# Curie temperatures of annealed FePt nanoparticle systems

Chuan-Bing Rong, Yang Li, and J. Ping Liual Department of Physics, University of Texas at Arlington, Arlington, Texas 76019

(Presented on 8 January 2007; received 26 October 2006; accepted 21 November 2006; published online 28 March 2007)

The chemically synthesized Fe<sub>x</sub>Pt<sub>100-x</sub> nanoparticles with controlled compositions were annealed to transfer the disordered face-centered-cubic structure to the ordered structure. It was found that the  $L1_0$  FePt structure can be formed in the wide compositional region of x=40-68, and lower or higher Fe content leads to formation of the L12 FePt3 or Fe3Pt phase, respectively. The Néel temperature of  $L1_2$  FePt<sub>3</sub> phase and Curie temperatures  $(T_C)$  of  $L1_0$  FePt and  $L1_2$  Fe<sub>3</sub>Pt phases are all strongly composition dependent. The room-temperature saturation magnetization has an abnormal dependence on x which is caused by the low  $T_C$  of Fe<sub>3</sub>Pt phase with x=75-79. The big difference in  $T_C$  between the heating and cooling thermomagnetic curves of the Fe–Pt alloys with x=79-90can be attributed to the difference of  $\alpha \Leftrightarrow \gamma$  phase transition temperature during heating and cooling. On the other hand,  $T_C$  of the  $L1_0$  FePt nanoparticles was found to be strongly size dependent.

© 2007 American Institute of Physics. [DOI: 10.1063/1.2709739]

# I. INTRODUCTION

The interesting magnetic properties of the bulk Fe<sub>x</sub>Pt<sub>100-x</sub> materials have been studied in the whole compositional region. For x=25 antiferromagnetic order was found;  $^{1,2}$  around x=50 the alloy shows very large magnetic anisotropy owing to the formation of chemically ordered face-centered-tetragonal (fct) structure. Near x=75 large volume instability (Invar effect) is observed in the L1<sub>2</sub> Fe<sub>3</sub>Pt phase  $(\gamma_1)^{.5,6}$  The most recent interests in FePt nanostructured materials have been focused on the ferromagnetic  $L1_0$ FePt phase  $(\gamma_2)$  because of their potential applications in ultrahigh-density magnetic recording<sup>7,8</sup> and advanced permanent magnets<sup>9,10</sup> due to its very high uniaxial magnetocrystalline anisotropy and high Curie temperatures. Recently, it was reported that Curie temperature  $(T_c)$  of sputtered FePt films is composition dependent in the range of 47.5–54.4 at. % Fe.  $^{11-13}$  More interestingly, reduction of  $T_C$ with decreasing dimension of the materials has also been observed in  $L1_0$  FePt nanoparticles 14 and other ferromagnets. 15,16 In order to understand magnetic ordering of the nanostructured ferromagnetic phases in a wide compositional range, the annealed FePt nanocrystalline films deposited by nanoparticles have been studied with a composition range of 15–90 at. % Fe. The size dependence of  $T_C$  of  $L1_0$  FePt nanoparticles has also been studied.

# **II. EXPERIMENTS**

The disordered face-centered-cubic (fcc) Fe<sub>x</sub>Pt<sub>100-x</sub> nanoparticles were chemically synthesized by the standard airless chemical solution procedures.<sup>7,17</sup> The composition was controlled by adjusting the molar ratio of iron pentacarbonyl Fe(CO)<sub>5</sub> to platinum acetylacetonate Pt(acac)<sub>2</sub>. The synthesized nanoparticles were then deposited on a Si substrate and annealed under forming gas (Ar+7%H<sub>2</sub>) at 973 K for 1 h to transfer the disordered fcc structure to the ordered  $L1_0$  or  $L1_2$  structure. The composition of the synthesized FePt nanoparticles was checked by energy dispersive x-ray (EDX) analysis. The crystalline structure was determined by x-ray diffraction (XRD). The room-temperature magnetic properties were studied by a superconducting quantum interference device (SQUID) magnetometer with a maximum applied field of 7 T. Thermomagnetic curves were measured by a physical property measurement system (PPMS) with hightemperature vibrating sample magnetometer.

