
ANALYSIS AND DESIGN OF A TWO-WHEELED ROBOT

WITH MULTIPLE USER INTERFACE INPUTS

AND VISION FEEDBACK CONTROL

by

ERIC STEPHEN OLSON

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2010

Copyright © by Eric Stephen Olson 2010

All Rights Reserved

 iii

ACKNOWLEDGMENTS

I would like to thank Dr. Panayiotis Shiakolas for being my advisor for this

thesis and for all his guidance and encouragement. I would also like to thank Richard

Margolin for lending me his expertise in choosing and debugging hardware. Finally, I

would like to thank Dr. Alan Bowling, and Dr. Kamesh Subbarao for serving on my

thesis committee.

July 16, 2010

 iv

ABSTRACT

ANALYSIS AND DESIGN OF A TWO-WHEELED ROBOT

WITH MULTIPLE USER INTERFACE INPUTS

AND VISION FEEDBACK CONTROL

Eric Stephen Olson, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Panayiotis Shiakolas

This thesis describes the development of a small, inexpensive, controllable

mobile two-wheeled robot. It also describes the development of a software interface

which allows several open- and closed-loop control methods to be easily implemented.

The developed hardware and software modules provide for an open and modular system

for research purposes. This is demonstrated through the Bluetooth wireless control of

the robot using LabVIEW based software modules. The open-loop control inputs

implemented are sliders in a LabVIEW GUI, joystick, and voice commands. The

closed-loop control methods included a PD control algorithm that guides the robot to go

directly to a user defined point, and a path planning control algorithm that guides the

robot to follow a path and reach the user defined goal in the correct orientation. The

closed-loop control methods use an external camera for vision based position feedback.

All the control methods introduced were successfully tested experimentally.

 v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT….. .. iv

TABLE OF CONTENTS ... v

LIST OF ILLUSTRATIONS .. vii

Chapter Page

 1. INTRODUCTION ... 1

 2. ANALYSIS ... 6

 2.1 Dynamic Modeling and Simulation ... 6

 2.2 Kinematic Analysis .. 13

 2.3 Control Algorithm .. 16

 2.3.1. PD Control .. 17

 2.3.2. Control Method 1 .. 24

 2.3.3. Control Method 2 .. 25

 2.4 Path Planning ... 29

 3. EXPERIMENTAL PROCEDURE ... 33

 3.1 Mechanical Design ... 33

 3.1 Hardware/Computer Interface .. 36

 3.2.1. LabVIEW .. 36

 3.2.2. Motor Control Board & Bluetooth Module 37

 3.3 Characterizing the Device .. 38

 3.4 Open-Loop Control: LabVIEW GUI, Joystick, Voice 40

 vi

 3.5 Vision Feedback Control .. 42

 3.5.1. Calibration .. 42

 3.5.2. Defining the Desired Position ... 44

 3.5.3. Control Algorithm .. 45

 3.5.4. Path Planning .. 46

 4. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 49

 4.1 Discussion .. 49

 4.2 Future Work ... 50

APPENDIX

 A. SOLVING POLYNOMIAL COEFFICIENTS .. 53

 B. ORIGINAL AUTOLEV MODEL OF A TWO-WHEELED ROBOT 56

 C. SIMPLIFIED AUTOLEV DYNAMIC MODEL ... 66

 D. CONTROLLER STABILITY .. 70

 E. PARTS UTILIZED ... 74

 F. WIRING DIAGRAM .. 76

 G. LABVIEW GUI ... 78

 H. EXAMPLE LABVIEW CODE .. 80

 I. SETUP .. 85

REFERENCES ... 87

BIOGRAPHICAL INFORMATION.. 92

 vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Two-Dimensional Rolling Robot .. 1

2.1 Two-Dimensional Rolling Robot Model .. 6

2.2 Two-Dimensional Simulation Example (Modified PD Control) 7

2.3 CAD and Simulated Models of Shell Rolling Robot 8

2.4 Shell Rolling Robot Example Simulation ... 9

2.5 Generalized Coordinates of the Two-Wheeled Robot 9

2.6 CAD Model of the Two-Wheeled Robot .. 10

2.7 Two-Wheeled Robot Example Simulation ... 11

2.8 Simplified Two-Wheel Robot Diagram .. 12

2.9 Two-wheeled Mobile Robot Motion Variables .. 13

2.10 Graphical Relationship between and , and , , and 14

2.11 Graphical Relationship between and , and and 15

2.12 Example Control Setup Showing Initial Error .. 18

2.13 Example of Eliminating
 by Reorientation... 19

2.14 Examples of PD control .. 22

2.15 Path Following Example ... 25

2.16 Desired and actual and , and error over time ... 26

2.17 Discontinuous Path Following Example ... 27

 viii

2.18 Path Generation Examples .. 28

2.19 Autolev Dynamic Model Generalized Coordinates .. 31

3.1 Fabricated and Assembled Robot .. 33

3.2 CAD Model of the Robot .. 47

3.3 Robot Drive System .. 34

3.4 Robot Electronics .. 35

3.5 Relations Between Components.. 36

3.6 Motor Characterization Setup ... 37

3.7 Device Characterization Result ... 38

3.8 Modular Open-Loop Controls ... 39

3.9 Camera Calibration ... 40

3.10 Pixel Space to Real Space VI .. 42

3.11 Pattern for Vision Matching .. 43

3.12 Path Planning LabVIEW Code ... 44

3.13 Examples of Paths Generated .. 48

4.1 Size of Robot Without Electronics .. 51

 1

CHAPTER 1

INTRODUCTION

There are many discussions of rolling mobile robots in the literature. The

advantage of these types of robots is the simplicity of their driving mechanisms, which

makes them good candidates for miniaturization. The most common type of rolling

robot is actuated by shifting the center of mass (CG) of the robot so that a moment is

created about the point at which the robot is in contact with the ground, as is illustrated

in figure 1.1. An example of a two-dimensional mechanism similar to the one shown in

Figure 1.1 is discussed in [1].

