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ABSTRACT 

 

SOLUTION TO THE MULTI TERM BOLTZMANN EQUATION FOR PLASMA ASSISTED COMBUSTION 

 

Antriksh Luthra , M.S. 

 

The University of Texas at Arlington, 2010 

 

Plasma assisted ignition and combustion (PAIC) is a technology where plasma is generated 

by high voltage, nano second pulse duration and high repetitive rate pulses. The high reduced 

electric field during the pulse allows efficient electronic excitation and molecular dissociation, 

thereby generating a pool of chemically active radical species.  This speeds up the reaction 

process needed to generate a high speed flame 

A very high energy is liberated by collision of excited electrons with the neutral molecules of 

fuel in such a way that a minimal amount of energy go in momentum transfer. The majority of 

collision events are characterized by high kinetic energy so that the ionization takes place 

forming a pool of radicals which will in turn accelerate the chemical reactions. 

The simulation of flame generated after the oxidation of radicals need their reaction rates 

and the reaction rates are directly proportional to the velocity distribution function of the 

excited electrons. 
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 Multi term Boltzmann Equation is used in order to determine these electron velocity 

distribution functions at extreme reduced field conditions typical to hypersonic space flights.   
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CHAPTER 1 

                                                                  INTRODUCTION 

Plasma assisted ignition and combustion (PAIC) is a new technology where plasma is 

generated by high voltage, nano second pulse duration and high repetitive rate pulses. The high 

reduced electric field (defined as the ratio of electric field to the molecule number density (E/N) 

and expressed in Td units) during the pulse supports efficient electronic excitation and 

molecular dissociation, thereby generating a pool of chemically active radical species. The low 

duty cycle of the repetitive pulsed discharge improves the discharge stability and helps creating 

a diffuse, uniform and volume filling non equilibrium plasma.  

Its range of application covers hypersonic space flights, gas turbines for terrestrial power 

generator and flue gas treatment.  

At a very high Mach number, typical to hypersonic space flights, supersonic mixing layers 

feature a low linear growth rate. The supported low mixing implies that reaction must proceed 

at low equivalence ratios. Plasma assisted combustion enhances the combustion performance 

in low equivalence ratios. 

Plasma is an ionized gas made of electrons and positive ions. Generally the number 

densities of opposite charged particles have the same magnitude, so weakly ionized plasma is in 

quasi neutral state. During ionization, electrons are the first in receiving the energy from the 
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electric field because of their high mobility and low mass and this energy. Energy is then 

transferred to by the electrons to the neutral particles through various elastic and inelastic 

collisional processes like dissociation, attachment etc.  

The rate at which ionization processes take place depends upon the number of electron 

having enough energy to participate in an inelastic collision event. Statistically, electron energy 

can be described by the electron energy distribution function. It is the probability density f(U) 

for an electron to have energy U.  

The determination of this density function and finding out the reaction rate coefficient is 

goal of this research. The chemical rate of production of charged particles will be later used to 

find adiabatic flame speed and induction times under plasma conditions.   

1.1 High Speed Propulsion 

The development of hypersonic flight vehicles requires efficient energy conversion. Due to the 

large loss in total pressure occurring in the supersonic to subsonic transition process, 

hypersonic thrust generators utilize supersonic combustors, a configuration known as scramjet. 

Supersonic mixing-layers are characterized by a low mixing rate evaluated with respect to the 

convective time scale, so that reaction must proceed at low equivalence ratios, i.e., fuel lean 

combustion. Therefore, in order transfer energy efficiently to the working fluid, the chemical 

time in fuel lean conditions has to be large compared to the convective time. This consideration 

limits the use of hydrocarbon fuels for supersonic combustion, because in air-fuel mixtures the 

chemical time decreases quickly away from the stoichiometric condition. In the scenario of 
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supersonic air-breathing propulsion hydrocarbon fuels are less competitive than hydrogen. 

Nonetheless, hydrogen fuel has many drawbacks, including very low energy density by volume 

and various safety concerns, [1]. The new version of the NASA X-43 hypersonic aircraft is 

designed to use hydrocarbon fuel as energy generator. Plasma-assisted ignition and combustion 

(PAIC) is a new technology that uses non-thermal plasma to enhance combustion performance 

at low equivalence ratios, [2, 3]. 

The range of application of plasma combustion goes beyond hypersonic flight. Lower 

equivalence ratios in a combustion process imply a lower adiabatic flame temperature which 

leads to a reduction in the rate of entropy production in the combustor (proportional to the 

difference between flame temperature and maximum cycle temperature) and to a decrease in 

the formation of NOx products. Thus, this technology appeals to ground energy generation as 

well.  

The fundamental question in assessing performance of plasma combustion is to quantify the 

advantage of the non-thermal energy transfer when compared to the thermal analog. Energy 

exchange through fast electron collisions excite internal and electronic energy states moving 

the reagents away from thermal (Boltzmann) equilibrium. The combustion field supported by 

plasma discharge presents two main regions of heat release, the “cool flame.”([5]), i.e., plasma 

activated initial oxidation, and the final flame, thermally activated heat release, which at 

nominal flow rates occurs outside the discharge area. Exothermic chemical reactions at both 

flame fronts are characterized by large activation barriers, and therefore are selective with 

respect to the reagents state. Understanding energy consumption and tunneling of internal 
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modes into bond breaking motion is the main path to a better design of plasma enhancing 

systems.  

The rationale for the previous statement is the link between reduced electric field and electron 

energy, and between electron energy and internal mode excitation: low energy collisions result 

in a large momentum transfer, mid-range collision in vibrational modes, and high energy in 

ionization and dissociation. Different types of plasma discharges ( e.g., nano-pulsed, radio-

frequency, microwave-frequency) were shown to produce different levels of laminar flame 

speed enhancement, [6], suggesting that an increased electron energy leads to a more efficient 

chemical activation. Furthermore, the relationship between reduced field � �
�� and electron 

energy makes the excitation processes pressure dependent. Thus a study of 

plasma/combustion chemistry is necessary to understand the response of the combustor to 

changes in altitude.  

