of structural changes to a graph must 

consist of one of these types. 

 
Assumption 4:  The normative pattern is connected. 

 
In a real-world scenario, we would apply this approach to data such as cargo shipments, 

telecommunications traffic, financial transactions or terrorist networks.  In all cases, the 

data consists of a series of nodes and links that share common nodes and links.  

Certainly, graphs could contain potential anomalies across disconnected substructures, 

but at this point, we are constraining our research to only connected anomalies. 
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CHAPTER 4  

GRAPH-BASED ANOMALY DETECTION ALGORITHMS 

 

Most anomaly detection methods use a supervised approach, which requires 

some sort of baseline of information from which comparisons or training can be 

performed.  In general, if we have an idea what is normal behavior, deviations from that 

behavior could constitute an anomaly.  However, the issues with these approaches are 

that one has to have the data in advance in order to train the system, and the data has to 

already be labeled (i.e., fraudulent versus legitimate). 

Our work has resulted in the development of three algorithms, which we have 

implemented using a tool called GBAD (Graph-Based Anomaly Detection).  GBAD is 

an unsupervised approach, based upon the SUBDUE graph-based knowledge discovery 

system [Cook and Holder 1998].  Using a breadth-first search and Minimum 

Description Length (MDL) heuristic, each of the three anomaly detection algorithms 

uses GBAD to provide the normative pattern in an input graph.  In our implementation, 

the MDL approach is used to determine the best substructure(s) as the one that 

minimizes the following: 

 

)()|(),( SDLSGDLGSM +=  
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where G is the entire graph and S is the substructure.  M(S,G) is the message length of 

the graph G with respect to the substructure S where DL(G|S) is the description length 

of G after compressing it using S, and DL(S) is the description length of the 

substructure.   

Using GBAD as the tool for our implementation, we have developed three 

separate algorithms:  GBAD-MDL, GBAD-P and GBAD-MPS.  Each of these 

approaches is intended to discover all of the possible graph-based anomaly types as set 

forth earlier. 

 

4.1 Information Theoretic Algorithm (GBAD-MDL) 

The GBAD-MDL algorithm uses a Minimum Description Length (MDL) 

heuristic to discover the best substructure in a graph (i.e., the substructure that 

compresses the graph the most), and then subsequently examines all of the instances of 

that substructure that “look similar” to that pattern.   

The high-level approach for the GBAD-MDL algorithm is, for a graph G: 

 
• Find the best substructure S that minimizes the description length of G. 

• Find all instances Ik, whose cost of transformation is less than a specified 

threshold, where the threshold is a user-defined parameter. 

• Output all Ik whose (cost * frequency) is minimum. 
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“Cost of transformation” (or matchcost) is the cost of transforming subgraph A into an 

isomorphism of subgraph B.  We calculate this by adding 1.0 for each vertex, edge and 

label that would need to be changed in order to make A isomorphic to B.   

4.1.1 Algorithm 

In Algorithm 1, the threshold T is the user-defined level of inexact matching that 

can occur.  That is to say, it is the amount of change that one is willing to accept 

between an instance (or subgraph of the graph G) and the normative substructure.  The 

detailed GBAD-MDL algorithm is as follows: 

 

Algorithm 1:  proc GBAD-MDL (graph G, threshold T)  

1. Find normative substructure S minimizing DL(S)+DL(G|S) 
2. Identify instances Ik of S in G having matchcost(Ik,S) < (T * size(|S|)) 
3. For each instance Ik such that matchcost(Ik,S) > 0 

a. freq(Ik) = number of instances of S that exactly match Ik 
b. anomalyScore(Ik) = freq(Ik) * matchcost(Ik,S) 

4. Return all instances Ik having the minimal anomalyScore 

 

With the inexact matching that occurs in the GBAD-MDL algorithm, the result 

will be those instances that are the “closest” (without matching exactly) in structure to 

the best structure (i.e., compresses the graph the most), where there is a tradeoff in the 

cost of transforming the instance to match the structure, as well as the frequency with 

which the instance occurs.  Since cost of transformation and frequency are independent 

variables, multiplying their values together results in a combinatory value:  the lower 
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the value, the more anomalous the structure.  It is these inexact matching instances that 

will be analyzed for anomalousness.   

Note that we are only interested in the top substructure (i.e., the one that 

minimizes the description length of the graph), so k will always be 1.  However, for 

extensibility, we can work from the top k substructures if it is felt that anomalous 

behavior is not found in the top normative pattern. 

4.1.2 Implementation 

The goal of SUBDUE is to discover the best pattern in a graph using a 

Minimum Description Length (MDL) evaluation of how much a substructure 

compresses the graph.  This is fundamentally different from GBAD-MDL where the 

approach is to use the same MDL principle but instead look for those substructures that 

do not compress the graph the best, but are structurally closest to the best substructure.   

In order to implement the GBAD-MDL algorithm, we first used SUBDUE to 

discover the best substructure.  In addition to providing the normative pattern using an 

MDL evaluation, SUBDUE also provides two other features: the ability to specify 

inexact matching as a percentage of the normative substructure, and a list of all 

instances that match the best substructure.  SUBDUE terminates processing when there 

are no more extensions to candidate substructures, whereas the GBAD-MDL algorithm 

continues processing the best substructure by analyzing its instances for the one that is 

closest in transformation cost to the normative pattern.   

First, the algorithm modifies the best substructure list by determining which 

substructure is actually the true normative pattern.  Since an inexact matching was used, 
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it is possible that the top substructure specified in SUBDUE (i.e., the best substructure), 

may not be the true normative pattern.  So, a search is performed on the list of instances, 

finding the pattern that is the most frequent, and replacing the previously specified best 

substructure with its structure.   

Second, the new list of instances is compared to the new best substructure, and 

each instance is given an anomalous score equal to its cost of transformation (for 

transforming the instance into the best substructure).  Then, for each instance in the list 

that matches this instance (i.e., isomorphic), the anomalous score is increased by the 

value of the cost of transformation – in essence, creating an anomalous score that is 

equal to the cost of transformation times frequency. 

For the last step, our GBAD-MDL implementation finds the anomalous instance 

(or instances, if their anomalous scores are equal), and flags the individual vertices and 

edges that are anomalous.  This is accomplished by comparing the structure of the 

anomalous instance with the normative substructure, and for each vertex and edge in the 

anomalous instance that does not have a match in the normative pattern, a flag is set.  

So, in the end, when the anomalous instance is output by this implementation, there is 

an indicator next to each individual anomaly.  An example of the textual output is 

shown in Figure 4.1. 
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Anomalous Instance(s): 
 

 v 58 v1  < -- anomaly 
 v 59 v2 
 v 60 v1 
 d 58 60 e2  < --  anomaly 
 d 59 58 e2 
 d 60 59 e1 
 (information_theoretic anomalous value = 2.000000) 

 
Figure 4.1  Example output of GBAD-MDL showing anomalies and score. 

 
 
4.1.3 Examples 

The following are some simple examples of results obtained using our 

implementation of the GBAD-MDL algorithm described above. 

First, take the fairly regular example shown in Figure 4.2. 

 

A

C B

A

D B

A

C B

A

C B

A

C B  
Figure 4.2  Simple graph for GBAD-MDL example. 

 
Running the GBAD-MDL algorithm, the anomalous substructure, as shown in Figure 

4.3, is: 

 

A

D B  
Figure 4.3  Anomalous substructure from simple graph using GBAD-MDL. 
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which is exactly the desired result.  (The individual anomaly is in bold.)  It should also 

be noted that no other substructures were reported as anomalous.   

The above is similar to the example that was presented in the paper by Noble 

and Cook [Noble and Cook 2003], as shown in Figure 4.4. 

 

A

C B

A

D B

A

B C  
Figure 4.4  Noble and Cook example. 

 
Running the GBAD-MDL algorithm on this example also results in the same anomalous 

substructure as shown in Figure 4.3.  In Noble and Cook’s approach, the D vertex is 

shown to be the anomaly, as they use a combination of size and number of instances to 

determine the anomalousness of a substructure.  Similarly, GBAD-MDL also indicates 

that D is anomalous.  The importance of this new approach is that a larger picture is 

provided regarding its associated substructure.  In other words, not only are we 

providing the anomaly, but we are also presenting the context of that anomaly within 

the graph. 

Another common real-world graph structure is a star-cluster configuration (e.g., 

shipping manifests), like the example shown in Figure 4.5. 
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Figure 4.5  Star example. 

 
Again, for this simple example, GBAD-MDL is correctly able to find the anomaly and 

its associated substructure, as shown in Figure 4.6. 

 
 

Y
G I

E F

 
Figure 4.6  Anomalous structure from star example using GBAD-MDL. 

 
4.2 Probabilistic Algorithm (GBAD-P) 

The GBAD-P algorithm also uses the MDL evaluation technique to discover the 

best substructure in a graph, but instead of examining all instances for similarity, this 
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approach examines all extensions to the normative substructure (pattern), looking for 

extensions with the lowest probability.  The subtle difference between the two 

algorithms is that GBAD-MDL is looking at instances of substructures with the same 

characteristics (i.e., size, degree, etc.), whereas GBAD-P is examining the probability of 

extensions to the normative pattern to determine if there is an instance that when 

extended beyond its normative structure is traversing edges and vertices that are 

probabilistically less than other extended instances. 

The high-level approach for the GBAD-P algorithm is: 

 
• For a graph G, find the best substructure S that minimizes the description length 

of G. 

• Compress G using S. 

• For the newly compressed graph G 

o Find the single edge and vertex extension E that has the lowest 

probability P of existence from instances I of S. 

o Output instance In and E whose P is minimum. 

o Set S’ to instance In’s substructure. 

• Compress G using S’, and repeat the above steps if there are still other 

extensions of the normative pattern to consider. 

 
At each iteration, the result will be the instance that consists of the best 

substructure pattern and an extension with the lowest probability of existence.  The 
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value associated with this instance represents the lowest frequency, where the lower the 

value, the more anomalous the structure. 

 
4.2.1 Algorithm 

In Algorithm 2, the probability P allows the user to specify how much 

probability of existence they are willing to accept for a substructure to be considered 

anomalous.  The number of iterations N allows the user to specify how far beyond the 

normative pattern they want to extend to look for anomalies.  The detailed GBAD-P 

algorithm is as follows: 

  
Algorithm 2:  proc GBAD-P (graph G, probability P, iterations N)  

1. Find normative substructure S minimizing DL(S)+DL(G|S); where I are instances 
of S in G. 

2. Compress G by S, where all instances I of S in G are each replaced by a new 
vertex V. 

3. Iterate over each new vertex V, extending each vertex V by all possible single 
edges E. 

4. For all instances I’, where each instance of I’ consists of V and a unique extension, 
a substructure S’ consists of all matching instances A from instances I’. 

5. For each instance Ak , anomalyScore(Ak) = number of instances of S’ / |I’ |  
6. Return each instance Ak with minimal anomalyScore  < P. 
7. Set S to substructure definition of the Ak with minimal anomaly score. 
8. If current iteration < N, start next iteration at step 2. 

 

anomalyScore(Ik) is the probability that a given instance should exist given the 

existence of all of the extended instances.  Again, the lower the value, the more 

anomalous the instance.  Given that |In| is the total number of possible extended 



 

 36

instances,  freq(Ik) can never be greater, and thus the value of anomalyScore(Ik) will 

never be greater than 1.0. 

4.2.2 Implementation 

SUBDUE provides the ability to continually compress a graph, searching for the 

pattern that compresses the graph the most, and thus is ultimately the best substructure 

within the graph.  GBAD-P takes a different approach by compressing the graph a 

single extension at a time, using the extensions that have the least probability of being 

part of the best substructure.  

In order to implement the GBAD-P algorithm, we again used SUBDUE to 

discover the best substructure.  In addition, we also used two other features provided by 

SUBDUE: maintaining a list of all instances that match the best substructure; iterating 

multiple times, compressing the graph by the best substructure at each iteration.  When 

enough iterations are specified, SUBDUE terminates processing when any more 

attempts at compressing the graph would not result in a further reduction in its MDL.  

After the first iteration, where the graph is compressed by the normative pattern, the 

GBAD-P algorithm analyzes extensions from each instance of the best substructure at 

each iteration, looking for the ones with the lowest probability of occurring.   

First, SUBDUE’s logic for extensions is modified to only extend one edge at 

each iteration.  While the first iteration works as-is in terms of performing extensions in 

order to find the best substructure, subsequent iterations only process single edge 

extensions from the newly compressed substructure.  This allows the GBAD-P 

algorithm to evaluate the probability of individual extensions. 
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Second, the algorithm modifies the best substructure list by finding the best 

substructure that contains the compressed normative pattern from the first iteration.  

This is done to ensure that at each iteration we are still working from the normative 

pattern.  The first substructure in the list that contains the compressed normative pattern 

is moved to the top of the list as the best substructure (since the list is already in order 

by value).   

Third, for the newly defined best substructure, all of its instances are evaluated 

in terms of their probability among themselves.  For each instance, a simple evaluation 

is calculated where the probability of the instance is the number of matching instances 

divided by the total number of instances, all within the list of instances for the best 

substructure. This value is then set as the anomalous score for the corresponding 

instance. 

After each iteration, our GBAD-P implementation prints the anomalous instance 

(or instances, if their anomalous scores are equal).  The output is similar to what is 

produced by the GBAD-MDL algorithm, except that the score is a value from 0.0-1.0, 

and it is done after each iteration (except for the first).  By doing this over each 

iteration, it allows one to view the growth of the anomaly, one edge at a time. 

 
4.2.3 Examples 

The following are some simple examples of results obtained using our 

implementation of the GBAD-P algorithm described above. 

First, take the fairly regular example shown in Figure 4.7. 
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Figure 4.7  Simple graph for GBAD-P example. 

 

After one iteration, the best substructure is shown in Figure 4.8. 

B

C A  

Figure 4.8  Best substructure from simple graph for GBAD-P example. 

 

Then, on the second iteration, this substructure is compressed to a single vertex, 

extensions are evaluated, and the resulting anomalous substructure is shown in Figure 

4.9 (with the compressed substructure expanded just for this visualization). 
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Figure 4.9  Anomalous substructure from simple graph using GBAD-P. 

 

Clearly the anomalous substructure shown in Figure 4.9 is the desired result as the 

extension to C is less probable than the other D extensions. 

Let us take another example, this time of a more network-type structure, as 

shown in Figure 4.10. 
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Figure 4.10  Network-type graph. 

 

In Figure 4.10, there is a central node (labeled X) with four connected identical star 

structures (each with a center node labeled Y).  Each of these star structures has an 

identical smaller substructure (made up of vertices labeled I, J and K) connected to it.  

However, one of the star structures has the IJK substructure connected to its vertex 

labeled E, while the others have it connected to their vertex labeled G. 

Running the GBAD-P algorithm on this graph results in the following three 

structures labeled as anomalous, as shown in Figure 4.11 (after the second iteration). 

 



 

 41

 

Y
H

E F

I
Y

H

E FJ

Y
H

E F

KG

G
G

 

Figure 4.11  Anomalous insertions on network-type example. 