Figure 1.1 Two-Dimensional Rolling Robot

Although there are other types of rolling robots, for example the one discussed

in [2] where a spherical robot is actuated by taking advantage of the conservation of

momentum using flywheels. In [2] the research focuses on rolling robots that are

 2

actuated by shifting the CG. There are two major categories of how to apply the

principle shown in Figure 1.1 to robots in three dimensions. One category is shell

robots. This type of robot is the most obvious extension of the two-dimensional robot

shown in Figure 1.1. This type of robot consists of an outer shell (usually a sphere) and

some mechanism inside the shell to move the CG of the shell off center. The second

major category of rolling robots is the two-wheeled robot. This type of robot consists of

two parallel wheels on one axis and a body that connects the two wheels. The two

wheels can be thought of as two separate two-dimensional rolling mechanisms similar

to Figure 1.1, and the body of the robot does not coincide with the axis of the robot and

is used to create the off-centered CG.

Within the category of shell robots there are three basic types. The first type has

a spherical shell, and inside the shell there is a pendulum mass attached to a two-degree-

of-freedom actuated gyroscope [3, 4]. This allows the center of mass of the robot to be

offset in any direction which allows this type of robot to move in any direction without

turning. This makes this type of robot very agile, however, because of the nature of the

mechanism, this robot must have a large amount of empty space on its inside which

makes it a poor candidate for miniaturization. The second type of shell robot also

consists of a shell and a pendulum weight, however, the weight is only able to rotate

fully about a primary axis, and to a limited degree about a secondary axis [5, 6]. This

means that this type of robot has a definite orientation. It primarily moves forwards and

backwards in a direction perpendicular to the primary axis, and the limited rotation

about the secondary axis is used to turn the robot. The advantage of this robot is that it

 3

is more compact than the first type of shell robot. However, it is more limited in its

motion, and it has a relatively large minimum turning radius. The third type of shell

robot consists of a spherical shell with masses inside that move back and forth along

spokes [7, 8]. This type of rolling robot, like the first type, has the advantage of being

able to move in any direction without reorientation. The disadvantage of this type of

robot is that it requires at least three linear actuators, while the other two types require

only two rotational actuators.

The other major category of rolling robots is the two-wheeled robot. Two-

wheeled robots are the most prevalent rolling robots in the literature. The prevalence of

these robots stems from a crucial advantage they present over other varieties of rolling

robots in that they do not have a minimum turning radius. There are several different

variations of two-wheeled robots. There are ones that have their CG above their wheel

axis. An example of a mechanism like this is the Segway. These types of robots are

inherently unstable and require a control system to remain upright and balanced [9].

There are also two-wheeled robots which have their center of mass below the axis of the

wheels [10-12]. These types of robots are statically stable although they are subject to

oscillations. Finally there are robots which have the kinematics of a two-wheeled robot,

but are not true rolling robots. These robots have two main wheels which behave like

other two wheeled robots, but they also have one or more idler wheels to keep them

from rotating about their wheel axis [13, 14]. The advantage of these robots is that they

are easier to control than the other two wheeled robot types because they do not have as

many degrees of freedom, however, they require smoother operating environments.

 4

The research presented in this thesis studied concepts previously described in

the literature and then developed a small, inexpensive version of a rolling robot. The

objectives included simulating, designing, fabricating, assembling, and interfacing the

electrical components of the robot, and developing a modular and easily expandable

software interface so that new hardware can be interfaced easily, and different path

planning and control algorithms can be easily implemented and verified. This was

accomplished by examining the different types of rolling robots in the literature to

weigh their pros and cons. Then a few designs were selected, including a version of the

shell rolling robot and two versions of the two-wheeled robot, and dynamically modeled

in Autolev and simulated in MATLAB to obtain a better understanding of how they

behaved and how easily they could be controlled. Solid Models of these designs were

also developed in ProEngineer to investigate how small the robots could be made, and

to obtain reasonable mass, inertia, and kinematic parameters to use in the simulation

environment. After analyzing the behavior of the various robots in simulation, a version

of the two-wheeled robot was selected to be prototyped. This prototype was then used

to test the control theory developed with the Autolev model and path planning

algorithms.

In this research, the software interface employed was based on LabVIEW. The

open loop-control methods included sliders in a LabVIEW GUI, an external joystick,

and voice commands. The closed-loop control methods allow users to select a

destination state (both position and orientation) for the robot, and then depending on the

control method selected, the control algorithm would either guide the robot directly to

 5

the desired point, and then reorient to the user specified orientation, or the algorithm

would generate a path for the robot that would allow it to reach the desired location in

the correct orientation. The closed-loop control methods require sensors to assess the

current state (position and orientation) of the device and use this information to

calculate the control effort. The developed robot does not have onboard sensors (such as

wheel encoders which could create problems in case of wheel slipping), so for closed

loop control an external camera acting as a local positioning system for position and

orientation feedback.

Some of the potential applications for this type of robot include, among others,

reconnaissance, search-and-rescue, and an inexpensive platform with which to study

robot swarms.

 6

CHAPTER 2

ANALYSIS

2.1 Dynamic Modeling and Simulation

After exploring the literature for different types of rolling robots, a few designs

were chosen to be examined more closely by creating dynamic models of them with

Autolev [15], and subsequently simulating them using MATLAB [16]. The first was a

two-dimensional model similar to the mechanism described in [1]. A diagram of this

robot model is shown in Figure 2.1. This model consists of a circular body in contact

with the ground at point . A pendulum with a suspended mass at distance () is

attached at the center of the circle. The device is actuated by controlling the location of

the suspended mass through angle .

Figure 2.1 Two-Dimensional Rolling Robot Model

If is forced to be some value besides or , then the device will roll. Figure 2.2

shows an example of a dynamic simulation of how such a system can be controlled. In

this example the device starts out at , , and the desired point is set to

 . The device rolls towards the desired point by moving the mass towards the

 7

desired rolling direction. Once the device gets closer to the desired point, the mass is

moved away from the desired point to slow the device down so that it reaches the

desired point with zero velocity.