The chemistry model must take into account the different forms of internal molecular energy, 

and consider a vast range of chemical processes including: the electron impact collision 

processes in the discharge region, the selectivity of the reactions to the internal state of the 

molecules, and the ion and radical chemistry known to be pressure sensitive. The detailed 

chemistry model is likely to contain several hundred species and thousands reactions.  

Our overall goal is to analyze the sensitivity of the rate of reactions and how the expansion 

order affects the flame speed. The resultant rates will be used in flame speed calculations.   
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To determine the reaction rates we make use of the Boltzmann Equation (will be discussed in 

detail in later section). 

For the solution of the Boltzmann equation related to steady-state plasma conditions the most 

easily achievable solution is through BOLSIG, a 2 term approximation Boltzmann equation 

solver, but the solution is inaccurate at very high reduced electric field. Efforts have been 

undertaken to develop techniques that make a solution of the kinetic problem in higher order 

accuracy possible.  

The techniques related to steady-state plasmas are based on quite different procedures such as 

(i) an higher order expansion in Legendre  polynomials of the velocity distribution in the 

relevant kinetic equation, and the numerical solution of the resultant differential equation 

system by a GALERKIN approach [18] or by a complicated direct integration of the system 

[19,10]  (ii) the velocity moment method [21] including a complex approximation of the velocity 

distribution and (iii) the direct numerical integration of the kinetic equation avoiding a further 

expansion of the velocity distribution [20]. All these techniques are more or less sophisticated, 

and of large complexity. 
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CHAPTER 2 

THE BOLTZMANN TRANSPORT EQUATION 

The Boltzmann equation, also often known as the Boltzmann transport equation, devised by 

Ludwig Boltzmann, describes the statistical distribution of one particle in a fluid. The Boltzmann 

equation is used to study how a fluid transports physical quantities such as heat and charge, 

and thus to derive transport properties such as electrical conductivity, Hall conductivity, 

viscosity, and thermal conductivity. 

The Boltzmann equation is an equation for the time t evolution of the distribution  (properly a 

density) function f(x, p, t) in one-particle phase space, where x and p  are position and 

momentum, respectively. 

The macroscopic properties of the electrons can be obtained by solving the relevant electron 

Boltzmann equation as to determine the velocity distribution function of the electrons and 

performing the corresponding averages over the velocity distribution. It is well known that the 

velocity distribution function of the electrons in a weakly ionized plasma represents a link 

between the microscopic processes acting upon the electrons in the plasma (characterized e.g. 

by the atomic data of the electron collision processes and the electric field) and the various 

macroscopic properties of the electrons (as mean energy, drift velocity or mean collision 

frequencies). 
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However, some of the atomic data of the relevant electron collision processes are often not 

known or their values are very uncertain. To fit some of the uncertain atomic data of the 

collision processes, a repeated determination of the velocity distribution and of corresponding 

macroscopic properties of the electrons has to be performed by solving the electron kinetic 

equation.  

In few special cases i.e. that of the electrons in steady-state plasmas and of the swarm 

electrons subjected to constant electric fields finally time- and space-independent kinetic 

equations are obtained and solutions to these have been sought to higher order accuracy. 

The technique used in present research is based upon multi-term expansions of the electron 

velocity distribution in Legendre polynomials. The resultant partial differential equation 

systems for the expansion coefficients is solved as initial-boundary value problems by using 

appropriately adapted finite differences approaches. An important point in this respect has 

been the choice of the proper boundary conditions for the expansion coefficients of the 

velocity distribution. The boundary conditions used here have been deduced from a former 

detailed asymptotic analysis [10,20] of the corresponding system of equations relevant to time- 

and space-independent plasmas. 

The data for the production of neutral hydrocarbon fragments are coupled with those 

representing production of hydrogen and hydrocarbon cat ions to produce rate for the 

elementary processes, 

���  �  � �  ��
  �  ��  �  � 
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��� �  � �  ��
�  �  ��  �  2� 
��� �  � �   ��
  �  ���  �  2e 

,where m + n = 4, m = 1, . . . , 4. Vibrational cross section data for the four normal modes 

(multiplied by the respective multiplicities) of the methane molecule are taken from Nishimura 

and Gianturco, [7]. 
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CHAPTER 3 

GOVERNING EQUATIONS AND SOLUTION APPROACH 

The time independent Boltzmann Equation governing the microscopic properties of the 

electron in steady state Plasmas is given as follows:-  

 � � ��
�� �. !"F � C%&�F� � ∑ C()* �F� 

  + ,�-�.- � 1                                                                                                                           (1)                                                   

Where F(v) is the electron velocity distribution function, �0 is the electron charge, 1�  is the 

electron mass.  

E, Electric field in the steady state plasma remains constant. The gas particles are assumed to 

be at rest and in the ground state and to have the mass M and the density N. 

 The impact of elastic and first kind inelastic collisions of the electrons with the gas particles is 

taken care by the right-hand side of (1) in terms of the collision integrals Cel and Cin,m.  

  The index m denotes the m
th

 inelastic collision process considered.  

 An additional inclusion of second kind inelastic collisions with excited gas particles in the 

kinetic equation (1) and its solution approach is immediately possible. However, for simplicity 

of the further representation, first kind inelastic collisions only are considered. 
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 Since steady-state plasmas are under consideration, for each inelastic collision the number 

of electron particles is conserved. Thus, the electron density assumes a constant value and the 

velocity distribution can be normalized per one electron. Such a normalization has been already 

adopted and expressed in (1) by the normalization condition. 

