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ABSTRACT

STATISTICAL MODELING APPROACH TO AIRLINE REVENUE

MANAGEMENT WITH OVERBOOKING

Publication No.

SHEELA SIDDAPPA, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: Victoria C. P. Chen, Jay M. Rosenberger

Revenue Management (RM) in the airline industry plays a very important role in

maximizing revenue under various uncertainty issues, like customer demand, the number

of seats to be maintained in inventory, the number of seats to be overbooked, etc. In

this dissertation, a Markov decision process (MDP) based approach using statistical

modeling is presented. Prior versions of this statistical modeling approach have employed

remaining seat capacity ranges from zero to the capacity of the aircraft. In reality,

actual remaining capacities are near capacity when the booking process begins and near

zero when the flights depart. Thus, our modified version uses realistic ranges to enable

a more accurate statistical model, leading to a better RM policy. We also consider

overbooking, no-shows and cancellations and estimate the optimal number of seats to

be overbooked using a hybrid approach that combines Newton’s and steepest ascent

method. The extended statistical modeling approach in this dissertation consists of

three modules: (1) the revised statistical modeling module, (2) the overbooking module,

and (3) the availability processor module. The first two modules are conducted off-line to
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identify optimal overbooking pads and derive a policy for accepting/rejecting customer

booking requests. The last module occurs on-line to conduct the actual decisions as

the booking requests arrive. To enable a computationally-tractable solution method,

the revised statistical modeling module, under an assumed maximum overbooking pad of

20%, consists of three components: (1) simulation of the deterministic bid price approach

to identify the realistic ranges of remaining seat capacity at different points in time; (2)

solutions to deterministic and stochastic linear programming problems that provide upper

and lower bounds, respectively, on the MDP value function; and (3) estimation of the

upper and lower bound value functions using statistical modeling. Next, the overbooking

module identifies the optimal number of seats to be overbooked. Finally, the value

function approximations are used with the optimal overbooking pads to determine the

RM accept/reject policy.
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CHAPTER 1

INTRODUCTION

1.1 RM Background and Issues

Before deregulation in 1979, airlines had been regulated by the CAB (Civil Aero-

nautics Board) since 1938 [1]. The CAB decided on the routes to be taken and the fares

to be charged to the customers. The costs were passed on to the passengers with guar-

anteed profit levels. Carriers simply accepted the passengers on a first come, first serve

basis. There were limited booking classes, and there was little control over revenues,

other than to sell more seats. After deregulation in 1979, there was tremendous growth

in the number of certified airlines, and high pressure on pricing. Airline industries began

to explore ways to compete effectively, and different approaches in revenue management

(RM) evolved. Since then airlines have expanded their efforts in RM to increase their

revenue. Revenue Management, also known as Yield Management, is defined as, “Selling

the right seat at the right time to the right passenger for the right price” [2]. RM is being

applied in various transportation sectors such as auto rental, ferries, rail, tour operators,

cargo, and cruises. Other areas, like hotels/resorts, extended stay hotels, healthcare,

manufacturing apparel, and companies that produce perishable goods etc., also use RM

[3].

Since deregulation airlines have developed a complex and diverse fare structure.

They offer variety of fares to meet different classes of customers. Airlines use restrictions,

such as the purchase tickets 21 days in advance, to establish different class of services.

Seats in the same fare class are sold at different fares to different customers over time.

There is competition among the airlines to expand and explore RM faster and better than

1
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the others, so as to improve their revenue. American Airlines, for example, reported an

increase in revenue of 5% due to improved RM methods in 1992, which translated to $1.4

billion over a 3-year period [4].

1.2 Modeling the Booking Process in Airline Industry

In an airline reservation system, customers request a particular itinerary. If a flight

travels directly from the origin to the destination without stopping, it is called a leg. An

itinerary consists of one or more legs. Information on all available itineraries will be

provided to the customer. The booking process starts three months prior to the date of

departure. In RM models, the customer makes a booking request by bidding a price for

the itinerary/leg desired, and once the request is placed, an airline representative uses a

computer reservation system (CRS) to decide if the request is to be accepted or rejected.

In an airline’s RM policy, the customer’s price is compared with the threshold or bid

price of the airline, and if the threshold value is less than the customer’s bid, then the

request is accepted; otherwise the request is rejected. Demand is observed to increase

gradually then rapidly and finally decrease as it gets closer to the date of departure.

It is very difficult to match supply and demand in any transportation industry.

The critical decision is the number of seats to be reserved for each fare class. If too many

low fare seats are reserved, then airlines might lose the potential high fare passengers.

If too few low fare seats are reserved, then airlines will loose the large low fare demand.

Booking requests rejected for any fare class due to non-availability/filled seats is called

spill of demand.

Some passengers would like to cancel their ticket before the day of departure or at

the time of departure; this is called a cancellation. Certain passengers on the other hand,

buy the ticket, but do not show up on the day of departure; these are called no-shows.

Thus, due to cancellations and no-shows some seats fly empty on the day of departure,
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even if the number of seats sold equals the flight capacity. Airlines willing to utilize their

resources efficiently, sell more seats than the capacity of the flight. This excess booking,

above the capacity of the flight is called overbooking. Despite overbooking, if seats fly

empty, it is called spoilage.

1.3 Summary of some of the problems faced by RM

Demand forecasting is one of the major problems faced by RM. It is practically

impossible to predict exactly the demand for any given flight. Demand is very erratic.

Hence, it is very difficult to match supply and demand. Airlines must distinguish be-

tween time-sensitive and price-sensitive types of customers, know their requirements, and

develop different marketing strategies to accommodate all types of customers. Airlines

try to hold some inventory in order to capture high fare passengers at the last minute.

Unfortunately, if the demand for high fare passengers becomes less, some of the seats

fly empty, which is revenue lost to the company. It is less costly to have a discounted

passenger than to fly the seat empty. Thus, minimizing inventory spoilage is a major

concern of the airline industry.

Ticket cancellations and/or customer no-shows cause some of the seats to fly empty.

In order to efficiently utilize the capacity and increase revenue, airlines sell more seats

than the capacity of the flight. Ideally, the number of seats to be overbooked should be

such that, at the time of departure there are exactly as many passengers as the capacity

of the flight. A mismatch in the number would result in a loss of revenue.

1.4 Problem Definition

Revenue management in the airline industry deals with managing inventory for

each of the itinerary fare classes offered, so as to maximize revenue. Revenue manage-
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ment focuses more towards the inventory rather than the fare structure. Hence, we will

concentrate on the seat inventory control problem, also called the yield management

problem. Given the flight capacity and schedule, can we accept the request placed by

the customer at any time τ? This question is answered by people in different ways using

different approaches. A literature review in Chapter 2 gives a brief explanation of some

approaches. The approach in this dissertation seeks to achieve a better RM policy by

using statistical methods to approximate the value functions of a Markov decision process

(MDP) and optimize overbooking.

1.5 Seat inventory control

Seat inventory control is the process of determining the right mix of seats to make

available at different fares on a flight leg in order to maximize revenue [5]. By offering

too many discounted fare seats, airlines can attract and capture most of the demand, and

increase revenue. This might not be the maximum revenue, because offering too many

low fare seats will displace most of the high fare passengers. On the other hand, offering

fewer low fare seats misplaces most of the demand. This causes some of the seats to fly

empty, which is revenue lost forever. Hence, the number of seats reserved for each of

the fare classes makes a large difference in the revenue the airlines can generate. The

challenge behind seat inventory control is how and when to make a trade off between

cost of an empty seat, loss of the discount fare, and cost of turning away the full fare

passenger [5].

The concept of differential pricing, charging different customers different prices for

the same seat/product, helps control the seat inventory problem considerably. Customers

are discriminated based on the fares they are willing to pay. Passengers willing to pay

the lowest fare must be able to plan well ahead of time (e.g., 21 days prior to departure),

should be ready to travel any day of the week and any time of the day. No refund will be
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given on the cancellation of the ticket. Full fare passengers, on the other hand can make

last minute travel decisions. They are promised a refund on cancellation, etc. Thus, the

quality of service changes with the amount the passenger is willing to pay. Example:

Given an assumed demand, if the revenue generated for a single fare class and multiple

fare class are $ x and $ y, respectively, then it is shown that y is always greater than x.