Figure 2.2 Two-Dimensional Simulation Example (Modified PD Control)

Using the knowledge gained from this simple model, two three-dimensional

dynamic models were developed. One of these was a version of a shell rolling robot. In

order to have reasonable values to use in the dynamic simulation, a ProEngineer CAD

model was developed concurrently with the Autolev dynamic model, both of which are

shown in Figure 2.3a,b. In this model, the shell was chosen to be an egg shape in an

attempt to make the robot more compact. One actuator was used to rotate all of the

hardware inside of the shell about the longitudinal axis of the shell in order to make it

roll forwards and backwards, and another actuator was used to move some of the weight

along the axis of the shell for steering purposes. Because of the egg-shaped geometry of

this model, the calculations to find the point at which the shell comes into contact with

the ground were nontrivial.

 8

(a)

(b)

Figure 2.3 CAD and Simulated Models of Shell Rolling Robot (a) CAD Model. (b)

Dynamic Model.

An example of Autolev dynamic simulation results using this model is presented in

Figure 2.4. The results show the controlled motion of the egg-shaped robot following a

planar curvilinear path.

 9

Figure 2.4 Shell Rolling Robot Example Simulation

The other dynamic model that was developed was a version of the two-wheeled

robot. This model ended up being the most important one to this research effort. The

basic structure of this model and the generalized coordinates used are presented in

Figure 2.5. This model consists of two parallel wheels attached to either end of a shell

body. Two actuators are housed in the body and drive the two wheels through a set of

gears. The CG of the body is below the axis of the wheels, so that when the actuators

turn the wheels, the body does not rotate about the wheel axis.

Figure 2.5 Generalized Coordinates of the Two-Wheeled Robot

 10

This model has three degrees of freedom. Each wheel can independently turn

(controlled), and the body can rotate about the wheel axis. However, the generalized

coordinates actually employed were the forward movement of the robot, the orientation

of the robot, and the angle of rotation of the body about the wheel axis. A complete list

of the parameters used and the actual Autolev code for this dynamic model can be

found in Appendix B. A CAD model of this robot was also developed to assist in

choosing reasonable values for the parameters for simulation when considering the

packaging of the actuators and electronics as shown in Figure 2.6.

Figure 2.6 CAD Model of the Two-Wheeled Robot

This model showed the most potential for the objectives of this research effort when

compared with all the models that were developed and studied. Therefore this model

was selected to be used as the basis of a prototype. The advantages of this design were

that it was compact, simple, had better mobility and was more easily controllable than

the other models. The main issue with this design, as observed in simulation, was that

when there is a sudden change in actuator torque, the body would often oscillate making

control difficult. An example of this behavior is presented in Figure 2.7. In this

example, the robot responds well to the left and right input actuator torques, and ,

 11

when they are smooth functions, but at when the torques suddenly jump from

 to , and the body starts oscillating as shown by the second graph or

variable .

Figure 2.7 Two-Wheeled Robot Example Simulation

While it is easy to avoid sudden changes in actuator torque in simulation, it is

not practical in a real system without adding an extra level of complexity, so a new

 12

model was developed where the body no longer had the freedom to rotate about the

wheel axis. A diagram showing the variables used in this model is presented in Figure

2.8. This model is similar to the first two wheeled model. The differences are that this

model does not have the freedom to rotate about its longitudinal axis, and the wheels are

simplified so that instead of a rolling constraint, there is a sliding constraint.

The location of this device can be fully described with three coordinates. The

most common way would be to specify the robot and coordinates, and its

orientation all relative to some global reference frame. However because of the

constraints of the robot, it is more convenient to use and coordinates that

are referenced off of the body attached frame as shown in Figure 2.8.

Figure 2.8 Simplified Two-Wheel Robot Diagram

Although this makes the and coordinates dependent on the orientation of the device,

this coordinate system is useful because the coordinate variables relate much better to

what the system is actually able to do. This device can only move in the direction

 13

and rotate about the axis but is constrained and cannot move in the direction In

this coordinate system and are directly controllable. The Autolev code for this

model can be found in Appendix C. The first two-wheeled model was the primary

model used to assist in the mechanical design of the prototype, but this Autolev

dynamic model was used to develop and verify the control theory. All the simulations

referred to and all the simulation graphics generated in the remainder of this chapter use

this model as their basis.

2.2 Kinematic Analysis

Robot control entails controlling the position and orientation of a robot by

understanding the kinematic and dynamic structure of the robot and then controlling its

actuators. Thus, the kinematic structure of a generic two-wheeled robot must be

understood first. The kinematics of two wheeled robots is well known and is available

in the open literature [17-19]. In this research, the kinematic structure and analysis is

based on the motion variables shown in Figure 2.9.

Figure 2.9 Two-wheeled Mobile Robot Motion Variables

The kinematics of the two-wheeled robot are as follows: and are the

coordinates of the robot in the world reference frame. The translational velocity of the

 14

center of the robot, , is related to the velocity in the and directions, and ,

through the relations

 (1)

where is the orientation of the robot with respect to the reference frame. The angular

velocity of the robot is the rate of change of the orientation, . The Cartesian and

joint velocities are expressed in matrix form through

 . (2)

These relationships are shown graphically in Figure 2.10.

Figure 2.10 Graphical Relationship between v and ω, and , , and

The translational velocity of the robot, , can be found by averaging the translational

velocities at each wheel (left and right) according to

 (3)

The angular velocity, , can similarly be found from the velocities at each wheel by the

expression

 15

 (4)

The relationship between the linear and angular velocity of the robot can be expressed

as a function of the left and right wheel translational velocities by combining equations

(3) and (4), yielding

 . (5)

These relationships are shown graphically in Figure 2.11.

Figure 2.11 Graphical Relationship between vr and vl, and v and ω

The linear and angular velocity of the robot can be expressed in terms of the

angular velocity of the wheels through a simple multiplication by the wheel radius, R.

 . (6)

Combining equations (2) and (6), the relationship between the Cartesian velocities

(translational and orientation) and the angular velocities of the wheels is developed.

 16

 (7)

A challenge in controlling the robot arises because the robot is non-holonomic which

means the matrix or Jacobian in equation (7) is not square, and can therefore not be

directly inverted. This means that , , and cannot be arbitrarily controlled by

controlling , and .

