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ABSTRACT 

 

ANALYSIS AND DESIGN OF A TWO-WHEELED ROBOT 

WITH MULTIPLE USER INTERFACE INPUTS 

AND VISION FEEDBACK CONTROL 

 

Eric Stephen Olson, M.S. 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Panayiotis Shiakolas 

This thesis describes the development of a small, inexpensive, controllable 

mobile two-wheeled robot. It also describes the development of a software interface 

which allows several open- and closed-loop control methods to be easily implemented. 

The developed hardware and software modules provide for an open and modular system 

for research purposes. This is demonstrated through the Bluetooth wireless control of 

the robot using LabVIEW based software modules. The open-loop control inputs 

implemented are sliders in a LabVIEW GUI, joystick, and voice commands. The 

closed-loop control methods included a PD control algorithm that guides the robot to go 

directly to a user defined point, and a path planning control algorithm that guides the 

robot to follow a path and reach the user defined goal in the correct orientation. The 

closed-loop control methods use an external camera for vision based position feedback. 

All the control methods introduced were successfully tested experimentally. 
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CHAPTER 1 

INTRODUCTION 

There are many discussions of rolling mobile robots in the literature. The 

advantage of these types of robots is the simplicity of their driving mechanisms, which 

makes them good candidates for miniaturization. The most common type of rolling 

robot is actuated by shifting the center of mass (CG) of the robot so that a moment is 

created about the point at which the robot is in contact with the ground, as is illustrated 

in figure 1.1. An example of a two-dimensional mechanism similar to the one shown in 

Figure 1.1 is discussed in [1]. 

 

Figure 1.1 Two-Dimensional Rolling Robot 

Although there are other types of rolling robots, for example the one discussed 

in [2] where a spherical robot is actuated by taking advantage of the conservation of 

momentum using flywheels. In [2] the research focuses on rolling robots that are 
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actuated by shifting the CG. There are two major categories of how to apply the 

principle shown in Figure 1.1 to robots in three dimensions. One category is shell 

robots. This type of robot is the most obvious extension of the two-dimensional robot 

shown in Figure 1.1. This type of robot consists of an outer shell (usually a sphere) and 

some mechanism inside the shell to move the CG of the shell off center. The second 

major category of rolling robots is the two-wheeled robot. This type of robot consists of 

two parallel wheels on one axis and a body that connects the two wheels. The two 

wheels can be thought of as two separate two-dimensional rolling mechanisms similar 

to Figure 1.1, and the body of the robot does not coincide with the axis of the robot and 

is used to create the off-centered CG. 

Within the category of shell robots there are three basic types. The first type has 

a spherical shell, and inside the shell there is a pendulum mass attached to a two-degree-

of-freedom actuated gyroscope [3, 4]. This allows the center of mass of the robot to be 

offset in any direction which allows this type of robot to move in any direction without 

turning. This makes this type of robot very agile, however, because of the nature of the 

mechanism, this robot must have a large amount of empty space on its inside which 

makes it a poor candidate for miniaturization. The second type of shell robot also 

consists of a shell and a pendulum weight, however, the weight is only able to rotate 

fully about a primary axis, and to a limited degree about a secondary axis [5, 6]. This 

means that this type of robot has a definite orientation. It primarily moves forwards and 

backwards in a direction perpendicular to the primary axis, and the limited rotation 

about the secondary axis is used to turn the robot. The advantage of this robot is that it 
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is more compact than the first type of shell robot. However, it is more limited in its 

motion, and it has a relatively large minimum turning radius. The third type of shell 

robot consists of a spherical shell with masses inside that move back and forth along 

spokes [7, 8]. This type of rolling robot, like the first type, has the advantage of being 

able to move in any direction without reorientation. The disadvantage of this type of 

robot is that it requires at least three linear actuators, while the other two types require 

only two rotational actuators. 

The other major category of rolling robots is the two-wheeled robot. Two-

wheeled robots are the most prevalent rolling robots in the literature. The prevalence of 

these robots stems from a crucial advantage they present over other varieties of rolling 

robots in that they do not have a minimum turning radius. There are several different 

variations of two-wheeled robots. There are ones that have their CG above their wheel 

axis. An example of a mechanism like this is the Segway. These types of robots are 

inherently unstable and require a control system to remain upright and balanced [9]. 

There are also two-wheeled robots which have their center of mass below the axis of the 

wheels [10-12]. These types of robots are statically stable although they are subject to 

oscillations. Finally there are robots which have the kinematics of a two-wheeled robot, 

but are not true rolling robots. These robots have two main wheels which behave like 

other two wheeled robots, but they also have one or more idler wheels to keep them 

from rotating about their wheel axis [13, 14]. The advantage of these robots is that they 

are easier to control than the other two wheeled robot types because they do not have as 

many degrees of freedom, however, they require smoother operating environments. 
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The research presented in this thesis studied concepts previously described in 

the literature and then developed a small, inexpensive version of a rolling robot. The 

objectives included simulating, designing, fabricating, assembling, and interfacing the 

electrical components of the robot, and developing a modular and easily expandable 

software interface so that new hardware can be interfaced easily, and different path 

planning and control algorithms can be easily implemented and verified. This was 

accomplished by examining the different types of rolling robots in the literature to 

weigh their pros and cons. Then a few designs were selected, including a version of the 

shell rolling robot and two versions of the two-wheeled robot, and dynamically modeled 

in Autolev and simulated in MATLAB to obtain a better understanding of how they 

behaved and how easily they could be controlled. Solid Models of these designs were 

also developed in ProEngineer to investigate how small the robots could be made, and 

to obtain reasonable mass, inertia, and kinematic parameters to use in the simulation 

environment. After analyzing the behavior of the various robots in simulation, a version 

of the two-wheeled robot was selected to be prototyped. This prototype was then used 

to test the control theory developed with the Autolev model and path planning 

algorithms.  

In this research, the software interface employed was based on LabVIEW. The 

open loop-control methods included sliders in a LabVIEW GUI, an external joystick, 

and voice commands. The closed-loop control methods allow users to select a 

destination state (both position and orientation) for the robot, and then depending on the 

control method selected, the control algorithm would either guide the robot directly to 
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the desired point, and then reorient to the user specified orientation, or the algorithm 

would generate a path for the robot that would allow it to reach the desired location in 

the correct orientation. The closed-loop control methods require sensors to assess the 

current state (position and orientation) of the device and use this information to 

calculate the control effort. The developed robot does not have onboard sensors (such as 

wheel encoders which could create problems in case of wheel slipping), so for closed 

loop control an external camera acting as a local positioning system for position and 

orientation feedback. 

Some of the potential applications for this type of robot include, among others, 

reconnaissance, search-and-rescue, and an inexpensive platform with which to study 

robot swarms. 
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CHAPTER 2 

ANALYSIS 

2.1 Dynamic Modeling and Simulation 

After exploring the literature for different types of rolling robots, a few designs 

were chosen to be examined more closely by creating dynamic models of them with 

Autolev [15], and subsequently simulating them using MATLAB [16]. The first was a 

two-dimensional model similar to the mechanism described in [1]. A diagram of this 

robot model is shown in Figure 2.1. This model consists of a circular body in contact 

with the ground at point  . A pendulum with a suspended mass at distance   (   ) is 

attached at the center of the circle. The device is actuated by controlling the location of 

the suspended mass through angle   . 

 

Figure 2.1 Two-Dimensional Rolling Robot Model 

If    is forced to be some value besides   or  , then the device will roll. Figure 2.2 

shows an example of a dynamic simulation of how such a system can be controlled. In 

this example the device starts out at     ,     , and the desired point is set to 

     . The device rolls towards the desired point by moving the mass towards the 

   

      

    
    

        
    

   

   
   



 

 7 

desired rolling direction. Once the device gets closer to the desired point, the mass is 

moved away from the desired point to slow the device down so that it reaches the 

desired point with zero velocity. 

 

Figure 2.2 Two-Dimensional Simulation Example (Modified PD Control) 

Using the knowledge gained from this simple model, two three-dimensional 

dynamic models were developed. One of these was a version of a shell rolling robot. In 

order to have reasonable values to use in the dynamic simulation, a ProEngineer CAD 

model was developed concurrently with the Autolev dynamic model, both of which are 

shown in Figure 2.3a,b. In this model, the shell was chosen to be an egg shape in an 

attempt to make the robot more compact. One actuator was used to rotate all of the 

hardware inside of the shell about the longitudinal axis of the shell in order to make it 

roll forwards and backwards, and another actuator was used to move some of the weight 

along the axis of the shell for steering purposes. Because of the egg-shaped geometry of 

this model, the calculations to find the point at which the shell comes into contact with 

the ground were nontrivial.  
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(a) 

 

(b) 

Figure 2.3 CAD and Simulated Models of Shell Rolling Robot (a) CAD Model. (b) 

Dynamic Model. 

An example of Autolev dynamic simulation results using this model is presented in 

Figure 2.4. The results show the controlled motion of the egg-shaped robot following a 

planar curvilinear path. 