### **III. RESULTS AND DISCUSSIONS**

Figure 1 gives the composition dependence of the 4 nm synthesized Fe<sub>x</sub>Pt<sub>100-x</sub> nanoparticles on the molar ratio of  $Fe(CO)_5$  to  $Pt(acac)_2$ . The error bar is based on the statistical standard deviation of the EDX analysis. It shows that the composition x=15-90 can be obtained by adjusting the molar ratio of precursors. This result is similar to that of Ref.

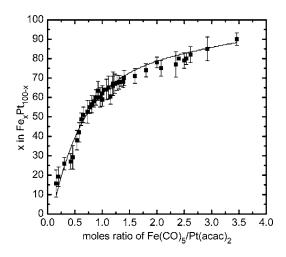



FIG. 1. The dependence of x on the molar ratio of  $Fe(CO)_5$  to  $Pt(acac)_2$ .

a)Electronic mail: pliu@uta.edu

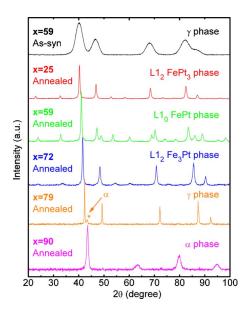



FIG. 2. (Color online) XRD patterns of the as-synthesized nanoparticles with x=59 and the annealed films with different compositions, i.e., x=25, 59, 72, 79, and 90.

XRD patterns of  $Fe_xPt_{100-x}$  films were recorded after being annealed at 973 K in forming gas for 1 h. Figure 2 shows the XRD patterns of the annealed films with five different compositions x=25, 59, 72, 79, and 90. A typical XRD pattern for the as-synthesized nanoparticles is also shown in the figure for comparison. It should be noted that XRD spectra of all the as-synthesized samples showed a disordered  $\gamma$ phase in the whole compositional region. When the assembled films were annealed at 973 K, on the other hand, Fe<sub>25</sub>Pt<sub>75</sub> exhibits a Cu<sub>3</sub>Au-type  $\gamma_3$ -FePt<sub>3</sub> phase with L1<sub>2</sub> structure. It was found that for the annealed Fe<sub>59</sub>Pt<sub>41</sub> film the superlattice reflections (001) and (110) appear in the XRD spectra, indicating the formation of an ordered  $L1_0$   $\gamma_2$ -FePt phase. For Fe<sub>72</sub>Pt<sub>28</sub>, the annealing resulted in the formation of  $L1_2$   $\gamma_1$ -Fe<sub>3</sub>Pt phase. With increasing Fe content to x=79, XRD pattern revealed that the main phase was  $\gamma$ -FePt phase with fcc structure, while a small amount of  $\alpha$ -(Fe, Pt) was also found. Further increase of Fe content led to a decrease of  $\gamma$ -FePt phase content and an increase of  $\alpha$ -FePt phase content. When x=90, the annealed films consisted of only  $\alpha$ -FePt phase, as shown in Fig. 1. In general, the peak broadening of the annealed Fe<sub>x</sub>Pt<sub>100-x</sub> films became less pronounced compared to the as-synthesized nanoparticles since the grains became coarse upon annealing. The average grain size was 4 nm for the as-synthesized nanoparticles, while it was around 10-20 nm after annealing on Si substrates, determined by the analysis of XRD patterns using Scherrer

Figure 3 shows the dependence of Néel temperature  $T_N$  or Curie temperature  $T_C$  on composition of the annealed nanoparticles. The magnetic phase transition temperatures were determined by the intersection of extrapolations of the greatest slope and flat region in the M-T curves. It was reported that FePt<sub>3</sub> is antiferromagnetic in the chemically ordered state. The XRD patterns show that the ordered phase FePt<sub>3</sub> with Cu<sub>3</sub>Au cubic  $L1_2$  structure can be obtained when  $x \le 40$ , which is similar to the condition shown in the phase

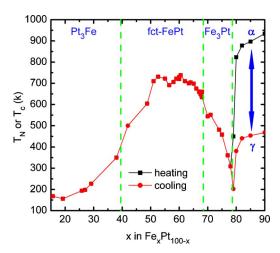



FIG. 3. (Color online) The dependence of  $T_N$  or  $T_C$  on x of the annealed nanoparticles.

