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ABSTRACT 

 
APPLICATIONS OF SENSITIVITY DATA TO EIGENSOLUTION REANALYSIS 

OF MODIFIED STRUCTURES 

Chandrashekhar Sureshchandra Patadia, M.S. 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Bo Ping Wang 

 A new procedure for eigensolution reanalysis has been developed in this 

thesis. This new method is based on the sensitivity data. Methods for 

computing eigensolution sensitivity using both exact and approximate methods 

have been known for a long time. While eigenvalue sensitivity is used routinely 

in structural optimization with eigenvalue constraints, few applications of 

eigenvector derivatives are reported.  

In this thesis, effective eigensolution reanalysis using first and second 

order eigenvector sensitivity data is presented. The proposed approach and 

other eigensolution reanalysis approaches are implemented in Matlab R2008a 

to get eignesolution of modified design. These results obtained by reanalysis 

techniques are compared with the exact analysis of modified eigensolution.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to Eigenproblem Reanalysis 

 While designing or optimizing a structure, structural dynamics analyses 

must be performed repeatedly for various configurations in order to make the 

design satisfy the constraints. These repeated analyses for each modified 

design are time consuming and expensive, especially if the structure is very 

large with thousands of degree of freedom.  

The purpose of reanalysis techniques is to analyze the modified structure 

without performing full analysis and thus reduce the computation time and cost. 

Some reanalysis procedures are only for eigenvalue reanalysis [1-5]. Some 

procedures are for both eigenvalue and eigenvector reanalysis [6-11]. Wang 

and Caldwell used the Eigenvectors of initial design and static modes to 

generate a reduced eigenprobelm [8]. Kirsch introduced a CA (Combined 

Approximation) procedure which uses first few the terms of an infinite series as 

basis vectors in reduced eigenproblem [9]. Chen, Wu and Yang used epsilon 

algorithm table to approximate eigenvector and used this approximation to 

approximate eigenvalue using Raleigh’s quotient [11]. In this thesis, a new 

approach based on sensitivity data has been developed for eigenproblem 

reanalysis. 
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Methods of computing eigensolution sensitivity have been known for a 

long time. Several methods are available for computing exact and approximate 

derivative [12-16]. In this thesis, Wang’s approach for calculating approximate 

eigenvector derivative [14] has been extended for second derivative. While 

eigenvalue sensitivity is used routinely in structural optimization with eigenvalue 

constraints [17], few application of eigenvector derivativeses are reported in the 

literature. In this thesis, a new procedure is proposed for eigensolution 

reanalysis. The proposed new approach uses mode shapes and their 

derivatives as basis vectors for eigensolution of the modified system. It has 

been shown that sensitivity data produces better results with the proposed 

approach than that computed by perturbation method. 

Numerical results using the proposed approach were obtained for 

different types of global modifications in various models such as 20 degree of 

freedom spring mass system, and a frame model. Comparison of numerical 

results with that obtained from several existing eigensolution reanalysis 

methods and direct analysis suggests that the proposed algorithms are very 

effective. 

 

1.2 Outline of Thesis 

 In chapter 2, properties of eigenvector and eigennsolver algorithms 

already developed based on these properties are discussed. 
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In Chapter 3, various available reanalysis methods for global as well as 

local modifications are discussed.  

In chapter 4, procedures for computing exact first order eigenvector 

derivative using modal method as well as algebraic method is illustrated. Then 

Wang’s explicit and implicit methods for computing approximate first order 

eigenvector derivative are discussed. These procedures are extended for 

approximating second order eigenvector derivative. 

The proposed approach using exact as well as approximate eigenvector 

derivatives is introduced and developed in Chapter 5. 

In chapter 6, comparisons of results are shown for different models and 

different modifications. A 5 DOF spring mass system is modified locally 

whereas another 20 DOF spring mass system is modified globally. Local and 

global modifications for a plane frame structure are also investigated in this 

chapter. The global modifications include topology modification and change in 

cross section of members of frame. 

Chapter 7 contains conclusion and future research.  
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CHAPTER 2 

EIGENSOLVER ALGORITHMS FOR STRUCTURAL DYNAMICS 

Eigenvectors in structural dynamics problem have some special 

properties. These properties are used in basic eigensolver techniques such as 

Inverse Iteration, Inverse Iteration with shift, Subspace Iteration etc. Most of the 

advanced algorithms are based on these basic techniques and some other 

properties of eigenvector. Some techniques for approximating eigenvector 

derivatives are also based on these properties. Therefore, properties of 

eigenvector are discussed here before discussing eigensolver algorithms. 

 

2.1 Properties of Eigenvector 

Important properties of eigenvector are summarized in this section.  

2.1.1. Arbitrary Scaling- Normalization of Eigenvectors 

This implies the Eigen vectors can be normalized arbitrarily.  

If  is an eigenvector corresponding to ,  then r rφ λ
 

, 0 is also an eignevector.= ≠r rc cφ φ  

Eigenvectors can be normalized any of the following ways:  

� Making a selected element equal to 1,  

� Making the largest element equal to 1. 
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� Making modal mass equal to 1, 

i

i

1
 where c    GM M

GM

T

i i i i
cφ φ φ φ= = =

 

 

2.1.2 M-Orthogonality and K-Orthogonality 

M 0   (r s)T

r s
φ φ = ≠

 

K 0   (r s)T

r s
φ φ = ≠  

1 2

1 2

Note that  and  are not orthogonal to each other. That is:

0≠T

φ φ

φ φ

 
 

2.1.3 Expansion Theorem 

Any vector {y} of size (N×1) can be expressed as a linear combination of N 

Eigenvectors. 

{ }
1

N

i i
i

y cφ
=

= ∑
 

 

2.2 Eigensolver Algorithms 

Practically a multi degree of freedom model may have thousands of 

degrees of freedom. Solving eigneproblem for structures usually involves 

determining some eigenvalues and corresponding eigenvectors.  

K MΦ = ΦΛ          (2.1) 
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The square roots of diagonal terms of Λ  are natural frequencies of that 

structure. For structures with a few number of degree of freedom, it is possible 

to find eigenpairs using polynomial root finding method. For large structures, 

numerical algorithms are employed. These algorithms are based on different 

properties of eigenvector.  Selection of eigensolver depends upon various 

factors such as size and sparsity of eigenproblem, eigenpairs that needs to be 

determined, the level of accuracy desired etc. 

 Simulation soft- wares such as ANSYS offers the user to choose 

from many of the available algorithms for solving structural dynamics 

eigenproblm of a large system. For example, undamped modal analysis for 

large structures in ANSYS can be done by employing any of the following 

methods [21]: 

• Block Lanczos Method: uses Lanczos algorithm where the Lanczos 

recursion is performed with a block of vectors.  

• PCG Lanczos Method: internally uses the Lanczos algorithms, combined 

with PCG iterative solve. This method should be used if only a few lower 

modes are required. 

• Subspace Method: uses subspace iteration technique. 

• Reduced Method: uses Householder-Bisection-Inverse iteration.  

Here vector iteration methods such as Inverse Iteration- with and without 

shift, subspace iteration is discussed. 
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2.2.1. Inverse Iteration [20] 

Then basic scheme in Inverse Iteration is given by: 

(s+1) (s)Kr Mr=         (2.2) 

Here, s+1 is iteration number. The first vector 0r  is any starting vector. 

For each iteration, sr  is the vector obtained from previous iteration and s+1r  is 

the resulting improved vector. The previous vector is normalized by either 

making maximum element equal to 1 or modal mass equal to 1. 

(s+1)
(s+1)

(s+1)T (s+1)

r
r

r Mr
=

       (2.3)

 

The corresponding eigenvalue for a particular iteration cycle is obtained 

from Raleigh’s quotient: 

(s+1)T (s)
(s+1)

(s+1)T (s+1)

r Mr

r Mr
=λ

        (2.4)
 

 It is proved that the above procedure converges to the first eigenvalue 

and Eigenvector for any starting iteration vector as long as the starting iteration 

vector is not orthogonal to the first eigenvector [20]. To obtain mode shape 

other than first, it is necessary to remove the components of all preceding mode 

shapes from iteration vector,
(s)r . 
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2.2.2 Inverse Iteration with Shift [20] 

 Using Gram-Schmidt orthgonalization and associated matrix 

deflation removes components of previously determined eigenvectors and thus 

Inverse iteration can produce convergence to eigenvalue other than first. 

Another method to produce eigenvalue other than first is Inverse Iteration with 

spectrum shift. It is proved that using ρ as a shift in this method will converge to 

an eigenvalue closest to this shift.  

The shifted stiffness matrix K̂  can be computed as: 

K̂ K M= − ρ          (2.5) 

Let µ and ψ be the eigenvalue and eigenvector of the new eigenproblem which 

has shifted stiffness matrix. 