Furthermore, the constant electric field is supposed to be parallel to the z-axis of the chosen 

coordinate system, i.e. E = Eez with e: being the unit vector in the z-direction. Then, with the 

magnitude v of the velocity v given by v = (vx
2
 + vy

2
 + vz

2
) 

1 /2
 , the velocity distribution function 

F(v) is reduced dependence F(v, vz /v) and can be expanded with respect to vz/v into Legendre 

polynomials Pn (vz/v). In l-term approximation this expansion reads  

, �-, -3- � � 4 56�-�76�-3/-�
9:�

6;0
                                                                                                              �2� 

When substituting this expansion into (1) and replacing the velocity magnitude v by the 

kinetic energy U = mev
2
/2, the hierarchy of ordinary differential equations, 

� <�03 �>? � ..@ �@5����@�� � ..@ AB@C21�D E �F�9�0��@� � F�9����@�� 50�@�G
� 4 @FH�,
0 �@� I 50�@� � 4J@ � @H�,
KFH�,
0



J@ � @H�,
K5�0�J@ � @H�,
K



� 0  
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� M2M � 1 �0 <�>? N@ ..@ 5�6:���@� � M � 12 I 5�6:���@�O    
� �M � 1�

2M � 3 �0 <�>? N@  . .@ 56���@� � M � 22 56���@�O                           

� PF�9�0��@� � F�9�6��@� � 4 FH�,
�0� �@�



Q @ I 5�6��@�                             

� 4J@ � @H�,
K



FH�,
�6� J@ � @H�,
K56J@ � @H�,
K � 0 

 

R � 12R � 3 �0 <�>? N@ ..@ �59:C�@�� � R � 22 59:C�@�O

� PF�9�0��@� � F�9�9:C��@� � 4 FH�,
�0� �@�



Q @5�9:���@�

� 4J@ � @H�,
KFH�,
�9:��



J@ � @H�,
K5�9:��J@ � @H�,
K
� 0                                                                                                                                 �3� 

for the transformed expansion coefficients  

5�6��@� � 2S�2/1��T/C 5~�6�J-�@�K,    M � 0,1,2 … … . R � 1, 

with the corresponding normalization condition 

W @�C
∞

0
5�0��@�.@ � 1                                                                                                                                  �4� 

for the lowest transformed expansion coefficient f
(
°

)
(U) is obtained [11,12].  
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On deriving hierarchy (3), because of the smallness of the electron mass me compared with the 

gas particle mass M each collision integral has been additionally expanded with respect to the 

mass ratio me/M, and this expansion has been truncated after the leading term.  

Also the term with the shifted energy arguments @ �  @H�,
 are due to the electrons with the 

energy @ �  @H�,
  which have undergone inelastic collisions of the mth process and are 

backscattered to the energy U because of their energy loss  @H�,
 in this process. 

There is sequences of generalized total collision cross sections, due to the expansion of (1) and 

thus of the collision integrals involved when substituting (2), 

F�9�6��@� � + Y�9�@, Z[\]�76�Z[\]�\^_].].`   

FH�,
�6� �@� � W YH�,
�@, Z[\]�76�Z[\]�\^_].].`,                                                                            �5� 

with k = 0 . . . . . L - I occur in the hierarchy equations (3). 

 These cross sections are obtained by integrating the respective differential cross section 

Y�9�@, Z[\]� and YH�,
�@, Z[\]� times the Legendre polynomials 76�Z[\]� over the solid 

scattering angle \^_].].`.  

The impact of the anisotropic scattering in elastic collisions and the various inelastic collision 

processes in the hierarchy equations (3) is described by sequences (5).  
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In case of isotropic scattering all generalized cross sections (5) for k = 0 . . . . . L - 1 become zero 

and only the respective total cross section F�9�0��@� and FH�,
�0� �@� of each collision process 

remains in hierarchy (3). 

The difference F�9�0��@� � F�9����@�, observable in the first two equations of (3), represents 

momentum transfer cross section Fb�@� of elastic collisions. 

Treating the system of equations (3) directly as a boundary-value problem is the basic idea 

of the solution approach presented below the boundary value problem is integrated in the 

energy range 0 < U < @∞, where @∞denotes an appropriate upper energy limit. 

To develop such an approach adequate boundary conditions for all coefficients 

5�6��@�  involved in the expansion (2) are needed. As mentioned above, specific information on 

the solution manifold of system (3) has already been obtained in the past [12] while performing 

an asymptotic analysis of this ordinary differential equation system for low and high kinetic 

energies. It was found that the equation system is weakly singular at low and strongly singular 

at high kinetic energies. As a consequence the general solution of e.g. each even-order multi-

term solution of the hierarchy (3) contains an equal number, namely half the even order, of 

singular and nonsingular contributions to the general solution.  

This property holds at both, i.e. at low and high kinetic energies. The physically relevant 

solution has to be sought within the nonsingular part of the general solution.  
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To isolate by separate conditions at high as well as at low kinetic energies the nonsingular 

part of the general solution and to find in this way the physically relevant solution of hierarchy 

(3), a sophisticated technique has been developed already [9].  

These insights into the solution structure of the system (3) have been the basis for the 

multi-term treatment of the electron kinetics of the respective time- and space-dependent 

plasmas [13a, 13b].  

Appropriate boundary conditions for the expansion coefficients have been formulated in 

these more complex cases when treating the kinetic equation in multi-term approximation as 

initial-boundary value problems.  