    

    

    

    

    

    

    

    
    



 

 9 

 

Figure 2.4 Shell Rolling Robot Example Simulation 

The other dynamic model that was developed was a version of the two-wheeled 

robot. This model ended up being the most important one to this research effort. The 

basic structure of this model and the generalized coordinates used are presented in 

Figure 2.5. This model consists of two parallel wheels attached to either end of a shell 

body. Two actuators are housed in the body and drive the two wheels through a set of 

gears. The CG of the body is below the axis of the wheels, so that when the actuators 

turn the wheels, the body does not rotate about the wheel axis. 

 

Figure 2.5 Generalized Coordinates of the Two-Wheeled Robot 
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This model has three degrees of freedom. Each wheel can independently turn 

(controlled), and the body can rotate about the wheel axis. However, the generalized 

coordinates actually employed were the forward movement of the robot, the orientation 

of the robot, and the angle of rotation of the body about the wheel axis. A complete list 

of the parameters used and the actual Autolev code for this dynamic model can be 

found in Appendix B. A CAD model of this robot was also developed to assist in 

choosing reasonable values for the parameters for simulation when considering the 

packaging of the actuators and electronics as shown in Figure 2.6. 

 

Figure 2.6 CAD Model of the Two-Wheeled Robot 

This model showed the most potential for the objectives of this research effort when 

compared with all the models that were developed and studied. Therefore this model 

was selected to be used as the basis of a prototype. The advantages of this design were 

that it was compact, simple, had better mobility and was more easily controllable than 

the other models. The main issue with this design, as observed in simulation, was that 

when there is a sudden change in actuator torque, the body would often oscillate making 

control difficult. An example of this behavior is presented in Figure 2.7. In this 

example, the robot responds well to the left and right input actuator torques,    and   , 
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when they are smooth functions, but at         when the torques suddenly jump from 

  to           , and the body starts oscillating as shown by the second graph or 

variable   . 

 

Figure 2.7 Two-Wheeled Robot Example Simulation 

While it is easy to avoid sudden changes in actuator torque in simulation, it is 

not practical in a real system without adding an extra level of complexity, so a new 
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model was developed where the body no longer had the freedom to rotate about the 

wheel axis. A diagram showing the variables used in this model is presented in Figure 

2.8. This model is similar to the first two wheeled model. The differences are that this 

model does not have the freedom to rotate about its longitudinal axis, and the wheels are 

simplified so that instead of a rolling constraint, there is a sliding constraint. 

The location of this device can be fully described with three coordinates. The 

most common way would be to specify the robot   and   coordinates, and its 

orientation all relative to some global reference frame. However because of the 

constraints of the robot, it is more convenient to use   and   coordinates         that 

are referenced off of the body attached frame as shown in Figure 2.8. 

 

Figure 2.8 Simplified Two-Wheel Robot Diagram 

Although this makes the   and   coordinates dependent on the orientation of the device, 

this coordinate system is useful because the coordinate variables relate much better to 

what the system is actually able to do. This device can only move in the     direction 
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and rotate about the     axis but is constrained and cannot move in the     direction In 

this coordinate system    and   are directly controllable. The Autolev code for this 

model can be found in Appendix C. The first two-wheeled model was the primary 

model used to assist in the mechanical design of the prototype, but this Autolev 

dynamic model was used to develop and verify the control theory. All the simulations 

referred to and all the simulation graphics generated in the remainder of this chapter use 

this model as their basis. 

2.2 Kinematic Analysis 

Robot control entails controlling the position and orientation of a robot by 

understanding the kinematic and dynamic structure of the robot and then controlling its 

actuators. Thus, the kinematic structure of a generic two-wheeled robot must be 

understood first. The kinematics of two wheeled robots is well known and is available 

in the open literature [17-19]. In this research, the kinematic structure and analysis is 

based on the motion variables shown in Figure 2.9. 

 

Figure 2.9 Two-wheeled Mobile Robot Motion Variables 

The kinematics of the two-wheeled robot are as follows:   and   are the 

coordinates of the robot in the world reference frame. The translational velocity of the 
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center of the robot,  , is related to the velocity in the   and   directions,    and   , 

through the relations 

 
 
         
         

 (1)  

where   is the orientation of the robot with respect to the reference frame. The angular 

velocity of the robot   is the rate of change of the orientation,   . The Cartesian and 

joint velocities are expressed in matrix form through 

 

 
  
  

  
   

     
     
  

  
 
 
 . (2)  

These relationships are shown graphically in Figure 2.10. 

 

Figure 2.10 Graphical Relationship between v and ω, and   ,   , and    

The translational velocity of the robot,  , can be found by averaging the translational 

velocities at each wheel (left and right) according to 

 
  

     

 
  (3)  

The angular velocity,  , can similarly be found from the velocities at each wheel by the 

expression 
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  (4)  

The relationship between the linear and angular velocity of the robot can be expressed 

as a function of the left and right wheel translational velocities by combining equations 

(3) and (4), yielding 

 
 
 
 
   

      
       

  
  

  
 . (5)  

These relationships are shown graphically in Figure 2.11. 

 

Figure 2.11 Graphical Relationship between vr and vl, and v and ω 

The linear and angular velocity of the robot can be expressed in terms of the 

angular velocity of the wheels through a simple multiplication by the wheel radius, R. 

 
 
 
 
   

      
       

  
  

  
 . (6)  

Combining equations (2) and (6), the relationship between the Cartesian velocities 

(translational and orientation) and the angular velocities of the wheels is developed. 



 

 16 

 

 
  
  

  
  

 
 
 
 
 
 

 
    

 

 
    

 

 
    

 

 
    

         
 
 
 
 

 
  

  
   (7)  

A challenge in controlling the robot arises because the robot is non-holonomic which 

means the matrix or Jacobian in equation (7) is not square, and can therefore not be 

directly inverted. This means that   ,   , and    cannot be arbitrarily controlled by 

controlling   , and   . 

2.3 Control Algorithm 

The non-holonomic nature of this robot makes controlling this device more 

difficult. There are many discussions in the literature to address these difficulties [17-

21]. This research utilized two different control methods, which will be discussed in the 

following sections, to address this difficulty. Both methods use a control algorithm that 

is a variation of proportional derivative, PD, control. The proposed algorithm allows the 

user to specify the desired   -coordinates, but the final orientation cannot be specified 

directly. In the first method, the robot is allowed to go directly to the desired location, 

and when it gets there, it will then reorient itself by rotating in place. In the second 

method, a time dependent path is generated based on the initial and final desired state of 

the robot that allows the robot to reach its destination with the correct orientation so that 

it does not have to reorient itself at the goal. 

The advantage of the first method is that it can correct for a great amount of 

error, and it is generally faster than the alternative method. This method can do this 

because it is not time dependent, so if it gets occasional bad feedback signals, it can 
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easily correct itself. Also, because this method is not time dependent, the control makes 

the device get to the desired position as fast as possible. The limitation of this control 

method is that the path the robot takes is not known beforehand, so it is not possible to 

directly check for potential collision with obstacles. 

The advantage of the second method is that it makes the robot reach the desired 

position in the correct orientation. In addition, the time it takes for the robot to reach the 

desired position can be specified, and the path that the robot takes is known beforehand 

which makes it possible to check for potential collisions with obstacles. 

2.3.1. PD Control 

As mentioned in section 2.1 and shown in Figure2.8, it is useful to use the 

coordinate system attached to the robot because it better represents the motion of the 

robot. xr relates closely to v. The difficulty in controlling two-wheeled robots is that 

there are three variables specified (x, y, and θ, or xr, yr, and θ), but only two can be 

controlled. This means that without some sort of “trick” only two variables can be 

controlled arbitrarily. The easiest two variables to choose would be xr and θ, however 

leaving yr free would allow the robot to end up almost anywhere on the xy-plane, 

especially since xr, and yr are dependent on θ. The same issue would be true if yr and θ 

were chosen, therefore it is clear that xr and yr must be specified, and θ must be the free 

variable. State xr can be controlled directly, so the question becomes how to control xr 

by controlling θ. For example, Figure 2.12 shows the robot and a desired location for 

the robot. So, how can the error,    
 and    

, be forced to zero by controlling xr and θ? 
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Figure 2.12 Example Control Setup Showing Initial Error 

It turns out that when the robot is oriented such that     aligns with the vector between 

the center of the robot and the desired point,    
 automatically goes to zero. An example 

of this condition is shown in Figure 2.13. When the robot rotates to face the desired 

point,    
 goes to zero. Therefore, a control law can be developed to force    

 to zero, 

and force the robot to orient itself to face the desired point. That is, the desired 

orientation for the robot should be set equal to the angle of the vector between the 

center of the robot and the desired point. 
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(a)       (b) 

Figure 2.13 Example of Eliminating    
 by Reorientation (a) Initial configuration with 

   
 present. (b) Reoriented configuration with    

 eliminated. 