K̂ µM=ψ ψ
         (2.6)

 

Substituting equation (2.6) in to (2.5), 

( )K-ρM µM=ψ ψ
 

 

( )K µ+ρ M=ψ ψ
        (2.7)

 

Comparing the above equation with the original eigenproblem,  

( ) and µ+ρ= =φ ψ λ  

 Therefore, iterative procedure similar to that shown in Inverse Iteration 

procedure accompanied with a proper shift will lead to mode shape other than 

fundamental mode. 
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2.2.3 Subspace Iteration [20] 

 Subspace Iteration method is more suitable for calculating a subset of 

eigenpairs of a large system as compared to Inverse iteration with or without 

shift. It requires solving a reduced eigenproblem of
m m

N N× , where, m is the 

number of eigenpairs that needs to be determined. This method is explained 

below: 

The eigenproblem in matrix form for only m eigenpairs: 

K MΦ = Φ Λ
m m m         (2.8) 

The iterative procedure is started with m trial vectors. Then, the new 

vectors are calculated by the following equation: 

(s+1) (s)KR MR=         (2.9) 

Let 
1
, ,

m
v vK  be an approximation of eigenvectors which is a linear 

combination of vectors.  

[ ] ( )
1

s+1(s+1)

1
, ,  R

i

i m i

mi

v r r

ψ

ψ
ψ

 
 

= = 
 
 

K M

     (2.10) 

Substituting the approximations of eigenvectors shown in equation (2.10) 

in (2.8) and pre-multiply by 
(s+1)TR  

( ) ( ) ( ) ( ) ( ) ( )s+1 s+1 s+1 s+1 s+1 s+1T TR KR R MRΨ = Ψ Λ
m     (2.11) 

( ) [ ]( )s+1s+1

1Where, ψ ψΨ = K
m    
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Let 
( ) ( )s+1 s+1T

RR KR  = K  and 
( ) ( )s+1 s+1T

RR MR  = M  

From Equation (2.11), 

( ) ( )1 1

R RK M
+ +Ψ = Ψ Λs s

m        (2.12) 

In the above eigenproblem is reduced eigenproblem, matrices RK and 

RM  are m mN N×  size only and gives approximation of mN eigen pairs. 

Improved approximation for the eigenvectors is: 

( ) ( ) ( )1 1 1
R R

+ + += Ψs s s

       (2.13) 

These vectors are used to find basis vectors for the next iteration from 

equation (2.9) and then equations (2.10) through (2.13) are followed to obtain 

better approximation of eigenvectors. This procedure is done recursively until 

the convergence is achieved. 
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CHAPTER 3 

 
PROCEDURES FOR EIGENPROBLEM REANALYSIS 

 A Structural Dynamics analysis may have to be performed several times 

while designing or optimizing the structure. The modification in the design may 

be local or global. Usually, the modifications in the design are done in order to 

increase lower eigenvalues or increase the difference between two consecutive 

eigenvalues.  

As shown in Chapter 2, direct eingesolution of modified design involves 

factorization of matrices which are changed for each modification. Therefore, 

these methods are time consuming for reanalysis. Some reanalysis techniques 

have been developed which uses the eigen solution of Initial design to 

approximate the eigen solution of modified design. Several methods have been 

suggested by researchers for reanalysis of eigenproblem [6-11]. In section 3.2, 

some of the reanalysis techniques for local as well as global modifications are 

discussed. In the next chapter, new approach based on sensitivity is developed. 

Some of the potential applications of a reanalysis technique include: 

� Estimate the effect of structural modification 

� Quick assessment of structural dynamics effects of structural damage 

� Structural dynamics optimization 
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3.1 Existing Procedures for Eigenproblem Reanalysis 

Assume that initial eigen problem is: 

0 0 0 0 0K MΦ = Φ Λ         (3.1) 

 

Now, let the modifications in the stiffness matrix and mass matrix be K∆  

and M∆  respectively. The modified stiffness and mass matrices are given by, 

1 0K K K= +∆    1 0M M M= +∆     (3.2) 

 
Eigen problem of modified design is: 

1 1 1 1 1K MΦ = Φ Λ         (3.3) 

 
From Equation (3.2), 

0 1 0 1 1(K K) (M M)+∆ Φ = +∆ Φ Λ       (3.4) 

 
Practically, design has to be modified on trial and error basis. So, it 

needs to be checked for a large number of modifications. Solving the 

eigenproblem directly using modified stiffness and mass matrices for each 

modification causes large computation cost and time for large structures. So, 

the objective of reanalysis is to solve modified design eigenproblem without 

solving it directly. 

 Local modifications are limited to modifications that affect a few degrees 

of freedom and elements only. On the other hand, global modifications are the 

modifications which involve comparatively large number of degree of freedom 

and elements. Here, a local modification method is explained in section 3.1.1. 
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For global modifications, CA procedure, Wang-Caldwell method and Epsilon 

algorithm method is discussed in sections 3.1.2, 3.1.3 and 3.1.4 respectively.  

 

3.1.1 Local Modification Method 

Let MKZ
2Ω−= = dynamic stiffness matrix 

1and,R Z−= =  receptance matrix 

Then, using mode superposition method, modal representation of receptance 

matrix can be shown to be: 

2 2

1 TR
ω

 
 
 = Φ Φ

− Ω 
 
 

O

O

 ∑
= Ω−

=
�

r r

JrIr

IJR
1

22ω
φφ

 

ω  = natural frequency of initial design 

Ω = natural frequency of modified design 

• Approximation of ( )ΩijR  due to Modal Truncation 

 Define 
( )

2 2
1

�
n Ir Jr

iIJ
r r

R
φ φ

ω=

=
−Ω

∑  

( , )

2
and, 

=

=∑
φ φ
ω

t
s t Ir Jr

IJ
r s r

F  

Then, 
)(L

IJ
R = L-mode approximation of IJR  

Note that 
),1()( �L

IJ

L

IJIJ FRR
++≅  

),1()( �L

IJ

L

IJIJ FRR
++=  
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),1(),1()(ˆ L

IJ

�

IJ

L

IJIJ FFRR −+=  

In expanded form 

( )1

2 2 2
1 1

L L
Ir Jr Ir Jr

IJ
IJ

r rr r

R K
φ φ φ φ

ω ω
−

= =

= + −
−Ω

∑ ∑
    (3.5) 

Where, RIJ is (I,J)th element of recentance matrix. 

The following two cases of local modification are considered: (a) Addition of a 

spring and (b) Addition of a mass 

3.1.1.1 Addition of a Spring 

If a spring of stiffness ka has been added between nth DOF and ground, I = J = 

n, it can be shown that, 

IJ

a

1
R

k
= −          (3.6) 

Equating equations (3.5) and (3.6), 

( )1

2 2 2
1 1a

1

k

L L
Ir Jr Ir Jr

IJ
r rr r

K
φ φ φ φ

ω ω
−

= =

− = + −
−Ω

∑ ∑     (3.7) 

If only first mode and Eigen value are used in the above equation, L = 1. 

( )1 1 1 1 1
2 2 2

a 1 1

1

k

I J I J

IJ
K

φ φ φ φ
ω ω

−− − + =
−Ω

 

So, 
2 2 1 1

1 =  - 
t

I Jφ φ
ωΩ        (3.8) 
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( )1 1 1
2

a 1

1
Where, t = 

k

−− − +
φ φ
ω
I J

IJ
K  

If first two modes and eigen values are used in equation (3.7), L = 2. Then we 

have, 

2 2 2A( )  + B C 0Ω Ω + =        (3.9) 

( )1 1 2

1 1 1 2 2 22 2

a 1 2

Where, A = 
1 p p

,  p ,   p
k

−  
− − + + = = 

 
I J I JIJ

K φ φ φ φ
ω ω

 

( ) ( )ω ω+ − +
1 2 1 2

2 2
p p tB =  

ω ω ω+ − 
 1 2 2 1 1 2

2 2 2 2
p ω pC = -  

Equation (3.8) is a quadratic equation for 
2Ω  and the roots are as follows. 

Ω
− ± −

=
B B AC

A

2
2 4

2
 

3.1.1.2 Addition of a Mass 

When a mass ma is added at degree of freedom I,  

 

        (3.10) 

From Equation (3.5), 

( )φ φ φ φ
ω ω

−

= =

= + −
− Ω

∑ ∑
L L

Ir Jr Ir Jr

IJ
r rr r

K 1

2 2 2
1 1

a

2
Ω

1

m
 

After simplification, following quadratic equation is obtained. 

IJ

a

2
Ω

1
R =

m
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2 2 2A( )  + B C 0Ω Ω + =        (3.11) 

aA = m  

a1
a 1

21+p m
B = - m

X

 
+ 

 
ω  

1

2

C = 
ω

X
 

( )1 1 1
1 1 12

1

Where, X=  and P− − =I J
I J

IJ
K

φ φ
φ φ

ω
 

Note that the above method is for modification is for modification in a 

single degree of freedom only. Similarly, equation for eigenvalue of modified 

design with change in stiffness as well as mass matrices simultaneously can be 

derived. 

