
INFORMATION THEORETIC, PROBABILISTIC AND MAXIMUM PARTIAL

SUBSTRUCTURE ALGORITHMS FOR DISCOVERING

GRAPH-BASED ANOMALIES

by

WILLIAM FRED EBERLE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2007

 ii

ACKNOWLEDGEMENTS

I would like to thank my supervising professor, Dr. Lawrence Holder, whose

continued support and encouragement made this possible. Throughout every phase of

this research, he challenged me to the best of my ability. His guidance and mentoring

during my entire graduate studies have been an inspiration to me, for which I hope some

day to be able to instill in other students.

I would like to express my gratitude to Dr. Lynn Peterson, who supervised my

Master’s work and not only encouraged me to pursue my PhD, but was always a source

of encouragement throughout the graduate school process. I would also like to thank

the rest of the committee, Dr. Diane Cook, Dr. Sharma Chakravarthy and Dr. Gautam

Das, whose input and encouragement were instrumental in the completion of this work.

I would like to thank my parents who have always encouraged me in my

academic endeavors. Their examples of scholarly pursuits have always been an

inspiration to me. I would also like to thank the rest of my family and friends for their

encouragement during this process.

And last, but not least, I would like to thank my beautiful wife Robin. Without

her love and encouragement through what has been a tough three years, this work and

all of my graduate studies would not have been possible.

 April 23, 2007

 iii

ABSTRACT

INFORMATION THEORETIC, PROBABILISTIC AND MAXIMUM PARTIAL

SUBSTRUCTURE ALGORITHMS FOR DISCOVERING

GRAPH-BASED ANOMALIES

Publication No. ______

William Fred Eberle, PhD.

The University of Texas at Arlington, 2007

Supervising Professor: Lawrence B. Holder

The ability to mine data represented as a graph has become important in several

domains for detecting various structural patterns. One important area of data mining is

anomaly detection, particularly for fraud. However, less work has been done in terms

of detecting anomalies in graph-based data. While there has been some previous work

that has used statistical metrics and conditional entropy measurements, the results have

been limited to certain types of anomalies and specific domains.

In this work we present graph-based approaches to uncovering anomalies in

domains where the anomalies consist of unexpected entity/relationship alterations that

closely resemble non-anomalous behavior. We have developed three algorithms for the

 iv

purpose of detecting anomalies in all three types of possible graph changes: label

modifications, vertex/edge insertions and vertex/edge deletions. Each of our algorithms

focuses on one of these anomalous types, using the minimum description length

principle to first discover the normative substructure. Once the common pattern is

known, each algorithm then uses a different approach to discover particular anomalous

types. The first algorithm uses the minimum description length to find substructures

that closely compress the graph. The second algorithm uses a probabilistic approach to

examine substructure extensions and their likelihood of existence. The third algorithm

analyzes substructures that come close to matching the normative pattern, but are

unable to make some of the final extensions.

Using synthetic and real-world data, we evaluate the effectiveness of each of

these algorithms in terms of each of the types of anomalies. Each of these algorithms

demonstrates the usefulness of examining a graph-based representation of data for the

purposes of detecting fraud, where some individual or entity is cloaking their illegal

activities through an attempt at closely resembling legitimate transactions.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

ABSTRACT ..iii

LIST OF ILLUSTRATIONS... ix

LIST OF TABLES...xiii

Chapter Page

1. INTRODUCTION... 1

2. RELATED WORK.. 5

 2.1 Anomaly Detection Methods.. 5

 2.2 Graph-based Anomaly Detection Methods .. 6

 2.3 Using Graph Properties to Discover Anomalous Graphs 9

 2.4 Graph-based Pattern Discovery .. 15

3. GRAPH-BASED ANOMALIES... 19

 3.1 Definition of Graph-based Anomaly .. 19

 3.2 Anomaly Types... 22

 3.3 Assumptions ... 23

4. GRAPH-BASED ANOMALY DETECTION ALGORITHMS......................... 26

 4.1 Information Theoretic Algorithm (GBAD-MDL) 27

 4.1.1 Algorithm.. 28

 vi

 4.1.2 Implementation ... 29

 4.1.3 Examples .. 31

 4.2 Probabilistic Algorithm (GBAD-P).. 33

 4.2.1 Algorithm.. 35

 4.2.2 Implementation ... 36

 4.2.3 Examples .. 37

 4.3 Maximum Partial Substructure Algorithm (GBAD-MPS) 41

 4.3.1 Algorithm.. 42

 4.3.2 Implementation ... 44

 4.3.3 Examples .. 46

 4.4 Summary... 52

5. EMPIRICAL EVALUATIONS ON SYNTHETIC DATA 54

 5.1 Graph Generation.. 54

 5.2 Synthetic Data... 55

 5.3 Metrics .. 58

 5.4 Shapes ... 60

 5.5 Information Theoretic Results .. 62

 5.5.1 Modifications.. 63

 5.5.2 Insertions .. 68

 5.5.3 Deletions... 70

 5.5.4 Denser Graphs ... 73

 5.5.5 Extremes ... 75

 vii

 5.6 Probabilistic Results ... 77

 5.6.1 Insertions .. 77

 5.6.2 Modifications.. 81

 5.6.3 Deletions... 82

 5.6.4 Denser Graphs ... 82

 5.7 Maximum Partial Substructure Results .. 83

 5.7.1 Deletions... 84

 5.7.2 Modifications.. 86

 5.7.3 Insertions .. 88

 5.7.4 Denser and Larger Graphs .. 88

 5.8 Handling Multiple Types.. 89

 5.9 Other Types of Normative Patterns .. 95

 5.10 Limitations.. 98

 5.11 Overlapping Instances .. 99

 5.12 Performance.. 107

 5.13 Summary... 108

6. EMPIRICAL EVALUATIONS OF REAL-WORLD SCENARIOS................ 110

 6.1 Cargo Shipments... 110

 6.1.1 Random Changes.. 114

 6.1.2 Real-world Scenarios ... 114

 6.1.3 Comparison to Non-Graph-Based Approaches 117

 6.2 Intrusion Detection ... 124

 viii

 6.2.1 GBAD ... 125

 6.2.2 Comparison to Other Graph-based Approaches............................ 126

 6.3 Other Data Sets ... 130

 6.3.1 Enron E-mail .. 130

 6.3.2 Internet Movie Database (IMDB) .. 134

 6.4 Summary... 137

7. CONCLUSIONS AND FUTURE WORK.. 138

 7.1. Conclusions... 138

 7.2. Future Work.. 139

 7.2.1 Improved Picture of Anomaly... 139

 7.2.2 User Input to Guide Detection ... 140

 7.2.3 Other Probabilistic Ratios.. 140

 7.2.4 Other Evaluation Metrics ... 141

 7.2.5 Other Domains ... 141

REFERENCES ... 144

BIOGRAPHICAL INFORMATION.. 151

 ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 Density (mean) of different anomalies on small graphs. 11

 2.2 Clustering coefficient (mean) on larger graphs. .. 11

 2.3 Average shortest path length (mean) on small graphs..................................... 12

 2.4 Highest eigenvalue (mean) on larger graphs. .. 12

 2.5 Density changes on cargo data. ... 13

 2.6 Connectedness changes on cargo data. .. 14

 2.7 Clustering coefficient changes on cargo data. ... 14

 4.1 Example output of GBAD-MDL showing anomalies and score. 31

 4.2 Simple graph for GBAD-MDL example. .. 31

 4.3 Anomalous substructure from simple graph using GBAD-MDL.................... 31

 4.4 Noble and Cook example... 32

 4.5 Star example. ... 33

 4.6 Anomalous structure from star example using GBAD-MDL.......................... 33

 4.7 Simple graph for GBAD-P example.. 38

 4.8 Best substructure from simple graph for GBAD-P example. 38

 4.9 Anomalous substructure from simple graph using GBAD-P. 39

 4.10 Network-type graph. .. 40

 4.11 Anomalous insertions on network-type example. ... 41

 x

 4.12 Simple graph for GBAD-MPS example. ... 46

 4.13 Normative pattern from simple graph for GBAD-MPS example.................. 46

 4.14 Simple graph for GBAD-MPS example with deleted vertex and edge. 47

 4.15 Anomalous instance from deletion example when using GBAD-MPS......... 47

 4.16 Geometric representation of example. ... 48

 4.17 Larger graph for GBAD-MPS example... 49

 4.18 Normative pattern from larger graph used for GBAD-MPS example........... 50

 4.19 Larger graph, used for GBAD-MPS example, with deleted vertex and
 edge.. 51

 4.20 Parts removed from larger graph in GBAD-MPS example........................... 51

 4.21 Anomalous instance from larger graph when using GBAD-MPS................. 52

 5.1 Example shapes. .. 61

 5.2 Percentage of GBAD-MDL runs where all anomalies discovered.................. 63

 5.3 Percentage of GBAD-MDL runs where at least one anomaly discovered. 64

 5.4 Percentage of GBAD-MDL runs where all anomalies are discovered
 (finer granularity)... 66

 5.5 Percentage of GBAD-MDL runs where at least one anomaly is
 discovered (finer granularity). ... 67

 5.6 Percentage of GBAD-MDL runs with false positives (finer granularity). 67

 5.7 Percentage of GBAD-MDL runs where all anomalous insertions are
 discovered. ... 68

 5.8 Percentage of GBAD-MDL runs where at least one anomalous insertion
 is discovered. ... 69

 5.9 Percentage of GBAD-MDL runs on anomalous insertions containing
 false positives... 69

 xi

 5.10 Example normative pattern.. 87

 5.11 Anomalous instance from example. .. 87

 5.12 Substructure containing a modification, insertion and deletion. 91

 5.13 Anomalous substructure after one iteration. .. 92

 5.14 Anomalous substructure after two iterations using all GBAD algorithms. ... 93

 5.15 Examples of anomalous insertions to a star shaped pattern. 97

 5.16 Two star patterns sharing a common vertex. ... 99

 5.17 Example of compressing a graph by its normative pattern.......................... 102

 5.18 Example of compression with overlapping instances based on the
 number of instances. .. 103

 5.19 Example of compression with overlapping instances based on the
 amount of coverage.. 104

 5.20 Discovery percentages for overlapping instances.. 106

 6.1 High-level pictorial representation of cargo information. 111

 6.2 Example of cargo information represented as a graph. 113

 6.3 Graph representation of cargo shipment containing the anomaly, with
 an insertion in bold and removals represented as dotted lines....................... 115

 6.4 Results from k-Means clustering algorithm on cargo data with
 anomalous modification... 120

 6.5 Average anomalous ranking using GBAD-MDL on KDD intrusion
 detection data. .. 129

 6.6 Graphical representation of Enron e-mail.. 132

 6.7 Normative pattern from Enron e-mail data set. ... 132

 6.8 Results from running GBAD-P on Enron e-mail data set. 133

 xii

 6.9 Normative pattern from graph representation of movie data.......................... 135

 xiii

LIST OF TABLES

Table Page

 5.1 Percentage of GBAD-MDL runs where all anomalous deletions are
 discovered. ... 71

 5.2 Percentage of GBAD-MDL runs where at least one anomalous deletion is
 discovered. ... 72

 5.3 Percentage of GBAD-MDL runs with anomalous deletions that return false
 positives. .. 73

 5.4 Percentage of GBAD-MDL runs on dense graphs where all anomalous
 modifications are discovered. .. 74

 5.5 Percentage of GBAD-MDL runs on dense graphs where at least one
 anomalous modification is discovered... 74

 5.6 Percentage of GBAD-MDL runs on dense graphs that return false
 positives. .. 74

 5.7 Percentage of GBAD-MDL extreme runs where all anomalous
 modifications are discovered. .. 75

 5.8 Percentage of GBAD-MDL extreme runs where at least one anomalous
 modification is discovered... 76

 5.9 Percentage of GBAD-MDL extreme runs that return false positives.............. 76

 5.10 Percentage of discovery for GBAD-P runs on anomalous insertions............ 78

 5.11 Percentage of discovery for GBAD-P runs on denser graphs with anomalous
 insertions.. 82

 5.12 Percentage of discovery for GBAD-MPS runs on anomalous deletions. 85

 5.13 Percentage of discovery for GBAD-MPS runs on denser graphs with
 anomalous deletions... 88

 xiv

 5.14 Percentage of complete anomalous instances found on runs with different
 patterns... 95

 5.15 Percentage of runs with anomalous parts found on runs with different
 patterns... 96

 5.16 Percentage of runs containing false positives on runs with different
 patterns... 96

 5.17 Running-times of algorithms (in seconds)... 108

 1

CHAPTER 1

INTRODUCTION

Detecting anomalies in various data sets is an important endeavor in data

mining. Using statistical approaches has led to various successes in environments such

as intrusion detection. Recent research in graph-based anomaly detection has paved the

way for new approaches that not only compliment the non-graph-based methods, but

also provide mechanisms for handling data that cannot be easily analyzed with

traditional data mining approaches. Using information theoretic, probabilistic and

maximum partial substructure approaches, we have developed three novel algorithms

for analyzing graph substructures for the purpose of uncovering all three types of graph-

based anomalies: modifications, insertions and deletions.

The key to the algorithms presented in this work lies in our definition of an

anomaly. Basing our definition on the assumption that an anomaly is not random, for

instance in the case of committing fraud, we believe that this type of anomaly should

only be a minor deviation from the normal pattern. Because anyone who is attempting

to commit fraud or hide devious activities would not want to be caught, it only makes

sense that they would want their activities to look as real as possible. For example, the

United Nations Office on Drugs and Crime states the first fundamental law of money

laundering as “The more successful money-laundering apparatus is in imitating the

 2

patterns and behavior of legitimate transactions, the less the likelihood of it being

exposed.” [Hampton and Levi 1999]. Thus, if some set of data is represented as a

graph, any nefarious activities should be identifiable by small modifications, insertions

or deletions to the normative patterns within that graph.

Our first algorithm uses the minimum description length principle [Rissanen

1989] to determine the normative pattern, and from that pattern, find patterns that while

structurally similar, have some relational deviation that is within an acceptable level of

change. By determining what substructure minimizes the description length of the

graph after compressing the instances of the normative pattern, we are able to calculate

the cost of transformation for instances within the graph that do not exactly match the

discovered normative pattern, and as such, are indicative of an unexpected change.

Our second algorithm again determines the normative pattern as the one that

minimizes the description length of a graph, but instead of looking at changes to this

pattern we examine the probability of extensions to the pattern. If the normative pattern

does not completely compress the graph, meaning there are other vertices and edges

connected to the normative pattern, we examine each of these extensions in terms of the

probability of their existence. If the probability of existence is low enough, we mark

the instance as anomalous. We can then compress the graph by this anomalous

instance, and repeat the process until there are no more extensions to the anomalous

substructure.

Our third algorithm uses a trail of pattern expansion to discover the instances

that are structurally deficient from the normative pattern. When we attempt to discover

 3

the pattern that minimizes the description length of the graph, we maintain a parental

relationship between the structures. Once we have discovered the normative pattern, we

traverse these relationships to find the instance that is the maximum partial

substructure. In this case, we are looking for patterns that are unable to extend to the

normative pattern, and are a maximal representation of that normative pattern. In other

words, the maximum partial substructure is found in the instance that requires the

fewest additions (IF they would have existed) for transforming the instance into an

instance consisting of the normative structure.

Up until now, graph-based approaches to fraud detection have been limited to

specific anomaly types and certain domains. Taking into account the “mind of the

fraudster”, we have developed algorithms that can discover any of three types of

anomalous changes where the illegitimate actions consist of minor changes to a normal

set of activities.

The following work represents the development of graph-based anomaly

detection algorithms for the discovery of anomalies in data represented as a graph. In

our work, we assume that an anomaly is a minor deviation from a normative pattern,

where the instances being considered are connected substructures. Using the minimum

description length principle, we have developed algorithms to examine substructures

that have unexpected modifications, insertions or deletions. In Chapter 2 we present

some related work, particularly the more recent research in graph-based anomaly

detection. In Chapter 3 we present our definition of a graph-based anomaly, including

the assumptions we are making regarding the data. In Chapter 4 we present each of the

 4

three algorithms, as well as some small examples to explain their approaches. In

Chapter 5 we present our empirical evaluation of the algorithms using synthetic data

sets. In Chapter 6 we present results using real-world data, including cargo shipments

and network intrusions. Finally, in Chapter 7, we present our conclusions and future

work.

 5

CHAPTER 2

RELATED WORK

2.1 Anomaly Detection Methods

In 1987, Dorothy Denning wrote one of the first papers on what was called an

“intrusion-detection model” [Denning 1987]. It became perhaps one of the most cited

papers in the area of intrusion detection, where the goal was to define a model by which

attacks on a network could be identified. The idea was that through a series of rule-

based pattern matching, one could create a computer program that would detect in near

real-time whether or not a particular event, or events, broke a specified threshold, or

what was called a “confidence interval”. With the evolution of the internet in the

1990’s, this became an even bigger issue, as attacks on networks were now global and

not just restricted to a single company’s internal network or machines [Lee and Stolfo

1998].

In the mid 1990’s, the ideas of intrusion detection led to a broader definition:

anomaly detection. As Kumar stated in his paper on the subject of intrusion, “Anomaly

detection attempts to quantify the usual or acceptable behavior and flags other irregular

behavior as potentially intrusive.” [Kumar 1995]. In 1998, Lane expanded on the

previous research by also adding in the concept of time and classification layers [Lane

1998]. Using rule-based detectors, a form of profiling was created, whereby data could

 6

be classified into different layers. There became two approaches to looking at what was

now being viewed in generic terms as anomalous data. One was the searching for

different patterns in a data set, and another was the comparing of two data sets and

classifying how anomalous they were to each other.

The next generation of anomaly detection systems (ADSes) followed many

different directions. [Maxion and Tan 2000] hypothesized that the difference in data

regularities affected detector performance and was making it difficult to apply one

approach to all domains. They also described the regularity of the data as its intrinsic

structure. The notion that entropy, or the measure of uncertainty of a collection of data,

was starting to be applied to this field. This also led to considering conditional entropy,

or the measure of regularity of sequential dependencies, and relative entropy, which

measured the distance of the regularities between two data sets. From this concept,

[Lee and Xiang 2000] discussed the idea of information gain, whereby it was observed

that the larger the data set (i.e., more information), the more regular it becomes,

decreasing the conditional entropy.

2.2 Graph-based Anomaly Detection Methods

Recently there has been an impetus towards analyzing multi-relational data

using graph-theoretic methods. Not to be confused with the mechanisms for analyzing

“spatial” data, graph-based data mining approaches are an attempt at analyzing data that

can be represented as a graph (i.e., vertices and edges). Yet, while there has been much

written as it pertains to graph-based intrusion detection [Staniford-Chen et al. 1996],

 7

very little research has been accomplished in the area of graph-based anomaly

detection.

In 2003, Noble and Cook used the SUBDUE application to look at the problem

of anomaly detection from both the anomalous substructure and anomalous subgraph

perspective [Noble and Cook 2003]. They were able to provide measurements of

anomalous behavior as it applied to graphs from two different perspectives. Anomalous

substructure detection dealt with the unusual substructures that were found in an entire

graph. In order to distinguish an anomalous substructure from the other substructures,

they created a simple measurement whereby the value associated with a substructure

indicated a degree of anomaly. They also presented the idea of anomalous subgraph

detection which dealt with how anomalous a subgraph (i.e., a substructure that is part of

a larger graph) was to other subgraphs. The idea was that subgraphs that contained

many common substructures were generally less anomalous than subgraphs that

contained few common substructures. In addition, they also explored the idea of

conditional entropy and data regularity using network intrusion data as well as some

artificially created data.

[Lin and Chalupsky 2003] took a different approach and applied what they

called rarity measurements to the discovery of unusual links within a graph. Using

various metrics to define the commonality of paths between nodes, the user was able to

determine whether a path between two nodes was interesting or not, without having any

preconceived notions of meaningful patterns. One of the disadvantages of this approach

was that while it was domain independent, it assumed that the user was querying the

 8

system to find interesting relationships regarding certain nodes. In other words, the

unusual patterns had to originate or terminate from a user-specified node.

The AutoPart system presented a non-parametric approach to finding outliers in

graph-based data [Chakrabarti 2004]. Part of Chakrabarti’s approach was to look for

outliers by analyzing how edges that were removed from the overall structure affected

the minimum descriptive length (MDL) of the graph. Representing the graph as an

adjacency matrix, and using a compression technique to encode node groupings of the

graph, he looked for the groups that reduced the compression cost as much as possible.

Nodes were put into groups based upon their entropy.

In 2005, the idea of entropy was also used by [Shetty and Adibi 2005] in their

analysis of a real-world data set: the famous Enron scandal. They used what they called

“event based graph entropy” to find the most interesting people in an Enron e-mail data

set. Using a measure similar to what [Noble and Cook 2003] had proposed, they

hypothesized that the important nodes (or people) were the ones who had the greatest

effect on the entropy of the graph when they were removed. Thus, the most interesting

node was the one that brought about the maximum change to the graph’s entropy.

However, in this approach, the idea of important nodes did not necessarily mean that

they were anomalous.

In the December 2005 issue of SIGKDD Explorations, a couple of different

approaches to graph-based anomaly detection were presented. Using just bipartite

graphs, [Sun et al. 2005] presented a model for scoring the normality of nodes as they

relate to the other nodes. Again, using an adjacency matrix, they assigned what they

 9

called a “relevance score” such that every node x had a relevance score to every node y,

whereby the higher the score the more related the two nodes. The idea was that the

nodes with the lower normality score to x were the more anomalous ones to that node.

The two drawbacks with this approach were that it only dealt with bipartite graphs and

it only found anomalous nodes, rather than what could be anomalous substructures. In

[Rattigan and Jensen 2005], they also went after anomalous links, this time via a

statistical approach. Using a Katz measurement, they used the link structure to

statistically predict the likelihood of a link. While it worked on a small dataset of

author-paper pairs, their single measurement just analyzed the links in a graph.