While it is convenient to use xr and yr when thinking about control, it is better to 

specify locations using xy-coordinates in the global reference frame because xr and yr  

are dependent on the orientation of the robot. If the desired position is specified in xy-

coordinates, the desired angle,     , can be found by the following: 

                        (8)  

The limitation of implementing equation (8) is that the robot is always forced to turn 

toward the desired position when it would sometimes take less time if the robot turned 

directly away from the desired position. This is illustrated in Figure 2.14a,b. Since the 

robot is symmetrical, this means that in both cases the robot is asked to do essentially 

the same movement. However, in the second case, the controller sees the robot as facing 

away from the desired position, so the controller turns the robot around. To allow the 

control to make the robot face away from the desired position in cases where this would 
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take less movement, equation (8) can be rewritten considering the difference between   

and   as follows: 

 

    
                          

 

 

                            
 

 

   (9)  

Figure 2.14c shows the path the robot takes with the corrected control. It is observed 

that with the corrected control, the robot had to rotate less than     radians rather than 

  radians as in Figure 2.14b. The desired angular velocity,   , of the robot is evaluated 

by taking the time derivative of the desired orientation.  

 
       

                              

               
 (10)  

An orientation control variable,   , is defined using    and   , as follows 

                         (11)  

where     and     are positive control gains and for critically damped case,     

     .  

A similar control variable can be defined for the translational velocity. 

                                  
      

 (12)  

where     and    are positive gains. Equation (12) is similar to the PD control 

described in [22], where for the critically damped case,        . Because xr is in a 

coordinate frame that is dependent on the orientation of the robot, it is difficult to define 
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xrd, therefore equation (12) must be transformed into normal xy-coordinates using the 

transformation shown in equation (13). 

                    

                    
 

(13)  

Using this transformation, equation (12) becomes, 

                                          (14)  

Using the control variables in equations (11) and (14), the actuator torques for the robot 

are defined as 

          

         
 

(15)  

The first term, Ct, in the actuator torque equations controls the robot forward velocity, 

 . This term will get the robot as close to the desired position as possible without 

performing any rotation. For example, if the control is implemented without the    

terms in equation (15), the robot will move forwards or backwards until the vector 

between the center of the robot and the desired point is perpendicular to the robot 

orientation, since this will be the closest the robot can get to the desired point without 

rotation. The    term in equation (15) controls the rotation of the robot; it will make the 

robot turn towards or away from the desired point. For example, if only these terms are 

used in control, the robot would rotate towards the desired position, but it would not 

move towards it at all. When the terms are combined, they together force the robot to 

the desired state. 

This PD control was developed and implemented in the Autolev dynamic model 

listed in Appendix C. An example simulation of the model using this PD Control is 
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shown in Figure 2.14a. In this example, the initial state of the device is    

          , and the desired position was set to                The device went 

to the desired point quickly, ending with zero velocity.  

 
(a)     (b) 

 
(c) 

Figure 2.14 Example of PD Control (a) Example 1. (b) Example 2 using equation 8. (c) 

Example 2 using equation 9. (The dashed lines trace the path of the wheels, and the 

solid line shows the path of the robot center.) 

The stability of the proposed control algorithm is proved using a Lyapunov 

function [23] or energy function such as 
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(16)  

In this equation, M is the mass matrix in the equations of motion of the robot obtained 

from the Autolev model (see Appendix C), q is a vector containing the generalized 

coordinates, and Kp is a positive gain control gain matrix. Taking the derivative of 

equation (16) gives, 

 
          

 

 
                

(17)  

Using the equations of motion for the system,                   ,     can be 

replaced by   –     , resulting in 

 
              

 

 
                

(18)  

Rearranging yields, 

 
        

 

 
                     

(19)  

It is always possible to have a matrix C so that       is skew-symmetric, and this is 

the case for the proposed model. Therefore, the middle term of equation (19) can be 

eliminated. The desired final velocity of the robot is zero thus       , so    can be 

rearranged to, 

                 (20)  

This can be further simplified by substituting the equation for u. 

            (21)  

These substitution results in, 
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                                                (22)  

Using the fact that at the goal the desired velocity is zero, equation (22) can be further 

simplified to, 

               (23)  

This result in equation (23) indicates that the derivatives of the Lyapunov function 

using the proposed controller will be negative semidefinite. i.e. energy will be 

subtracted from the system and the system will eventually reach the goal in a stable 

manner. The result in equation (23) is explored in more detail for the proposed 

controller in Appendix D. 

2.3.2. Control Method 1 

 The first control method, mentioned in section 2.3, is to use the PD control listed 

in section 2.3.1 to get the robot within a user specified distance,  , of the desired point. 

Then when the robot gets within this distance of the desired point, the linear velocity 

gains,    and   , are set to zero, and the desired orientation is set equal to the value 

specified by the user. The distance   is defined as 

 
             

 
   

 
  

(24)  

In simulation, the value of   chosen depends on the allowable steady state error 

of the device, and the allowable time for the robot to reach the final orientation. In 

simulation   can be chosen to be as small as the numerical error in the simulation 

allows, however, the robot reaches the desired point asymptotically, so if a very small 
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number is chosen, it will take the robot a while before it would reorient. In practice,   

must be chosen so that it is greater than the error of the measurement system employed. 

2.3.3. Control Method 2 

In the second control method, the robot is instructed to follow a time-dependent 

path that will bring the robot from its initial position to the user defined desired position 

in such a way that it arrives at the desired position already in the desired orientation. 

The desired position is specified as a function of time,      , and the desired velocity, 

      , is the derivative of the desired position function. 

                    

                      
 

(25)  

The method for finding these functions will be discussed in section 2.3. An 

example of such a path is presented in Figure 2.15 and Figure 2.16. 

 

Figure 2.15 Path Following Example 
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In this example, the robot starts at            with the desired position at    

                and a specified error distance           . Using these points as 

boundary conditions, a time-dependent path is created that will allow the robot to move 

from the initial position to the desired point in such a way that the robot will be in the 

desired orientation when it reaches that point.  

 
(a) 

 
(b) 

 
(c) 

Figure 2.16 Desired and actual x and y, and error over time (a) x as a function of time. 

(b) y as a function of time. (c) Error. 
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These time-dependent paths may require the robot to move forward, or backward, or as 

in this example, require the robot to change directions. The position functions and their 

derivatives are continuous functions of time as shown in Figure 2.16a,b. The solid lines 

show the actual   and   coordinates of the robot as it follows the specified path. Figure 

2.16c shows the distance or error,  , between the desired and actual coordinates as a 

function of time. It is observed that for continuous functions, the PD control provides 

for good path following. 

To allow the robot to track well as, in the given example, it is advantageous to 

use a path such that the position and velocity are continuous functions of time. 

However, this is not always necessary. To test how robust the proposed method is, 

simulations were performed where the robot was instructed to follow paths that were 

not continuous functions of time; an example of which is shown in Figure 2.17. 

 

Figure 2.17 Discontinuous Path Following Example 
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The actual   and   position and velocity in this example can be seen in Figure 2.18. 

  

(a)      (b) 

  

(c)      (d) 

Figure 2.18 Discontinuous Path Following Error (dashed line is desired and solid line is 

actual) (a) x as a function of time. (b) y as a function of time. (c)    as a function of time. 

(d)    as a function of time. 

While it is preferable to have the control follow a continuous function, the PD control is 

also capable of following a discontinuous function. It just does not track quite as 

closely, and its behavior is more unpredictable. It is useful for the control to handle 

discontinuous functions because if the robot is somehow interrupted while following a 

path, the robot would be capable of getting back on track. 
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 One difficulty of this method with the PD control which must be overcome is 

that if the actual position does ever exactly coincide with the desired position, the 

denominator of equation (10) becomes zero causing a singularity, and the system 

becomes unstable in simulation. This is especially a problem if a path requires the robot 

to move forward and then immediately backwards, as in the first example given in this 

section. To overcome this difficulty, it is proposed to carefully define a small area 

around the time-dependent desired position with a radius,  , (  is defined in equation 

24) in which the controller no longer has an effect. Having an area where the controller 

does not work automatically creates some error, and if the area is to large, the device 

will experience some jerk as it moves out of the area. Thus, to keep the error as small as 

possible, and to make the robot move smoothly, it is advantageous to make   as small 

as possible. However if   is chosen to be too small then the device will act oddly as it 

approaches the goal and reaches a singularity. In the examples presented,   was chosen 

to be 0.03 times the length of the robot. 

2.4 Path Planning 

 The benefits of using an efficient continuous function as a path to make the 

robot reach the desired orientation have been discussed in section 2.3.3. The essential 

question which must be addressed is, how is such a function defined? There are many 

path planning algorithms discussed in the literature [13, 20, 24, 25]. Path planning was 

not the primary focus of this research; therefore, the path-planning method described by 

Papadopoulos [21] was used because it is relatively simple to implement and 

computationally inexpensive. The entire derivation of this method need not be discussed 
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here, but Papadopoulos built on a method described earlier by Pars to define a 

transformation from Cartesian space to some other space of the form 

           (26)  

where only two differentials appear [26]. Papadopoulos then developed a nonlinear time 

functions to describe a path in this new space and to transform the path back into 

Cartesian space [21]. This transformation is given by 

                     

                      

          

 (27)  

where   is the distance from the center of mass of the robot to some point off of the 

center of mass in the x-direction. The relationships between  ,  ,   and the path time 

functions are given by 

        

       

   
  

  
        

 (28)  

One possible set for      and      is a quintic polynomial for      and a cubic 

polynomial for     . 

