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ABSTRACT 

 
DETECTION AND SEVERITY CLASSIFICATION OF ROTOR IMBALANCE FAULTS IN 

INDUCTION MACHINES 

 

HIMANSHU JAIN, M.S. 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Wei-Jen Lee   

As world economy continues to globalize, increased competition has lead to a 

reduction in profit margins. To remain profitable in such a competitive environment, an industry 

needs to reduce the downtime of critical components even for maintenance purposes. However, 

this should not jeopardize the genuine maintenance needs of the equipments. In other words, 

an optimized maintenance strategy is needed in which, maintenance is performed only when a 

need for it arises; unlike the traditional periodic maintenance. Condition based Maintenance 

(CBM) is one such strategy.  

Induction machines are work horse of an industry. Their criticality to industry may be 

gauged by the fact that they account for more than 60% percent of the energy consumed in 

USA’s manufacturing sector. Hence, CBM for induction machines makes perfect economic 

sense. Although CBM is a three step process, first step i.e. fault diagnostics or identifying a fault 

and determining its severity, has been studied most widely for induction machines. It is for this 

reason that literature is abounds with techniques for detecting various fault conditions at an 

incipient stage in induction machines. Rotor imbalance is one such fault condition. Several 

researchers have studied rotor imbalance fault in induction machines. They have identified the 
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signatures to look for in the stator current to detect it.  However, an accurate explanation for 

appearance of these signatures is lacking. Moreover, in majority of the papers, only one phase 

of stator current has been used for detecting and classifying the severity of rotor imbalance. 

Since current sensors are available in all the three phases for protection and control purposes, 

combining fault information from all of them may yield more accurate results. 

 Therefore, this thesis focuses on providing an accurate explanation for the appearance 

of rotor imbalance signatures in stator current and developing a comprehensive rotor imbalance 

diagnostics scheme that incorporates sensor fusion. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Condition Based Maintenance 

For any industry, a key to competitiveness is the reduction in production costs, of which 

equipment maintenance costs form a significant fraction. Thus, any reduction in maintenance 

costs can translate into significant savings in the production costs leading to an increased profit 

margin. However, it goes without saying that this reduction in cost should not in any way 

compromise with the genuine maintenance needs of the equipment. Thus, what is needed is an 

optimized maintenance strategy that can fulfill maintenance requirements with minimum 

expenditure.  

Primarily, two maintenance strategies have been popular among industry- Reactive 

Maintenance and Time Based Maintenance. Reactive maintenance is basically a ‘run till it fails’ 

type of strategy where no maintenance is done till the equipment stops functioning. Majority of 

industries still follow this strategy [1]. At first glance, this choice may seem obvious since no 

maintenance cost is incurred till the equipment is replaced. However, it is important to realize 

that maintenance costs continue to accrue and total to the cost of equipment replacement, 

which may have been much lower had timely maintenance of equipment been done. It is this 

realization that lead to the formulation of Time Based Maintenance or Periodic Maintenance 

Strategy. In this strategy, a maintenance schedule is prepared based on past experience with 

equipment performance, and periodic maintenance of the equipment is done irrespective of the 

actual condition of the equipment. This philosophy is unduly expensive for two reasons [2]. 

First, maintenance may be performed on perfectly good machinery. Second, the very act of 

maintenance, even when performed correctly, often induces problems in previously functioning 

machinery (so-called iatropic maintenance problems). In view of the deficiencies associated 
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with these two maintenance strategies, industry has started to look towards Condition Based 

Maintenance (CBM) as a cost effective maintenance strategy [3], [4], [5] and [6].  

CBM has been defined in various ways in literature [2], [7]. However, the gist of every 

definition is: CBM is a strategy of doing maintenance only when there is an objective need for it. 

The importance of objectivity in CBM cannot be over-emphasized; since the overall aim of any 

CBM strategy is to make the maintenance decisions as objective, i.e. based on real 

maintenance needs, as possible. CBM tries to incorporate this objectivity in maintenance 

decisions by combining the best of data acquisition, signal processing and decision making 

techniques, to give the decision makers sufficiently accurate idea of the condition of equipments 

and their maintenance needs. Equipped with this information, he/she can decide when to do the 

maintenance based on criticality of equipments and or profit considerations. 

From the above discussion on the definition and importance of CBM, it is clear that 

objectivity is central to CBM. This objectivity is attained by following three steps while 

implementing a CBM strategy. These steps are:  

• Diagnostics 
o Off Line- Background Studies, Fault Mode Analysis 
o On Line- Real-time Fault Monitoring & Diagnosis 

• Prognostics 
o Off Line -Background studies, Remaining Useful Life (RUL) analysis 
o On Line -Real time prognostics and RUL estimation 

• Maintenance Scheduling 

Therefore, a complete CBM process starts with determining the ‘symptoms’ of an 

incipient fault (diagnostics ) followed by an estimation of the time left for fault to develop into a 

failure (prognostics ). Information about Mean Time to failure (MTTF) and RUL provided by 

prognostics, is then used to determine an optimal maintenance strategy, taking into account 

factors such as criticality of equipment, loss due to equipment downtime, etc (maintenance 

scheduling ). In this thesis, however, only fault diagnostics for rotor imbalance in an induction 

machine has been performed. Two factors motivated the above choice: 
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• Rotor imbalance is a common occurrence in wind turbines [8], [9] and [10]. Hence, 

developing a robust rotor imbalance detection and severity classification 

methodology may benefit this important industry.  

• This thesis evolved from a Department of Energy sponsored Small Business 

Innovative Research (SBIR) project awarded to Signal Processing, Inc in which, the 

Energy Systems Research Center (ESRC) and Automation & Robotics Research 

Institute (ARRI) at The University of Texas at Arlington were partners. This project 

primarily focused on rotor imbalance fault diagnostics. ESRC developed 

experiment test beds for this purpose. Availability of these test beds, therefore, 

provided an excellent platform to experimentally validate the rotor imbalance 

diagnostics scheme presented in this thesis. 

Fault diagnostics being central to this thesis, is explained in detail in the next section. 

1.2 Fault Diagnostics 

 Diagnostics, as the name suggests, refers to the identification of a fault before it 

becomes a failure. As is obvious, this identification is not possible unless there is prior 

information about the possible fault modes of equipment. Also required to be known a priori, are 

the system conditions that may be associated with the fault modes; since failure occurs at 

material level, but their effects are observed at system level in such forms as heat, vibration, 

noise, and/or debris in a lubricant, etc [2]. 

There are two ways by which the aforementioned information can be obtained [11]. 

First way is to use actual fault/failure legacy data from recorded machine histories, where 

information on the fault modes and associated system conditions are given. The second way is 

to develop test beds for inducing faults common to the equipment of interest. In this method, 

sensors are used to collect fault data which is analyzed to determine the effect of fault on 

system parameters such as vibration, current, voltage, etc. Second method has the obvious 

advantage of taking into account the behavior of the target machine and ambient conditions 
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(power supply, mounting, etc) in determining the signatures for a particular fault mode. This 

approach, therefore, has been adopted in this thesis. Opinion of an expert who has a long 

experience in dealing with the equipment under consideration may prove very helpful in setting 

up experiments. Fault library preparation by this method may be accomplished in either of the 

following two ways, second being an extension of the first. 

• Data collected by experiments may be organized as tables of frequency spectrum 

(FFTs), trends (using Kalman filtering), or moments about the mean (skew and 

kurtosis) of some system parameter(s) associated with each fault mode. This way a 

fault library becomes available with which actual data may be compared at any time 

to determine the fault type and its severity [12].  

• The above step may be taken further and all the processed data as indicated 

above, may be fed into a neural network or a support vector machine or a neuro-

fuzzy system [13] to store associations between fault data and the corresponding 

fault in a single network. 

Once the fault libraries are prepared, equipments may be monitored in real time and data 

gathered from them compared with the fault libraries or fed into an intelligent classifier to 

indicate if any fault is developing and if it is, what the identity or severity of the fault is. 

 An additional step needs to be added to the aforementioned fault diagnostics 

procedure if multiple sensors are used to monitor the same system parameter. Hall et al, [2] 

have advocated the use of data fusion in CBM, since decision making using more than one 

sensor increases the accuracy of decision. In this scenario, Dempster-Shafer evidence 

combination [14] or neural nets or fuzzy logic decision making may be used to determine the 

identity of fault by combining identity declaration from individual sensors. An example of a 

diagnostic system developed by authors in [14] is shown in Fig. 1.1. 
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Fig. 1.1 A fuzzy diagnostic system layout [14] 
 

  This document is divided into 5 chapters. After this introductory chapter, Chapter 2 

presents a review of literature on rotor imbalance fault diagnostics in induction machines. It 

highlights the areas in rotor imbalance diagnostics that need more attention, and how this thesis 

addresses them. Chapter 3 presents the theoretical background of techniques that were used in 

this thesis to address the issues highlighted in Chapter 2. Chapter 4 presents a comprehensive 

test bed based approach for rotor imbalance diagnostics using techniques introduced in 

Chapter 3. Chapter 5 is the concluding chapter, and it summarizes the contributions of this 

thesis. It also discusses the scope for future research on condition based maintenance of 

machines.       
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CHAPTER 2 

LITERATURE REVIEW 

 Condition based maintenance of a machine may be performed using either 

invasive or non-invasive sensors. Accelerometers, torque sensors, search coils, etc are 

invasive sensors as they need to be installed in close proximity to the motor and are rarely a 

part of normal motor installation. Traditionally, these sensors, especially vibration sensors, have 

been the primary source of information about motor condition. A lot of literature also exists on 

CBM using invasive sensors [3], [9], [15], [16], [17] and [18]. However, there are several 

drawbacks associated with these sensors [19], [20] such as the extra investment involved in 

their installation and maintenance. Hence, in recent years emphasis has been on developing 

CBM techniques for motors that are based on non-invasive sensors i.e. current and voltage 

sensors [19], [21-23], [24], [25-27], [28] and [29]. This is because these sensors are always 

installed with a machine for protection or control purposes [19], and if they could provide 

information about faults, extra sensors would not be required.  

CBM using non-invasive sensors has been shown to provide very good results in 

detecting rotor imbalance. While Motor Current Signature Analysis (MCSA) has been used 

most extensively for this purpose, techniques using information other than current such as 

instantaneous power [29] have also been presented in the literature. Even within MCSA, 

several methods have been presented for determining rotor imbalance signatures from the 

stator current. These include determining rotor imbalance specific frequency component in 

stator current spectrum, instantaneous frequency of stator current [19], Pseudo Wigner 

Distribution (PWD) [19], and r.m.s value of stator current [27]. However, of all these the first 

method based on stator current spectrum has been the most popular [19], [25] and [27]. In this 

method the Discrete Fourier Transform (DFT) of stator current is taken. Magnitude of Fourier 
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coefficients for fs±fr frequency components, fault components arising out of rotor imbalance in 

the stator current, is then compared with no fault magnitude of these components to detect rotor 

imbalance. It must be noted here that even in a new motor fs±fr frequency components would 

exist due to unavoidable dynamic eccentricity or imbalance [21], [15]. Determining a baseline 

when the motor is new is, therefore, important to detect a rotor imbalance in future.  

From the above review it was found that while several techniques have been explored 

to detect rotor imbalance using MCSA, very few papers exist where an explanation for the 

appearance of fs±fr frequency components due to rotor imbalance has been given [24], [30]. 