2.3 Control Algorithm

The non-holonomic nature of this robot makes controlling this device more

difficult. There are many discussions in the literature to address these difficulties [17-

21]. This research utilized two different control methods, which will be discussed in the

following sections, to address this difficulty. Both methods use a control algorithm that

is a variation of proportional derivative, PD, control. The proposed algorithm allows the

user to specify the desired -coordinates, but the final orientation cannot be specified

directly. In the first method, the robot is allowed to go directly to the desired location,

and when it gets there, it will then reorient itself by rotating in place. In the second

method, a time dependent path is generated based on the initial and final desired state of

the robot that allows the robot to reach its destination with the correct orientation so that

it does not have to reorient itself at the goal.

The advantage of the first method is that it can correct for a great amount of

error, and it is generally faster than the alternative method. This method can do this

because it is not time dependent, so if it gets occasional bad feedback signals, it can

 17

easily correct itself. Also, because this method is not time dependent, the control makes

the device get to the desired position as fast as possible. The limitation of this control

method is that the path the robot takes is not known beforehand, so it is not possible to

directly check for potential collision with obstacles.

The advantage of the second method is that it makes the robot reach the desired

position in the correct orientation. In addition, the time it takes for the robot to reach the

desired position can be specified, and the path that the robot takes is known beforehand

which makes it possible to check for potential collisions with obstacles.

2.3.1. PD Control

As mentioned in section 2.1 and shown in Figure2.8, it is useful to use the

coordinate system attached to the robot because it better represents the motion of the

robot. xr relates closely to v. The difficulty in controlling two-wheeled robots is that

there are three variables specified (x, y, and θ, or xr, yr, and θ), but only two can be

controlled. This means that without some sort of “trick” only two variables can be

controlled arbitrarily. The easiest two variables to choose would be xr and θ, however

leaving yr free would allow the robot to end up almost anywhere on the xy-plane,

especially since xr, and yr are dependent on θ. The same issue would be true if yr and θ

were chosen, therefore it is clear that xr and yr must be specified, and θ must be the free

variable. State xr can be controlled directly, so the question becomes how to control xr

by controlling θ. For example, Figure 2.12 shows the robot and a desired location for

the robot. So, how can the error,
 and

, be forced to zero by controlling xr and θ?

 18

Figure 2.12 Example Control Setup Showing Initial Error

It turns out that when the robot is oriented such that aligns with the vector between

the center of the robot and the desired point,
 automatically goes to zero. An example

of this condition is shown in Figure 2.13. When the robot rotates to face the desired

point,
 goes to zero. Therefore, a control law can be developed to force

 to zero,

and force the robot to orient itself to face the desired point. That is, the desired

orientation for the robot should be set equal to the angle of the vector between the

center of the robot and the desired point.

 19

(a) (b)

Figure 2.13 Example of Eliminating
 by Reorientation (a) Initial configuration with

 present. (b) Reoriented configuration with

 eliminated.

While it is convenient to use xr and yr when thinking about control, it is better to

specify locations using xy-coordinates in the global reference frame because xr and yr

are dependent on the orientation of the robot. If the desired position is specified in xy-

coordinates, the desired angle, , can be found by the following:

 (8)

The limitation of implementing equation (8) is that the robot is always forced to turn

toward the desired position when it would sometimes take less time if the robot turned

directly away from the desired position. This is illustrated in Figure 2.14a,b. Since the

robot is symmetrical, this means that in both cases the robot is asked to do essentially

the same movement. However, in the second case, the controller sees the robot as facing

away from the desired position, so the controller turns the robot around. To allow the

control to make the robot face away from the desired position in cases where this would

 20

take less movement, equation (8) can be rewritten considering the difference between

and as follows:

 (9)

Figure 2.14c shows the path the robot takes with the corrected control. It is observed

that with the corrected control, the robot had to rotate less than radians rather than

 radians as in Figure 2.14b. The desired angular velocity, , of the robot is evaluated

by taking the time derivative of the desired orientation.

 (10)

An orientation control variable, , is defined using and , as follows

 (11)

where and are positive control gains and for critically damped case,

 .

A similar control variable can be defined for the translational velocity.

 (12)

where and are positive gains. Equation (12) is similar to the PD control

described in [22], where for the critically damped case, . Because xr is in a

coordinate frame that is dependent on the orientation of the robot, it is difficult to define

 21

xrd, therefore equation (12) must be transformed into normal xy-coordinates using the

transformation shown in equation (13).

(13)

Using this transformation, equation (12) becomes,

 (14)

Using the control variables in equations (11) and (14), the actuator torques for the robot

are defined as

(15)

The first term, Ct, in the actuator torque equations controls the robot forward velocity,

 . This term will get the robot as close to the desired position as possible without

performing any rotation. For example, if the control is implemented without the

terms in equation (15), the robot will move forwards or backwards until the vector

between the center of the robot and the desired point is perpendicular to the robot

orientation, since this will be the closest the robot can get to the desired point without

rotation. The term in equation (15) controls the rotation of the robot; it will make the

robot turn towards or away from the desired point. For example, if only these terms are

used in control, the robot would rotate towards the desired position, but it would not

move towards it at all. When the terms are combined, they together force the robot to

the desired state.

This PD control was developed and implemented in the Autolev dynamic model

listed in Appendix C. An example simulation of the model using this PD Control is

 22

shown in Figure 2.14a. In this example, the initial state of the device is

 , and the desired position was set to The device went

to the desired point quickly, ending with zero velocity.

(a) (b)

(c)

Figure 2.14 Example of PD Control (a) Example 1. (b) Example 2 using equation 8. (c)

Example 2 using equation 9. (The dashed lines trace the path of the wheels, and the

solid line shows the path of the robot center.)

The stability of the proposed control algorithm is proved using a Lyapunov

function [23] or energy function such as

 23

(16)

In this equation, M is the mass matrix in the equations of motion of the robot obtained

from the Autolev model (see Appendix C), q is a vector containing the generalized

coordinates, and Kp is a positive gain control gain matrix. Taking the derivative of

equation (16) gives,

(17)

Using the equations of motion for the system, , can be

replaced by – , resulting in

(18)

Rearranging yields,

(19)

It is always possible to have a matrix C so that is skew-symmetric, and this is

the case for the proposed model. Therefore, the middle term of equation (19) can be

eliminated. The desired final velocity of the robot is zero thus , so can be

rearranged to,

 (20)

This can be further simplified by substituting the equation for u.