                
     

     
     

  

               
     

  
 (29)  

The coefficients in these equations are evaluated using the initial and final 

conditions of linear and angular position, velocity, and angular acceleration. In this 

research, the coefficients were evaluated numerically using the formulation shown in 

Appendix A. Using this method, it is always possible to find a path between any two 
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configurations unless the initial and final orientations are the same, in which case, 

matrix B in Appendix A becomes singular and noninvertible. As Papadopoulos notes, 

this case can be overcome by either using waypoints or by adding or subtracting 

multiples of    to either the initial or final position [21]. 

Examples of path generation using this method are presented in Figure 2.19. 

 

(a)      (b) 

 

(c)      (d) 

Figure 2.19 Path Generation Examples (a)                  , (b)        
             , (c) shows example b as a time function, (d)                  
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Figure 2.19a shows a path from         to          , Figure 2.19b shows a path from 

        to             . Figure 2.19c shows the path from         to              

as a function of time. Figure 2.19d shows an example of how to address the singular 

case where the initial and desired orientations are the same by adding    to the final 

orientation. 

The PD control discussed earlier requires not only desired position,       

             , but also desired  velocity                      . While it is possible to 

symbolically evaluate the derivatives of       and      , it is more efficient 

computationally to estimate the derivatives as shown in the following expression. 

 
       

              

  

       
 
 
        

 
   

  

 (30)  

Since the paths used are continuous and smooth functions of time, there are no 

difficulties with this method, and the errors introduced by this velocity estimation can 

be made negligible by choosing small values of   . In simulation,    was chosen to be 

          because decreasing the value farther had no noticeable effect on the results 

of the simulation. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURE 

3.1 Mechanical Design 

The main considerations in the mechanical design of the robot were to make it 

small, inexpensive, easy to assemble, and capable of operating on different terrain 

through easy exchange of wheels.  To make the robot small, no processor or sensors 

were incorporated in the actual device. All processing was preformed externally by 

LabVIEW, and the state of the device was determined by an external camera. To keep 

the cost low, all the components besides the shell of the robot were chosen to be off-the-

shelf. The shell of the robot was fabricated using an SLA rapid prototyping machine. 

The length of the robot is less than 3 inches, the diameter of the body of the robot is less 

than one inch, and the whole robot including the actuators and electronics weighs about 

than 25g. Figure 3.1 demonstrates the robot’s relative size. 

 

Figure 3.1 Fabricated and Assembled Robot 
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The robot consists of a cylindrical body that houses the motors and all the 

electronics with wheels on either end. On the underside of the body is a flat piece of 

plastic close to the ground that keeps the robot from tipping, and doubles as the battery 

compartment. The drive system of the robot is made up of two motors, two shafts, four 

gears, and two wheels. The motors and gears were off-the-shelf products [27], and the 

wheels are model airplane wheels. All these parts are held together by interference fit. 

The motors are placed off the axis of the wheels to allow for gearing, and below the 

wheel axles to make the robot more stable. 

 

Figure 3.2 CAD Model of the Robot 

 In assembly, the components of the drive system were installed as shown in 

Figure 3.3, and then the two halves of the shell were assembled. The tolerances in the 

two parts of the shell were such that they hold together by friction without need for 

gluing or other means. This makes assembly and disassembly of the drive system very 

easy. 
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Figure 3.3 Robot Drive System 

The electronics of the robot consist of an off-the-shelf motor control board, a Bluetooth 

board, and a battery [28], as shown in Figure 3.4. The motors are controlled by the on-

board motor control board. The Bluetooth module is connected to the control board and 

allows the remote computer to send the control board the necessary serial commands to 

drive the robot. The motor control board and the Bluetooth module were tacked onto the 

top of the body using hot glue. All the electronics were selected to operate on the same 

voltage, so a single 110mA Lithium Polymer battery was used with no extra circuitry. 

The battery was placed in the battery compartment on top of the stabilizing plastic piece 

on the bottom. To make the battery easy to remove, the battery leads were connected to 

the rest of the electronics with magnets. The power for electronics in the body was 

wired to two magnets placed in indentations in the shell, and the battery leads had 

pieces of steel soldered to them. The two battery leads had a piece of insulating material 

glued between them to keep them from shorting.  This made the battery very easy to 

remove for recharging. The main difficulty in this arrangement is that when soldering 

wires to the batteries it is necessary to be very careful to not to heat the magnets up too 

much or as they would become demagnetized. 
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No sensors were included on the robot itself because one of the main goals was 

to keep the device as small as possible, and, because of the use of an external camera 

for vision feedback, these sensors were not needed in order to evaluate the state of the 

robot. It should be noted that, in this design, the robot was intentionally made as 

bottom-heavy as possible to increase stability. 

 

Figure 3.4 Robot Electronics 

3.1 Hardware/Computer Interface 

3.2.1. LabVIEW 

In this research, the primary software program used to interface and control all 

the different components was LabVIEW [29]. LabVIEW was chosen because it has a 

vast library of built-in functions that makes interfacing various different hardware 

elements relatively simple. All the programming and computation for this project was 

performed on a PC in LabVIEW and not on the device itself. Figure 3.5 illustrates the 

relations between the various software and hardware components. 

Bluetooth Device Control Board 

Battery 
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Figure 3.5 Relations Between Components 

3.2.2. Motor Control Board & Bluetooth Module 

The motor control board received serial commands, interpreted them, and output 

pulse width-modulated, PWM, signals to the motors. A command to one of the motors 

consisted of two bytes. The first byte indicated which motor the command was intended 

for and also whether the motor was supposed to go forwards or backwards. The second 

byte was a number between 0 and 127 that indicated the rotational speed of the motor; 0 
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indicated no movement and 127 indicated full speed. This motor control board also 

accepts a three-byte sequence where the first byte selects which motor control board is 

used and the second two bytes perform the same operation as the two-bit sequence. As 

far as the motor control is concerned, the three-bit sequence would allow for the 

operation of 128 devises at the same time using a single serial port. 

The LabVIEW program sends commands for the motor control board through a 

standard USB Bluetooth device on the host computer. A Bluetooth module was wired to 

the serial port on the motor control board on the target device. This allowed a serial 

connection between the PC and the motor control board to be preformed wirelessly 

through Bluetooth communication. 

3.3 Characterizing the Device 

In order to control the robot, it was first necessary to characterize the device to 

understand how the input commands to the motors related to the motor outputs. This 

was accomplished by setting the robot on the ground and incrementally giving each 

motor different commands ranging from -127 to 127. For each command, the time it 

took the device to trace a number of circles was measured as illustrated in Figure 3.6. 

 

Figure 3.6 Motor Characterization Setup 
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From the data generated by the robot’s responses to these commands, and 

knowing the robot length, the relationship between the commands given by the program 

and the velocity at which the wheel will move was found using 

 
       

    

 
  

(31)  

where   is the number of revolutions the device makes in   seconds. This relationship is 

linear except when the input was close to zero, as shown in Figure 3.7 and is estimated 

to be                        . This nonlinear region is due to friction in the 

system. A LabVIEW VI was created to rescale input commands to the actuators to 

bypass the small nonlinear region. 

 

Figure 3.7 Device Characterization Result 

 The angular velocity of the actuators can be found from the device 

characterization by using 

y = 1.6877x
R² = 0.99
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  (32)  

Where   is the radius of the wheel and    and    are the number of teeth on the gears 

attached to the wheel and motor respectively. The relationship between the motor rpm 

and the command input turns out to be about                   . 

3.4 Open-Loop Control: LabVIEW GUI, Joystick, Voice  

The versatility of the setup in this project is demonstrated through the 

implementation of several different user inputs including several open-loop control 

methods. The LabVIEW programming for the various controls was vey modular. Each 

control was implemented in its own subprogram and all it required was to output 

commands between -127 and 127 for each motor, as shown in Figure 3.8. The main 

program takes these commands and transmits them through Bluetooth to the motor 

controller. 

 

Figure 3.8 Modular Open-Loop Controls 
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The first and simplest open-loop control is the slider inputs in the LabVIEW 

GUI. This consisted of two sliders; each one controlling a different actuator. This user 

interface was used to test the proposed setup, to test the software-hardware interface, 

and the electronics. All the other user inputs built on this one. However, it was 

somewhat difficult to control the robot with the sliders in LabVIEW because it is 

difficult to control both sliders at the same time. 

Another user input implemented was a joystick input through a normal gaming 

USB joystick. Using LabVIEW the values for the x- and y-axes of the joystick were 

extracted and scaled to a usable form.  The y-axis was used to make the robot go 

forwards and backwards while the x-axis was used to create a speed differential 

between the two wheels to make the device turn. This allowed the robot to be driven in 

a very intuitive manner with the joystick. The joystick input worked very well and was 

the easiest open-loop control to use to accurately move and place the robot. 