2.3 Using Graph Properties to Discover Anomalous Graphs

The ability to mine relational data has become important in several domains

(e.g., counter-terrorism), and a graph-based representation of this data has proven useful

in detecting various relational, structural patterns [Mukherjee and Holder 2004]. In

[Eberle and Holder 2006], we analyzed the use of graph properties as a method for

uncovering anomalies in data represented as a graph.

While our initial research examined many of the basic graph properties, only a

few of them proved to be insightful as to the structure of a graph for anomaly detection

purposes: average shortest path length, density and connectedness. For a measurement

of density, we chose to use a definition that is commonly used when defining social

networks [Scott 2000]. For connectedness, we used a definition from [Broder et al.

2000]. Then, for some of the more complex graph properties, we investigated two

 10

measurements. First, there is the maximum eigenvalue of a graph [Chung et al. 2003].

Another, which was used in identifying e-mail “spammers”, is the graph clustering

coefficient [Boykin and Roychowdhury 2005].

In order to test these graph properties on synthetic data, we created 6 different

graph size types consisting of approximately 35, 100, 400, 1000, and 2000 vertices, and

another being a dense graph of 100 vertices and 1000 edges. For each of these

increment sizes, we created 30 non-anomalous graphs. We then generated 30

anomalous graphs for each of the graph types and for each of the following structural

anomalies: add substructure, remove substructure, move edge, and add isolated

substructure.

The density (Figure 2.1) of small graphs lessens when an anomalous

substructure is connected to existing vertices in the graph. This makes sense, as the

ratio of actual vertices and edges to the number of possible pairs would increase,

resulting in a lower density. This also explains why the density of graphs that contain

isolated substructures is less, due to containing unconnected vertices. Also, the removal

of a substructure results in a wide deviation in the density measurement. The

connectedness of the smaller graphs varies for each of the different types of anomalies.

The insertion and isolation anomalies result in lower values, and insertion of an isolated

substructure has an even greater variation on the measurement. The same behavior is

also found in dense graphs. Changes in the clustering coefficient (Figure 2.2) on smaller

graphs are only evident for inserted isolated anomalous substructures and the anomaly

of moved edges. This variance, because of the moved edges, is significant due to the

 11

way the deviation changes. As the graphs get larger, the distribution still holds, but the

coefficient of the graphs with moved edges increases significantly. The average shortest

path length (Figure 2.3) and eigenvalue (Figure 2.4) metrics behave similarly to the

above metrics, except that they are better indicators of inserted substructures and moved

edges.

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04

0.041

type

de
ns

ity

Original
Inserted Sub
Removed Sub
Moved Edges
Isolated Sub

Figure 2.1 Density (mean) of different anomalies on small graphs.

0

0 .000 5

0 .00 1

0 .001 5

0 .00 2

0 .002 5

0 .00 3

0 .003 5

0 .00 4

0 .004 5

ty pe

cl
us

te
rin

g
co

ef
fic

ie
nt

O rig ina l
Ins e rted S ub
R em ove d S ub
M o ved E d ges
Is o la te d S ub

Figure 2.2 Clustering coefficient (mean) on larger graphs.

 12

1.015

1.016

1.017

1.018

1.019

1.02

1.021

1.022

types

av
g

sh
or

te
st

 p
at

h
le

ng
th

Original
Inserted Sub
Removed Sub
Moved Edges
Isolated Sub

Figure 2.3 Average shortest path length (mean) on small graphs.

4

4.001

4.002

4.003

4.004

4.005

4.006

4.007

4.008

4.009

type

ei
ge

nv
al

ue

Original
Inserted Sub
Removed Sub
Moved Edges
Isolated Sub

Figure 2.4 Highest eigenvalue (mean) on larger graphs.

We also tested these approaches on data from cargo shipments represented as

graphs. When injecting real-world anomalies into the data, no significant deviations are

displayed using the average shortest path or eigenvalue metrics. However, there are

visible differences for the density, connectedness and clustering coefficient

 13

measurements. Figures 2.5, 2.6 and 2.7 represent the values for each of the

corresponding metrics in each test example. The bottom plot lines in each chart show

the values on the original cargo data. As shown, for every test where the anomalous

examples were randomly interjected into the cargo data, a noticeable deviation occurs in

the corresponding graph property.

0.001072
0.001073
0.001074
0.001075
0.001076
0.001077
0.001078
0.001079
0.00108

0.001081
0.001082

1 4 7 10 13 16 19 22 25 28
graphs

de
ns

ity Original Cargo Data
Drug Smuggling
Arms Shipment

Figure 2.5 Density changes on cargo data.

 14

0.001896

0.001898

0.0019

0.001902

0.001904

0.001906

0.001908

0.00191

0.001912

1 4 7 10 13 16 19 22 25 28
graphs

co
nn

ec
te

dn
es

s

Original Cargo Data
Drug Smuggling
Arms Shipment

Figure 2.6 Connectedness changes on cargo data.

0.003632

0.003634

0.003636

0.003638

0.00364

0.003642

0.003644

1 4 7 10 13 16 19 22 25 28
graphs

cl
us

te
rin

g
co

ef
fic

ie
nt Original

Cargo
Data

Drug
Smuggling

Arms
Shipment

Figure 2.7 Clustering coefficient changes on cargo data.

 15

Another metric that can be used is the combination of individual measurements

to provide a clearer view. For instance, when combining the density, connectedness and

clustering coefficient measurements, we get values that clearly indicate anomalies.

Similar results are evident when applying different combinations on the synthetic data

sets.

The issue with this approach is that while graphs are indicated as anomalous,

this does not provide the specific anomaly within what could be a very large graph of

data. However, the algorithms presented in this work will rectify that problem by not

only indicating a graph contains an anomaly, but more importantly, they will discover

the specific anomaly and its pertinent structure within the graph.

2.4 Graph-Based Pattern Discovery

While not specific to anomaly detection, there are several approaches to

handling just the discovery of the normative pattern in data that is represented as a

graph. One approach called gSpan returns all frequent substructures in a database that

is represented as a graph [Yan and Han 2002]. Using a depth-first search on the input

graphs, the algorithm constructs a hierarchical search tree based upon the DFS code

assigned to each graph. Then, from its canonical tree structure, the algorithm performs

a pre-order traversal of the tree in order to discover the frequent subgraphs.

Another approach is found in FSG, which is similar to gSpan in that it returns

all of the frequent subgraphs (substructures) in a database of transactions that have been

represented as a graph [Kuramochi and Karypis 2004]. However, unlike gSpan, FSG

 16

uses an Apriori-style breadth-first search. The algorithm takes the input graphs and

performs a level-by-level search, growing patterns one edge at a time. The core of the

FSG algorithm lies in its candidate generation and counting that are used to determine

the frequent subgraphs.

In order to mine large graphs for frequent subgraphs, Huan et al. proposed a

maximal frequent subgraphs approach called SPIN as an improvement to gSpan [Huan

et al. 2004]. By mining only subgraphs that are not part of any other frequent

subgraphs, they are able to reduce the number of mined patterns by orders of

magnitude. This is accomplished by first mining all frequent trees from a graph, and

then reconstructing all maximal subgraphs from the mined trees. Zeng et al. looked at

the problem of dense graphs by mining the properties of quasi-cliques [Zeng et al.

2006]. Using a system called Cocain, they propose several optimization techniques for

pruning the unpromising and redundant search spaces. To help combat the subgraph

isomorphism issue, Gudes et al. proposed a new Apriori-based algorithm using disjoint

paths [Gudes et al. 2006]. Following a breadth-first enumeration and what they called

an “admissible support measure”, they are able to prune candidate patterns without

checking their support, significantly reducing the search space. MARGIN is another

maximal subgraph mining algorithm that focuses on the more promising nodes in a

graph [Thomas et al. 2006]. This is accomplished by searching for promising nodes in

the search space along the “border” of frequent and infrequent subgraphs, thus reducing

the number of candidate patterns.

 17

The goal of SUBDUE is to return the substructures that compress the graph the

best [Holder et al. 1994]. Using a beam search (a limited length queue of the best few

patterns that have been found so far), the algorithm grows patterns one edge at a time,

continually discovering what substructures best compress the description length of the

input graph. The core of the SUBDUE algorithm is in its compression strategy. After

extending each substructure by one edge, it evaluates each extended substructure based

upon its compression value (the higher the better). A list is maintained of the best

substructures, and this process is continually repeated until either there are no more

substructures to compress or a user-specified limit is reached.

While each of these approaches is successful at pattern discovery, we will use

the SUBDUE compression evaluation technique as the basis for our underlying

discovery of the normative patterns. While the gSpan application is not publicly

available, there are a few reasons why we found FSG to not be an ideal candidate for

our implementation. One reason for our choice of pattern learner lies with the format

expected by the FSG application. SUBDUE can effectively discover normative patterns

whether it is given all transactions or data as one entire graph, or if each transaction is

defined as individual subgraphs. As a graph data miner, FSG shows the frequency of a

pattern based upon the number of transactions defined in the graph input file. So, if a

graph is not delineated by individual transactions, the frequency of every pattern is 1,

and thus very difficult to determine which pattern is the most frequent. However, in

some later work by Kuromachi and Karypis, they improve upon this with an approach

called Grew that is able to better handle large graphs that consist of connected

 18

subgraphs [Kuromachi and Karypis 2004]. Another reason lies in the FSG approach to

determining the normative pattern based upon frequency. While tests on various graphs

showed SUBDUE and FSG returned the same normative pattern, when the tests

involved a graph where the normative pattern is not found across all transactions (e.g.,

noise), the frequent pattern is not found unless the FSG support percentile is reduced.

The issue then is knowing what support percentile should be used for a specific run.

Specifying 100% support will result in the normative pattern being lost if the pattern is

not found in at least one transaction, while using a lower percentile may result in other

(smaller) normative patterns being found. In short, SUBDUE allows us to find the

normative pattern in data that may be less regular or contain some noise. As will be

shown in the following section, this is critical to the success of discovering anomalies.

 19

CHAPTER 3

GRAPH-BASED ANOMALIES

Webster defines an anomaly as “a deviation from the common rule, type, or

form.” [Webster 1989]. Webster’s Thesaurus states that the word “anomaly” can also

be termed “peculiarity, unconformity, exception,…, irregularity” [Webster 1971].

3.1 Definition of Graph-Based Anomaly

Setting up fraudulent web-sites, “phishing” for credit cards, stealing calling

cards, and creating bogus bank accounts are just some of the countless examples of

scams that have succumb everyone from the individual investor to large corporations.

In every case, the fraudster has attempted to swindle their victim and hide their dealings

within a morass of data that has become proverbially known as the “needle in the

haystack”. Yet, even when the data is not relatively large in size, the ability to discover

the nefarious actions is still ultimately difficult due to the mimicry of the perpetrator.

Before we lay the groundwork for our definition of a graph-based anomaly, we

need to put forth a framework for the definition of a graph. In general, a graph is a set

of nodes and a set of links, where each link connects either two nodes or a node to itself.

More formally, we use the following definitions:

 20

Definition: A graph G = (V,E,L) is a mathematical structure consisting of three

sets V, E and L. The elements of V are called vertices (or nodes),

the elements of E are the edges (or links) between the vertices, and

the elements of L are the string labels assigned to each of the

elements of V and E.

Definition: A vertex (or node) is an entity (or item) in a graph. For each vertex

there is a labeled vertex pair (v,l) where v is a vertex in the set V of

vertices and l is a string label in the set L of labels.

Definition: An edge (or link) is a labeled relation between two vertices called

its endpoints. For each edge there is a labeled edge pair (e, l)

where e is an edge in the set E of edges and l is a string label in the

set L of labels.

Definition: An edge can be directed or undirected. A directed edge is an edge,

one of whose endpoints is designated as the tail, and whose other

endpoint is designated as the head. An undirected edge is an edge

with two unordered endpoints. A multi-edge is a collection of two

or more edges having identical endpoints.

 [Gross and Yellen 1999] [West 2001]

Much research has been done recently using graph-based representations of

data. Using vertices to represent entities such as people, places and things, and edges to

 21

represent the relationships between the entities, such as friend, lives and owns, allows

for a much richer expression of data than is present in the standard textual or tabular

representation of information. Representing various data sets like telecommunications

call records, financial information and social networks in a graph form allow us to

discover structural properties in data that are not evident using traditional data mining

methods.

The idea behind the approach presented in this work is to find anomalies in

graph-based data where the anomalous substructure (at least one edge or vertex) in a

graph is part of (or attached to or missing from) a non-anomalous substructure, or the

normative pattern. This definition of an anomaly is unique in the arena of graph-based

anomaly detection, as well as non-graph-based anomaly detection. The concept of

finding a pattern that is "similar" to frequent, or good, patterns, is different from most

approaches that are looking for unusual or “bad” patterns. While other non-graph-based

data mining approaches may aide in this respect, there does not appear to be any

existing approaches that directly deal with this scenario.

Definition: Given a graph G with a normative substructure S, a substructure S’

and a d that is the difference between S and S’, let C(d) be the cost

of the difference and P(d) be the probability of the difference.

Then the graph G is considered anomalous if 0 < A(S’) <= X,

where X is a user-defined threshold and A(S’) = C(d) * P(d) is the

anomaly score.

 22

The importance of this definition lies in its relationship to fraud detection (i.e., any sort

of deceptive practices that are intended to illegally obtain or hide information). If a

person or entity is attempting to commit fraud, they will do all they can to hide their

illicit behavior. To that end, their approach would be to convey their actions as close to

legitimate actions as possible. That makes this definition of an anomaly extremely

relevant.

3.2 Anomaly Types

For a graph-based anomaly, there are several situations that might occur:

1. The label on a vertex is different than was expected.

2. The label on an edge is different than was expected.

3. A vertex exists that is unexpected.

4. An edge exists that is unexpected.

5. An expected vertex is absent.

6. An expected edge between two vertices (or a self-edge to a vertex) is

 absent.

It is also evident that these same situations can be applied to a substructure (i.e.,

multiple vertices and edges), and will be addressed as such. In essence, there are three

general categories of anomalies: modification, insertions and deletions. Modifications

 23

would constitute the first two situations; insertions would consist of the third and fourth

situation; and deletions would categorize the last two situations.

In this work, we will not be addressing the possible scenario of a change in the

directedness of an edge. While directed edges are allowed, we will not introduce any

anomalies that consist of change in an edge’s direction. There is also the situation

where a graph changes over time. [Coble et al. 2005] addressed this dimension in their

paper that proposed an iterative approach to substructure discovery, as well as how it

related to anomaly detection. [Cortes et al. 2003] examined the temporal evolution of

large dynamic graphs at it related to telecommunication’s fraud detection. Also, [Ide

and Kashima 2005] addressed the problem of anomaly detection from a time sequence

of graphs using the principle eigenvector of the eigenclusters of the graph. The

dimension of analyzing graphs over time is beyond the scope of this work, but the

approaches presented here can be applied to graphs changing over time as well.

3.3 Assumptions

Many of the graph-based anomaly detection (or intrusion detection) approaches

up to now have assumed that the data exhibits a power-law distribution. For example,

much of the data that has been used in previous analysis has used items like the world-

wide web, social networks, or other sources that convey a power-law behavior

[Faloutsos et al. 1999]. The advantage of the approaches presented in this work is that

it does not assume the data consists of a power-law behavior. In fact, no standard

distribution model is assumed to exist. All that is required is that the data is regular,

 24

which in general means that the data is “predictable”. While there are many data sets

that are not regular in nature, many of the real-world data sets that are examined for

fraudulent activity, such as telecommunications call traffic, financial transactions and

shipping manifests, consist of user transactions that exhibit regular patterns of behavior.

In order to address our definition of an anomaly, we make the following

assumptions about the data:

Assumption 1: The majority of a graph consists of a normative pattern.

In general, the more regular the data (or graph), the more predictable it is to discover

anomalies. If a graph were irregular, the ability to distinguish between anomalies and

noise would be prohibitive.

Assumption 2: No more than X% of the normative pattern is altered in the case

of an anomaly.

Since our definition implies that an anomaly constitutes a minor change to the prevalent

substructure, we can choose a small percentage (e.g., 10%) to represent the most a

substructure would be changed in a fraudulent action.

Assumption 3: Anomalies consist of one or more modifications, insertions or

deletions.

 25

As was described in Section 3.2, there are only three types of changes that can be made

to a graph. Therefore, anomalies that consist of structural changes to a graph must

consist of one of these types.

Assumption 4: The normative pattern is connected.

In a real-world scenario, we would apply this approach to data such as cargo shipments,

telecommunications traffic, financial transactions or terrorist networks. In all cases, the

data consists of a series of nodes and links that share common nodes and links.

Certainly, graphs could contain potential anomalies across disconnected substructures,

but at this point, we are constraining our research to only connected anomalies.

 26

CHAPTER 4

GRAPH-BASED ANOMALY DETECTION ALGORITHMS

Most anomaly detection methods use a supervised approach, which requires

some sort of baseline of information from which comparisons or training can be

performed. In general, if we have an idea what is normal behavior, deviations from that

behavior could constitute an anomaly. However, the issues with these approaches are

that one has to have the data in advance in order to train the system, and the data has to

already be labeled (i.e., fraudulent versus legitimate).

Our work has resulted in the development of three algorithms, which we have

implemented using a tool called GBAD (Graph-Based Anomaly Detection). GBAD is

an unsupervised approach, based upon the SUBDUE graph-based knowledge discovery

system [Cook and Holder 1998]. Using a breadth-first search and Minimum

Description Length (MDL) heuristic, each of the three anomaly detection algorithms

uses GBAD to provide the normative pattern in an input graph. In our implementation,

the MDL approach is used to determine the best substructure(s) as the one that

minimizes the following:

)()|(),(SDLSGDLGSM +=

 27

where G is the entire graph and S is the substructure. M(S,G) is the message length of

the graph G with respect to the substructure S where DL(G|S) is the description length

of G after compressing it using S, and DL(S) is the description length of the

substructure.

Using GBAD as the tool for our implementation, we have developed three

separate algorithms: GBAD-MDL, GBAD-P and GBAD-MPS. Each of these

approaches is intended to discover all of the possible graph-based anomaly types as set

forth earlier.

4.1 Information Theoretic Algorithm (GBAD-MDL)

The GBAD-MDL algorithm uses a Minimum Description Length (MDL)

heuristic to discover the best substructure in a graph (i.e., the substructure that

compresses the graph the most), and then subsequently examines all of the instances of

that substructure that “look similar” to that pattern.

The high-level approach for the GBAD-MDL algorithm is, for a graph G:

• Find the best substructure S that minimizes the description length of G.

• Find all instances Ik, whose cost of transformation is less than a specified

threshold, where the threshold is a user-defined parameter.

• Output all Ik whose (cost * frequency) is minimum.

 28

“Cost of transformation” (or matchcost) is the cost of transforming subgraph A into an

isomorphism of subgraph B. We calculate this by adding 1.0 for each vertex, edge and

label that would need to be changed in order to make A isomorphic to B.

4.1.1 Algorithm

In Algorithm 1, the threshold T is the user-defined level of inexact matching that

can occur. That is to say, it is the amount of change that one is willing to accept

between an instance (or subgraph of the graph G) and the normative substructure. The

detailed GBAD-MDL algorithm is as follows:

Algorithm 1: proc GBAD-MDL (graph G, threshold T)

1. Find normative substructure S minimizing DL(S)+DL(G|S)
2. Identify instances Ik of S in G having matchcost(Ik,S) < (T * size(|S|))
3. For each instance Ik such that matchcost(Ik,S) > 0

a. freq(Ik) = number of instances of S that exactly match Ik
b. anomalyScore(Ik) = freq(Ik) * matchcost(Ik,S)

4. Return all instances Ik having the minimal anomalyScore

With the inexact matching that occurs in the GBAD-MDL algorithm, the result

will be those instances that are the “closest” (without matching exactly) in structure to

the best structure (i.e., compresses the graph the most), where there is a tradeoff in the

cost of transforming the instance to match the structure, as well as the frequency with

which the instance occurs. Since cost of transformation and frequency are independent

variables, multiplying their values together results in a combinatory value: the lower

 29

the value, the more anomalous the structure. It is these inexact matching instances that

will be analyzed for anomalousness.

Note that we are only interested in the top substructure (i.e., the one that

minimizes the description length of the graph), so k will always be 1. However, for

extensibility, we can work from the top k substructures if it is felt that anomalous

behavior is not found in the top normative pattern.

4.1.2 Implementation

The goal of SUBDUE is to discover the best pattern in a graph using a

Minimum Description Length (MDL) evaluation of how much a substructure

compresses the graph. This is fundamentally different from GBAD-MDL where the

approach is to use the same MDL principle but instead look for those substructures that

do not compress the graph the best, but are structurally closest to the best substructure.

In order to implement the GBAD-MDL algorithm, we first used SUBDUE to

discover the best substructure. In addition to providing the normative pattern using an

MDL evaluation, SUBDUE also provides two other features: the ability to specify

inexact matching as a percentage of the normative substructure, and a list of all

instances that match the best substructure. SUBDUE terminates processing when there

are no more extensions to candidate substructures, whereas the GBAD-MDL algorithm

continues processing the best substructure by analyzing its instances for the one that is

closest in transformation cost to the normative pattern.

First, the algorithm modifies the best substructure list by determining which

substructure is actually the true normative pattern. Since an inexact matching was used,

 30

it is possible that the top substructure specified in SUBDUE (i.e., the best substructure),

may not be the true normative pattern. So, a search is performed on the list of instances,

finding the pattern that is the most frequent, and replacing the previously specified best

substructure with its structure.

Second, the new list of instances is compared to the new best substructure, and

each instance is given an anomalous score equal to its cost of transformation (for

transforming the instance into the best substructure). Then, for each instance in the list

that matches this instance (i.e., isomorphic), the anomalous score is increased by the

value of the cost of transformation – in essence, creating an anomalous score that is

equal to the cost of transformation times frequency.