The methods for reanalysis of global modifications are presented in the 

next section. 

 

3.1.2 CA Procedure [9] 

 This procedure was introduced by Kirsch. 

3.1.2.1 CA Procedure for Static Reanalysis 

Let 
0

K  and 
0

R be the stiffness matrix and load vector of initial design with n 

number of degree of freedom respectively. The corresponding displacement 

vector is computed from equation below: 



 

 17

=
0 0 0

K r R          (3.12) 

If modifications in the stiffness matrix and load vector are ∆K  and ∆R  

respectively, 

=
1 1 1

K r R          (3.13) 

= + ∆
1 0

K K K , = + ∆
1 0

R R R  

CA procedure used by Kirsch, which solves reduced problem for 

displacements of modified design are obtained by implementing the following 

procedure: 

� Calculation of basis vectors:  

1 0

-1r = K  R  

( )∆0 0

-1
i i-1r = - K  K r    i = 2,3,..,q  

=
1 2 qB

r  [r ,  r ,  ...., r ]  

� Compute reduced matrices using the following equations: 

=
R B B

TK r Kr , =
R B

TR r R  

� Solve following equation for y. 

y
R R

K  = R   

� Compute displacements of modified design by following equation: 

y
B

r = r  
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Here, number of basis vectors, q is much smaller that number of degree of 

freedom, n. So, 
R

K  is reduced matrix (q × q) compared to K (n × n). 

3.1.2.2 CA procedure for Eigenproblem Reanalysis 

Let 
0

K  and 
0

M be the stiffness matrix and mass matrices of initial design 

with n number of degree of freedom respectively. The corresponding eigen 

vector is computed from equation below: 

0 0 0 0 0
K Mφ λ φ=         (3.14) 

If modifications in the stiffness and mass matrices are ∆K  and ∆M 

respectively, the eigen problem for the modified system is: 

K Mφ λ φ=          (3.15) 

= + ∆
0

K K K , = + ∆
0

M M M       (3.16) 

If number of degree of freedom is large, inverting modified stiffness 

matrix is time consuming and costly. CA procedure used by Kirsch, which 

solves reduced problem of modified design, is explained below: 

� Calculation of basis vectors:  

1 0 0

-1r = K  M φ         (3.17) 

( )∆0 0

-1
i i-1r = - K  K r    i = 2,3,..,q       (3.18) 

=
1 2 qB

r  [r ,  r ,  ...., r ]        (3.19) 

� Compute reduced matrices using the following equations: 
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=
R B B

TK r Kr , =
R B B

TM r Mr       (3.20) 

� Solve following equation for y. 

R R
K  = My yΛ         (3.21) 

� Compute eigenvector of modified design by following equation: 

y
B

r = r          (3.22) 

 The above procedure is for computing the first eigenpair. For other 

eigenpairs, Gram-Schmidt orthogonalization has to be used. Assuming that the 

first m eigenvalues and Eigenvectors are found from the procedure mentioned 

above, then (m+1)th eigenpair is better approximated by using additional 

procedure  mentioned below: 

� Calculate coefficients using each approximated Eigenvector: 

1

TM
i i m

α φ φ
+

=
       (3.23) 

Where, i = 1, 2;m, 
1m

φ
+ is a non orthogonal starting iteration vector. 

� Calculate following improved basis vector and follow equations (3.18) 

through (3.22). 

1 1
1

m

m m i i
i

φ φ α φ
+ +

=

= − ∑       (3.24) 

CA procedure was also suggested to use inverse iteration and inverse 

iteration with shift for reanalysis.  
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The CA procedure using Gram-Schmidt Orthogonalization for mode 

other than first requires that all preceeding modes should first be approximated. 

For example, to approximate third eigenvalue, first and second Eigenvectors 

needs to be computed first. 

 

3.1.3 Epsilon Algorithm [11] 

Epsilon algorithm [23-25] is used to accelerate convergence of an infinite 

series. Epsilon algorithm can be used to approximate eigen solutions by 

generating a vector sequence. The vectors sequence can be generated using 

either Neumann series expansion or perturbation method. 

Table 3.1 Epsilon Algorithm Table 

 

 

0 
 

0 
 

0 
 

0 
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1
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1
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1
ε

2
ε (0)

2
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2
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2
ε

3
ε (0)

3
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3
ε
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ε

1
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ε
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In order to solve eigneproblem by this procedure, following procedure is 

used: 

� First row vectors of epsilon table are null vectors. 

{ }( )

1
0 , j = 0,1,2...njε − =        (3.25) 

� Calculate second row vectors of epsilon table. 

If basis vectors of infinite series are denoted by 
0 1 n

u ,u ,...,u  

j
s ’s members of a sequence. 

j
0

u
j

j
k

s
=

= ∑  

( )

0

j

j
sε =          (3.26) 

� The rest of elements of epsilon table can be obtained using the following 

equation: 

1
( ) ( 1) ( 1) ( )

k+1 k-1 k k

j j j jε ε ε ε
−+ += + −         (3.27) 

Where, j, k=0, 1, 2,... 

Inverse of a real vector can be expressed as: 

-1

2n

i
i=1

u
u

u

=

∑
         (3.28) 

In case of undamped system, eigenvectors are real. Hence, the above 

equation can be used to get inverse of a vector while generating epsilon 

algorithm. 
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� The vectors of even row of epsilon table are approximations of eigenvector 

of modified design. Corresponding eigenvalue is approximated by Raleigh’s 

quotient: 

T

i i i

T

i i

u Ku
λ =

u Mu
        (3.29)

 

The basis vectors for epsilon algorithm should be members of an infinite 

series which can be selected by one of the following ways: 

• Matrix perturbation method for eigenproblems: 

The eigenvalue and eigenvector of modified design can be expressed in 

terms of eigenpair of initial design, their first and second order perturbations by 

following equation: 

0 1 2
 ....

i i iiλ λ λ λ= + + +

       (3.30) 

0 1 2
u  u u u ....

i i ii = + + +

       (3.31) 

The perturbations of eigenvalue and eigenvector can be obtained by 

following equations: 

( )1 0 0 0
=u K- M u

i i i iTλ λ∆ ∆

 

( ) ( )n

0 0
j=1,j i

0 0 0 001

0 0

11
u = u K- M u u - u Mu

2
uj ii ji i i i

ji

T Tλ
λ λ≠

   ∆ ∆ ∆∑      −
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2 0 1 0 0 1 1 0 0 1 1 0 0
=u Ku  - u Mu  - u M u  - u Mu  

i i i i i i i i i i i iT T T Tλ λ λ λ∆ ∆ ∆
 

( )
n

0
j=1,j i

0

1 0 1 0 0 1 1 00 0 1 02

0 0

1 0 1 0 1 1 0

1
u = u Ku u Mu u M u u Mu u

1
- u M u  + u Mu  - u Mu

2
    u

j

i

i j j j ji i i i i i i

ji

i i i i i i

T T T T

T T T

λ λ λ
λ λ≠

 ∆ − ∆ − − ∆∑   −

 ∆ ∆  

 

• Neumann series expansion method 

Eigen-problem of initial and modified design are,  

0 0 0 0 0
K Mφ λ φ=

        (3.32) 

K Mφ λ φ=
         (3.33) 

K and M are stiffness and mass matrices of modified design respectively. 

= + ∆
0

K K K
 

= + ∆
0

M M M
 

Substituting above in equation (3.2.33),  

( ) ( )0 0 0 0 0 0 0
K K M M Mφ λ φ λ φ λ φ+ ∆ = + −

    (3.34) 

Approximating eigen value and eigen vector of modified design by that of 

initial design, 

( )0 0 0 0 0 0
K K M Mφ λ φ λ φ+ ∆ = + ∆

      (3.35) 

( ) ( )11 1

0 0 0 0 0 0 0
K K K M Mφ λ φ λ φ

−− −= Ι + ∆ + ∆
 

( ) ( )1 1

0 0 0 0 0 0
 B K M Mλ φ λ φ

− −= Ι + + ∆
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Using Neumann series expansion, 

 ( ) ( )2 1

0 0 0 0 0 0
B+B ... K M Mφ λ φ λ φ−≈ Ι − − + ∆

    (3.36) 

Where, 
1

0
B = K K− ∆  

Simplifying the terms of equation (3.36), 

( )1

0 0 0 0 0 0 0
u K M Mλ φ λ φ−= + ∆

      (3.37) 

( )1 1

1 0 0 0 0 0 0 0

1

0 0

u -K K K M M

   -K Ku

λ φ λ φ− −

−

 = ∆ + ∆ 
= ∆

     (3.38)
 

1

2 0 1
u -K Ku−= ∆

        (3.39)
 

Thus, the series of equation (3.36) can be written as: 

0 1 2 ....u u uφ + + +≈
       (3.40) 

 The above terms can also be used as basis vectors to generate epsilon 

triangle. Here, the number of rows in epsilon table should be an even number 

and the solution is the vectors of even number row. Thus, the number of basis 

selected (n) should be an odd number. 