Another advantage of using LabVIEW is that it is also able to interface with 

Windows’ voice-recognition software. This capability was utilized and allowed the 

robot to also be controlled by voice commands. The user commands the robot to move 

“forward,” “left,” “right,” or “back”, and the robot follows that command for a 

predetermined amount of time before pausing to wait for the next command. All the 

motions are executed relative to the most recent state (position and orientation) of the 

robot. For example, the user could say “forward,” and the device would go forward 

about 2 inches, or “left,” and the device would turn left about 30 degrees. The voice-

command control preformed as designed; however, this method took longer than the 
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other methods to get the robot anywhere because of pauses between commands. The 

way the voice command was set up it was difficult to find a balance to find between 

speed and precision. If the robot was set to move too far with one command, it could 

not be precisely controlled. However if it only moved a small distance on each 

command, it took many commands to travel very far. This could be solved in the future 

by using a larger library of commands, or by allowing the user to dynamically define 

gain value in the LabVIEW GUI through a slider or knob input. 

3.5 Vision Feedback Control 

Because the robot did not have any sensors incorporated into its design, an external 

camera was used to provide feedback for closed-loop control. This was accomplished 

by placing a webcam about 3 feet above the workspace of the robot to monitor its 

movement and its state. (See appendix I.) 

3.5.1. Calibration 

For the video input from the camera to be useful for closed-loop control, the 

camera must be calibrated. The image illustrated in Figure 3.9 was printed and placed in 

the workspace of the robot. The square figure on the left is the reference frame, and the 

two circles on the right are used to calibrate the image.  

 

Figure 3.9 Camera Calibration 
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In the LabVIEW VI, the camera is instructed to take a still picture of the workspace, 

and then the program, using templates, searches the picture for the predefined images. 

Once the images are discerned, LabVIEW returns the coordinates of the images 

that were found in pixel space, and it returns the orientation in degrees. Once the 

reference orientation is known, the pixel space can be converted to x-y coordinates by 

comparing the number of pixels between the two circles to the known distance between 

them in whatever unit is being used. Once this is completed, the LabVIEW VI program 

instructs the camera to continuously acquire video at 15 frames per second. 

With these instructions, the program then continuously searches for whatever 

other objects it has been instructed to track. When it finds one of these objects, it 

converts its coordinates from pixel space to x-y coordinates in inches by subtracting out 

the reference frame coordinates, dividing by the number of pixels per inch, and 

performing a coordinate transformation to account for any angular offset between the 

reference frame and the orientation of the image as seen in Figure 3.10. This approach 

allows the robot x-y position and orientation to be tracked and used for control. 

It was necessary to print a pattern on a piece of paper and tape it to the top of the 

robot to get the program to reliably match the robot to the template image of the robot, 

and to differentiate its left from its right side. Various patterns were tried. Since the 

program looks at the intensity pattern in the images it receives, a pattern was used at 

first where the right side was one color and the left side was another color. This pattern 

worked fairly well. However, there were problems with false matches when there were 

sharp color changes in the workspace. 
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Figure 3.10 Pixel Space to Real Space VI 

To remedy this problem, the pattern shown in Figure 3.11 was developed and 

used successfully. This pattern has the advantage of being simple, so that it can be 

easily matched by the image recognition program, but it is also a pattern that will not 

often occur accidentally in the workspace, which makes the matching process much 

more reliable. 

 

Figure 3.11 Pattern for Vision Matching 

3.5.2. Defining the Desired Position 

The desired position for the robot can be defined in two ways; typing the    

coordinates into the LabVIEW GUI or by using the mouse to select it on the desired 

position on a live image of the workspace in the LabVIEW GUI, and then clicking on 

another point to define orientation. 
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3.5.3. Control Algorithm 

The PD control algorithm needs to have not only position and orientation 

feedback, which is found through the optical feedback, but also linear and angular 

velocity feedback. Because of the nature of the feedback system, an accurate 

measurement of the robot’s velocity was very difficult to obtain directly. Instead, the 

linear and angular velocity of the robot were estimated indirectly by considering the 

commands being sent to the motors and using the relationship between input commands 

and wheel velocity, found in the characterization discussed in section 3.3. The wheel 

velocities are then transformed to the necessary form using equations (2) and (5). 

A major difference in the system between simulation and hardware 

implementation which had to be accounted for in control is that in simulation, when 

power is not being given to the actuators, the device keeps moving. In the actual system, 

when power is not supplied to the motors, the device comes to a stop very quickly 

because of the friction in the gearbox and in the terrain. This difference indicates that in 

reality, the optimal velocity gain,   , is not     . Instead the optimal    was a much 

smaller number. In fact, it was observed from experiment that it is possible to control 

the system reasonably well with    set to zero, although some gain was helpful. 

The PD control algorithm proved to be quite robust. It corrected for slight motor 

imbalance and numerical error quite well. The biggest source of error in the closed loop 

controls came from the LabVIEW program not always recognizing the robot. 

Sometimes the program would temporarily lose the robot in certain configurations or 

light conditions. This would cause the control to get the wrong input, which would 



 

 46 

cause the robot to jerk. This was minimized by using patterns that were easier for the 

program to recognize, but this difficulty was never completely eliminated. 

3.5.4. Path Planning 

In the LabVIEW program, the path-planning algorithm requires the user to first 

select a desired point (as described in section 3.5.2) and then press a button telling the 

program to generate a path. At that instant, the program calculates the   and   

coefficients of the time functions in equation (29), using the boundary conditions, and 

equations (27) and (28). The program then uses those values to generate a graphic of the 

complete path, as seen in Figure 3.12a. Once the user presses a button labeled “start,” 

the program starts a timer and uses the timer’s output and the   and   coefficients to 

keep recalculating the desired position and velocity of the robot until it reaches the 

desired position, as shown in Figure 3.12b. The sub VIs shown in Figure 3.12 can be 

found in Appendix H. 

When dealing with angles, winding can take place where the angles are not all 

within    radians of each other. This is detrimental to the path planning algorithm. To 

get the most efficient path when using the path planning algorithm, it is necessary to 

make the initial and final orientation within   radians of each other. For example, if the 

initial position is –     radians and the desired position is   radians, the path-planning 

algorithm will have the robot do three-quarters of a rotation to get to the desired angle. 

If, however, the initial position is converted to be      radians, the path- planning 

algorithm will only have the robot do a quarter turn. 
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Figure 3.12 Path Planning LabVIEW Code 

Most of the time, the path planning algorithm did a good job of finding efficient 

paths from initial to final positions that the robot could follow easily as long as the trip 

time was not set too low. If, however, the initial and final orientations happened to be 

almost the same, then the algorithm would often generate a path that would take the 

robot a very long way away from both the initial and final position before bringing it 

back. In the future, this could be fixed by adding a way point when the initial and final 

orientations are very similar. Figure 3.13 shows two examples of paths generated by the 

LabVIEW program. 
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Figure 3.13 Examples of Paths Generated 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

4.1 Discussion 

 This research attempted to analyze, design, fabricate, and develop a modular and 

versatile software interface for a two-wheeled robot, and verify the system by 

developing and integrating some open- and closed-loop control methods. The two-

wheeled robot was analyzed in simulation using dynamic models developed with 

Autolev. These initial models were used to assist in hardware selection during the 

design process, and to develop the control theory that was eventually implemented in 

the robot prototype. 

The goal of the design was to make the robot small, inexpensive, and easy to assemble. 

To accomplish this, the different components of the device were selected to be off-the-

shelf, and the body of the robot was fabricated using rapid prototyping. All the 

mechanical components of the device were designed to be held together by friction, 

making the robot easy to assemble. The assembly of the electrical components 

presented the greatest challenge. While the mechanical systems could just be pressed 

into place, the electrical components had to be wired together utilizing soldering 

techniques and then glued into place. 

 A LabVIEW software interface was developed to take various user inputs and 

control the robot. LabVIEW was selected because it is very versatile in terms of easily 
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integrating different hardware and software components. The interface was developed 

in such a way that different controls could be integrated modularly. 

 The system was tested by integrating open- and closed-loop controls. The open-

loop controls included sliders in a LabVIEW GUI, a USB Joystick, and voice 

commands. The closed-loop control methods included a PD control algorithm that 

enables the robot to go directly to a user defined point, and a path planning control 

algorithm that has the robot follow a path that allows it to reach the user defined point 

in the correct orientation. The closed-loop control methods use an external camera for 

vision based position feedback. All these controls were integrated modularly into a 

single LabVIEW program, and tested and successfully confirmed experimentally. 

4.2 Future Work 

Future work for this project will include making the robot smaller. The main 

size constraint in this robot is due to the electronic components. If the electronics were 

built specifically for this robot, the total robot size could be greatly reduced. While the 

concept of this robot was under development, a tethered prototype was built which was 

only about half the size of the current wireless version. Figure 4.1 shows the relative 

lengths of the non-tethered robot and the body of the tethered version. 
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Figure 4.1 Size of Robot Without Electronics 

Various sensors could be incorporated into the robot. Sensors on the wheels 

could be implemented to keep track of the state of the robot. A camera could be 

integrated onto the robot itself. 