 (21)

These substitution results in,

 24

 (22)

Using the fact that at the goal the desired velocity is zero, equation (22) can be further

simplified to,

 (23)

This result in equation (23) indicates that the derivatives of the Lyapunov function

using the proposed controller will be negative semidefinite. i.e. energy will be

subtracted from the system and the system will eventually reach the goal in a stable

manner. The result in equation (23) is explored in more detail for the proposed

controller in Appendix D.

2.3.2. Control Method 1

 The first control method, mentioned in section 2.3, is to use the PD control listed

in section 2.3.1 to get the robot within a user specified distance, , of the desired point.

Then when the robot gets within this distance of the desired point, the linear velocity

gains, and , are set to zero, and the desired orientation is set equal to the value

specified by the user. The distance is defined as

(24)

In simulation, the value of chosen depends on the allowable steady state error

of the device, and the allowable time for the robot to reach the final orientation. In

simulation can be chosen to be as small as the numerical error in the simulation

allows, however, the robot reaches the desired point asymptotically, so if a very small

 25

number is chosen, it will take the robot a while before it would reorient. In practice,

must be chosen so that it is greater than the error of the measurement system employed.

2.3.3. Control Method 2

In the second control method, the robot is instructed to follow a time-dependent

path that will bring the robot from its initial position to the user defined desired position

in such a way that it arrives at the desired position already in the desired orientation.

The desired position is specified as a function of time, , and the desired velocity,

 , is the derivative of the desired position function.

(25)

The method for finding these functions will be discussed in section 2.3. An

example of such a path is presented in Figure 2.15 and Figure 2.16.

Figure 2.15 Path Following Example

 26

In this example, the robot starts at with the desired position at

 and a specified error distance . Using these points as

boundary conditions, a time-dependent path is created that will allow the robot to move

from the initial position to the desired point in such a way that the robot will be in the

desired orientation when it reaches that point.

(a)

(b)

(c)

Figure 2.16 Desired and actual x and y, and error over time (a) x as a function of time.

(b) y as a function of time. (c) Error.

 27

These time-dependent paths may require the robot to move forward, or backward, or as

in this example, require the robot to change directions. The position functions and their

derivatives are continuous functions of time as shown in Figure 2.16a,b. The solid lines

show the actual and coordinates of the robot as it follows the specified path. Figure

2.16c shows the distance or error, , between the desired and actual coordinates as a

function of time. It is observed that for continuous functions, the PD control provides

for good path following.

To allow the robot to track well as, in the given example, it is advantageous to

use a path such that the position and velocity are continuous functions of time.

However, this is not always necessary. To test how robust the proposed method is,

simulations were performed where the robot was instructed to follow paths that were

not continuous functions of time; an example of which is shown in Figure 2.17.

Figure 2.17 Discontinuous Path Following Example

 28

The actual and position and velocity in this example can be seen in Figure 2.18.

(a) (b)

(c) (d)

Figure 2.18 Discontinuous Path Following Error (dashed line is desired and solid line is

actual) (a) x as a function of time. (b) y as a function of time. (c) as a function of time.

(d) as a function of time.

While it is preferable to have the control follow a continuous function, the PD control is

also capable of following a discontinuous function. It just does not track quite as

closely, and its behavior is more unpredictable. It is useful for the control to handle

discontinuous functions because if the robot is somehow interrupted while following a

path, the robot would be capable of getting back on track.

 29

 One difficulty of this method with the PD control which must be overcome is

that if the actual position does ever exactly coincide with the desired position, the

denominator of equation (10) becomes zero causing a singularity, and the system

becomes unstable in simulation. This is especially a problem if a path requires the robot

to move forward and then immediately backwards, as in the first example given in this

section. To overcome this difficulty, it is proposed to carefully define a small area

around the time-dependent desired position with a radius, , (is defined in equation

24) in which the controller no longer has an effect. Having an area where the controller

does not work automatically creates some error, and if the area is to large, the device

will experience some jerk as it moves out of the area. Thus, to keep the error as small as

possible, and to make the robot move smoothly, it is advantageous to make as small

as possible. However if is chosen to be too small then the device will act oddly as it

approaches the goal and reaches a singularity. In the examples presented, was chosen

to be 0.03 times the length of the robot.

2.4 Path Planning

 The benefits of using an efficient continuous function as a path to make the

robot reach the desired orientation have been discussed in section 2.3.3. The essential

question which must be addressed is, how is such a function defined? There are many

path planning algorithms discussed in the literature [13, 20, 24, 25]. Path planning was

not the primary focus of this research; therefore, the path-planning method described by

Papadopoulos [21] was used because it is relatively simple to implement and

computationally inexpensive. The entire derivation of this method need not be discussed

 30

here, but Papadopoulos built on a method described earlier by Pars to define a

transformation from Cartesian space to some other space of the form

 (26)

where only two differentials appear [26]. Papadopoulos then developed a nonlinear time

functions to describe a path in this new space and to transform the path back into

Cartesian space [21]. This transformation is given by

 (27)

where is the distance from the center of mass of the robot to some point off of the

center of mass in the x-direction. The relationships between , , and the path time

functions are given by

 (28)

One possible set for and is a quintic polynomial for and a cubic

polynomial for .

 (29)

The coefficients in these equations are evaluated using the initial and final

conditions of linear and angular position, velocity, and angular acceleration. In this

research, the coefficients were evaluated numerically using the formulation shown in

Appendix A. Using this method, it is always possible to find a path between any two

 31

configurations unless the initial and final orientations are the same, in which case,

matrix B in Appendix A becomes singular and noninvertible. As Papadopoulos notes,

this case can be overcome by either using waypoints or by adding or subtracting

multiples of to either the initial or final position [21].

Examples of path generation using this method are presented in Figure 2.19.