 

3.1.4 Wang Caldwell Approach [8]  

This method uses truncated modes of initial design and residual static 

modes as basis vectors for obtaining the following reduced eigenproblem. 

T T

R 1 R 1
K T K T, M T M T = =       (3.41)
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R 1 1 R 1
K M=

r r r
φ λ φ         (3.42) 

01 0 01 0
T =  

r r− −Φ Ψ          (3.43) 

 

Here, 
01 0r−Φ  are lower modes of initial design and Ψ  are residual static 

modes. 

The eigen problem of modified design is: 

[ ] [ ]( ) [ ] [ ]( )K + K  = M + M
r r r

φ λ φ∆ ∆
      (3.44) 

 

Assuming 
r

ψ  is the static mode due to load of [ ] [ ] M K
r r r

λ φ φ∆ − ∆  

[ ] [ ] [ ] K = M Kr r r r
λ φ φψ ∆ − ∆

      (3.45) 
 
Assuming the static mode as a linear combination of eigenvectors of initial 

design, 

N

0
1

 = 
r k k

k

cψ φ
=
∑         (3.46) 

If first N̂ eigenvectors are kept and the contribution of rest of eigenvectors is 

approximated by 
r

ψ . 

N

0
N̂

r k k
k

cψ φ
=

= ∑         (3.47) 

From equation (3.46) and (3.47), 

N̂

0
1

 = 
r k k r

k

cψ φ ψ
=

+∑         (3.48) 

In order to get
j

c , where j = 1 toN̂, 
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[ ] [ ] [ ]
N̂

T T T

0 0 0 0
1

M  = M M
j r k j k j r

k

cφ ψ φ φ φ ψ
=

+∑
    (3.49) 

 

From equation (3.47) the last term in the above equation is zero as 
0 j

φ is 

M orthogonal to all other eigenvectors except
0 j

φ .  

[ ]T

0
M

j j r
c φ ψ=

        (3.50) 
 

Once all 
j

c  are calculated, 
r

ψ  is calculated by using equation (3.48) to 

get rth static mode. This procedure is performed to calculate 1 to N̂ static modes 

and then equations (3.41) through (3.42) are followed. Note that the modal data 

of modes N̂+1 to N is not required here. 
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CHAPTER 4 

PROCEDURES FOR CALCULATING FIRST AND SECOND ORDER 
SENSITIVITY DATA 

 
 In this chapter, computation of exact and approximate first and second 

order derivative of eigenvector is illustrated using algebraic method and modal 

method.  

In modal method, first order eigenvector derivative is expressed as a 

linear combination of all eigenvectors. However, full modal data is not available 

usually. Many approximation techniques for first eigenvector derivative using 

available modes are available based on modal method. Among them, truncated 

modal method is the simplest one in which the contribution of higher modes is 

truncated while calculating derivatives of lower modes. Liu [16] and Wang [13] 

suggested procedures for approximation of contribution of truncated higher 

modes. Wang’s methods are: explicit and implicit methods. In this thesis, 

Wang’s implicit and explicit methods have been extended to approximate 

second order derivative which considerably improved the accuracy of reanalysis 

results. These results will be used in the proposed new eigensolution reanalysis 

method in the next chapter. 
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4.1 Computation of Exact First Order Sensitivity Data 

4.1.1 Modal Expansion Method 

 Assuming derivative of eigen vector as a linear combination of the 

eigenvectors of Initial design [12], 

N

k k
k=1

 = 
r

qφ φ′ ∑         (4.1) 

Where N is the number of degree of freedom. 

Differentiating the eigen problem, (K - M) 0
r r

λ φ = , 

(K - M)  -(K - M- M )
r r r r r

λ φ λ λ φ′ ′=′ ′
     (4.2) 

Substituting equation (4.1) into equation (4.2), 

N

k k r
k=1

(K - M)  -(K - M- M ) F
r r r r

qλ λ λ φφ ′ ′= =′∑     (4.3) 

In order to compute the co-efficients qs, pre-multiply equation (4.3) by 

,
s

T s rφ ≠  

N

k k
k=1

(K - M)  - (K - M- M )
s s

T T

r r r r
qλ λ λ φφ φ φ ′ ′= ′∑     (4.4) 

N

1

(K - λ M) M 0
r

If ,  0 , 
s

T T
s k k

k
r

k s q φφ φ φ
=

=≠ =∑  

MIf ,  K  ,   
s s

T T
k s r k rk s φ φ λ φ λ φ λ= = =

 

as the eigenvectors are M-orthogonal. 
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( )
- (K - M )

 
-  

s

T

s
r r

s r

q
λ φ

λ λ

φ ′ ′
=        (4.5) 

For computing the co-efficient qr, starting from mass normalization condition, 

M 1
r r

Tφ φ =  

Differentiating the above M-orthogonality condition,  

M   - 0.5 M  
r r r r

T Tφ φ φ φ′=′  

For k = s, using equation (4.1) in the above equation, 

N

k k
k=1

M   - 0.5 M  
r r r

T Tqφ φ φ φ′=∑  

- 0.5 M  

M

r r

r

r r

T

T
q

φ φ

φ φ

′
=         (4.6) 

 Substitution of equation (4.5) and (4.6) into equation (4.1) gives the exact 

eigenvector derivative if all N modes are used. 

 

4.1.2 Algebraic Method 

The eigenproblem of the original design is:  

0  M) -K ( =φλ         (4.7) 

Where, λ  and φ  are first eigenvalue and eigenvector of the initial design 

respectively. 

Eigen problem of the modified design is: 
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(K  - M )  0
1 1 1 1

λ φ =         (4.8) 

Differentiating equation (4.7), 

0  )M- M- K(   M) -K ( =′′′+′ φλλφλ       (4.9) 

φλφλφλ )M-K(-  M-  M) -K ( ′′=′′       (4.10) 

If the modes are M – orthogonal, normalization condition 

1   M =φφ T          (4.11) 

Differentiating above equation, 

φφφφ  M 0.5 -   M ′=′ TT
       (4.12) 

Putting equations (4.10) and (4.12) in matrix form together, 













′

′′−
=









′

′








− φφ

φλ

λ
φ

φ
φλ

 M
2

1

)M -K(

   
0M

M-M) -K (
TT

     (4.13) 

In the above equation, K’ = ∆K, and M’ = ∆M 

So, b  Az =          (4.14) 

Where, A = 








− 0M

M-M) -K (
Tφ

φλ
 and b = 













∆

∆∆−

φφ

φλ

 M
2

1

M) -K(

T , z = 








′

′

λ
φ

 

b A  z -1=  

The matrix A does not depend upon change in the design variables. It can be 

computed using eigen problem data of initial design.  

Differentiation of the set of equations in (4.13) gives second derivative of 

eigenvalue and eigenvector. 
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(K - M)

2 M 

-M 2 M  - 2 K   2 M  2 M
   

M 0T T
M

λ

φ φ φ φ

φ φ λ φ φ λ φ λ φ
φ λ ′ ′ ′∆ +

′′ ′ ′ ′ ′ ′∆ ∆ + ∆ +     
=     ′′−     

          (4.15) 

 

 4.2 Approximation of First Order Eigenvector Derivative Using Wang’s Explicit 
and Implicit Methods [14] 

 
In practice, it may be difficult to obtain all eigenvectors. Also, 

computation of exact eigenvector derivate leads to increased computation time. 

Therefore, approximate methods have been developed. Truncated modal 

method ignores the contribution of higher modes to the lower eigenvector 

derivatives. Wang [14] suggested a method in which an additional term for 

approximation for truncated higher order modes is added.  

 

4.2.1 Wang’s Explicit Method 

Assuming the derivative of eigenvector as a linear combination of n 

eigenvectors,  

N

1

      = 
k k

k
r

cφ φ
=

′ ∑         (4.16) 

If the contribution of only first N̂  available lower modes are computed, then 

equation (4.16) can be written as: 

N̂

1

      = 
j j R

jr
c Sφ φ

=

′ +∑
       (4.17)
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R
S   is the contribution of higher modes N̂+1 to N which is an approximation of 

contribution of higher order truncated eigenvectors. 