In Papadopoulos’ paper [21] which described the path planning-algorithm used 

in this work, Papadopoulos also discussed how to modify the path-planning algorithm 

to avoid obstacles. It should be possible to use this concept to make the vision program 

for this project able to identify obstacles and have the path-planning algorithm generate 

a path to avoid them. There are also many other path planning algorithms in the 

literature that could be investigated for this research. 

Now that the prototype robot has been developed, it should be straightforward to 

build and control additional devices. The motor controller allows a byte key to be used 

so that multiple devices can be controlled independently via one Bluetooth signal. 

Regarding vision matching, as long as each device displays a different pattern, it should 

not be difficult for the control program to differentiate each device. 
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This robot prototype could be adapted to provide greater versatility for a wide 

range of applications. For example, special wheels could be implemented to allow the 

robot to maneuver in sand. The whole robot could also be coated with silicone, and the 

wheels replaced with paddles, so that it could be used amphibiously.  
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SOLVING POLYNOMIAL COEFFICIENTS  
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To solve the coefficients of the polynomials in equation (29), 

               
     

     
     

  

               
     

  
 

the initial and desired linear and angular position, velocity and acceleration are used as 

boundary conditions. The initial and desired positions are defined as 

              

              
 

The initial and final velocities are taken to be zero. Using the boundary conditions, and 

equations (27) and (28) the following expressions are found. 

                      

                  
      

      
      

                

                       

                     
       

       
                

                          

                        
        

                 

 

This is then put in matrix form. 

 
 
 
 
 
 
 
      
     

   
   

   
 

      
        

    
    

 

      
          

     
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  

  

  

  

  

   
 
 
 
 
 

 

 
 
 
 
 
 
  

  

 
 
 
  

 
 
 
 
 

         

The    coefficients are solved by inverting matrix  . 

       

Similarly, the coefficients of      can be solved using the boundary conditions and 

equations (27) and (28). 
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 This is then put in matrix form. 

 
 
 
 
 
     

   
 

     
   

 

           
 

           
  
 
 
 
 

 

  

  

  

  

  

 
 
 
 

               

               

                 

                  
 
 
 
         

The    coefficients are solved by inverting matrix  . 
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ORIGINAL AUTOLEV MODEL OF A TWO-WHEELED ROBOT
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This appendix presents diagrams of all the bodies, points, frames, variables, and 

constants and lists the Autolev code that was used to develop a dynamic model of the 

robot that was used to do the initial sizing and hardware selection for the robot, and to 

develop some of the preliminary control theory. The model is of a two-wheeled robot 

with 3 degrees of freedom which include the rotation of each wheel, and the rotation of 

the body about its longitudinal axis. 
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Autolev Model: 

 

%     File:  MPCredo.al 

%     Date:  March 3, 2010 

%   Author:  Eric Olson 

%  Problem:  This is a simulation of a robot with a wheel at ether 

%  of a central body. It moves by moving the central 

%  body about the central axis. This moves the mass of 

%  the robot off center and causes it to roll. 

%      r = right, l = left 

%      This simulation has the values for the bigger gear design. 

%-------------------------------------------------------------------- 

%       Default settings 

AutoEpsilon 1.0E-14     % Rounds off to nearest integer 

AutoZ       OFF  % Turn ON for large problems 

Digits      7           % Number of digits displayed for numbers 

%-------------------------------------------------------------------- 

%       Newtonian, bodies, frames, particles, points 

Newtonian   N 

Frames      Cf   % Frame used to define the contact force directions. 

Bodies      Wr, Wl, A, Mr, Ml % Wheels, central body, and roter 

Points      C   % Central point of device 

Points     Cr, Cl  % Wheel contact point 

%-------------------------------------------------------------------- 

%       Variables, constants, and specified 

Variables   Cx', Cy'  % distance from No to the center of the robot (not its CG) 

Variables   Wqr', Wql'  % Angle between frames Cf and W 

Variables   Mqr', Mql'  % Rotor angles 

Variables   Cq', Aq'  % Angle between N and Cf, Angle between frames Cf 

and A 

Constants   Grav  % Local gravitational acceleration 

Constants   rW   % Radius of wheels 

Constants   rA   % Distance of Ao from central axis 

Constants   L   % Distance between Wro and Wlo 

Constants   xM, rM, qM  % Position of the rotors 

Constants   gM, gW  % rotor and wheel gear radius 

Variables   Tr, Tl  % Torque on wheels 

% Specified   Ff, Fftr, Fftl % Ff -Friction force out of the plane of the wheel, Fft -

Friction force tangent to the wheel 

%-------------------------------------------------------------------- 

%       Motion variables for static/dynamic analysis 

Variables u{8}'   % Motion variables; derivatives 

Cx' = u1 

Cy' = u2 
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Aq' = u3 

Cq' = u4 

Wqr' = u5 

Wql' = u6 

Mqr' = u7 

Mql' = u8 

%-------------------------------------------------------------------- 

%       Mass and inertia properties 

Mass     A=mA, Wr=mW, Wl=mW, Mr=mM, Ml=mM 

Inertia  A, IA11, IA22, IA33 

Inertia  Wr, mW*rW^2/2, mW*rW^2/4, mW*rW^2/4 

Inertia  Wl, mW*rW^2/2, mW*rW^2/4, mW*rW^2/4 

Inertia  Mr, IML, IMR, IMR 

Inertia  Ml, IML, IMR, IMR 

%-------------------------------------------------------------------- 

%       Geometry relating unit vectors 

Simprot(N, Cf, 3, Cq) 

Simprot(Cf, A, 1, Aq) 

Simprot(A, Wr, 1, Wqr) 

Simprot(A, Wl, 1, Wql) 

Simprot(A, Mr, 1, Mqr) 

Simprot(A, Ml, 1, Mql) 

%-------------------------------------------------------------------- 

%       Angular velocities 

W_Cf_N> = Cq'*N3> 

W_Wr_A> = Wqr'*A1> 

W_Wl_A> = Wql'*A1> 

W_A_Cf> = Aq'*Cf1> 

W_Mr_A> = Mqr'*A1> 

W_Ml_A> = Mql'*A1> 

%-------------------------------------------------------------------- 

%       Position vectors 

% There are three ways to define P_No_C>: 

%P_No_C> = Cx*N1> + cy*N2> + rW*N3> % This works, but the simulation 

gives wornings about close to singulare matracies, it keeps going though. 

P_No_C> = Cx*Cf1> + cy*Cf2> + rW*Cf3> % This seems to work best. 

 

P_C_Ao> = -rA*A3> 

P_C_Wro> = (1/2)*L*A1> 

P_C_Wlo> = -(1/2)*L*A1> 

P_Wro_Cr> = -rW*Cf3> 

P_Wlo_Cl> = -rW*Cf3> 

P_C_Mro> = xM*A1> - rM*cos(qM)*A2> - rM*sin(qM)*A3> 

P_C_Mlo> = -xM*A1> + rM*cos(qM)*A2> - rM*sin(qM)*A3> 
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%-------------------------------------------------------------------- 

%       Velocities 

V_C_N> = Dt(P_No_C>,N) 

V_Ao_N> = Dt(P_No_Ao>,N) 

V_Wro_N> = Dt(P_No_Wro>,N) 

V_Wlo_N> = Dt(P_No_Wlo>,N) 

V_Cr_N> = Dt(P_No_Cr>,N) 

V_Cl_N> = Dt(P_No_Cl>,N) 

V_Mro_N> = Dt(P_No_Mro>,N) 

V_Mlo_N> = Dt(P_No_Mlo>,N) 

%-------------------------------------------------------------------- 

%       Motion constraints 

Dependent[1] = gW*Dot(W_Wr_A>,A1>) + gM*Dot(W_Mr_A>,A1>) 

Dependent[2] = gW*Dot(W_Wl_A>,A1>) + gM*Dot(W_Ml_A>,A1>) 

Dependent[3] = Dot(V_C_N>,Cf1>)     % Wheels do not 

slip 

Dependent[4] = Dot(V_Wro_N> + Cross(W_Wr_N>,P_Wro_Cr>),Cf2>) % Wheel 

rotation 

Dependent[5] = Dot(V_Wlo_N> + Cross(W_Wl_N>,P_Wlo_Cl>),Cf2>) 

 

% Auxiliary[1] = Dot(V_C_N>,Cf1>)    % Wheels do not 

slip 

% Auxiliary[2] = Dot(V_Wro_N> + Cross(W_Wr_N>,P_Wro_Cr>),Cf2>) % 

Wheel rotation 

% Auxiliary[3] = Dot(V_Wlo_N> + Cross(W_Wl_N>,P_Wlo_Cr>),Cf2>) 

% Auxiliary[2] = coef(express(V_Wro_N>,Cf),Cf2>) + rW*Wqr' 

%  Auxiliary[3] = coef(express(V_Wlo_N>,Cf),Cf2>) + rW*Wql' % For some 

reason, this is different than the above value. 