(a) (b)

(c) (d)

Figure 2.19 Path Generation Examples (a) , (b)
 , (c) shows example b as a time function, (d)

 32

Figure 2.19a shows a path from to , Figure 2.19b shows a path from

 to . Figure 2.19c shows the path from to

as a function of time. Figure 2.19d shows an example of how to address the singular

case where the initial and desired orientations are the same by adding to the final

orientation.

The PD control discussed earlier requires not only desired position,

 , but also desired velocity . While it is possible to

symbolically evaluate the derivatives of and , it is more efficient

computationally to estimate the derivatives as shown in the following expression.

 (30)

Since the paths used are continuous and smooth functions of time, there are no

difficulties with this method, and the errors introduced by this velocity estimation can

be made negligible by choosing small values of . In simulation, was chosen to be

 because decreasing the value farther had no noticeable effect on the results

of the simulation.

 33

CHAPTER 3

EXPERIMENTAL PROCEDURE

3.1 Mechanical Design

The main considerations in the mechanical design of the robot were to make it

small, inexpensive, easy to assemble, and capable of operating on different terrain

through easy exchange of wheels. To make the robot small, no processor or sensors

were incorporated in the actual device. All processing was preformed externally by

LabVIEW, and the state of the device was determined by an external camera. To keep

the cost low, all the components besides the shell of the robot were chosen to be off-the-

shelf. The shell of the robot was fabricated using an SLA rapid prototyping machine.

The length of the robot is less than 3 inches, the diameter of the body of the robot is less

than one inch, and the whole robot including the actuators and electronics weighs about

than 25g. Figure 3.1 demonstrates the robot’s relative size.

Figure 3.1 Fabricated and Assembled Robot

 34

The robot consists of a cylindrical body that houses the motors and all the

electronics with wheels on either end. On the underside of the body is a flat piece of

plastic close to the ground that keeps the robot from tipping, and doubles as the battery

compartment. The drive system of the robot is made up of two motors, two shafts, four

gears, and two wheels. The motors and gears were off-the-shelf products [27], and the

wheels are model airplane wheels. All these parts are held together by interference fit.

The motors are placed off the axis of the wheels to allow for gearing, and below the

wheel axles to make the robot more stable.

Figure 3.2 CAD Model of the Robot

 In assembly, the components of the drive system were installed as shown in

Figure 3.3, and then the two halves of the shell were assembled. The tolerances in the

two parts of the shell were such that they hold together by friction without need for

gluing or other means. This makes assembly and disassembly of the drive system very

easy.

 35

Figure 3.3 Robot Drive System

The electronics of the robot consist of an off-the-shelf motor control board, a Bluetooth

board, and a battery [28], as shown in Figure 3.4. The motors are controlled by the on-

board motor control board. The Bluetooth module is connected to the control board and

allows the remote computer to send the control board the necessary serial commands to

drive the robot. The motor control board and the Bluetooth module were tacked onto the

top of the body using hot glue. All the electronics were selected to operate on the same

voltage, so a single 110mA Lithium Polymer battery was used with no extra circuitry.

The battery was placed in the battery compartment on top of the stabilizing plastic piece

on the bottom. To make the battery easy to remove, the battery leads were connected to

the rest of the electronics with magnets. The power for electronics in the body was

wired to two magnets placed in indentations in the shell, and the battery leads had

pieces of steel soldered to them. The two battery leads had a piece of insulating material

glued between them to keep them from shorting. This made the battery very easy to

remove for recharging. The main difficulty in this arrangement is that when soldering

wires to the batteries it is necessary to be very careful to not to heat the magnets up too

much or as they would become demagnetized.

 36

No sensors were included on the robot itself because one of the main goals was

to keep the device as small as possible, and, because of the use of an external camera

for vision feedback, these sensors were not needed in order to evaluate the state of the

robot. It should be noted that, in this design, the robot was intentionally made as

bottom-heavy as possible to increase stability.

Figure 3.4 Robot Electronics

3.1 Hardware/Computer Interface

3.2.1. LabVIEW

In this research, the primary software program used to interface and control all

the different components was LabVIEW [29]. LabVIEW was chosen because it has a

vast library of built-in functions that makes interfacing various different hardware

elements relatively simple. All the programming and computation for this project was

performed on a PC in LabVIEW and not on the device itself. Figure 3.5 illustrates the

relations between the various software and hardware components.

Bluetooth Device Control Board

Battery

 37

Figure 3.5 Relations Between Components

3.2.2. Motor Control Board & Bluetooth Module

The motor control board received serial commands, interpreted them, and output

pulse width-modulated, PWM, signals to the motors. A command to one of the motors

consisted of two bytes. The first byte indicated which motor the command was intended

for and also whether the motor was supposed to go forwards or backwards. The second

byte was a number between 0 and 127 that indicated the rotational speed of the motor; 0

 38

indicated no movement and 127 indicated full speed. This motor control board also

accepts a three-byte sequence where the first byte selects which motor control board is

used and the second two bytes perform the same operation as the two-bit sequence. As

far as the motor control is concerned, the three-bit sequence would allow for the

operation of 128 devises at the same time using a single serial port.

The LabVIEW program sends commands for the motor control board through a

standard USB Bluetooth device on the host computer. A Bluetooth module was wired to

the serial port on the motor control board on the target device. This allowed a serial

connection between the PC and the motor control board to be preformed wirelessly

through Bluetooth communication.

3.3 Characterizing the Device

In order to control the robot, it was first necessary to characterize the device to

understand how the input commands to the motors related to the motor outputs. This

was accomplished by setting the robot on the ground and incrementally giving each

motor different commands ranging from -127 to 127. For each command, the time it

took the device to trace a number of circles was measured as illustrated in Figure 3.6.

Figure 3.6 Motor Characterization Setup

 39

From the data generated by the robot’s responses to these commands, and

knowing the robot length, the relationship between the commands given by the program

and the velocity at which the wheel will move was found using

(31)

where is the number of revolutions the device makes in seconds. This relationship is

linear except when the input was close to zero, as shown in Figure 3.7 and is estimated

to be . This nonlinear region is due to friction in the

system. A LabVIEW VI was created to rescale input commands to the actuators to

bypass the small nonlinear region.