The coefficients
j

c ’s are computed as shown in section 4.2.1. Similarly,  

( )

( )

N̂
r

N̂ 1

r r
K - M - M

F
 

Where,

F

= +

′ ′

=
−

′= −

∑
T

j

R j
j

r j

r r

S
λ λ

λ λ

φ
φ

φ
       (4.18)

 

If the number of lower modes used, N̂  is considerably more than the number of 

eigenvector derivative r, then 
j r

λ λ>>  in SR   

 ( )rj j
λ λ λ− ≈  

N
r

N̂ 1

ˆN N
r r

1 1

F
 

F F
             = 

T

j

R RA j
j

j

T T

j j

j j
j j

j j

S S
λ

λ λ

φ
φ

φ φ
φ φ

= +

= =

≈ =

−

∑

∑ ∑
     (4.19) 

Note that equation (4.19) depends on all eigenvectors. This dependence can be 

removed by the following procedure. 

N
r -1

r
1

F
Note that, K F

=

=∑
T

jj

j j

φ φ

λ
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N̂
r-1

r
1

F
Let K F  and 

=

= = ∑
T

jj

r r
j

j

y h
λ

φ φ

 
Substituting these in equation (4.19), 

R r r
S w y h≈ = −

       (4.20)
 

Here w  is residual static mode as it is obtained by deducting the contribution of 

lower modes from static mode 
r

y  

From equation (4.17), the approximation for eigenvector derivative becomes, 

N̂

1

       
j j

jr
c wφ φ

=

′ ≈ +∑
       (4.21) 

In equation (4.21), w is computed using equation (4.20) and the 

coefficients are calculated using equation (4.5) and (4.6). 

It should be noted here than equation (4.21) uses the static solution and 

modes 1 to N̂  only, and does not depend on higher modes N̂ 1+ to N. 

 

 

4.2.2 Wang’s Implicit Method 

 

This method is similar to Wang’s Explicit Method. The only difference is 

that here the residual static mode 
r

w  is multiplied to a coefficient, d
r
 

N̂

1

  T
j j r r

jr
c d w qφ φ

=

′ ≈ + =∑       (4.22) 

ˆ1 N
T [   ]

r
wφ φ= L M         (4.23)
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( ) ( ) rK - M   - K - M- M F
r r r r r

λ λ λ φφ ′ ′= =′ ′      (4.24) 

Substituting equation (4.22) in to equation (4.24) and pre-multiplying by 
TT   

( )T T
rK - M Tq = FT T

r
λ  

The term on left hand side is a diagonal matrix. Co-efficients 
j

c ’s are 

same as that of Wang’s Explicit method. The co-efficient for residual static 

mode can be obtained from the following equation as it is not orthogonal to K 

and M matrices. 

TFr
T TK M

wrd
r

w w w wr r r r rλ
=

−
      (4.25) 

 

4.3 Extension of Wang’s Explicit and Implicit Methods for Second Order 
Derivative of Eigenvector 

 
While using exact eigenvector derivatives in the reanalysis, it was 

observed that addition of second derivative as basis vector considerably 

improves the results. Therefore, in this thesis, Wang’s approximation method is 

extended for approximating second derivative of eigenvector. 

Taking the derivative of the eigenvalue problem leads to: 

( ) ( )K - M   + K - M - M  = 0r r r r rλ φ λ λ φ′ ′′ ′
     (4.26) 

Differentiating above equation again, 
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( ) ( ) ( ) ( )K - M   + K - M - M  = - K - M - M K - M'- M - M- Mr r r rr r r r r r r r r
λ φ λ λ φ λ λ φ λ λ λ λ φ′′′ ′′ ′ ′ ′ ′′ ′′ ′−′′ ′ ′ ′ ′

or, 

( ) ( ) ( )K - M   = -2 K - M - M 2 M'+ Mr rr r r r r r
λ φ λ λ φ λ λ φ′′′′ ′ +′′ ′ ′   (4.27) 

1

Let  be a linear combination of all eigenvectors.

 = 
=

′′

′′ ∑
n

k k
k

r

r
b

φ

φ φ
 

Substitute this into equation (4.27) and then pre-multiply by ,
l

T l rφ ≠  

( ) ( ) ( )
1

K - M   = -2 K - M - M 2 M'+ M
l r l r r r l r

n
T T T

k k
k

r rbλ λ λ λ λφ φ φ φ φ φ
=

′′′′ ′ +′ ′∑
 

(4.28) 

where, 

( ) = K - M′ ′′
r r

T

r r
λ λφ φ        (4.29)

 

 

( ) ( ) ( )K - M - M K - M′ ′ ′ ′ ′= + +′′ ′ ′ ′
r r r r r r

T T T

r r r r
λ λ λ λφ φ φ φ φ φ   (4.30) 

For l ≠ r, 

( )
( )

( )
( )

K - M - M 2 M'+ M
 = -2

l r r r l r

l r l r

T T

l

r r
b

λ λ λ λ

λ λ λ λ
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+
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− −
   (4.31)

 

 
For l = r, 
 

T
 = - -2M M

r r r r

T
rb φ φ φ φ′ ′ ′′

       (4.32)
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Thus, the second derivative of eigen vector as a linear combination of eigen 

vectors is, 

 
N

1

 = 
k k

k
r

bφ φ
=

′′ ∑
 

 

Now, we want to compute an approximation of second derivative of eigenvector 

by extending Wang’s method. This is achieved by assuming, 

N̂

1

 = 
k k R

k
r

b Sφ φ
=

′′ +∑
        (4.33) 
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-1 -1

r r1 j2
Let y -2K F K F = +   ,      (4.35) 

ˆ ˆN N
r1 r2

1 1

  
F F

and, 2
= =

 
= − + 

  
∑ ∑

T T

j j

r j j
j j

j j

h
λ λ

φ φ
φ φ     (4.36) 

R rThen, S   y≈ − =rh w        (4.37) 

Where, 

( )r1
K - M - MF ′ ′ ′ ′=

r r r
λ λ φ        (4.38) 

( )r2
2 M'+ MF ′′′=

rr rλ λ φ        (4.39) 

Method of approximation for second derivative is similar for both explicit 

and implicit methods except in implicit method, approximation of contribution of 

higher mode is multiplied by a factor dr given by following equation. 

( )T -2F Fr1 r2
T TK M

wrd
r

w w w wr r r r rλ

+
=

−
      (4.2.19)

 

  

Substitution of co-efficients and SR into equation (4.33) gives an 

approximation for the second derivative of eigenvector. 

 Note that in the above calculations, second derivative of stiffness and 

mass matrices are null matrices. 
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CHAPTER 5 

THE PROPOSED APPROACH USING SENSITIVITY DATA 

 Various methods for calculating the sensitivity data were discussed in the 

previous chapter. In this chapter, the basis of the proposed approach is 

discussed which is generalized later to use various combinations of eigenvector 

and its derivatives as basis vectors for eigensolution data desired.  

 

5.1. Basis of The Proposed Approach 

Assuming eigenvector of modified design as a linear combination of 

initial design eigenvector, its first and second order derivatives, 

 

[ ]

1

    = 

ˆ    = Tq

′ ′′= + +

 
 ′ ′′  
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φ φ φ φ

φ φ φ

a b c

a

b

c

  

 

          (5.1) 
 
Raleigh’s quotient is defined by the following equation 
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T
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T 1 1 1 1
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i=1 j=1

ˆ ˆN N

i j ij

i=1 j=1
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D(q)

ˆ ˆ ˆqq m
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∑∑

q

  

          (5.2) 
The co-efficients a, b and c should be chosen to make R(q) stationary. 

i

i i

R(q)
0

q̂

This leads to,

D(q) N(q)
N(q) D(q) 0

ˆ ˆq q

∂
=

∂

∂ ∂
− =

∂ ∂

 

          (5.3) 

From Equation (5.2), 
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N̂

j ij
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ij ij i

j=1

D(q)
ˆ ˆSimilarly, 2 q m

q̂

Substituting these in equation (5.1) and then simplifying,

ˆ ˆ ˆ ˆk m q 0   for i = 1,2,3

In matrix form, this is the reduced eigenproblem.

ˆ ˆˆ ˆK- M q=0

∂
=

∂

− =

 
 

∑

∑ λ

λ

 

Once q̂  is obtained by solving the eigen problem ˆ ˆˆˆ ˆKq= Mqλ , 

approximation of mode shape can be obtained from equation (5.1). 
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It was observed that using the sensitivity data in perturbation method 

may produce acceptable results for very small amount of modifications. For 

even moderate modifications, the results are not acceptable and make the 

reanalysis meaningless. However, using the same sensitivity data in the 

proposed approach gives excellent accuracy for both eigenvalue as well as 

eigenvector.  

For example, consider initial design of the spring mass system shown 

below.  

 

 
Figure 5.1 Initial Design of 5 DOF Spring Mass System 

A spring of stiffness Ka has been added to second nodal mass. The other end of 

the spring is fixed as shown in figure.  