Williamson [5] gives a detailed explanation of this concept.

In air transportation, it is very difficult to match supply and demand, which is

the root cause for the seat inventory control problem. Due to various constraints, such

as limited flights with fixed flight capacity, fixed routes, weather conditions, etc., it

is difficult to schedule the right flight for every departure. Demand fluctuations can

be handled by offering discounted fares when demand is lower, and higher fares when

demand is higher.

The seat inventory control problem can be approached using (1) an individual

flight leg, (2) an entire network of a carrier, or (3) separate subsets of the network. The

flight leg approach is simplest to implement. Example: Consider a two-leg flight, Dallas-

Houston-Galveston. If demand for the low fare class of Dallas-Houston is greater than

the high/low fare class of the Dallas-Houston-Galveston itinerary, then there should be

a trade off between the high/low fare passengers of the itinerary and the low fare high

demand local (Dallas-Houston) passengers. A carrier can operate more than 1000 flights

per day; thus, the flight leg approach becomes more complex to handle.

Belobaba [6] developed the Expected Marginal Seat Revenue (EMSR) model as a

decision framework for maximizing flight leg revenue that can be applied to multiple fare

class inventories. This method also provides an overview of the mathematical concepts,

models, and solution methods for the seat inventory control problem. Williamson [5]

addresses the seat inventory control problem using the network approach, taking into

account the interaction of flight legs and the flow of traffic across the network. Wollmer
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[7] developed an analytical approach to solve the multifare, single-leg nested case when

lower-fare passengers book first. The booking request for a particular fare level is accepted

if the number of empty seats is greater than their critical value (a decreasing function of

the fare price), and rejected otherwise. De Boer [8] proposed a derivative of the EMSR

booking limits calculation method that takes into account the effect of future capacity

changes, which can lead to significant revenue gains.

1.6 Contribution

In this dissertation the RM problem is solved using a statistical modeling approach.

The optimization procedures applied are similar to that of Günther [9]. This dissertation

extends Günther’s approach to identify a more realistic state space for the experimental

design, take into account the overbooking concept. Some reasonable assumptions are

made to estimate the number of seats oversold (identified only after the departure of the

flight) and the associated cost. This somewhat simplifies the complex task of estimating

the optimal number of seats to be booked in order to generate the maximum revenue.

A literature review and background on the different approaches employed to solve

the RM problem is discussed in Chapter 2. Chapter 3 gives a detailed description of the

statistical modeling approach used in this dissertation, followed by computational results

in Chapter 4 and future work in Chapter 5.



CHAPTER 2

RM METHODOLOGIES

2.1 RM Literature and Background

Littlewood [10] was the first to address the RM problem of computing booking

limits for a single leg with two fare classes. His rule: “Sell the discount seats as long

as the revenue from the low fare passengers is greater than or equal to the product of

marginal revenue from full fare and probability that full fare demand does not exceed

the remaining capacity.” Belobaba [6] extended this rule to multiple fare classes. He

introduced the term EMSR (Expected Marginal Seat Revenue). The EMSR method

produces optimal booking limits only for the two-fare class problem, and is easy to

implement.

Glover et al. [11] formulated the network RM problem. Two sets of arcs (forward

arcs to model seat capacity and backward arcs to model deterministic passenger demand)

were used in the network. Wollmer [7] came up with a binary decision problem with net-

work structure to model uncertain demand. Belobaba [6] in his survey paper stated,“The

practices indicate that seat inventory control is dependent on human judgment rather

than systematic analysis.” Dror and Ladany [12] presented a network that accounted for

cancellations and no-shows.

Belobaba [13] describes the implementation of a computerized system for making

the tradeoff between booking requests and setting booking limits at Western Airlines.

The EMSR model he developed for this application takes into account the uncertainty

associated with the estimates of future demand and the nested structure of booking

limits in the airline reservation system. Curry [14] developed a method to determine

7
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optimal booking limits for nested controls using fare nets. Wollmer [7] presented a model

that addresses when to reject a booking request, so as to save the seat for a potential

request at higher fare level. He developed an algorithm that maximizes mean revenue by

establishing a critical value for each of the fare classes. Brumelle and McGill [15] showed

that a fixed booking policy that maximizes revenue can be characterized by a simple set

of conditions appropriate for either discrete or continuous demand distributions.

Robinson [16] studied when to reject the low fare passenger by relating the proba-

bility of filling the plane under the optimal policy to the ratio of the current to highest

remaining fare classes. He demonstrated that Monte Carlo integration is easy to apply

for this and can get approximately close to the optimal policy. Chatwin [17] determined

that airlines should accept a reservation request if the current number of reservations is

less than the booking limit, and decline the request otherwise. When the fare is constant

over time or decreases towards flight-time, the optimal booking limit decreases towards

flight-time. Olinick and Rosenberger [18] presented an RM model to optimize revenue

under uncertainty using a super-gradient algorithm.

2.1.1 Dynamic programming

Hersh and Ladany [19], and Ladany and Bedi [20] developed dynamic program-

ming formulations to allocate seats for a two-segment flight. Probabilities of booking

requests were based on historical booking data and were assumed constant. They discuss

overbooking and cancellations for flights with one intermediate stop. Ladany and Bedi

[20] simplified the approach by removing all conditioning on current bookings. Rothstein

[21] formulated the RM problem as a non-homogeneous Markovian sequential decision

process considering overbooking. Bertsimas and de Boer [22] calculated booking limits

that take into account the stochastic and dynamic nature of the demand and nested char-

acter of booking-limit control in a network. Their methodology combines a stochastic



9

gradient algorithm and approximates dynamic programming ideas to improve the initial

booking limits.

Lee and Hersh [23] developed a discrete-time dynamic model to find an optimal

booking policy. They did not make any assumptions about the arrival pattern of the

various booking classes. Their analysis showed that for problems with more than two

booking classes and no multiple seat booking, the optimal booking policy can be reduced

to two sets of critical values: (1) booking capacity and (2) decision periods. Lautenbacher

and Stidham [24] solved the single-leg problem without overbooking using a discrete-time

Markov decision process. Subramanian et al. [25] have taken overbooking, cancellations

and no-shows into consideration while solving for the seat allocation problem using the

Markov decision process for a single flight leg with multiple fare classes. They showed

that: (1) booking limits need not be monotonic in the time remaining until departure,

(2) it would be optimal to accept a low-fare class and reject a high = fare class because

of differing cancellation refunds, and (3) the optimal policy depends both on the total

capacity and remaining capacity of the flight. Zhang and Cooper [26] formulated a

simultaneous seat-inventory control problem of a set of parallel flights between a common

origin and destination with dynamic customer choice among the flights as an extension of

the classic multiperiod, single-flight “block demand” revenue management model. They

proposed a simulation-based technique for solving the stochastic optimization problem.

2.1.2 Bid pricing

Bid pricing is being practiced by most of the airlines. In the bid price approach a

threshold or bid price is assigned to each flight leg and if a customer’s booking request is

greater than the sum of the bid prices along the desired itinerary, the request is accepted;

otherwise, it is rejected. See Figure 2.1. Consider the following two examples. Example

1: For demand class f and leg i, suppose the customer bids $200 while the threshold
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value is $175. Since $200 is greater than $175, the request is accepted. Example 2:

Suppose a customer bids $1220 for the itinerary he wishes to travel. Table 2.1 gives the

threshold values set by the airlines for each of the legs on the itinerary. Since the total

price bid by the customer ($1220) is greater than the sum of the bid prices for the legs

$1109, the request is accepted.

Table 2.1. Example: Threshold Bid Price values set by the airlines.

Flight Leg Airline Bid Price ($)
2 125
4 300
23 124
45 560

Total 1109

Bid pricing is easy to implement and requires storage of only a single bid price

for each flight leg. It gives a nested itinerary and fare class specific control policy. It is

easy to manage the inventory. Despite all these advantages it has the disadvantage that

it is difficult to estimate/determine good bid prices. Frequent revision is required with

re-optimization and re-forecasting. Some of the methods used to estimate bid prices are

discussed below.