In the limit of time- and space-independent, i.e. steady-state plasmas, the corresponding 

boundary conditions used in both cases assume the same representation and read [13a] 

5�6��@ � 0� � 0,          M � 1,3,5 …. 
5�6��@ � @∞ � 0�,       M � 0,2,4 … 

5�6��@ c @∞� � 0        M � 0,1,2,3 …                                                                                         (6)                                

Significantly, as in time- and space-dependent plasmas the boundary conditions (6) enforce a  

suppression to the singular contributions of the relevant solution of system (3) at low as well as 

at high kinetic  energies.  
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The first two lines of (6) are the real boundary conditions of the pure ordinary differential 

equation part of system (3). The last line of (6) represents the natural demand that all 

contributions to the velocity distribution, i.e. all coefficients of expansion (2), become negligibly 

small for energies U larger than @∞. As a consequence all backscattering terms in system (3), 

caused by inelastic collisions and characterized by the shifted energies @ �  @H�,
 will be 

neglected if these shifted energies become larger than the upper limit @∞ of the relevant 

energy range. The governing equations analyzed in the present research are similar to what is 

used in reference [8].  

3.1 The Solution Approach to Boundary Value Problem 

System (3) for the I expansion coefficients, 

  5�0��@� . . . . . 5�9:���@� is solved as a boundary value problem using a finite differences 

approach. To derive an appropriate finite differences equation system for the expansion 

coefficients from system (3). Its discretization at all centered points:- 

@H��C � @H � .	/2 

 of the equidistant energy mesh @H. 1 d  ^ e  _∞ �  1,  with the energy boundaries  

@�  �  0 and @�∞�� �  @∞  
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and the step size ∆U is performed. When henceforth abbreviating 5�6��@� by 5H�6�
 , the 

discretized function values  5H��/C�6�
and their derivatives at @H��/C are approximated by the 

second-order-correct representation [13a]. 

5H��C
�6� � 12 J5H6 � 5H��6 K                                                                                                                                   

� ..@ �5H6�@���H��C � 1∆@ J5H��6 � 5H6K                                                                                                 �10� 

Each function value belonging to a shifted energy argument is represented on the 

equidistant mesh by means of a parabolic interpolation using the three most neighboring 

discrete values of the same function to the shifted energy points, @H�gh �  @H�,
. Such an 

interpolation has the representation [13a]. 

56 <@H��C � @H�,
? � <12? i
:Ti
:�5�j�H6 � i
� i
:T5H��j��6 � <12? i
� i
:�5H��j�C6                   �11�  

_
 � ^_k�@H�,
/∆@�,  

i
l � �@H�,
/∆@� � _
 � m/2         
no�p� m � 1, �1, �3 

Where, int(x) is the integer part of x. 

The substitution of (10) and (11) into the equation system (3) leads finally to the discrete 

equation system:- 
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 pH�5H� � \5H��� � �5H0 � qH 5H��0 � .H0 

pH6��5H6�� � \H6��5H6�� � rH65H6 � rH65H��6 � -H6��5H6:� � nH6��5H��6:� � .H6 ,            1 e M e R � 2. 
rH9:�5H9:� � rH9:�5H9:� � -H95H9:C � nH95H��9:C � .H9:�                                                                      (12)                                      

For, i = I..... _∞ With the coefficients 

�H � �sH � tu∆v
C ,    qH � sH � tu∆v

C ,     rH6 � wux∆v
C  

pH6 � M2M � 1 �0 <�>? �@H��C � M � 12 �∆@2 � � 

\H6 � � M2M � 1 �0 <�>? �@H��C � M � 12 �∆@2 � � 

-H6�� � M2M � 1 �0 <�>? �@H��C � M � 12 �∆@2 � � 

nH6 � M2M � 1 �0 <�>? ��@H��C � M � 12 �∆@2 � � 

M � 1, … … . R � 1                                                                                                                        (13)                                            

Some more coefficient involved: 

sH � �@H��C
C 2 �1�D � Fb <@H��C?, 

,H � �@H��C2 �1�D � B2Fb <@H��C? � @H��C I Fb�@H�� � � Fb�@H�
∆@ E � @H��C 4 FH�,
�0�



�@H��/C� 
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�H6 � @H��/Cy�F�90 <@H�gh? � F�96 <@H�gh? � ∑ FH�,
0
 �@H��/C�z                                                  (14)                            

The terms on the right-hand side of the discrete equation system (12) reads, 

.H6 � � 4 ∆@ I {H,
6



B<12? i
:Ti
:�5�j�H6 � i
� i
:T5H��j��6 � <12? i
� i
:�5H��j�C6 E ,
0 e M e R � 1 

With,  {H,
6 � � <@H�gh � @H�,
? FH�,
6 �@H�gh � @H�,
�                                                                (15)               

 

The discrete form of the boundary conditions (6) is, 

5�∞��6 � 0 5[p M � 0,2,4 … … 

5�6 � 0 5[p M � 1,3,5 … … .. 
5H6 � 0 5[p M � 0,1,2,3,4 … . . |_.    ^ c _∞ � 1                                                                       (16)                                    

A formal consideration of the discrete equation system (12) and the discrete boundary 

conditions (16) shows that the number { I �_∞  �  1� of equations equals the number of 

discrete function values 5H�6�
 on the mesh. 

However, the system consists only of homogeneous and linear equations. In order to avoid 

that the trivial solution of the system is finally obtained, a slight modification of the system is 

needed. It has been found that this modification can be performed in a very appropriate way if 
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the discretized version of the normalization condition (4) is added to the system (12) and the 

very first of the equations (12), i.e. the equation, p ��5����  �  \ ��5C���  �  � � 5��0�  �  q� 5C�0�  �  .�0  

is cancelled as to keep the total number of equations the same as the number of discrete 

function values. 