 

Figure 5.2  Addition of a Spring in 5 DOF Spring Mass System 

The spring stiffness Ka is varied from 100N/m to 2000 N/m in a step of 100. 

The first and second order sensitivity data were calculated and approximation of 

first eigenvalue was obtained using, 
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1. Standard perturbation method using the following equation: 

(5.4) 

2. The proposed sensitivity approach 

The magnitude of error increases for both methods. The perturbation 

method gives approximately 10% error even if the stiffness of additional 

spring is 100 N/m. However, the proposed approach produces almost 

similar results as that produced by exact analysis even for large 

modification. 
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5.2 Combinations of Exact Eigenvector Derivatives as Basis Vectors 

5.2.1 Combinations of Basis Vectors for Fundamental Mode 

 Let T be the combinations of basis vectors used in reduced 

eigenproblem. If only first derivative is used,  

 ]' [  T φφ=          (5.5) 

The reduced Eigen problem is: 

R R R
K q  M q= Λ         (5.6) 

T T

R 1 R 1
K  T  K  T , M  T  M  T= =      (5.7) 

Solving the reduced problem, 
R

Λ  is a diagonal matrix which gives eigenvalue 

of modified design. Eigenvector of modified design can be found using equation 

below. 

q T 1 =φ          (5.8) 

If the second derivative of eigenvector is also used as a basis in reduced 

eigenproblem, 

] ' [  T φφφ ′′=          (5.9) 

Then, rest procedure is same as shown in equations (5.5) to (5.8). 

The results obtained by using both first and second eigenvector 

derivative as basis give better results than that obtained by using only first 

eigenvector derivative. 
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5.2.2 Combinations of Basis Vectors for Other Mode 

 The procedure mentioned in the above section is for fundamental 

eigenvalue and eigenvector. For rth eigenvalue and eigenvector of modified 

design, let r
φ  = rth eigenvector of the initial design. Eigenvector derivatives can 

be used in either of the following ways: 

• Combination S-1 uses 1 to r initial design eigenvectors, their first and 

second derivatives. 

1 1 1T  [  ' ' ]φ φ φ φ φ φ′′ ′′= L L Lr r r       (5.10) 

• Combination S-2 uses only r initial design eigenvector, its first derivative 

and second derivative. 

T  [  ' ]r r rφ φ φ ′′=
        (5.11) 

• Combination S-3 uses 1 to r initial design eigenvectors and their first 

derivatives. 

1 1T  [  ' ']φ φ φ φ= L L
r r        (5.12) 

S-2 involves solving for (N+1) × (N+1) matrix. On the other hand, for S-1 

and S-3, it needs to solve r different (N+1) × (N+1) matrices.   

 

5.3 Combinations of Approximate Eigenvector Derivatives as Basis Vectors 

Suppose rth eigenvalue and mode of modified design needs to be found. 

Let r
φ  = rth eigenvector of the initial design. 
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• Combination S-E-2 uses only r initial design eigenvector, its first and 

second derivative obtained by Wang’s explicit method. 

T  [  ' ]r r rφ φ φ ′′=
        (5.14) 

• Combination S-E-3 uses 1 to r initial design eigenvectors and their first 

derivatives obtained by Wang’s explicit method. 

1 1T  [  ' ']φ φ φ φ= L L
r r        (5.13) 

  

• Combination S-I-1 uses only 1 to r initial design eigenvector, its first and 

second derivative obtained by Wang’s implicit method. 

1 1 1T  [  ' ' ]φ φ φ φ φ φ′′ ′′= L L Lr r r       (5.14) 

• Combination S-I-2 uses only r initial design eigenvector, its first derivative 

and second derivatives obtained by Wang’s implicit method. 

T  [  ' ]r r rφ φ φ ′′=
        (5.16) 

• Combination S-I-3 uses 1 to r initial design eigenvectors and their first 

derivatives obtained by Wang’s implicit method. 

1 1T  [  ' ']φ φ φ φ= L L
r r        (5.15)

 

  Once T matrix is obtained, equations (5.5) to (5.8) are followed to 

get approximate eigenvalue and eigenvector. 
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CHAPTER 6 

 
COMPARISON OF RESULTS 

 In this chapter, the results obtained by different methods are compared 

for same modification.  Eeigenvalue and eigenvector of modified design are 

obtained by various reanalysis methods using the data of Initial design. These 

results are compared with each other as well as with exact full reanalysis 

obtained by directly solving eigenproblem. The exact eigensolution is obtained 

using eig function of Matlab. In section 6.1, a 5 DOF spring mass system is 

modified locally whereas in sections 6.2 to 6.6 frame structure is modified in 

various ways. Global modifications for frame model are:  (1) change in width of 

frame members, (2) Topology Modification.  

The following error definitions are used in the comparison. 

� Error In EigenValue: Percentage error in eigenvalue obtained by reanalysis 

is: 

100
 −

∈= × % 
 

λ λ
λ

e r

e

       (6.1) 

r
λ  = Eigenvalue computed by reanalysis procedure. 

e
λ  = Eigenvalue computed by Exact Procedure. 



 

 46

� Error in Eigenvector: Eigenvector has to be first normalized in order to 

compare. Here, eigenvector is normalized by either making the first element 

equal to 1 or making the maximum element equal to 1. Then, eigenvectors 

obtained by different reanalysis methods as well as exact eigenvector are 

plot for comparison.  

For ease of reference, various combinations used in global modification 

examples are summarized in Table 6.1: 

Table 6.1 Summary of Combinations Used in Reanalysis as Basis Vectors 

Sr. No. Procedure Basis vectors

No. of 

Basis 

vectors

1 Sensitivity Approach S-1 3r

2 Sensitivity Approach S-2 3

3 Sensitivity Approach S-3 2r

4 Sensitivity Approach S-I-2 3

5 Wang-Caldwell Approach 2r

6 CA Procedure n=3

7 Sensitivity Approach S-I-1 3r

1 1 1 ' '  ′′ ′′
 

L L L
r r r

φ φ φ φ φ φ

[ ]1 1 ' ' L L
r r

φ φ φ φ

1 1 1 ' '  ′′ ′′
 

L L Lr a ra a raφ φ φ φ φ φ

    '     ′′
 r r rφ φ φ

    '     ′′
 ra ra raφ φ φ

[ ]1 1 ' ' L L
r r

φ φ ψ ψ

[ ]1 2 L
n

r r r

 

Where, r = number of mode to be evaluated. 
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It should be noted that in this thesis, CA procedure is used for 

approximating only the fundamental eigenvector and eigevalue. For the 33 

member frame structure, ten eigenvectors were used to approximate 

eigenvector derivatives using Implicit and explicit methods. 

 

6.1 5 Degree of Freedom Spring Mass System-Addition of a Spring 

 Consider an initial design of 5 degree of freedom spring mass system as 

shown in figure 6.1. Boundary conditions are fixed-free. 

 

Figure 6.1 5 DOF Spring Mass System-Initial Design 

M1 = 5 Kg,    K1 = 1000 N/m 

M2 = 3 Kg,    K2 = 1000 N/m 

M3 = 2 Kg,    K3 = 1000 N/m 

M4 = 1 Kg,    K4 = 1000 N/m 

M5 = 2 Kg,    K5 = 1000 N/m 

This design is modified by adding a spring which is connected to second 

mass and ground as shown in figure 6.2. 
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Figure 6.2 5 DOF Spring Mass System-Modified Design 

 The first eigenvalue of this modified design is calculated by the following 

procedures while varying the stiffness of this additional spring, Km from 100 to 

2000 in a step of 100: (a) Local Modification, L=1, (b) Local Modification, L=2, 

(c) Wang-Caldwell Approach, (d) Sensitivity Approach, S-3 and (e) CA 

Procedure. 

 The percentage error in first eigenvalue for each approach is calculated 

using this data and plot as shown in figure 6.3. 
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Figure 6.3 Comparison of Results for Local Modification 

 As it is clear from the above figure, Wang-Caldwell Approach and 

Sensitivity Approach gives better results even for local modification too. In fact, 

the largest error while using Sensitivity Approach is as small as 0.43%. 

 

6.2  20 Degree of Freedom Spring Mass System 

A 20 Degree of freedom spring mass system with boundary conditions 

fixed-free is as shown in the figure 6.4: 

 

Figure 6.4 20 DOF Spring Mass System 
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Table 6.2 Comparison of Initial Design and Modified Design for 20 DOF Spring  
Mass System 

Ele- 
ment 
No. 