 

So, in essence, while it did report the anomaly as three different substructures (all equal 

in probability), the complete anomaly is discovered.  It should also be noted that on 

subsequent iterations, no more anomalous substructures are found.  (All of the 

subsequent candidates have a probability of 100%.)  This is because on the following 

iteration, the instances of the best substructure are compressed to a single vertex, and 

the other vertices (I, J and K), are linked to that single vertex, with no former 

knowledge of where they linked (i.e., whether they linked to E or G).  Possible future 

work could include a modification to this approach to keep track of the original 

connections for further evaluation. 

 

4.3 Maximum Partial Substructure Algorithm (GBAD-MPS) 

The GBAD-MPS algorithm uses the MDL approach to discover the best 

substructure in a graph, and then it examines all of the instances of ancestral 

substructures that are missing various edges and vertices.  

The high-level approach for the GBAD-MPS algorithm is: 
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• For a graph G, find the best substructure S that minimizes the description length 

of G. 

• Find the instances of ancestor substructures of S (we will refer to the ancestor 

substructures Sn). 

• Output all instances Ik of Sn that are not part of any instances of S, and that 

minimize (cost * frequency). 

 
The result will be those instances that are the maximum possible partial substructures to 

the normative (or best) substructure.  The value associated with the instances represents 

the cost of transformation (i.e., how much change would have to take place for the 

instance to match the best substructure).  Thus, the instance with the lowest cost 

transformation (if more than one instance have the same value, the frequency of the 

instance’s structure will be used to break the tie if possible) is considered the anomaly, 

as it is closest to the best substructure without being included on the best substructure’s 

instance list. 

4.3.1 Algorithm 

The key to Algorithm 3 is the building of the substructure list Sn, which are all 

substructures that are ancestral substructures to the normative substructure S, meaning 

they share common vertices and edges.  The detailed GBAD-MPS algorithm is as 

follows: 
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Algorithm 3:  proc GBAD-MPS (graph G, cost C)  

1. Find normative substructure S minimizing DL(S)+DL(G|S), where I is the set of 
its instances. 

2. For each Sn, in the set of previously-generated substructures, where SSn ⊆ , let In 
be the set of instances of Sn. 

3. For each instance Ik in the set of instances In, where 0 < matchcost(Ik,S) < C, 
II k ⊄ and Im are all instances in In that are isomorphic to Ik 

a. anomalyScore(Ik) = | Im | * matchcost(Ik,S). 
4. Return all instances Ik having minimal anomalyScore. 

 

By allowing the user to specify the cost threshold C, we can control the amount 

of “anomalousness” that we are willing to accept.  By our definition of an anomaly, we 

are expecting low transformation costs (i.e., few changes for the anomalous instance to 

match the best substructure).  With the GBAD-MPS algorithm, while the user-definable 

threshold is a value based upon the cost of transformation, the product of the number of 

instances and the cost is the final anomalous score.  For instance, if there are two 

substructures X and Y that have the same minimal cost of transformation to matching 

the best substructure, but there are 3 instances of X and 2 instances of Y, the instances 

of the Y substructure would be output as the most anomalous.   

Throughout this work, whenever we indicate a relationship between 

substructures as yx ⊆ , we are referring to the fact that x is a subgraph of y, rather than 

x is a subset of y.  It should also be pointed out that yx ⊄  is referring to the case where 

x is not a complete sub-instance of y. 
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4.3.2 Implementation 

While building substructures, and ultimately searching for the best pattern, 

SUBDUE maintains a list of the instances that match the current best substructure.  

GBAD-MPS takes a different approach by constructing a history of the substructures, 

allowing for the eventual analysis of ancestral substructures, and thus looking for those 

patterns that are structurally closest to the normative pattern, but are missing some 

structure.   

In order to implement the GBAD-MPS algorithm, again we used SUBDUE to 

discover the best substructure.  In addition, we also used another feature provided by 

SUBDUE: specifying the beam width of the search.  By default, SUBDUE uses a beam 

width of 4 which signifies that it will only keep the top 4 substructures after evaluating 

each extension.  While this heuristic has proven to be successful in SUBDUE’s ability 

to discover the normative pattern, in order to be able to analyze substructures that never 

extended to the normative pattern, which is necessary for this algorithm, we need to 

extend the beam width so that other substructures can be evaluated for anomalies.  This 

allows for us to keep track of those instances that are not direct ancestors of the 

normative pattern.  In the end, SUBDUE terminates processing when there are no more 

extensions to candidate substructures, while the GBAD-MPS algorithm continues 

processing all of the ancestral substructures, looking for the one that is closest in 

transformation cost to the normative pattern   

First, a list of substructures is maintained that consists of substructures (and 

their instances) that at some point during SUBDUE processing were used in evaluating 
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their potential for being the normative pattern.  Even if a substructure fails to make the 

“best” list at some point, it is still maintained on this list as a possible anomalous 

substructure.  While this list can be rather large (and deserves some future memory-

saving analysis), since the normative pattern is not known at this point, it has to be 

maintained until the final evaluation. 

Second, the algorithm takes this list of substructures and compares each 

substructure to the normative pattern.  If a substructure matches within the user 

specified anomalous threshold (cost of transformation), each of its instances is 

compared to the instances of the normative pattern.  If an instance overlaps one of the 

normative pattern’s instances (i.e., all of its edges and vertices are found in one of the 

normative instances), the instance is thrown out because it is considered one that could 

eventually extend to the normative pattern. 

Third, each instance in the candidate list of instances is given an anomalous 

score equal to its cost of transformation (for transforming the instance into the 

normative pattern).  Then, for each instance in the list that is isomorphic to another 

instance in the list, its anomalous score is increased by the value of its cost of 

transformation (i.e., cost of transformation * frequency). 

In the end, our GBAD-MPS implementation prints the anomalous instance (or 

instances, if their anomalous scores match).  This output is a little different from the 

other two algorithms in that no anomalous vertices and edges are indicated, just the 

entire anomalous instance.  Since what is anomalous is the lack of structure, a 
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comparison of the normative substructure to the anomalous substructure yields the 

anomalous differences. 

 
4.3.3 Examples 

The following are some simple examples of results obtained using our 

implementation of the GBAD-MDL algorithm described above. 

First, take the example shown in Figure 4.12. 

 
 

D

B

C A

B

C A

B

C A

D D D

B

C A

B

C A

D

 
Figure 4.12  Simple graph for GBAD-MPS example. 

 
The normative pattern (best substructure) from this graph is shown in Figure 4.13. 
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Figure 4.13  Normative pattern from simple graph for GBAD-MPS example. 
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Now, suppose we remove one of the edges and its associated vertex, from one of the 

instances of this normative pattern, creating the graph shown in Figure 4.14. 
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Figure 4.14  Simple graph for GBAD-MPS example with deleted vertex and edge. 

 
In other words, we removed one of the D vertices and its associated edge.  Running the 

maximum partial substructure approach on this modified graph, results in the 

anomalous instance shown in Figure 4.15. 

 

B

C A  
Figure 4.15  Anomalous instance from deletion example when using GBAD-MPS. 

 

However, this pattern is common to all of the normative instances.  So, for usefulness, 

our implementation reports the actual anomalous graph instance as specified in the input 

graph file (for example): 

    v 17 C 
    v 18 B 
    v 19 A 
    d 17 18 label 
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    d 19 17 label 
 

In this example, the actual vertex and edge numbers, as well as their labels, are output, 

allowing the user to go directly to the specific anomalous instance. 

Now, take the example shown in Figure 4.16. 

 

Figure 4.16  Geometric representation of example. 

We can convert the geometric representation of Figure 4.16 into the graph 

representation shown in Figure 4.17. 
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Figure 4.17  Larger graph for GBAD-MPS example. 

 
 
The normative pattern from this graph is shown in Figure 4.18. 
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Figure 4.18  Normative pattern from larger graph used for GBAD-MPS example. 

 
 
Suppose we remove one of the edges and its associated vertex from one of the instances 

of this normative pattern, creating the graph shown in Figure 4.19. 
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Figure 4.19  Larger graph, used for GBAD-MPS example, with deleted vertex and edge. 

 
Notice that even on this simple example, a quick eye-ball comparison of the difference 

between the two graphs is not easy.  In this case, the parts shown in Figure 4.20 were 

removed. 
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Figure 4.20  Parts removed from larger graph in GBAD-MPS example. 
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Running the GBAD-MPS algorithm on this modified graph results in the anomalous 

instance shown in Figure 4.21 being discovered. 
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Figure 4.21  Anomalous instance from larger graph when using GBAD-MPS. 

 
So, in this case, the instance was anomalous because it did not contain the “triangle” 

node or its ”shape” edge. 

 
4.4 Summary 

Each of these algorithms was designed to address one of three types of graph 

alterations.  Knowing that each of the types of anomalies consists of one of these 

changes, we know that if we address the three possible graph changes, we will be able 

to address all of the possible structural anomalies in a graph.  The GBAD-MDL 

algorithm, using the minimum description length principle, is designed to uncover label 

modifications; the GBAD-P algorithm, with a probabilistic approach, is setup to 

discover additional edges and vertices; and the GBAD-MPS algorithm, which looks for 

substructures that almost extended to the best pattern, is built to retrieve instances that 
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are missing graph parts.  While there was nothing algorithmically prohibiting us from 

building a single algorithm for handling the discovery of anomalous modifications, 

insertions and deletions, we would have to significantly open the search space so that 

we are examining substructures consisting of all three anomalous types, and thus a 

wider deviation from the normative pattern.  Whereas, if we maintain these algorithms 

separately, running each of them on a targeted data set, less memory and processing will 

be used in each approach, as each algorithm would only need a search space for its 

particular anomalous deviation to the normative pattern. 

One of the advantages of these algorithms lies in the fact that they are not 

implementation dependent.  While we are using GBAD as a tool to run these 

algorithms, they can be implemented with any graph-based tool, as long as that tool 

maintains a list of substructures and instances that are being evaluated.  Another 

advantage is that these algorithms do not just return the pattern of the anomaly – they 

also return the actual anomalous instances within the data.  In a real-world scenario, that 

can be invaluable to an analyst who may need to act upon a fraud situation before the 

losses are too great.  The disadvantage of these algorithms is that they are focused on 

specific anomalies: modifications, insertions and deletions.  Thus, in a real-world setup, 

it would require that all three algorithms be used in conjunction, as the type of anomaly 

would most likely be unknown and possibly a combination of the different anomaly 

types.    
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CHAPTER 5  

EMPIRICAL EVALUATIONS ON SYNTHETIC DATA 

 

The following sections contain the results when applying the algorithms to 

randomly-generated synthetic data.  Creating graphs of varying sizes, with normative 

patterns and anomalies of different sizes, our algorithms are empirically evaluated as to 

their effectiveness.  Later in this chapter we present results using multiple anomalous 

types, normative patterns of different shapes and overlapping instances.  We then 

conclude with some of the known limitations of the algorithms, as well as the running-

time performances of each of the approaches. 

  

5.1 Graph Generation 

Synthetic graphs were created using a tool called subgen that generates random 

graphs based upon user-specified parameters, including: 

• total number of vertices and edges 

• list of possible vertex and edge labels and their probabilities 

• substructure pattern 

• amount of connectivity 

• amount of overlap 
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Using these parameters, subgen computes the number of instances that need to be 

generated by calculating the size of the graph and dividing by the size of the 

substructure pattern.  If an overlap percentage is specified, the amount of common 

structure is calculated for each instance, and instances are randomly merged until the 

specified overlap is achieved.  After the graph is built from these instances, random 

vertices (based upon their probabilistic ratios) are added in order to achieve the desired 

graph size.  Then random edges (again based upon their probabilistic ratios) are added 

in order to achieve the specified connectivity level.  Finally, any additional edges are 

added in order to achieve the desired graph size.  As a result of running subgen, two 

output files are created: the graph file and a file containing the list of substructure 

instances. 

 

5.2 Synthetic Data 

In order to create our synthetic graphs, we use the subgen tool to randomly 

generate graphs, and use a tool we created to generate new modified graphs from these 

graphs where: 

• AV is the number of anomalous vertices in an anomalous substructure 

• AE is the number of anomalous edges in an anomalous substructure 

• V is the number of vertices in the normative pattern 

• E is the number of edges in the normative pattern 
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Each synthetic graph consists of substructures containing the normative pattern (with V 

number of vertices and E number of edges), connected to each other by one or more 

random connections, and each synthetic experiment consists of AV number of vertices 

and AE number of edges altered. 

For modification anomalies:  an AV number of vertices and AE number of 

edges, from the same randomly chosen normative instance, have their labels modified to 

randomly chosen, non-duplicating labels (e.g., we do not replace a vertex labeled “X” 

with another vertex also labeled “X”). 

For insertion anomalies:  randomly inserted AV vertices and AE edges, where 

the initial connection of one of the AE edges is connected to either an existing vertex in 

a randomly chosen normative instance, or to one of the already inserted AV vertices. 

For deletion anomalies:  randomly chosen AV vertices and AV edges, from a 

randomly chosen normative instance, are deleted along with any possible “dangling” 

edges (i.e., if a vertex is deleted, all adjacent edges are also deleted). 

In order to test graphs and substructures of varying sizes, we will need to adjust 

the total number of vertices and edges, as well as the size of the substructure pattern.  

Also, in order to be consistent across all of our regular tests, we will choose a 

connectivity setting of 1.0, signifying that the graph is connected.  The ability of the 

algorithms to discover anomalous instances in graphs that are not connected will be 

tested in a subsequent section on two real-world data sets:  cargo shipments and 

network traffic.  We have also chosen to have no overlapping instances, except for the 



 

 57

special overlap tests, in Section  5.11, where we specifically examine the effectiveness 

of the algorithms on substructures whose instances share vertices and edges.   

In addition, in order to better exemplify our definition of an anomaly, the 

distribution of randomly generated connections versus the anomalies is not the same.  In 

other words, if randomly generated connections have the same frequency as the 

anomalies, it would be difficult to distinguish between noise and anomalous behavior.  

Since our definition explicitly states that an anomaly is a slight unexpected deviation 

from the normal (to better hide the true nature of the action), its existence can not be as 

common as normal behaviors.  Now, that does not mean that anomalies are completely 

different from noise, just that their frequency is not as prevalent.  So, in order to achieve 

our goal, we will define in the subgen tool a distribution of 10-to-1 (i.e., random normal 

connections are ten times more likely than an anomaly).  Because the number of 

vertices and edges will vary among test sets, their label probabilities (i.e., the 

probability that a label will be used when vertices and edges are added in order to 

achieve the proper graph size and connectivity) are adjusted in order to reflect the 

desired ratio of noise to anomaly. 

It should also be noted that our tool for generating random graph edge/vertex 

insertions does not create self-edges.  This was done because compression would result 

in an edge pointing from the compressed substructure to itself, and would not be 

considered in future extensions.  In other words, we are not considering a normative 

pattern connected to itself. 
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Also, due to our definition of an anomaly, all tests will be limited to changes 

that constitute less than 10% of the normative pattern.  Again, since anomalies are 

supposed to represent slight deviations in normal patterns, an excessive change to a 

pattern is irrelevant.  However, in order to analyze the upper bounds effectiveness of 

these algorithms, we will also perform some tests at deviations above 10%. 

Each of the above is repeated for each algorithm, varying sizes of graphs, 

normative patterns, thresholds,  iterations and sizes of anomalies (where the size of the 

anomaly is |AV| + |AE|).  Also, due to the random nature in which structures are 

modified, each test will be repeated multiple times to verify its consistency. 