The discrelization of (4) has been performed by using SIMPSON's rule with respect to the 

interval 0 e  @ e  @∞ assuming that an even number _∞ of energy intervals is henceforth 

considered. As to keep the numerical error contribution in the neighborhood of @ �  0 small, 

the rule for the first double interval 0 < U < 2∆U has been improved by applying the substitution 

} �  @ T/C and a succeeding replacement by parabolic interpolation of that function value 

which does no longer fit into the energy mesh. The discrete version of the normalization 

condition derived in this way [14] finally reads, 

o�5�0 � o�5C0 � ~ � o�∞
5�∞

0 � o�∞�g5�∞��0 � 3/∆@                                                                                     

With coefficients, 

� � 2/4�/T 

o� � <23? �2∆@��C�1 � 2�� � 1��� � 2�� 

oC � �8/3�2∆��C��� � 2� 

oT � <23? �2∆@��C�1 � 2��� � 1��� � 2�� 
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oCH � 4 I @CH�/C
 

oCH�� � 2@CH��  �/C , ^ � 2,3 … , �_∞ � 2�/2   

o�∞ � 4@�∞

�/C
 

o�∞�� � @�∞

�/C
                                                                                                                           (18)                                   

Unlike the method used in reference [8] to solve this boundary value problem, which make 

use of formation of a triangular band algorithm to systematically arrange the matrix coefficient 

with respect to distribution function at various discretized points, we made use of sparse matrix 

system using matlab. 

I have written and validated a easy to use Matlab program for the solution of electron 

energy distribution function in steady state plasmas and the integration of source terms. The 

Program which repeated in appendix 1 provides input for combustion codes in term of kinetic 

rate constants against mean electron energy. 
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CHAPTER 4 

                                                                     VALIDATION 

Model Gas 

A model gas, as considered in the former paper [11] and reference [8] is used to match our 

results and to illustrate multi-term solution technique.  

The particles of the model gas are characterized by a mass  

- M of 4 amu,  

- Energy-independent total cross section F�9�0��@� = 6. 10-16 cm
2
 for elastic collisions and 

by a single excitation process with the energy loss Uin.I = I eV.  

- The total cross section FH�,�0 �@� of the latter is supposed to increase linearly from 0 at U 

= Uin.I to 6. 10 -]6 cm 2 at U = Uin.I + 0.2 eV and to remain then constant for higher 

energies U. 

For elastic collisions, the differential cross section is supposed to have a form: 

Y�9 �@, }� � F�90 �@� I < 12S? I ��9 �}�,         } � Z[\] 

��9 �}� � �
� I exp B� J�:����Kh

���h E  
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| �  + exp B� J�:����Kh
���h E .}�:�                                                                                                       (18)                                    

i.e., a Gaussian scattering profile ��9�}� with the normalization, + ��9�}�.}�:�  and with the 

centre } �9� and the width \�9  is used for all electron energies. The isotropic scattering is 

included in (18) by the limit,\�9 � ∞, i.e. by ��9�}�  �  0.5. The differential cross section 

Y�9H�,� �@, }� of the excitation process is described by the same representation (18), however, 

with the centre } H�,�� and the width \H�,�. 

With respect to the elastic collisions as well as to the single inelastic collision process, two 

scattering conditions, namely isotropic scattering with ���}�  �  0.5, � � �R and in,1 and 

pronouncedly forward scattering with the centre } �� = I and the width \�  �  0.5, are 

considered. These two scattering conditions are henceforth denoted by iso-el and aniso-el for 

elastic collisions and by iso-in and aniso-in for the single excitation process.  

The test conditions are :  

- reduced electric field E/po = 17.7 V cm 
-I
 Torr 

-I
.  

- Here po, introduced according to po = N/ng with ng = 3.54.10
16

 cm 
-3

 Torr 
-1

 , denotes the 

gas pressure at 0°C. Particularly, when going from isotropic scattering to distinctly 

anisotropic scattering in elastic collisions, a large change of both distribution parts 

results.  
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The ionization of the molecules occurs due to distribution of energies. Figure 4.1 shows the 

distribution function with respect to the electron energy, it can be observed that the 

distribution function equals to zero for higher energy values in the case of model gas.  

Electron energy distribution for the model gas 

 

Fig 4.1: Electron energy distribution function vs. Energy U  
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Also, the mean electron energy and the drift velocity is given as follows: 

	
 �  + @�h50�@�.@∞0   

n � � 13 � 21�� W @5��@�.@∞

0  

In the following table 4.1, both mean electron energy and drift velocity are tabulated under the 

column ‘Present’. 

Table 4.1: Comparison of mean electron energy 	
 and the drift velocity w 

 

 R 

 	
 y��] 

 

 n y10�Z1 \:�z 

 

Reference 1 

 

Present 

 

Reference 1 

 

Present 

 

2 
 1.121 

 1.1217 

 3.881 

 3.8838 

 

4 
 1.052 

 1.0528 

 3.481 

 

    3.4836 

 

6 
 1.046 

 1.0470 
 3.483 

 

    3.4851 

 

8 
 1.046 

 1.0471 

 3.482 

 3.4847 

  

There is an excellent agreement with the solution obtained and solution provided in reference 

[8] for every L and 
�
�� � 17.7 V cm:�Torr:�.  
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The agreement of the result obtained validates the accuracy of the method used o obtain the 

multi term solution. 

 

 Fig 4.2: Distribution functionsf ��U�, for l� 8 

Velocity distribution under 8 term approximation for higher and lower term together is shown 

in figure 4.2. 
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CHAPTER 5 

METHANE ANAYSIS 

After successfully applying the Boltzmann Transport equation to the model gas, I switch my 

attention to gases for practical combustions applications. 

The analysis considers the combustion of alkanes in air. Methane will be the primary fuel choice 

due to the simplicity of the molecule. Experiments on plasma enhanced combustion of 

methane are described in [15]; the molecule behaves similarly to higher atomic mass alkanes. 

In combustion computational analysis the kinetic rates appear in the energy and species 

concentration of all relevant chemical species plus the electrons. Therefore the rates described 

in this section are of critical importance to the analysis of Plasma assisted combustion. 

Methane gas has considerably large inelastic cross sections which are comparable to or even 

greater than momentum transfer cross section at low electron energies (0.3 eV)and high 

electron energies(�20 eV).(see, for example, Ohmori 1986). At such conditions, techniques 

such as 2-term approximation simulations have not given satisfactory results.  