Even in these papers, only a short theoretical reason was provided. Of the literature reviewed, 

only [19] attempted a mathematical modeling of rotor imbalance fault but with certain 

assumptions such as constancy of electromagnetic torque. Hence, there is a need for accurate 

mathematical modeling of rotor imbalance, so that a better understanding of the reasons that 

cause rotor imbalance fault signatures to appear in the stator current is obtained. 

Another common feature in the literature has been an almost exclusive use of a single 

phase of stator current in performing MCSA for rotor imbalance diagnostics. While theoretically 

all phases should respond identically to rotor imbalance, real world noise, winding asymmetries, 

winding damage, etc, may cause a phase to behave differently over time. Moreover, accuracy 

of current sensor installed on the phase may deteriorate as well. If this phase happens to be the 

one being used for determining rotor imbalance signatures, false alarm may be raised about the 

degree of rotor imbalance in the machine. To solve this problem, sensor fusion seems to be a 

promising technique. Sensor fusion has the attractive property of ‘graceful deterioration’ of 

performance as it combines information from multiple sensors [2] to arrive at a decision. 

Therefore, it would not be out of place to combine fault information from the three phases of a 

machine to perform rotor imbalance diagnostics. 

In view of the above discussion, this thesis attempts to provide an accurate modeling of 

rotor imbalance in induction machines so that the process behind appearance of rotor 
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imbalance features in stator current is better understood, and also presents a comprehensive 

test bed based scheme for rotor imbalance diagnostics that incorporates sensor fusion.    

 

 

 

 

 

 

 

 

 

 

 

 

 



                                

9 
 

CHAPTER 3 

TECHNIQUES FOR ROTOR IMBALANCE MODELING AND SENSOR FUSION 

3.1 Introduction 

Chapter 2 pointed out the focus areas of this thesis. This chapter presents the 

techniques that were used to address these.  Section 3.2 presents mathematical modeling of 

rotor imbalance fault using space phasor theory followed by simulation of the mathematical 

model in SIMULINK. Section 3.3 presents the theoretical background of two multi-input fault 

classification techniques that can be used for performing sensor fusion. These are Adaptive 

Network Based Fuzzy Inference System (ANFIS) and Dempster Shafer Theory in conjunction 

with Fuzzy c Means (FCM) clustering.  Section 3.4 provides a summary of ideas developed in 

this chapter. 

3.2 Mathematical Modeling of Rotor Imbalance Fault 

Since the steady state torque is not constant under rotor imbalance fault, three phase 

circuit equations for a machine (in this case induction motor) need to be used for modeling rotor 

imbalance. Space Phasor Theory was chosen as the framework for this modeling. Section 3.2.1 

details the application of this theory in modeling motor under rotor imbalance.  Modeling 

equations framed in Section 3.2.1 were non-linear differential equations requiring a numerical 

method for their solution. Therefore, SIMULINK was used for solving these equations and 

details of this simulation are presented in section 3.2.2.  

3.2.1 Application of Space Phasor Theory in Modeling Motor with Rotor Imbalance   

            3.2.1.1 Introduction to Space Phasor Theory 

 This section discusses in brief the Space Phasor Theory as detailed in [31]. Space 

Phasor Theory is very closely related to the two-axis theory of electric machines, but the 

simplicity and compactness of the space-phasor equations and the very clear pictures obtained 
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by its application can yield further advantages.  Before proceeding with the theory, a list of 

assumptions used in its development are given below: 

• Air-gap is considered to be smooth with symmetrical three phase windings. 

• Permeability of the iron parts is assumed to be infinite and the flux density is 

considered to be radial in the air gap. 

• The effects of iron losses and end-effects are neglected. 

Fig. 3.1 is the reference figure for the explanation that follows. The machine shown is a 

2-pole machine. The stator and rotor windings are shown as single, multiple turn full pitch coils 

situated on the two sides of the air-gap; these, however, represent distributed windings, which 

at every instant produce sinusoidal m.m.f. waves centered on the magnetic axis of the 

respective phases. The phase windings are displaced by 120 electrical degrees from each 

other. In Fig. 3.1, �� is the rotor angle, the angle between the magnetic axes of the stator 

winding  �� and rotor winding  ��. In general, the speed of the rotor is  �� 	 
�� 
�⁄ , and its 

positive direction is also shown in Fig. 3.1. Primed quantities (such as  ��′) indicate current 

flowing ‘out of the plane’ of the paper while un-primed quantities (such as  ��) indicate current 

flowing ‘into the plane’ of the paper. 



                                

 

Fig. 3.1 Cross-section of an elementary 
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are the number of turns and the winding factor of a stator winding
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In eqn 3.2, is multiplied by the following quantity: 
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section of an elementary symmetrical three-phase machine [31]
 

.2.1.1 Space Phasor representation of stator and rotor currents             

have an equal number of effective turns , where 

are the number of turns and the winding factor of a stator winding respectively

supplied by a system of three-phase currents , and

can vary arbitrarily in time, the resultant m.m.f. distribution  produced by the stator is as 

is the angle around the periphery with reference to the axis of stator 

which coincides with the real axis of the stator denoted by  in Fig. 3.1, then  

                                    

By using complex notation, it is possible to put eqn 3.1 into the following form: 

is multiplied by the following quantity:  

[31] 

 

, where  and  

respectively. Now, if the 

and , which 

produced by the stator is as 

is the angle around the periphery with reference to the axis of stator winding , 

                                    3.1 

   3.2 
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� ��� 	 �� ������ � ������ � ��������                                                                                                              3.3     

Where, � ��� is the complex space phasor of the three-phase stator currents in the complex 

plane in the stationary reference frame fixed to the stator. Furthermore, in eqn 3.2, �  and �� 

are spatial operators, � 	  ���� �⁄   and �� 	  ���� �⁄ . The stator current space phasor given by 

eqn 3.3 can be resolved into direct axis stator current ��  and quadrature axis stator current 

�� in the stationary reference frame fixed to the stator. Mathematically, 

� ��� 	   �� ��� � ���  ���                                                                                                                                       3.4 

             Rotor current space phasor in the stationary reference frame fixed to the stator  �  can 

also be obtained by following a similar procedure as above. Here, only the expression is listed 

and details may be found in [31]. The expression is: 

!� ��� 	   �"  ��� � ��# ���                                                                                                                                     3.5 

, where �"  and �# are the direct and quadrature axes components of rotor current space 

phasor in a reference frame fixed to the stator. 

3.2.1.2 Space Phasor Representation of Stator and Rotor Flux linkages 

Similar to the definition of stator current space phasor, it is possible to define the space phasor 

of the stator flux linkages. Thus, in the stationary reference frame fixed to the stator, the total 

stator flux- linkage space phasor $� can be expressed as follows: 

$� ��� 	 �� �$�� � �$�� � ��$���                                                                                                                       3.6 

, where the instantaneous value of the phase-variable flux-linkage components are  

$�� 	 %� �� � &� �� � &� �� � &�� cos ���* � &��  cos ��� � 2, 3⁄ ��. � &�� cos ��� �
            4, 3⁄ ��0                                                                                                                                                                                    3.7                          

$�� 	 &� �� � %� �� � &� �� � &�� 12� ��� � 4, 3⁄ ��* � &��  12� �����. � &��  12� ��� �
            2, 3⁄ ��0                                                                                                                                                                                            3.8 

$�� 	 &� �� � &� �� � %�  �� � &�� cos��� � 2, 3⁄ ��* � &�� cos��� � 4, 3⁄ � �.                       
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         � &�� 12� �����0                                                                                                               3.9 

In eqns, 3.7, 3.8 and 3.9, �*, �. and �0  are the rotor phase currents,  %� is the self 

inductance of a stator phase winding, &�  is the mutual inductance between the stator windings, 

and &�� is the maximal value of the stator-rotor mutual inductance. Substituting eqns, 3.7, 3.8 

and 3.9 into eqn 3.6, gives the following expression for ψ4 : 
$�  	   L4� �  L6 �                                                                                                                                                3.10 

, where L4 	  %� 7 &�  is the total three phase self inductance of the machine and L6 	 ��  &��  is 

the so called three phase magnetizing inductance.  

            Like stator and rotor current space phasors, stator flux space phasor may also be 

resolved into direct $�� and quadrature $��  axes flux linkage components in the reference 

frame fixed to the stator. This conversion results in eqn 3.10 being divided into following two 

equations: 

$��  	   L4�� �  L6�"                                                                                                                                          3.11 

$��  	   L4�� � L6�#                                                                                                                                          3.12 

           Rotor flux linkage space phasor in the stationary reference frame   $ �   may also be 

found by adopting the above procedure. Leaving the details, eqn 3.13 gives the expression for 

rotor flux linkage space phasor. Eqn 3.14 and eqn 3.15 give expressions for rotor flux linkage 

space phasor resolved into direct $�"  and quadrature $�#  axes components in the stationary 

reference frame fixed to the stator. 

$ �  	   L8 � �  L6�                                                                                                                                               3.13 

$�" 	  L8�" � L6��                                                                                                                                           3.14 

$�#  	   L8�# �  L6��                                                                                                                                            3.15 

, where L8 	  %� 7  &�   is the three phase self inductance of the rotor in the stationary reference 

frame fixed to the stator and %� is the self inductance of the rotor. 
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3.2.1.3 Space Phasor Representation of Voltages 

Space phasors of the stator and rotor voltages can be defined similarly to the space-phasor 

quantities defined in the earlier sections. Thus, the stator-voltage space phasor in the stationary 

reference frame is: 

9� ��� 	 �� �9����� � �9����� � ��9������ 	   9�� � �9��                                                                              3.16 

 and the rotor voltage space phasor in the reference frame fixed to the stator is  

 9 �  ��� 	 �� �9�:��� � �9�.��� � ��9�0������;< 	   9�" � �9�#                                                                  3.17 

In eqns 3.16 and 3.17, 9�� , 9��  , 9��   and 9�: , 9�. , 9�0   are the instantaneous values of 

the stator and rotor phase voltages respectively. 9�� , 9��  are the direct and quadrature axis 

components of  9� ���. 9�" , 9�# are the direct and quadrature axis components of 9 �  ���. 

             Having determined the space-phasor representation of currents, fluxes and voltages, 

the next step in modeling a machine is to use standard circuit equations for an R-L circuit that 

relate voltage, currents and flux linkages. However, before proceeding with this step it is 

important to note that in all the above expressions three phase variables were eventually 

converted into two variables –direct and quadrature axes components. There is a third variable 

as well that is termed as zero-sequence current, voltage or flux. Since in most cases this 

quantity is zero, direct and quadrature axes variables completely describe a three phase 

system. If, however, a zero sequence component is present, a third equation is also required. 

The expression for this equation is similar for all quantities. It is given for stator currents in eqn. 