For the last step, our GBAD-MDL implementation finds the anomalous instance

(or instances, if their anomalous scores are equal), and flags the individual vertices and

edges that are anomalous. This is accomplished by comparing the structure of the

anomalous instance with the normative substructure, and for each vertex and edge in the

anomalous instance that does not have a match in the normative pattern, a flag is set.

So, in the end, when the anomalous instance is output by this implementation, there is

an indicator next to each individual anomaly. An example of the textual output is

shown in Figure 4.1.

 31

Anomalous Instance(s):

 v 58 v1 < -- anomaly
 v 59 v2
 v 60 v1
 d 58 60 e2 < -- anomaly
 d 59 58 e2
 d 60 59 e1
 (information_theoretic anomalous value = 2.000000)

Figure 4.1 Example output of GBAD-MDL showing anomalies and score.

4.1.3 Examples

The following are some simple examples of results obtained using our

implementation of the GBAD-MDL algorithm described above.

First, take the fairly regular example shown in Figure 4.2.

A

C B

A

D B

A

C B

A

C B

A

C B
Figure 4.2 Simple graph for GBAD-MDL example.

Running the GBAD-MDL algorithm, the anomalous substructure, as shown in Figure

4.3, is:

A

D B
Figure 4.3 Anomalous substructure from simple graph using GBAD-MDL.

 32

which is exactly the desired result. (The individual anomaly is in bold.) It should also

be noted that no other substructures were reported as anomalous.

The above is similar to the example that was presented in the paper by Noble

and Cook [Noble and Cook 2003], as shown in Figure 4.4.

A

C B

A

D B

A

B C
Figure 4.4 Noble and Cook example.

Running the GBAD-MDL algorithm on this example also results in the same anomalous

substructure as shown in Figure 4.3. In Noble and Cook’s approach, the D vertex is

shown to be the anomaly, as they use a combination of size and number of instances to

determine the anomalousness of a substructure. Similarly, GBAD-MDL also indicates

that D is anomalous. The importance of this new approach is that a larger picture is

provided regarding its associated substructure. In other words, not only are we

providing the anomaly, but we are also presenting the context of that anomaly within

the graph.

Another common real-world graph structure is a star-cluster configuration (e.g.,

shipping manifests), like the example shown in Figure 4.5.

 33

X

Y
G H

E F

Y
G H

E F

Y
G H

E F

Y
G I

E F

Figure 4.5 Star example.

Again, for this simple example, GBAD-MDL is correctly able to find the anomaly and

its associated substructure, as shown in Figure 4.6.

Y
G I

E F

Figure 4.6 Anomalous structure from star example using GBAD-MDL.

4.2 Probabilistic Algorithm (GBAD-P)

The GBAD-P algorithm also uses the MDL evaluation technique to discover the

best substructure in a graph, but instead of examining all instances for similarity, this

 34

approach examines all extensions to the normative substructure (pattern), looking for

extensions with the lowest probability. The subtle difference between the two

algorithms is that GBAD-MDL is looking at instances of substructures with the same

characteristics (i.e., size, degree, etc.), whereas GBAD-P is examining the probability of

extensions to the normative pattern to determine if there is an instance that when

extended beyond its normative structure is traversing edges and vertices that are

probabilistically less than other extended instances.

The high-level approach for the GBAD-P algorithm is:

• For a graph G, find the best substructure S that minimizes the description length

of G.

• Compress G using S.

• For the newly compressed graph G

o Find the single edge and vertex extension E that has the lowest

probability P of existence from instances I of S.

o Output instance In and E whose P is minimum.

o Set S’ to instance In’s substructure.

• Compress G using S’, and repeat the above steps if there are still other

extensions of the normative pattern to consider.

At each iteration, the result will be the instance that consists of the best

substructure pattern and an extension with the lowest probability of existence. The

 35

value associated with this instance represents the lowest frequency, where the lower the

value, the more anomalous the structure.

4.2.1 Algorithm

In Algorithm 2, the probability P allows the user to specify how much

probability of existence they are willing to accept for a substructure to be considered

anomalous. The number of iterations N allows the user to specify how far beyond the

normative pattern they want to extend to look for anomalies. The detailed GBAD-P

algorithm is as follows:

Algorithm 2: proc GBAD-P (graph G, probability P, iterations N)

1. Find normative substructure S minimizing DL(S)+DL(G|S); where I are instances
of S in G.

2. Compress G by S, where all instances I of S in G are each replaced by a new
vertex V.

3. Iterate over each new vertex V, extending each vertex V by all possible single
edges E.

4. For all instances I’, where each instance of I’ consists of V and a unique extension,
a substructure S’ consists of all matching instances A from instances I’.

5. For each instance Ak , anomalyScore(Ak) = number of instances of S’ / |I’ |
6. Return each instance Ak with minimal anomalyScore < P.
7. Set S to substructure definition of the Ak with minimal anomaly score.
8. If current iteration < N, start next iteration at step 2.

anomalyScore(Ik) is the probability that a given instance should exist given the

existence of all of the extended instances. Again, the lower the value, the more

anomalous the instance. Given that |In| is the total number of possible extended

 36

instances, freq(Ik) can never be greater, and thus the value of anomalyScore(Ik) will

never be greater than 1.0.

4.2.2 Implementation

SUBDUE provides the ability to continually compress a graph, searching for the

pattern that compresses the graph the most, and thus is ultimately the best substructure

within the graph. GBAD-P takes a different approach by compressing the graph a

single extension at a time, using the extensions that have the least probability of being

part of the best substructure.

In order to implement the GBAD-P algorithm, we again used SUBDUE to

discover the best substructure. In addition, we also used two other features provided by

SUBDUE: maintaining a list of all instances that match the best substructure; iterating

multiple times, compressing the graph by the best substructure at each iteration. When

enough iterations are specified, SUBDUE terminates processing when any more

attempts at compressing the graph would not result in a further reduction in its MDL.

After the first iteration, where the graph is compressed by the normative pattern, the

GBAD-P algorithm analyzes extensions from each instance of the best substructure at

each iteration, looking for the ones with the lowest probability of occurring.

First, SUBDUE’s logic for extensions is modified to only extend one edge at

each iteration. While the first iteration works as-is in terms of performing extensions in

order to find the best substructure, subsequent iterations only process single edge

extensions from the newly compressed substructure. This allows the GBAD-P

algorithm to evaluate the probability of individual extensions.

 37

Second, the algorithm modifies the best substructure list by finding the best

substructure that contains the compressed normative pattern from the first iteration.

This is done to ensure that at each iteration we are still working from the normative

pattern. The first substructure in the list that contains the compressed normative pattern

is moved to the top of the list as the best substructure (since the list is already in order

by value).

Third, for the newly defined best substructure, all of its instances are evaluated

in terms of their probability among themselves. For each instance, a simple evaluation

is calculated where the probability of the instance is the number of matching instances

divided by the total number of instances, all within the list of instances for the best

substructure. This value is then set as the anomalous score for the corresponding

instance.

After each iteration, our GBAD-P implementation prints the anomalous instance

(or instances, if their anomalous scores are equal). The output is similar to what is

produced by the GBAD-MDL algorithm, except that the score is a value from 0.0-1.0,

and it is done after each iteration (except for the first). By doing this over each

iteration, it allows one to view the growth of the anomaly, one edge at a time.

4.2.3 Examples

The following are some simple examples of results obtained using our

implementation of the GBAD-P algorithm described above.

First, take the fairly regular example shown in Figure 4.7.

 38

D

B

C A

B

C A

B

C A

D C D

B

C A

B

C A

D

Figure 4.7 Simple graph for GBAD-P example.

After one iteration, the best substructure is shown in Figure 4.8.

B

C A

Figure 4.8 Best substructure from simple graph for GBAD-P example.

Then, on the second iteration, this substructure is compressed to a single vertex,

extensions are evaluated, and the resulting anomalous substructure is shown in Figure

4.9 (with the compressed substructure expanded just for this visualization).

 39

B

C A

C

Figure 4.9 Anomalous substructure from simple graph using GBAD-P.

Clearly the anomalous substructure shown in Figure 4.9 is the desired result as the

extension to C is less probable than the other D extensions.

Let us take another example, this time of a more network-type structure, as

shown in Figure 4.10.

 40

X

Y
G H

E F

Y
G H

E F

Y
G H

E F

Y
G H

E F
I

J

K
I

J

K

I

J

K

I

J

K

Figure 4.10 Network-type graph.

In Figure 4.10, there is a central node (labeled X) with four connected identical star

structures (each with a center node labeled Y). Each of these star structures has an

identical smaller substructure (made up of vertices labeled I, J and K) connected to it.

However, one of the star structures has the IJK substructure connected to its vertex

labeled E, while the others have it connected to their vertex labeled G.

Running the GBAD-P algorithm on this graph results in the following three

structures labeled as anomalous, as shown in Figure 4.11 (after the second iteration).

 41

Y
H

E F

I
Y

H

E FJ

Y
H

E F

KG

G
G

Figure 4.11 Anomalous insertions on network-type example.

So, in essence, while it did report the anomaly as three different substructures (all equal

in probability), the complete anomaly is discovered. It should also be noted that on

subsequent iterations, no more anomalous substructures are found. (All of the

subsequent candidates have a probability of 100%.) This is because on the following

iteration, the instances of the best substructure are compressed to a single vertex, and

the other vertices (I, J and K), are linked to that single vertex, with no former

knowledge of where they linked (i.e., whether they linked to E or G). Possible future

work could include a modification to this approach to keep track of the original

connections for further evaluation.

4.3 Maximum Partial Substructure Algorithm (GBAD-MPS)

The GBAD-MPS algorithm uses the MDL approach to discover the best

substructure in a graph, and then it examines all of the instances of ancestral

substructures that are missing various edges and vertices.

The high-level approach for the GBAD-MPS algorithm is:

 42

• For a graph G, find the best substructure S that minimizes the description length

of G.

• Find the instances of ancestor substructures of S (we will refer to the ancestor

substructures Sn).

• Output all instances Ik of Sn that are not part of any instances of S, and that

minimize (cost * frequency).

The result will be those instances that are the maximum possible partial substructures to

the normative (or best) substructure. The value associated with the instances represents

the cost of transformation (i.e., how much change would have to take place for the

instance to match the best substructure). Thus, the instance with the lowest cost

transformation (if more than one instance have the same value, the frequency of the

instance’s structure will be used to break the tie if possible) is considered the anomaly,

as it is closest to the best substructure without being included on the best substructure’s

instance list.

4.3.1 Algorithm

The key to Algorithm 3 is the building of the substructure list Sn, which are all

substructures that are ancestral substructures to the normative substructure S, meaning

they share common vertices and edges. The detailed GBAD-MPS algorithm is as

follows:

 43

Algorithm 3: proc GBAD-MPS (graph G, cost C)

1. Find normative substructure S minimizing DL(S)+DL(G|S), where I is the set of
its instances.

2. For each Sn, in the set of previously-generated substructures, where SSn ⊆ , let In
be the set of instances of Sn.

3. For each instance Ik in the set of instances In, where 0 < matchcost(Ik,S) < C,
II k ⊄ and Im are all instances in In that are isomorphic to Ik

a. anomalyScore(Ik) = | Im | * matchcost(Ik,S).
4. Return all instances Ik having minimal anomalyScore.

By allowing the user to specify the cost threshold C, we can control the amount

of “anomalousness” that we are willing to accept. By our definition of an anomaly, we

are expecting low transformation costs (i.e., few changes for the anomalous instance to

match the best substructure). With the GBAD-MPS algorithm, while the user-definable

threshold is a value based upon the cost of transformation, the product of the number of

instances and the cost is the final anomalous score. For instance, if there are two

substructures X and Y that have the same minimal cost of transformation to matching

the best substructure, but there are 3 instances of X and 2 instances of Y, the instances

of the Y substructure would be output as the most anomalous.

Throughout this work, whenever we indicate a relationship between

substructures as yx ⊆ , we are referring to the fact that x is a subgraph of y, rather than

x is a subset of y. It should also be pointed out that yx ⊄ is referring to the case where

x is not a complete sub-instance of y.

 44

4.3.2 Implementation

While building substructures, and ultimately searching for the best pattern,

SUBDUE maintains a list of the instances that match the current best substructure.

GBAD-MPS takes a different approach by constructing a history of the substructures,

allowing for the eventual analysis of ancestral substructures, and thus looking for those

patterns that are structurally closest to the normative pattern, but are missing some

structure.

In order to implement the GBAD-MPS algorithm, again we used SUBDUE to

discover the best substructure. In addition, we also used another feature provided by

SUBDUE: specifying the beam width of the search. By default, SUBDUE uses a beam

width of 4 which signifies that it will only keep the top 4 substructures after evaluating

each extension. While this heuristic has proven to be successful in SUBDUE’s ability

to discover the normative pattern, in order to be able to analyze substructures that never

extended to the normative pattern, which is necessary for this algorithm, we need to

extend the beam width so that other substructures can be evaluated for anomalies. This

allows for us to keep track of those instances that are not direct ancestors of the

normative pattern. In the end, SUBDUE terminates processing when there are no more

extensions to candidate substructures, while the GBAD-MPS algorithm continues

processing all of the ancestral substructures, looking for the one that is closest in

transformation cost to the normative pattern

First, a list of substructures is maintained that consists of substructures (and

their instances) that at some point during SUBDUE processing were used in evaluating

 45

their potential for being the normative pattern. Even if a substructure fails to make the

“best” list at some point, it is still maintained on this list as a possible anomalous

substructure. While this list can be rather large (and deserves some future memory-

saving analysis), since the normative pattern is not known at this point, it has to be

maintained until the final evaluation.

Second, the algorithm takes this list of substructures and compares each

substructure to the normative pattern. If a substructure matches within the user

specified anomalous threshold (cost of transformation), each of its instances is

compared to the instances of the normative pattern. If an instance overlaps one of the

normative pattern’s instances (i.e., all of its edges and vertices are found in one of the

normative instances), the instance is thrown out because it is considered one that could

eventually extend to the normative pattern.

Third, each instance in the candidate list of instances is given an anomalous

score equal to its cost of transformation (for transforming the instance into the

normative pattern). Then, for each instance in the list that is isomorphic to another

instance in the list, its anomalous score is increased by the value of its cost of

transformation (i.e., cost of transformation * frequency).

In the end, our GBAD-MPS implementation prints the anomalous instance (or

instances, if their anomalous scores match). This output is a little different from the

other two algorithms in that no anomalous vertices and edges are indicated, just the

entire anomalous instance. Since what is anomalous is the lack of structure, a

 46

comparison of the normative substructure to the anomalous substructure yields the

anomalous differences.

4.3.3 Examples

The following are some simple examples of results obtained using our

implementation of the GBAD-MDL algorithm described above.

First, take the example shown in Figure 4.12.

D

B

C A

B

C A

B

C A

D D D

B

C A

B

C A

D

Figure 4.12 Simple graph for GBAD-MPS example.

The normative pattern (best substructure) from this graph is shown in Figure 4.13.

B

C A

D

Figure 4.13 Normative pattern from simple graph for GBAD-MPS example.

 47

Now, suppose we remove one of the edges and its associated vertex, from one of the

instances of this normative pattern, creating the graph shown in Figure 4.14.

D

B

C A

B

C A

B

C A

D D D

B

C A

B

C A
Figure 4.14 Simple graph for GBAD-MPS example with deleted vertex and edge.

In other words, we removed one of the D vertices and its associated edge. Running the

maximum partial substructure approach on this modified graph, results in the

anomalous instance shown in Figure 4.15.

B

C A
Figure 4.15 Anomalous instance from deletion example when using GBAD-MPS.

However, this pattern is common to all of the normative instances. So, for usefulness,

our implementation reports the actual anomalous graph instance as specified in the input

graph file (for example):

 v 17 C
 v 18 B
 v 19 A
 d 17 18 label

 48

 d 19 17 label

In this example, the actual vertex and edge numbers, as well as their labels, are output,

allowing the user to go directly to the specific anomalous instance.

Now, take the example shown in Figure 4.16.

Figure 4.16 Geometric representation of example.

We can convert the geometric representation of Figure 4.16 into the graph

representation shown in Figure 4.17.

 49

object

object triangle object

square object circle

object object object rectangle

object triangle

square

object triangle object triangle

square square

on shape

on on

on on on

on on
on

shape shape

shape

shape shape shape

shape shape shape

Figure 4.17 Larger graph for GBAD-MPS example.

The normative pattern from this graph is shown in Figure 4.18.

 50

object

object triangle

square

on shape

shape

Figure 4.18 Normative pattern from larger graph used for GBAD-MPS example.

Suppose we remove one of the edges and its associated vertex from one of the instances

of this normative pattern, creating the graph shown in Figure 4.19.

 51

object

object triangle object

square object circle

object object object rectangle

object

square

object triangle object triangle

square square

on shape

on on

on on on

on on
on

shape shape

shape

shape shape

shape shape shape

Figure 4.19 Larger graph, used for GBAD-MPS example, with deleted vertex and edge.

Notice that even on this simple example, a quick eye-ball comparison of the difference

between the two graphs is not easy. In this case, the parts shown in Figure 4.20 were

removed.

triangle

shape

Figure 4.20 Parts removed from larger graph in GBAD-MPS example.

 52

Running the GBAD-MPS algorithm on this modified graph results in the anomalous

instance shown in Figure 4.21 being discovered.

object

object

square

on

shape

Figure 4.21 Anomalous instance from larger graph when using GBAD-MPS.

So, in this case, the instance was anomalous because it did not contain the “triangle”

node or its ”shape” edge.

4.4 Summary

Each of these algorithms was designed to address one of three types of graph

alterations. Knowing that each of the types of anomalies consists of one of these

changes, we know that if we address the three possible graph changes, we will be able

to address all of the possible structural anomalies in a graph. The GBAD-MDL

algorithm, using the minimum description length principle, is designed to uncover label

modifications; the GBAD-P algorithm, with a probabilistic approach, is setup to

discover additional edges and vertices; and the GBAD-MPS algorithm, which looks for

substructures that almost extended to the best pattern, is built to retrieve instances that

 53

are missing graph parts. While there was nothing algorithmically prohibiting us from

building a single algorithm for handling the discovery of anomalous modifications,

insertions and deletions, we would have to significantly open the search space so that

we are examining substructures consisting of all three anomalous types, and thus a

wider deviation from the normative pattern. Whereas, if we maintain these algorithms

separately, running each of them on a targeted data set, less memory and processing will

be used in each approach, as each algorithm would only need a search space for its

particular anomalous deviation to the normative pattern.

One of the advantages of these algorithms lies in the fact that they are not

implementation dependent. While we are using GBAD as a tool to run these

algorithms, they can be implemented with any graph-based tool, as long as that tool

maintains a list of substructures and instances that are being evaluated. Another

advantage is that these algorithms do not just return the pattern of the anomaly – they

also return the actual anomalous instances within the data. In a real-world scenario, that

can be invaluable to an analyst who may need to act upon a fraud situation before the

losses are too great. The disadvantage of these algorithms is that they are focused on

specific anomalies: modifications, insertions and deletions. Thus, in a real-world setup,

it would require that all three algorithms be used in conjunction, as the type of anomaly

would most likely be unknown and possibly a combination of the different anomaly

types.

 54

CHAPTER 5

EMPIRICAL EVALUATIONS ON SYNTHETIC DATA

The following sections contain the results when applying the algorithms to

randomly-generated synthetic data. Creating graphs of varying sizes, with normative

patterns and anomalies of different sizes, our algorithms are empirically evaluated as to

their effectiveness. Later in this chapter we present results using multiple anomalous

types, normative patterns of different shapes and overlapping instances. We then

conclude with some of the known limitations of the algorithms, as well as the running-

time performances of each of the approaches.

5.1 Graph Generation

Synthetic graphs were created using a tool called subgen that generates random

graphs based upon user-specified parameters, including:

• total number of vertices and edges

• list of possible vertex and edge labels and their probabilities

• substructure pattern

• amount of connectivity

• amount of overlap

 55

Using these parameters, subgen computes the number of instances that need to be

generated by calculating the size of the graph and dividing by the size of the

substructure pattern. If an overlap percentage is specified, the amount of common

structure is calculated for each instance, and instances are randomly merged until the

specified overlap is achieved. After the graph is built from these instances, random

vertices (based upon their probabilistic ratios) are added in order to achieve the desired

graph size. Then random edges (again based upon their probabilistic ratios) are added

in order to achieve the specified connectivity level. Finally, any additional edges are

added in order to achieve the desired graph size. As a result of running subgen, two

output files are created: the graph file and a file containing the list of substructure

instances.

5.2 Synthetic Data

In order to create our synthetic graphs, we use the subgen tool to randomly

generate graphs, and use a tool we created to generate new modified graphs from these

graphs where:

• AV is the number of anomalous vertices in an anomalous substructure

• AE is the number of anomalous edges in an anomalous substructure

• V is the number of vertices in the normative pattern

• E is the number of edges in the normative pattern

 56

Each synthetic graph consists of substructures containing the normative pattern (with V

number of vertices and E number of edges), connected to each other by one or more

random connections, and each synthetic experiment consists of AV number of vertices

and AE number of edges altered.

For modification anomalies: an AV number of vertices and AE number of

edges, from the same randomly chosen normative instance, have their labels modified to

randomly chosen, non-duplicating labels (e.g., we do not replace a vertex labeled “X”

with another vertex also labeled “X”).

For insertion anomalies: randomly inserted AV vertices and AE edges, where

the initial connection of one of the AE edges is connected to either an existing vertex in

a randomly chosen normative instance, or to one of the already inserted AV vertices.

For deletion anomalies: randomly chosen AV vertices and AV edges, from a

randomly chosen normative instance, are deleted along with any possible “dangling”

edges (i.e., if a vertex is deleted, all adjacent edges are also deleted).