diagram. 18 It was found that  $T_N$  of the FePt<sub>3</sub> phase increased with increasing Fe content. An ordered fct FePt ferromagnetic phase with  $L1_0$  structure formed within the compositional region x=40-69.  $T_C$  of the fct phase increased fast when  $x \le 50$  and reached the maximum about 730 K when x=51-64 and then dropped with increasing x. For  $69 \le x$  $\leq$  78, Fe<sub>3</sub>Pt phase with  $L1_2$  structure was formed after annealing. It can be seen that  $T_C$  decreased dramatically from 550 K with x=70 to 310 K with x=79. More interestingly, it was found that there is a big difference between the heating and cooling thermomagnetic curves of the Fe-Pt alloys with Fe content of 80-90 at. %. Figure 4 shows the typically heating and cooling M-T curves of the Fe<sub>80</sub>Pt<sub>20</sub> sample. This phenomenon can be attributed to the difference of  $\alpha \Leftrightarrow \gamma$ phase transition temperature during heating and cooling. One can see from the Fe–Pt phase diagram <sup>18</sup> that the phase transitional temperature from  $\alpha$  to  $\gamma$  phase on heating is far higher than that of  $\gamma$  to  $\alpha$  on cooling.

Figure 5 gives the dependence of saturation magnetization  $M_s$  and coercivity  $H_c$  on the composition of annealed nanoparticles.  $M_s$  at room temperature, which was measured under 7 T, increases monotonously almost in the whole compositional region except in the region  $75 < x \le 79$  where  $M_s$  of the Fe<sub>3</sub>Pt phase drops. This is caused by the low Curie

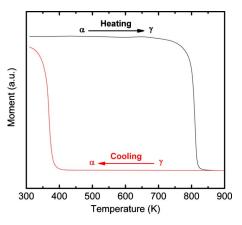



FIG. 4. (Color online) The typically heating and cooling M-T curves of the  $Fe_{80}Pt_{20}$  sample.



FIG. 5. (Color online) The dependence of  $M_s$  and  $H_c$  on x of annealed nanoparticles.

temperature (near or lower than room temperature) of Fe<sub>3</sub>Pt phase in this special compositional region since there is no dip in the  $M_s$ -x curve at 100 K, as shown in Fig. 5.  $H_c$  is also very sensitive to composition. Nonzero coercivity can be obtained only in the region x=42–68 where  $L1_0$  phase was formed. The maximum  $H_c$  is 18 kOe at x=55. With both high  $M_s$  and  $H_c$ , the maximum energy product  $(BH)_{\rm max}$  about 17 MG Oe can be obtained at x=66 where  $H_c$ =7.6 kOe.

Beside the composition dependence, it was also found that  $T_C$  decreases fast with decreasing dimensions of the materials. Our recently developed salt-matrix annealing method<sup>20</sup> allows us to tune the size of the monodisperse  $L1_0$  FePt particles and to obtain a direct correlation between particle size and Curie temperature. Figure 6 shows M-T curves of the 3 and 15 nm  $L1_0$  FePt nanoparticles which are obtained by the salt-matrix. It shows that  $T_C$  of the 3 nm particles is substantially lower than that of 15 nm particles. A systematic study of the size dependence of  $T_C$  has been reported elsewhere. The size dependent behavior, as discussed in Refs. 14–16, can be explained by the finite-size-scaling theory.  $^{21,22}$ 

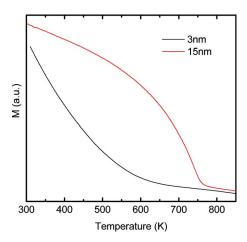



FIG. 6. (Color online) M-T curves of the 3 and 15 nm  $L1_0$  nanoparticles which are obtained by the salt-matrix method.