Figure 3.7 Device Characterization Result

 The angular velocity of the actuators can be found from the device

characterization by using

y = 1.6877x
R² = 0.99

-250

-200

-150

-100

-50

0

50

100

150

200

250

-120 -80 -40 0 40 80 120

V
e

lo
ci

ty
 (

m
m

/s
e

c)

Input (byte command)

Motor 0

Motor 1

 40

 (32)

Where is the radius of the wheel and and are the number of teeth on the gears

attached to the wheel and motor respectively. The relationship between the motor rpm

and the command input turns out to be about .

3.4 Open-Loop Control: LabVIEW GUI, Joystick, Voice

The versatility of the setup in this project is demonstrated through the

implementation of several different user inputs including several open-loop control

methods. The LabVIEW programming for the various controls was vey modular. Each

control was implemented in its own subprogram and all it required was to output

commands between -127 and 127 for each motor, as shown in Figure 3.8. The main

program takes these commands and transmits them through Bluetooth to the motor

controller.

Figure 3.8 Modular Open-Loop Controls

 41

The first and simplest open-loop control is the slider inputs in the LabVIEW

GUI. This consisted of two sliders; each one controlling a different actuator. This user

interface was used to test the proposed setup, to test the software-hardware interface,

and the electronics. All the other user inputs built on this one. However, it was

somewhat difficult to control the robot with the sliders in LabVIEW because it is

difficult to control both sliders at the same time.

Another user input implemented was a joystick input through a normal gaming

USB joystick. Using LabVIEW the values for the x- and y-axes of the joystick were

extracted and scaled to a usable form. The y-axis was used to make the robot go

forwards and backwards while the x-axis was used to create a speed differential

between the two wheels to make the device turn. This allowed the robot to be driven in

a very intuitive manner with the joystick. The joystick input worked very well and was

the easiest open-loop control to use to accurately move and place the robot.

Another advantage of using LabVIEW is that it is also able to interface with

Windows’ voice-recognition software. This capability was utilized and allowed the

robot to also be controlled by voice commands. The user commands the robot to move

“forward,” “left,” “right,” or “back”, and the robot follows that command for a

predetermined amount of time before pausing to wait for the next command. All the

motions are executed relative to the most recent state (position and orientation) of the

robot. For example, the user could say “forward,” and the device would go forward

about 2 inches, or “left,” and the device would turn left about 30 degrees. The voice-

command control preformed as designed; however, this method took longer than the

 42

other methods to get the robot anywhere because of pauses between commands. The

way the voice command was set up it was difficult to find a balance to find between

speed and precision. If the robot was set to move too far with one command, it could

not be precisely controlled. However if it only moved a small distance on each

command, it took many commands to travel very far. This could be solved in the future

by using a larger library of commands, or by allowing the user to dynamically define

gain value in the LabVIEW GUI through a slider or knob input.

3.5 Vision Feedback Control

Because the robot did not have any sensors incorporated into its design, an external

camera was used to provide feedback for closed-loop control. This was accomplished

by placing a webcam about 3 feet above the workspace of the robot to monitor its

movement and its state. (See appendix I.)

3.5.1. Calibration

For the video input from the camera to be useful for closed-loop control, the

camera must be calibrated. The image illustrated in Figure 3.9 was printed and placed in

the workspace of the robot. The square figure on the left is the reference frame, and the

two circles on the right are used to calibrate the image.

Figure 3.9 Camera Calibration

 43

In the LabVIEW VI, the camera is instructed to take a still picture of the workspace,

and then the program, using templates, searches the picture for the predefined images.

Once the images are discerned, LabVIEW returns the coordinates of the images

that were found in pixel space, and it returns the orientation in degrees. Once the

reference orientation is known, the pixel space can be converted to x-y coordinates by

comparing the number of pixels between the two circles to the known distance between

them in whatever unit is being used. Once this is completed, the LabVIEW VI program

instructs the camera to continuously acquire video at 15 frames per second.

With these instructions, the program then continuously searches for whatever

other objects it has been instructed to track. When it finds one of these objects, it

converts its coordinates from pixel space to x-y coordinates in inches by subtracting out

the reference frame coordinates, dividing by the number of pixels per inch, and

performing a coordinate transformation to account for any angular offset between the

reference frame and the orientation of the image as seen in Figure 3.10. This approach

allows the robot x-y position and orientation to be tracked and used for control.

It was necessary to print a pattern on a piece of paper and tape it to the top of the

robot to get the program to reliably match the robot to the template image of the robot,

and to differentiate its left from its right side. Various patterns were tried. Since the

program looks at the intensity pattern in the images it receives, a pattern was used at

first where the right side was one color and the left side was another color. This pattern

worked fairly well. However, there were problems with false matches when there were

sharp color changes in the workspace.

 44

Figure 3.10 Pixel Space to Real Space VI

To remedy this problem, the pattern shown in Figure 3.11 was developed and

used successfully. This pattern has the advantage of being simple, so that it can be

easily matched by the image recognition program, but it is also a pattern that will not

often occur accidentally in the workspace, which makes the matching process much

more reliable.

Figure 3.11 Pattern for Vision Matching

3.5.2. Defining the Desired Position

The desired position for the robot can be defined in two ways; typing the

coordinates into the LabVIEW GUI or by using the mouse to select it on the desired

position on a live image of the workspace in the LabVIEW GUI, and then clicking on

another point to define orientation.

 45

3.5.3. Control Algorithm

The PD control algorithm needs to have not only position and orientation

feedback, which is found through the optical feedback, but also linear and angular

velocity feedback. Because of the nature of the feedback system, an accurate

measurement of the robot’s velocity was very difficult to obtain directly. Instead, the

linear and angular velocity of the robot were estimated indirectly by considering the

commands being sent to the motors and using the relationship between input commands

and wheel velocity, found in the characterization discussed in section 3.3. The wheel

velocities are then transformed to the necessary form using equations (2) and (5).

A major difference in the system between simulation and hardware

implementation which had to be accounted for in control is that in simulation, when

power is not being given to the actuators, the device keeps moving. In the actual system,

when power is not supplied to the motors, the device comes to a stop very quickly

because of the friction in the gearbox and in the terrain. This difference indicates that in

reality, the optimal velocity gain, , is not . Instead the optimal was a much

smaller number. In fact, it was observed from experiment that it is possible to control

the system reasonably well with set to zero, although some gain was helpful.