3.18 

9�= 	 >� �9����� � 9����� � 9������                                                                                                                      3.18 

3.2.1.4 Complete Electrical Equations for a Machine in Stationary Reference Frame 

Using eqns 3.3 and 3.4, �� and ��  may be expressed in terms of stator current phase variables 

given by eqns 3.19 and 3.20 respectively .Similarly, eqn 3.16 may be used to express 9�� and 
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9��  as a function of voltage phase variables. These expressions are given in eqn 3.21 and eqn 

3.22. Similar expressions result for rotor space phasors as well. 

�� 	 23 ?�� 7 12 �� 7 12 ��A   3.19 

�� 	 1√3 ��� 7 ��� 3.20 

9�� 	 23 ?9�� 7 12 9�� 7 12 9��A 3.21 

9�� 	 1√3 �9�� 7 9��� 3.22 

In phase variable form and in respective reference frames, the stator and rotor voltage 

equations may be written as in eqns 3.23 – 3.25 and 3.26–3.28 respectively:  

9����� 	  C������ � 
$����� 
�⁄  3.23 

9����� 	  C������ � 
$����� 
�⁄  3.24 

9����� 	  C������ � 
$�� ��� 
�⁄  3.25 

9�:��� 	  C��:��� � 
$�:��� 
�⁄  3.26 

9�.��� 	  C��.��� � 
$�.��� 
�⁄  3.27 

9�0��� 	  C��0��� � 
$�0��� 
�⁄  3.28 

, where �: ,�. ,�0 and $�: , $�.  and $�0  are rotor phase currents and flux linkages respectively 

in rotor reference frame and C� and C� are the stator and rotor resistances. If eqns 3.7, 3.8 and 

3.9 are substituted in eqns 3.23, 3.24 and 3.25 respectively, and the resulting expression 

manipulated along with eqns 3.19 to 3.22, eqn 3.29 results. Similar procedure when applied to 

eqns 3.26, 3.27 and 3.28 and the resulting equations transferred to stationary reference frame, 

eqn 3.30 results. Eqns 3.29 and 3.30 represent the complete electrical model of a machine in a 

reference frame fixed to the stator. In these equations D is a symbol for differential 

operator 
 
�⁄ .  
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E9��9��  F 	  EC� � DL40 H   0C� � DL4  DL60   H 0DL6 A IJ
JK ����  �"�#  LM

MN 
 

3.29 

E9�"9�# F 	  ? DL67  ��L6 H     ��L6 DL6   C� � DL87  ��L8   H   ��L8C� � DL8 A IJ
JK ����  �"�# LM

MN 
 

3.30 

            3.2.1.5 Expression for Electromagnetic Torque in Terms of �� ,��  , �" and �#.  

By applying energy conservation in the machine, expression for electromagnetic torque can be 

obtained. Details of the derivation may be found in [31]. Eqn 3.31 lists the expression for 

electromagnetic torque of a machine with O pole pairs in stationary reference frame fixed to the 

stator. 

�P 	  7 32 O%Q����# 7 ���"�   3.31 

3.2.1.6 Complete Model of Machine when used under Rotor Imbalance 

As an electric machine involves motion, complete machine model includes mechanical equation 

of motion as well. This equation is given in eqn 3.32. 

�P 7  �R 	  S 
�Q
�  
3.32 

           , where  �R  is the mechanical torque on the machine and  �Q  is the mechanical speed of 

the machine related to electrical speed  ��  by the relation  �� 	 O �Q  .  
            Eqns 3.29, 3.30, 3.31 and 3.32 represent a complete model of an electric machine in 

stationary reference frame fixed to the stator. This model can therefore be applied to a Squirrel 

cage Induction Motor (SQIM) as well. However, an important point to note in modeling a SQIM 

is that there are no distributed three phase windings on the rotor. But, fortunately the cage rotor 

can still be modeled as an equivalent three phase distributed winding system [31], [32]. Hence, 

eqn 3.30 is a valid equation for SQIM as well. Since no external voltages are applied to the 

rotor in a SQIM, LHS of eqn 3.30 is zero. 



                                

17 
 

With a model in place for SQIM, next step is to model rotor imbalance. Fig. 3.2 

illustrates the rotor under mechanical imbalance.  

 
Fig. 3.2 Rotor under Mechanical Imbalance 

 
From this figure it is clear that rotor imbalance manifests itself as an oscillating torque 

impressed on motor load torque. Therefore, expression for load toque on the motor becomes as 

given in eqn 3.33. 

�R 	 � � TU��V� �Q��                                                                                                                                         3.33 

, where � represents the constant component of load torque, T is the imbalance mass, U is the 

acceleration due to gravity and � is the radial distance of imbalance mass from the center of 

rotation.       

Thus, Eqns 3.29, 3.30 (with LHS equal to zero), 3.31, 3.32 and 3.33 represent a 

complete model of a SQIM with rotor imbalance. If these equations are solved, expressions for 

direct and quadrature axis stator currents will be obtained which can then be converted to 

phase variable format using eqns 3.19 and 3.20. However, in the above motor model equations, 

 �Q  and hence  ��  cannot be assumed to be constant. This is because in an induction machine 

motor speed is dependent on the load and eqn 3.33 shows that load torque is not constant. 

This situation makes the motor model equations non-linear and hence numerical methods must 
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be used to solve them. In this work, SIMULINK was used to solve the modeling equations. The 

process is explained in Section 3.2.2. 

3.2.2    Solving SQIM Modeling Equations using SIMULINK. 

3.2.2.1 Testing SQIM model developed in SIMULINK 

SQIM equations were modeled in SIMULINK using its Simulink library. The model so developed 

was quite involved and is shown in Fig. 3.3. It was tested using motor parameters given in [33]. 

These parameters are reproduced in Table 3.1. The relationship of these parameters with 

variables used in space phasor equations in Section 3.2.1 is shown in Table 3.2.  

 
Fig. 3.3 SIMULINK model of SQIM 
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Table 3.1 Parameters of motor used for testing SQIM model in SIMULINK 
Motor Parameter Numerical Values 

Stator Resistance (rs) 3 ohm 
Rotor Resistance (rr) 3 ohm 

Magnetizing Inductance (lm)  0.1466H 
Stator Leakage Reactance (ls1) 0.0055H 
Rotor Leakage Reactance (lr1) 0.0055H 

Moment of Inertia (J) 0.01kg.m2 
 

Table 3.2 Value of parameters in SQIM equations based on Table 3.1 
SQIM equation Parameters Numerical Values 

 %�= ls1+ lm 
 
0.1521H 

 %�= lr1+ lm 
 
0.1521H 

 &�= - lm/2= &� 
 
-0.0733H 

 L6= 3/2* lm 
 
0.2199H 

 L4= %�-&� 
 
0.2254H 

 L8= %�-&� 
 
0.2254H C�=rs 3 ohm C�=rr 3 ohm 

Moment of Inertia (J) 0.01kg.m2 
No of Pole pairs 2 

 

To test the machine model, two load torques- 0 N-m and 2 N-m were applied. If the 

machine were modeled correctly, electromagnetic torque would become equal to load torque in 

steady state in both cases. Further, rotor speed under 2 N-m load torque must be lower than 

that under no-load. Rotor speed and electromagnetic torque for these cases is given in Fig. 3.4 

and Fig. 3.5 respectively. 
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a).  

 

b).  
Fig. 3.4 Rotor speed at steady state (rad/sec) vs. time (sec). 

 a). Load torque= 0 N-m. b). Load torque= 2 N-m 
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 a).  

 
b). 

Fig.3.5 Electromagnetic torque at steady state (N-m) vs. time (sec). 
 a). Load torque = 0 N-m. b). Load torque = 2 N-m 
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Fig. 3.4 and Fig. 3.5 clearly show that at steady state, rotor speed decreased as load 

torque increased and electromagnetic torque became equal to load torque. Thus, it can be 

safely concluded that SQIM was modeled correctly in SIMULINK.  

3.2.2.2 Studying Rotor Imbalance using SQIM model of Section 3.2.2.1  

Having verified the SQIM model in Section 3.2.2.1, next step is to use it to find out whether rotor 

imbalance changes stator currents in the same manner as pointed out in literature. However, 

the more important objective is to find out the cause for such a change. To accomplish these 

objectives, imbalance torques of peak value 0N-m, 0.1 N-m and 0.2 N-m are impressed over a 

constant load torque of 1N-m (in accordance with the expression of load torque in Section 

3.2.1.6). Spectrum of the resulting stator current is then analyzed to see if it changed from no 

imbalance situation. The spectrum is shown in Fig. 3.6. From this figure it can be seen that fs±fr 

frequency components in the stator current spectrum changed as the rotor imbalance was 

introduced. Therefore, as reported in literature, these components can be used to detect rotor 

imbalance.  

 
Fig. 3.6 Stator current spectrum under different degrees of imbalance 
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While rotor imbalance signatures are now confirmed, it is still not clear as to what is 

going on inside the motor that causes these signatures to appear. To understand this, it is 

important to realize that in an induction machine electro-magnetic torque, rotor speed, rotor 

m.m.f and stator m.m.f are interrelated. Fig. 3.6-3.10 lend support to this assertion. Using these 

figures, an explanation is now given about the interactions that take place in a SQIM (or any 

other induction machine) to produce rotor imbalance signatures in stator current. 

 From Fig. 3.7 it is clear that, rotor imbalance induced oscillation in load torque causes 

‘fr’ Hz oscillation to get superimposed on electromagnetic torque of the machine; magnitude of 

oscillation is proportional to the degree of imbalance. This causes ‘fr’ Hz oscillation to appear in 

steady state rotor speed as well (Fig. 3.8). Since frequency of current induced in rotor depends 

on rotor speed, ‘fr’ Hz oscillation appears in the rotor current. This is demonstrated by Fig. 3.9 

which shows spectrum of Phase A of rotor current referred to the rotor. Rotor currents when 

referred to the stator contain fs±fr frequency components as shown in Fig. 3.10.  

 
Fig. 3.7 Electromagnetic torque under varying degrees of imbalance 
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Fig. 3.8 Rotor speed under varying degrees of imbalance 

 

 
Fig. 3.9 Rotor current spectrum (referred to rotor side) 

 under varying degrees of imbalance 
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Fig. 3.10 Rotor current spectrum (referred to stator side) 

 under varying degrees of imbalance 
 

Since rotor flux contains the same frequency components as the rotor currents, it 

induces voltages in the stator that contain fs±fr frequency components (eqn 3.29; �"  is equal 

to �: , rotor current referred to stator side, when zero sequence current is zero). These induced 

voltages cause fs±fr frequency components to appear in the stator current as well (Fig. 3.6).   

3.2.3     Conclusion 

In Sections 3.2.1 and 3.2.2, methods for modeling SQIM under rotor imbalance and 

solving the resulting equations were presented. These methods helped obtain a clear 

understanding of the effect of rotor imbalance on operation of SQIM. Using them it was 

conclusively proved that fs±fr frequency components are valid signatures of rotor imbalance. 

Further, the interactions in a SQIM that generate these signatures also became clear. In 

addition, Fig. 3.6 made it clear that a trend exists between magnitude of Fourier coefficients of 

fs±fr frequency components and degree of rotor imbalance. Hence, these components may be 

used to determine rotor imbalance severity. This last statement is the motivation for Section 3.3, 
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where methods of utilizing fs±fr frequency components in determining severity of rotor 

imbalance are discussed. 

3.3 Methods for Rotor Imbalance Severity Determination:  
ANFIS and Dempster Shafer Theory  

In Section 3.2.2.2, it was shown (Fig. 3.6) that rotor imbalance fault signature in the 

stator current increased with imbalance. Due to the assumptions made in modeling SQIM, the 

trend in fault signatures was found to be linear (Fig. 3.6). Hence, based on simulation results, 

determining degree of imbalance appears to be a trivial task. In an actual motor, however, non-

idealities are invariably present (winding asymmetries, unbalanced voltages in distribution 

system, inherent rotor imbalance, static eccentricity, etc). These non-idealities may cause the 

trend to deviate from linearity. Moreover, due to random factors such as supply variations, 

environmental noise, etc, sensors may report different values of signatures for same degree of 

imbalance. Therefore, techniques are needed that may determine the trend of rotor imbalance 

severity using such features. Further, as pointed out in Chapter 2, decision regarding rotor 

imbalance severity would be more reliable and accurate if imbalance information from the three 

phases is combined. Hence, to incorporate the above requirements in an imbalance severity 

determination scheme, two methods are presented here. These are Adaptive Network Based 

Fuzzy Inference System (ANFIS) and Dempster Shafer (DS) Theory. The motivation for using 

these methods and their main features are now briefly discussed in Sections 3.3.1 and 3.3.2. 