#### IV. CONCLUSION

The FePt nanoparticles with controlled composition have been prepared by chemical synthesis. The ordered phases with different structures were obtained by annealing the particles at 973 K for 1 h. It is found that the  $L1_0$  FePt structure can be formed in a wide compositional region of x=40-68, while the FePt<sub>3</sub> or Fe<sub>3</sub>Pt with L1<sub>2</sub> structure are formed with lower or higher Fe contents. The Curie temperatures of the  $L1_0$  FePt phase are strongly composition dependent and are higher than that of Fe<sub>3</sub>Pt phase. The abnormal dependence of  $M_s$  at room temperature on x is caused by the low  $T_C$  of Fe<sub>3</sub>Pt phase with x=75-79. It was also found that there is a big difference in  $T_C$  when measured through the heating and cooling thermomagnetic curves of the Fe-Pt alloys with x =78-90. This phenomenon can be attributed to the difference of  $\alpha \Leftrightarrow \gamma$  phase transition temperature during heating and cooling. On the other hand,  $T_C$  of the  $L1_0$  FePt nanoparticles is strongly size dependent.

#### **ACKNOWLEDGMENTS**

This work was supported by US DoD/MURI Grant No. N00014-05-1-0497 and DARPA through ARO under Grant No. DAAD 19-03-1-0038.

G. E. Bacon and J. Crangle, Proc. R. Soc. London, Ser. A 272, 387 (1963).
Maat, O. Hellwig, G. Zeltzer, E. E. Fullerton, G. J. Mankey, M. L.

<sup>2</sup>S. Maat, O. Hellwig, G. Zeltzer, E. E. Fullerton, G. J. Mankey, M. I. Crow, and J. L. Robertson, Phys. Rev. B **63**, 134426 (2001).

Kanazawa, G. Lauhoff, and T. Suzuki, J. Appl. Phys. 87, 6143 (2000).
Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, Y. Shimada, and K. Fukamichi, Phys. Rev. B 66, 024413 (2002).

<sup>5</sup>R. Hayn and V. Drchal, Phys. Rev. B **58**, 4341 (1998).

<sup>6</sup>M. Matsushita, Y. Miyoshi, S. Endo, and F. Ono, Phys. Rev. B 72, 214404 (2005).

<sup>7</sup>S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science **287**, 1989 (2000).

<sup>8</sup>C. Ross, Annu. Rev. Mater. Res. **31**, 203 (2001).

<sup>9</sup>H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. H. Sun, Nature (London) **420**, 395 (2002).

<sup>10</sup>C. B. Rong, H. W. Zhang, X. B. Du, J. Zhang, S. Y. Zhang, and B. G. Shen, J. Appl. Phys. **96**, 3921 (2004).

<sup>11</sup>K. Barmak, J. Kim, S. Shell, E. B. Svedberg, and J. K. Howard, Appl. Phys. Lett. **80**, 4268 (2002).

<sup>12</sup>K. Barmak, J. Kim, D. C. Berry, K. Wierman, E. Svedberg, and J. K. Howard, J. Appl. Phys. **95**, 7486 (2004).

<sup>13</sup>K. Barmak, J. Kim, D. C. Berry, W. N. Hanani, K. Wierman, E. B. Svedberg, and J. K. Howard, J. Appl. Phys. **97**, 024902 (2005).

<sup>14</sup>C. B. Rong, D. R. Li, V. Nandwana, N. Poudyal, Y. Ding, Z. L. Wang, H. Zeng, and J. P. Liu, Adv. Mater. (Weinheim, Ger.) 18, 2984 (2006).

<sup>15</sup>M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, and F. Gerhardter, Phys. Rev. B 47, 11571 (1993).

<sup>16</sup>J. P. Chen, C. M. Sorensen, K. J. Klabunde, and G. C. Hadjipanayis, Phys. Rev. B **54**, 9288 (1996).

<sup>17</sup>S. H. Sun, E. E. Fullerton, D. Weller, and C. B. Murray, IEEE Trans. Magn. 37, 1239 (2001).

Hausen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill,

New York, 1958).

<sup>19</sup>J. Martelly, Ann. Phys. (N. Y.) **9**, 318 (1938).

<sup>20</sup>K. Elkins, D. Li, N. Poudyal, V. Nandwana, Z. Q. Jin, K. H. Chen, and J. P. Liu, J. Phys. D 38, 2306 (2005).

<sup>21</sup>K. Binder, Physica (Amsterdam) **62**, 508 (1972).

<sup>22</sup>S. N. Kaul, J. Magn. Magn. Mater. **53**, 5 (1985).