 

5.3 Metrics 

Each test consists of a single graph from which 30 randomly altered graphs are 

generated.  The output results consist of running the algorithms against those 30 graphs 

for the specified settings.    The primary three metrics calculated are: 

 

1. Percentage of runs where the complete anomalous substructure was 

discovered. 

2. Percentage of runs where at least some of the anomalous substructure 

was discovered. 

3. Percentage of runs containing false positives. 
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After the algorithm has completed running, the first metric represents the 

percentage of success when comparing the results to the known anomalies that were 

injected into the data.  If all of the anomalies are discovered for a particular run, that is 

counted as a success for that run.  For example, if 27 out of the 30 runs found all of their 

anomalies, the value for this metric would be 90.0. 

The second metric represents the percentage of runs where at least some part of 

the injected anomaly was discovered.  For example, if the anomaly consisted of 3 

vertices and 2 edges that had their labels changed, and the run reported only one of the 

anomalous vertices, then that run would be considered a success for this measurement.  

Obviously, this metric will always be at least as high as the first metric. 

The last metric represents the percentage of runs that reported at least one 

anomaly that was not one of the injected anomalies.  Since it is possible that multiple 

reported anomalous instances could have the same anomalous value, some runs may 

contain both correct anomalies and false ones.  Further tuning of these algorithms may 

enable us to discover other measurements by which we could “break the tie” when it 

comes to calculating an anomalous score. 

There will also be some run-time statistics showing the performance of the 

algorithms. 
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5.4 Shapes 

In addition to the types of anomalous changes, the “shape” of the normative 

pattern may affect the algorithms’ abilities to discover the anomalies.  The types of 

normative patterns that we are going to consider are: 

 

- single star 

- multiple connected stars (cluster) 

- single strand 

- network (cycle) 
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star cluster

single strand

network (cycle)  

Figure 5.1  Example shapes. 

 

In the following tests, we chose to use the cluster pattern as the baseline for the 

tests.  While we could have chosen any of these patterns, we felt that this pattern was 

the most representative of the types of real-world data that these approaches would be 

used for discovering anomalies.  For example (which will be shown in later tests), cargo 

shipments consist of ships, manifests, ports, etc…  An appropriate representation of this 

type of data would be where certain entities are hubs for common information (e.g., 

shipper, port, etc.), such that multiple manifests could share identical information.  
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There are many other types of pertinent information, such as telecommunication call 

records, terrorist networks, financial transactions, etc. which share this same cluster 

type of topology. 

We will include another section later in this chapter that will test for each of the 

patterns identified in Figure 5.1. 

 

5.5 Information Theoretic Results 

In this section, and the subsequent two sections, tables and figures will represent 

a summary of the results obtained for the different tests.  For each approach, the 

synthetic experiments will represent modifications (i.e., vertices and edges modified 

within an instance of the normative pattern), insertions (i.e., additional vertices and 

edges connected to the normative pattern), and deletions (i.e., vertices and edges 

missing from what could have been an instance of the normative pattern).  While each 

of the algorithms was designed to handle different types of anomalies, each approach 

will be evaluated as to their effectiveness across all types. 

It should be noted that for each of the following GBAD-MDL tests, to improve 

performance, we will prune substructures whose values are less than their parent’s.  

While this could result in a loss of accuracy, previous testing has shown this to not be 

the case in most situations. 
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5.5.1 Modifications 

Figure 5.2 and Figure 5.3 show the effectiveness of the GBAD-MDL approach 

on graphs of varying sizes, with a normative pattern of 10 vertices and 10 edges, with 

random anomalous modifications.  In these figures (and subsequent figures), the X-axis 

represents the thresholds, the Y-axis is the percentage of anomalies discovered, and the 

Z-axis indicates the sizes of the normative patterns, graphs and anomalies (i.e., <number 

of vertices in the normative pattern>/<number of edges in the normative 

pattern>/<number of graph vertices>/<number of graph edges>-<# of anomalous 

changes>). 
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Figure 5.2  Percentage of GBAD-MDL runs where all anomalies discovered. 
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Figure 5.3  Percentage of GBAD-MDL runs where at least one anomaly discovered. 

 

For the very small synthetic tests (not shown in Figures 5.2 and 5.3), when the 

threshold is high enough (i.e., the threshold is equal to or higher than the percentage of 

change), this approach is able to find all of the anomalies, and at no point were any false 

positives registered.  For example, when the normative pattern is of size 6 (3 vertices 

and 3 edges), we have to set the threshold higher than 0.1. This is done because with a 

normative pattern of size 6, even just a change of a single vertex and a single edge 

would require a threshold of at least 0.33 in order to discover such an anomaly.  Thus, 

when we set the threshold to 0.035, the algorithm is able to find 100% of the anomalies 

for a change of size 2.  Similarly, when we set the threshold to 0.2, GBAD-MDL is able 
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to find all of the single anomalous modifications (as 0.167% of the normative pattern is 

changed). 

For all tests where the threshold is 0.1 or less, no false positives are reported.  

However, when we increase the threshold to 0.2, a few false positives are reported.  For 

a threshold of 0.2, we are basically saying that we want to analyze patterns that are up 

to 20% different.  Such a huge window results in some noise being considered (along 

with the actual anomalies, as all of the anomalous instances are discovered).  

Fortunately, our definition of what is truly an anomaly would steer us towards 

observing runs with lower thresholds. 

In Figure 5.2 and Figure 5.3, we observe that no complete anomalies are 

discovered in the graphs of 10,000 vertices and 10,000 edges when the size of the 

anomaly is either 2 or 3.  This is due to the fact that we get 100% false positives in both 

of those situations (actually, 87.88% in the case where the size of the anomaly is 3, but 

that is just coincidental), because every graph contains at least one substructure (and 

usually a few more) that consists of smaller changes (i.e., either a single vertex or a 

single edge).  As the graph grows in size, more substructure connections are made in the 

random generation of the graph, leading to the likelihood that a substructure will be 

created that is similar to the normative pattern (i.e., within the inexact matching 

threshold) but consists of a smaller modification than the induced anomaly.  This issue 

accentuates one of the drawbacks of the GBAD-MDL algorithm, in that this algorithm 

assumes that the anomaly is the smallest modification to the normative substructure.  

Further testing of this observation has shown that the anomaly is discovered, but the 
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anomalous value is always higher than the noisy substructure (or substructures) that are 

able to score lower because they require fewer changes to match the normative pattern.   

When the size of the normative pattern is larger, smaller thresholds can be used 

in order to uncover small changes to the structure.  Figure 5.4, Figure 5.5 and Figure 5.6 

represent the use of finer thresholds for the discovery of very small anomalies (1 to 3 

changes) to a normative pattern of 30 vertices and 30 edges. 

0.
01

5

0.
01

6

0.
01

7

0.
02

0.
02

5

0.
03

0.
03

5

0.
03

6

0.
03

7

0.
03

8

0.
4

0.
04

2

0.
04

3

0.
04

5

0.
05

30/30/1000/1000-1v
30/30/1000/1000-1e

30/30/1000/1000-2
30/30/1000/1000-3

0

10

20

30

40

50

60

70

80

90

100

percentage

threshold

30/30/1000/1000-1v
30/30/1000/1000-1e
30/30/1000/1000-2
30/30/1000/1000-3

 
Figure 5.4  Percentage of GBAD-MDL runs where all anomalies are discovered (finer granularity). 
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Figure 5.5  Percentage of GBAD-MDL runs where at least one anomaly is discovered (finer 

granularity). 
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Figure 5.6  Percentage of GBAD-MDL runs with false positives (finer granularity). 
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5.5.2 Insertions 

Figure 5.7, Figure 5.8 and Figure 5.9 show the effectiveness of the GBAD-MDL 

approach on graphs of varying sizes with random anomalous insertions. 
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Figure 5.7  Percentage of GBAD-MDL runs where all anomalous insertions are discovered. 
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Figure 5.8  Percentage of GBAD-MDL runs where at least one anomalous insertion is discovered. 

0.01 0.025 0.05 0.075 0.1

3/3/100/100-2
3/3/100/100-4

10/10/100/100-2
10/10/100/100-4

10/10/1000/1000-2
10/10/1000/1000-4

30/30/1000/1000-2
30/30/1000/1000-4

30/30/1000/1000-6

0

10

20

30

40

50

60

70

80

90

100

percentage

threshold

3/3/100/100-2
3/3/100/100-4
10/10/100/100-2
10/10/100/100-4
10/10/1000/1000-2
10/10/1000/1000-4
30/30/1000/1000-2
30/30/1000/1000-4
30/30/1000/1000-6

 
Figure 5.9  Percentage of GBAD-MDL runs on anomalous insertions containing false positives. 
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On the smaller graphs, no matter how large the anomaly or the size of the 

threshold, none of the anomalous insertions are discovered.  Even when unrealistically 

large thresholds (i.e., above 0.1) are used, we are unable to find any of the insertion 

anomalies. 

Two observations about the effectiveness of this algorithm on anomalous 

insertions are evident in these results.  First, in the situation where the anomaly is a 

single edge and vertex, there is some success because the insertion is “close” to the 

normative pattern (a direct connection).  Second, the effectiveness clearly drops off as 

the insertions get further away from the normative pattern, and the few successes can be 

attributed to the random insertions being close to the normative pattern (e.g., an 

anomaly of size 4 that consists of two edges and two vertices that are directly connected 

to the normative pattern via different vertices).  

This is clearly not an effective solution for anomalous insertions. 

 
5.5.3 Deletions 

The following tables show the effectiveness of the GBAD-MDL approach on 

graphs of varying sizes with random anomalous deletions.  It should be noted that we 

chose to represent these results as a table because of the scarcity of non-zero results and 

the relatively few differences in values. 
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Table 5.1  Percentage of GBAD-MDL runs where all anomalous deletions are discovered. 

Graph Size 
(Norm Pattern) 

<anomaly size> 
0.01 0.025 0.05 0.075 0.1 0.2 0.3 0.35 

100 vertices/100 edges 
(3 vertices/3 edges)  

<1 vertex/1 edge> --- --- --- --- --- 0 0 0 
<2 vertices/2 edges> --- --- --- --- --- 0 0 0 

100 vertices/100 edges 
(10 vertices/10 edges)  

<1 vertex> --- --- 0 0 0 0 --- --- 
<1 edge> --- --- 0 0 0 20.0 --- --- 

<1 vertex/1 edge> --- --- 0 0 0 0 --- --- 
<2 vertices/1 edge> --- --- 0 0 0 0 --- --- 

1000 vertices/1000 edges 
(10 vertices/10 edges)  

<1 vertex> --- 0 0 0 0 0 --- --- 
<1 edge> --- 0 0 0 0 0 --- --- 

<1 vertex/1 edge> --- 0 0 0 0 0 --- --- 
<2 vertices/1 edge> --- 0 0 0 0 0 --- --- 

1000 vertices/1000 edges 
(30 vertices/30 edges)  

<1 vertex> 0 0 3.33 0 0 --- --- --- 
<1 edge> 0 0 0 3.33 0 --- --- --- 

<1 vertex/1 edge> 0 0 0 0 0 --- --- --- 
<2 vertices/1 edge> 0 0 0 0 0 --- --- --- 

<2 vertices/2 edges> 0 0 0 0 0 --- --- --- 
<2 vertices/3 edges> 0 0 0 0 0 --- --- --- 
<3 vertices/3 edges> 0 0 0 0 0 --- --- --- 
<4 vertices/3 edges> 0 0 0 0 0 --- --- --- 
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Table 5.2  Percentage of GBAD-MDL runs where at least one anomalous deletion is discovered. 

Graph Size 
(Norm Pattern) 

<anomaly size> 
0.01 0.025 0.05 0.075 0.1 0.2 0.3 0.35 

100 vertices/100 edges 
(3 vertices/3 edges)  

<1 vertex/1 edge> --- --- --- --- --- 0 0 0 
<2 vertices/2 edges> --- --- --- --- --- 0 0 0 

100 vertices/100 edges 
(10 vertices/10 edges)  

<1 vertex> --- --- 0 0 0 30.0 --- --- 
<1 edge> --- --- 0 6.67 43.33 93.33 --- --- 

<1 vertex/1 edge> --- --- 0 0 0 25.0 --- --- 
<2 vertices/1 edge> --- --- 0 0 0 13.33 --- --- 

1000 vertices/1000 edges 
(10 vertices/10 edges)  

<1 vertex> --- 0 0 0 0 0 --- --- 
<1 edge> --- 0 0 0 0 0 --- --- 

<1 vertex/1 edge> --- 0 0 0 0 0 --- --- 
<2 vertices/1 edge> --- 0 0 0 0 1.11 --- --- 

1000 vertices/1000 edges 
(30 vertices/30 edges)  

<1 vertex> 0 0 33.33 0 6.67 --- --- --- 
<1 edge> 0 0 0 6.67 0 --- --- --- 

<1 vertex/1 edge> 0 0 8.33 0 0 --- --- --- 
<2 vertices/1 edge> 0 0 0 0 0 --- --- --- 

<2 vertices/2 edges> 0 0 0 0 0 --- --- --- 
<2 vertices/3 edges> 0 0 0 0 0 --- --- --- 
<3 vertices/3 edges> 0 0 0 0 0 --- --- --- 
<4 vertices/3 edges> 0 0 0 0 0 --- --- --- 
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Table 5.3  Percentage of GBAD-MDL runs with anomalous deletions that return false positives. 

Graph Size 
(Norm Pattern) 

<anomaly size> 
0.01 0.025 0.05 0.075 0.1 0.2 0.3 0.35 

100 vertices/100 edges 
(3 vertices/3 edges)  

<1 vertex/1 edge> --- --- --- --- --- 0 0 0 
<2 vertices/2 edges> --- --- --- --- --- 0 0 0 

100 vertices/100 edges 
(10 vertices/10 edges)  

<1 vertex> --- --- 0 0 0 61.7 --- --- 
<1 edge> --- --- 0 0 7.14 21.43 --- --- 

<1 vertex/1 edge> --- --- 0 0 0 53.12 --- --- 
<2 vertices/1 edge> --- --- 0 0 0 48.94 --- --- 

1000 vertices/1000 edges 
(10 vertices/10 edges)  

<1 vertex> --- 0 0 0 0 0 --- --- 
<1 edge> --- 0 0 0 0 0 --- --- 

<1 vertex/1 edge> --- 0 0 0 0 0 --- --- 
<2 vertices/1 edge> --- 0 0 0 0 0 --- --- 

1000 vertices/1000 edges 
(30 vertices/30 edges)  

<1 vertex> 0 0 0 0 96.97 --- --- --- 
<1 edge> 0 0 100 93.55 100 --- --- --- 

<1 vertex/1 edge> 0 0 16.67 0 0 --- --- --- 
<2 vertices/1 edge> 0 0 100 100 100 --- --- --- 

<2 vertices/2 edges> 0 0 100 100 100 --- --- --- 
<2 vertices/3 edges> 0 0 100 100 100 --- --- --- 
<3 vertices/3 edges> 0 0 100 100 100 --- --- --- 
<4 vertices/3 edges> 0 0 100 100 100 --- --- --- 

 
 
Due to the scarcity of anomalies being discovered and the high false-positive rates, it is 

clear that the GBAD-MDL is not useful in discovering anomalous deletions. 