3.3.1     Adaptive Network Based Fuzzy Inference System (ANFIS). 

Fuzzy Inference Systems (FIS) have proved to be very useful in modeling imprecise 

systems. They allow qualitative aspects of human reasoning to be incorporated in modeling a 

system without employing precise quantitative analysis. However, these systems have come in 

for criticism [34] because no standard methods exist for transforming human knowledge or 

experience into the rule base and database of a fuzzy inference system. It is precisely this 

lacuna of FIS that ANFIS tends to address. 
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ANFIS was first introduced in a seminal paper [34] by Jyh-Shing Roger Jang. Since 

then, this method has been used in several applications such as control, prediction, inference 

and modeling. The architecture of ANFIS is given in Fig. 3.11 for a simple two input single 

output system [34].   

 

Fig. 3.11 ANFIS Architecture [34] 
 

Layers in Fig. 3.11 perform the following functions: 

Layer 1 :   It comprises of input membership functions that fuzzify the inputs. The shape 

of membership functions is described by set of parameters known as premise 

parameters. 

Layer 2 :  This layer comprises of rule base. Fuzzified inputs are combined according to 

rules in this layer to determine the firing strength of each rule.  

Layer 3 : This is a normalization layer as indicated by symbol ‘N’ in Fig. 3.11. It 

normalizes the firing strength of each rule by dividing it with the sum of firing 

strengths of all rules. 

Layer 4 :  The normalized firing strengths from Layer 3 are transformed in this layer by 

a node function whose parameters are called as consequent parameters.  

Layer 5 :   This layer sums up all outputs from Layer 4 to generate a single crisp output. 
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While above architecture is similar to that of any other FIS, what makes ANFIS different 

is the ‘AN’ part of its acronym. As mentioned above, ANFIS architecture contains a set of 

tunable premise and consequent parameters. In ANFIS, these parameters can be automatically 

updated using input-output data according to a hybrid learning rule. Hybrid learning rule 

transforms the given input-output relationship into another relationship such that the parameters 

defining the original relationship may be separated into linear and non-linear parameters. The 

motivation is to determine linear parameters by Least Squares Method in the forward pass and 

non-linear parameters by Gradient Descent method in the backward pass. The method is 

iterated over till some convergence criterion is met. This method is explained in great detail in 

[34]. 

From this discussion, it is clear that ANFIS solves the problem of FIS highlighted 

earlier. Input membership functions may initially be chosen according to human experience and 

then ANFIS may be used to fine tune these membership functions according to the hybrid rule. 

In case only input-output data is available, ANFIS input membership functions may be initialized 

using various techniques such as subtractive clustering or fuzzy-c-means clustering. After 

learning is complete, modified membership functions and rules are obtained that provide insight 

into the underlying relationship between inputs and outputs.    

ANFIS, therefore, is a great tool to visualize how inputs interact to produce outputs; 

unlike neural networks where such visualization is hidden in a ‘black box’. Moreover, system 

specific information may be incorporated in the general membership functions assigned by an 

expert using input-output data. Since ANFIS determines a relationship by error minimization 

over all the input-output pairs, it can deal with data that has been corrupted by noise. Further, 

as evident from its architecture, ANFIS can theoretically have any number of inputs. Thus, 

combining information from multiple sensors is easy in ANFIS. It was for these reasons that 

ANFIS was used in determining rotor imbalance severity in this work. While details of how 

ANFIS was adapted to this work are given in Chapter 4, it must be noted that since no a priori 
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information was available on the type and number of input membership functions, subtractive 

clustering [42] was used for initializing them. 

3.3.2     Dempster Shafer (DS) Theory. 

3.3.2.1 Primary features and Important Definitions 

DS Theory is a mathematical theory of evidence. It was developed by Arthur P. Dempster and 

generalized later by Glen Shafer [35]. The main features of this theory as discussed in [36] are: 

• It allows for the allocation of a probability mass to sets or intervals. 

• It does not require an assumption regarding the probability of the individual 

constituents of the set or interval. 

• It allows for combination of evidence obtained from multiple sources and modeling 

of conflict among them. 

It is the last feature of this theory that motivated its application in determining rotor 

imbalance severity; since a combination of fault information from multiple sensors was desired 

for making a decision about imbalance severity. 

While details of this theory may be found in [35], [36] and [37], it is important to discuss 

three functions that form the basis of this theory. These are the Basic Probability Assignment 

(BPA) function denoted by  T, the Belief function denoted by W�X and the Plausibility function 

denoted by OX. 
The BPA [30] defines a mapping of the power set (each subset of the power set is a 

hypothesis to which evidence must be assigned) to the interval between 0 and 1, where the 

BPA of the null set is 0 and the summation of the BPAs of all the subsets of the power set is 1. 

The value of the BPA for a given set � (represented by T���), expresses the proportion of all 

relevant and available evidence that supports the claim that a particular element of Y (the 

universal set) belongs to the set � . The value of  T���pertains only to set  � and makes no 

additional claims about any subsets of �.  
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From the BPA, the upper and lower bounds of an interval can be defined. This interval 

contains the precise probability of a set of interest (in the classical sense) and is bounded by 

two non additive continuous measures called Belief ( W�X) and Plausibility (OX). The lower bound 

Belief for a set � is defined as the sum of all the basic probability assignments of its proper 

subsets (W) of the set of interest (�) (W Z �). The upper bound Plausibility  is the sum of all the 

BPAs of the sets (W) that intersect the set of interest (�) (W[� \ Ø). Formally, for all sets � that 

are elements of the power set, O�Y� 

W�X��� 	  ^ T�W��|�Z�  

OX��� 	  ^ T�W��|�[� `Ø  

  The precise probability of an event lies within the lower and upper bounds of Belief 

and Plausibility, respectively. The probability is uniquely defined if  W�X = OX . This case 

corresponds to classical probability. Such a situation exists in this work and is explained further 

in Chapter 4. 

3.3.2.2 Dempster’s Rule for Evidence Combination 

As highlighted in Section 3.3.2.1, evidence combination or sensor fusion is an important aspect 

of DS theory. Several techniques exist for this purpose [36], such as Dempster’s Rule, Yager’s 

rule, Inagaki’s rule, Zhang’s rule, Convolutive x- Average, etc. Depending upon the evidence, a 

particular rule may work better than others. Dempster’s rule has been recommended for 

evidence combination whenever the evidence from different sources has small conflict. Since 

this was the case in this work (reason is given in Chapter 4), Dempster’s rule was used here. 

Dempster’s rule combines multiple belief functions through their BPAs. These belief 

functions are defined on the same frame of discernment, but are based on independent sources 

of evidence. The Dempster rule is purely a conjunctive operation (AND). The combination 

results in a Belief function based on conjunctive pooled evidence [36]. Specifically, the 
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combination (called the joint m>� ) is calculated from the aggregation of two BPAs  m>  and  m� in 

the following manner: 

 T>� ��� 	  ∑  T>�W� T��c��d�e� 1 7 f              gh�V � \ i 

gh���,  T>� �i� 	 0 �V
 f 	 ∑  T>�W� T��c��d�ei  

             ‘K  ‘Represents basic probability mass associated with conflict. This is determined by 

the summing of BPAs of all sets where the intersection is null. Dempster’s rule is commutative, 

associative, but not idempotent or continuous. The denominator in Dempster’s rule (1 7 f) is a 

normalization factor. It has the effect of completely ignoring conflict and attributing any 

probability mass associated with conflict to the null set [36]. It is for this reason that this rule 

works best with low conflict evidence sets. Under high conflict, counterintuitive results are 

obtained as shown in [36].  

From the above discussion, it is clear that before DS theory can be used to combine 

evidence, BPAs must be assigned to each hypothesis or interval for every source of evidence. 

This, however, is not an easy task, especially when no expert knowledge is available to 

determine BPAs for a hypothesis. Recently, Fuzzy C-means clustering has been proposed as 

an effective tool for assigning BPAs [35], [37]. Therefore, this technique is used in this thesis. 

What follows is a brief discussion on FCM clustering technique.  

3.3.2.3 Fuzzy C- Means (FCM) Clustering  

FCM clustering is an unsupervised clustering algorithm which can be applied successfully to 

several problems involving feature analysis, clustering and classifier design in fields such as 

astronomy, chemistry, geology, medical diagnosis, etc [35]. FCM algorithm partitions a data 

set  Y 	 �l> , l�, , … . , l"�o into 1 clusters by minimizing the objective function given by 

 SQ �9, p� 	  ∑ ∑ 9qrQslr H 7 Hpqs�"re>0qe>  subject to the constraint ∑ 9qr 	 1 0qe> . In this equation, 
 is 

the number of samples in the vector  Y , 1 is the number of clusters (1 t 1 t 
), 9qr  is the 

element of the partition matrix (1 Y 
) containing the membership function, pq is the center of the 
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uv cluster and T is a weighting factor that controls the fuzziness of the membership function. 

The matrix w is constrained to contain elements in the range [0, 1] such that ∑ 9qr 	 1 0qe> , for 

each x y �1, 
�. slr 7 pqs is the Euclidean ‘distance’ of a data point lr from cluster center pq; in 

its place any other measure of ‘distance’ may also be used. 

Minimization of the above expression of SQ �9, p� is realized by an iterative procedure 

that involves the following steps [35]: 

1. Choose the number of cluster centers (1) and initialize each cluster center (pq). 
At iteration number X, 
2. Determine the membership value of each point in the data set (9qr  �X�) using the 

following expression: 

9qr�X� 	 z^ {slr 7 pq�X�s|lr 7 p��X�|} �Q~>0
�e> �

~>
 

3. Calculate updated cluster center values vector  �u�X� 	 �p>�X�, p��X�, … . . p0�X�� using: 

pq�X� 	  ∑ 9qrQlr"re>∑ 9qrQ"re>  

4. If s �u�X� 7  �u�X 7 1�s � �, then stop else repeat steps 2 to 4. � is a chosen positive 

threshold. 

In this thesis, ‘fcm’ function of MATLAB was used for implementing the above 

algorithm. This function requires two inputs- data to be clustered and number of desired 

clusters. The syntax of this function is given below: 

[Center, U, obj_fcn] = fcm (data, cluster_n) 

, where ‘Center’ is a row vector of cluster centers, ‘U’ is an array contatining membership values 

for each cluster, ‘obj_fcn’ is the objective function to be minimized, ‘data’ is the data to be 

clustered and ‘cluster_n’ is the number of desired clusters.  

  Each column of the membership array U contains degree of membership of a 

particular data element to a cluster. In context of DS theory, each cluster may be considered to 
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be a hypotheses and membership corresponding to that cluster its BPA. Thus, the most 

important step in application of DS theory, i.e. initial BPA assignment, can be objectively 

accomplished using FCM clustering. It is for this reason that FCM clustering has been used in 

this thesis for initial BPA assignment. In the next chapter, FCM clustering based DS theory is 

applied to determine the degree of rotor imbalance. 

3.4 Conclusion 

This chapter presented a method to model rotor imbalance in induction machines and 

also discussed two techniques that may be used to combine rotor imbalance information from 

three phase currents.  

Section 3.2 developed a model of SQIM under rotor imbalance using space phasor 

theory. Using this model, three levels of rotor imbalance were simulated via SIMULINK. 

Simulation results helped verify the stator current fault features indicated in literature, and also 

gave a clear explanation of motor behavior that leads to the appearance of these fault 

signatures.  