In order to test graphs and substructures of varying sizes, we will need to adjust

the total number of vertices and edges, as well as the size of the substructure pattern.

Also, in order to be consistent across all of our regular tests, we will choose a

connectivity setting of 1.0, signifying that the graph is connected. The ability of the

algorithms to discover anomalous instances in graphs that are not connected will be

tested in a subsequent section on two real-world data sets: cargo shipments and

network traffic. We have also chosen to have no overlapping instances, except for the

 57

special overlap tests, in Section 5.11, where we specifically examine the effectiveness

of the algorithms on substructures whose instances share vertices and edges.

In addition, in order to better exemplify our definition of an anomaly, the

distribution of randomly generated connections versus the anomalies is not the same. In

other words, if randomly generated connections have the same frequency as the

anomalies, it would be difficult to distinguish between noise and anomalous behavior.

Since our definition explicitly states that an anomaly is a slight unexpected deviation

from the normal (to better hide the true nature of the action), its existence can not be as

common as normal behaviors. Now, that does not mean that anomalies are completely

different from noise, just that their frequency is not as prevalent. So, in order to achieve

our goal, we will define in the subgen tool a distribution of 10-to-1 (i.e., random normal

connections are ten times more likely than an anomaly). Because the number of

vertices and edges will vary among test sets, their label probabilities (i.e., the

probability that a label will be used when vertices and edges are added in order to

achieve the proper graph size and connectivity) are adjusted in order to reflect the

desired ratio of noise to anomaly.

It should also be noted that our tool for generating random graph edge/vertex

insertions does not create self-edges. This was done because compression would result

in an edge pointing from the compressed substructure to itself, and would not be

considered in future extensions. In other words, we are not considering a normative

pattern connected to itself.

 58

Also, due to our definition of an anomaly, all tests will be limited to changes

that constitute less than 10% of the normative pattern. Again, since anomalies are

supposed to represent slight deviations in normal patterns, an excessive change to a

pattern is irrelevant. However, in order to analyze the upper bounds effectiveness of

these algorithms, we will also perform some tests at deviations above 10%.

Each of the above is repeated for each algorithm, varying sizes of graphs,

normative patterns, thresholds, iterations and sizes of anomalies (where the size of the

anomaly is |AV| + |AE|). Also, due to the random nature in which structures are

modified, each test will be repeated multiple times to verify its consistency.

5.3 Metrics

Each test consists of a single graph from which 30 randomly altered graphs are

generated. The output results consist of running the algorithms against those 30 graphs

for the specified settings. The primary three metrics calculated are:

1. Percentage of runs where the complete anomalous substructure was

discovered.

2. Percentage of runs where at least some of the anomalous substructure

was discovered.

3. Percentage of runs containing false positives.

 59

After the algorithm has completed running, the first metric represents the

percentage of success when comparing the results to the known anomalies that were

injected into the data. If all of the anomalies are discovered for a particular run, that is

counted as a success for that run. For example, if 27 out of the 30 runs found all of their

anomalies, the value for this metric would be 90.0.

The second metric represents the percentage of runs where at least some part of

the injected anomaly was discovered. For example, if the anomaly consisted of 3

vertices and 2 edges that had their labels changed, and the run reported only one of the

anomalous vertices, then that run would be considered a success for this measurement.

Obviously, this metric will always be at least as high as the first metric.

The last metric represents the percentage of runs that reported at least one

anomaly that was not one of the injected anomalies. Since it is possible that multiple

reported anomalous instances could have the same anomalous value, some runs may

contain both correct anomalies and false ones. Further tuning of these algorithms may

enable us to discover other measurements by which we could “break the tie” when it

comes to calculating an anomalous score.

There will also be some run-time statistics showing the performance of the

algorithms.

 60

5.4 Shapes

In addition to the types of anomalous changes, the “shape” of the normative

pattern may affect the algorithms’ abilities to discover the anomalies. The types of

normative patterns that we are going to consider are:

- single star

- multiple connected stars (cluster)

- single strand

- network (cycle)

 61

star cluster

single strand

network (cycle)

Figure 5.1 Example shapes.

In the following tests, we chose to use the cluster pattern as the baseline for the

tests. While we could have chosen any of these patterns, we felt that this pattern was

the most representative of the types of real-world data that these approaches would be

used for discovering anomalies. For example (which will be shown in later tests), cargo

shipments consist of ships, manifests, ports, etc… An appropriate representation of this

type of data would be where certain entities are hubs for common information (e.g.,

shipper, port, etc.), such that multiple manifests could share identical information.

 62

There are many other types of pertinent information, such as telecommunication call

records, terrorist networks, financial transactions, etc. which share this same cluster

type of topology.

We will include another section later in this chapter that will test for each of the

patterns identified in Figure 5.1.

5.5 Information Theoretic Results

In this section, and the subsequent two sections, tables and figures will represent

a summary of the results obtained for the different tests. For each approach, the

synthetic experiments will represent modifications (i.e., vertices and edges modified

within an instance of the normative pattern), insertions (i.e., additional vertices and

edges connected to the normative pattern), and deletions (i.e., vertices and edges

missing from what could have been an instance of the normative pattern). While each

of the algorithms was designed to handle different types of anomalies, each approach

will be evaluated as to their effectiveness across all types.

It should be noted that for each of the following GBAD-MDL tests, to improve

performance, we will prune substructures whose values are less than their parent’s.

While this could result in a loss of accuracy, previous testing has shown this to not be

the case in most situations.

 63

5.5.1 Modifications

Figure 5.2 and Figure 5.3 show the effectiveness of the GBAD-MDL approach

on graphs of varying sizes, with a normative pattern of 10 vertices and 10 edges, with

random anomalous modifications. In these figures (and subsequent figures), the X-axis

represents the thresholds, the Y-axis is the percentage of anomalies discovered, and the

Z-axis indicates the sizes of the normative patterns, graphs and anomalies (i.e., <number

of vertices in the normative pattern>/<number of edges in the normative

pattern>/<number of graph vertices>/<number of graph edges>-<# of anomalous

changes>).

0.01 0.025 0.05 0.075 0.1 0.15

10/10/100/100-1v
10/10/100/100-1e

10/10/100/100-2
10/10/100/100-3

10/10/1000/1000-1v
10/10/1000/1000-1e

10/10/1000/1000-2
10/10/1000/1000-3

10/10/10000/10000-1v
10/10/10000/10000-1e

10/10/10000/10000-2
10/10/10000/10000-3

0

10

20

30

40

50

60

70

80

90

100

percentage

threshold

10/10/100/100-1v
10/10/100/100-1e
10/10/100/100-2
10/10/100/100-3
10/10/1000/1000-1v
10/10/1000/1000-1e
10/10/1000/1000-2
10/10/1000/1000-3
10/10/10000/10000-1v
10/10/10000/10000-1e
10/10/10000/10000-2
10/10/10000/10000-3

Figure 5.2 Percentage of GBAD-MDL runs where all anomalies discovered.

 64

0.01 0.025 0.05 0.075 0.1
10/10/100/100-1v

10/10/100/100-1e
10/10/100/100-2

10/10/100/100-3
10/10/1000/1000-1v

10/10/1000/1000-1e
10/10/1000/1000-2

10/10/1000/1000-3
10/10/10000/10000-1v

10/10/10000/10000-1e
10/10/10000/10000-2

10/10/10000/10000-3

0

10

20

30

40

50

60

70

80

90

100

percentage

threshold

10/10/100/100-1v
10/10/100/100-1e
10/10/100/100-2
10/10/100/100-3
10/10/1000/1000-1v
10/10/1000/1000-1e
10/10/1000/1000-2
10/10/1000/1000-3
10/10/10000/10000-1v
10/10/10000/10000-1e
10/10/10000/10000-2
10/10/10000/10000-3

Figure 5.3 Percentage of GBAD-MDL runs where at least one anomaly discovered.

For the very small synthetic tests (not shown in Figures 5.2 and 5.3), when the

threshold is high enough (i.e., the threshold is equal to or higher than the percentage of

change), this approach is able to find all of the anomalies, and at no point were any false

positives registered. For example, when the normative pattern is of size 6 (3 vertices

and 3 edges), we have to set the threshold higher than 0.1. This is done because with a

normative pattern of size 6, even just a change of a single vertex and a single edge

would require a threshold of at least 0.33 in order to discover such an anomaly. Thus,

when we set the threshold to 0.035, the algorithm is able to find 100% of the anomalies

for a change of size 2. Similarly, when we set the threshold to 0.2, GBAD-MDL is able

 65

to find all of the single anomalous modifications (as 0.167% of the normative pattern is

changed).

For all tests where the threshold is 0.1 or less, no false positives are reported.

However, when we increase the threshold to 0.2, a few false positives are reported. For

a threshold of 0.2, we are basically saying that we want to analyze patterns that are up

to 20% different. Such a huge window results in some noise being considered (along

with the actual anomalies, as all of the anomalous instances are discovered).

Fortunately, our definition of what is truly an anomaly would steer us towards

observing runs with lower thresholds.

In Figure 5.2 and Figure 5.3, we observe that no complete anomalies are

discovered in the graphs of 10,000 vertices and 10,000 edges when the size of the

anomaly is either 2 or 3. This is due to the fact that we get 100% false positives in both

of those situations (actually, 87.88% in the case where the size of the anomaly is 3, but

that is just coincidental), because every graph contains at least one substructure (and

usually a few more) that consists of smaller changes (i.e., either a single vertex or a

single edge). As the graph grows in size, more substructure connections are made in the

random generation of the graph, leading to the likelihood that a substructure will be

created that is similar to the normative pattern (i.e., within the inexact matching

threshold) but consists of a smaller modification than the induced anomaly. This issue

accentuates one of the drawbacks of the GBAD-MDL algorithm, in that this algorithm

assumes that the anomaly is the smallest modification to the normative substructure.

Further testing of this observation has shown that the anomaly is discovered, but the

 66

anomalous value is always higher than the noisy substructure (or substructures) that are

able to score lower because they require fewer changes to match the normative pattern.

When the size of the normative pattern is larger, smaller thresholds can be used

in order to uncover small changes to the structure. Figure 5.4, Figure 5.5 and Figure 5.6

represent the use of finer thresholds for the discovery of very small anomalies (1 to 3

changes) to a normative pattern of 30 vertices and 30 edges.

0.
01

5

0.
01

6

0.
01

7

0.
02

0.
02

5

0.
03

0.
03

5

0.
03

6

0.
03

7

0.
03

8

0.
4

0.
04

2

0.
04

3

0.
04

5

0.
05

30/30/1000/1000-1v
30/30/1000/1000-1e

30/30/1000/1000-2
30/30/1000/1000-3

0

10

20

30

40

50

60

70

80

90

100

percentage

threshold

30/30/1000/1000-1v
30/30/1000/1000-1e
30/30/1000/1000-2
30/30/1000/1000-3

Figure 5.4 Percentage of GBAD-MDL runs where all anomalies are discovered (finer granularity).

 67

0.
01

5

0.
01

6

0.
01

7

0.
02

0.
02

5

0.
03

0.
03

5

0.
03

6

0.
03

7

0.
03

8

0.
4

0.
04

2

0.
04

3

0.
04

5

0.
05

30/30/1000/1000-1v
30/30/1000/1000-1e
30/30/1000/1000-2
30/30/1000/1000-3

0

10

20

30

40

50

60

70

80

90

100

percentage

threshold

30/30/1000/1000-1v
30/30/1000/1000-1e
30/30/1000/1000-2
30/30/1000/1000-3

Figure 5.5 Percentage of GBAD-MDL runs where at least one anomaly is discovered (finer

granularity).

0.
01

5

0.
01

6

0.
01

7

0.
02

0.
02

5

0.
03

0.
03

5

0.
03

6

0.
03

7

0.
03

8

0.
4

0.
04

2

0.
04

3

0.
04

5

0.
05

30/30/1000/1000-1v
30/30/1000/1000-1e
30/30/1000/1000-2
30/30/1000/1000-3

0

10

20

30

40

50

60

70

80

90

100

percentage

threshold

30/30/1000/1000-1v
30/30/1000/1000-1e
30/30/1000/1000-2
30/30/1000/1000-3

Figure 5.6 Percentage of GBAD-MDL runs with false positives (finer granularity).

 68

5.5.2 Insertions

Figure 5.7, Figure 5.8 and Figure 5.9 show the effectiveness of the GBAD-MDL

approach on graphs of varying sizes with random anomalous insertions.

0.01 0.025 0.05 0.075 0.1

3/3/100/100-2
3/3/100/100-4

10/10/100/100-2
10/10/100/100-4

10/10/1000/1000-2
10/10/1000/1000-4

30/30/1000/1000-2
30/30/1000/1000-4

30/30/1000/1000-6

0

10

20

30

40

50

60

70

80

90

percentage

threshold

3/3/100/100-2
3/3/100/100-4
10/10/100/100-2
10/10/100/100-4
10/10/1000/1000-2
10/10/1000/1000-4
30/30/1000/1000-2
30/30/1000/1000-4
30/30/1000/1000-6

Figure 5.7 Percentage of GBAD-MDL runs where all anomalous insertions are discovered.

 69

0.01 0.025 0.05 0.075 0.1

3/3/100/100-2
3/3/100/100-4

10/10/100/100-2
10/10/100/100-4

10/10/1000/1000-2
10/10/1000/1000-4

30/30/1000/1000-2
30/30/1000/1000-4

30/30/1000/1000-6

0

10

20

30

40

50

60

70

80

90

percentage

threshold

3/3/100/100-2
3/3/100/100-4
10/10/100/100-2
10/10/100/100-4
10/10/1000/1000-2
10/10/1000/1000-4
30/30/1000/1000-2
30/30/1000/1000-4
30/30/1000/1000-6

Figure 5.8 Percentage of GBAD-MDL runs where at least one anomalous insertion is discovered.

0.01 0.025 0.05 0.075 0.1

3/3/100/100-2
3/3/100/100-4

10/10/100/100-2
10/10/100/100-4

10/10/1000/1000-2
10/10/1000/1000-4

30/30/1000/1000-2
30/30/1000/1000-4

30/30/1000/1000-6

0

10

20

30

40

50

60

70

80

90

100

percentage

threshold

3/3/100/100-2
3/3/100/100-4
10/10/100/100-2
10/10/100/100-4
10/10/1000/1000-2
10/10/1000/1000-4
30/30/1000/1000-2
30/30/1000/1000-4
30/30/1000/1000-6

Figure 5.9 Percentage of GBAD-MDL runs on anomalous insertions containing false positives.

 70

On the smaller graphs, no matter how large the anomaly or the size of the

threshold, none of the anomalous insertions are discovered. Even when unrealistically

large thresholds (i.e., above 0.1) are used, we are unable to find any of the insertion

anomalies.

Two observations about the effectiveness of this algorithm on anomalous

insertions are evident in these results. First, in the situation where the anomaly is a

single edge and vertex, there is some success because the insertion is “close” to the

normative pattern (a direct connection). Second, the effectiveness clearly drops off as

the insertions get further away from the normative pattern, and the few successes can be

attributed to the random insertions being close to the normative pattern (e.g., an

anomaly of size 4 that consists of two edges and two vertices that are directly connected

to the normative pattern via different vertices).

This is clearly not an effective solution for anomalous insertions.

5.5.3 Deletions

The following tables show the effectiveness of the GBAD-MDL approach on

graphs of varying sizes with random anomalous deletions. It should be noted that we

chose to represent these results as a table because of the scarcity of non-zero results and

the relatively few differences in values.

 71

Table 5.1 Percentage of GBAD-MDL runs where all anomalous deletions are discovered.

Graph Size
(Norm Pattern)

<anomaly size>
0.01 0.025 0.05 0.075 0.1 0.2 0.3 0.35

100 vertices/100 edges
(3 vertices/3 edges)

<1 vertex/1 edge> --- --- --- --- --- 0 0 0
<2 vertices/2 edges> --- --- --- --- --- 0 0 0

100 vertices/100 edges
(10 vertices/10 edges)

<1 vertex> --- --- 0 0 0 0 --- ---
<1 edge> --- --- 0 0 0 20.0 --- ---

<1 vertex/1 edge> --- --- 0 0 0 0 --- ---
<2 vertices/1 edge> --- --- 0 0 0 0 --- ---

1000 vertices/1000 edges
(10 vertices/10 edges)

<1 vertex> --- 0 0 0 0 0 --- ---
<1 edge> --- 0 0 0 0 0 --- ---

<1 vertex/1 edge> --- 0 0 0 0 0 --- ---
<2 vertices/1 edge> --- 0 0 0 0 0 --- ---

1000 vertices/1000 edges
(30 vertices/30 edges)

<1 vertex> 0 0 3.33 0 0 --- --- ---
<1 edge> 0 0 0 3.33 0 --- --- ---

<1 vertex/1 edge> 0 0 0 0 0 --- --- ---
<2 vertices/1 edge> 0 0 0 0 0 --- --- ---

<2 vertices/2 edges> 0 0 0 0 0 --- --- ---
<2 vertices/3 edges> 0 0 0 0 0 --- --- ---
<3 vertices/3 edges> 0 0 0 0 0 --- --- ---
<4 vertices/3 edges> 0 0 0 0 0 --- --- ---

 72

Table 5.2 Percentage of GBAD-MDL runs where at least one anomalous deletion is discovered.

Graph Size
(Norm Pattern)

<anomaly size>
0.01 0.025 0.05 0.075 0.1 0.2 0.3 0.35

100 vertices/100 edges
(3 vertices/3 edges)

<1 vertex/1 edge> --- --- --- --- --- 0 0 0
<2 vertices/2 edges> --- --- --- --- --- 0 0 0

100 vertices/100 edges
(10 vertices/10 edges)

<1 vertex> --- --- 0 0 0 30.0 --- ---
<1 edge> --- --- 0 6.67 43.33 93.33 --- ---

<1 vertex/1 edge> --- --- 0 0 0 25.0 --- ---
<2 vertices/1 edge> --- --- 0 0 0 13.33 --- ---

1000 vertices/1000 edges
(10 vertices/10 edges)

<1 vertex> --- 0 0 0 0 0 --- ---
<1 edge> --- 0 0 0 0 0 --- ---

<1 vertex/1 edge> --- 0 0 0 0 0 --- ---
<2 vertices/1 edge> --- 0 0 0 0 1.11 --- ---

1000 vertices/1000 edges
(30 vertices/30 edges)

<1 vertex> 0 0 33.33 0 6.67 --- --- ---
<1 edge> 0 0 0 6.67 0 --- --- ---

<1 vertex/1 edge> 0 0 8.33 0 0 --- --- ---
<2 vertices/1 edge> 0 0 0 0 0 --- --- ---

<2 vertices/2 edges> 0 0 0 0 0 --- --- ---
<2 vertices/3 edges> 0 0 0 0 0 --- --- ---
<3 vertices/3 edges> 0 0 0 0 0 --- --- ---
<4 vertices/3 edges> 0 0 0 0 0 --- --- ---

 73

Table 5.3 Percentage of GBAD-MDL runs with anomalous deletions that return false positives.

Graph Size
(Norm Pattern)

<anomaly size>
0.01 0.025 0.05 0.075 0.1 0.2 0.3 0.35

100 vertices/100 edges
(3 vertices/3 edges)

<1 vertex/1 edge> --- --- --- --- --- 0 0 0
<2 vertices/2 edges> --- --- --- --- --- 0 0 0

100 vertices/100 edges
(10 vertices/10 edges)

<1 vertex> --- --- 0 0 0 61.7 --- ---
<1 edge> --- --- 0 0 7.14 21.43 --- ---

<1 vertex/1 edge> --- --- 0 0 0 53.12 --- ---
<2 vertices/1 edge> --- --- 0 0 0 48.94 --- ---

1000 vertices/1000 edges
(10 vertices/10 edges)

<1 vertex> --- 0 0 0 0 0 --- ---
<1 edge> --- 0 0 0 0 0 --- ---

<1 vertex/1 edge> --- 0 0 0 0 0 --- ---
<2 vertices/1 edge> --- 0 0 0 0 0 --- ---

1000 vertices/1000 edges
(30 vertices/30 edges)

<1 vertex> 0 0 0 0 96.97 --- --- ---
<1 edge> 0 0 100 93.55 100 --- --- ---

<1 vertex/1 edge> 0 0 16.67 0 0 --- --- ---
<2 vertices/1 edge> 0 0 100 100 100 --- --- ---

<2 vertices/2 edges> 0 0 100 100 100 --- --- ---
<2 vertices/3 edges> 0 0 100 100 100 --- --- ---
<3 vertices/3 edges> 0 0 100 100 100 --- --- ---
<4 vertices/3 edges> 0 0 100 100 100 --- --- ---

Due to the scarcity of anomalies being discovered and the high false-positive rates, it is

clear that the GBAD-MDL is not useful in discovering anomalous deletions.

5.5.4 Denser Graphs

For the following tests, we increased the ratio of edges to vertices so as to create

a denser graph. In this case, each vertex in the normative structure has a degree of 5

(i.e., five edges), as opposed to what was created for the previous tests where the

 74

number of edges matched the number of vertices, and the average degree was 2. The

size of the source graph is approximately 1000 vertices and 3000 edges, with a

normative pattern of 10 vertices and 30 edges.

Table 5.4 Percentage of GBAD-MDL runs on dense graphs where all anomalous modifications are
discovered.

Size of Anomaly 0.01 0.025 0.05 0.075 0.1 0.125
1 vertex 0 100 100 100 100 36.67

1 edge 0 100 100 100 100 96.67
1 vertex/1 edge 0 0 100 100 100 13.33

2 vertices/1 edge 0 0 0 100 100 100
2 vertices/2 edges 0 0 0 0 80.0 80.0
2 vertices/3 edges 0 0 0 0 0 100

Table 5.5 Percentage of GBAD-MDL runs on dense graphs where at least one anomalous
modification is discovered.