 
5.5.4 Denser Graphs 

For the following tests, we increased the ratio of edges to vertices so as to create 

a denser graph.  In this case, each vertex in the normative structure has a degree of 5 

(i.e., five edges), as opposed to what was created for the previous tests where the 
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number of edges matched the number of vertices, and the average degree was 2.  The 

size of the source graph is approximately 1000 vertices and 3000 edges, with a 

normative pattern of 10 vertices and 30 edges. 

Table 5.4  Percentage of GBAD-MDL runs on dense graphs where all anomalous modifications are 
discovered. 

Size of Anomaly 0.01 0.025 0.05 0.075 0.1 0.125 
1 vertex 0 100 100 100 100 36.67 

1 edge 0 100 100 100 100 96.67 
1 vertex/1 edge 0 0 100 100 100 13.33 

2 vertices/1 edge 0 0 0 100 100 100 
2 vertices/2 edges 0 0 0 0 80.0 80.0 
2 vertices/3 edges 0 0 0 0 0 100 

  

Table 5.5  Percentage of GBAD-MDL runs on dense graphs where at least one anomalous 
modification is discovered. 

Size of Anomaly 0.01 0.025 0.05 0.075 0.1 0.125 
1 vertex 0 100 100 100 100 73.33 

1 edge 0 100 100 100 100 100 
1 vertex/1 edge 0 0 100 100 100 13.33 

2 vertices/1 edge 0 0 0 100 100 100 
2 vertices/2 edges 0 0 0 0 95.0 95.0 
2 vertices/3 edges 0 0 0 0 60.0 100 

  

Table 5.6  Percentage of GBAD-MDL runs on dense graphs that return false positives. 

Size of Anomaly 0.01 0.025 0.05 0.075 0.1 0.125 
1 vertex 0 0 0 0 0 46.34 

1 edge 0 0 0 0 0 34.83 
1 vertex/1 edge 0 0 0 0 0 71.43 

2 vertices/1 edge 0 0 0 0 0 0 
2 vertices/2 edges 0 0 0 0 0 0 
2 vertices/3 edges 0 0 0 0 0 0 

  

With a 100% discovery rate and no false positives, when the threshold is at 10% 

or less, these results confirm that even when the graphs are dense, the effectiveness of 

GBAD-MDL is not compromised.  Due to the wide deviations in its discovery rate at a 
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threshold above 10%, the effectiveness becomes sporadic as more noise is accepted into 

the evaluations, particularly when the anomalous change is minimal. 

5.5.5 Extremes 

In a few of the examples shown in the previous sections, we used thresholds 

and/or anomalies that were greater than the 10% which begins to violate our definition 

of an anomaly.  This produced some interesting results that showed the effectiveness of 

the GBAD-MDL algorithm beyond the intended upper bounds. 

In the following tables, notice the effectiveness of the information theoretic 

approach when the threshold used is greater than 0.1 for a graph of approximately 100 

vertices and 100 edges, with a normative pattern of 10 vertices and 10 edges. 

 
Table 5.7  Percentage of GBAD-MDL extreme runs where all anomalous modifications are 

discovered. 

 Size of Anomaly 
(% of normative 
pattern) 0.1 0.2 0.3 0.4 0.5 

2  (10%) 100 100 83.33 93.33 96.67 
3  (15%) 0 96.67 30.0 100 93.33 
4  (20%) 0 86.67 30.0 33.33 83.33 
5  (25%) 0 0 16.67 13.33 40.0 
6  (30%) 0 0 53.33 16.67 36.67 
7  (35%) 0 0 0 3.33 20.0 
8  (40%) 0 0 0 16.67 16.67 
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Table 5.8  Percentage of GBAD-MDL extreme runs where at least one anomalous modification is 

discovered. 

Size of Anomaly 
(% of normative 
pattern) 0.1 0.2 0.3 0.4 0.5 

2  (10%) 100 100 83.33 93.33 98.33 
3  (15%) 0 96.67 70.0 100 97.78 
4  (20%) 0 89.17 40.0 37.50 90.83 
5  (25%) 0 46.67 26.67 26.0 50.67 
6  (30%) 0 16.67 70.0 23.33 58.89 
7  (35%) 0 4.76 55.24 9.05 33.81 
8  (40%) 0 2.5 15.0 38.75 30.42 

 
 

Table 5.9  Percentage of GBAD-MDL extreme runs that return false positives. 

Size of Anomaly 
(% of normative 
pattern) 0.1 0.2 0.3 0.4 0.5 

2  (10%) 100 3.23 45.65 3.45 3.23 
3  (15%) 0 3.33 50.0 0 0 
4  (20%) 0 10.0 51.61 62.5 0 
5  (25%) 0 21.88 67.74 60 39.29 
6  (30%) 0 59.38 26.67 63.64 25.0 
7  (35%) 0 80.65 20.0 86.84 65.91 
8  (40%) 0 86.92 61.76 58.06 64.82 

 
 

For the small anomalies, the results are effective at all thresholds, with some 

degradation at the higher thresholds.  However, despite some occasional positive 

indications of effectiveness, the results are sporadic the larger the anomaly and the 

higher the threshold.  If we were to institute a different definition of anomaly, it is 

possible that our current algorithms would not be effective. 
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5.6 Probabilistic Results 

For each of the following tests, we will implement the following GBAD 

settings: 

- prune substructures whose value is less than their parent’s (for 

performance) 

- only analyze extensions found in the top 10 best substructures (for 

performance) 

- allow the program to iterate (i.e., compress and run again) until there 

is nothing left to compress 

For these experiments we will not perform any single vertex tests because one can not 

insert a new vertex without also inserting a new edge.   

 
5.6.1 Insertions 

The following table shows the effectiveness of the GBAD-P approach on graphs 

of varying sizes with random anomalous insertions. 
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Table 5.10  Percentage of discovery for GBAD-P runs on anomalous insertions. 

Graph Size 
(Norm Pattern) 

<anomaly size> 
All Anomalies Partial Anomalies False Positives 

100 vertices/100 edges 
(3 vertices/3 edges)  

<1 vertex/ 1edge> 100 100 0 
<2 vertices/2 edges> 100 100 0 

100 vertices/100 edges 
(10 vertices/10 edges)  

<1 vertex/ 1edge> 100 100 0 
<2 vertices/ 2 edges> 100 100 0 
<3 vertices/3 edges> 100 100 0 

<4 vertices/ 4 edges> 100 100 0 
<5 vertices/5 edges> 93.33 93.33 0 

1000 vertices/1000 edges 
(10 vertices/10 edges)  

<1 vertex/ 1edge> 100.0 100.0 0 
<2 vertices/ 2 edges> 100.0 100.0 0 
<3 vertices/3 edges> 93.33 95.56 0 

1000 vertices/1000 edges 
(30 vertices/30 edges)  

<1 vertex/ 1edge> 93.33 93.33 0 
<2 vertices/ 2 edges> 96.55 96.55 0 
<3 vertices/3 edges> 93.33 93.33 0 

10000 vertices/10000 edges 
(10 vertices/10 edges)  

<1 vertex/ 1edge> 96.67 96.67 0 
<2 vertices/ 2 edges> 100 100 0 
<3 vertices/3 edges> 93.33 98.33 0 

10000 vertices/10000 edges 
(30 vertices/30 edges)  

<1 vertex/ 1edge> 100 100 0 
<2 vertices/ 2 edges> 93.10 95.69 0 
<3 vertices/3 edges> 90.0 95.56 0 

<4 vertices/ 4 edges> 96.0 96.0 0 
<5 vertices/5 edges> 96.43 99.64 0 

  

 
In the example with 1000 vertices/1000 edges and a normative pattern of 10 

vertices/10 edges, even though some unrealistic anomaly sizes were used (representing 
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20-30% of the normative pattern), this approach is still effective.  This same behavior 

can be observed in larger graphs as well. 

As a further experiment, we also tried this approach on different distributions, 

varying the number of vertices versus the number of edges (e.g., adding more edges 

than vertices by creating more edges between existing vertices), and also reducing the 

distribution difference between noise and anomalies.  In all cases, the results were 

relatively the same, with never less than 96.67% of the anomalous instances being 

found for anomalies of size 8 (or 40% of the normative pattern) or less, with the lowest 

discovery rate being 90% for an anomaly of size 10 (or 50% of the normative pattern). 

There are several parameters that can be adjusted in these algorithms, two of 

which are the beam width of the search and the limit on the number of substructures to 

consider in each iteration.  Each of these values is an adjustable parameter so as to aid 

in the issue of performance primarily due to the number of calls to the graph 

isomorphism procedure.  By default, the beam is set to a value of 4.  The beam specifies 

at each level of the search the number of paths being considered.  So, the search beam 

width can be adjusted when we are looking for anomalies.  As a result, there is a 

tradeoff between time and memory.  With each increase in the size of the beam, not 

only is there an increase in CPU time, but the amount of memory required to store all of 

the possibilities is prohibitive.  By default, the number of substructures considered in 

each iteration is based upon the size of the input graph as (number of edges)/2.  While 

many years of experimentation with SUBDUE have shown that the normative pattern 

(or best substructure) should be discovered with these default settings, because the 
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GBAD algorithms need to examine substructures beyond the normative, the limit may 

need to be increased in order to consider other possible substructures.  The limit 

parameter controls the extent of SUBDUE’s search by limiting the number of different 

substructures SUBDUE considers for expansion, i.e., it is an upper bound on the portion 

of the search space considered by SUBDUE.  The limit defaults to half the number of 

edges in the graph. This default value tends to be enough (and higher than necessary in 

some cases), as SUBDUE typically finds the best substructure early on.  However, 

again, as with the increasing of the beam width, there is a tradeoff associated with 

achieving 100% accuracy versus time and memory usage.  To demonstrate this point, 

for each of the tests shown in Table 5.10 where the detection rate is less than 100%, we 

incrementally increased the beam width and limit until all anomalies were discovered.  

(It should be noted that from the original settings until we reached a 100% discovery 

rate, no false positives were reported.)  In these tests, the larger the graphs and the 

larger the normative pattern, the larger the beam and limit had to be set.  In order to get 

a 100% discovery rate on the largest graphs with the largest normative patterns (in this 

case, 10,000 vertices/10,000 edges, with a normative pattern of 30 vertices/30 edges), 

we had to increase the beam width to 20 with a limit of 200,000.  The limit is based 

upon SUBDUE’s limit on substructures considered, which to allow consideration of a 

pattern with V vertices, we have to set the limit equal to the (number of initial 

substructures) + (V * beam width), where the number of initial substructures is the 

number of unique vertex labels that appear more than once in the graph. The second 

term derives from the fact that SUBDUE considers each substructure in the beam before 
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considering extensions to these substructures. Thus, ((V-1) * beam width) substructures 

will be considered before a substructure of size V is considered.  In the case of this 

experiment, this increase also results in approximately an 11% increase in execution 

time, with a minimal increase in memory usage. 

Also, as was mentioned earlier, this approach is incrementally discovering 

single extensions from compressed substructures.  Since the random generation of the 

anomalies could introduce multiple edges between the same two vertices, compressing 

the normative pattern at an iteration could result in a second duplicate edge being 

missed or ignored, as it would just appear to be a self-edge to a compressed 

substructure. 

 
5.6.2 Modifications 

Running modification tests on graphs of 100 vertices/100 edges and 1000 

vertices/1000 edges results in no anomalies, partial or complete, being discovered, and 

no false positives reported.  The issue with trying to find modifications using the 

Probabilistic approach lies in the way the algorithm examines extensions.  

Modifications are changes to the normative pattern, while the Probabilistic approach is 

examining edges and vertices that are connected to a normative pattern.  Since modified 

anomalies are connected to substructures that are not the best substructure (or normative 

pattern), examination of extensions would not consider these anomalies.  While we 

could look for smaller patterns (i.e., a substructure of the true normative pattern that 
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does not include the modified vertices and edges), that would go against our principle of 

what is the normative (and best) pattern.  

 
5.6.3 Deletions 

Running deletion tests on graphs of 100 vertices/100 edges and 1000 

vertices/1000 edges results in no anomalies, partial or complete, being discovered, and 

no false positives reported. 

Again, the Probabilistic approach is examining extensions from the normative 

pattern.  Intuitively, it makes sense that anomalous deletions would be difficult to 

discover with this approach, as they could almost be considered the opposite of what we 

are hoping to uncover.   

5.6.4 Denser Graphs 

As was done when we tested the GBAD-MDL algorithm, the following results 

represent tests using graphs where we increased the ratio of edges to vertices so as to 

create a denser graph.   

 
Table 5.11  Percentage of discovery for GBAD-P runs on denser graphs with anomalous insertions. 

Size of Anomaly  
(% of normative) 

All Anomalies Partial Anomalies  False Positives 

2  (5%) 96.67 96.67 0 
4  (10%) 83.33 89.17 1.79 
6  (15%) 93.33 98.89 0 

 
When compared to the results shown in Table 5.10, it is clear that the density of 

the graph does not have much of an effect on the results.  For instance, when compared 
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to the graphs of 1000 vertices/1000 edges or larger, the results are both around the 90% 

discovery rate with almost 0% false positives. 

  

5.7 Maximum Partial Substructure Results 

For each of the following tests, we will implement the following GBAD 

settings: 

 
- prune substructures whose value is less than their parent’s (for performance) 

- only analyze the top 25 ancestral substructures (for performance) 

- a cost of transformation (or anomalous) threshold of 8.0, so as to ignore 

substructures that would have too many changes to be considered an anomaly 

(based upon our definition of an anomaly) 

 
The threshold value of 8.0 was chosen based upon our definition of an anomaly and the 

maximum size of the normative patterns.  For each of the following experiments, we 

will use an anomalous ratio of 10% or less to normative patterns with a maximum of 30 

vertices and 30 edges.  By choosing a value of 8.0, we are guaranteed to consider an 

anomalous instance with at most 8 changes.  While we can use a threshold greater than 

8.0, there is always a tradeoff between noise and actual anomalies, so with the 

expectation that the anomalies will always be around 10% or less of a deviation from 

the norm, we have chosen a value that will discover the targeted anomalies with 

minimal false positives.  Note that “partial-anomalies” do not apply for this approach.  
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Either an instance is anomalous because it is missing some edges and vertices that exist 

in the normative pattern, or it is not considered anomalous. 

 
5.7.1 Deletions 

The following table shows the effectiveness of the GBAD-MPS approach on 

graphs of varying sizes with random anomalous deletions. 
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Table 5.12  Percentage of discovery for GBAD-MPS runs on anomalous deletions. 