Similarly, section 3.3 gave the theory behind two intelligent classification techniques, 

ANFIS and FCM clustering based DS theory that may be used for performing sensor fusion. It 

became clear from the theory that these techniques could combine information from multiple 

inputs (sensors) and reach at decision (severity of rotor imbalance) using input information 

(fault features) that may be affected by noise.  

Next chapter presents a test bed based approach to perform rotor imbalance 

diagnostics and simultaneously tests the performance of ANFIS and DS Theory in indicating 

severity of rotor imbalance via sensor fusion. 
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CHAPTER 4 

TEST BED BASED APPROACH FOR ROTOR IMBALANCE DIAGNOSTICS 

4.1 Introduction 

As pointed out in chapter 1, any fault diagnostics scheme involves two steps. First step 

is to identify signatures of the fault being studied and the second is to use them to determine its 

severity. While the first step was accomplished in Chapter 3, where features for rotor imbalance 

fault were identified, the second step is yet to be accomplished. Moreover, it was shown in 

Chapter 1 that test bed approach in fault diagnostics holds an edge over legacy fault data 

based approach. This is especially true in case of rotor imbalance diagnostics as every 

machine has an inherent, but different level of rotor imbalance due to limitations of 

manufacturing process. Further, static eccentricity is also inherent in actual machines [15], [21] 

and it shows the same signatures in stator current spectrum as rotor imbalance. Therefore, a 

baseline must be determined for the target machine before any claim about the level of 

imbalance is made. Hence, a test bed based approach suits rotor imbalance diagnostics very 

well. This chapter presents a test based approach for rotor imbalance diagnostics, which 

determines the degree or severity of rotor imbalance by combining information from the three 

phases via ANFIS and DS Theory. 

Section 4.2 gives a brief description of the test motor, current and vibration 

transducers, Data Acquisition apparatus and computer interfacing methodology used in the 

experiments. This section is followed by Section 4.3 that details the experimental set-up and 

tests performed for acquiring rotor imbalance signatures. In Section 4.4, utility of sensor fusion 

is brought out via a discussion on the trend observed in imbalance signatures obtained from the 

three phases. Section 4.5 demonstrates how imbalance signatures from the three phases may 

be combined by ANFIS and DS Theory to determine rotor imbalance severity.  
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4.2 Equipments used in Experiment 

4.2.1.    Test Motor 

The motor used in this work was a 1HP, Dayton-2Z007A 3-Φ, 2-pole, 3450rpm squirrel 

cage induction motor (SQIM).  It had a 56HZ NEMA Frame, with Z implying an extended shaft. 

To create rotor imbalance in the motor, bolts of different weights were used. These bolts could 

be put on a balanced and detachable hub. Picture of hub with a bolt attached to it is shown in 

Fig. 4.1.   

 
Fig. 4.1 Hub with bolt attached to it 

 
4.2.2.   Current Transducers (Hall Effect Sensors) 

A Data Acquisition Card (DAQ) was used for acquiring current signals. Since the DAQ 

card accepts voltage input, a sensor was required to convert stator current into an equivalent 

voltage; Hall Effect Sensors were used for this purpose.  

Tamura Corporation’s L03S050D15 Hall Effect current transducers were used in this 

experiment. The primary reason for using these particular sensors was their high frequency 

response and rated output voltage of ±4 Volts that was well within the range of DAQ card used. 
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Details of these sensors are given in the data sheet [38]. Picture of Hall Effect Sensors used is 

given in Fig. 4.2.  

 
Fig. 4.2 Three Hall Effect sensors used in experiments 

 
4.2.3.   Vibration Transducers (Accelerometers) 

It is natural to expect motor vibrations due to rotor imbalance. It is also obvious that 

vibrations will increase with an increase in rotor imbalance. Therefore, vibration fault features 

can be used to compare the performance of stator current fault features in rotor imbalance 

classification. It was with this intention that accelerometers were used to sense stator 

vibrations.  

Analog Devices®’ accelerometer-ADXL330 was used in this work. It is a MEMS tri-axial 

piezoelectric accelerometer. Vibration Force on the accelerometer produces a charge in the 

piezoelectric crystal which is converted into proportional output voltage by an internal circuitry. 

Though the frequency response of ADXL330 is limited to 1.6 KHz along X and Y directions and 

550Hz along Z direction, this range is sufficient for all normal motor operations as they seldom 

Hall Effect Sensors for three motor 
phases  
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operate at a supply exceeding 60Hz. Further details of ADXL330 can be found in the data sheet 

[39]. Fig. 4.3 shows the accelerometer mounted on the test motor.  

 
Fig. 4.3 Accelerometer mounted on the test motor 

 
4.2.4.    Data Acquisition Devices and Computer Interface 

Before sensor data could be analyzed, it had to be acquired from the motor and saved 

in the computer. This was accomplished using National Instruments’ SCB-68 Shielded Collector 

Block, PCI-MIO-16E4 (NI 6040E) DAQ card and LABVIEW 8.6. 

4.2.4.1 LABVIEW 8.6 Interface     

An interface was developed in LABVIEW 8.6 to acquire a user defined length of data. The data 

was then stored in a LABVIEW measurement file. This file was then converted into a text file 

using ‘MATLAB script’ Virtual Instrument (VI) block in LABVIEW. Name of the text file could be 

given by the user prior to starting the Data Acquisition process. The code in ‘MATLAB script’ VI 

was so written that it would search for the newest LABVIEW measurement file and convert it 

into a text file. This file could then be processed for determining fault features outside the 

LABVIEW environment. Instrument I/O, Programming and Mathematics functions of LABVIEW 

Tri-axial 
Accelerometer 
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were used for creating the interface. The front panel of interface is shown in Fig. 4.4. 

Corresponding block diagram is shown in Fig. 4.5. 

 
Fig. 4.4 Front panel of LABVIEW interface 

 

 
Fig. 4.5 Block diagram of LABVIEW interface 
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4.2.4.2 SCB-68 (Shielded Collector Block) 

SCB-68 is a shielded I/O connector block with 68 screw terminals for easy connection to a NI 

DAQ device. Depending on the Input signal type the location of connecting the signal on SCB-

68 changes. For example, in this work the output of Hall Effect Sensor was referenced to the 

power supply which in turn was connected to building ground. Hence the sensor output could 

either be connected as a Non Referenced Single Ended (NRSE) input or as a Differential input. 

However, the connection terminals would be different. SCB-68 as used in this work is shown in 

Fig. 4.6. Details of SCB-68 such as connection type recommendations for different inputs, 

location of channels for different supported DAQ cards, etc may be found in [40]. 

 
Fig. 4.6 Shielded Collector Block (SCB-68). 

 
4.2.4.3 NI PCI-MIO-16E4 (NI 6040E) DAQ Card 

This DAQ Card supports 16 Analog Channels (8 in differential mode as two channels make one 

differential channel) and has an input resolution of 12 bits. The maximum sampling rate is 500K 

samples per second. The maximum value of input voltage that can be applied is ±10V. Details 

of this card can be found in its manual [41]. 
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In this work six analog channels of the DAQ card were used at a time. All the channels 

were configured for a sampling rate of 5K samples per second. Three channels were configured 

as NRSE inputs for stator current measurement via Hall Effect Sensors while remaining three 

were configured in Referenced Single Ended (RSE) mode for measuring accelerometer output. 

The location of inputs on SCB-68 for the above channels was determined from the ‘DAQ 

Assistant’ VI block of LABVIEW.  

4.3 Experiment Set-up and Test Cases 

4.3.1.    Experiment Set-Up 

The schematic diagram of experiment set-up is shown in Fig. 4.7. Test motor could be 

fed directly from three phase mains supply or via a variable speed drive. A 15 amperes circuit 

breaker separated the motor from supply for protection purposes. Hall Effect sensors were 

placed on each phase of the motor to measure the stator current.  In order to measure motor 

vibrations, the accelerometer was fixed to the motor frame with epoxy so that there was no 

relative motion between the accelerometer and the frame.  

 
Fig. 4.7 Schematic diagram of experiment set-up. 
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Hall Effect Sensors were fed from a bi-polar constant voltage power supply. A bi-polar 

supply was essential as Hall Effect Sensors used required an input of ±15Volts. Similarly, the 

accelerometer also needed a power supply and 3V batteries were used for this purpose. 

Outputs of all the sensors were brought into SCB-68 using as small a wire length as possible. 

This was done to reduce noise pickup. The output of SCB-68 was connected to DAQ card via a 

special shielded cable manufactured by National Instruments.   

4.3.2     Test Cases 

As mentioned in section 4.2, rotor imbalance was created using different weight bolts 

that were fixed to the hub. Four different levels of rotor imbalance were created using bolts of 

four different weights-6gm, 11gm, 16gm and 21gm. The idea here was to use the imbalance 

feature set so collected to determine the progression of rotor imbalance in the target machine 

by applying ANFIS and Dempster Shafer Theory. 

One experiment set, therefore, comprised of five text files, one file for healthy motor 

(called ‘0gm’ imbalance) and four files for rotor unbalanced with above mentioned weights. 

Each text file in turn was an array of 50000 rows and 6 columns. Three columns had stator 

current data while the other three columns had vibration data from the three axes of the 

accelerometer. Each column was 50000 data points in length as data was collected for a period 

of 10 seconds at a sampling rate of 5K samples/second.    

Twenty such experiment sets were prepared over a month. This was done to take into 

account random factors that are beyond control (mains supply variations, random noise in 

measurements, jitter in DAQ cards, etc). More confidence could therefore be placed on rotor 

imbalance severity classification based on these experiment sets.    

4.3.3.    Fault Feature Extraction from Experiment Sets 

As demonstrated in the previous chapter, rotor imbalance manifests itself as ‘fs±fr’ 

frequency components in the stator current spectrum. In this work, however, only ‘fs+fr’ 

frequency component was used. This was done due to two reasons. Firstly, ‘fs-fr’ provides 
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redundant information. Secondly, for a 2-pole motor ‘fs-fr’ lies very close to the dc value in 

frequency spectrum. Therefore, larger memory needs to be committed for increasing the 

resolution to extract this component.  

As for vibration signals, while accelerometer provided vibration information for all the 

three axes, only X axis vibrations were processed as Y axis vibrations were not expected to 

increase with imbalance and Z axis vibrations provided redundant information. Moreover, the 

role of vibrations here was only to verify the imbalance signature from stator currents for which 

X axis vibrations were sufficient. 

Therefore, four signals in each file of an experiment set were eventually processed- 

three phase currents and X axis vibration. Following procedure was adopted for extracting fault 

features from each of these four signals. Each signal in a file was divided into 10 bins of 1 

second each (5000 elements) and the Fourier transform of each bin was taken. This step 

resulted in 10 columns of Fourier coefficients (5000 elements in length). In order to reduce the 

effect of random noise related frequencies, these 10 columns were averaged to give a single 

column of 5000 Fourier coefficients. Hence, each file in an experiment set was transformed into 

a 5000X4 array. Fig. 4.8 gives a schematic of the above procedure. 
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Fig. 4.8 Schematic diagram explaining fault feature extraction procedure 

 
Since the frequency component of interest was ‘fs+fr’ for stator currents and ‘fr’ for X 

axis vibrations, maximum value of Fourier Transform magnitude in the range 2*fs to 2*fs-5 Hz 

was extracted from the stator current spectrum while maximum value in the range fs to fs-5 Hz 

was extracted for X axis vibration spectrum. This was done due to two reasons. First, being a 2 

pole motor ‘fr’ was nearly equal to ‘fs’ and second, rated slip of the motor was 2.5Hz allowing 

5Hz bandwidth to cover the entire range of operation. In fact, 5 Hz bandwidth would suffice for 

most motors as the slip is seldom greater than 10%. Thus, eventually each experiment set was 
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converted into a 5X4 array of fault features; first three columns contained fault feature obtained 

from motor currents while the fourth column had X axis vibration fault feature.  