Size of Anomaly 0.01 0.025 0.05 0.075 0.1 0.125
1 vertex 0 100 100 100 100 73.33

1 edge 0 100 100 100 100 100
1 vertex/1 edge 0 0 100 100 100 13.33

2 vertices/1 edge 0 0 0 100 100 100
2 vertices/2 edges 0 0 0 0 95.0 95.0
2 vertices/3 edges 0 0 0 0 60.0 100

Table 5.6 Percentage of GBAD-MDL runs on dense graphs that return false positives.

Size of Anomaly 0.01 0.025 0.05 0.075 0.1 0.125
1 vertex 0 0 0 0 0 46.34

1 edge 0 0 0 0 0 34.83
1 vertex/1 edge 0 0 0 0 0 71.43

2 vertices/1 edge 0 0 0 0 0 0
2 vertices/2 edges 0 0 0 0 0 0
2 vertices/3 edges 0 0 0 0 0 0

With a 100% discovery rate and no false positives, when the threshold is at 10%

or less, these results confirm that even when the graphs are dense, the effectiveness of

GBAD-MDL is not compromised. Due to the wide deviations in its discovery rate at a

 75

threshold above 10%, the effectiveness becomes sporadic as more noise is accepted into

the evaluations, particularly when the anomalous change is minimal.

5.5.5 Extremes

In a few of the examples shown in the previous sections, we used thresholds

and/or anomalies that were greater than the 10% which begins to violate our definition

of an anomaly. This produced some interesting results that showed the effectiveness of

the GBAD-MDL algorithm beyond the intended upper bounds.

In the following tables, notice the effectiveness of the information theoretic

approach when the threshold used is greater than 0.1 for a graph of approximately 100

vertices and 100 edges, with a normative pattern of 10 vertices and 10 edges.

Table 5.7 Percentage of GBAD-MDL extreme runs where all anomalous modifications are

discovered.

 Size of Anomaly
(% of normative
pattern) 0.1 0.2 0.3 0.4 0.5

2 (10%) 100 100 83.33 93.33 96.67
3 (15%) 0 96.67 30.0 100 93.33
4 (20%) 0 86.67 30.0 33.33 83.33
5 (25%) 0 0 16.67 13.33 40.0
6 (30%) 0 0 53.33 16.67 36.67
7 (35%) 0 0 0 3.33 20.0
8 (40%) 0 0 0 16.67 16.67

 76

Table 5.8 Percentage of GBAD-MDL extreme runs where at least one anomalous modification is

discovered.

Size of Anomaly
(% of normative
pattern) 0.1 0.2 0.3 0.4 0.5

2 (10%) 100 100 83.33 93.33 98.33
3 (15%) 0 96.67 70.0 100 97.78
4 (20%) 0 89.17 40.0 37.50 90.83
5 (25%) 0 46.67 26.67 26.0 50.67
6 (30%) 0 16.67 70.0 23.33 58.89
7 (35%) 0 4.76 55.24 9.05 33.81
8 (40%) 0 2.5 15.0 38.75 30.42

Table 5.9 Percentage of GBAD-MDL extreme runs that return false positives.

Size of Anomaly
(% of normative
pattern) 0.1 0.2 0.3 0.4 0.5

2 (10%) 100 3.23 45.65 3.45 3.23
3 (15%) 0 3.33 50.0 0 0
4 (20%) 0 10.0 51.61 62.5 0
5 (25%) 0 21.88 67.74 60 39.29
6 (30%) 0 59.38 26.67 63.64 25.0
7 (35%) 0 80.65 20.0 86.84 65.91
8 (40%) 0 86.92 61.76 58.06 64.82

For the small anomalies, the results are effective at all thresholds, with some

degradation at the higher thresholds. However, despite some occasional positive

indications of effectiveness, the results are sporadic the larger the anomaly and the

higher the threshold. If we were to institute a different definition of anomaly, it is

possible that our current algorithms would not be effective.

 77

5.6 Probabilistic Results

For each of the following tests, we will implement the following GBAD

settings:

- prune substructures whose value is less than their parent’s (for

performance)

- only analyze extensions found in the top 10 best substructures (for

performance)

- allow the program to iterate (i.e., compress and run again) until there

is nothing left to compress

For these experiments we will not perform any single vertex tests because one can not

insert a new vertex without also inserting a new edge.

5.6.1 Insertions

The following table shows the effectiveness of the GBAD-P approach on graphs

of varying sizes with random anomalous insertions.

 78

Table 5.10 Percentage of discovery for GBAD-P runs on anomalous insertions.

Graph Size
(Norm Pattern)

<anomaly size>
All Anomalies Partial Anomalies False Positives

100 vertices/100 edges
(3 vertices/3 edges)

<1 vertex/ 1edge> 100 100 0
<2 vertices/2 edges> 100 100 0

100 vertices/100 edges
(10 vertices/10 edges)

<1 vertex/ 1edge> 100 100 0
<2 vertices/ 2 edges> 100 100 0
<3 vertices/3 edges> 100 100 0

<4 vertices/ 4 edges> 100 100 0
<5 vertices/5 edges> 93.33 93.33 0

1000 vertices/1000 edges
(10 vertices/10 edges)

<1 vertex/ 1edge> 100.0 100.0 0
<2 vertices/ 2 edges> 100.0 100.0 0
<3 vertices/3 edges> 93.33 95.56 0

1000 vertices/1000 edges
(30 vertices/30 edges)

<1 vertex/ 1edge> 93.33 93.33 0
<2 vertices/ 2 edges> 96.55 96.55 0
<3 vertices/3 edges> 93.33 93.33 0

10000 vertices/10000 edges
(10 vertices/10 edges)

<1 vertex/ 1edge> 96.67 96.67 0
<2 vertices/ 2 edges> 100 100 0
<3 vertices/3 edges> 93.33 98.33 0

10000 vertices/10000 edges
(30 vertices/30 edges)

<1 vertex/ 1edge> 100 100 0
<2 vertices/ 2 edges> 93.10 95.69 0
<3 vertices/3 edges> 90.0 95.56 0

<4 vertices/ 4 edges> 96.0 96.0 0
<5 vertices/5 edges> 96.43 99.64 0

In the example with 1000 vertices/1000 edges and a normative pattern of 10

vertices/10 edges, even though some unrealistic anomaly sizes were used (representing

 79

20-30% of the normative pattern), this approach is still effective. This same behavior

can be observed in larger graphs as well.

As a further experiment, we also tried this approach on different distributions,

varying the number of vertices versus the number of edges (e.g., adding more edges

than vertices by creating more edges between existing vertices), and also reducing the

distribution difference between noise and anomalies. In all cases, the results were

relatively the same, with never less than 96.67% of the anomalous instances being

found for anomalies of size 8 (or 40% of the normative pattern) or less, with the lowest

discovery rate being 90% for an anomaly of size 10 (or 50% of the normative pattern).

There are several parameters that can be adjusted in these algorithms, two of

which are the beam width of the search and the limit on the number of substructures to

consider in each iteration. Each of these values is an adjustable parameter so as to aid

in the issue of performance primarily due to the number of calls to the graph

isomorphism procedure. By default, the beam is set to a value of 4. The beam specifies

at each level of the search the number of paths being considered. So, the search beam

width can be adjusted when we are looking for anomalies. As a result, there is a

tradeoff between time and memory. With each increase in the size of the beam, not

only is there an increase in CPU time, but the amount of memory required to store all of

the possibilities is prohibitive. By default, the number of substructures considered in

each iteration is based upon the size of the input graph as (number of edges)/2. While

many years of experimentation with SUBDUE have shown that the normative pattern

(or best substructure) should be discovered with these default settings, because the

 80

GBAD algorithms need to examine substructures beyond the normative, the limit may

need to be increased in order to consider other possible substructures. The limit

parameter controls the extent of SUBDUE’s search by limiting the number of different

substructures SUBDUE considers for expansion, i.e., it is an upper bound on the portion

of the search space considered by SUBDUE. The limit defaults to half the number of

edges in the graph. This default value tends to be enough (and higher than necessary in

some cases), as SUBDUE typically finds the best substructure early on. However,

again, as with the increasing of the beam width, there is a tradeoff associated with

achieving 100% accuracy versus time and memory usage. To demonstrate this point,

for each of the tests shown in Table 5.10 where the detection rate is less than 100%, we

incrementally increased the beam width and limit until all anomalies were discovered.

(It should be noted that from the original settings until we reached a 100% discovery

rate, no false positives were reported.) In these tests, the larger the graphs and the

larger the normative pattern, the larger the beam and limit had to be set. In order to get

a 100% discovery rate on the largest graphs with the largest normative patterns (in this

case, 10,000 vertices/10,000 edges, with a normative pattern of 30 vertices/30 edges),

we had to increase the beam width to 20 with a limit of 200,000. The limit is based

upon SUBDUE’s limit on substructures considered, which to allow consideration of a

pattern with V vertices, we have to set the limit equal to the (number of initial

substructures) + (V * beam width), where the number of initial substructures is the

number of unique vertex labels that appear more than once in the graph. The second

term derives from the fact that SUBDUE considers each substructure in the beam before

 81

considering extensions to these substructures. Thus, ((V-1) * beam width) substructures

will be considered before a substructure of size V is considered. In the case of this

experiment, this increase also results in approximately an 11% increase in execution

time, with a minimal increase in memory usage.

Also, as was mentioned earlier, this approach is incrementally discovering

single extensions from compressed substructures. Since the random generation of the

anomalies could introduce multiple edges between the same two vertices, compressing

the normative pattern at an iteration could result in a second duplicate edge being

missed or ignored, as it would just appear to be a self-edge to a compressed

substructure.

5.6.2 Modifications

Running modification tests on graphs of 100 vertices/100 edges and 1000

vertices/1000 edges results in no anomalies, partial or complete, being discovered, and

no false positives reported. The issue with trying to find modifications using the

Probabilistic approach lies in the way the algorithm examines extensions.

Modifications are changes to the normative pattern, while the Probabilistic approach is

examining edges and vertices that are connected to a normative pattern. Since modified

anomalies are connected to substructures that are not the best substructure (or normative

pattern), examination of extensions would not consider these anomalies. While we

could look for smaller patterns (i.e., a substructure of the true normative pattern that

 82

does not include the modified vertices and edges), that would go against our principle of

what is the normative (and best) pattern.

5.6.3 Deletions

Running deletion tests on graphs of 100 vertices/100 edges and 1000

vertices/1000 edges results in no anomalies, partial or complete, being discovered, and

no false positives reported.

Again, the Probabilistic approach is examining extensions from the normative

pattern. Intuitively, it makes sense that anomalous deletions would be difficult to

discover with this approach, as they could almost be considered the opposite of what we

are hoping to uncover.

5.6.4 Denser Graphs

As was done when we tested the GBAD-MDL algorithm, the following results

represent tests using graphs where we increased the ratio of edges to vertices so as to

create a denser graph.

Table 5.11 Percentage of discovery for GBAD-P runs on denser graphs with anomalous insertions.

Size of Anomaly
(% of normative)

All Anomalies Partial Anomalies False Positives

2 (5%) 96.67 96.67 0
4 (10%) 83.33 89.17 1.79
6 (15%) 93.33 98.89 0

When compared to the results shown in Table 5.10, it is clear that the density of

the graph does not have much of an effect on the results. For instance, when compared

 83

to the graphs of 1000 vertices/1000 edges or larger, the results are both around the 90%

discovery rate with almost 0% false positives.

5.7 Maximum Partial Substructure Results

For each of the following tests, we will implement the following GBAD

settings:

- prune substructures whose value is less than their parent’s (for performance)

- only analyze the top 25 ancestral substructures (for performance)

- a cost of transformation (or anomalous) threshold of 8.0, so as to ignore

substructures that would have too many changes to be considered an anomaly

(based upon our definition of an anomaly)

The threshold value of 8.0 was chosen based upon our definition of an anomaly and the

maximum size of the normative patterns. For each of the following experiments, we

will use an anomalous ratio of 10% or less to normative patterns with a maximum of 30

vertices and 30 edges. By choosing a value of 8.0, we are guaranteed to consider an

anomalous instance with at most 8 changes. While we can use a threshold greater than

8.0, there is always a tradeoff between noise and actual anomalies, so with the

expectation that the anomalies will always be around 10% or less of a deviation from

the norm, we have chosen a value that will discover the targeted anomalies with

minimal false positives. Note that “partial-anomalies” do not apply for this approach.

 84

Either an instance is anomalous because it is missing some edges and vertices that exist

in the normative pattern, or it is not considered anomalous.

5.7.1 Deletions

The following table shows the effectiveness of the GBAD-MPS approach on

graphs of varying sizes with random anomalous deletions.

 85

Table 5.12 Percentage of discovery for GBAD-MPS runs on anomalous deletions.

Graph Size
(Norm Pattern)

<anomaly size>
All Anomalies False Positives

100 vertices/100 edges
(3 vertices/3 edges)

<1 vertex and associated
edges> 100 0

<1 edge> 100 0
<1 vertex/1 edge> 100 0

100 vertices/100 edges
(10 vertices/10 edges)

<1 vertex and associated
edges> 100 0

<1 edge> 100 0
<1 vertex/1 edge> 100 0

<2 vertices/1 edge> 100 0
1000 vertices/1000 edges
(10 vertices/10 edges)

<1 vertex> 100 0
<1 edge> 100 0

<1 vertex/1 edge> 100 0
<2 vertices/1 edge> 100 0

1000 vertices/1000 edges
(30 vertices/30 edges)

<1 vertex> 100 0
<1 edge> 100 0

<1 vertex/1 edge> 100 0
<2 vertices/1 edge> 100 0

<2 vertices/2 edges> 100 0
<2 vertices/3 edges> 100 0
<3 vertices/3 edges> 100 0

10000 vertices/10000 edges
(10 vertices/10 edges)

<1 vertex> 100 0
<1 edge> 100 0

<1 vertex/1 edge> 100 0
<2 vertices/1 edge> 100 0

10000 vertices/10000 edges
(30 vertices/30 edges)

<1 vertex> 100 0
<1 edge> 100 0

<1 vertex/1 edge> 100 0
<2 vertices/1 edge> 100 0

<2 vertices/2 edges> 100 0
<2 vertices/3 edges> 100 0
<3 vertices/3 edges> 100 0

 86

Initially, the results from the runs on the graph with 1000 vertices and 1000

edges, where the normative pattern consists of 30 vertices and 30 edges resulted in very

low detection rates. However, when we increase the number of ancestral substructures

(to analyze) to 100, and increase the anomalous threshold (i.e., cost of transformation *

frequency) to 50.0, the results improve to what is shown. The reason that the number of

best substructures and the threshold has to be increased is that as the size of the anomaly

grows (i.e., the number of vertices and edges deleted increases), the further away the

cost of transformation for the anomalous instance is from the normative pattern. So, a

good rule of thumb is to choose an anomalous threshold based upon the size of the

normative pattern. For instance, GBAD could be run first to determine the normative

pattern, then based upon the size of the normative pattern, we can determine the

maximum size of an anomaly (e.g., around 10%), choose a cost of transformation that

would allow for the discovery of an anomaly that size, and then rerun the algorithm

with the new threshold.

5.7.2 Modifications

Running tests on graphs of 100 vertices/100 edges and 1000 vertices/1000 edges

results in no anomalies, partial or complete, being discovered, and a 100% false positive

rate.

Examination of the output reveals that while it does not find any of the true

anomalies, it appears that every false positive is actually “around” the anomaly. For

instance, if the anomaly is vertex X (of vertices X, Y and Z), it might display Y as the

 87

anomaly. Or, if the anomaly is vertex X and the edge between X and Y, it might

display Z and the edge between Y and Z as the anomaly. In other words, the reported

anomaly is adjacent to the actual anomaly.

For example, in the case where the graph contains (before the anomalous

modification is made) the normative pattern shown in Figure 5.10.

v2

v1 v3

e1

e3

e2

Figure 5.10 Example normative pattern.

When we change the label on the vertex labeled v3 to the new label of v1, and the label

on the edge labeled e3 to the new label of e4, the GBAD-MPS algorithm reports the

instance shown in Figure 5.11 as anomalous.

v2

v1

e1

Figure 5.11 Anomalous instance from example.

As one can see, it does not report the actual anomalous vertex and/or edge, but it does

report the rest of the vertices and edge (except for the other edge that was connected to

the anomalous vertex) that were part of the instance before it was modified. While not

ideal, a user might find that useful in that they could then examine vertices and edges

surrounding this reported anomaly.

 88

It should also be noted that while the output of false positives can be reduced by

decreasing either the anomalous threshold or the number of substructures to be

considered, it does not result in any anomalous modifications being discovered.

5.7.3 Insertions

When running tests on 100 vertices/100 edges and 1000 vertices/1000 edges the

GBAD-MPS algorithm does not discover any anomalies. As with the previous tests,

since no anomalies are discovered in any of the tests up to this point (also there are no

false positives), there is no reason to continue with these experiments. If the GBAD-

MPS algorithm is unable to find anomalous insertions on small graphs where the

normative pattern is known, it will be unable to find insertions on much larger graphs.

5.7.4 Denser and Larger Graphs

Identical to the previous two approaches, we increased the ratio of edges to

vertices so as to create a denser graph.

Table 5.13 Percentage of discovery for GBAD-MPS runs on denser graphs with anomalous
deletions.

Size of Anomaly All Anomalies False Positives

1 (edge) 100 0
1 (vertex AND associated edges) 100 0
2 (vertex and edge) 100 0
3 100 0
4 100 0
5 100 0

Again, the results from the denser graphs mirror those of the previous runs, as all of the

anomalies are discovered with no false positives reported.

 89

We also experimented on larger graphs, on the order of 20,000 vertices and

20,000 edges, with anomalies of varying sizes. While the running times and amount of

memory required increased significantly, the results are the same. The GBAD-MPS

algorithm is able to discover all of the anomalies with no false positives.

5.8 Handling Multiple Types

In the real world, it is more than likely that the type of anomaly will be

unknown and/or the anomalous situation will consist of more than one type of anomaly.

In the case where the type of anomaly is unknown, that will require us to run all three

algorithms on the data and observe which algorithms reports anomalies. In actual fraud

detection, companies employ many different types of algorithms and tools, each with a

purpose of finding different types of fraud. For example, telecommunications

companies use algorithms such as call volumes over a specified time period, calls from

particular hot numbers, or increased volume from a single calling card as part of a suite

of tools for detecting fraud. Each approach is focused on a specific type of anomaly,

and will raise an alarm to an analyst if a flag is set or a threshold is exceeded. Similar

to our approach, each algorithm is focused on detecting a specific type of anomaly, and

together they can discover all possible types of graph-based structural anomalies.

However, there is also the scenario where the anomalous situation consists of

multiple anomalous types. In other words, an anomalous substructure could be

composed of a modification, insertion and deletion. An example of this is a fraudulent

financial transaction where the perpetrator has generated an unexpected transaction type

 90

(modification), routed the money through another financial institution (insertion), and

omitted some identification information (deletion). Another actual example of multiple

anomalous types will be shown in the next chapter.

In order to determine the effectiveness of our algorithms in this scenario, we

have to modify the approach we originally used for setting the normative pattern.

However, we fortunately do not have to make any modifications to the algorithms

themselves. Each algorithm can still be focused on discovering a particular type of

anomaly, but now they must base their analysis on the pattern discovered by one of the

other algorithms. To understand how this works, take the situation where the

anomalous substructure that we wish to discover contains all three types of anomalies –

modifications, insertions and deletions – as shown in Figure 5.12, where the modified

label is an X, the inserted vertex (labeled Y) and edge are in bold, and the deleted vertex

(labeled Z) and edge (which would be missing from the anomalous instance) are

separated from the rest of the substructure.

 91

Y

X
Z

Figure 5.12 Substructure containing a modification, insertion and deletion.

In this example, suppose the normative pattern consists of all of the vertices and

edges shown in this substructure excluding the inserted edge and vertex (shown

darkened). When we run all three GBAD algorithms on the graph containing this

normative pattern and this anomalous substructure, two steps are involved. On the first

iteration, we run the GBAD-MDL and GBAD-MPS algorithms to determine the

normative patterns and the base anomalous substructure. Using an inexact matching

threshold of 0.15 (to allow for the modified vertex and the deleted vertex and edge), the

GBAD-MDL and GBAD-MPS algorithms produce the anomalous substructure shown

in Figure 5.13, with the anomaly (so far) labeled.

 92

X

anomaly

Figure 5.13 Anomalous substructure after one iteration.

On the second and subsequent iterations, the GBAD-P algorithm uses the

anomalous substructure as its base substructure for evaluating extensions. The

difference in this implementation of the algorithm is that it is initially using the

anomalous substructure as the normative pattern, instead of the true normative

substructure that is used when GBAD-P is used by itself, where the list of instances of

the true normative substructure is maintained so that extensions can be evaluated to find

which of the extensions of the anomalous substructure have the lowest probability. The

result (in this example, after just one more iteration), is the anomalous substructure in

Figure 5.14 with each of the individual anomalies labeled.

 93

anomaly

anomaly
anomaly

Figure 5.14 Anomalous substructure after two iterations using all GBAD algorithms.

And, of course, when compared to the normative pattern, the missing vertex and edge

will be seen as the anomalous deletion.

In order to thoroughly test our approach, we will generate random graphs of 100

vertices and 100 edges, with a normative pattern of 10 vertices and 9 edges, with tests

that cover each of the following possible random changes:

1. Modification and insertion

2. Modification and deletion

3. Insertion and deletion

4. Modification, insertion and deletion

Using the default parameters, our results are less than ideal, with around 90%

effectiveness for the first change scenario and a less than 30% discovery rate for the

 94

remaining possibilities. However, similar to what we discovered during our previously

reported synthetic experiments, the GBAD-P and GBAD-MPS algorithms may require

a much larger beam width and limit in order to evaluate a larger set of substructures. In

addition, due to the nature of the size of the normative pattern in relation to the amount

of change, the inexact matching threshold will need to be increased to compensate for

the scenarios when the anomaly involves modifications and deletions – both changes

that require a larger match cost.