Graph Size 
(Norm Pattern) 

<anomaly size> 
All Anomalies False Positives 

100 vertices/100 edges 
(3 vertices/3 edges)  

<1 vertex and associated 
edges> 100 0 

<1 edge> 100 0 
<1 vertex/1 edge> 100 0 

100 vertices/100 edges 
(10 vertices/10 edges)  

<1 vertex and associated 
edges> 100 0 

<1 edge> 100 0 
<1 vertex/1 edge> 100 0 

<2 vertices/1 edge> 100 0 
1000 vertices/1000 edges 
(10 vertices/10 edges)  

<1 vertex> 100 0 
<1 edge> 100 0 

<1 vertex/1 edge> 100 0 
<2 vertices/1 edge> 100 0 

1000 vertices/1000 edges 
(30 vertices/30 edges)  

<1 vertex> 100 0 
<1 edge> 100 0 

<1 vertex/1 edge> 100 0 
<2 vertices/1 edge> 100 0 

<2 vertices/2 edges> 100 0 
<2 vertices/3 edges> 100 0 
<3 vertices/3 edges> 100 0 

10000 vertices/10000 edges 
(10 vertices/10 edges)  

<1 vertex> 100 0 
<1 edge> 100 0 

<1 vertex/1 edge> 100 0 
<2 vertices/1 edge> 100 0 

10000 vertices/10000 edges 
(30 vertices/30 edges)  

<1 vertex> 100 0 
<1 edge> 100 0 

<1 vertex/1 edge> 100 0 
<2 vertices/1 edge> 100 0 

<2 vertices/2 edges> 100 0 
<2 vertices/3 edges> 100 0 
<3 vertices/3 edges> 100 0 
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Initially, the results from the runs on the graph with 1000 vertices and 1000 

edges, where the normative pattern consists of 30 vertices and 30 edges resulted in very 

low detection rates.  However, when we increase the number of ancestral substructures 

(to analyze) to 100, and increase the anomalous threshold (i.e., cost of transformation * 

frequency) to 50.0, the results improve to what is shown.  The reason that the number of 

best substructures and the threshold has to be increased is that as the size of the anomaly 

grows (i.e., the number of vertices and edges deleted increases), the further away the 

cost of transformation for the anomalous instance is from the normative pattern.  So, a 

good rule of thumb is to choose an anomalous threshold based upon the size of the 

normative pattern.  For instance, GBAD could be run first to determine the normative 

pattern, then based upon the size of the normative pattern, we can determine the 

maximum size of an anomaly (e.g., around 10%), choose a cost of transformation that 

would allow for the discovery of an anomaly that size, and then rerun the algorithm 

with the new threshold. 

 
5.7.2 Modifications 

Running tests on graphs of 100 vertices/100 edges and 1000 vertices/1000 edges 

results in no anomalies, partial or complete, being discovered, and a 100% false positive 

rate. 

Examination of the output reveals that while it does not find any of the true 

anomalies, it appears that every false positive is actually “around” the anomaly.  For 

instance, if the anomaly is vertex X (of vertices X, Y and Z), it might display Y as the 
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anomaly.  Or, if the anomaly is vertex X and the edge between X and Y, it might 

display Z and the edge between Y and Z as the anomaly.  In other words, the reported 

anomaly is adjacent to the actual anomaly.   

For example, in the case where the graph contains (before the anomalous 

modification is made) the normative pattern shown in Figure 5.10. 

 
v2

v1 v3

e1

e3

e2

 
Figure 5.10  Example normative pattern. 

 
When we change the label on the vertex labeled v3 to the new label of v1, and the label 

on the edge labeled e3 to the new label of e4, the GBAD-MPS algorithm reports the 

instance shown in Figure 5.11 as anomalous. 

 
v2

v1

e1

 
Figure 5.11  Anomalous instance from example. 

 
As one can see, it does not report the actual anomalous vertex and/or edge, but it does 

report the rest of the vertices and edge (except for the other edge that was connected to 

the anomalous vertex) that were part of the instance before it was modified.  While not 

ideal, a user might find that useful in that they could then examine vertices and edges 

surrounding this reported anomaly. 
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It should also be noted that while the output of false positives can be reduced by 

decreasing either the anomalous threshold or the number of substructures to be 

considered, it does not result in any anomalous modifications being discovered. 

5.7.3 Insertions 

When running tests on 100 vertices/100 edges and 1000 vertices/1000 edges the 

GBAD-MPS algorithm does not discover any anomalies.  As with the previous tests, 

since no anomalies are discovered in any of the tests up to this point (also there are no 

false positives), there is no reason to continue with these experiments.  If the GBAD-

MPS algorithm is unable to find anomalous insertions on small graphs where the 

normative pattern is known, it will be unable to find insertions on much larger graphs.   

5.7.4 Denser and Larger Graphs 

Identical to the previous two approaches, we increased the ratio of edges to 

vertices so as to create a denser graph.   

Table 5.13  Percentage of discovery for GBAD-MPS runs on denser graphs with anomalous 
deletions. 

Size of Anomaly All Anomalies False Positives 

1  (edge) 100 0 
1  (vertex AND associated edges) 100 0 
2  (vertex and edge) 100 0 
3 100 0 
4 100 0 
5 100 0 

 
Again, the results from the denser graphs mirror those of the previous runs, as all of the 

anomalies are discovered with no false positives reported. 
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We also experimented on larger graphs, on the order of 20,000 vertices and 

20,000 edges, with anomalies of varying sizes.  While the running times and amount of 

memory required increased significantly, the results are the same.  The GBAD-MPS 

algorithm is able to discover all of the anomalies with no false positives. 

 

5.8 Handling Multiple Types 

In the real world, it is more than likely that the type of anomaly will be 

unknown and/or the anomalous situation will consist of more than one type of anomaly.  

In the case where the type of anomaly is unknown, that will require us to run all three 

algorithms on the data and observe which algorithms reports anomalies.  In actual fraud 

detection, companies employ many different types of algorithms and tools, each with a 

purpose of finding different types of fraud.  For example, telecommunications 

companies use algorithms such as call volumes over a specified time period, calls from 

particular hot numbers, or increased volume from a single calling card as part of a suite 

of tools for detecting fraud.  Each approach is focused on a specific type of anomaly, 

and will raise an alarm to an analyst if a flag is set or a threshold is exceeded.  Similar 

to our approach, each algorithm is focused on detecting a specific type of anomaly, and 

together they can discover all possible types of graph-based structural anomalies.   

However, there is also the scenario where the anomalous situation consists of 

multiple anomalous types.  In other words, an anomalous substructure could be 

composed of a modification, insertion and deletion.  An example of this is a fraudulent 

financial transaction where the perpetrator has generated an unexpected transaction type 
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(modification), routed the money through another financial institution (insertion), and 

omitted some identification information (deletion).  Another actual example of multiple 

anomalous types will be shown in the next chapter. 

In order to determine the effectiveness of our algorithms in this scenario, we 

have to modify the approach we originally used for setting the normative pattern.  

However, we fortunately do not have to make any modifications to the algorithms 

themselves.  Each algorithm can still be focused on discovering a particular type of 

anomaly, but now they must base their analysis on the pattern discovered by one of the 

other algorithms.  To understand how this works, take the situation where the 

anomalous substructure that we wish to discover contains all three types of anomalies – 

modifications, insertions and deletions – as shown in Figure 5.12, where the modified 

label is an X, the inserted vertex (labeled Y) and edge are in bold, and the deleted vertex 

(labeled Z) and edge (which would be missing from the anomalous instance) are 

separated from the rest of the substructure. 
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Y

X
Z

 

Figure 5.12 Substructure containing a modification, insertion and deletion. 

 

In this example, suppose the normative pattern consists of all of the vertices and 

edges shown in this substructure excluding the inserted edge and vertex (shown 

darkened).  When we run all three GBAD algorithms on the graph containing this 

normative pattern and this anomalous substructure, two steps are involved.  On the first 

iteration, we run the GBAD-MDL and GBAD-MPS algorithms to determine the 

normative patterns and the base anomalous substructure.  Using an inexact matching 

threshold of 0.15 (to allow for the modified vertex and the deleted vertex and edge), the 

GBAD-MDL and GBAD-MPS algorithms produce the anomalous substructure shown 

in Figure 5.13, with the anomaly (so far) labeled. 
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X

anomaly

 

Figure 5.13  Anomalous substructure after one iteration. 

 

On the second and subsequent iterations, the GBAD-P algorithm uses the 

anomalous substructure as its base substructure for evaluating extensions.  The 

difference in this implementation of the algorithm is that it is initially using the 

anomalous substructure as the normative pattern, instead of the true normative 

substructure that is used when GBAD-P is used by itself, where the list of instances of 

the true normative substructure is maintained so that extensions can be evaluated to find 

which of the extensions of the anomalous substructure have the lowest probability.  The 

result (in this example, after just one more iteration), is the anomalous substructure in 

Figure 5.14 with each of the individual anomalies labeled. 
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anomaly

anomaly
anomaly

 

Figure 5.14  Anomalous substructure after two iterations using all GBAD algorithms. 

 

And, of course, when compared to the normative pattern, the missing vertex and edge 

will be seen as the anomalous deletion. 

In order to thoroughly test our approach, we will generate random graphs of 100 

vertices and 100 edges, with a normative pattern of 10 vertices and 9 edges, with tests 

that cover each of the following possible random changes: 

1. Modification and insertion 

2. Modification and deletion 

3. Insertion and deletion 

4. Modification, insertion and deletion 

Using the default parameters, our results are less than ideal, with around 90% 

effectiveness for the first change scenario and a less than 30% discovery rate for the 
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remaining possibilities.  However, similar to what we discovered during our previously 

reported synthetic experiments, the GBAD-P and GBAD-MPS algorithms may require 

a much larger beam width and limit in order to evaluate a larger set of substructures.  In 

addition, due to the nature of the size of the normative pattern in relation to the amount 

of change, the inexact matching threshold will need to be increased to compensate for 

the scenarios when the anomaly involves modifications and deletions – both changes 

that require a larger match cost. 

For tests consisting of five or fewer changes for each type (e.g., one modified 

vertex label, one deleted vertex and one deleted edge), when we increase the beam 

width to 100 and the limit to 11,000 (again we just kept increasing the beam width until 

an anomaly was reported, and subsequently based our limit on the size of the beam, the 

number of pattern vertices and the number of initial single-vertex substructures), and set 

the inexact matching threshold to 0.27 (based upon the amount of deviation we are 

willing to accept), we are able to discover 100% of the anomalies in each of the above 

scenarios.  We also notice, as we did in other tests, that as the amount of change 

increases in proportion to the size of the substructure, the ability to discover the 

anomalies decreases.  The issue again lies in the ability to distinguish expected 

deviations (e.g., noise) from the unexpected deviations (i.e., anomalies).  If the expected 

change consists of a smaller deviation than the unexpected anomaly, the algorithms will 

report the non-anomalous deviation as the anomaly. 
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5.9 Other Types of Normative Patterns 

Each of the above tests is run using the same type of normative pattern:  a star 

cluster.  However, it is possible that the shape of the normative pattern could have an 

effect on the effectiveness of the algorithms.  So, the following tests are devised in 

order to test other patterns that are common, particularly as they might be used for real-

world data.  (Refer to Section  5.4 for examples of each of these patterns.) 

Each of the following tests are executed with a graph size of approximately 500 

vertices and 500 edges, a normative pattern of 10 vertices and 10 edges, and an 

anomalous change of 10% .  All of the same GBAD parameter settings that were used 

in the previous tests are implemented here, and a threshold of 0.1 is used for the GBAD-

MDL algorithm. 

 

Table 5.14  Percentage of complete anomalous instances found on runs with different patterns. 

Normative 
Pattern 
Algorithm 
(Anomaly Type) 

Star Strand Cycle 

GBAD-MDL  
(Modification) 100 100 100 

GBAD-P    
(Insertion) 40.0 100 100 

GBAD-MPS  
(Deletion) 100 100 100 
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Table 5.15  Percentage of runs with anomalous parts found on runs with different patterns. 

Normative 
Pattern 
Algorithm 
(Anomaly Type) 

Star Strand Cycle 

GBAD-MDL 
(Modification) 100 100 100 

GBAD-P    
(Insertion) 40.0 100 100 

GBAD-MPS  
(Deletion) n/a n/a n/a 

 
Table 5.16  Percentage of runs containing false positives on runs with different patterns. 

Normative 
Pattern 
Algorithm 
(Anomaly Type) 

Star Strand Cycle 

GBAD-MDL  
(Modification) 0 0 0 

GBAD-P    
(Insertion) 44.19 0 0 

GBAD-MPS  
(Deletion) 0 0 0 

 
 

From these results we notice that except for the star normative pattern when 

running the GBAD-P algorithm, the results are the same across each algorithm for each 

of the different shapes.  However, if we completely distinguish the anomalies from the 

noise (i.e., use different labels for the anomalies as opposed to the random connections), 

93.3% of the complete anomalous instances and 93.3% of the partial anomalies are 

discovered – closer to the results found when the normative patterns are the other 

pattern types.  Because of the connectivity introduced when generating a connected 

graph of star patterns, the ability to distinguish between noise and actual anomalies 

becomes more difficult. 



 

 97

It should also be noted that the placement of the anomaly plays into the less than 

perfect discovery rate for GBAD-P algorithm when the normative pattern is a star.  In 

all cases where the anomalous edge is attached to a non-center vertex, the anomaly is 

discovered, as in the example shown on the left in Figure 5.15. 
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Figure 5.15  Examples of anomalous insertions to a star shaped pattern. 

 

However, when the anomalous insertion is like the one shown on the right in 

Figure 5.15, the anomaly is not always discovered by the GBAD-P algorithm.  This is 

really more of an issue with how the normative pattern is discovered.  Not that the 

discovery is incorrect, as the best pattern is discovered, but that it chose the anomalous 

edge (and vertex) rather than the non-anomalous one.  So, again taking the example 

shown in Figure 5.15, the edge and vertex shown in bold in the substructure on the 

right, are used in the building of that instance, and the other identical edge and vertex 

(not in bold) are reported as the anomaly.  Of course, one of the advantages of these 
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algorithms is that not just the anomaly is reported but the entire anomalous instance.  In 

reality, as shown in this example, what has been reported is correct – there is an 

anomalous edge labeled y and an anomalous vertex labeled D. 

 
5.10 Limitations 

As was mentioned and demonstrated earlier with the GBAD-P experiments, the 

ability to discover the anomalies is sometimes limited by the resources allocated to the 

algorithm.  This is true not only for GBAD-P, but for GBAD-MDL and GBAD-MPS as 

well.  In other words, given a graph where the anomalous substructure consists of the 

minimal deviation from the normative pattern, if a sufficient amount of processing time 

and memory is provided, all of these algorithms will discover the anomalous 

substructure with no false positives. 

However, the ability to discover anomalies (per our definition) is also hampered 

by the amount of noise present in the graph.  The issue is that if noise is a smaller 

deviation from the normative pattern than the actual anomaly, it may score higher than 

the targeted anomaly (depending upon the frequency of the noise).  Of course, one 

might say that noise is an anomaly in that it is not normal; however, it is probably not 

fraudulent activity, which is the goal of these approaches. 

Now, the presence of noise does not eliminate the algorithms’ abilities to 

discover the anomalous substructure.  It only results in more false positives being 

detected if the anomalous score of the noisy structure is better than the desired 

anomalous substructure.  That is where another trade-off is necessary that can be found 
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in most fraud detection systems: adjusting thresholds to find a balance of false-positives 

versus true anomalies.  This is something to be considered in future work where ideally 

the approach would not involve parametric values that may need to be adjusted based 

upon a user’s experiences.  

5.11 Overlapping Instances 

Another possible scenario to consider is the case of overlapping instances.  This 

situation occurs when instances of the normative pattern overlap with other instances of 

the normative pattern.  For example, suppose you have the situation of two star 

instances that share a common vertex, as shown in Figure 5.16.   