2.1.2.1 Deterministic Bid Price Approach

Define the following notation:

• T = the total number of reading dates, indexed by t, where t = T represents the

first reading date.

• r = the vector of fares associated with each demand class.

• u = a seat allocation decision vector for all demand classes.
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• xt = a vector of remaining seat capacities at reading date t.

• dt = a random vector of remaining demand at reading date t.

• A = a 0-1 itinerary-leg matrix, with one if that itinerary includes the leg.

Given the number and position of reading dates, the flight schedule and capacities, a

deterministic linear programming problem (DET) is solved at the reading date t. Gallego

and van Ryzin [27] used a network model to compute bid prices. It is modeled as below.

(DET) max ru (2.1)

s.t. Au ≤ xt (2.2)

0 ≤u ≤ E[dt]. (2.3)

The dual solution of (DET) will provide bid prices for each flight leg. Every time

a request is accepted, remaining seat capacity is updated, and at reading dates t < T

updated remaining capacity and expected demand values are used to solve (DET) to

generate new bid prices. Results show that revenue increases by increasing the number

of the reading dates. The higher the number of reading dates, the higher the accuracy

of the bid prices and, hence, the more the revenue.

2.1.2.2 Stochastic Bid Price Approach

In addition to the notation above, define the following:

• uft = a seat allocation decision vector for demand class f at reading date t, where

ut is the corresponding vector for all demand classes.

• dft = a random variable of the demand for demand class f on reading date t.

A stochastic model, also called the probabilistic nonlinear programming model (PNLP)

is intended to provide a better representation of the random variable for demand. This
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Figure 2.1. Flow Chart representing general bid price approach.

model is also referred to as the stochastic network model (STOCH) and provides lower

bound on revenue [9]. The model is as given below.

(STOCH) max
t∑

τ=1

m∑
f=1

rfE[min(dfτ , ufτ )] (2.4)

s.t. A

(
t∑

τ=1

uτ

)
≤ xt (2.5)

uft ≥ 0. (2.6)
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Again, the dual will provide bid prices for each flight leg. Van Ryzin et al. [28] demon-

strate that the dual solution of the (DET) model gives better bid prices than the dual

solution of the (STOCH) model. Talluri and van Ryzin [29] have analyzed the random-

ized version of deterministic linear programming to compute network bid prices. Their

method is more difficult to implement than the (DET) method. It consists of simulating

the itinerary demand with a sequence of realizations, and solving (DET) to allocate ca-

pacities to itineraries for each realization. The dual prices from the sequence are averaged

to form a bid price approximation.

Higle and Sen [19] presented a two-stage stochastic programming model to overcome

the shortcomings of the (DET) and (STOCH) models. The first stage allocates capacity

to all the fare classes, and the second stage models capacity utilization. Their simulation

results show that this provides better revenue improvements than a linear programming

approach. They also prove that their approach is prone to less error than those resulting

from the linear programming method.

2.1.3 Discrete Choice Models

Research work in the field of discrete choice models for RM is of considerable in-

terest these days. The network capacity control problem is treated as a setting where

customers choose from the different alternatives (very frequent flights with the same ori-

gin and destination; flights to the destination can be direct, or have one or two stops;

different fare classes with different fares, etc.) provided by the airlines. Customers make

their choices among the various alternatives provided and rank them in their order of

importance. Example: Order list for customer type 1: low price, time of departure, and

destination airport. Order list for customer type 2: time of departure, and itinerary.

Van Ryzin and Vulcano [30] formulated a continuous demand and capacity approxima-

tion which allows for the partial acceptance of requests. The model efficiently calculates
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the sample path gradient of the network revenue function. The gradient is then used

to construct a stochastic steepest ascent algorithm. They showed that the algorithm

converges to a stationary point of the expected revenue function under mild conditions.

Van Ryzin and Vulcano [31] analyzed a continuous model of the discrete choice problem

that retains most of the desirable features of the Bertsimas and de Boer [22] method but

avoids many of its pitfalls. Because their model is continuous, they are able to compute

gradients exactly using a simple and efficient recursion. Their gradient estimates are

often an order of magnitude faster to compute than first-difference estimates, which is an

important practical feature given that simulation-based optimization is computationally

intensive. Talluri and van Ryzin [32] analyzed the revenue management problem on a

single flight leg with buyer’s choice of fare classes modeled explicitly. They modeled the

“buy up” (buying a higher fare when lower fares are closed) and “buy down” (substitut-

ing a lower fare for a higher fare when discounts are open) behavior of the customers,

which specifies the probability of purchasing each fare product as a function of the set

of available fare products. The model includes nearly every choice model of practical

interest.

2.1.4 Hybrid Approaches to solve the RM problem

Curry [14] combined both the EMSR and mathematical programming approach.

The EMSR approach accounts for CRS nesting, but only controls seat inventory, by

controlling leg bookings. Mathematical programming handles realistically large problems

and accounts for multiple origin-destination (OD) itineraries and side constraints. Curry

developed equations to solve the RM problem, when fare classes are nested on an OD

itinerary, and inventory is not shared among the ODs.

Cooper and Melo [33] worked on policies that combine both mathematical pro-

gramming and MDP methods. Their idea was to employ a simple allocation policy when
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far from time of departure and develop a detailed decision rule close to departure. They

used sampling-based stochastic optimization methods to solve the formulation. The so-

lution was capable of using deterministic optimization techniques. They employed an

MDP solution for a portion of the booking process rather than approximations of MDP

value functions. Their results showed that the hybrid policies perform well for two-leg

problems, but their approach cannot be used for larger networks.

2.1.5 Statistical Modeling Approach to RM

The research in this dissertation is based on the statistical modeling approach

of Chen et al. [34]. They formulated the RM model as an MDP, similar to that of

Lautenbacher [35]. Traditionally MDP was solved using SDP and can provide a superior

RM policy, but SDP is computationally intensive. Hence, Chen et al. [34] developed a

new Statistical Modeling approach motivated by the OA (Orthogonal Array) and MARS

(Multivariate Adaptive Regression Splines) SDP method of Chen et al. [36], to estimate

upper and lower bounds of the MDP value functions.

2.2 Background on the Statistical Modeling Approach to RM

The following subsections give a detailed description of the statistical modeling

approach adapted by Günther [9]. An improvement in the statistical modeling approach

is considered in this dissertation.

2.2.1 Markov Decision Problem Formulation

The MDP formulation for the RM problem divides the booking period into tMDP

time intervals, with at most one booking request per interval. These intervals are indexed

in decreasing order, i = tMDP, . . . , 1, 0, where i = 1 denotes the first interval immediately

preceding departure, and i = 0 is at departure. The reading periods can have multiple
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booking requests while MDP intervals can have only one booking request. The state

vector xi contains the remaining leg capacities at the beginning of time interval i. Let

pf
i (g) denote the probability that a request for g seats, for itinerary-fare class f occurs

in time interval i; pi(0) denotes the probability of no booking requests in time interval i.

Consider state x at the beginning of time interval i. If a booking request for g

seats that arrives during time interval i is accepted, then a new state x′ is reached at the

beginning of time interval i− 1, where x′ subtracts g seats from the legs involved in the

requested itinerary. Fi(x) denotes the optimal value function, the maximum expected

revenue collected over time intervals i through departure when the system is at state x

at the beginning of time interval i. F0(x) = 0 for all x. Thus, the MDP for RM can be

written as:

Fi(x) =
m∑

f=1

Gf∑
g=1

pf
i (g)

 max{grf + Fi−1(x
′), Fi−1(x)}, if (x′ ≥ 0)

Fi−1(x), otherwise.

Günther [9] developed an MDP based OA/MARS approach to RM. In this ap-

proach, the RM problem is solved in two parts, off-line and on-line. The off-line part or

the statistical modeling module, derives the accept/reject policy while the on-line part or

availability processor, conducts the actual decisions. His model assumes:

1. The booking process starts ninety days before the day of departure.

2. Flight capacities and schedule are known.

3. There is no overbooking or cancellation.

2.2.2 Statistical Modeling Module

The steps involved in this module are given below.