For tests consisting of five or fewer changes for each type (e.g., one modified

vertex label, one deleted vertex and one deleted edge), when we increase the beam

width to 100 and the limit to 11,000 (again we just kept increasing the beam width until

an anomaly was reported, and subsequently based our limit on the size of the beam, the

number of pattern vertices and the number of initial single-vertex substructures), and set

the inexact matching threshold to 0.27 (based upon the amount of deviation we are

willing to accept), we are able to discover 100% of the anomalies in each of the above

scenarios. We also notice, as we did in other tests, that as the amount of change

increases in proportion to the size of the substructure, the ability to discover the

anomalies decreases. The issue again lies in the ability to distinguish expected

deviations (e.g., noise) from the unexpected deviations (i.e., anomalies). If the expected

change consists of a smaller deviation than the unexpected anomaly, the algorithms will

report the non-anomalous deviation as the anomaly.

 95

5.9 Other Types of Normative Patterns

Each of the above tests is run using the same type of normative pattern: a star

cluster. However, it is possible that the shape of the normative pattern could have an

effect on the effectiveness of the algorithms. So, the following tests are devised in

order to test other patterns that are common, particularly as they might be used for real-

world data. (Refer to Section 5.4 for examples of each of these patterns.)

Each of the following tests are executed with a graph size of approximately 500

vertices and 500 edges, a normative pattern of 10 vertices and 10 edges, and an

anomalous change of 10% . All of the same GBAD parameter settings that were used

in the previous tests are implemented here, and a threshold of 0.1 is used for the GBAD-

MDL algorithm.

Table 5.14 Percentage of complete anomalous instances found on runs with different patterns.

Normative
Pattern
Algorithm
(Anomaly Type)

Star Strand Cycle

GBAD-MDL
(Modification) 100 100 100

GBAD-P
(Insertion) 40.0 100 100

GBAD-MPS
(Deletion) 100 100 100

 96

Table 5.15 Percentage of runs with anomalous parts found on runs with different patterns.

Normative
Pattern
Algorithm
(Anomaly Type)

Star Strand Cycle

GBAD-MDL
(Modification) 100 100 100

GBAD-P
(Insertion) 40.0 100 100

GBAD-MPS
(Deletion) n/a n/a n/a

Table 5.16 Percentage of runs containing false positives on runs with different patterns.

Normative
Pattern
Algorithm
(Anomaly Type)

Star Strand Cycle

GBAD-MDL
(Modification) 0 0 0

GBAD-P
(Insertion) 44.19 0 0

GBAD-MPS
(Deletion) 0 0 0

From these results we notice that except for the star normative pattern when

running the GBAD-P algorithm, the results are the same across each algorithm for each

of the different shapes. However, if we completely distinguish the anomalies from the

noise (i.e., use different labels for the anomalies as opposed to the random connections),

93.3% of the complete anomalous instances and 93.3% of the partial anomalies are

discovered – closer to the results found when the normative patterns are the other

pattern types. Because of the connectivity introduced when generating a connected

graph of star patterns, the ability to distinguish between noise and actual anomalies

becomes more difficult.

 97

It should also be noted that the placement of the anomaly plays into the less than

perfect discovery rate for GBAD-P algorithm when the normative pattern is a star. In

all cases where the anomalous edge is attached to a non-center vertex, the anomaly is

discovered, as in the example shown on the left in Figure 5.15.

C

D

E

B A D

anomaly

w

x

y

z

y

C
D

E

B A D
w

x

y

z

y

Figure 5.15 Examples of anomalous insertions to a star shaped pattern.

However, when the anomalous insertion is like the one shown on the right in

Figure 5.15, the anomaly is not always discovered by the GBAD-P algorithm. This is

really more of an issue with how the normative pattern is discovered. Not that the

discovery is incorrect, as the best pattern is discovered, but that it chose the anomalous

edge (and vertex) rather than the non-anomalous one. So, again taking the example

shown in Figure 5.15, the edge and vertex shown in bold in the substructure on the

right, are used in the building of that instance, and the other identical edge and vertex

(not in bold) are reported as the anomaly. Of course, one of the advantages of these

 98

algorithms is that not just the anomaly is reported but the entire anomalous instance. In

reality, as shown in this example, what has been reported is correct – there is an

anomalous edge labeled y and an anomalous vertex labeled D.

5.10 Limitations

As was mentioned and demonstrated earlier with the GBAD-P experiments, the

ability to discover the anomalies is sometimes limited by the resources allocated to the

algorithm. This is true not only for GBAD-P, but for GBAD-MDL and GBAD-MPS as

well. In other words, given a graph where the anomalous substructure consists of the

minimal deviation from the normative pattern, if a sufficient amount of processing time

and memory is provided, all of these algorithms will discover the anomalous

substructure with no false positives.

However, the ability to discover anomalies (per our definition) is also hampered

by the amount of noise present in the graph. The issue is that if noise is a smaller

deviation from the normative pattern than the actual anomaly, it may score higher than

the targeted anomaly (depending upon the frequency of the noise). Of course, one

might say that noise is an anomaly in that it is not normal; however, it is probably not

fraudulent activity, which is the goal of these approaches.

Now, the presence of noise does not eliminate the algorithms’ abilities to

discover the anomalous substructure. It only results in more false positives being

detected if the anomalous score of the noisy structure is better than the desired

anomalous substructure. That is where another trade-off is necessary that can be found

 99

in most fraud detection systems: adjusting thresholds to find a balance of false-positives

versus true anomalies. This is something to be considered in future work where ideally

the approach would not involve parametric values that may need to be adjusted based

upon a user’s experiences.

5.11 Overlapping Instances

Another possible scenario to consider is the case of overlapping instances. This

situation occurs when instances of the normative pattern overlap with other instances of

the normative pattern. For example, suppose you have the situation of two star

instances that share a common vertex, as shown in Figure 5.16.

Figure 5.16 Two star patterns sharing a common vertex.

 100

Taking this example, if the normative pattern consists of a vertex connected to eight

other vertices, by default, only one of the star instances will be counted as an instance of

the normative pattern. However, when we allow for instances to overlap, thus counting

(in this example) each star as a separate complete instance, both instances get full

consideration when analyzing the substructure for anomalies (as well as discovering the

normative pattern). As was mentioned earlier, we can override the default setting of not

allowing overlapping instances.

First, just to observe what happens when we do not allow overlap discovery

mode on graphs with overlapping instances, as the amount of overlap increases, the

ability to discover the anomalies significantly decreases. This is to be expected, as we

are relying on the anomalous instance to be among the discovered instances, and not to

be one of the structures discarded when it is found to be overlapping with another

previously discovered structure. In other words, if a portion of the anomalous instance

(e.g., a vertex and edge) is already included in another instance being considered, the

remaining parts of the anomalous instance will not be analyzed any further because it is

not an instance of the normative substructure (or within an acceptable threshold of

change to the normative substructure). Thus, the more instances overlap, the greater the

probability that the anomaly will be lost.

For each of our algorithms, the key to discovering the anomalous substructure

lies initially with the ability to determine the normative pattern in a graph. Since our

definition of what is an anomaly is based upon small deviations from the norm, if we

 101

are unable to find the normative pattern, our ability to uncover anomalies with these

approaches will be coincidental.

 As was discussed in Chapter 4, GBAD’s heuristic for evaluating substructures

is based upon the Minimum Description Length (MDL) principle, where the description

length is an approximation of the minimum number of bits needed to encode a graph.

As such, the MDL of a graph consists of the description length of the graph compressed

by the best substructure, plus the description length of that substructure. Thus, in our

GBAD implementation, substructures are evaluated, and the one that results in the

lowest description length is determined to be the best substructure – or the normative

pattern. Computationally, we replace all instances of the best substructure with a single

vertex, representing the best substructure, and calculate the new size of the graph.

Figure 5.17 shows a pictorial representation of this replacement for evaluation. The

graph on the left consists of three instances of the normative substructure a->b->c.

Compressing the graph by replacing each of the three instances with a single vertex,

results in a smaller graph that can be described by only 3 vertices, as shown on the

right.

 102

b

a

x

b

a

c

c x
x

x

b

c
xx

a

1

1

1

Figure 5.17 Example of compressing a graph by its normative pattern.

As mentioned earlier, when a graph consists of overlapping instances, there is

the possibility that not all instances of the normative pattern will be discovered.

However, there are several ways to handle the evaluation of substructures that consist of

overlapping substructure instances. In addition to the normal way of evaluating

substructures based upon their compression (as shown in Figure 5.17), another way is to

count the number of substructure instances that match a specified substructure

definition. In this case, we would consider substructures with the most matching

instances to be the best substructure. Take the example in Figure 5.18.

 103

b

a

x

d

b

e

a

f

g

c

a

x

x

x

x

x

x

x

x

b
c

x

x

d

e f

g

x

x

x

1

1

1 1

x

x

x

Figure 5.18 Example of compression with overlapping instances based on the number of instances.

In this example, using an evaluation based upon the number of instances, the normative

pattern consists of several overlapping a->b->c substructure instances. The result after

compression is a graph consisting of eight vertices and six edges, with four of the

vertices not being compressed.

Another option, and the one we have chosen, is to base our evaluation on the

coverage that is achieved during compression. Taking the same example from Figure

5.18, if we base our evaluation of the best substructure on the pattern that includes the

most vertices and edges, we achieve the result shown in Figure 5.19.

 104

b

a

x

d

b

e

a

f

g

c

a

x

x

x

x

x

x

x

x

b
c

x

x

11

1
x

b
c x

Figure 5.19 Example of compression with overlapping instances based on the amount of coverage.

In this example, the result is not only a smaller representation of the graph, represented

by five vertices and two edges, but also one that covers more of the original graph, as

only two original vertices are not covered by this choice of normative pattern.

Clearly, the latter approach includes more of the graph’s vertices and edges than

the approach that uses the number of instances. However, the reason that we chose this

approach over the maximum compression approach is due to the somewhat deceiving

description length of the graph when substructure instances are significantly

overlapping. Because every instance of the supposedly best substructure is replaced by

a single vertex, substructures consisting of overlapping instances are penalized by the

fact that the compressed graph is represented by a vertex for each of the overlapping

instances. Thus, a graph whose normative substructure instances overlap with multiple

 105

vertices and edges, may report a different normative substructure that has resulted in

fewer compressed vertices because a compressed vertex is inserted for each instance, no

matter how many are overlapping. So, while a substructure using the compression

evaluation may represent a graph with the fewest number of vertices, with the coverage

approach, we can ensure the maximum number of vertices and edges are represented by

the instances of what we have determined to be the best substructure.

In order to test our algorithms on overlapping instances, we have to increase the

beam width of the search and the limit on the number of substructures to consider. In

earlier experiments we increased the beam and limit so that we could evaluate larger

graphs. For graphs with overlapping instances, we have to increase these parameters

due to the increased number of possible substructures.

Figure 5.20 shows the results when running the GBAD-MDL algorithm (with a

threshold of 0.19 to allow for up to 2 changes on a substructure of size 11) on a graph of

100 vertices and 100 edges, for a normative pattern of 6 vertices and 5 edges, with

varying amounts of overlap between the instances, and anomalies consisting of random

modifications to a vertex label and an edge label.

 106

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6

percentage of overlap

pe
rc

en
ta

ge
 o

f d
is

co
ve

ry

Figure 5.20 Discovery percentages for overlapping instances.

Similar results are obtained with the GBAD-P and GBAD-MPS algorithms.

In every test case, the correct normative pattern is properly discovered.

However, due to the overlapping nature of the normative instances, in many cases, the

anomalous substructure is not discovered when the random anomalous modification is

larger than other random noise. Because we have to use an inexact matching threshold

of 0.19 in order to find an anomaly of size 2 for a substructure of size 11, other

substructure instances, as a result of overlapping, are discovered that have lower cost

transformations because they consist of just a single vertex or just a single edge

modification. But, in experiments where the anomaly consists of either a single vertex

 107

or a single edge, the anomalous substructure is discovered 100% of the time, with small

levels of false positives that increase as the amount of overlap increases.

 While it appears that our algorithms may have issues with graphs that consist of

overlapping instances, these experiments further accentuate our definition of an

anomaly. In every case, when the anomaly was the smallest deviation to the normative

pattern, our approaches never failed in discovering the complete anomalous

substructure. These results are consistent with previous results, and should be

addressed as part of any future work for distinguishing expected deviations (or noise)

from the true anomalies.

5.12 Performance

One of the factors to consider in evaluating these algorithms is their respective

performances. The following table represents the average running times (in seconds)

for each of the algorithms against each of the graph sizes for the anomaly types that

were the most effectively discovered (i.e., the types of anomalies that each algorithm

was targeted to discover). Overall, the running times were slightly shorter for the non-

targeted anomalies, as the algorithms for the most part did not have any anomalies to

process.

 108

Table 5.17 Running-times of algorithms (in seconds).

Graph Size
(Normative
Pattern Size)
Algorithm
(Anomaly Type)

100v
100e

 (6)

100v
100e
(20)

1,000v
1,000e

(20)

1,000v
1,000e

(60)

10,000v
10,000e

 (20)

10,000v
10,000e

(60)

GBAD-MDL
(Modification)

0.05-
0.08

0.26-
15.80

20.25-
55.20

31.02-
5770.58

1342.58-
15109.58

1647.89-
45727.09

GBAD-P
(Insertion) 1.33 0.95 30.61 18.52 745.45 2118.99

GBAD-MPS
(Deletion) 0.14 0.07 4.97 75.59 242.65 813.46

Because the GBAD-MDL algorithm uses a matching threshold, the performance

of the algorithm is dependent upon the threshold chosen. The higher the threshold, the

longer the algorithm takes to execute, so there is a trade-off associated with the

threshold choice. Even on graphs of 10,000 vertices and 10,000 edges, the running

times varied anywhere from 1342 seconds to 45,727 seconds, depending upon the

threshold chosen. In short, the GBAD-MDL algorithm is exponential in the worst case,

but tractable given the parameters.

5.13 Summary

The ability to discover anomalous modifications, insertions and deletions is

evident when applying all three algorithms. With a 100% or almost 100% discovery

rate for each algorithm on most of the graphs with varying sizes of normative patterns

and anomalies, each approach has clearly shown to be useful at discovering a specific

 109

type of anomaly. While the algorithms do not appear to be useful outside of their

intended targets, no graphs of any size and any anomaly went undetected by all three

approaches. Even graphs of higher density had no effect on the accuracy of the

algorithms. While there were some differences in detection rates for the probabilistic

approach when the normative pattern was a star, overall, the shapes of the normative

pattern did not have any effect on the abilities of the algorithms to discover the

anomalies. In every test, when the normative pattern was discovered, and the anomaly

was the smallest deviation of an instance of the normative substructure, the instance was

reported as anomalous. The running times of GBAD-P and GBAD-MPS are very

acceptable, and the performance of GBAD-MDL is clearly affected by the size of the

threshold specified.

 110

CHAPTER 6

EMPIRICAL EVALUATIONS OF REAL-WORLD SCENARIOS

The following sections contain the results when applying the algorithms to real-

world data sets. First, we present results using shipping manifests of cargo imports into

the U.S., and compare our algorithms to other non-graph-based approaches. Then, we

compare our algorithms against another graph-based approach using the KDD Cup ’99

network intrusion data. Finally, we conclude with some experiments using other real-

world data sets.

6.1 Cargo Shipments

One area that has garnered much attention recently is the analysis and search of

imports into the United States. The largest number of imports into the U.S. arrive via

ships at ports of entry along the coast-lines. Thousands of suspicious cargo, whether

they be illegal or dangerous, are examined by port authorities every day. Due to the

volume, strategic decisions must be made as to which cargo should be inspected, and

which cargo will pass customs without incident. This is a daunting task that requires

advanced analytical capabilities that will maximize effectiveness and minimize false

searches.

The Customs and Border Protection (CBP) agency maintains shipping manifests

in a system called PIERS (Port Import Export Reporting Service). This database is used

 111

for tasks such as reporting and data mining. Each entry (or row) in the PIERS tables

consists of various information from a shipping manifest. An example of a PIERS

record (and its header) are as follows:

VDATE,BOL_NBR,CONTAINER,FPORT,USPORT,COUNTRY,SLINE,VESSEL,VOYA
GE,NAME,FNAME,COMMODITY,HARM_DESC,HSCODE,HAZMAT_FLA,CONSIZE,
TEUS,MTONS,VALUE

020601,00434100,TOLU4972933,YOKOHAMA,SEATTLE,JAPAN,CSCO,LING
YUN HE,36,AMERICAN TRI NET EXPRESS,TRI NET,EMPTY
RACK,CONTAINERS FOR ONE OR MORE MODES OF
TRANSPORT,860900,,,0.00,5.60,27579

SHIPMENT

Commodity

Tarriff

Countries and Ports

Carrier

Arrival Info

PIERS

Financial Info
Cargo

Foreign Shipper

US Importer

Notify Party

Vessel

Container

Figure 6.1 High-level pictorial representation of cargo information.

 112

Using shipping data obtained from the CBP (http://www.cbp.gov/), we are able

to create a graph-based representation of the cargo information where row/column

entries are represented as vertices, and labeled edges convey their relationships as

edges. Figure 6.1 shows the high-level structure of the ontology we use to represent the

cargo data as a graph. Figure 6.2 shows a portion of the actual graph that we will use in

our anomaly detection experiments.

http://www.cbp.gov/

 113

ARRIVAL_INFO

“020601”

VDATE

SHIPMENT

COMMODITY

“EMPTY RACK”

COMMODITY

COUNTRIES_AND_PORTS

“YOKOHAMA”

“SEATTLE”

“JAPAN”

US_IMPORTER

FPORT

USPORT

COUNTRY

“AMERICAN TRI NET EXPRESS”

NAME

FOREIGN_SHIPPER

“TRI NET”

FNAME

VESSEL

“CSCO”

“LING YUN HE”

36

TARIFF

“CONTAINER FOR
ONE OR

MORE MODES OF
TRANSPORT”

HARM_DESC

860900

HSCODE

CONTAINER

FINANCIAL

CARGO

HAS_A

HAS_A
HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

HAS_A

“TOLU4972933”

CONTAINER

VALUE

27579

00434100

“”

“”

0.00

5.60

BOL_NBR

HAZMAT_FLA

CONSIZE

TEUS

MTONS

SLINE

VESSEL

VOYAGE

Figure 6.2 Example of cargo information represented as a graph.

 114

While we were not given any labeled data from the CBP (i.e., which shipments

were illegal, or anomalous, and which ones were not), we can draw some results from

simulations of publicized incidents.

6.1.1 Random Changes

Similar to what we did for the synthetic tests, we randomly modified, inserted

and deleted small portions of the graph for randomly selected shipping entries.

However, even though this data is not as regular as the synthetic data generated for the

earlier tests, all three algorithms were able to successfully find all of their intended

target anomalies with no false positives reported. This helps us validate further the

usefulness of this approach when the anomaly consists of small modifications to the

normative pattern.

It should also be noted that when the algorithms are run on the original cargo

data with no injected anomalies, the GBAD-P and GBAD-MPS algorithms do not find

any anomalies. However, the GBAD-MDL algorithm does report anomalies when the

threshold is greater than 0.08 (or 8%). Albeit, while the reported anomalies are merely

different US_IMPORTER and FOREIGN_SHIPPER names (as opposed to possible

fraud situations), this algorithm does successfully report anomalies in the data.

6.1.2 Real-world Scenarios

In [Eberle and Holder 2006], real-world cargo shipment occurrences were

generated so as to show how graph properties can be used to determine structural

anomalies in graphs. While that approach was successful in discovering graphs that

 115

contained anomalies, the exact anomalies were not part of the output. Using the GBAD

algorithms on these same data sets, we can display the actual anomalies.

One example is from a press release issued by the U.S. Customs Service. The

situation is that almost a ton of marijuana is seized at a port in Florida [U.S. Customers

Service 2000]. In this drug smuggling scenario, the perpetrators attempt to smuggle

contraband into the U.S. without disclosing some financial information about the

shipment. In addition, an extra port is traversed by the vessel during the voyage. For

the most part, the cargo looks like a normal shipment from Jamaica. Figure 6.3 shows a

graphical representation of a portion of the graph (for space reasons) containing the

anomaly.

Figure 6.3 Graph representation of cargo shipment containing the anomaly, with an insertion in
bold and removals represented as dotted lines.

When we run the three algorithms individually on this graph, GBAD-MDL is

unable to find any anomalies, which makes sense considering none of the anomalies are

modifications. When the graph contains the anomalous insertion of the extra traversed

port (shown as the bold edge and darkened vertex in Figure 6.3), the GBAD-P

algorithm is able to successfully discover the anomaly. Similarly, when the shipment

instance in the graph is missing some financial information (the dotted and dashed

 116

edges and vertices in Figure 6.3), GBAD-MPS reports the instance as anomalous.

When we run all three algorithms on the graph simultaneously, as was shown in Section

5.8, both anomalies are reported in the same run. This again further validates the

effectiveness of running these algorithms individually or combined.

According to the CBP, an estimated $2 billion in illegal textiles enter the U.S.

every year [Customs and Border Protection 2003]. One of the more common methods

of eluding authorities is accomplished using what is called transshipment. The CBP

defines transshipment as “A false declaration or information given in order to

circumvent existing trade laws for the purpose of avoiding quotas, embargoes or

prohibitions, or to obtain preferential duty treatment.” In order to circumvent quotas,

the fraudster will change the country of origin of their goods. For example, they may

ship the goods into Canada or Mexico, change the country-of-origin, and ship into the

U.S. free from tariffs under the North American Free Trade Agreement (NAFTA).