4.4 Experiment Results  

Fig.4.9, 4.10 and 4.11 show the magnitude of Fourier coefficients for ‘fs+fr’ frequency 

component in stator current spectrum under different degrees of imbalance. Fig. 4.12 shows the 

trend in Fourier Coefficient magnitude for ‘fr’ frequency component in X axis vibration spectrum. 

This figure has been presented to compare the trend of vibrations with that of stator currents.  

 
Fig. 4.9 Fourier coefficients for ‘fs+fr’ frequency component  in phase A current spectrum 

 under different degrees of imbalance; 4 different days 
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Fig. 4.10 Fourier coefficients for ‘fs+fr’ frequency component in phase B current spectrum 

 under different degrees of imbalance; 4 different days 
 

 
Fig. 4.11 Fourier coefficients for ‘fs+fr’ frequency component in phase C current spectrum 

 under different degrees of imbalance; 4 different days 
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Fig. 4.12 Fourier coefficients for ‘fr’ frequency component in X axis vibration spectrum 

 under different degrees of imbalance; 4 different days 
 

    From Fig. 4.9 to Fig. 4.12, following observations may be made: 

• Like the imbalance signature in vibration spectrum, signature in the current 

spectrum also increases in magnitude with an increase in the degree of imbalance. 

This validates the use of current signal for determining severity of imbalance. 

• While fault signatures increase with an increase in imbalance for each phase, the 

trend is not same. Even for the same phase, trend is slightly different for different 

experiment sets. 

The last observation makes a strong case for using intelligent classification techniques 

that may generalize the trend observed in Fig. 4.9 to Fig.4.11 by combining information from 

current sensors, and accurately determine the degree of rotor imbalance. The next section 

therefore, uses ANFIS and DS theory for determining the severity of rotor imbalance by 

combining fault information from current sensors.  

 

 



                                

47 
 

4.5 Sensor Fusion and Rotor Imbalance Severity Classification 

4.5.1.    ANFIS: Methodology and Results             

4.5.1.1 Methodology     

ANFIS was implemented in MATLAB using the built in ANFIS editor. Fig. 4.13 shows the ANFIS 

editor GUI. This GUI allows initialization of FIS using either ‘grid partitioning’ or ‘subtractive 

clustering’. It further allows importing training, testing and validation data from either the disk or 

MATLAB workspace. The data, however, needs to be arranged as an array with number of 

columns being equal to the number of inputs plus one output. Since ANFIS implements only 

Sugeno type FIS, there can be only one output. Further, the inputs and outputs must be 

normalized such that they lie between 0 and 1.  

 
Fig. 4.13 ANFIS editor GUI 

 
In view of the above requirements, the first step in implementing ANFIS was to prepare 

the training and testing data in appropriate format. As mentioned in section 4.3.3, each 

experiment set was finally processed into a 5 X 4 array of fault specific Fourier coefficients. 

Sixteen such arrays were combined together in a table to yield an 80X4 array for training the 
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ANFIS. Three more sets were combined in a similar way to yield a 15X4 array for testing the 

ANFIS.  

 As ANFIS accepts data between 0 and 1, both training and testing sets were 

normalized. Since there were four types of fault features (3 phase currents and X axis 

vibration), 4 normalization factors were needed. For each feature type, normalization factor was 

taken as the median of respective 21gm fault features in the training set. Both training and 

testing set were normalized by dividing with these normalization factors. If after normalization a 

value came out to be greater than 1, it was fixed at 1. After training and testing sets were 

normalized, the column of ‘desired’ output was added to both of them; required format of input-

output data to be used for implementing ANFIS via ‘anfisedit’ GUI of MATLAB. 21.1gm was 

assigned a fault level of 0.9 and other levels were assigned proportional values. No fault or 0gm 

level was given a value of 0.07 as the fault feature was not zero for this weight. Thus, training 

set eventually became an 80X5 array while testing set was converted to a 15X5 array. Table 

4.1 lists the contents of 5 columns in each row of the training and testing arrays. 

Table 4.1 Contents of 5 columns in each row of the training and testing arrays 
 for ‘n’ experiment sets. ‘n’ =16 for training array and ‘n’ =3 for testing array. 

 Column 1-4; Fault features for: Column 5 (Desired output) 
Row numbers : 1,6,…5n-4 ‘0’  gm imbalance or ‘No’ Fault. 0.07 
Row numbers : 2,7,…5n-3 ‘6’  gm imbalance  0.26 
Row numbers : 3,8,…5n-2 ‘11’ gm imbalance  0.47 
Row numbers : 4,9,…5n-1 ‘16’ gm imbalance  0.68 
Row numbers : 5,10,…5n ‘21’ gm imbalance  0.90 

 

Although all 4 input columns could be used for training and testing the network, only 

two of the three currents were used as inputs to ANFIS. This was done because of the following 

reasons: 

• The aim was to classify rotor imbalance severity using stator currents. 

• Training data being limited, using three inputs increased the number of parameters 

to a large value increasing chances of over fitting and poor generalization. 
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While any two phases could have been used as inputs to ANFIS; the results presented 

here are based on Phase A and Phase B being used as 2 inputs. 

Having converted the training and testing sets into appropriate format and chosen the 

inputs, the next step was to initialize the FIS. Subtractive clustering [42] was used for this 

purpose as it allows an automatic selection of the number of membership functions for an input 

depending on the data. Once ANFIS was initialized, it was trained using hybrid algorithm 

(Section 3.3.1). The trained network was then tested with unseen data to check if the network 

had generalized the relationship between inputs and outputs. Section 4.5.1.2 presents and 

discusses the training and testing results of ANFIS. 

4.5.1.2 Results and Discussion     

ANFIS structure, training results, rules and testing results are shown in Fig. 4.14, 4.15, 4.16 and 

4.17 respectively. Fig. 4.14 shows that subtractive clustering assigned two membership 

functions for each input. These membership functions were then modified during the training 

process to yield the final membership functions and rules illustrated in Fig. 4.16. When testing 

data was presented to the final trained ANFIS of Fig. 4.16, Fig. 4.17 resulted. This figure may 

be interpreted as follows:  

X coordinate axis of Fig. 4.17 represents the ‘Row numbers’ of Table 4.1 while the Y 

coordinate axis represents two things- ‘Desired output’ or ‘desired’ rotor imbalance severity of 

Table 4.1 and estimated output or estimated rotor imbalance severity of ANFIS.  Every point 

represented by a ‘dot’ on Fig. 4.17 has ‘Row number’ of Table 4.1 as its X coordinate and 

‘Desired output’ of Table 4.1 as Y coordinate. On the other hand, every point represented by a 

‘star’ in Fig. 4.17 has ‘Row number’ of Table 4.1 as its X coordinate and ANFIS estimated 

output as Y coordinate. 
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Fig. 4.14 ANFIS Structure 

 

 
Fig. 4.15 Training the ANFIS 
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Fig. 4.16 Rules and Membership Functions of ANFIS 

 

  
Fig. 4.17 Testing the ANFIS 
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Fig. 4.18 Trend of phase A and phase B imbalance features  
for the testing set. ‘X’ axis is ‘Row numbers’ as in Table 4.1 

 
Table 4.2 ANFIS Summary 

S. No ANFIS Attributes Values 
1 No of Inputs 2 
2 Types of Inputs Stator Currents 
3 No of membership 

functions per input 
2 

4 No of rules 2 
5 FIS initialization 

method 
Subtractive 
Clustering 

6 Training data points 
/Average Error (%) 

80/8.7 

7 Testing data points 
/Average Error (%) 

15/11.9 

 

Table 4.2 summarizes the ANFIS structure and also lists the training and testing errors. 

From Table 4.2, Fig. 4.17 and Fig. 4.18, following observations may be made: 

• While the average training error was 8.7%, average testing error stood higher at 

11.9%.  

• The ‘stars’ in Fig. 4.17 lay out the trend of rotor imbalance severity as estimated by 

ANFIS. This trend is similar to the trend of phase A and Phase B fault features (Fig. 
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4.18) in the testing set. However, unlike the linear trend of ‘desired’ imbalance 

severity, the ANFIS estimated trend is not linear.    

Above observations make it clear that although ANFIS was able to estimate the trend 

of rotor imbalance severity that matched closely with the trend in input fault features, there was 

a significant mismatch between the estimated trend and the assigned ‘desired’ trend. This 

mismatch might have been different had a different ‘desired’ trend been used while training the 

FIS. In the absence of an expert that may help in choosing a correct ‘desired’ fault severity 

trend, performance of imbalance classification is subject to the arbitrariness of choosing the 

‘desired’ trend.  

Therefore, discussion on ANFIS may be concluded by saying that, though it is an 

intuitive and effective technique of combining multiple sensors to determine the degree of rotor 

imbalance and determines rotor imbalance severity with reasonable accuracy, it suffers from 

the drawback of a need to assign numerical values to ‘desired’ level of severity that are seldom 

known.  

Next section discusses severity classification of rotor imbalance using Dempster Shafer 

Theory and shows that it does not suffer from the above drawback of ANFIS. 

4.5.2     Fault Severity Classification using Dempster Shafer Theory     

4.5.2.1 DS Theory Classification Methodology  

As explained in the previous chapter, Dempster Shafer Theory is a frame work for combining 

evidence from different sources. It therefore fits very well with our present problem where we 

intend to combine the fault information from two or three separate Hall Effect sensors for 

determining rotor imbalance severity level.  

Two steps, however, need to be completed before DS theory may be applied for 

evidence combination. These are: 

• Determining the number and type of hypothesis. 

• Assigning basic probabilities (BPAs) to each hypothesis for each sensor. 
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In this work, three hypotheses were chosen- no fault , minor fault  and major fault . These 

hypotheses were mutually exclusive and collectively exhaustive. This implied that each sensor 

would assign three basic probabilities to every data point in the fault feature space. These 

BPAs were assigned using FCM clustering since BPAs may be considered equivalent to 

membership values when the number of clusters are equal to the number of hypotheses 

(Chapter 3). Membership values corresponding to lowest value of cluster center were assigned 

as BPAs for no-fault hypothesis while those corresponding to highest value of cluster center 

were assigned as BPAs for major fault hypothesis. This procedure was adopted for each 

sensor.  

As can be recalled from section 4.5.1.1, training data set for ANFIS was an 80X5 array. 

This array was used in DS based classification as well. However, two modifications were made 

in it: 

1. As this method did not require any supervised training, column 5 of the array was 

not required. Similarly, column 4 containing vibration fault feature was also not 

used. 

2. For better visualization and easier interpretation of results, data in the remaining 

three columns was arranged according to the format shown in Table 4.3. 