1. The reading dates are chosen and remaining seat capacity is set equal to the flight

capacity for all the flight legs.
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2. A design of experiments (DoE) method, specifically an OA design, is constructed

to provide discretized coverage of the state space. The state space ranges from zero

to the plane capacities of the flight in the network.

3. For each of the discretization points, the (DET) model (refer equation 2.1 - 2.2) and

the (STOCH) model (refer equation 2.4 - 2.6) are solved. The bound obtained by

solving the (DET) model is proven to provide an upper bound, denoted by FU
t (x)

(see van Ryzin and Talluri [28]), while the bound obtained by solving the (STOCH)

model is proven to provide a lower bound, denoted by FL
t (x) (see Günther [9]). This

loop is repeated at all reading dates.

4. For each reading date, a MARS approximation is fit separately to estimate the

(DET) and (STOCH) revenues over the entire state space. Thus a total of 2T

different MARS approximations are generated.

Figure: 2.2 describes the procedure followed in the statistical modeling module using a

flow chart. The essential statistical models F̂U
t and F̂L

t are made available for the on-line

module.

2.2.3 Availability Processor Module

Let gfτ be a booking request of group size g for fare class f at time τ . Its fair

market value (FMV) is estimated using

Pessimistic = F̂L
τ (x)− F̂U

τ (x′), (2.7)

Optimistic = F̂U
τ (x)− F̂L

τ (x′), (2.8)

FMV =
Pessimistic + Optimistic

2
. (2.9)

A flow chart representation of the availability processor moduleis shown in Figure: 2.3.

The RM policy is defined as, “accept the booking request only if the requested fare is

greater than the FMV.”
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Figure 2.2. Flow chart representing statistical modeling method.

2.3 Statistical Background

In the statistical modeling approach, methods from design and analysis of com-

puter experiments (DACE) are used to approximate the MDP revenue value function.

In general, DACE is used to study an unknown function f(·), defined by a computer

experiment for a complex system (see Chen et al. [37], [38]). Specifically,

1. A DoE is used to select points within the input space of the computer experiment.

2. The computer experiment is executed at the design points and corresponding re-

sponses for f(·) are output.

3. A statistical model is fit over these data to obtain an estimate f̂(·)

The most basic DoE is a full factorial design, and the most basic statistical model is a

linear regression model. The statistical modeling approach of Günther [9] and Chen et
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Figure 2.3. Flow chart representing availability processor.

al. [34] uses an OA/ MARS method. In a full factorial design, every level of every factor

appears with every level of every other factor. Thus, it consists of the full grid.

In the following subsections, experimental designs and multivariate adaptive re-

gression splines are described. These two specific approaches were employed by Günther

[9] and are utilized in this dissertation. They are described below.

2.3.1 Orthogonal Array (OA)

A fractional factorial design is a carefully chosen fraction of the full factorial design.

An orthogonal array is a special form of fractional factorial design aimed at saving time

and money required by the experiment. An OA is represented by OA(N, n, q, d), where
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N = λqd is the number of runs, n is the number of predictor varaibles, q is the number

of levels (prime or a power of a prime), and d is the strength of the design (in practice

d ≤ 3 is sufficient). Thus, only a subset N=λqd of the complete grid of points qn over

the entire state space is chosen. An OA of strength d for n variables (d < n), each at q

levels, contains all possible factor level combinations in any subset of d factors, with the

same frequency λ. Therefore, when projected down onto any d dimensions, a complete

factorial grid of qd points replicated λ times is represented (see Chen [39]). Bose and

Bush [40] showed that for an OA(qd, n, q, d) of index unity, the number of constraints n

satisfies the inequality

n ≤ q + d− 1 , when q is even (2.10)

n ≤ q + d− 2 , when q is odd. (2.11)

As an example consider an OA with four runs, three predictor variables with two

levels each, and of strength two. It can be represented by OA(4,3,2,2). In the table

below, rows represent the runs, columns represent the variables, and the numbers 0 and

1 represent the two factor levels. It is said to be of strength two because, if we consider

any two columns, all possible factor level combinations can be observed, in the same or

different order. It can be seen that, the greater the desired strength, the harder it is to

construct the array; hence, usually strength two or three is used.

0 0 0

0 1 1

1 0 1

1 1 0

Some of the properties of OAs are:



21

1. Two columns of an array are orthogonal if all possible level combinations of the

two columns appear equally often in an array.

2. In the context of experimental designs, the columns of an OA correspond to different

variables whose effects are being analyzed. The entries in an array specify the levels

at which variables are to be applied.

3. Any OA of strength d is also an OA of strength d
′
, 0 ≤ d

′
< d. The index of the

array when considered as an array of strength d
′

is λqd−d
′
, where λ denotes the

index of the array when considered to have strength d.

4. Two OAs are said to be isomorphic if one can be obtained from the other by a

sequence of permutations of the columns, the rows, and the levels of each factor.

2.3.2 Multivariate Adaptive Regression Splines (MARS).

MARS was introduced by Friedman [41] as a statistical modeling method for esti-

mating a completely unknown relationship between a single response and several input

variables. MARS is essentially a linear combination of simple basis functions with a for-

ward stepwise algorithm to select basis function terms followed by a backward procedure

to prune the model. MARS is flexible and easy to implement, and the computational ef-

fort depends on the number of basis functions added to the model. The strategy adopted,

is to deliberately overfit the data with an excessively large model and then trim it back

with a backward stepwise strategy. This procedure is explained below.

The jth MARS basis function added to the model is a product of Lj truncated

linear functions:

Bj(x) =

Lj∏
l=1

[Sl,j.(xv(l,j) −Kl,j)]+ (2.12)
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where xv(l,j) is the predictor variable corresponding to the lth truncated linear function

in the jth basis function, Kl,j are knot locations at which the basis function bends, and

Sl,j is +1 or −1. The MARS model is of the form

ĝM(x) = a0 +
M∑

j=1

aj

Lj∏
l=1

[Sl,j.(xv(l,j) −Kl,j)]+ (2.13)

where a0 is the coefficient for the constant basis function, M is the number of linearly

independent basis functions, aj is the coefficient of jth basis function Bj(x), and xv(l,j) is

the predictor variable. To enable a continuous first and second derivative, Chen et al.

Figure 2.4. Continuous derivative MARS function.
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[36] replaced the truncated linear functions with quintic functions as shown in Figure: 2.4.

For sign S and K−, K, K+ knots

Q(x|S = 1, K−, K, K+) =


0, x ≤ K−

α+(x−K−)3 + β+(x−K−)4 + γ+(x−K−)5, K− < x < K+

x−K, x ≥ K+,

(2.14)

and

Q(x|S = −1, K−, K, K+) =


K − x, x ≤ K−

α−(x−K+)3 + β−(x−K−)4 + γ+(x−K−)5, K− < x < K+

0, x ≥ K+.

(2.15)

where,

α+ =
6K+ − 10K + 4K−

(K+ −K−)3
, (2.16)

β+ =
−8K+ + 15K − 7K−

(K+ −K−)4
, (2.17)

γ+ =
−3K+ − 6K + 3K−

(K+ −K−)5
, (2.18)

α− =
(−1)(6K− − 10K + 4K+)

(K− −K+)3
, (2.19)

β− =
(−1)(−8K− + 15K − 7K+)

(K− −K+)4
, (2.20)

γ− =
(−1)(3K+ − 6K + 3K−)

(K− −K+)5
. (2.21)

2.3.3 Derivative of MARS Function

The derivative of a function is defined as an instantaneous rate of change of the

function. For example the derivative of ω with respect to x is dω
dx

. A C program was
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written to find the gradient of the quintic MARS function. Consider a univariate quintic

MARS approximation represented as below.