In order to simulate this real-world example, we randomly changed the country

of origin on one of the shipments to “CANADA”. While the GBAD-P and GBAD-

MPS algorithms were unsuccessful in discovering this anomaly (as was expected), the

GBAD-MDL algorithm was able to clearly mark the instance that contained the

anomaly. At first it was surprising that just a change in the country of origin would

have that effect, and given perhaps a different set of data, this would not have been as

effective. But, in this case, all of the shipments had a normative pattern that included

Asian shippers. So, by altering the originating country to Canada, the GBAD-MDL was

able to clearly notice the structural anomaly.

 117

6.1.3 Comparison to Non-Graph-Based Approaches

There are many different non-graph-based machine learning approaches to

anomaly detection. The Bayesian classification approach is a probabilistic method for

determining an appropriate classification hypothesis. More succinctly, it is the

probability of a particular class for a given instance. This approach has been commonly

used in intrusion detection, where instances are classified as possible anomalies

[Kruegel et al. 2003]. Neural Networks are a non-linear approach that has shown to be

a very effective at classifying real-valued or discrete-valued targets [Mitchell 1997].

Widely used as an approach to detect misuse, particularly for intrusion detection

systems and fraud detection, it has also shown to be applicable to anomaly detection.

Support vector machines, or SVMs, sometimes referred to as kernel-based learning

algorithms, are a set of supervised learning methods that apply linear classification

techniques to non-linear classification problems [Muller et al. 2001]. This approach has

also been shown useful for detecting anomalies [Hu et al. 2002]. Another set of

classifiers is known as lazy learners, or instance-based learning. This is perhaps the

simplest form of learning as the instances themselves represent the knowledge.

Training instances are searched for the instance that most closely resembles the new

instance. Anomaly detection using this technique has been applied to computer security

and issues on network routers [Aha et al. 1991]. Another class of learning methods is

meta-learners. Meta-learning is an area of predictive data mining that combines

predictions from multiple models. Again, meta-learners have been widely used in terms

of intrusion detection systems [Lee et al. 1999]. Decision tree induction is one of the

 118

more popular approaches to machine learning classification. A decision tree is a tree-

structured plan of a set of attributes to test in order to predict the output. In [Stein et al.

2004] a genetic algorithm is used with a decision tree classifier towards intrusion

detection. Classification rules are a popular alternative to decision trees. The rules

consist of pre-condition tests that are then logically ANDed together to produce a rule

that assigns a class, or set of classes, and possibly a probability distribution. Many of

the commercial intrusion detection systems in the nineties consisted of classification

rules.

Perhaps the most popular approach to anomaly detection involves the class of

approaches known as clustering. The idea behind clustering is the grouping of similar

objects, or data. This is an unsupervised approach whose goal is to find all objects that

are similar where the class of the example is unknown [Frank and Witten 2005]. From

an anomaly detection perspective, those objects that fall outside a cluster (outliers),

perhaps within a specified deviation, are candidate anomalies. Due to the popularity of

this approach, and the fact that it is an unsupervised approach (like GBAD), we evaluate

the effectiveness of the simple k-Means clustering approach on the cargo shipment data

using the WEKA tool [WEKA]. For the simple k-Means approach (SimpleKMeans),

given a set of n data points in d-dimensional space Rd, and an integer k, the problem is

to determine a set of k points in Rd, called centers, so as to minimize the mean squared

distance from each data point to its nearest center [Kanungo et al. 2000].

First, we randomly select 200 cargo records and generate a graph from the

chosen records. Second, we run the graph through SUBDUE to determine the

 119

normative pattern in the graph. Then, we generate multiple anomalies of each of the

anomaly types (modifications, insertions and deletions), where each of the induced

anomalies is similar to the real-world examples mentioned earlier (e.g., change in the

name of a port), and the anomaly is part of a normative pattern. Only choosing

anomalies that are small deviations (relative to the size of the graph), all three of the

GBAD algorithms are able to successfully find all of the anomalies, with only one

GBAD-MDL test and one GBAD-P test reporting false positives.

Using these same 200 records, we then convert the data into the appropriate

WEKA format for the k-Means algorithm. For each of the tests involving what were

vertex modifications in the graph, and are now value or field modifications in the text

file, the k-Means algorithm is able to successfully find all of the anomalies. Similar to

how we have to adjust GBAD parameters, we have to increase the default WEKA

settings for the number of clusters and the seed, as the defaults do not produce any

anomalous clusters on the cargo test set which consists of 12 attributes for 200 records.

By increasing the number of clusters to 8 and the seed to 31, we are able to discover the

anomalous modifications, as shown in the example in Figure 6.4.

 120

Figure 6.4 Results from k-Means clustering algorithm on cargo data with anomalous modification.

In these tests, a cluster is considered anomalous if it contains only a single instance.

However, for insertions and deletions, the k-Means approach is not effective,

but in some ways, that is to be expected. The k-Means algorithm assumes that every

specified record is of the same length. So, in order to simulate anomalous insertions,

extra attributes must be added to represent the extra vertices, where the values for those

attributes are NULL, unless an anomalous insertion is present. Yet, despite the

additional non-NULL attribute when the anomaly is present, the k-Means algorithm

never reports an anomalous cluster for any of the tests. When we increase the number

of clusters and the seed, it only increases the number of false positives (i.e., clusters of

 121

single instances that are not the anomalous instances). This is surprising in that we

would have assumed that the unique value for an individual attribute would have been

discovered. However, again, we are attempting to simulate a structural change, which

is something that the k-Means algorithm (or other traditional clustering algorithms) is

not intended to discover.

Similarly, we can only simulate an anomalous deletion by replacing one of the

record’s attributed values with a NULL value. Again, at first, we would have

considered this to be the same as a modification, and clearly identifiable by the k-Means

algorithm. But, the algorithm was unable to find the anomalous deletion in any of the

tests, which leads us to believe that the presence of a NULL value has an effect on the

functionality of the k-Means algorithm. The importance of these tests is to show that

for some anomalies (specifically modifications) traditional machine learning approaches

like clustering are also effective, and at the same time, the inability to discover

anomalous insertions and deletions further justifies the use of an approach like GBAD

for structural anomalies. In addition, approaches like k-Means are only able to report

the anomalous record – not the specific anomaly within the record.

The use of the k-Means clustering algorithm for anomaly detection and

intrusion detection has been reported in other research efforts [Portnoy 1999][Caruso

and Malerba 2004].For more information on how the WEKA tools work, please refer to

the WEKA website [WEKA].

We also compared our algorithms against a traditional non-graph-based

anomaly detection approach found in the commercially available application called

 122

Gritbot, from a company called RuleQuest (http://www.RuleQuest.com/). The

objective of the Gritbot tool is to look for anomalous values that would compromise the

integrity of data that might be further analyzed by other data modeling tools.

There are two required input files for Gritbot: a .names file that specifies the

attributes to be analyzed, and a .data file that supplies the corresponding comma-

delimited data. There are several optional parameters for running Gritbot, of which the

most important is the "filter level". By default, the filter level is set at 50%. The lower

the filter level percentage, the less filtering that occurs, resulting in more possible

anomalies being considered.

In order to compare Gritbot to our GBAD algorithms, we gave Gritbot the same

cargo data files used in the previous experiments (formatted to the Gritbot

specifications). Using the default parameters, no anomalies were reported. We then

lowered the filter level to 0 (which specifies that all anomalies are requested). In every

case, anomalies were reported, but none of the anomalies reported were the ones we had

injected into the data set. So, we increased the number of samples from 200 shipments

to ~1000 shipments, so that Gritbot could infer more of a statistical pattern, and then

randomly injected a single modification to the country-of-origin attribute. In the cargo

data files, all of the country-of-origins were "JAPAN", except for the randomly selected

records where the value was changed to "CHINA". Again, Gritbot did not report this

anomaly (i.e. 1020 cases of "JAPAN" and one case of "CHINA"), and instead reported

a couple of other cases as anomalous.

 123

While we consider the existence of a record with "CHINA" as anomalous,

Gritbot does not view that as an anomaly. The issue is that Gritbot (and this is similar

to other outlier-based approaches), does not treat discrete attributes the same as numeric

attributes. This is because Gritbot views continuous distributions (such as "age") as a

much easier attribute to analyze because the distribution of values leads to certain

expectations. While discrete distributions are more difficult because there is not a

referential norm (statistically), it limits the tool’s ability to provide its user with a

comprehensive list of anomalies. That is not to say that Gritbot will not discover

anomalous discrete values - it will if it can determine a statistical significance. For

example, we found (when examining by hand) records that contained a significant

number of identical attribute values (e.g., COUNTRY, FPORT, SLINE, VESSEL). In

our data set, approximately 250 out of the approximately 1,000 records had identical

SLINE values. When we arbitrarily modified the SLINE value of one of these

cases from "KLIN" to "PONL" (i.e., another one of the possible SLINE values from this

data set), Gritbot did not report the anomaly. When we changed it to "MLSL", Gritbot

still did not report it. However, when we changed it to "CSCO", Gritbot reported that

case as being anomalous (albeit, not the most anomalous). Why? This behavior is

based on what Gritbot can determine to be statistically significant. Of all of the ~1,000

records, only 1 has an SLINE value of "MLSL", and only 3 have a value of "PONL".

However, there are 123 records with an SLINE value of "CSCO". Thus, Gritbot was

able to determine that a value of "CSCO" among those ~250 records is anomalous

because it had enough other records containing the value "CSCO" to determine that its

 124

existence in these other records was significant. In short, the behavior depends upon the

definition of what is an anomaly.

Gritbot's approach to anomaly detection is common among many other outlier-

based data mining approaches. However, in terms of finding what we would consider

to be anomalous (small deviations from the norm), Gritbot's approach typically does not

find the anomaly.

6.2 Intrusion Detection

One of the more applied areas of research when it comes to anomaly detection

can be found in the multiple approaches to intrusion detection. The reasons for this are

its relevance to the real world problem of networks and systems being attacked, and the

ability of researchers to gather actual data for testing their models. Perhaps the most

used data set for this area of research and experimentation is the 1999 KDD Cup

network intrusion dataset [KDD Cup 1999].

In 1998, MIT Lincoln Labs managed the DARPA Intrusion Detection

Evaluation Program. The objective was to survey and evaluate research in intrusion

detection. The standard data set consisted of a wide variety of intrusions simulated in a

military network environment. The 1999 KDD Cup intrusion detection dataset consists

of a version of this data. For nine weeks, they simulated a typical U.S. Air Force local-

area network, initiated multiple attacks, and dumped the raw TCP data for the

competition.

 125

The KDD Cup data consists of connection records, where a connection is a

sequence of TCP packets. Each connection record is labeled as either “normal”, or one

of 37 different attack types. Each record consists of 31 different features (or fields),

with features being either continuous (real values) or discrete. In the 1999 competition,

the data was split into two parts: one for training and the other for testing. Groups were

then allowed to train their solutions using the training data, and were then judged based

upon their performance on the test data.

6.2.1 GBAD

Since the GBAD approach uses unsupervised learning, we will run the

algorithms on the test data so that we can judge our performance versus other

approaches. Also, because we do not know the possible structural graph changes

associated with network intrusions, we will have to run all three algorithms to determine

which algorithms are most effective for this type of data. Each test contains 50

essentially random records, where 49 are normal records and 1 is an attack record,

where the only controlled aspect of the test is that there is only one attack record per

data set. This is done because the test data is comprised of mostly attack records, which

does not fit our definition of an anomaly, where we are assuming that anomalous

substructures are rare. Fortunately, this again is a reasonable assumption, as attacks

would be uncommon in most networks.

Not surprisingly, each of the algorithms has a different level of effectiveness

when it comes to discovering anomalies in intrusion detection data. Using GBAD-

MDL, our ability to discover the attacks is relatively successful. Across all data sets,

 126

100% of the attacks are discovered. However, all but the apache2 and worm attacks

produce some false positives. 42.2% of the test runs do not produce any false positives,

while runs containing snmpgetattack, snmpguess, teardrop and udpstorm attacks

contribute the most false positives. False positives are even higher for the GBAD-P

algorithm, and the discovery rate of actual attacks decreases to 55.8%. GBAD-MPS

shows a similarly bad false positive rate at 67.2%, and an even worse discovery rate at

47.8%.

It is not surprising that GBAD-MDL is the most effective of the algorithms, as

the data consists of TCP packets that are structurally similar in size across all records.

Thus, the inclusion of additional structure, or the removal of structure, is not as relevant

for this type of data, and any structural changes, if they exist, would consist of value

modifications.

6.2.2 Comparison to Other Graph-based Approaches

In order to better understand the effectiveness of the GBAD algorithms on

intrusion detection data, we will compare our results with the graph-based approaches

of Noble and Cook [Noble and Cook 2003]. As was presented earlier in this work, they

proposed two approaches to discovering anomalies in data represented as a graph.

Their anomalous substructure detection method attempts to find unusual substructures

within a graph by finding those substructures that compress the graph the least,

compared to our GBAD-MDL approach which uses compression to determine which

substructures are closest to the best substructure (i.e., the one that compresses the graph

the most). In their results, they use the inverse of the ratio of true anomalies found over

 127

the total number of anomalies reported, where the lower the value (i.e., a greater

percentage of the reported anomalies are the network attacks), the more effective the

approach for discovering anomalies.

The other approach presented is what they call anomalous subgraph detection.

The objective with this method is to compare separate structures (subgraphs) and

determine how anomalous each subgraph is compared to the others. This is similar to

our approaches in that the minimum description length is used as a measurement of a

substructure’s likelihood of existence within a graph. However, in order to implement

this approach, the graph must be divided into clearly defined subgraphs so that a proper

comparison can be performed. The basic idea is that every subgraph is assigned a value

of 1, and the value decreases as portions of the subgraph are compressed away. In the

end, the subgraphs are ranked highest to lowest, with the higher the value (i.e., closest

to, or equal to, 1), the more anomalous the subgraph. While this works well on

intrusion detection data, their approach is restricted to domains where a clear

delineation (i.e., subgraphs) must be defined. In other words, the delineation occurs

when a graph can be sub-divided into distinct subgraphs, with each subgraph

representing a common entity. For example, in domains like terrorist or social

networks, this type of delineation may be difficult and subjective.

Using the same set of KDD Cup intrusion detection data as set forth previously,

we can compare GBAD-MDL (since it performed the best on this set of data) to both of

these approaches, using the same anomalous attack ratios used by Noble and Cook. The

ratio used in their work is an inverse fraction of correctly identifying the attacks among

 128

all of the attacks reported. For example, if 10 anomalies are reported, but only 1 of

them is the actual attack, then the fraction is 1/10, and the inverse is the score of 10,

where obviously the lower the score the better. Their anomalous substructure detection

method achieves an average anomalous ratio of 8.64, excluding the snmpgetattack and

snmpguess attacks, while using the same scoring ratio, GBAD-MDL generates an

average of 7.22 with snmpgetattack and snmpguess included. In Noble and Cook’s

paper, both the snmpgetattack and snmpguess attacks were excluded from the

anomalous substructure detection approach results because they had high average attack

values of around 2211 and 126 respectively (i.e., too many false positives). However,

GBAD-MDL is much more successful at discovering these two attack types, as their

respective averages are 8.55 and 7.21. Then, for their anomalous subgraph detection

approach, they get an average ranking of 4.75, whereas the GBAD-MDL algorithm is

able to achieve a better average ranking of 3.02. Figure 6.5 shows the ranking results

for each of the different attack types.

 129

Average Anomalous Rank

0

5

10

15

20

25

30

35

sn
m

pg
et

at
ta

ck

na
m

ed

xl
oc

k

sm
ur

f

ip
sw

ee
p

m
ul

tih
op

xs
no

op

se
nd

m
ai

l

gu
es

s_
pa

ss
w

d

sa
in

t

bu
ffe

r_
ov

er
flo

w

po
rts

w
ee

p

po
d

ap
ac

he
2

ph
f

ud
ps

to
rm

w
ar

ez
m

as
te

r

pe
rl

sa
ta

n

xt
er

m

m
sc

an

pr
oc

es
st

ab
le ps

nm
ap

ro
ot

ki
t

ne
pt

un
e

lo
ad

m
od

ul
e

im
ap

ba
ck

ht
tp

tu
nn

el

w
or

m

m
ai

lb
om

b

ftp
_w

rit
e

te
ar

dr
op

la
nd

sq
la

tta
ck

sn
m

pg
ue

ss

attacks

ra
nk

Figure 6.5 Average anomalous ranking using GBAD-MDL on KDD intrusion detection data.

These results, when compared to the ones presented in Noble and Cook’s paper

[Noble and Cook 2003], not only show an overall average improvement, but also again

show a significant improvement when it comes to effectively discovering the

snmpgetattack and snmpguess attacks, which both had values over 20 using the

anomalous subgraph detection approach, whereas the GBAD-MDL algorithm was

under 10 for both attack types. It should also be noted that the false positives are mostly

due to the fact that we have to increase the anomalous threshold in order to detect some

of the anomalous patterns. Unlike our assumption that anomalies are small deviations

 130

from the normative pattern, several of the attack records are actually large deviations

from the norm.

6.3 Other Data Sets

We have also tried our algorithms on other publicly available data sets in which

we would like to identify anomalous behaviors.

6.3.1 Enron E-mail

One of the more recent domains that has become publicly available is the data

set of e-mails between management from the Enron corporation. The Enron e-mail

dataset was made public by the Federal Energy Regulatory Commission during its

investigation. After subsequent data integrity resolutions, as well as the removal of

some e-mails due to requests from affected employees, William Cohen at CMU put the

dataset on the web for researchers. From that dataset, Shetty and Adibi further cleaned

the dataset by removing duplicate e-mails, and putting the final set into a publicly

available MySql database (http://www.isi.edu/~adibi/Enron/Enron.htm). This dataset

contains 252,759 messages from 151 employees distributed in approximately 3000

user-defined folders.

In Priebe et al’s work, they used what are called "scan statistics" on a graph of

the Enron data that is represented as a time series [Priebe et al, 2005]. While their

approach detects statistically significant events (excessive activity), without further

analysis, they are unable to determine whether the events are relevant (like insider

trading). In Shetty and Adibi’s paper, they propose analyzing the entropy of the Enron

http://www.isi.edu/~adibi/Enron/Enron.htm

 131

data represented as a graph [Shetty and Adibi, 2005]. However, with their approach of

"event based graph entropy", the objective was to discover the more interesting nodes in

the graph, which does not necessarily mean they are anomalous. Huang and Zeng

proposed using several link prediction approaches for analyzing the Enron data for

anomalous e-mails [Huang and Zeng, 2006]. Again, they report what they consider to

be anomalous e-mails, but they state that without knowing which e-mails are truly

anomalous, they are just making conjectures. They do introduce some fake e-mails into

the data with the purpose of showing that their approaches do indicate their induced

fake e-mails as either the most anomalous or equal to other e-mails that scored high.

This Enron e-mail database consists of messages not only between employees

but also from employees to external contacts. In addition to providing the e-mails, the

database also consists of employee information such as their name and e-mail address.

However, since we do not have information about their external contacts, we decided to

limit our graph to the Enron employees and just their correspondences, allowing us to

create a more complete “social” structure. In addition, since the body of e-mails consist

of many words (and typos), we limited the textual nature of the e-mails to just the

subject headers. From these decisions, we created a graph consisting of the structure

shown in Figure 6.6.

 132

person

<last name>

<first name> <e-mail address>

lastName

firstName
email

message

<word>

<month>

subjectWord

month

sender
<recipientType>

<day> <year>

yearday

Figure 6.6 Graphical representation of Enron e-mail.

In Figure 6.6, the message vertex can have multiple edges to multiple subject words,

and multiple recipient type edges (i.e., TO, CC and BCC) to multiple persons.

Running the GBAD algorithms on this data set produced the small normative

pattern shown in Figure 6.7.

message 2001
year

Figure 6.7 Normative pattern from Enron e-mail data set.

 133

This was an expected normative pattern because most of the e-mail was from the year

2001, with little regularity beyond the fact that messages were sent.

So, considering the small size of the normative pattern, we did not run the

GBAD-MDL and GBAD-MPS algorithms, as clearly nothing of importance would be

derived from a modification or deletion to this normative pattern. However, running the

GBAD-P algorithm resulted in the substructure shown in Figure 6.8.

message

Targets

10

subjectWord

month

1

2001

year

day

Figure 6.8 Results from running GBAD-P on Enron e-mail data set.

It is interesting to point out that 859 messages were sent on October 1, 2001, and of all

of the messages in the data set, this was the only one with a subject of “Targets”, and 1

of only 36 messages in the entire dataset that had the word “Targets” anywhere in its

subject line, and no messages anywhere that were a response to this message.

 134

Unfortunately, just as Huang and Zeng pointed out, without actually knowing

which e-mails are anomalous, we are all just making conjectures.

6.3.2 Internet Movie Database (IMDB)

Another common source of data mining research is the Internet Movie Data

Base (http://www.imdb.com/). The database consists of hundreds of thousands of

movies and television shows, with all of the credited information such as directors,

actors, writer, producers, etc. In their work on semantic graphs, Barthelemy et al.

proposed a statistical measure for semantic graphs and illustrated these semantic

measures on graphs constructed from terrorism data and data from the IMDB

[Barthelemy et al, 2005]. While they were not directly looking for anomalies, their

research presented a way to measure useful relationships so that a better ontology could

be created. As was mentioned previously, using bipartite graphs, Sun et al. presented a

model for scoring the normality of nodes as they related to the other nodes [Sun et al,

2005]. Using the IMDB database as one of their datasets, they analyzed the graph for

just anomalous nodes.

In order to run our algorithms on the data, due to the voluminous amount of

information, we chose to create a graph of the key information (title, director, producer,

writer, actor, actress and genre) for the movies from 2006. Running the GBAD

algorithms on this data set produced the normative pattern shown in Figure 6.9.

 135

producer

actor

genre
actor

HAS_A
HAS_A

HAS_A

movie

actress

HAS_A

HAS_A

actress

actor

HAS_A

HAS_A

actorHAS_A

Figure 6.9 Normative pattern from graph representation of movie data.