As discussed earlier that hypersonic space flights needs efficient energy conversion and large 

amount of energy is lost in supersonic and subsonic transition. As the Mach no increases, the 

entropy change across the shock waves also increases which results in a strong entropy 

gradient and vertical flow which mixes the boundary layers. 
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These supersonic mixing of layers are characterized by low mixing rate (evaluated with respect 

to the convective time scale). In order to maintain that, reactions must proceed at a low 

equivalent ratios i.e. fuel lean combustion. The motive of low mixed ratio is also to achieve 

lower adiabatic flame temperature leading to reduction of rate entropy production and 

>�� production. 

The equivalence ratio for 1 mole of methane and 1 mole of oxygen is explained below: 

1����� � 12� 4�1� � 16 

1��C� � 32 

D|\\ �|k^[ �,	�R/�^p � �   1�����/ 1��C� � 16/32 � 0.5 

��� � 2�C � ��C � 2�C� 

�k[^Zo^[1�kp^Z �,	�R/�^p� D|\\ p|k^[ � 1. �12 � 1. �4��/2. �16 I 2� � 0.25 

��	^-|R�_Z� �|k^[ 5[p D�ko|_� �  0.5/0.25 � 2  
Methane is a good example of a fuel to be used at low equivalence ratio. 

In order for Plasma Combustion to be advantageous over pre heating transfer of energy 

between the electrodes has to occur at the chemical bend level. The energy in electron-neutral 

collision should not go in momentum transfer but should be so high that the ionization takes 

place forming a pool of radicals which will in turn accelerate the chemical reactions. 
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Plasma assisted combustion enhances the combustion performance at low equivalence ratio. In 

principle, plasma is generated by high voltage, nano second pulse duration and high repetitive 

rate pulses. The high reduced electric field during the pulse allows efficient electronic excitation 

and molecular dissociation, thereby generating a pool of chemically active radical species.  

The energy exchange through the fast moving electron excites internal and external states 

moving the reagents away from thermal equilibrium. At low electron energy collision will result 

in large momentum transfer, Mid range collision and energy results in the excitation of  

vibrational modes. Ionization and dissociation of the molecules only occurs for collision energy 

above the ionization potential of the molecule. In order for plasma assisted combustion to be 

viable combustion enhancement technique, a significant portion of electrons should have 

energy above the ionization potential. In this section I evaluate the electron energy distribution 

function considering a realistic set of scattering cross sections. 
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Fig 5.1: Pressure versus altitude for a M = 5 flight and oblique entrance shocks providing the 

maximum allowable deflection. The ceiling altitude of 30 km was selected based on the target 

altitude of the NASA X43-A, initial design (data available at nasa.gov). 

In light of the discussion above there is direct relationship between the reduced electric field 

and electron energy which makes the excitation process pressure dependent and hence in the 

case of hypersonic vehicle there is a is strong dependency over  the altitude.  

In the application of High speed propulsion the E/N value can go upto 700 Td (1 Td=10
-17

 V cm
2
) 

and using the multi term technique becomes a necessity.  There is hardly any data available 

where the technique used in our research have been performed on Methane, especially at such 

conditions. 

The necessary data needed for Methane which include cross sections and the energy domain of 

elastic and inelastic scattering collision processes, was taken from SHIRAI [2002][16]. 
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The electron collision with methane resulting in elastic and inelastic scattering. The later 

includes the production of CH4+, CH3+, CH2+, CH+, C+, H2+ and H+ ion.  

5.1 Analytic Expressions 

The functional expressions used for the cross section of methane are those which are derived 

from semi empirically by Green and McNeal [17]. First we introduce three different functions in 

the form, 

5��}; Z�, ZC� � Y0Z��}/��� h                                                                                                       �^� 

5C�}; Z�, ZC, ZT, Z�� � 5��}; Z�, ZC�/y1 � �}/ZT� h� ¡z                                                    �^^�          

5T�}; Z�, ZC, ZT, Z�, Z¢, Z£� � 5��}; Z�, ZC�/ N1 � � �
 �� h� ¡ � � �

 ¤� h� ¥O                          �^^^�             

with  Y0 � 1 I 10:�£ Z1C |_. �� � 1.361 I 10:C M��(Rydberg constant). Equation �^� to 

�^^^� be general equations with the index } and ZH�^ � 1,2,3,4,5,6� being dummy parameters. 

The cross section for elastic collision process is of the following form: 

Y � 5����; |�, |C� � 5C���; |�, |C, |T, |�� 

And the cross section for the inelastic collision process is of the following form:  

Y � 5T���; |�, |C, |T, |�, |¢, |£� 

Where, �� � � � �¦§ with � being the incident electron energy in KeV and �¦§ the threshold 

energy reaction in KeV. 
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Fig 5.2: The cross section for methane breakdown into ions production with respect to electron 

energy. 

 

Fig 5.3: Methane’s vibrational modes at low electron energy 
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Table 5.1 Energy range of data and parameter of the Analytic Expressions for Methane(CH4). 

 1  2 3 4 5 6 7 

 a1 
4.886 

 
2.35 

1.21-1 

 

1.038 

 

6.4-2 

 

4.9-3 

 

4.949-2 

 

 a2 
1.627 

 

1.435 

 

1.868 

 

1.161 

 

1.43 

 

3.61 

 

2.855 

 

 a3 
7.420-3 

 

1.13-2 

 

3.44-2 

 

2 

 

1.330-2 

 

2.57-2 

 

3.18-2 

 

 a4 
-4.5-2 

 
7.4-2 

3-1 

 

6.7-1 

 

-3.3-1 

 

-3.9-2 

 
-3.3-1 

 a5 
3.3-2 

 

5.5-2 

 

5.52-2 

 

1.4-1 

 

4.24-2 

 

4.4-2 

 

5.13-2 

 

 a6 
1.04 

 
1.2 

1 

                                                                      

1.6 

 
1.181 1.29 

1.155 

 

E"© 
1.299-2 

 

1.424-2 

 

1.520-2 

 

2.414-2 

 

2.820-2 

 

2.023-2 

 

1.800-2 

 

 

Explanation of Table 

No. Number label identifying a particular reaction process �¦§ Threshold energy of the reaction |l  Fit Parameters. 