ĝM(x) = a0 +
M∑

j=1

ajQj. (2.22)

The first derivative is given by

d(ĝM(x))/dx =
M∑

j=1

ajQ
′

j, (2.23)

where,

Q
′

j =


0, x ≤ K−

3α+(x−K−)2 + 4β+(x−K−)3 + 5γ+(x−K−)4, K− < x < K+

1, x ≥ K+,

(2.24)

or

Q
′

j =


−1, x ≤ K−

3α−(x−K+)2 + 4β−(x−K−)3 + 5γ+(x−K−)4, K− < x < K+

0, x ≥ K+.

(2.25)

for S = +1 or −1 respectively. For a two factor interaction,

ĝM(x) = a0 +
M∑

j=1

ajQj, (2.26)

d(ĝM(x))/dx =
M∑

j=1

ajQ
′

j, (2.27)

where, Q
′
j = Q

′
j1Qj2 + Qj1Q

′
j2.

Consider an example with two variables, three basis functions with the third basis

function as an interaction between the two variables.

ĝM(x) = a0 + a1[Q1] + a2[Q2] + a3[Q31Q32] (2.28)

d(ĝM(x))/dx = a1[Q
′

1] + a2[Q
′

2] + a3[Q
′

31Q32] + a3[Q31Q
′

32]. (2.29)
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Sign Var
-1 x1
1 x2
1 x1
-1 x2

Table 2.2. Example of a MARS approximation.

2.4 Overbooking

Selling more seats than the capacity of the flight, to compensate for potential

cancellations and no-shows, is called overbooking. If the actual number of seats sold is

within the capacity of the flight (overbooking − cancellations − no-shows < 0) the airline

will still incur a loss, but this loss would be comparatively less than the loss from not

having overbooked. On the other hand, if more passengers show up than the capacity of

the flight, the ticket holders are bumped (forbidden to fly) involuntarily. Compensation

must be provided for the bumped passengers. Figure: 2.5 shows the possible outcomes

of overbooking. If the airline is able to accommodate the bumped customer in its own

airline in the next flight, then the airline is said to have recaptured the customer. It is

observed that as the overbooking level increases, revenue also increases to a maximum,

and then slowly starts to decrease. However, this maximum revenue is very difficult to

attain in reality.

Define the following notation used in overbooking:

• x = Total capacity of the flight

• nc = Number of cancellations and no-shows

• y = Total number of seats overbooked, overbooking pad.

Chatwin [17] stated, “experience shows that nearly 15% of the seats fly empty if

overbooking is not considered.” Thus, in order to efficiently utilize the resources and

increase revenue, airlines wish to sell more seats than the capacity of the flight. Bodily
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Figure 2.5. Flow chart representing the possible results of overbooking.

and Pfeifer [3] considered the probability of customer cancellation, and determined that

it depends on (1) when the reservation was made and (2) unknown events that might

occur before departure. The drawback of this approach was that it did not consider the

dynamic nature inherent in the reservation process.

Kosten [42] developed a continuous time stochastic model. His model was proved

impractical by McGill [43] because it required solutions to many differential equations.

Rothstein [21] was the first to formulate airline overbooking as a dynamic programming

problem. This approach was computationally intractable due to the curse of dimension-
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ality. Chatwin [17] mentioned two ways to overcome the above problem of computation:

(1) approximate the states by aggregating them or (2) develop a theory of the structure

of optimal solution, so as to facilitate more efficient computation. The first approach

was followed by Alstrup et al. [44]. They developed a dynamic programming approach

to solve the overbooking problem for two fare classes. They assumed that customers re-

quested and cancelled reservations in groups of five, thereby reducing the size of the state

space by a factor of 25. Their dynamic yield management model is being implemented

worldwide. Chatwin implemented the second idea in his dissertation. He considered

overbooking models with (1) discrete time and discrete state spaces and (2) a continuous

time birth and death process.

Subramanian et al. [25] formulated the overbooking RM problem as a finite-horizon,

discrete-time Markov decision process (MDP). It was an extension to the model devel-

oped by Lee and Hersh [23]. Chatwin [45] solves the multiperiod overbooking problem

that relates to a single flight leg and service class. The conditions on fares, refunds, dis-

tributions of passenger demand for reservations and cancellations in each period, and the

bumping penalty function are given, to ensure that a booking-limit policy is optimal. In

other words, Chatwin states“in each period the airline accepts reservation requests up to a

booking limit if the number of initial reservations is less than that booking limit; it declines

reservation requests otherwise.” The model is applied to the discount allocation problem

in which lower fare classes book prior to higher fare classes. Rothstein [46] analyzes the

problems that motivate overbooking, discusses the practices of the airlines, and describes

significant contributions and implementations of operations research. Karaesmen and

van Ryzin [47] modeled the overbooking problem as a two-period optimization problem.

In the first period, given the probabilistic knowledge of cancellations, reservations are

accepted. In the second period, cancellations are realized and surviving customers are

assigned to the various inventory classes to minimize penalties.



CHAPTER 3

EXTENDED STATISTICAL MODELING APPROACH TO RM

This dissertation develops an extension to Günther’s MDP/OA-MARS statistical

modeling approach. The goals are to:

• Identify appropriate ranges for remaining seat capacities in the MDP, so as to

reduce the modeling domain and enable more accurate MARS approximations.

• Account for overbooking and determine an optimized overbooking level.

The off-line and on-line modules described in Sections 2.2.2 and 2.2.3 are modified as

follows: The off-line phase consists of two major modules:

1. A revised statistical modeling module that conducts a preprocessing simulation

to identify realistic ranges of the remaining seat capacity state variables and then

builds statistical models of the (DET) and (STOCH) revenue functions to estimate

bounds on the value function of the MDP.

2. An overbooking module that utilizes Newton’s and steepest ascent method to esti-

mate the total number of seats to be overbooked, i.e., the overbooking pad for each

flight leg.

The on-line phase consists of the availability processor module that uses the sta-

tistical models from the off-line phase in the RM policy to make the booking decisions.

Some of the assumptions made in this approach are:

1. The flight capacity and the schedule are fixed and known.

2. No charge is incurred by the customers for cancellation of a ticket.

3. There is no refund on cancellation of any type (demand class) of ticket.

28



29

3.1 Revised Statistical Modeling Module

This is a revised version of the original statistical modeling module in Section

2.2.2. Specifically, realistic ranges of the remaining capacity state variables are generated

instead of assuming the same ranges, from zero to capacity, throughout the booking

period. Intuitively, these ranges should be closer to the capacity at the beginning of the

booking period and move closer to zero toward departure.

3.1.1 Generation of Realistic State Space

In the statistical modeling module developed by Günther [9], the state space re-

mains the same for all the reading dates. Hence, the design points are spread out over

a wider region than required. In practice it is difficult to find a flight with zero seats

booked on the day of the departure and all the seats booked ninety days prior to the day

of departure. In order to be more realistic, the possible/realistic ranges for each reading

date are estimated. These are called trust regions.

The demand scenarios are generated based on real data. Flight capacity is initial-

ized to (1 + δ)×(actual flight capacity), where δ = 0.2, handles the overbooking aspect.

The (DET) optimization, as described in Section 2.1.2.1 is employed only at the reading

dates. The RM policy which states, “accept booking request only if the fare is greater

than the fair market value,” is used to make decisions on accepting/rejecting the request.

Upon accepting the request, the remaining seat capacity is updated to the remaining

capacity minus group size g for the requested legs. At each reading date, a (DET) model

is solved to obtain updated bid prices, and the process repeats until the flight departs.

Demand scenarios are simulated many times, and at the end of each reading date, re-

maining seat capacities are noted. Figure 3.1 shows the generation of the trust regions.

The decision to accept or reject a booking request (BR) is made based on the determin-

istic bid price approach. Remaining seat capacities obtained at each reading date over
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Figure 3.1. Flow chart representing the generation of the reduced/realistic state space.

the entire simulation are used to determine the maximum and minimum capacities at

those reading dates.
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3.1.2 Estimation of Number of Scenarios

A simulation for a rough sample size of N=30 is run. The resulting data is used

to estimate the standard deviation of remaining capacity, σ. The desired sample size is

then estimated using,

Sample size N ≥
(

2zα/2σ

E

)2

, (3.1)

where E is 5%×(Expected value of the sample ± confidence co-efficient ×standard error),

and zα/2 is the α/2 upper tail percentile of the standard normal distribution. A total of

125 simulation runs were conducted, which was well above the estimated sample size of

85.