 

 

Figure 5.16  Two star patterns sharing a common vertex. 
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Taking this example, if the normative pattern consists of a vertex connected to eight 

other vertices, by default, only one of the star instances will be counted as an instance of 

the normative pattern.  However, when we allow for instances to overlap, thus counting 

(in this example) each star as a separate complete instance, both instances get full 

consideration when analyzing the substructure for anomalies (as well as discovering the 

normative pattern).  As was mentioned earlier, we can override the default setting of not 

allowing overlapping instances. 

First, just to observe what happens when we do not allow overlap discovery 

mode on graphs with overlapping instances, as the amount of overlap increases, the 

ability to discover the anomalies significantly decreases.  This is to be expected, as we 

are relying on the anomalous instance to be among the discovered instances, and not to 

be one of the structures discarded when it is found to be overlapping with another 

previously discovered structure.  In other words, if a portion of the anomalous instance 

(e.g., a vertex and edge) is already included in another instance being considered, the 

remaining parts of the anomalous instance will not be analyzed any further because it is 

not an instance of the normative substructure (or within an acceptable threshold of 

change to the normative substructure).  Thus, the more instances overlap, the greater the 

probability that the anomaly will be lost. 

For each of our algorithms, the key to discovering the anomalous substructure 

lies initially with the ability to determine the normative pattern in a graph.  Since our 

definition of what is an anomaly is based upon small deviations from the norm, if we 
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are unable to find the normative pattern, our ability to uncover anomalies with these 

approaches will be coincidental. 

 As was discussed in Chapter 4, GBAD’s heuristic for evaluating substructures 

is based upon the Minimum Description Length (MDL) principle, where the description 

length is an approximation of the minimum number of bits needed to encode a graph.  

As such, the MDL of a graph consists of the description length of the graph compressed 

by the best substructure, plus the description length of that substructure.  Thus, in our 

GBAD implementation, substructures are evaluated, and the one that results in the 

lowest description length is determined to be the best substructure – or the normative 

pattern.  Computationally, we replace all instances of the best substructure with a single 

vertex, representing the best substructure, and calculate the new size of the graph.  

Figure 5.17 shows a pictorial representation of this replacement for evaluation.  The 

graph on the left consists of three instances of the normative substructure a->b->c.  

Compressing the graph by replacing each of the three instances with a single vertex, 

results in a smaller graph that can be described by only 3 vertices, as shown on the 

right. 
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Figure 5.17  Example of compressing a graph by its normative pattern. 

 

As mentioned earlier, when a graph consists of overlapping instances, there is 

the possibility that not all instances of the normative pattern will be discovered.  

However, there are several ways to handle the evaluation of substructures that consist of 

overlapping substructure instances.  In addition to the normal way of evaluating 

substructures based upon their compression (as shown in Figure 5.17), another way is to 

count the number of substructure instances that match a specified substructure 

definition.  In this case, we would consider substructures with the most matching 

instances to be the best substructure.  Take the example in Figure 5.18. 
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Figure 5.18  Example of compression with overlapping instances based on the number of instances. 

 

In this example, using an evaluation based upon the number of instances, the normative 

pattern consists of several overlapping a->b->c substructure instances.  The result after 

compression is a graph consisting of eight vertices and six edges, with four of the 

vertices not being compressed. 

Another option, and the one we have chosen, is to base our evaluation on the 

coverage that is achieved during compression.  Taking the same example from Figure 

5.18, if we base our evaluation of the best substructure on the pattern that includes the 

most vertices and edges, we achieve the result shown in Figure 5.19.  
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Figure 5.19  Example of compression with overlapping instances based on the amount of coverage. 

 

In this example, the result is not only a smaller representation of the graph, represented 

by five vertices and two edges, but also one that covers more of the original graph, as 

only two original vertices are not covered by this choice of normative pattern.   

Clearly, the latter approach includes more of the graph’s vertices and edges than 

the approach that uses the number of instances.  However, the reason that we chose this 

approach over the maximum compression approach is due to the somewhat deceiving 

description length of the graph when substructure instances are significantly 

overlapping.  Because every instance of the supposedly best substructure is replaced by 

a single vertex, substructures consisting of overlapping instances are penalized by the 

fact that the compressed graph is represented by a vertex for each of the overlapping 

instances.  Thus, a graph whose normative substructure instances overlap with multiple 
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vertices and edges, may report a different normative substructure that has resulted in 

fewer compressed vertices because a compressed vertex is inserted for each instance, no 

matter how many are overlapping.  So, while a substructure using the compression 

evaluation may represent a graph with the fewest number of vertices, with the coverage 

approach, we can ensure the maximum number of vertices and edges are represented by 

the instances of what we have determined to be the best substructure.    

In order to test our algorithms on overlapping instances, we have to increase the 

beam width of the search and the limit on the number of substructures to consider.  In 

earlier experiments we increased the beam and limit so that we could evaluate larger 

graphs.  For graphs with overlapping instances, we have to increase these parameters 

due to the increased number of possible substructures. 

Figure 5.20 shows the results when running the GBAD-MDL algorithm (with a 

threshold of 0.19 to allow for up to 2 changes on a substructure of size 11) on a graph of 

100 vertices and 100 edges, for a normative pattern of 6 vertices and 5 edges, with 

varying amounts of overlap between the instances, and anomalies consisting of random 

modifications to a vertex label and an edge label.  
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Figure 5.20  Discovery percentages for overlapping instances. 

 

Similar results are obtained with the GBAD-P and GBAD-MPS algorithms. 

In every test case, the correct normative pattern is properly discovered.  

However, due to the overlapping nature of the normative instances, in many cases, the 

anomalous substructure is not discovered when the random anomalous modification is 

larger than other random noise.  Because we have to use an inexact matching threshold 

of 0.19 in order to find an anomaly of size 2 for a substructure of size 11, other 

substructure instances, as a result of overlapping, are discovered that have lower cost 

transformations because they consist of just a single vertex or just a single edge 

modification.  But, in experiments where the anomaly consists of either a single vertex 
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or a single edge, the anomalous substructure is discovered 100% of the time, with small 

levels of false positives that increase as the amount of overlap increases. 

 While it appears that our algorithms may have issues with graphs that consist of 

overlapping instances, these experiments further accentuate our definition of an 

anomaly.  In every case, when the anomaly was the smallest deviation to the normative 

pattern, our approaches never failed in discovering the complete anomalous 

substructure.  These results are consistent with previous results, and should be 

addressed as part of any future work for distinguishing expected deviations (or noise) 

from the true anomalies. 

  

5.12 Performance 

One of the factors to consider in evaluating these algorithms is their respective 

performances.  The following table represents the average running times (in seconds) 

for each of the algorithms against each of the graph sizes for the anomaly types that 

were the most effectively discovered (i.e., the types of anomalies that each algorithm 

was targeted to discover).  Overall, the running times were slightly shorter for the non-

targeted anomalies, as the algorithms for the most part did not have any anomalies to 

process. 
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Table 5.17  Running-times of algorithms (in seconds). 

Graph Size 
(Normative 
Pattern Size) 
Algorithm 
(Anomaly Type) 

100v
100e

 (6) 

100v
100e
(20) 

1,000v
1,000e 

(20) 

1,000v
1,000e

(60) 

10,000v
10,000e

 (20) 

10,000v 
10,000e 

(60) 

GBAD-MDL  
(Modification) 

0.05-
0.08 

0.26-
15.80 

20.25-
55.20 

31.02-
5770.58 

1342.58-
15109.58 

1647.89-
45727.09 

GBAD-P    
(Insertion) 1.33 0.95 30.61 18.52 745.45 2118.99 

GBAD-MPS  
(Deletion) 0.14 0.07 4.97 75.59 242.65 813.46 

 
 

Because the GBAD-MDL algorithm uses a matching threshold, the performance 

of the algorithm is dependent upon the threshold chosen.  The higher the threshold, the 

longer the algorithm takes to execute, so there is a trade-off associated with the 

threshold choice.  Even on graphs of 10,000 vertices and 10,000 edges, the running 

times varied anywhere from 1342 seconds to 45,727 seconds, depending upon the 

threshold chosen.  In short, the GBAD-MDL algorithm is exponential in the worst case, 

but tractable given the parameters. 

 
 
5.13 Summary 

The ability to discover anomalous modifications, insertions and deletions is 

evident when applying all three algorithms.  With a 100% or almost 100% discovery 

rate for each algorithm on most of the graphs with varying sizes of normative patterns 

and anomalies, each approach has clearly shown to be useful at discovering a specific 
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type of anomaly.  While the algorithms do not appear to be useful outside of their 

intended targets, no graphs of any size and any anomaly went undetected by all three 

approaches.  Even graphs of higher density had no effect on the accuracy of the 

algorithms.  While there were some differences in detection rates for the probabilistic 

approach when the normative pattern was a star, overall, the shapes of the normative 

pattern did not have any effect on the abilities of the algorithms to discover the 

anomalies.  In every test, when the normative pattern was discovered, and the anomaly 

was the smallest deviation of an instance of the normative substructure, the instance was 

reported as anomalous.  The running times of GBAD-P and GBAD-MPS are very 

acceptable, and the performance of GBAD-MDL is clearly affected by the size of the 

threshold specified. 
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CHAPTER 6  

EMPIRICAL EVALUATIONS OF REAL-WORLD SCENARIOS 

 
The following sections contain the results when applying the algorithms to real-

world data sets.  First, we present results using shipping manifests of cargo imports into 

the U.S., and compare our algorithms to other non-graph-based approaches.  Then, we 

compare our algorithms against another graph-based approach using the KDD Cup ’99 

network intrusion data.  Finally, we conclude with some experiments using other real-

world data sets.  

 
6.1 Cargo Shipments 

One area that has garnered much attention recently is the analysis and search of 

imports into the United States.  The largest number of imports into the U.S. arrive via 

ships at ports of entry along the coast-lines.  Thousands of suspicious cargo, whether 

they be illegal or dangerous, are examined by port authorities every day.  Due to the 

volume, strategic decisions must be made as to which cargo should be inspected, and 

which cargo will pass customs without incident.  This is a daunting task that requires 

advanced analytical capabilities that will maximize effectiveness and minimize false 

searches. 

The Customs and Border Protection (CBP) agency maintains shipping manifests 

in a system called PIERS (Port Import Export Reporting Service).  This database is used 
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for tasks such as reporting and data mining.  Each entry (or row) in the PIERS tables 

consists of various information from a shipping manifest.  An example of a PIERS 

record (and its header) are as follows: 

VDATE,BOL_NBR,CONTAINER,FPORT,USPORT,COUNTRY,SLINE,VESSEL,VOYA
GE,NAME,FNAME,COMMODITY,HARM_DESC,HSCODE,HAZMAT_FLA,CONSIZE,
TEUS,MTONS,VALUE 

020601,00434100,TOLU4972933,YOKOHAMA,SEATTLE,JAPAN,CSCO,LING 
YUN HE,36,AMERICAN TRI NET EXPRESS,TRI NET,EMPTY 
RACK,CONTAINERS FOR ONE OR MORE MODES OF 
TRANSPORT,860900,,,0.00,5.60,27579 
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Figure 6.1  High-level pictorial representation of cargo information. 



 

 112

Using shipping data obtained from the CBP (http://www.cbp.gov/), we are able 

to create a graph-based representation of the cargo information where row/column 

entries are represented as vertices, and labeled edges convey their relationships as 

edges.  Figure 6.1 shows the high-level structure of the ontology we use to represent the 

cargo data as a graph.  Figure 6.2 shows a portion of the actual graph that we will use in 

our anomaly detection experiments. 

http://www.cbp.gov/
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Figure 6.2  Example of cargo information represented as a graph. 
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While we were not given any labeled data from the CBP (i.e., which shipments 

were illegal, or anomalous, and which ones were not), we can draw some results from 

simulations of publicized incidents. 

6.1.1 Random Changes 

Similar to what we did for the synthetic tests, we randomly modified, inserted 

and deleted small portions of the graph for randomly selected shipping entries.  

However, even though this data is not as regular as the synthetic data generated for the 

earlier tests, all three algorithms were able to successfully find all of their intended 

target anomalies with no false positives reported.  This helps us validate further the 

usefulness of this approach when the anomaly consists of small modifications to the 

normative pattern. 

It should also be noted that when the algorithms are run on the original cargo 

data with no injected anomalies, the GBAD-P and GBAD-MPS algorithms do not find 

any anomalies.  However, the GBAD-MDL algorithm does report anomalies when the 

threshold is greater than 0.08 (or 8%).  Albeit, while the reported anomalies are merely 

different US_IMPORTER and FOREIGN_SHIPPER names (as opposed to possible 

fraud situations), this algorithm does successfully report anomalies in the data.  

6.1.2 Real-world Scenarios 

In [Eberle and Holder 2006], real-world cargo shipment occurrences were 

generated so as to show how graph properties can be used to determine structural 

anomalies in graphs. While that approach was successful in discovering graphs that 



 

 115

contained anomalies, the exact anomalies were not part of the output.  Using the GBAD 

algorithms on these same data sets, we can display the actual anomalies. 

One example is from a press release issued by the U.S. Customs Service.  The 

situation is that almost a ton of marijuana is seized at a port in Florida [U.S. Customers 

Service 2000].  In this drug smuggling scenario, the perpetrators attempt to smuggle 

contraband into the U.S. without disclosing some financial information about the 

shipment.  In addition, an extra port is traversed by the vessel during the voyage.  For 

the most part, the cargo looks like a normal shipment from Jamaica.  Figure 6.3 shows a 

graphical representation of a portion of the graph (for space reasons) containing the 

anomaly. 

 

Figure 6.3  Graph representation of cargo shipment containing the anomaly, with an insertion in 
bold and removals represented as dotted lines. 

 
When we run the three algorithms individually on this graph, GBAD-MDL is 

unable to find any anomalies, which makes sense considering none of the anomalies are 

modifications.  When the graph contains the anomalous insertion of the extra traversed 

port (shown as the bold edge and darkened vertex in Figure 6.3), the GBAD-P 

algorithm is able to successfully discover the anomaly.  Similarly, when the shipment 

instance in the graph is missing some financial information (the dotted and dashed 
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edges and vertices in Figure 6.3), GBAD-MPS reports the instance as anomalous.  

When we run all three algorithms on the graph simultaneously, as was shown in Section 

5.8, both anomalies are reported in the same run.  This again further validates the 

effectiveness of running these algorithms individually or combined. 

According to the CBP, an estimated $2 billion in illegal textiles enter the U.S. 

every year [Customs and Border Protection  2003].  One of the more common methods 

of eluding authorities is accomplished using what is called transshipment.  The CBP 

defines transshipment as “A false declaration or information given in order to 

circumvent existing trade laws for the purpose of avoiding quotas, embargoes or 

prohibitions, or to obtain preferential duty treatment.”  In order to circumvent quotas, 

the fraudster will change the country of origin of their goods.  For example, they may 

ship the goods into Canada or Mexico, change the country-of-origin, and ship into the 

U.S. free from tariffs under the North American Free Trade Agreement (NAFTA). 