Table 4.3 Arrangement of rows in each column of array used for 
 imbalance severity classification using DS theory 

 Column 1 -3 (Fault features)  
Row numbers  : 1,2,3…..16 ‘0’ gm imbalance or ‘No’ Fault. 
Row numbers  : 17,18,19…..32 ‘6’  gm imbalance  
Row numbers  : 33,34,35…..48 ‘11’ gm imbalance  
Row numbers  : 49,50,51…...64 ‘16’ gm imbalance  
Row numbers  : 65,66,67…..80 ‘21’ gm imbalance  

 

Once the array of fault feature was arranged as given in Table 4.3, FCM clustering was 

performed on each column of the array. This clustering gave an 80X9 array of BPAs, with three 

columns each for each phase current. These columns of ‘evidence’ were then combined by 

following Dempster’s rule of evidence combination to give an 80X3 array of Belief or Plausibility 
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or probability (all were same as hypotheses were mutually exclusive and exhaustive) of the 

hypotheses. It may be recalled from Chapter 3, that while several techniques exist for 

combining evidence under Dempster Shafer Theory, Dempster rule was used in this work as it 

has a good performance under low conflict evidence set. Since, Section 4.3.1 showed (Fig. 4.9-

4.11) that conflict between each sensor was indeed low; use of Dempster’s rule was justified. 

Fig. 4.19 illustrates the steps in imbalance classification using DS theory in conjunction with 

FCM clustering. 

 
Fig. 4.19 Procedure for sensor fusion and imbalance  

classification using DS theory 
 

4.5.2.2 DS Theory Classification results 

In all the figures that follow (Fig. 4.20 to Fig. 4.22), X coordinate axis represents ‘Row numbers’ 

as given in Table 4.3. Similarly, Y coordinate axis of first three plots in each of Fig. 4.20, 4.21 

and 4.22, represents BPA assigned to a hypothesis by a phase, while the fourth plot in each of 
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Fig. 4.20, 4.21 and 4.22 represents the Belief or Plausibility or probability of the hypothesis 

being true after sensor fusion.  

Another point to keep in mind before interpreting the results is that, by nature of the 

normalization performed on the data used here (See Section 4.5.1.1) ‘21.1gm’ imbalance  is the 

highest fault level while ‘0gm’ imbalance is the lowest fault level. 

 
Fig. 4.20 Confidence in ‘No-Fault’ hypothesis 

 before and after sensor fusion 
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Fig. 4.21 Confidence in ‘Minor-Fault’ hypothesis  

before and after sensor fusion 
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_

 
Fig. 4.22 Confidence in ‘Major-Fault’ hypothesis 

 before and after sensor fusion 
 

From Fig. 4.20 it is clear that sensor fusion asserts the belongingness of ‘0gm’ 

imbalance (first 16 points) to ‘No-Fault’ hypothesis more strongly than any of the phases alone. 

Fig. 4.21 and Fig. 4.22 further show that sensor fusion is more assertive in rejecting ‘0gm 

imbalance’ as belonging to ‘Minor’ and ‘Major’ fault hypothesis than any of the phases alone. 

Similar arguments may be made for ‘21gm’ imbalance (points 64 to 80) as well. While any 

improvement for other imbalance weights is not clear from the figures, it is explicitly borne out 

by Tables 4.4, 4.5, 4.6 and 4.7. Table 4.4 gives the mean percentage belongingness of each 
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fault level to the three hypotheses after evidence combination by DS theory. Table 4.5, 4.6 and 

4.7 illustrate the same content as in Table 4.4 but based on BPAs assigned to individual phase 

current fault feature set. Next section discusses the observations made in Fig. 4.20 to Fig. 4.22 

and Tables 4.4 to 4.7. 

Table 4.4 Mean percentage belongingness of each fault level to the 
 three hypotheses after evidence combination 

 No-Fault 

(%) 

Minor-

Fault (%) 

Major-

Fault (%) 

0gm 99.56 0.41 0.03 

6gm 43.88 55.90 0.22 

11gm 17.80 80.49 1.71 

16gm 0.19 53.24 46.57 

21gm 0.00 0.06 99.94 

 
Table 4.5 Mean percentage belongingness of each fault level to the 

 three hypotheses based on phase ‘A’ fault feature set BPAs 

 No-Fault 

(%) 

Minor-

Fault (%) 

Major-

Fault (%) 

0gm 90.79 7.30 1.91 

6gm 51.08 45.58 3.34 

11gm 25.11 71.75 3.14 

16gm 2.41 54.30 43.29 

21gm 0.39 1.70 97.91 

 
Table 4.6 Mean percentage belongingness of each fault level to the 

 three hypotheses based on phase ‘B’ fault feature set BPAs 

 No-Fault 

(%) 

Minor-

Fault (%) 

Major-

Fault (%) 

0gm 95.34 3.78 0.88 

6gm 47.49 49.77 2.73 

11gm 9.92 81.61 8.47 

16gm 3.93 43.81 52.27 

21gm 0.80 2.55 96.64 
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Table 4.7 Mean percentage belongingness of each fault level to the  
three hypotheses based on phase ‘C’ fault feature set BPAs 

 
 

No-Fault 

(%) 

Minor-

Fault (%) 

Major-

Fault (%) 

0gm 87.21 11.20 1.58 

6gm 54.73 43.72 1.55 

11gm 10.43 81.95 7.62 

16gm 3.98 40.39 55.63 

21gm 1.09 3.02 95.87 

 

4.5.2.3 Discussion            

From the above tables and figures following conclusions may be reached about Fault severity 

classification using Dempster Shafer Theory in conjunction with FCM: 

• Fuzzy C-means clustering is an effective BPA assignment technique. This is clear 

from Tables 4.4 to 4.6 where BPAs (expressed as percentage) assigned to the 

hypotheses make logical sense. It can be seen that belongingness to ‘No-Fault’ 

hypothesis decreases as fault level increases while that to ‘Major-Fault’ hypotheses 

increases. Similarly, belongingness to ‘Minor-Fault’ hypothesis first increases and 

then decreases.  

• As pointed out earlier, Sensor Fusion using Dempster-Shafer Theory gave more 

accurate results in determining low and high degrees of imbalance. This is 

indicated by 2-4% better performance of sensor fusion in detecting 21gm 

imbalance (compare last row of Tables 4.5, 4.6 and 4.7 with Table 4.4) and 5-13% 

better performance in declaring no fault or ‘0gm imbalance’ (compare 1st row of 

Tables 4.5, 4.6 and 4.7 with Table 4.4). 

• Sensor fusion performed better in case of classifying ‘6gm’ imbalance as well. This 

is clear from Tables 4.4 to 4.7 where  ‘6gm’ imbalance being  ‘Major Fault’ is 

probable to an extent of only  0.22% according to sensor fusion but it is probable to 
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an extent of 3.34% as per Phase A, 2.73% as per Phase B and 1.57% as per 

Phase C. 

• Performance of sensor fusion was better for ‘16gm’ imbalance as well. It was 

flagged to be ‘No-Fault’ with a probability of only 0.19% by sensor fusion. The 

probabilities assigned by individual phases were, however, considerably higher; 

2.41% by Phase A, 3.93% by Phase B and 3.98% by Phase C. 

Therefore, it can be seen that accurate assertions on degree of rotor imbalance may be 

made by using FCM clustering to determine BPAs and then combining them by Dempster’s 

rule. Hence, Dempster Shafer theory in conjunction with FCM clustering is an effective 

technique to determine degree of rotor imbalance.  

4.6 Conclusion 

This chapter presented a test bed based approach for rotor imbalance diagnostics. 

Fault features in the three stator currents were obtained by conducting experiments on a SQIM 

motor over a period of 30 days. Using these features it was shown that the trend in fault 

features was not identical for the three phases and varied over time even for the same phase.  

This made a strong case for using intelligent sensor fusion techniques, ANFIS and Dempster 

Shafer Theory in conjunction with FCM clustering, to ‘learn’ the actual trend and accurately 

determine imbalance severity. Both techniques were used to determine the degree of 

imbalance from fault feature set. From the classification results it was found that while both 

methods allowed for sensor fusion and performed very accurate severity classification, DS 

theory in conjunction with fuzzy C-means clustering was more convenient and intuitive than 

ANFIS. This was due to the requirement of a numerical ‘desired severity’ assignment in ANFIS 

while DS theory didn’t require any such assignment. Although the reason for this requirement 

being a problem was discussed in Section 4.5.1.2, it is explained more clearly by means of an 

example in the next and concluding paragraph of this chapter.  
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Suppose a motor technician knows that for a particular machine up to 10gm imbalance 

is low severity, 10gm to 20gm is medium severity and severity is high thereafter. Tests may 

then be conducted as explained in this chapter with a number of weights lying in the ranges 

given above. Using DS theory in conjunction with FCM one may easily divide the fault feature 

set into three clusters as told by the technician. ANFIS however, will pose a problem of severity 

assignment to test weights of say 13gm and 19gm as they lay in the same severity level and so 

the expert (technician) has no knowledge about differentiating between these two cases. DS 

theory with FCM being used for BPA assignment to each hypothesis is, therefore, a better 

technique to determine degree of rotor imbalance.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

It was stated in Chapter 2 that this thesis had two objectives. First objective was to 

accurately model rotor imbalance fault in induction machines and explain the process that 

generates rotor imbalance signatures in stator current. The second objective was to develop a 

test bed based approach for rotor imbalance diagnostics that incorporated sensor fusion. While 

Chapter 3 presented the techniques for achieving the objectives, Chapter 4 presented a 

comprehensive test bed based rotor imbalance diagnostics scheme that could combine fault 

information from the three phases. 

In Chapter 3, a SQIM with rotor imbalance was modeled using space phasor theory. 

Resulting equations were then solved using SIMULINK and rotor imbalance fault signatures in 

stator current were determined. They were found out to be the same as reported in literature 

and were further verified in Chapter 4 by experiments performed on an actual Squirrel Cage 

Induction Motor. However, the most important outcome of motor modeling was a clear picture of 

why these signatures appear. It was demonstrated that rotor imbalance superimposes fr Hz 

oscillation on an otherwise constant steady state electromagnetic torque. As a result, rotor 

speed and rotor m.m.f also get modulated by fr Hz oscillation. This rotor m.m.f induces voltages 

with ‘fs±fr’ frequency components in the stator windings. Voltages with ‘fs±fr’ frequency 

components cause such frequency currents to flow in the stator as well.  

Chapter 3 also presented two methods for performing sensor fusion. The first method 

was ANFIS. In this method, fault features and a corresponding desired severity level from two 

current sensors were used to train premise and consequent parameters of a rule base. This 

training enabled ANFIS to capture the relationship between fault features and severity level. 
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ANFIS was shown to provide a good estimate of rotor imbalance severity besides providing a 

set of handy linguistic rules that related fault features from two sensors with degree of rotor 

imbalance. The only drawback of ANFIS was the need to assign a numerical value to an 

imbalance level. This requirement was, however, absent in rotor imbalance severity 

classification under Dempster Shafer Theory framework. It was shown that a piece of evidence 

could be assigned Basic Probability Assignment for each hypothesis using Fuzzy C-Means 

clustering (hypotheses here were synonymous with fault severity levels and could be expressed 

in linguistic terms). BPAs for each sensor when combined using Dempster’s rule of evidence 

combination were shown to give more accurate results about fault severity than individual 

sensors.  

In gist, this thesis provided a much clearer understanding of rotor imbalance fault 

addressed along with developing a new and holistic approach to reliably determine the severity 

of rotor imbalance by combining evidence from different phases of stator current. Since wind 

turbines are most prone to rotor imbalance fault, using the rotor imbalance detection and 

classification techniques developed here, rotor imbalance may be detected at an early stage 

and an optimal maintenance decision may be taken. This will not only benefit the owners of 

wind farms but also help increase the share of wind electricity by keeping wind turbines on-line 

for longer durations. 