3.1.3 Approximation of Value Functions

The remaining seat capacity is initialized to (1+δ)×(flight capacity), where δ=0.2.

An OA experimental design is employed to find the discretization points. At each reading

date, the range within which the discretization points should exist is set equal to their

corresponding realistic region. At each reading date, and for each design point, both

(DET) and (STOCH) models are solved (refer Figure:2.2.)

As in the method of Chen et al. [34], the (DET) model is used to provide an upper

bound on the MDP value function and the (STOCH) model is used to provide a lower

bound. Solving the deterministic model is a straightforward LP, but there are different

approaches for solving the stochastic model. The next section describes the approach

used in this dissertation. The software ILOG CPLEX 9.0 was used to solve the LP. The

MARS approximation is fit over all the (DET) and (STOCH) value functions at each

reading date as explained in Chapter 2. Thus, by the end of this stage, there will be a

total of 2T MARS approximations, which are fed to the on-line phase.
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3.1.4 Solving the Stochastic Network Optimization Model

In the (STOCH) model, consider E[min(dft, uft)] of the objective function. Olinick

and Rosenberger [18] showed that this function is concave. Following the approach of

Kelley’s cutting plane method [48], the objective function is expanded using a Taylor

series about a constant u0 ≥ 0:

E[min(dft, uft)] = E[min(dft, u0)] + (uft − u0)∇E[min(dft, u0)] + o(||uft − u0||2). (3.2)

From the definition of expected value we know that, for any discrete variable X, E[X] =∑
Xp(X). Let, g(dft) = min(dft, u0), where dft is a discrete random variable for the

demand for demand class f at reading date t. For simplicity, let dft = θ for the purpose

of derivation. Then we can write the expected value of g(θ) as:

E[g(θ)] = E[min(θ, u0)]

=
∑

θ

g(θ)p(θ)

=

u0∑
θ=0

min(θ, u0)p(θ) +
max∑

θ=u0+1

min(θ, u0)p(θ).

(3.3)

It can be observed from the Figure:3.2 that min(θ, u0) = θ, in the range of θ = 0 to u0

and min(θ, u0) = u0, beyond u0. Hence,

E[min(θ, u0)] =

u0∑
θ=0

θp(θ) +
∞∑

θ=u0

u0p(θ), (3.4)

where p(θ) is the probability of demand θ. Demand is assumed to follow a compound

Poisson process with arrival rate λ. Let HW be the cumulative distribution function
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Figure 3.2. Plot illustrating the minimum value in any given region.

for the Poisson distribution and hW be the probability mass function for the Poisson

distribution. Hence,

E[min(θ, u0)] =

u0∑
θ=0

θe−λλθ/θ! + u0

∞∑
θ=u0+1

e−λλθ/θ! (3.5)

= λ

u0∑
θ=1

e−λλθ−1/(θ − 1)! + u0

∞∑
θ=u0+1

e−λλθ/θ! (3.6)

= λ

u0−1∑
θ=0

e−λλθ/θ! + u0[1−
u0∑

θ=0

e−λλθ/θ!] (3.7)

= λHW (uo − 1) + u0[1−HW (uo)], (3.8)
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Using finite differences, ∇E[min(θ, u0)] is estimated by

∇E[min(θ, u0)] = [(u0 + 1)− (u0 + 1)HW (u0 + 1) + λHW (u0)]− [u0−

u0HW (u0) + λHW (u0 − 1)] (3.9)

= λhW (u0)− u0hW (u0 + 1)−HW (u0 + 1) + 1. (3.10)

Define ηft such that

ηft ≤ E[min(dft, uft)]. (3.11)

Substituting for all the above in the original stochastic formulation, the final stochastic

model obtained is as below.

max
t∑

τ=1

m∑
f=1

rfηfτ (3.12)

s.t A

(
t∑

τ=1

uτ

)
≤ xt (3.13)

ηfτ − ufτ [λhW (u0)− u0hW (u0 + 1)−HW (u0 + 1) + 1] ≤ λHW (u0 − 1)−

u0[λhW (u0)− u0hW (u0 + 1)−

HW (u0 + 1) + HW (u0)]

∀f = 1, 2, ...m, ∀τ = 0, 1, ...t,

∀u0 ∈ <+

(3.14)

uft ≥ ηft ≥ 0. ∀f = 1, 2, ...m,

∀τ = 0, 1, ...t

(3.15)

The set (3.14) has an infinite number of constraints, so it is computationally intractable

to solve this linear programming problem exactly as stated. However, this linear pro-

gramming problem can be approximated by replacing the infinite set <+ by a finite set
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in which u0 = 1, 2, . . . , u, where u is a practical upper bound on the values ufτ , for all

f = 1, . . . ,m and τ = 0, . . . , t. In our computational experiments in Chapter 4, u is set

to be 50.

3.2 Overbooking Module

Consider the following notation in addition to those in Section 2.4.

• Y = a random variable for the actual number of seats overbooked or oversold,

realized on the day of departure.

• cpen = a random variable for the cost/penalty incurred due to Y .

• W = a random variable for the total number of passengers that show up on the

day of departure.

• xT = the remaining capacity at reading date T , equaling the flight capacity.

• xk = the sum of flight capacity and the overbooking pad, (x + y).

• c = a cost equaling three times the bid price.

Let O(y) be the overbooking cost function, where cost is assumed to increase, as y

increases. Let R(y) be the revenue function. As the number of seats booked are finite,

revenue always increases as y increases. Thus, the profit function is

Z(y) = R(y)−O(y). (3.16)

Figure 3.3 presents a conceptual diagram of the cost, revenue, and profit function, with

respect to y. The objective of this model is maxy≥0 Z(y). A simplified cost estimate

is used and assumes: (1) the number of passengers that show up are independent and

identically distributed, (2) the probability that any customer shows up is a constant, and

(3) the cost per seat oversold is three times the bid price of the leg/itinerary.
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Figure 3.3. Profit curve.

3.2.1 Newton’s Method

All gradient methods are used for either minimization or maximizing of a function.

All methods use an iterative formula that contains the gradient of the function to find

the minimum or maximum, hence, the name gradient methods. Newton’s method is said

to be the fastest of all the gradient methods [49]. In this dissertation it is employed to

find the maximum profit point on the profit curve, along with the steepest ascent method

(refer Figure: 3.4). Newton’s method is explained in Algorithm 1.

3.2.2 Steepest Ascent

In this and the following two subsections, steepest descent is explained, but the

same idea can also be used for maximization of a function. In this dissertation, attempts

are made to reach the maximum point of the profit function. Consider the problem of
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Figure 3.4. Flow chart representing the off-line module for estimating the optimal over-
booking pad.

unconstrained minimization of a continuously differentiable profit function Z : <n 7→ <.

The algorithms for this problem rely on an important idea, called iterative descent, that

works as follows: We start at some point x0 (an initial guess) and successively generate

vector x1, x2, ..., such that Z is decreased at each iteration, that is Z(xk+1) < Z(xk), k =

0, 1, ..., (see Figure 3.5). In doing so, we successively improve our current solution estimate

and Z decreases all the way to its minimum.
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Algorithm 1 Newton’s Method.

Initialize xk = xT , k = 0
Step 1: Find Zk, ∇xZk and ∇2

xxZk

Step 2:
if norm of ∇xZk = 0.0 then

Stop. Maximum profit is obtained at xk.
else

k = k + 1
Estimate xk = xk−1 −∇xZk−1(∇2

xx(Zk−1))
−1 and ∇xZk

if norm of ∇xZk = 0.0 then
Stop Maximum profit is obtained at xk.

else
Go to Step1

end if
end if

Figure 3.5. Iterative descent for minimizing a function Z, where c is the cost reduced at
every iteration.
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3.2.2.1 Selection of Descent Direction

The gradient methods are specified in the form

xk+1 = xk − γkDk∇Z(xk), (3.17)

where Dk is a positive definite symmetric matrix and γk is the stepsize. For the steepest

descent approach Dk = I, k = 0, 1, ..., where I is an n × n identity matrix. This is the

simplest choice, but it often leads to slow convergence.