This pattern is not surprising, as one would expect that a movie would consist of

multiple actors and actresses, and considering the size of the database, it is possible that

runs made with much larger limits might produce a larger normative pattern and include

some of the other movie elements like director and writer. The lack of these elements

in the normative pattern can be due to a couple of reasons. One is that genres like

reality shows do not require directors and writers, and many documentaries do not have

writers credited in the IMDB. Another is the possible resource constraints that have

been discussed previously. If we were to allow GBAD to run with a larger beam and

 136

higher limits, a larger normative pattern might be discovered that would include the

missing directors and writers.

Running the GBAD-MDL and GBAD-MPS algorithms on the IMDB data

produced a variety of anomalies that all scored equally. The GBAD-MDL algorithm

reported a single anomalous instance where an actor label was replaced by an

anomalous actress label. The GBAD-MPS algorithm reported multiple anomalous

instances consisting of a writer replacing an actor, a writer replacing the producer,

another genre replacing the producer, a director replacing the producer, another actor

replacing the producer and another actress replacing the producer. For the GBAD-P

algorithm, the anomalous extension consisted of the title of the movie. Considering

every movie has a different title (in most cases), this was an expected anomalous

extension.

The issue with analyzing the move data set with these algorithms is that this

approach is set up to find the small deviations from the norm that are indicative of

fraud. While there are probably anomalies in the IMDB, the anomalies are more than

likely a result of information being input incorrectly into the database, or just structural

changes due to the construction of different movies. Again, without expert knowledge

of the data and specifically any insights into actual anomalies, it is difficult to make any

conjectures about what we are observing.

 137

6.4 Summary

We have observed that even with non-synthetic data, as long as there is a large

enough normative pattern, the data is fairly regular (such that the normative pattern is

prevalent in most of the data), and the anomaly consists of a small deviation from the

norm, these three algorithms are able to target specific anomaly types. Validating the

results shown with the synthetic data, the algorithms obtain a near 100% discovery rate

in the cargo shipment domain, with minimal or no false positives. We also validated

our algorithms by not only demonstrating an improvement over other graph-based

anomaly detection approaches, but also verifying these algorithms as an effective means

of discovering anomalies in the very important real-world domain of network

intrusions. In addition, we were able to analyze various other diverse data sets where

unusual patterns were discovered that consisted of small deviations from a normative

pattern.

 138

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

In this work we presented our definition of a graph-based anomaly and how that

is manifested in data that is represented as a graph. The purpose of this work was to

present an approach for discovering the three possible graph anomalies: modifications,

insertions and deletions. Using a practical definition of fraud, we designed algorithms

to specifically handle the scenario where the anomalies are small deviations to a

normative pattern.

In Chapter 4 we described three novel algorithms, each with the goal of

uncovering one of the specified anomalous types. With the aid of several simple

examples, we were able to describe the approaches and the simplicity of their

implementation. In Chapter 5 we validated all three approaches using synthetic data.

The tests verified each of the algorithms on graphs and anomalies of varying sizes, with

the results showing very high detection rates with minimal false positives. Chapter 6

further validated the algorithms using real-world cargo data and actual fraud scenarios

injected into the data set. Despite a less regular set of data, normative patterns did exist,

and changes to those prevalent substructures were detected with 100% accuracy and no

false positives. We also compared our approach on this dataset against other non-

graph-based approaches where we were equally effective in all cases and better in

 139

others. We then compared our algorithms against a graph-based approach using

intrusion detection data, again with better discovery rates and lower false positives. We

also looked at other real-world datasets where we were able to show unusual patterns in

two diverse domains. In short, the GBAD algorithms presented in this work are able to

consistently discover all graph-based anomalies that are comprised of the smallest

deviation of the normative pattern, with minimal false positives.

7.2. Future Work

There have been many approaches to anomaly detection over the years, most of

which have been based on statistical methods for determining outliers. As was shown

in this paper, recent research in graph-based approaches to data mining have resulted in

new methods of anomaly detection. Our work shows promising approaches to this

problem, particularly as it is applied to fraud detection. However, there are still many

avenues to be explored.

7.2.1 Improved Picture of Anomaly

Currently, there is no connection between compressed substructures. In other

words, once instances of a particular substructure have been compressed to a single

vertex (i.e., when running multiple iterations of the GBAD-P algorithm), and a link (and

vertex) extends from that compressed substructure, there is no information telling us

what actual vertex is connected to that extension. If we can save that information for

future iterations, that could prove to be useful for two reasons. One, we could possibly

generate a better probabilistic model for determining which extensions are actually

 140

more anomalous. Second, it would allow us to create a better picture of the anomaly, as

an analyst would be able to view the entire chain of connections in totality associated

with the anomaly.

7.2.2 User Input to Guide Detection

A common data mining or fraud detection approach is to allow the user to

provide feedback. Used as either a learning process, or merely as a means of adjusting

parametric thresholds, the user is able to guide their application towards an expected

result, or away from an uninteresting result. One possible modification to our

approaches could be the input of a known normative pattern. For instance, a domain

expert could know what the normative pattern is for a particular data set. By supplying

that pattern, only deviations from that pattern would be explored. This could also be

particularly useful if the non-user-specified normative pattern is very small, making it

difficult to discover anomalous deviations. The disadvantage of this approach is that it

would require a subgraph isomorphism, which is computationally intractable.

7.2.3 Other Probabilistic Ratios

The probabilistic algorithm presented in this work uses a simple probabilistic

approach. More advanced statistical approaches should be investigated to determine

possibly better choices for the anomalous substructure. For instance, currently, if there

is only one type of extension (i.e., no other extensions available), that extension will get

an anomalous score of 1.0 (i.e., maximum possible score), where the closer the score is

to 0.0 the better. While the user is currently able to threshold the anomalous score (i.e.,

ignore reported anomalies above a certain score), perhaps other statistical comparisons

 141

could be made that would further delineate the targeted extension. Also, currently the

extensions are evaluated against just other extensions of the normative pattern. Perhaps

other substructures that were not the best substructure could be used in the evaluation of

anomalous extensions.

7.2.4 Other Evaluation Metrics

The minimum description length principle was used as the metric for

determining the normative pattern, as well as by the GBAD-MDL algorithm for

discovering substructures with minor modifications. This metric is a key component of

the algorithms presented in this work. However, other graph-based approaches have

used various other metrics, such as size or coverage, for determining the normative

pattern in a graph. Future work should include an analysis of these other metrics in lieu

of the MDL approach.

7.2.5 Other Domains

Since 9/11, one of the more common domains used in data mining consists of

terrorist activity and relationships. Organizations such as the Department of Homeland

Security use various techniques to discover the inherent patterns in the network

representation of known terrorists and their relations [Kamarck 2002]. Much research

has been applied to not only understanding terrorist networks [Sageman 2004], but also

discovering the patterns that discriminate the terrorists from the non-terrorists [Taipale

2003]. Much of this area of research has also been applied to what is known as social

network analysis, which is a more general term for the measuring and mapping of

relationships between people, places and organizations [Mukherjee and Holder 2004].

 142

Through the Evidence Assessment, Grouping, Linking, and Evaluation

(EAGLE) program, under the auspices of the Air Force Research Lab (AFRL), we have

been able to gather counter-terrorism data. While the data is simulated, it does

represent scenarios based on input from various intelligence analysts [Coble 2006]. The

data represents different terrorist organization activities as they relate to the exploitation

of vulnerable targets. Our goal is to use this data as another example of real-world data

to further validate the effectiveness of this approach. If a terrorist can be

distinguishable from a non-terrorist by a small deviation in a normative pattern, we

should be able to discover actual terrorist instances within a network of people and

relationships.

Another domain worth investigating would be data from the Financial Crimes

Enforcement Network (FinCEN). The purpose of FinCEN is to analyze financial

transactions for possible financial crimes including terrorist financing and money

laundering. Again, if illegal transactions consist of small deviations from normal

transactions, we should be able to uncover genuine fraudulent activity within a network

of people and their related monetary dealings.

Similar techniques could be applied to a myriad of domains, including

telecommunications call records and credit card transactions. In short, any data source

where transactions and relationships can be represented structurally as a graph, and

possible anomalous behavior consists of minor deviations from normal patterns, these

approaches to graph-based anomaly detection could prove to be a viable alternative to

traditional data mining endeavors. In addition, by analyzing the effectiveness of our

 143

algorithms against real-world, labeled data sets, we can establish a baseline of

comparison that can be used in subsequent anomaly detection endeavors.

144

REFERENCES

Aha, D., Kibler, D. and Albert, M. Instance-based Learning Algorithms. Machine
Learning, Vol. 6, Issue 1, 37-66, 1991.

Barthélemy, M., Chow, E. and Eliassi-Rad, T, Knowledge Representation Issues in
Semantic Graphs for Relationship Detection. AI Technologies for Homeland Security:
Papers from the 2005 AAAI Spring Symposium, AAAI Press, 2005, pp. 91-98.

Boykin, P. and Roychowdhury, V. Leveraging Social Networks to Fight Spam. IEEE
Computer, April 2005, 38(4), 61-67, 2005.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins,
A. and Wiener, J. Graph Structure in the Web. Computer Networks, Vol. 33, 309-320,
2000.

Caruso, C. and Malerba, D. Clustering as an add-on for firewalls. Data Mining, WIT
Press, 2004.

Chakrabarti, D. AutoPart: Parameter-Free Graph Partitioning and Outlier Detection.
Knowledge Discovery in Databases: PKDD 2004, 8th European Conference on
Principles and Practice of Knowledge Discovery in Databases, 112-124, 2004.

Chung, F., Lu, L., Vu, V. Eigenvalues of Random Power Law Graphs. Annals of
Combinatorics, 7, 21-33, 2003.

Coble, J. Relational Discovery in Sequentially-connected Data Streams: Efficient
Algorithms for Lossless Pattern Discovery and Change Detection. PhD Thesis,
University of Texas at Arlington, 2006.

145

Coble, J., Cook, D., Rathi, R and Holder, L. Iterative Structure Discovery in Graph-
Based Data. International Journal of Artificial Intelligence Techniques, 14(1-2), 2005.

Cook, D. and Holder, L. Graph-based data mining. IEEE Intelligent Systems 15(2), 32-
41, 2000.

Cortes, C., Pregibon, D. and Volinsky, C. Computational Methods for Dynamic
Graphs. Journal of Computational and Graphical Statistics, Vol. 12, 950-970, 2003.

Customs and Border Protection Today: Illegal textile entries: a way to save a few
bucks? March 2003. (http://www.cbp.gov/xp/CustomsToday/2003/March/illegal.xml)

Dehaspe, L. and Toivonen, H. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery. 3(1): 7-36, 1999.

Denning, D. An Intrusion-Detection Model. IEEE Transactions on Software
Engineering, Vol. SE-12, No. 2, 1987, pp 222-232, 1987.

De Raedt, L. and Kramer, S. The levelwise version space application and its
application to molecular fragment finding. IJCAI ’01, Seventeenth International Joint
Conference on Artificial Intelligence, volume 2, pages 853-859, 2001.

Eberle, W. and Holder, L. Detecting Anomalies in Cargo Shipments Using Graph
Properties. Proceedings of the IEEE Intelligence and Security Informatics Conference,
2006.

Faloutsos, M., Faloutsos P., Faloutsos, C. On Power-law Relationships of the Internet
Topology. Proceedings of the conference on applications, technologies, architectures,
and protocols for computer communications, SIGCOMM, pp. 251-262, 1999.

Gross, J, and Yellen, J. Graph Theory and Its Applications. CRC Press. 1999.

http://www-cse.uta.edu/~cook/pubs/ijait05coble.pdf
http://www-cse.uta.edu/~cook/pubs/ijait05coble.pdf

146

Gudes, E. and Shimony, S. Discovering Frequent Graph Patterns Using Disjoint
Paths. IEEE Transactions of Knowledge and Data Engineering, 18(11), November
2006.

Hampton, M. and Levi, M. Fast spinning into oblivion? Recent developments in
money-laundering policies and offshore finance centres. Third World Quartely,
Volume 20, Number 3, June 1999, pp. 645-656, 1999.

Holder, L., Cook, D. and Djoko, S. Substructure Discovery in the SUBDUE System.
Proceedings of the AAAI Workshop on Knowledge Discover in Databases, pp. 169-
180, 1994.

Hu, W., Liao, Y. and Vemuri, V. Robust Support Vector Machines for Anomaly
Detection in Computer Security. International Conference on Machine Learning and
Applications, Los Angeles, California, June 2003.

Huan, J., Wang, W. and Prins, J. SPIN: Mining Maximal Frequent Subgraphs from
Graph Databases. Knowledge Discovery and Data Mining, KDD ’04, 2004.

Huang, Z. and Zeng, D. A Link Prediction Approach to Anomalous Email Detection.
2006 IEEE International Conference on Systems, Man, and Cybernetics, Taipei,
Taiwan, October 8 -11, 2006.

Ide, T. and Kashima, H. Eigenspace-based Anomaly Detection in Computer Systems.
Proceedings of the Tenth ACM SIGDD International Conference on Knowledge
Discovery and Data Mining, 440-449, 2005.

Kamarck, E. Applying 21st Century Government to the Challenge of Homeland Security.
Harvard University, PriceWaterhouseCoopers, 2002.

Kanungo, T, Mount, D., Netanyahu, N., Piatko, C., Silverman, R. and Wu, A. The
Analysis of a Simple k-Means Clustering Algorithm. Proceedings on the 16th Annual
Symposium on Computational Geometry, 100-109, 2000.

http://www.personal.psu.edu/faculty/h/u/huz2/Zan/papers/link.smc06.pdf

147

KDD Cup 1999. Knowledge Discovery and Data Mining Tools Competition.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 1999.

Kruegel, C., Mutz, D., Robertson, W. and Valeur, F. Bayesian Event Classification for
Intrusion Detection. Proceedings of the 19th Annual Computer Security Applications
Conference, 2003.

Kumar, S. Classification and Detection of Computer Intrusions. PhD thesis, Purdue, IN,
1995.

Kuramochi, M. and Karypis, G. An Efficient Algorithm for Discovering Frequent
Subgraphs. IEEE Transactions on Knowledge and Data Engineering, pp. 1038-1051,
2004.

Kuramochi, M. and Karypis, G. Grew – A Scalable Frequent Subgraph Discovery
Algorithm. IEEE International Conference on Data Mining (ICDM ’04), 2004.

Lane, T. Machine Learning Techniques for the Domain of Anomaly Detection for
Computer Security. PhD thesis, Purdue, IN. 2000.

Lee, W. and Xiang, D. Information-theoretic measures for anomaly detection. IEEE
Symposium on Security and Privacy, 2001.

Lee, W., Stolfo, S. and Mok, K. A Data Mining Framework for Building Intrusion
Detection Models. IEEE Symposium on Security and Privacy, 1999.

Lee, W. and Stolfo, S. Data Mining Approaches for Intrusion Detection. Proceedings of
the 7th USENIX Security Symposium, 1998.

Lin S. and Chalupsky, H. Unsupervised Link Discovery in Multi-relational Data via
Rarity Analysis. Proceedings of the Third IEEE ICDM International Conference on
Data Mining, 171-178, 2003.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

148

Mae Dey Newsletter: Customs Seizes Weapons. Vol. 23, Issue 4, August/September
(2003).

Maxion, R. and Tan, K. Benchmarking Anomaly-Based Detection Systems. In
International Conference on Dependable Systems and Networks, IEEE Computer
Society Press, 623-630, 2000.

Mitchell, T. Machine Learning. McGraw Hill. 1997

Mukherjee, M. and Holder, L. Graph-based Data Mining on Social Networks.
Workshop on Link Analysis and Group Detection, KDD, 2004.

Müller, K., Mika, S., Rätsch, G., Tsuda, K. and Scholkopf, B. An Introduction to
Kernel-Based Learning Algorithms, IEEE Transactions on Neural Networks, Vol. 12,
No. 12, March 2001.

Nijssen, S. and Kok, J. Faster association rules for multiple relations. IJCAI ’01,
Seventeenth International Joint Conference on Artificial Intelligence, volume 2, pages
891-896, 2001.

Noble, C. and Cook, D. Graph-Based Anomaly Detection. Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 631-
636, 2003.

Portnoy, L., Eskin, E. and Stolfo, S. Intrusion detection with unlabeled data using
clustering. Proceedings of ACM CSS Workshop on Data Mining Applied to Security,
2001.

Priebe, C., Conroy, J., Marchette, D. and Park, Y. Scan Statistics on Enron Graphs.
Computational and Mathematics Organization Theory, Volume 11, Number 3, p229 -
247, October 2005

Rattigan, M. and Jensen, D. The case for anomalous link discovery. ACM SIGKDD
Explor. Newsl., 7(2):41-47, 2005.

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/maxion/www/pubs/maxiontan00.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/maxion/www/pubs/maxiontan00.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/maxion/www/pubs/maxiontan00.pdf

149

Rissanen, J. Stochastic Complexity in Statistical Inquiry. World Scientific Publishing
Company, 1989.

Sageman, M. Understanding Terror Networks. University of Pennsylvania Press, 2004.

Scott, J. Social Network Analysis: A Handbook. SAGE Publications, Second Edition,
72-78, 2000.

Shetty, J. and Adibi, J. Discovering Important Nodes through Graph Entropy: The
Case of Enron Email Database. KDD, Proceedings of the 3rd international workshop
on Link discovery, 74-81, 2005.

Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J. Levitt,
K., Wee, C., Yip, R. and Zerkle, D. GrIDS – A Graph Based Intrusion Detection
System for Large Networks. Proceedings of the 19th National Information Systems
Security Conference, 1996.

Stein, G., Chen, B., Wu, A. and Hua, K. Decision Tree Classifier for Network Intrusion
Detection with GA-based Feature Selection. ACM Southeast Regional Conference,
136-141, 2005.

Sun, J, Qu, H., Chakrabarti, D. and Faloutsos, C. Relevance search and anomaly
detection in bipartite graphs. SIGKDD Explorations 7(2), 48-55, 2005.

Taipale, K. Data Mining and Domestic Security: Connecting the Dots to Make Sense of
Data. Columbia Science and Technology Law Review, 2003.

Thomas, L., Valluri, S. and Karlapalem, K. MARGIN: Maximal Frequent Subgraph
Mining. Sixth International Conference on Data Mining (ICMD ’06), 109-1101, 2006.

150

U.S. Customs Service: 1,754 Pounds of Marijuana Seized in Cargo Container at Port
Everglades. November 6, 2000. (http://www.cbp.gov/hot-new/pressrel/2000/1106-
01.htm)

Washio, T. and Motoda, H. State of the art of graph-based data mining. ACM
SIGKDD Explorations Newsletter, 5(1):59-68, July 2003.

Webster’s New Universal Unabridged Dictionary, Barnes & Noble Books, 1989.

Webster’s New World Thesaurus, New Revised Edition, Prentice Hall, 1971.

WEKA, http://www.cs.waikato.ac.nz/~ml/index.html.

West, D. Introduction to Graph Theory. Prentice-Hall International. Second Edition.
2001.

Witten, I. and Frank, E. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufman, Second Edition, 2005.

Yan, X. and Han, J. gSpan: Graph-Based Substructure Pattern Mining. Proceedings of
International Conference on Data Mining, ICDM, pp. 51-58, 2002.

Zeng, Z., Wang, J., Zhou, L. and Karypis, G. Coherent closed quasi-clique discovery
from large dense graph databases. Conference on Knowledge Discovery in Data,
SIGKDD, 797-802, 2006.

http://www.cbp.gov/hot-new/pressrel/2000/1106-01.htm
http://www.cbp.gov/hot-new/pressrel/2000/1106-01.htm

151

BIOGRAPHICAL INFORMATION

William Fred Eberle received his Bachelor of Arts in Computer Science in 1986

from the University of Texas at Austin. In 1991, while working for General Dynamics

in their flight simulation laboratory, he received his Master of Science in Computer

Science from the University of Texas at Arlington, with an emphasis in artificial

intelligence and natural language processing. After 11 years in the telecommunications

industry, he went back to the University of Texas at Arlington, where, in 2007, while

researching new techniques in fraud detection, he received his Ph.D. in Computer

Science and Engineering.

	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	RELATED WORK
	2.1 Anomaly Detection Methods
	2.2 Graph-based Anomaly Detection Methods
	2.3 Using Graph Properties to Discover Anomalous Graphs
	2.4 Graph-Based Pattern Discovery

	CHAPTER 3
	GRAPH-BASED ANOMALIES
	3.1 Definition of Graph-Based Anomaly
	3.2 Anomaly Types
	3.3 Assumptions

	CHAPTER 4
	GRAPH-BASED ANOMALY DETECTION ALGORITHMS
	4.1 Information Theoretic Algorithm (GBAD-MDL)
	4.2 Probabilistic Algorithm (GBAD-P)
	4.3 Maximum Partial Substructure Algorithm (GBAD-MPS)
	4.4 Summary

	CHAPTER 5
	EMPIRICAL EVALUATIONS ON SYNTHETIC DATA
	5.1 Graph Generation
	5.2 Synthetic Data
	5.3 Metrics
	5.4 Shapes
	5.5 Information Theoretic Results
	
	

	5.6 Probabilistic Results
	5.7 Maximum Partial Substructure Results
	5.8 Handling Multiple Types
	5.9 Other Types of Normative Patterns
	5.10 Limitations
	5.11 Overlapping Instances
	5.12 Performance
	5.13 Summary

	EMPIRICAL EVALUATIONS OF REAL-WORLD SCENARIOS
	6.1 Cargo Shipments
	6.2 Intrusion Detection
	6.3 Other Data Sets
	6.4 Summary

	CHAPTER 7
	CONCLUSIONS AND FUTURE WORK
	7.1. Conclusions
	7.2. Future Work