5.2 Future Work 

While this thesis focused on rotor imbalance fault due to its wide spread prevalence in 

wind farms, other faults related to bearings, broken rotor bars and stator windings are also 

major fault modes in machines. Of these, bearing fault is the most common accounting for the 

failure of more than 40% industrial motors. Ironically, however, this is the least investigated fault 

mode. Although some authors have attempted to determine bearing fault signatures, they have 

created bearing faults that are too drastic to occur in the initial stages. Since the aim of an 

effective CBM technique is to detect faults at an incipient stage, such an approach is not useful. 
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Hence, simulating early stages of bearing fault and determining corresponding signatures is an 

important research area.  

Another area that hasn’t been explored much is the effect of Variable Frequency Drives 

(VFDs) on fault diagnosis. Since VFDs contain a lot of noise and harmonics, they may obscure 

the fault signatures determined for a mains fed machine. Hence, evaluating the effect of VFDs 

on established fault signatures is also a good research area. 

Still another area of research in Condition based Maintenance of machines appears to 

be the implementation of fault diagnosis schemes on a Digital Signal Processor (DSP). This is 

important since most drives come equipped with a DSP and if fault diagnosis could be done on 

board then there would not be any need to periodically send data to a central control center. 

Only the status of fault may be relayed to the control room via SCADA or any other 

communication protocol such as Zigbee.    

Hence, it can be said that CBM of electric machines is an important research area with 

immense potential for application in industry. To realize its full potential, cheap, comprehensive 

and robust fault diagnosis techniques must be developed, that may be incorporated in decision 

making software to make maintenance decisions based on actual machine condition than on 

some pre-determined rules of thumb. 
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APPENDIX A 

 
 

MATLAB CODES FOR ROTOR IMBALANCE FEATURE EXTRACTION AND SEVERITY 
CLASSIFICATION USING DEMPSTER SHAFER THEORY 
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A.1  MATLAB Code for Rotor Imbalance Feature Extraction 
 

% This code extracts the fault features from curren t and X-axis  
% vibration data according to the procedure present ed in  
% Section 4.3.3. Signals were % "windowed" using a 'Blackman'  
% window, to reduce leakage while taking the fourie r transform  
% of the data. Primary variables used in this code are  
% explained below:  
  
% -----------------Variables used and their functio n-----------------  
% 'w'        = stores coefficients forming the 'bla ckman' window.  
% 'om'       = an integer indicating column number of a signal  
%              in a text file obtained from LABVIEW . Columns 2-4  
%              store current information from the t hree phases,  
%              while 5th column stores X axis vibra tion information.  
% 'kkk'      = index for an experiment set.  
% 'i'        = index for an imbalance weight.  
% 'x' & 'x1' = Together they define the path of tex t files.  
% 'dat'      = 50000 X 7 array. Stores the entire t ext file  
%              (10 seconds long)identified by conca tenation  
%              of 'x' and 'x1'.   
% 'j'        = index for a 1 second long column ext racted  
%              from a 10 second long column of 'dat '.  
% 'data_x'   = 5000 X 10 array. Each column of 'dat a_x' is  
%              identified by 'j'. 'dat' column is i dentified  
%              by 'om'.  
% 'X_dft'    = 5000 X 10 array. Stores the  windowe d FFT of  
%              'data_x'.  
% 'maxx'     = 5 X 1 vector. Each row of 'maxx' is identified  
%              by 'i'. When 'om' between 2 & 4, lim its included,  
%              'maxx'stores the maximum value of 'X _dft'  
%              between 115 and 120Hz. When 'om' equ als 5, 'maxx'  
%              stores the maximum value of 'X_dft' between 55  
%              and 60Hz.  
% 'table_i1' = 5 X N array. Each column stores 'max x' for an  
%              experiment set. N identifies the num ber of  
%              experiment sets. In the present case , N=16 for  
%              training table and 3 for testing tab le.  
  
  
  
w=window(@blackman,5000);  
for  om=2:5  
     
    switch  om  
        case  2  
            name= 'C:\Matlab\Thesis_codes\tables\table_i1' ;  
        case  3  
            name= 'C:\Matlab\Thesis_codes\tables\table_i2' ;  
        case  4  
            name= 'C:\Matlab\Thesis_codes\tables\table_i3' ;  
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        case  5  
            name= 'C:\Matlab\Thesis_codes\tables\table_vibx_60' ;  
    end 
 
    for  kkk=1:16  
        tab1=0;  
        switch  kkk  
            % Training table  
           case  1  

                   
x1= 'C:\Matlab\converted_files\latest_sets\28th_oct_set 1' ;  

           case  2  
x1= 'C:\Matlab\converted_files\latest_sets\28th_oct_set 2' ;  

           case  3  
x1= 'C:\Matlab\converted_files\latest_sets\29th_oct_set 3' ;  

           case  4  
x1= 'C:\Matlab\converted_files\latest_sets\29th_Oct_set 4' ;  

           case  5  
            x1= 'C:\Matlab\converted_files\latest_sets\30th Oct set  5' ;  
           case  6  
            x1= 'C:\Matlab\converted_files\latest_sets\oct 30th set  6' ;  
           case  7  
            x1= 'C:\Matlab\converted_files\latest_sets\31st Oct set  7' ;  
           case  8  
            x1= 'C:\Matlab\converted_files\latest_sets\31st oct set  8' ;  
           case  9  
            x1= 'C:\Matlab\converted_files\latest_sets\1st Nov set 9' ;  
           case  10  
            x1= 'C:\Matlab\converted_files\latest_sets\nov 1st set 10' ;  
           case  11  
            x1= 'C:\Matlab\converted_files\latest_sets\Nov 1 set 11 ' ;  
           case  12  
            x1= 'C:\Matlab\converted_files\latest_sets\set 14' ;  
           case  13  
            x1= 'C:\Matlab\converted_files\latest_sets\set 15' ;  
           case  14  
            x1= 'C:\Matlab\converted_files\latest_sets\set 16' ;  
           case  15  
            x1= 'C:\Matlab\converted_files\latest_sets\set 17' ;  
           case  16  
            x1= 'C:\Matlab\converted_files\latest_sets\set 18' ;  
                 
            %Testing table  
           case  17  
            x1= 'C:\Matlab\converted_files\latest_sets\set 19' ;  
           case  18  
            x1= 'C:\Matlab\converted_files\latest_sets\set 20' ;  
           case  19  
            x1= 'C:\Matlab\converted_files\latest_sets\set 21' ;  
        end  
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        for  i=1:5  
            switch  i  
                case  1  
                    x= '0gm_mech.txt' ;  
                case  2  
                    x= '6gm_mech.txt' ;  
                case  3  
                    x= '11gm_mech.txt' ;  
                case  4  
                    x= '15.9gm_mech.txt' ;  
                case  5  
                    x= '21.1gm_mech.txt' ;  
            end  
             
            dat=textread([x1 '\'  x]);  
             
            % Extracting the feature  
         
            for  j=1:10  
                data_x=dat((j-1)*5000+1:j*5000,om);  
                X_dft(:,j)=fft(data_x.*w);  
            end  
            maxx(i)=max(max(abs(X_dft(116:121,:)))) ;  
             
            % for vibration data, replace above with:  
            % maxx(i)=max(max(abs(X_dft(56:61,:))));  
        end  
         
        % storing the extracted feature in 'table_i1'  
         
        table_i1(1:5,kkk)=maxx;  
         
        % for testing data, replace above expression with:  
        % table_i1(1:5,kkk-16)=maxx;  
     
    end  
    save(name, 'table_i1' )  
end  
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A.2  MATLAB Code for Severity Classification using Dempster Shafer Theory 
 

% Notes: The table- 'normalized16_sets_train_table. mat' contains  
% rotor imbalance fault features. They are arranged  in 3 columns,  
% 1 each for each phase current. For each column, r ows are arranged  
% according to the following rule:  
 
% row (1,2,3,4,5)           == fault_feature(0gm,6g m,11gm,16gm,21gm)  
% row (6,7,8,9,10)          == fault_feature(0gm,6g m,11gm,16gm,21gm)  
% ................  
% ................  
% ................  
% row (5n+1,5n+2,..., 5n+5) == fault_feature(0gm,6g m,11gm,16gm,21gm)  
% where,  
% n=no of experiment sets - 1  
% As mentioned in Chapter 4, for DS theory classifi cation 16 sets  
% were used, hence n= 15 in present case. The follo wing three lines  
% of code open the stored table and stores its cont ents in a  
% variable named 'final_table'.  
  
x=open ( 'normalized16_sets_train_table.mat' );  
namee=cell2mat(fieldnames(x));  
final_table=x.(namee);  
  
% Next section stores the contents of 'final_table'  into a new  
% variable -'tran' according to the following forma t:  
  
% tran(i,1:3)=final_table(5*(n-1)+k,1:3)  
% where,  
% k=1 for '0gm' imbalance   
% k=2 for '6gm' imbalance  
% k=3 for '11gm' imbalance  
% k=4 for '16gm' imbalance  
% k=5 for '21gm' imbalance  
%and,  
% n=1,2,3.....16  
% i= (k-1)*16+1,(k-1)*16+2, ........ (k)*16  
% This re-arrangement makes visual interpretation o f DS theory  
% classification easier.  
  
for  k=1:3  
    kk=0;  
    for  j=1:5  
        for  i=1:16  
            kk=kk+1;  
            tran(kk,k)=final_table((i-1)*5+j,k);  
        end  
    end  
end  
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% Fuzzy C-means clustering is implemented in this s ection using  
% 'fcm' function of MATLAB. Data is divided into 3 clusters.  
% Therefore, for every column in 'tran', three colu mns of  
% membership values are obtained. These are stored in 'U'.  
% Cluster centers are stored in 'center'. Cluster c enters so  
% obtained are not arranged in an order, so this se ction of  
% code arranges columns in 'U' in increasing order of 'center'  
% values, i.e., Column 1 of 'U' has membership valu es corresponding  
% to the smallest cluster center while Column 3 sto res membership  
% values corresponding to the largest cluster cente r. Re-arranged  
% 'U' for each column of 'tran' is stored in 'U_all '.  
  
U_all=[];  
[m,n]=size(tran);  
for  i=1:3  
    [center,U,objfun]=fcm(tran(:,i),3);  
  
    pos(1)=find(center==max(center));  
    pos(2)=find(center==min(center));  
    pos(3)=find((center>center(pos(2)) & center<cen ter(pos(1))));  
  
    tempmx=U(pos(1),:);  
    tempmn=U(pos(2),:);  
    U(2,:)=U(pos(3),:);  
    U(1,:)=tempmn;  
    U(3,:)=tempmx;  
  
    U_all=cat(2,U_all,U');  
end  
  
% 'U_all' now contains the evidence for each hypoth esis and each  
% sensor. DS theory evidence combination in perform ed in this  
% section. To this end, membership values from sens or 1, i.e.  
% columns 1 to 3 and those from sensor 2 i.e. colum ns 4:6 are  
% combined first and the result stored in 'U_new'. Evidence from  
% 'U_new' is then combined with third sensor , coul mns 7 to 9 of  
% 'U_all', and resulting Belief (Plausability) stor ed in 'U_new'.  
% 'K' is the conflict between each sensor.  
  
len=length(U);  
nn=0;  
U_new=U_all(1:len,1:3);  
for  m=2:3  
    for  l=1:len  
        K=0;  
        U_two=cat(2,U_new,U_all(1:len,(m-1)*3+1:m*3 ));  
        for  i=1:3  
            for  j=4:6  
                if  j==i+3  
                    continue  
                end  
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                K=K+U_two(l,i)*U_two(l,j);  
                nn=nn+1;  
            end  
        end  
         
        for  i=1:3  
            U_new(l,i)=(U_two(l,i)*U_two(l,i+3))/(1 -K);  
        end  
    end  
end  
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