 

Constrain(Dependent[u7,u8,u1,u5,u6]) 

% Constrain(Dependent[u7,u8],Auxiliary[u1,u5,u6]) 

Pause 

%-------------------------------------------------------------------- 

%       Angular accelerations 

ALF_Cf_N> = Dt(W_Cf_N>,N) 

ALF_Wr_N> = Dt(W_Wr_N>,N) 

ALF_Wl_N> = Dt(W_Wl_N>,N) 

ALF_A_N> = Dt(W_A_N>,N) 

ALF_Mr_N> = Dt(W_Mr_N>,N) 

ALF_Ml_N> = Dt(W_Ml_N>,N) 

%-------------------------------------------------------------------- 

%       Accelerations 

A_C_N> = Dt(V_C_N>,N) 

A_Wro_N> = Dt(V_Wro_N>,N) 
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A_Wlo_N> = Dt(V_Wlo_N>,N) 

A_Ao_N> = Dt(V_Ao_N>,N) 

A_Cr_N> = Dt(V_Cr_N>,N) 

A_Cl_N> = Dt(V_Cl_N>,N) 

A_Mro_N> = Dt(V_Mro_N>,N) 

A_Mlo_N> = Dt(V_Mlo_N>,N) 

%-------------------------------------------------------------------- 

%       Forces 

Gravity(-Grav*N3>) 

% Force_C> += Ff*Cf1> 

% Force_Cr> += Fftr*Cf2> 

% Force_Cl> += Fftl*Cf2> 

%-------------------------------------------------------------------- 

%       Torques 

Torque(A/Mr,Tr*A1>) 

Torque(A/Ml,Tl*A1>) 

% Torque(A/Mr,(Tr-Fq*Mqr)*A1>) 

% Torque(A/Ml,(Tl-Fq*Mql)*A1>) 

% Torque_Wr> += Fftr*rW*Cf1> % I'm not sure this should be included. 

% Torque_Wl> += Fftl*rW*Cf1> 

%-------------------------------------------------------------------- 

%       Equations of motion 

Zero = Fr() + FrStar() % Find equations of motion 

Kane() 

%-------------------------------------------------------------------- 

 

CNx = coef(express(P_No_C>,N),N1>)   % Center of the system 

CNy = coef(express(P_No_C>,N),N2>) 

CNz = coef(express(P_No_C>,N),N3>) 

 

CVx = coef(express(V_C_N>,N),N1>)   % Velocity of the center of 

the system 

CVy = coef(express(V_C_N>,N),N2>) 

CVz = coef(express(V_C_N>,N),N3>) 

% Point Coordinates in Frame N 

Wrx = Dot(P_No_Wro>,N1>)   % Center of the right wheel 

Wry = Dot(P_No_Wro>,N2>) 

Wrz = Dot(P_No_Wro>,N3>) 

 

Crx = Dot(P_No_Cr>,N1>)    % Right wheel contact point 

Cry = Dot(P_No_Cr>,N2>) 

Crz = Dot(P_No_Cr>,N3>) 
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Wrx0deg = Dot(P_No_Wro> + rW*Wr2>,N1>)  % A point at the edge of the 

right wheel 

Wry0deg = Dot(P_No_Wro> + rW*Wr2>,N2>) 

Wrz0deg = Dot(P_No_Wro> + rW*Wr2>,N3>) 

 

Wrx180deg = Dot(P_No_Wro> - rW*Wr2>,N1>) % A point at the edge of the right 

wheel 

Wry180deg = Dot(P_No_Wro> - rW*Wr2>,N2>) 

Wrz180deg = Dot(P_No_Wro> - rW*Wr2>,N3>) 

 

Wgrx = Dot(P_No_C> + (xM+0.1*L)*Wr1>,N1>) % Center of right wheel gear 

Wgry = Dot(P_No_C> + (xM+0.1*L)*Wr1>,N2>) 

Wgrz = Dot(P_No_C> + (xM+0.1*L)*Wr1>,N3>) 

 

Mrx = Dot(P_No_Mro>,N1>)   % Right rotor 

Mry = Dot(P_No_Mro>,N2>) 

Mrz = Dot(P_No_Mro>,N3>) 

 

Wlx = Dot(P_No_Wlo>,N1>)   % Center of the left wheel 

Wly = Dot(P_No_Wlo>,N2>) 

Wlz = Dot(P_No_Wlo>,N3>) 

 

Clx = Dot(P_No_Cl>,N1>)    % Left wheel contact point 

Cly = Dot(P_No_Cl>,N2>) 

Clz = Dot(P_No_Cl>,N3>) 

 

Wlx0deg = Dot(P_No_Wlo> + rW*Wl2>,N1>)  % A point at the edge of the 

left wheel 

Wly0deg = Dot(P_No_Wlo> + rW*Wl2>,N2>) 

Wlz0deg = Dot(P_No_Wlo> + rW*Wl2>,N3>) 

 

Wlx180deg = Dot(P_No_Wlo> - rW*Wl2>,N1>) % A point at the edge of the left 

wheel 

Wly180deg = Dot(P_No_Wlo> - rW*Wl2>,N2>) 

Wlz180deg = Dot(P_No_Wlo> - rW*Wl2>,N3>) 

 

Wglx = Dot(P_No_C> - (xM+0.1*L)*Wr1>,N1>) % Center of left wheel gear 

Wgly = Dot(P_No_C> - (xM+0.1*L)*Wr1>,N2>) 

Wglz = Dot(P_No_C> - (xM+0.1*L)*Wr1>,N3>) 

 

Mlx = Dot(P_No_Mlo>,N1>)   % Left rotor 

Mly = Dot(P_No_Mlo>,N2>) 

Mlz = Dot(P_No_Mlo>,N3>) 
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Ax = Dot(P_No_Ao>,N1>)    % CG of the central body 

Ay = Dot(P_No_Ao>,N2>) 

Az = Dot(P_No_Ao>,N3>) 

 

%-------------------------------------------------------------------- 

% Check 

Check = NiCheck() 

%-------------------------------------------------------------------- 

%       Units system for CODE input/output conversions 

UnitSystem  kg,meter,sec 

%-------------------------------------------------------------------- 

%       Integration parameters and values for constants and variables 

Input  tFinal=4, integStp=0.02, absErr=1.0E-08, relErr=1.0E-08 

Input  Grav=9.81 m/sec^2, rW=0.0135 m, rA=0.004 m, L=0.045 m % Input constants 

Input  xM = 0.012 m, rM = 0.0075 m, qM=pi/4 rad 

Input  gM=0.0025 m, gW=0.0050 m 

Input  mA=0.015 kg, mW=0.002 kg, mM=0.0002 kg 

Input  IA11=7.0-7 kg*m^2, IA22=2.0e-6 kg*m^2, IA33=1.5e-6 kg*m^2 

Input  IML=5e-10 kg*m^2, IMR=5e-10 kg*m^2 

Input  Cx=0.005 m, Cy=0.005 m, u2=0 m/sec   % Initial values 

Input  Wqr=0 rad, Wql=0 rad, Mqr=0 rad, Mql=0 rad 

Input  Cq=0 rad, Aq=0 rad, u3=0 rad/sec, u4=0 rad/sec 

Input  Tr=0.8e-5 newtons*m, Tl=0.8e-5 newtons*m 

Input  WCheck1=0 newton*m 

%-------------------------------------------------------------------- 

% Quantities to be output from CODE 

Output Check newton*m, t sec, Aq deg, Cq deg  % 1 

Output t sec, CNx m, CNy m, CNz m   % 2 

Output t sec, Cq rad, Aq rad, Wqr rad, Wql rad, & % 3 

 Mqr rad, Mql rad, Cx m, Cy m, & 

 u2 m/sec, u3 rad/sec, u4 rad/sec 

Output t sec, Ax m, Ay m, Az m, Wrx m, Wry m, Wrz m, & % 4 

 Wlx m, Wly m, Wlz m, Mrx m, Mry m, Mrz m, & 

 Mlx m, Mly m, Mlz m 

Output t sec, Wrx0deg m, Wry0deg m, Wrz0deg m, & % 5 

 Wrx180deg m, Wry180deg m, Wrz180deg m, & 

 Wlx0deg m, Wly0deg m, Wlz0deg m, & 

 Wlx180deg m, Wly180deg m, Wlz180deg m, & 

 Crx m, cry m, Crz m, Clx m, Cly m, Clz m, & 

 Wgrx m, Wgry m, Wgrz m, Wglx m, Wgly m, Wglz m 

Output rW m, rA m, L m, xM m, rM m, qM m, gM m, gW m % 6 

Output t sec, Tr newtons*m, Tl newtons*m  % 7 

% Output t sec, Ff newtons, Fftr newtons, Fftl newtons % 8 

%-------------------------------------------------------------------- 
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%       Matlab code generation for numerical solution 

Code dynamics() MPCredo.m  
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SIMPLIFIED AUTOLEV DYNAMIC MODEL
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This is the Autolev code used to develop the dynamic model that was the basis 

for all the control development and simulation presented in this paper. This model is 

similar to the previous one except that the body does not have the freedom to rotate 

about its axis, and the wheel constraints are simplified to slider constraints. 