The notation 1.23 � 1 means 1.23 I 10:�. 
 

The pyrolysis of methane (conversion without addition oxygenated compound) in dielectric 

barrier discharge(DC) requires considerable consumption of energy. For the Methane 

degradation (eV/molecule) is 38eV and higher values. 

For the different values of  �/> we obtain the following results: 
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Table 5.2 Mean electron energy and drift velocity at 10 term and 2 term approximation.@∞=40 

eV. 

 �/> �ª.� 

	
���� n�10�Z1 \:�� 

«=10 «=2 «=10 «=2 

100 17.9611 18.6026 3.1909 3.1909 

250 16.3328 18.5963 8.0546 8.0526 

500 13.874 18.5799 16.1175 16.1144 

700 12.6753 18.5666 22.5526 22.5493 

800 12.2674 18.558 25.7661 25.2768 

1000 11.6947 18.5464 32.1858 32.1825 

 

Where, 	
 � + @�h∞0 5�0��@�.	 

n �  � 13 < 21�?
�C W @∞

0 5����@�.@ 

We observe that the mean electron energy�	
� at multi term approximation goes down with 

the increase in reduced electric field whereas drift velocity increases with the same.  

The distribution function at 40 eV and 100, 250,500,700 Td respectively is shown in fig 5.4: 
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Fig 5.4: Distribution function At 40 eV, 100 Td and 100, 250,500,700 Td respectively. 

We observe that all the function with lower and higher order expansions are very close to each 

other  at this value of reduced electric field (=35.4 V cm
-1

Torr
-1

). As we raise the value of 

reduced electric field, higher and the lower order expansion begins to show the difference as 

shown in the figure 5.5 below:  
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Fig 5.5: Energy distribution functions at 100 and 250 Td. 
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We can observe the large differences between higher and lower term expansion at a very low 

ambient pressure which is generally in case of Hypersonic flights occurring at a very high 

altitude. As expressed in Fig.  

In fig 5.7, we observe the correction to the same expansion function at lower and higher term 

approximation of the Boltzmann equation.   

 

Fig 5.6: Comparison of 2 term and 6 term approximation at 50 eV for CH4 at 100 and 500 Td. 
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 Keeping the electron energy constant to 50 eV the variation in the 1
st

 term expansion term is 

observed at various E/N values, which is shown in the figure. 

All the isotropic expansion function merges to one value near 14 eV and later the converges at 

50 eV. 

 

Fig 5.7: Isotropic function expansion(k=0) at various E/N values 
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CHAPTER 6 

REACTION RATE COEFFICIENTS FOR METHANE 

Our next step is to use the energy distribution function to define the reaction rate coefficient 

and as a future work, these rate coefficient will be used for the flame simulations and flame 

speed calculations. 

We make use of the following general expression to express the rate coefficient relation with 

the distribution function: 

M6 � ¬ W @FH�,
�0� 50�@�.∞

0 @ 

Where, ¬ � �2�/1��/C 

Rate coefficients are calculated for every inelastic 1¦§process using 6 term approximation, and 

maximum electron energy of 50 eV. Results for every inelastic process are shown in figure 5.9. 
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Fig 6.1: Reaction rate coefficient at different E/N interval 
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CHAPTER 7 

                                                              CONCLUSIONS     

 

A numerical algorithm for the solution of the Boltzmann equation in the steady-state limit was 

developed, validated and applied to the determination of the reaction rates for the production 

of methane ions. The objective of the research is to simulate conditions typical of plasma 

assited combustion for aeronautical propulsion. Results achieved using the finite difference 

method are in agreement with the established results. The code developed in Matlab to 

perform finite difference analysis is computationally efficient when compared to literature 

algorithms thanks to the usage of a novel sparse matrix structure.  

The validation test performed on the model gas gave excellent agreeement with the refered 

results. The distribution curve with respect to the electron energy reaches its peak around 1 eV. 

At high values of reduced electric field due to inconsistency of lower order expansion, multi 

term solution for the determination of Electron energy distribution function  becomes a 

necessity.  

The obtained distribution from the Boltzmann code is finally used to determine reaction rate 

coefficients for CH4 for different values of reduced electric field ranging from 100 to 1000 Td.  

   



 
 

41 
 

 

    

 

 

 

 

 

APPENDIX A 

                                                           BOLTZMANN CODE 
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The Boltzmann code developed in MATLAB 

function [U,f,w] = boltzmann 

% indeendent variable 

E_p0 = 17.7; %V cm^-1 Torr^-1 

%system size 

ninf = 1000; 

ninfp1 = ninf+1; 

L = 8; 

Nall = ninfp1*L; 

M = 1;  %number of inelastic processes 

e0 = 1;  %measure energy in electron volt and fild in Volt 

ng = 3.54d16;  % cm^(-3)Torr^(-1) 

%physical constants 

me = 5.4857990943d-4;  % amu 

Ma = 4; %amu 

Uinf = 15; 

U = linspace(0,Uinf,ninfp1); 

DU = mean(diff(U)); 

for m = 1:M 

    Uin(m) = 1; 

end 
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%inelastic processes 

for m = 1:M 

    nmv(m) = floor(Uin(m)/DU); 

end 

%system matrix 

Mat = sparse(Nall,Nall); 

%determine vectors 

E_N = E_p0/ng; 

me_M = me/Ma; 

for i =1:ninfp1 

    Qdv(i) = Qd(U(i)); 

    Qinsumv(i) = Qinsum(U(i) + DU/2); 

    Qel0v(i) = Qel(0,U(i) + DU/2); 

end 

DQd = diff(Qdv)/DU; 

kv = 1:(L-1); 

for i =1:ninf;disp(i/ninf) 

    Uiph = U(i) + DU/2; %   ??????? 