3.2.2.2 Stepsize Selection

There are a number of rules for choosing the stepsize γk in a gradient method.

To avoid the often considerable computation associated with line minimization rules, it

is natural to consider rules based on successive stepsize reduction, such as the Armijo

Rule. In this rule an initial stepsize γ is chosen, and if the corresponding vector xk + γdk

does not yield an improved value of Z, the stepsize is reduced, perhaps repeatedly,

by a certain factor, until the value of Z is improved. The Armijo Rule is essentially

the successive reduction rule, suitably modified to eliminate the theoretical convergence

difficulty shown in Figure 3.6. The fixed scalars γ, β, and σ > 0, with β ∈ (0, 1), and

σ ∈ (0, 1) are chosen, and γk is set equal to βmk
γ, where mk is the first nonnegative

integer m for which Z(xk) − Z(xk+)βmk
γdk ≥ −σβmγ∇Z(xk)

′
dk. In other words, the

stepsize βmγ, m = 0, 1, ..., are tried successively until the above inequality is satisfied for

m = mk. Figure 3.7 illustrates the rule.

3.2.3 Hybrid Approach to Estimate the Optimal Overbooking Pad

On implementing Newton’s method to determine the maximum point, it was ob-

served that the MARS function is flat across most of the surface, and, consequently, the

determinant of the Hessian matrix of the profit function was often equal to zero. Hence,
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Figure 3.6. Failure of the successive stepsize reduction rule for a one-dimensional function.

steepest ascent was used in addition to Newton’s method to overcome the above disad-

vantage. Algorithm 2 gives the procedure adopted in estimating the optimal overbooking

pad (also, refer Figure 3.4.)

3.2.4 Derivation of Cost Function

The number of customers that show up, W , is assumed to be binomially distributed;

hence, from the definition of the binomial distribution, we have

P (W = w) =

xk

w

αw(1− α)xk−w. (3.18)
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Figure 3.7. Line search using the Armijo Rule.

From the definition of Y , we have

Y = [W − xT ]+

E[Y ] = E[W − xT ]+

= E[(W − xT )+|W > xT ]P [W > xT ] + E[(W − xT )+|W ≤ xT ]P [W ≤ xT ]

= E[(W − xT )+|W > xT ]P [W > xT ].

Thus, the cost function is

cpen = cE[Y ]

= c

xT +y∑
w=xT +1

(w − xT )P (W = w).
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Algorithm 2 Hybrid Newton’s and steepest ascent method.

Initialize xk = xT , k = 0, γ = 1.
Step 1: Find Zk, ∇xZk and ∇2

xxZk.
Step 2:
if norm of ∇xZk = 0.0 then

Stop. Maximum profit is obtained at xk.
else

Step 3: Find determinant (det) of ∇2
xxZk.

if det =0 then
Use steepest ascent method to find the next point.
xk = xk−1 − γ∇xZk−1;
γ = *0.95γ;
Go to Step 1.

else
Use Newton’s method.
xk = xk−1 −∇xZk−1(∇2

xx(Zk−1))
−1;

Go to Step 1.
end if

end if

In order to find the derivative of the cost function (required by Algorithm 2), the

derivative of the cost function needs to be continuous, as gradient methods need at least

first derivative information to find the direction of progress towards optimality. Since

the binomial is a discrete distribution, for gradient-based optimization, it needs to be

approximated by some continuous distribution. Given a continuous density function

hW (w), we would re-write the cost function as:

cpen = c

∫ xT +y

w=xT +1

hW (w)(w − xT )dw

= c

∫ xT +y

w=xT +1

whW (w)dw − xT

∫ xT +y

w=xT +1

hW (w)dw. (3.19)
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The normal approximation to the binomial is considered here. Thus, from the definition

of normal distribution, hW (w) = (1/σ
√

2Π)e(w−µ)2/2σ2
, and hence,

cpen = (c/σ
√

2Π)

∫ xT +y

w=xT +1

we(w−µ)2/2σ2

dw − xT

∫ xT +y

w=xT +1

hW (w)dw

(3.20)

To compute the integral, the function int gsl integration qags (const gsl function * cpen,

double xT + 1, double xT + y, double epsabs, double epsrel, size sz limit, gsl integration

workspace * workspace, double * res, double * abserr) from the GNU Scientific Library

(GSL) was used. This function applies the Gauss-Kronrod 21-point integration rule adap-

tively until an estimate of the integral of cpen over (xT + 1, xT + y) is achieved within

desired absolute and relative error limits, epsabs and epsrel. The results are extrapolated

using the epsilon-algorithm, which accelerates the convergence of the integral in the pres-

ence of discontinuities and integrable singularities. The final approximation is obtained

from the extrapolation, res, and an estimate of the absolute error, abserr. The subinter-

vals and their results are stored in the memory provided by workspace. The maximum

number of subintervals is given by the limit, which may not exceed the allocated size of

the workspace [50]. Differentiating cpen with respect to y,

dcpen

dy
= (cy/σ

√
2Π)e−(xT +y−µ)2/2σ2

d2cpen

dy2
= (c/σ

√
2Π)e−(xT +y−µ)2/2σ2

[y(µ− xT − y)/σ2 + 1]. (3.21)

We know that profit equals revenue minus cost. Hence, both the cost and revenue

functions need to have continuous derivatives. We saw that the cost function has a

continuous derivative. The revenue function is estimated using the MARS approximation

derived by setting the range of remaining capacity to a maximum of 1.2×(flight capacity)
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and a minimum of zero at reading date T . As explained in Section 2.3.2, MARS can be

smoothed to have continuous first and second derivatives; see Section 2.3.3.

3.3 Availability Processor Module

In this module, the RM policy discussed in Section 2.2.2 is employed to make the

accept/reject decisions. The optimal overbooking pad Y ∗ obtained from the off-line phase

is added to the actual capacity of the flight. This represents the total number of seats to

be sold. Figure: 2.3 shows a flow chart representing the availability processor module.

In order to estimate the value function at any time τ during the 90-day booking

period, interpolation is performed. Thus, F̂τ (x) is determined using the method of inter-

polation between F̂t1(x) and F̂t2(x). The formula used to estimate the FMV is the same

as equations (2.7) - (2.9). To estimate the cost due to overbooking Y ∗ seats, a show up

rate of α=0.8 was considered:

cpen = c
x+Y ∗∑

w=x+1

p(W = w) (3.22)

where,

p(W = w) =

xT + Y ∗

w

αw(1− α)xT +Y ∗−w. (3.23)

The expected profit generated by overbooking is given by the expected revenue generated

by booking (xT + Y ∗) seats minus the cost due to Y ∗.



CHAPTER 4

COMPUTATIONAL RESULTS FOR THE EXAMPLE PROBLEM

A real airline hub with 31 different legs was used to test this methodology. Fifteen

reading dates were selected and spaced as per the airline’s requirements. The number

of itineraries was 123, and the maximum demand was 50. Data on flight capacities and

demand distribution parameters were provided by the airline.

An OA experimental design, was used to generate 312 design/discretization points.

Flight capacities were increased to 1.2 times the original capacity to enable overbooking.

The demand scenarios were generated based on the data given. Using all this information

the revised statistical modeling module was executed, and the resulting RM policy was

employed in a simulated booking process using the availability processor module. The

results obtained from 2000 simulation runs for different methods and approaches are as

given in Tables 4.1 - 4.3. In all tables, “Load” is the nominal load factor, defined to

be the quotient of total requested capacity over available capacity. Airlines use nominal

load factors of up to 150 percent. “CV” is the coefficient of variation. The upper bound

column provides the maximum optimal revenue that can be generated and is obtained by

solving the (DET) model 90 days before the day of departure with maximum capacities.

The standard errors are given in parentheses and the percentage increase in expected

revenue with respect to the (DET) bid price approach is also given.

As a first study, in Table 4.1 a comparison is given using only the (DET) model.