Initial Design Modified Design 

Mass 
(Kg) 

Spring 
Stiffness 

(N/m) 
Eigen-
value 

Mass 
(Kg) 

Spring  
Stiffness 

(N/m) Eigenvalue 

1 5 950 1.870652 6 1150 2.176614 

2 3 1200 16.1704 3 1300 18.27391 

3 2 900 54.20709 5 1490 44.4074 

4 1 1000 71.07304 3 1200 78.97088 

5 2 1600 144.6704 2 1500 126.2775 

6 3 800 158.7756 4 1350 201.4716 

7 1 600 225.2654 3 800 231.9876 

8 6 700 480.732 7 1000 388.1066 

9 5 500 500.3639 2 500 392.9219 

10 2 800 762.5931 6 1100 551.5609 

11 1 900 825.5778 1 1000 679.1302 

12 8 200 905.167 5 800 875.2149 

13 2 1200 1257.122 5 1100 963.8726 

14 2 700 1438.915 2 800 1268.899 

15 5 1500 1496.88 5 1700 1417.845 

16 1 900 1644.542 0.5 700 1555.343 

17 1 500 1668.058 3 800 1967.007 

18 1 1400 2510.71 1 1300 1988.533 

19 1 1500 3400.134 1.5 1300 3164.926 

20 1 900 4698.838 2 1100 3526.194 

 
The original design as well as modified design are defined in Table 6.2. 

As it can be seen in table 6.2. masses as well as stiffnesses of spring elements 

associated with almost all degree of freedom are changed in modified design. 

Thus, this design has been modified globally.  
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Figure 6.5 Comparison of Eigenvector 1 Computed by S-1and S-I-1, Case 6.2 

In Figures 6.5 through 6.13, the first, second and fourth eigenvectors 

computed by various combinations are compared. These eigenvectors are 

normalized by making the first element equal to 1. Solutions using combinations 

S-1 and S-I-1 produce the eigenvectors almost identical to the exact one. The 

combinations S-1 produces better results than those produced by S-3 as it uses 

more number of basis vectors. The results for combinations S-2 and S-I-2 are 

not as good as S-1 or S-I-1because it uses only 3 basis vectors. Figure 6.14 

summarizes error in first four eigenvalues computed by various combinations. 

S-1 and S-I-1 gives very good approximations of eignevalues with maximum 

absolute percentage error even less than 0.2%. 
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Figure 6.6 Comparison of Eigenvector 1 Computed by S-3 and W-C, Case 6.2 
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Figure 6.7 Comparison of Eigenvector 1 Computed by S-2 and S-I-2, Case 6.2 
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Figure 6.8 Comparison of Eigenvector 2 Computed by S-1and S-I-1, Case 6.2 
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Figure 6.9 Comparison of Eigenvector 2 Computed by S-3 and W-C, Case 6.2 
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Figure 6.10 Comparison of Eigenvector 2 Computed by S-2 and S-I-2, Case 6.2 

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 Comparision of Eignevectors, Mode Number   4

 

 

Sensitivity Approach S-1

Sensitivity Approach S-I-1

Direct analysis

 
Figure 6.11 Comparison of Eigenvector 4 Computed by S-1and S-I-1, Case 6.2 
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Figure 6.12 Comparison of Eigenvector 4 Computed by S-3 and W-C, Case 6.2 
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Figure 6.13 Comparison of Eigenvector 4 Computed by S-2 and S-I-2, Case 6.2 
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Figure 6.14 Comparison of Absolute Error in Eigenvalues Computed by 

Reanalysis Procedures, Case 6.2 
 
 

6.3 33 Member Frame Structure- Local Modification 
 

 

Figure 6.15 33 Member Frame Structure – Initial Design 
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For a two dimensional frame structure, each node has three degree of 

freedom: Translation in X axis, Translation in Y axis and Rotation about Z axis. 

The Initial design of a 33 member frame structure is as shown in figure 6.9. This 

initial design is modified in cases 6.3 through 6.6. 

 
As shown in the figure, four nodes of the structure are fixed and hence it 

has 36 degrees of freedom. The members of this structure are grouped as 

horizontal members, vertical member and inclined members which are marked 

in blue black and red color respectively. The members have a square cross 

section. The data of Initial design is as follows: 

E = 200 GPa, ρ = 7800 Kg/m3 

The cross section of all members is 1 cm × 1 cm.  

 

Figure 6.16 33 Member frame structure- Local Modification 
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In this case, the design is modified locally by increasing the cross section 

of three horizontal members to 2 cm × 2 cm shown in the figure 6.16. 

Table 6.3 Eigenvalues of Initial and Modified Design, Case 6.3 

Mode 

No. 

Eigenvalue of 

Initial Design 

Eigenvalue of 

Modified Design 

1 355.86 364.13

2 381.67 409.61

3 437.15 470.61

4 439.48 480.04  
 

In Figures 6.17 through 6.25, the first, second and fourth eigenvectors 

computed by various combinations are compared. These eigenvectors are 

normalized by making the magnitude of largest element equal to 1. 

Combination S-1 and S-I-1 produces the eigenvectors better results than CA 

procedure. The combinations S-1 produces better results than that produced by 

S-3 as it uses more number of basis vectors. S-2 and S-I-2 does not produce 

acceptable results for higher modes as it uses only 3 basis vectors. Figure 6.26 

summarizes error in first four eigenvalues computed by various combinations. 

S-1 and S-I-1 gives very good approximations of eignevalues with maximum 

absolute percentage error less than 0.5%. The results for combinations S-2 and 

S-I-2 are same as S-1 and S-I-1 for the first mode. 
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Figure 6.17 Comparison of Eigenvector 1 Computed by S-1and S-I-1, Case 6.3 
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Figure 6.18 Comparison of Eigenvector 1 Computed by S-3 and W-C, Case 6.3 
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Figure 6.19 Comparison of Eigenvector 1 Computed by S-2 and S-I-2, Case 6.3 
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Figure 6.20 Comparison of Eigenvector 2 Computed by S-1and S-I-1, Case 6.3 
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Figure 6.21 Comparison of Eigenvector 2 Computed by S-3 and W-C, Case 6.3 
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Figure 6.22 Comparison of Eigenvector 2 Computed by S-2 and S-I-2, Case 6.3 
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Figure 6.23 Comparison of Eigenvector 4 Computed by S-1and S-I-1, Case 6.3 
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Figure 6.24 Comparison of Eigenvector 4 Computed by S-3 and W-C, Case 6.3 
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Figure 6.25 Comparison of Eigenvector 4 Computed by S-2 and S-I-2, Case 6.3 

1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

Mode Number

P
e
rc

e
n
ta

g
e
 E

rr
o
r 

in
 E

ig
e
n
v
a
lu

e

 Error in Eigenvalue by Reanalysis

 

 

Combination S-1

Combination S-2

MCombination S-3

Wang-Caldwell Approach

Combination S-I-2

Combination S-I-1

 
Figure 6.26 Comparison of Absolute Error in Eigenvalues Computed by 

Reanalysis Procedures, Case 6.3 
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6.4  33 Member Frame Structure-  Cross Section Dimension Change 
 

 In this case, the cross sections of all horizontal members were increased 

to 1.05 cm × 1.05 cm whereas sections of all vertical members were decreased 

to 0.95 cm × 0.95 cm. 

Table 6.4 Cross Section Dimensions - Initial and Modified Designs, Case 6.4 

Members  Initial Design Modified Design 

Horizontal 1cm × 1cm 1.05 cm× 1.05 cm 

Vertical 1cm × 1cm 0.95 cm × 0.95 cm 

Inclined 1cm × 1cm 1cm × 1cm 

 

In Figures 6.27 through 6.32, the first and fourth eigenvectors computed 

by various combinations are compared. These eigenvectors are normalized by 

making the magnitude of largest element equal to 1. The combinations S-1 and 

S-I-1 produces best results for eigenvectors. Figure 6.33 summarizes error in 

first four eigenvalues computed by various combinations. S-1 and S-I-1 gives 

very good approximations of eignevalues with maximum absolute percentage 

error less than 0.2%. The first and fourth Eigenvalue of Initial and modified 

design computed by exact analysis are shown in the following table: 

Table 6.5 Eigenvalues of Initial and Modified Design, Case 6.4 

Mode No. Eigenvalue of Initial Design Eigenvalue of Modified Design 

1 355.87 386.10 

4 439.48 483.84 
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Figure 6.27 Comparison of Eigenvector 1 Computed by S-1and S-I-1, Case 6.4 

0 5 10 15 20 25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
 Comparision of Eignevectors, Mode Number   1

 

 

Sensitivity Approach S-3

Wang-Caldwell Method

Direct analysis

 
Figure 6.28 Comparison of Eigenvector 1 Computed by S-3 and W-C, Case 6.4 
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Figure 6.29 Comparison of Eigenvector 1 Computed by S-2 and S-I-2, Case 6.4 
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Figure 6.30 Comparison of Eigenvector 4 Computed by S-1and S-I-1, Case 6.4 
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Figure 6.31 Comparison of Eigenvector 4 Computed by S-3 and W-C, Case 6.4 
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Figure 6.32 Comparison of Eigenvector 4 Computed by S-2 and S-I-2, Case 6.4 
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Figure 6.33 Comparison of Absolute Error in Eigenvalues Computed by 

Reanalysis Procedures, Case 6.4 
 

6.5  33 Member Frame Structure-  Topological Modification 
 

In this case, the data for initial design is same as that in the above 

section. The modified design is as shown in the figure 6.34. Thus, this will 

change the lengths of some members of all groups and therefore both stiffness 

and mass matrices. The first and third Eigenvalue of Initial and modified design 

are shown in the table 6.6. 
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Figure 6.34 33 Member frame structure- Topological Modification, Case 6.5 

Table 6.6 Eigenvalues of Initial and Modified Design, Case 6.5 

 

In Figures 6.35 through 6.40, the first and fourth eigenvectors computed 

by various combinations are compared. These eigenvectors are normalized by 

making the magnitude of largest element equal to 1. The combinations S-1 and 

S-I-1 produces best results for eigenvectors. Figure 6.41 summarizes error in 

first four eigenvalues computed by various combinations. S-1 and S-I-1 gives 

very good approximations of eignevalues and the percentage error is very 

small. 