In order to simulate this real-world example, we randomly changed the country 

of origin on one of the shipments to “CANADA”.  While the GBAD-P and GBAD-

MPS algorithms were unsuccessful in discovering this anomaly (as was expected), the 

GBAD-MDL algorithm was able to clearly mark the instance that contained the 

anomaly.  At first it was surprising that just a change in the country of origin would 

have that effect, and given perhaps a different set of data, this would not have been as 

effective.  But, in this case, all of the shipments had a normative pattern that included 

Asian shippers.  So, by altering the originating country to Canada, the GBAD-MDL was 

able to clearly notice the structural anomaly.    
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6.1.3 Comparison to Non-Graph-Based Approaches 

There are many different non-graph-based machine learning approaches to 

anomaly detection.  The Bayesian classification approach is a probabilistic method for 

determining an appropriate classification hypothesis.  More succinctly, it is the 

probability of a particular class for a given instance.  This approach has been commonly 

used in intrusion detection, where instances are classified as possible anomalies 

[Kruegel et al. 2003].  Neural Networks are a non-linear approach that has shown to be 

a very effective at classifying real-valued or discrete-valued targets [Mitchell 1997].  

Widely used as an approach to detect misuse, particularly for intrusion detection 

systems and fraud detection, it has also shown to be applicable to anomaly detection.  

Support vector machines, or SVMs, sometimes referred to as kernel-based learning 

algorithms, are a set of supervised learning methods that apply linear classification 

techniques to non-linear classification problems [Muller et al. 2001].  This approach has 

also been shown useful for detecting anomalies [Hu et al. 2002].  Another set of 

classifiers is known as lazy learners, or instance-based learning.  This is perhaps the 

simplest form of learning as the instances themselves represent the knowledge.  

Training instances are searched for the instance that most closely resembles the new 

instance.  Anomaly detection using this technique has been applied to computer security 

and issues on network routers [Aha et al. 1991].  Another class of learning methods is 

meta-learners.  Meta-learning is an area of predictive data mining that combines 

predictions from multiple models. Again, meta-learners have been widely used in terms 

of intrusion detection systems [Lee et al. 1999].  Decision tree induction is one of the 
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more popular approaches to machine learning classification.  A decision tree is a tree-

structured plan of a set of attributes to test in order to predict the output.  In [Stein et al. 

2004] a genetic algorithm is used with a decision tree classifier towards intrusion 

detection.  Classification rules are a popular alternative to decision trees.  The rules 

consist of pre-condition tests that are then logically ANDed together to produce a rule 

that assigns a class, or set of classes, and possibly a probability distribution.  Many of 

the commercial intrusion detection systems in the nineties consisted of classification 

rules. 

Perhaps the most popular approach to anomaly detection involves the class of 

approaches known as clustering.  The idea behind clustering is the grouping of similar 

objects, or data.  This is an unsupervised approach whose goal is to find all objects that 

are similar where the class of the example is unknown [Frank and Witten 2005].  From 

an anomaly detection perspective, those objects that fall outside a cluster (outliers), 

perhaps within a specified deviation, are candidate anomalies.  Due to the popularity of 

this approach, and the fact that it is an unsupervised approach (like GBAD), we evaluate 

the effectiveness of the simple k-Means clustering approach on the cargo shipment data 

using the WEKA tool [WEKA].  For the simple k-Means approach (SimpleKMeans), 

given a set of n data points in d-dimensional space Rd, and an integer k, the problem is 

to determine a set of k points in Rd, called centers, so as to minimize the mean squared 

distance from each data point to its nearest center [Kanungo et al. 2000]. 

First, we randomly select 200 cargo records and generate a graph from the 

chosen records.  Second, we run the graph through SUBDUE to determine the 
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normative pattern in the graph.  Then, we generate multiple anomalies of each of the 

anomaly types (modifications, insertions and deletions), where each of the induced 

anomalies is similar to the real-world examples mentioned earlier (e.g., change in the 

name of a port), and the anomaly is part of a normative pattern.  Only choosing 

anomalies that are small deviations (relative to the size of the graph), all three of the 

GBAD algorithms are able to successfully find all of the anomalies, with only one 

GBAD-MDL test and one GBAD-P test reporting false positives. 

Using these same 200 records, we then convert the data into the appropriate 

WEKA format for the k-Means algorithm.  For each of the tests involving what were 

vertex modifications in the graph, and are now value or field modifications in the text 

file, the k-Means algorithm is able to successfully find all of the anomalies.  Similar to 

how we have to adjust GBAD parameters, we have to increase the default WEKA 

settings for the number of clusters and the seed, as the defaults do not produce any 

anomalous clusters on the cargo test set which consists of 12 attributes for 200 records.  

By increasing the number of clusters to 8 and the seed to 31, we are able to discover the 

anomalous modifications, as shown in the example in Figure 6.4. 
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Figure 6.4  Results from k-Means clustering algorithm on cargo data with anomalous modification. 

 

In these tests, a cluster is considered anomalous if it contains only a single instance. 

However, for insertions and deletions, the k-Means approach is not effective, 

but in some ways, that is to be expected.  The k-Means algorithm assumes that every 

specified record is of the same length.  So, in order to simulate anomalous insertions, 

extra attributes must be added to represent the extra vertices, where the values for those 

attributes are NULL, unless an anomalous insertion is present.  Yet, despite the 

additional non-NULL attribute when the anomaly is present, the k-Means algorithm 

never reports an anomalous cluster for any of the tests.  When we increase the number 

of clusters and the seed, it only increases the number of false positives (i.e., clusters of 
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single instances that are not the anomalous instances).  This is surprising in that we 

would have assumed that the unique value for an individual attribute would have been 

discovered.  However, again, we are attempting to simulate a structural change, which 

is something that the k-Means algorithm (or other traditional clustering algorithms) is 

not intended to discover. 

Similarly, we can only simulate an anomalous deletion by replacing one of the 

record’s attributed values with a NULL value.  Again, at first, we would have 

considered this to be the same as a modification, and clearly identifiable by the k-Means 

algorithm.  But, the algorithm was unable to find the anomalous deletion in any of the 

tests, which leads us to believe that the presence of a NULL value has an effect on the 

functionality of the k-Means algorithm.  The importance of these tests is to show that 

for some anomalies (specifically modifications) traditional machine learning approaches 

like clustering are also effective, and at the same time, the inability to discover 

anomalous insertions and deletions further justifies the use of an approach like GBAD 

for structural anomalies.  In addition, approaches like k-Means are only able to report 

the anomalous record – not the specific anomaly within the record.  

The use of the k-Means clustering algorithm for anomaly detection and 

intrusion detection has been reported in other research efforts [Portnoy 1999][Caruso 

and Malerba 2004].For more information on how the WEKA tools work, please refer to 

the WEKA website [WEKA]. 

We also compared our algorithms against a traditional non-graph-based 

anomaly detection approach found in the commercially available application called 
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Gritbot, from a company called RuleQuest (http://www.RuleQuest.com/).  The 

objective of the Gritbot tool is to look for anomalous values that would compromise the 

integrity of data that might be further analyzed by other data modeling tools.   

There are two required input files for Gritbot: a .names file that specifies the 

attributes to be analyzed, and a .data file that supplies the corresponding comma-

delimited data.  There are several optional parameters for running Gritbot, of which the 

most important is the "filter level".  By default, the filter level is set at 50%.  The lower 

the filter level percentage, the less filtering that occurs, resulting in more possible 

anomalies being considered.   

In order to compare Gritbot to our GBAD algorithms, we gave Gritbot the same 

cargo data files used in the previous experiments (formatted to the Gritbot 

specifications).  Using the default parameters, no anomalies were reported.  We then 

lowered the filter level to 0 (which specifies that all anomalies are requested).  In every 

case, anomalies were reported, but none of the anomalies reported were the ones we had 

injected into the data set.  So, we increased the number of samples from 200 shipments 

to ~1000 shipments, so that Gritbot could infer more of a statistical pattern, and then 

randomly injected a single modification to the country-of-origin attribute.  In the cargo 

data files, all of the country-of-origins were "JAPAN", except for the randomly selected 

records where the value was changed to "CHINA".  Again, Gritbot did not report this 

anomaly (i.e. 1020 cases of "JAPAN" and one case of "CHINA"), and instead reported 

a couple of other cases as anomalous.   
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While we consider the existence of a record with "CHINA" as anomalous, 

Gritbot does not view that as an anomaly.  The issue is that Gritbot (and this is similar 

to other outlier-based approaches), does not treat discrete attributes the same as numeric 

attributes.  This is because Gritbot views continuous distributions (such as "age") as a 

much easier attribute to analyze because the distribution of values leads to certain 

expectations.  While discrete distributions are more difficult because there is not a 

referential norm (statistically), it limits the tool’s ability to provide its user with a 

comprehensive list of anomalies.  That is not to say that Gritbot will not discover 

anomalous discrete values - it will if it can determine a statistical significance.  For 

example, we found (when examining by hand) records that contained a significant 

number of identical attribute values (e.g., COUNTRY, FPORT, SLINE, VESSEL).  In 

our data set, approximately 250 out of the approximately 1,000 records had identical 

SLINE values.  When we arbitrarily modified the SLINE value of one of these 

cases from "KLIN" to "PONL" (i.e., another one of the possible SLINE values from this 

data set), Gritbot did not report the anomaly.  When we changed it to "MLSL", Gritbot 

still did not report it.  However, when we changed it to "CSCO", Gritbot reported that 

case as being anomalous (albeit, not the most anomalous).  Why?  This behavior is 

based on what Gritbot can determine to be statistically significant.  Of all of the ~1,000 

records, only 1 has an SLINE value of "MLSL", and only 3 have a value of "PONL".  

However, there are 123 records with an SLINE value of "CSCO".  Thus, Gritbot was 

able to determine that a value of "CSCO" among those ~250 records is anomalous 

because it had enough other records containing the value "CSCO" to determine that its 
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existence in these other records was significant.  In short, the behavior depends upon the 

definition of what is an anomaly.   

Gritbot's approach to anomaly detection is common among many other outlier-

based data mining approaches.  However, in terms of finding what we would consider 

to be anomalous (small deviations from the norm), Gritbot's approach typically does not 

find the anomaly. 

 
6.2 Intrusion Detection 

One of the more applied areas of research when it comes to anomaly detection 

can be found in the multiple approaches to intrusion detection.  The reasons for this are 

its relevance to the real world problem of networks and systems being attacked, and the 

ability of researchers to gather actual data for testing their models.  Perhaps the most 

used data set for this area of research and experimentation is the 1999 KDD Cup 

network intrusion dataset [KDD Cup 1999].   

In 1998, MIT Lincoln Labs managed the DARPA Intrusion Detection 

Evaluation Program. The objective was to survey and evaluate research in intrusion 

detection.  The standard data set consisted of a wide variety of intrusions simulated in a 

military network environment.  The 1999 KDD Cup intrusion detection dataset consists 

of a version of this data. For nine weeks, they simulated a typical U.S. Air Force local-

area network, initiated multiple attacks, and dumped the raw TCP data for the 

competition.  
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The KDD Cup data consists of connection records, where a connection is a 

sequence of TCP packets.  Each connection record is labeled as either “normal”, or one 

of 37 different attack types.  Each record consists of 31 different features (or fields), 

with features being either continuous (real values) or discrete.  In the 1999 competition, 

the data was split into two parts: one for training and the other for testing.  Groups were 

then allowed to train their solutions using the training data, and were then judged based 

upon their performance on the test data.  

6.2.1 GBAD 

Since the GBAD approach uses unsupervised learning, we will run the 

algorithms on the test data so that we can judge our performance versus other 

approaches.  Also, because we do not know the possible structural graph changes 

associated with network intrusions, we will have to run all three algorithms to determine 

which algorithms are most effective for this type of data.  Each test contains 50 

essentially random records, where 49 are normal records and 1 is an attack record, 

where the only controlled aspect of the test is that there is only one attack record per 

data set.  This is done because the test data is comprised of mostly attack records, which 

does not fit our definition of an anomaly, where we are assuming that anomalous 

substructures are rare.  Fortunately, this again is a reasonable assumption, as attacks 

would be uncommon in most networks. 

Not surprisingly, each of the algorithms has a different level of effectiveness 

when it comes to discovering anomalies in intrusion detection data.  Using GBAD-

MDL, our ability to discover the attacks is relatively successful.  Across all data sets, 
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100% of the attacks are discovered.  However, all but the apache2 and worm attacks 

produce some false positives.  42.2% of the test runs do not produce any false positives, 

while runs containing snmpgetattack, snmpguess, teardrop and udpstorm attacks 

contribute the most false positives.  False positives are even higher for the GBAD-P 

algorithm, and the discovery rate of actual attacks decreases to 55.8%.  GBAD-MPS 

shows a similarly bad false positive rate at 67.2%, and an even worse discovery rate at 

47.8%. 

It is not surprising that GBAD-MDL is the most effective of the algorithms, as 

the data consists of TCP packets that are structurally similar in size across all records.  

Thus, the inclusion of additional structure, or the removal of structure, is not as relevant 

for this type of data, and any structural changes, if they exist, would consist of value 

modifications.  

6.2.2 Comparison to Other Graph-based Approaches 

In order to better understand the effectiveness of the GBAD algorithms on 

intrusion detection data, we will compare our results with the graph-based approaches 

of Noble and Cook [Noble and Cook 2003].  As was presented earlier in this work, they 

proposed two approaches to discovering anomalies in data represented as a graph.  

Their anomalous substructure detection method attempts to find unusual substructures 

within a graph by finding those substructures that compress the graph the least, 

compared to our GBAD-MDL approach which uses compression to determine which 

substructures are closest to the best substructure (i.e., the one that compresses the graph 

the most).  In their results, they use the inverse of the ratio of true anomalies found over 
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the total number of anomalies reported, where the lower the value (i.e., a greater 

percentage of the reported anomalies are the network attacks), the more effective the 

approach for discovering anomalies.   

The other approach presented is what they call anomalous subgraph detection.  

The objective with this method is to compare separate structures (subgraphs) and 

determine how anomalous each subgraph is compared to the others.  This is similar to 

our approaches in that the minimum description length is used as a measurement of a 

substructure’s likelihood of existence within a graph.  However, in order to implement 

this approach, the graph must be divided into clearly defined subgraphs so that a proper 

comparison can be performed. The basic idea is that every subgraph is assigned a value 

of 1, and the value decreases as portions of the subgraph are compressed away.  In the 

end, the subgraphs are ranked highest to lowest, with the higher the value (i.e., closest 

to, or equal to, 1), the more anomalous the subgraph.  While this works well on 

intrusion detection data, their approach is restricted to domains where a clear 

delineation (i.e., subgraphs) must be defined.  In other words, the delineation occurs 

when a graph can be sub-divided into distinct subgraphs, with each subgraph 

representing a common entity.  For example, in domains like terrorist or social 

networks, this type of delineation may be difficult and subjective. 