    Qdph = Qd(Uiph); 

    D(i) = -Uiph^2*me_M*Qdph; 

    F(i) = -Uiph*2*me_M*(2*Qdph + Uiph *DQd(i) ) + Uiph * Qinsumv(i); 

    for k = kv 

        H(k,i) = Uiph*(Qel0v(i) - Qel(k,Uiph) + Qinsumv(i)); 

    end 
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    ev(i) = -D(i)+F(i)*DU/2; 

    gv(i) = D(i) + F(i)*DU/2; 

    pm(kv,i) = H(kv,i)*DU/2; 

    rm(kv,i) = kv./(2*kv+1)*e0 *E_N.*(Uiph-(kv+1)*DU/4); 

    sm(kv,i) = -kv./(2*kv+1)*e0 *E_N.*(Uiph+(kv+1)*DU/4); 

    vm(kv+1,i) = kv./(2*kv-1)*e0 *E_N.*(Uiph+(kv-1)*DU/4); 

    wm(kv+1,i) = kv./(2*kv-1)*e0 *E_N.*(-Uiph+(kv-1)*DU/4); 

end 

%stack up the matrix 

ieqn=0; 

for i = 1:ninf 

    ieqn = ieqn+1; 

    indxs = [indx(1,i:i+1),indx(0,i:i+1)]; 

    Mat(ieqn,indxs) = [rm(1,i),sm(1,i),ev(i),gv(i)]; 

    for k = 1:L-2 

        ieqn = ieqn+1; 

        indxs = [indx(k+1,i:i+1),indx(k,i:i+1),indx(k-1,i:i+1)]; 

        Mat(ieqn,indxs) = [rm(k+1,i),sm(k+1,i),pm(k,i),pm(k,i),vm(k+1,i),wm(k+1,i)]; 

    end 

    ieqn = ieqn+1; 

    k=L-1; 

    indxs = [indx(k,i:i+1),indx(k-1,i:i+1)]; 

    Mat(ieqn,indxs) = [pm(k,i),pm(k,i),vm(k+1,i),wm(k+1,i)]; 

end 
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neqn = ieqn; 

%Add boundary conditions 

ieqn= neqn;  %determined in the large matrix loop 

for k = 0:2:L-1 

    ieqn=ieqn+1; 

    Mat(ieqn,indx(k,ninfp1))=1; 

end 

for k = 1:2:L-1 

    ieqn=ieqn+1; 

    Mat(ieqn,indx(k,1))=1; 

end 

neqn=ieqn; 

%Add right hand side, d matrix 

ieqn = 0; 

for i = 1:ninf 

    for k =0:L-1 

        ieqn = ieqn+1; 

        for m = 1:M 

            UiphpUi = U(i)+DU/2+Uin(m); 

            DUIim = -DU*UiphpUi*Qin(k,UiphpUi,Uin(m)); 

            indxs = indx(k,i+nmv(m) +(0:2)); 

            rowl = DUIim*[1/2*alpham(-3,m)*alpham(-1,m),-alpham(1,m)*alpham(-

3,m),1/2*alpham(1,m)*alpham(-1,m)]; 

            ii = find(indxs <= Nall); 
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            Mat(ieqn,indxs(ii)) = Mat(ieqn,indxs(ii)) + rowl(ii); 

        end 

        Mat(ieqn,:) = Mat(ieqn,:)/E_N; 

    end 

end 

           %normalization condition on the eigenvalue 

 %Modify the first equation 

lambda = 2/4^(1/3); 

tdur = sqrt((2*DU)); 

sqU = sqrt(U); 

h = zeros(1,ninfp1); 

h(1) = 2/3*tdur*(1 +2*(lambda-1)*(lambda-2)); 

h(2) = -8/3*tdur*lambda*(lambda-2); 

h(3) = 2/3*tdur*(1 +2*(lambda-1)*lambda) + sqU(3); 

for i = 2:(ninf-2)/2 

    h(2*i) = 4*sqU(2*i); 

    h(2*i+1) = 2*sqU(2*i+1); 

end 

h(ninf) = 4*sqU(ninf); 

h(ninfp1) = sqU(ninfp1); 

ieqn = 1; 

indxs = indx(0,1:ninfp1); 

Mat(ieqn,indxs) = h; 

          %right hand side of the equations 
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rhs =  sparse(Nall,1); 

rhs(1) = 3/DU; 

           f = full( reshape(Mat\rhs,L,ninfp1)'); 

          %dimensional constants 

wscal =  sqrt(1.6021765314d-19/9.10938215d-31)*100 * 1d-7; 

wint1 = U.^(3/2).*f(:,1).'; 

wint2 = U.*f(:,2).'; 

w(1) = quadl(@(x) interp1(U,wint1,x,'pchip'),min(U),max(U)); 

w(2) = -quadl(@(x) interp1(U,wint2,x,'pchip'),min(U),max(U))/3*sqrt(2)*wscal; 

% w(1) = discrint(U,U.^(3/2).*f(:,1).'); 

% w(2) = -discrint(U,U.*f(:,2).')/3*sqrt(2)*wscal; 

    function out = indx(k,i) 

        out = (i-1)*L + k +1; 

    end 

    function out = alpham(j,m) 

        out = Uin(m)/DU-nmv(m)+j/2; 

    end 

    function out = Qd(Ui)  %momentum transfer cross section 

        out = Qel(0,Ui) - Qel(1,Ui); 

    end 

    function out = Qinsum(Ui) 

      out = 0; 

        for mi = 1:M 

            out = out + Qin(0,Ui,Uin(mi)); 
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        end 

    end 

end 
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