The different approaches are (DET) bid pricing, the statistical modeling approach of

Günther [9] (DET STAT), and this dissertation’s approach using the revised statistical

modeling module (DET REV STAT). The FMV for the statistical modeling approaches

45



46

was estimated using F̂U
τ (x)−F̂U

τ (x′). The demand was assumed to follow a simple Possion

distribution. Hence, the coefficient of variation is not considered in this table. For all

methods, the RM policy is derived specifically for each load factor. It can be seen that

DET STAT is better than the DET and DET REV STAT is better than DET STAT.

Table 4.1. Average revenues from 2000 simulations of the 31-leg hub using three methods:
DET = Deterministic Bid Price, DET STAT = Statistical Modeling Approach using
only (DET) model, DET REV STAT = Revised Statistical Modeling Module using only
(DET) model. Standard errors are given in parentheses, and percent increase in average
revenue from DET is shown.

Load DET DET STAT DET REV STAT Upper Bound
75 666187.6(279.92) 666219.9 (254.6) 666472.5(288.8) 675090.94

0.004% 0.04%
120 932469.5(276.01) 934393(252.3) 951969.1(253.6) 1103413

(0.20%) (2.09%)
150 1045860(280.48) 1066304 (283.7) 1067141(254.5) 1275526

(1.95%) (2.03%)

The results in Table 4.2 are obtained by assuming that there is no overbooking.

The different approaches are (DET) bid pricing, (STOCH) bid pricing, the statistical

modeling approach of Günther [9] (STAT), and this dissertation’s approach using the

revised statistical modeling module (REV STAT). Load factors of 75%, 120%, and 150%

and various coefficient of variation values are tested. For all methods, an RM policy is

derived specifically for each load factor and then tested across the various coefficients

of variation. It is seen that STAT performs better than both DET and STOCH, and

REV STAT shows improvement over the original STAT. It is also observed that STOCH

performs better than DET in a few instances.

The results in Table 4.3 consider overbooking. A comparison is made between the

(DET) bid price approach and this dissertation’s statistical modeling approach using
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the revised statistical modeling module (REV STAT). For each leg, the capacity was

set equal to the sum of maximum flight capacity and the optimal overbooking pad.

For REV STAT, following the execution of the revised statistical modeling module, the

overbooking module estimates optimal overbooking pads for each flight leg. Then the

information from both of these modules is fed into the availability processor module to

conduct the booking process. In Table 4.4, optimal overbooking pads are shown for each

load factor. For both methods, an RM policy is derived specifically for each load factor

and then tested across the various coefficients of variation. Again, it is observed that

REV STAT performs better. Overall, it was seen that REV STAT performs better than

the other approaches at all instances and is promising even when the variances are high.
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Table 4.2. Average revenues from 2000 simulations of the 31-leg hub using four methods:
DET = Deterministic Bid Price, STOCH = Stochastic Bid Price, STAT = Statistical
Modeling Approach, REV STAT = Revised Statistical Modeling Module. Standard errors
are given in parentheses, and percent increase in average revenue from DET is shown.

Load (%) CV DET STOCH STAT REV STAT
75 0.4 790427.2 789450.1 790536.7 790975.7

(586) (533.6) (503.5) ( 486.5)
-0.12% 0.01% 0.07%

75 0.56 718729.4 720331.5 725763.9 728458.5
(680.4) ( 762.6) (623) ( 645.3)

0.22% 0.82% 1.35%
75 0.63 662294.1 662522.5 665756.5 668229.7

(769.2) (858.7) (845.4) (764.4)
0.03% 0.52% 0.89%

120 0.32 807252.8 801192.2 818754.6 820075
(586) (508) (455.2) (467.5)

-0.75% 2.7% 2.86%
120 0.45 779258.5 775292.9 808538.4 817417.1

(603.2) ( 548.4) ( 457.7) ( 428.4)
-0.51% 3.76% 4.90%

120 0.6 699243.0 709387.4 720865.3 739938.6
(702.6) (774.0) (736.8) (632.7)

1.45% 3.09% 5.82%
150 0.48 787231.3 784911.87 790875.8 799574.9

(591.1) ( 500.6) (524.6) (425.65)
-0.29% 0.46% 1.57%

150 0.56 766360.9 724377.4 789653.5 794364.7
(609.4) (770.1) (643.9) (700.6)

-6.90% 3.04% 3.65%
150 0.7 721903.3 607282.8 749655.7 753297.7

(679.0) (779.3) (756.9) (737.8)
-15.88% 3.84% 4.35%
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Table 4.3. Average revenue from 2000 simulations of the 31-leg hub using two methods
considering overbooking: DET = Deterministic Bid Price, REV STAT = Revised Statis-
tical Modeling Module. Standard errors are given in parentheses, and percent increase
in average revenue from DET is shown.

Load CV DET REV STAT
75 0.4 803494.4 804327.5

(674.3) (456.5)
0.10%

75 0.56 700592.2 730582.6
(716.9) (745.4)

1.39%
75 0.63 674676.6 679326.4

(795.8) (854.6)
0.69%

120 0.32 816504.3 836917.1
(590.7) (345.4)

2.5%
120 0.45 794350.7 829462.9

(612.2) (536.8)
4.42%

120 0.6 710616.4 753143.
(717.3) (747.5)

5.89%
150 0.48 809851 825714.5

(595.2) (625.7)
1.96%

150 0.56 786716.1 818648.7
(623.2) (725.5)

4.06%
150 0.7 738337.4 773779.5

(691.2) (764.2)
4.8%



50

Table 4.4. Optimal overbooking pad (OBP) for different load factors.

Flight Leg Capacity OBP for LF 75% OBP for LF 120% OBP LF 150%
1 113 6 8 9
2 152 6 7 7
3 164 2 3 5
4 208 9 11 12
5 151 1 4 5
6 107 6 8 9
7 152 2 4 5
8 154 1 2 4
9 153 4 6 7
10 179 0 2 4
11 155 7 8 8
12 166 0 0 2
13 168 0 1 2
14 167 6 8 8
15 150 1 2 2
16 156 6 9 10
17 221 10 13 13
18 159 0 3 5
19 168 13 13 14
20 166 11 16 22
21 160 11 12 12
22 201 0 1 5
23 155 0 0 3
24 188 12 14 14
25 157 1 2 5
26 156 15 18 20
27 165 5 8 12
28 150 4 8 10
29 155 1 2 5
30 149 17 19 24
31 193 15 19 20



CHAPTER 5

FUTURE WORK

The extended statistical modeling approach developed in this dissertation provides

a good methodology to estimate the FMV, used in the RM policy. Hence, higher revenue

is promised at all instances. Though this approach tries to be as close to reality as

possible and updates the bid prices after every transaction, which is an ideal case, it

makes certain assumptions. An improvement in this approach can be made by nullifying

some of the assumptions and being more realistic on others. Below are some of the

improvements that can be made in the overbooking module.

• The number of customers that show up was assumed to be binomially distributed,

which does not represent reality. Hence, a more realistic distribution can be con-

sidered for the customer show up pattern.

• A cancellation fee can be included in the revenue model.

• Some of the passengers, specifically the high fare passengers, should be given a

refund on cancellation of a ticket. Depending on when the cancellation was made

and the type of ticket the customer has, a certain percentage of the price should

be refunded.

• Attempts can be made to estimate a more accurate cost due to the bumping of

oversold customers.

• Cost due to the loss of good-will of oversold passengers can also be considered.

Bayesian methods may be used to identify this cost.

In the availability processor module, the following improvements can be considered.
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• The FMV is estimated as the average of the pessimistic and optimistic value. A

weighted average for the pessimistic and the optimistic may give better revenue.

• The number of reading dates can be varied, and the resulting expected revenues

can be compared. It is known that the higher the number of reading dates, the

more accurate the RM policy and the higher the revenue generated; however, the

optimal number of reading dates should balance accuracy and computational time.

The fact that most companies are interested in discrete choice models for RM, application

of a statistical approach to discrete choice models can be considered. The “buy-up” and

“buy-down” behavior discussed in Section 2.1.3 can be estimated using statistical models.
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