Using the same set of KDD Cup intrusion detection data as set forth previously, 

we can compare GBAD-MDL (since it performed the best on this set of data) to both of 

these approaches, using the same anomalous attack ratios used by Noble and Cook.  The 

ratio used in their work is an inverse fraction of correctly identifying the attacks among 
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all of the attacks reported.  For example, if 10 anomalies are reported, but only 1 of 

them is the actual attack, then the fraction is 1/10, and the inverse is the score of 10, 

where obviously the lower the score the better.  Their anomalous substructure detection 

method achieves an average anomalous ratio of 8.64, excluding the snmpgetattack and 

snmpguess attacks, while using the same scoring ratio, GBAD-MDL generates an 

average of 7.22 with snmpgetattack and snmpguess included.  In Noble and Cook’s 

paper, both the snmpgetattack and snmpguess attacks were excluded from the 

anomalous substructure detection approach results because they had high average attack 

values of around 2211 and 126 respectively (i.e., too many false positives).  However, 

GBAD-MDL is much more successful at discovering these two attack types, as their 

respective averages are 8.55 and 7.21.  Then, for their anomalous subgraph detection 

approach, they get an average ranking of 4.75, whereas the GBAD-MDL algorithm is 

able to achieve a better average ranking of 3.02.  Figure 6.5 shows the ranking results 

for each of the different attack types. 
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Figure 6.5  Average anomalous ranking using GBAD-MDL on KDD intrusion detection data. 

 

These results, when compared to the ones presented in Noble and Cook’s paper 

[Noble and Cook 2003], not only show an overall average improvement, but also again 

show a significant improvement when it comes to effectively discovering the 

snmpgetattack and snmpguess attacks, which both had values over 20 using the 

anomalous subgraph detection approach, whereas the GBAD-MDL algorithm was 

under 10 for both attack types.  It should also be noted that the false positives are mostly 

due to the fact that we have to increase the anomalous threshold in order to detect some 

of the anomalous patterns.  Unlike our assumption that anomalies are small deviations 
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from the normative pattern, several of the attack records are actually large deviations 

from the norm. 

 

6.3 Other Data Sets 

We have also tried our algorithms on other publicly available data sets in which 

we would like to identify anomalous behaviors. 

6.3.1 Enron E-mail 

One of the more recent domains that has become publicly available is the data 

set of e-mails between management from the Enron corporation.  The Enron e-mail 

dataset was made public by the Federal Energy Regulatory Commission during its 

investigation.  After subsequent data integrity resolutions, as well as the removal of 

some e-mails due to requests from affected employees, William Cohen at CMU put the 

dataset on the web for researchers.  From that dataset, Shetty and Adibi further cleaned 

the dataset by removing duplicate e-mails, and putting the final set into a publicly 

available MySql database (http://www.isi.edu/~adibi/Enron/Enron.htm).  This dataset 

contains 252,759 messages from 151 employees distributed in approximately 3000 

user-defined folders.   

In Priebe et al’s work, they used what are called "scan statistics" on a graph of 

the Enron data that is represented as a time series [Priebe et al, 2005].   While their 

approach detects statistically significant events (excessive activity), without further 

analysis, they are unable to determine whether the events are relevant (like insider 

trading). In Shetty and Adibi’s paper, they propose analyzing the entropy of the Enron 

http://www.isi.edu/~adibi/Enron/Enron.htm
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data represented as a graph [Shetty and Adibi, 2005].  However, with their approach of 

"event based graph entropy", the objective was to discover the more interesting nodes in 

the graph, which does not necessarily mean they are anomalous.  Huang and Zeng 

proposed using several link prediction approaches for analyzing the Enron data for 

anomalous e-mails [Huang and Zeng, 2006].  Again, they report what they consider to 

be anomalous e-mails, but they state that without knowing which e-mails are truly 

anomalous, they are just making conjectures.  They do introduce some fake e-mails into 

the data with the purpose of showing that their approaches do indicate their induced 

fake e-mails as either the most anomalous or equal to other e-mails that scored high. 

This Enron e-mail database consists of messages not only between employees 

but also from employees to external contacts.  In addition to providing the e-mails, the 

database also consists of employee information such as their name and e-mail address.  

However, since we do not have information about their external contacts, we decided to 

limit our graph to the Enron employees and just their correspondences, allowing us to 

create a more complete “social” structure.  In addition, since the body of e-mails consist 

of many words (and typos), we limited the textual nature of the e-mails to just the 

subject headers.  From these decisions, we created a graph consisting of the structure 

shown in Figure 6.6. 
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person
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lastName

firstName
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<month>
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<recipientType>

<day> <year>

yearday

 

Figure 6.6 Graphical representation of Enron e-mail. 

 

In Figure 6.6, the message vertex can have multiple edges to multiple subject words, 

and multiple recipient type edges (i.e., TO, CC and BCC) to multiple persons. 

Running the GBAD algorithms on this data set produced the small normative 

pattern shown in Figure 6.7. 

 

message 2001
year

 

Figure 6.7  Normative pattern from Enron e-mail data set. 
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This was an expected normative pattern because most of the e-mail was from the year 

2001, with little regularity beyond the fact that messages were sent. 

So, considering the small size of the normative pattern, we did not run the 

GBAD-MDL and GBAD-MPS algorithms, as clearly nothing of importance would be 

derived from a modification or deletion to this normative pattern.  However, running the 

GBAD-P algorithm resulted in the substructure shown in Figure 6.8. 

message

Targets

10

subjectWord

month

1

2001

year

day

 

Figure 6.8  Results from running GBAD-P on Enron e-mail data set. 

 

It is interesting to point out that 859 messages were sent on October 1, 2001, and of all 

of the messages in the data set, this was the only one with a subject of “Targets”, and 1 

of only 36 messages in the entire dataset that had the word “Targets” anywhere in its 

subject line, and no messages anywhere that were a response to this message. 
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Unfortunately, just as Huang and Zeng pointed out, without actually knowing 

which e-mails are anomalous, we are all just making conjectures. 

6.3.2 Internet Movie Database (IMDB) 

Another common source of data mining research is the Internet Movie Data 

Base (http://www.imdb.com/).  The database consists of hundreds of thousands of 

movies and television shows, with all of the credited information such as directors, 

actors, writer, producers, etc.  In their work on semantic graphs, Barthelemy et al. 

proposed a statistical measure for semantic graphs and illustrated these semantic 

measures on graphs constructed from terrorism data and data from the IMDB 

[Barthelemy et al, 2005].  While they were not directly looking for anomalies, their 

research presented a way to measure useful relationships so that a better ontology could 

be created.  As was mentioned previously, using bipartite graphs, Sun et al. presented a 

model for scoring the normality of nodes as they related to the other nodes [Sun et al, 

2005].  Using the IMDB database as one of their datasets, they analyzed the graph for 

just anomalous nodes. 

In order to run our algorithms on the data, due to the voluminous amount of 

information, we chose to create a graph of the key information (title, director, producer, 

writer, actor, actress and genre) for the movies from 2006.  Running the GBAD 

algorithms on this data set produced the normative pattern shown in Figure 6.9. 
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Figure 6.9 Normative pattern from graph representation of movie data. 

 

This pattern is not surprising, as one would expect that a movie would consist of 

multiple actors and actresses, and considering the size of the database, it is possible that 

runs made with much larger limits might produce a larger normative pattern and include 

some of the other movie elements like director and writer.  The lack of these elements 

in the normative pattern can be due to a couple of reasons.  One is that genres like 

reality shows do not require directors and writers, and many documentaries do not have 

writers credited in the IMDB.  Another is the possible resource constraints that have 

been discussed previously.  If we were to allow GBAD to run with a larger beam and 
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higher limits, a larger normative pattern might be discovered that would include the 

missing directors and writers.  

Running the GBAD-MDL and GBAD-MPS algorithms on the IMDB data 

produced a variety of anomalies that all scored equally.  The GBAD-MDL algorithm 

reported a single anomalous instance where an actor label was replaced by an 

anomalous actress label.  The GBAD-MPS algorithm reported multiple anomalous 

instances consisting of a writer replacing an actor, a writer replacing the producer, 

another genre replacing the producer, a director replacing the producer, another actor 

replacing the producer and another actress replacing the producer.  For the GBAD-P 

algorithm, the anomalous extension consisted of the title of the movie.  Considering 

every movie has a different title (in most cases), this was an expected anomalous 

extension.  

The issue with analyzing the move data set with these algorithms is that this 

approach is set up to find the small deviations from the norm that are indicative of 

fraud.  While there are probably anomalies in the IMDB, the anomalies are more than 

likely a result of information being input incorrectly into the database, or just structural 

changes due to the construction of different movies.  Again, without expert knowledge 

of the data and specifically any insights into actual anomalies, it is difficult to make any 

conjectures about what we are observing. 
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6.4 Summary 

We have observed that even with non-synthetic data, as long as there is a large 

enough normative pattern, the data is fairly regular (such that the normative pattern is 

prevalent in most of the data), and the anomaly consists of a small deviation from the 

norm, these three algorithms are able to target specific anomaly types.  Validating the 

results shown with the synthetic data, the algorithms obtain a near 100% discovery rate 

in the cargo shipment domain, with minimal or no false positives.  We also validated 

our algorithms by not only demonstrating an improvement over other graph-based 

anomaly detection approaches, but also verifying these algorithms as an effective means 

of discovering anomalies in the very important real-world domain of network 

intrusions.  In addition, we were able to analyze various other diverse data sets where 

unusual patterns were discovered that consisted of small deviations from a normative 

pattern. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

 
7.1. Conclusions 

In this work we presented our definition of a graph-based anomaly and how that 

is manifested in data that is represented as a graph.  The purpose of this work was to 

present an approach for discovering the three possible graph anomalies: modifications, 

insertions and deletions.  Using a practical definition of fraud, we designed algorithms 

to specifically handle the scenario where the anomalies are small deviations to a 

normative pattern. 

In Chapter 4 we described three novel algorithms, each with the goal of 

uncovering one of the specified anomalous types.  With the aid of several simple 

examples, we were able to describe the approaches and the simplicity of their 

implementation.  In Chapter 5 we validated all three approaches using synthetic data.  

The tests verified each of the algorithms on graphs and anomalies of varying sizes, with 

the results showing very high detection rates with minimal false positives.  Chapter 6 

further validated the algorithms using real-world cargo data and actual fraud scenarios 

injected into the data set.  Despite a less regular set of data, normative patterns did exist, 

and changes to those prevalent substructures were detected with 100% accuracy and no 

false positives.  We also compared our approach on this dataset against other non-

graph-based approaches where we were equally effective in all cases and better in 
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others.  We then compared our algorithms against a graph-based approach using 

intrusion detection data, again with better discovery rates and lower false positives.  We 

also looked at other real-world datasets where we were able to show unusual patterns in 

two diverse domains.  In short, the GBAD algorithms presented in this work are able to 

consistently discover all graph-based anomalies that are comprised of the smallest 

deviation of the normative pattern, with minimal false positives. 

 
7.2. Future Work 

There have been many approaches to anomaly detection over the years, most of 

which have been based on statistical methods for determining outliers.  As was shown 

in this paper, recent research in graph-based approaches to data mining have resulted in 

new methods of anomaly detection.  Our work shows promising approaches to this 

problem, particularly as it is applied to fraud detection.  However, there are still many 

avenues to be explored. 

7.2.1 Improved Picture of Anomaly 

Currently, there is no connection between compressed substructures.  In other 

words, once instances of a particular substructure have been compressed to a single 

vertex (i.e., when running multiple iterations of the GBAD-P algorithm), and a link (and 

vertex) extends from that compressed substructure, there is no information telling us 

what actual vertex is connected to that extension.  If we can save that information for 

future iterations, that could prove to be useful for two reasons.  One, we could possibly 

generate a better probabilistic model for determining which extensions are actually 
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more anomalous.  Second, it would allow us to create a better picture of the anomaly, as 

an analyst would be able to view the entire chain of connections in totality associated 

with the anomaly. 

7.2.2 User Input to Guide Detection 

A common data mining or fraud detection approach is to allow the user to 

provide feedback.  Used as either a learning process, or merely as a means of adjusting 

parametric thresholds, the user is able to guide their application towards an expected 

result, or away from an uninteresting result.  One possible modification to our 

approaches could be the input of a known normative pattern.  For instance, a domain 

expert could know what the normative pattern is for a particular data set.  By supplying 

that pattern, only deviations from that pattern would be explored.  This could also be 

particularly useful if the non-user-specified normative pattern is very small, making it 

difficult to discover anomalous deviations.  The disadvantage of this approach is that it 

would require a subgraph isomorphism, which is computationally intractable. 

7.2.3 Other Probabilistic Ratios 

The probabilistic algorithm presented in this work uses a simple probabilistic 

approach.  More advanced statistical approaches should be investigated to determine 

possibly better choices for the anomalous substructure.  For instance, currently, if there 

is only one type of extension (i.e., no other extensions available), that extension will get 

an anomalous score of 1.0 (i.e., maximum possible score), where the closer the score is 

to 0.0 the better.  While the user is currently able to threshold the anomalous score (i.e., 

ignore reported anomalies above a certain score), perhaps other statistical comparisons 
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could be made that would further delineate the targeted extension.  Also, currently the 

extensions are evaluated against just other extensions of the normative pattern.  Perhaps 

other substructures that were not the best substructure could be used in the evaluation of 

anomalous extensions. 

7.2.4 Other Evaluation Metrics 

The minimum description length principle was used as the metric for 

determining the normative pattern, as well as by the GBAD-MDL algorithm for 

discovering substructures with minor modifications.  This metric is a key component of 

the algorithms presented in this work.  However, other graph-based approaches have 

used various other metrics, such as size or coverage, for determining the normative 

pattern in a graph.  Future work should include an analysis of these other metrics in lieu 

of the MDL approach.    

7.2.5 Other Domains 

Since 9/11, one of the more common domains used in data mining consists of 

terrorist activity and relationships.  Organizations such as the Department of Homeland 

Security use various techniques to discover the inherent patterns in the network 

representation of known terrorists and their relations [Kamarck 2002].  Much research 

has been applied to not only understanding terrorist networks [Sageman 2004], but also 

discovering the patterns that discriminate the terrorists from the non-terrorists [Taipale 

2003].  Much of this area of research has also been applied to what is known as social 

network analysis, which is a more general term for the measuring and mapping of 

relationships between people, places and organizations [Mukherjee and Holder 2004]. 
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Through the Evidence Assessment, Grouping, Linking, and Evaluation 

(EAGLE) program, under the auspices of the Air Force Research Lab (AFRL), we have 

been able to gather counter-terrorism data.   While the data is simulated, it does 

represent scenarios based on input from various intelligence analysts [Coble 2006].  The 

data represents different terrorist organization activities as they relate to the exploitation 

of vulnerable targets.  Our goal is to use this data as another example of real-world data 

to further validate the effectiveness of this approach.  If a terrorist can be 

distinguishable from a non-terrorist by a small deviation in a normative pattern, we 

should be able to discover actual terrorist instances within a network of people and 

relationships. 

Another domain worth investigating would be data from the Financial Crimes 

Enforcement Network (FinCEN).  The purpose of FinCEN is to analyze financial 

transactions for possible financial crimes including terrorist financing and money 

laundering. Again, if illegal transactions consist of small deviations from normal 

transactions, we should be able to uncover genuine fraudulent activity within a network 

of people and their related monetary dealings. 

Similar techniques could be applied to a myriad of domains, including 

telecommunications call records and credit card transactions. In short, any data source 

where transactions and relationships can be represented structurally as a graph, and 

possible anomalous behavior consists of minor deviations from normal patterns, these 

approaches to graph-based anomaly detection could prove to be a viable alternative to 

traditional data mining endeavors.  In addition, by analyzing the effectiveness of our 



 

 143

algorithms against real-world, labeled data sets, we can establish a baseline of 

comparison that can be used in subsequent anomaly detection endeavors.  
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