Autolev Model: 

%     File:  SimplifiedForControl.al 

%     Date:  January 26, 2010 

%   Author:  Eric Olson 

%  Problem:  This is a simplified model for control development. 

%-------------------------------------------------------------------- 

%       Default settings 

AutoEpsilon 1.0E-14     % Rounds off to nearest integer 

AutoZ       OFF  % Turn ON for large problems 

Digits      7           % Number of digits displayed for numbers 

%-------------------------------------------------------------------- 

%       Newtonian, bodies, frames, particles, points 

Newtonian   N 

Bodies      A 

Points      Ar, Al 

%-------------------------------------------------------------------- 

%       Variables, constants, and specified 

Variables   Gx', Gy'  % distance from No to Ao 

Variables   Cq'   % Angle between N and Cf 

Variables   Fr, Fl  % Forces acting on A 

Constants   L   % Length of A 

Constants   xM, rM, qM  % Position of the rotors 

Specified   Ff   % Friction force that keeps A from moving axialy 

%-------------------------------------------------------------------- 

%       Motion variables for static/dynamic analysis 

Variables u{3}'   % Motion variables; derivatives 

Gx' = u1 

Gy' = u2 

Cq' = u3 

%-------------------------------------------------------------------- 

%       Mass and inertia properties 

Mass     A=mA 

Inertia  A, IA11, IA22, IA33 

%-------------------------------------------------------------------- 

%       Geometry relating unit vectors 
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Simprot(N, A, 3, Cq) 

%-------------------------------------------------------------------- 

%       Angular velocities 

W_A_N> = Cq'*N3> 

%-------------------------------------------------------------------- 

%       Position vectors 

P_No_Ao> = Gx*A1> + Gy*A2> 

P_Ao_Ar> = 0.5*L*A1> 

P_Ao_Al> = -0.5*L*A1> 

%-------------------------------------------------------------------- 

%       Velocities 

V_Ao_N> = Dt(P_No_Ao>,N) 

V_Ar_N> = Dt(P_No_Ar>,N) 

V_Al_N> = Dt(P_No_Al>,N) 

%-------------------------------------------------------------------- 

%       Motion constraints 

Auxiliary[1] = coef(express(V_Ao_N>,A),A1>)   % Does not slip 

Constrain(Auxiliary[u1]) 

Pause 

%-------------------------------------------------------------------- 

%       Angular accelerations 

ALF_A_N> = Dt(W_A_N>,N) 

%-------------------------------------------------------------------- 

%       Accelerations 

A_Ao_N> = Dt(V_Ao_N>,N) 

A_Ar_N> = Dt(V_Ar_N>,N) 

A_Al_N> = Dt(V_Al_N>,N) 

%-------------------------------------------------------------------- 

%       Forces 

Force_Ao> = Ff*A1> 

Force_Ar> = Fr*A2> 

Force_Al> = Fl*A2> 

%-------------------------------------------------------------------- 

%       Equations of motion 

Zero = Fr() + FrStar() % Find equations of motion 

Kane(Ff)  % Simplify and/or solve 

%-------------------------------------------------------------------- 

% Point Coordinates in Frame N 

Ax = coef(express(P_No_Ao>,N),N1>)   % CG of A 

Ay = coef(express(P_No_Ao>,N),N2>) 

Az = coef(express(P_No_Ao>,N),N3>) 

 

AVx = coef(express(V_Ao_N>,N),N1>)   % CG of A 

AVy = coef(express(V_Ao_N>,N),N2>) 
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AVz = coef(express(V_Ao_N>,N),N3>) 

 

Axr = coef(express(P_No_Ar>,N),N1>)   % Right end 

Ayr = coef(express(P_No_Ar>,N),N2>) 

Azr = coef(express(P_No_Ar>,N),N3>) 

 

Axl = coef(express(P_No_Al>,N),N1>)   % Left end 

Ayl = coef(express(P_No_Al>,N),N2>) 

Azl = coef(express(P_No_Al>,N),N3>) 

%-------------------------------------------------------------------- 

% Check 

Check = NiCheck() 

%-------------------------------------------------------------------- 

%       Units system for CODE input/output conversions 

UnitSystem  kg,meter,sec 

%-------------------------------------------------------------------- 

%       Integration parameters and values for constants and variables 

Input  tFinal=5, integStp=0.02, absErr=1.0E-08, relErr=1.0E-08 

Input  L=0.045 m      % Input constants 

Input  mA=0.015 kg 

Input  IA11=7.0-7 kg*m^2, IA22=2.0e-6 kg*m^2, IA33=1.5e-6 kg*m^2 

Input  Gx=0.000 m, Gy=0.000 m, u2=0 m/sec   % Initial values 

Input  Cq=0 rad, u3=0 rad/sec 

Input  Fr=0.0e-4 newtons, Fl=0.0e-4 newtons 

Input  WCheck1=0 newton*m 

Input  Axd=0.1 m, Ayd=0.1 m 

%-------------------------------------------------------------------- 

% Quantities to be output from CODE 

Output Check newton*m, t sec, Cq deg   % 1 

Output t sec, Cq rad, L m    % 2 

Output t sec, Ax m, Ay m, Az m, Axr m, Ayr m, Azr m, & % 3 

 Axl m, Ayl m, Azl m, AVx m, AVy m, AVz m 

Output t sec, Fr newtons, Fl newtons, Ff newtons % 4 

Output t sec, Axd m, Ayd m    % 5 

%-------------------------------------------------------------------- 

%       Matlab code generation for numerical solution 

Code dynamics() SimplifiedForControl.m 
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CONTROLLER STABILITY



 

 71 

From section 2.3.1, it was shown that the derivative of the Lyapunov function 

(16) using the proposed controller could be simplified to equation (23). 

              

From the Autolev program, the equations of motion for this dynamic model are, 

 
  

    
 

 
     

 

 
 
  

  

  
   

     

           
   

   
  

   
  

             
  

   
  

   

Or in the standard form, 

                    

Equations (11), (12), and (15) show that, 

 
  

  
   

      
      

               

      
      

               
   

     

      
  

    

   
   

     

      
  

   

  
   

Therefore, 

    
  

    
 

 
     

 

 
 
  

     

      
   

    
          

  

Substituting this into equation (23) gives, 

            
    

          
  

   
  

         
                   

   

The first and last terms in this equation are obviously negative, however to show that 

the middle term is negative, it is necessary to find the relationship between     and   . 

This will be accomplished using the relationships between    
,    

, and   . 
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From this Figure it is apparent that, 

      
  

  
          

  

  
  

This equation applies as long as    and    do not equal zero. It should be noted that    

and    will never become zero while the controller is in effect since an area is defined 

around the desired point in which the controller does not take effect, as is stated in 

sections 2.3.2 and 2.3.3. Taking the derivative of this and rearranging the terms results 

in an expression that relates     and    . 
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Again using the relation       , this equation becomes, 

       
     

            
  

Substituting this back into the expression for    yields, 

          
       

     

            
   

        
   

If the desired point is restated through some transformation as the origin of a new 

coordinate system, then          . The error in the     direction and then be 

rewritten as              . Using this, and the relation           ,    can be 

farther rearranged to, 

          
     

      

        
   

        
   

This equation can be rearranged farther to, 

          
    

      

        
        

  

          
  

               

        
        

  

          
  

 

        
        

  

From this, it is apparent that    is always negative, that is energy will be subtracted from 

the system and the system will eventually reach the goal in a stable manner.  
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PARTS UTILIZED
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 This is a list of all the off-the-shelf parts that went into the robot. 

Product Part Number Price Quantity 

Micro Planetary Gear Motor GH6123 $16  2  

Qik Dual Serial Motor Controller ROB-09106 $25  1  

Bluetooth SMD Module - Roving Networks WRL-08497 $30  1  

Polymer Lithium Ion Batteries - 100mAh PRT-00731 $7  1  

Motor Gear GM0.5-10-14 $2 2 

Spur Gear GS0.5-20-19 $2 2 

1.23" Micro Sport Wheels 2pc 

 

$2 1 
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WIRING DIAGRAM
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 This is the wiring schematic used to connect all the electrical components used 

in the robot. The motors are connected only to the motor control board. All the 

components accept the same voltage. 
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LABVIEW GUI 
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his shows the front end of the LabVIEW program. All the various controls can 

be seen on the right. 
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EXAMPLE LABVIEW CODE 
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 In this section, more of the LabVIEW code is shown. 

 

This part of the program sets up the windows voice recognition software, and defines 

the recognized terms. 

 

This part of the program does vision calibration. 
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This part of the program finds the robot and locates it relative to the reference frame. 

 

This program initializes the Bluetooth connection. 

 

This program takes the mouse user input to generate a desired location for the robot. 
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This is the feedback part of the program. 



 

 84 

 

This is the PD control VI. 

 

This is the path planning coefficient VI 

 

This is the time dependent part of the path generation. 
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SETUP 
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This is the basic setup for the robot. There is a workspace, which the robot 

drives on, with calibration images, and there is a camera, which is used for position 

feedback, looking down on the workspace. 
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