Mode 
No. 

Eigenvalue of Initial Design Eigenvalue of Modified Design 

1 355.87 368.58 

4 437.15 477.25 
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Figure 6.35 Comparison of Eigenvector 1 Computed by S-1and S-I-1, Case 6.5 
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Figure 6.36 Comparison of Eigenvector 1 Computed by S-3 and W-C, Case 6.5 
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Figure 6.37 Comparison of Eigenvector 1 Computed by S-2 and S-I-2, Case 6.5 
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Figure 6.38 Comparison of Eigenvector 4 Computed by S-1and S-I-1, Case 6.5 
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Figure 6.39 Comparison of Eigenvector 4 Computed by S-3 and W-C, Case 6.5 
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Figure 6.40 Comparison of Eigenvector 4 Computed by S-2 and S-I-2, Case 6.5 
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Figure 6.41 Comparison of Absolute Error in Eigenvalues Computed by 
Reanalysis Procedures, Case 6.5 

 
6.6  33 Member Frame Structure- Cross Section Dimension Change in Steps 

 

The section dimensions of the horizontal and vertical members are 

changed from 1 cm × 1 cm to 1.3 cm × 1.3 cm for horizontal members and 0.7 

cm × 0.7 cm for vertical members respectively in a step of 0.002 cm × 0.002 

cm. Combination S-1 is used for reanalysis using three, six and nine basis 

vectors.  

As mentioned earlier, S-1 combination uses of all preceeding 

eigenvectors and their derivatives. For example, first eigenvector and its 

derivatives are used in addition to second eigenvector and its derivatives in 
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order to compute second eigenpair. Therefore, the number of basis vectors 

used is 6. This produces approximation for second as well as first eigenpair. 

Similarly, solving for third eigenpair, which uses 9 basis vectors produces 

approximation for first and second eigenpair also. In this section, the S-1 

combination was used to solve for first, second and third eigenpairs. The first 

eigenpair obtained using three, six and nine basis vectors were compared. 

Similarly, second eigenpair obtained using six and nine basis vectors were 

compared. 

Table 6.7 Combinations of Basis Vectors Used, Case 6.6 

Number of 

basis
Basis vectors

3

6

9

1 1 1 '  ′′
 
φ φ φ

1 2 1 2 1 2  ' '   ′′ ′′
 
φ φ φ φ φ φ

1 2 3 1 2 3 1 2 3   ' ' '    ′′ ′′ ′′
 
φ φ φ φ φ φ φ φ φ

 
 

As seen in figure 6.42, the proposed procedure produces acceptable 

results for first eigenvalue using three basis vectors at least up to first fifty 

steps. Increasing the number of basis vectors, ie, adding proceeding 

eigenvectors and their derivatives further improves the accuracy of reanalysis 

results for first eigenvalue and makes the reanalysis procedure reliable for 

larger modifications. However, that requires more calculations. The percentage 
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error in first, second and third eigenvalue for each modification is shown in the 

figures 6.42 through 6.44. 
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Figure 6.42 Comparison of Percentage Error in First Eigenvalue, Case 6.6 
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Figure 6.43 Comparison of Percentage Error in Second Eigenvalue, Case 6.6 
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Figure 6.44 Comparison of Percentage Error in Third Eigenvalue, Case 6.6 
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6.7  340 Member Frame Structure- Cross Section Dimension Change 
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Figure 6.45 340 Member Frame Structure - Initial Design 

 Initial design of a large plane frame structure is as shown in figure 6.45. 

The lengths are in meters. The material and section properties are as follows.  

E = 200 GPa, ρ = 7800 Kg/m3 
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Table 6.8 Cross Section Dimensions - Initial and Modified Design, Case 6.7 

Members  Marking Initial Design Modified Design 

Vertical Blue 1.2 cm × 1.2 cm 1.1 cm× 1.1 cm 

Horizontal - 

Lower 
Red 

0.6 cm × 0.6 cm 0.6 cm × 0.6 cm 

Horizontal- 

Upper 
Green 

0.6 cm × 0.6 cm 0.5 cm × 0.5 cm 

 

The frame structure is fixed at the ground. Each member is divided into 

two elements. Therefore, the total number of degree of freedom for this 

structure is 1560.  

In the figure 6.46, the members marked as red are not modified. The 

section dimension of vertical members marked blue is decreased. The section 

dimension of upper horizontal members marked green is increased mentioned 

in table 6.8. The first four Eigenvalues of Initial and modified design computed 

by exact analysis are shown in the following table: 

Table 6 9 Eigenvalues of Initial and Modified Design, Case 6.7 

Mode 
No. 

Eigenvalue of Initial Design Eigenvalue of Modified Design 

1 0.0134 0.0130 

2 0.1237 0.0943 

3 0.3608 0.3022 

4 0.7569 0.6113 
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Figure 6.46 340 Member Frame Structure - Modified Design 

Since the results of S-1 and S-I-1 combinations are best, here the first 

four mode shapes obtained by these combinations are compared with the exact 

mode shape of modified design in figures to . It should be noted that only ten 

eigenvectors were used to approximate eigenvector derivatives using Implicit 

and explicit methods.Figure 6.33 summarizes error in first four eigenvalues 

computed by various combinations. S-1 and S-I-1 gives very good 

approximations of eignevalues with maximum absolute percentage error very 

small.  
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Figure 6.47 Comparison of Mode Shape 1 Computed by S-1and S-I-1, Case 6.7 
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Figure 6.48 Comparison of Mode Shape 2 Computed by S-1and S-I-1, Case 6.7 
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Figure 6.49 Comparison of Mode Shape 3 Computed by S-1and S-I-1, Case 6.7 
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Figure 6.50 Comparison of Mode Shape 4 Computed by S-1and S-I-1, Case 6.7 
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Figure 6.51 Comparison of Absolute Error in Eigenvalues Computed by 
Reanalysis Procedures, Case 6.7 
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CHAPTER 7 

 
CONCLUSION AND FUTURE RESEARCH 

 The results are improved using Gram-Schmidt orthogonalization in case 

of CA procedure. For that, all preceding modes are to be computed using 

reanalysis procedure first. This makes calculations complicated. However, the 

results are still not as good as that obtained by sensitivity approach S-1.  

As it is clear from results, sensitivity approaches are efficient methods for 

eigenproblem reanalysis for various types of modifications. For small 

modifications, S-2, S-E-2 and S-I-2 procedures gives sufficiently accurate 

results for first few modes with moderate modification. For moderate to large 

modifications or in case if a few consecutive eigenvalues and eigenvectors are 

to be reanalyzed, S-1 method is more suitable as it gives the best results for all 

desired eigenpairs.  

The results of reanalyzed eigenvector obtained by approximate 

eigenvector sensitivity data and exact eigenvector sensitivity data as basis 

vectors are very much similar in case if the number of basis vectors is same.  

The proposed sensitivity approach has applications in the efficient 

eigensolution reanalysis procedure in structural dynamics optimization. The 

reanalysis method S-1 which uses r basis vectors and their derivatives is very 
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efficient and gives almost accurate results even for larger modifications as 

shown in results. So, this can be used for structural optimization. A method can 

be developed which gives suggestions whether the results of reanalysis are 

converging or not. This will lead to make use of methods S-I-2 and S-E-2 which 

uses only 3 basis vectors in optimization more reliable. 

The Forced response of a structure can be obtained from eigenvectors 

using modal superposition method. Usually, for large structures, forced 

response is calculated by using only some initial eigenvectors. So, these initial 

eigenvectors of modified design can be obtained by using reanalysis techniques 

which potentially can give efficient approximations of forced response. 

Therefore, the sensitivity data can also be used in automated optimization for 

constraints of forced response. 
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