The PD control algorithm proved to be quite robust. It corrected for slight motor

imbalance and numerical error quite well. The biggest source of error in the closed loop

controls came from the LabVIEW program not always recognizing the robot.

Sometimes the program would temporarily lose the robot in certain configurations or

light conditions. This would cause the control to get the wrong input, which would

 46

cause the robot to jerk. This was minimized by using patterns that were easier for the

program to recognize, but this difficulty was never completely eliminated.

3.5.4. Path Planning

In the LabVIEW program, the path-planning algorithm requires the user to first

select a desired point (as described in section 3.5.2) and then press a button telling the

program to generate a path. At that instant, the program calculates the and

coefficients of the time functions in equation (29), using the boundary conditions, and

equations (27) and (28). The program then uses those values to generate a graphic of the

complete path, as seen in Figure 3.12a. Once the user presses a button labeled “start,”

the program starts a timer and uses the timer’s output and the and coefficients to

keep recalculating the desired position and velocity of the robot until it reaches the

desired position, as shown in Figure 3.12b. The sub VIs shown in Figure 3.12 can be

found in Appendix H.

When dealing with angles, winding can take place where the angles are not all

within radians of each other. This is detrimental to the path planning algorithm. To

get the most efficient path when using the path planning algorithm, it is necessary to

make the initial and final orientation within radians of each other. For example, if the

initial position is – radians and the desired position is radians, the path-planning

algorithm will have the robot do three-quarters of a rotation to get to the desired angle.

If, however, the initial position is converted to be radians, the path- planning

algorithm will only have the robot do a quarter turn.

 47

Figure 3.12 Path Planning LabVIEW Code

Most of the time, the path planning algorithm did a good job of finding efficient

paths from initial to final positions that the robot could follow easily as long as the trip

time was not set too low. If, however, the initial and final orientations happened to be

almost the same, then the algorithm would often generate a path that would take the

robot a very long way away from both the initial and final position before bringing it

back. In the future, this could be fixed by adding a way point when the initial and final

orientations are very similar. Figure 3.13 shows two examples of paths generated by the

LabVIEW program.

 48

Figure 3.13 Examples of Paths Generated

 49

CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

4.1 Discussion

 This research attempted to analyze, design, fabricate, and develop a modular and

versatile software interface for a two-wheeled robot, and verify the system by

developing and integrating some open- and closed-loop control methods. The two-

wheeled robot was analyzed in simulation using dynamic models developed with

Autolev. These initial models were used to assist in hardware selection during the

design process, and to develop the control theory that was eventually implemented in

the robot prototype.

The goal of the design was to make the robot small, inexpensive, and easy to assemble.

To accomplish this, the different components of the device were selected to be off-the-

shelf, and the body of the robot was fabricated using rapid prototyping. All the

mechanical components of the device were designed to be held together by friction,

making the robot easy to assemble. The assembly of the electrical components

presented the greatest challenge. While the mechanical systems could just be pressed

into place, the electrical components had to be wired together utilizing soldering

techniques and then glued into place.

 A LabVIEW software interface was developed to take various user inputs and

control the robot. LabVIEW was selected because it is very versatile in terms of easily

 50

integrating different hardware and software components. The interface was developed

in such a way that different controls could be integrated modularly.

 The system was tested by integrating open- and closed-loop controls. The open-

loop controls included sliders in a LabVIEW GUI, a USB Joystick, and voice

commands. The closed-loop control methods included a PD control algorithm that

enables the robot to go directly to a user defined point, and a path planning control

algorithm that has the robot follow a path that allows it to reach the user defined point

in the correct orientation. The closed-loop control methods use an external camera for

vision based position feedback. All these controls were integrated modularly into a

single LabVIEW program, and tested and successfully confirmed experimentally.

4.2 Future Work

Future work for this project will include making the robot smaller. The main

size constraint in this robot is due to the electronic components. If the electronics were

built specifically for this robot, the total robot size could be greatly reduced. While the

concept of this robot was under development, a tethered prototype was built which was

only about half the size of the current wireless version. Figure 4.1 shows the relative

lengths of the non-tethered robot and the body of the tethered version.

 51

Figure 4.1 Size of Robot Without Electronics

Various sensors could be incorporated into the robot. Sensors on the wheels

could be implemented to keep track of the state of the robot. A camera could be

integrated onto the robot itself.

In Papadopoulos’ paper [21] which described the path planning-algorithm used

in this work, Papadopoulos also discussed how to modify the path-planning algorithm

to avoid obstacles. It should be possible to use this concept to make the vision program

for this project able to identify obstacles and have the path-planning algorithm generate

a path to avoid them. There are also many other path planning algorithms in the

literature that could be investigated for this research.

Now that the prototype robot has been developed, it should be straightforward to

build and control additional devices. The motor controller allows a byte key to be used

so that multiple devices can be controlled independently via one Bluetooth signal.

Regarding vision matching, as long as each device displays a different pattern, it should

not be difficult for the control program to differentiate each device.

 52

This robot prototype could be adapted to provide greater versatility for a wide

range of applications. For example, special wheels could be implemented to allow the

robot to maneuver in sand. The whole robot could also be coated with silicone, and the

wheels replaced with paddles, so that it could be used amphibiously.

 53

APPENDIX A

SOLVING POLYNOMIAL COEFFICIENTS

 54

To solve the coefficients of the polynomials in equation (29),

the initial and desired linear and angular position, velocity and acceleration are used as

boundary conditions. The initial and desired positions are defined as

The initial and final velocities are taken to be zero. Using the boundary conditions, and

equations (27) and (28) the following expressions are found.

This is then put in matrix form.

The coefficients are solved by inverting matrix .

Similarly, the coefficients of can be solved using the boundary conditions and

equations (27) and (28).

 55

 This is then put in matrix form.

The coefficients are solved by inverting matrix .

 56

APPENDIX B

ORIGINAL AUTOLEV MODEL OF A TWO-WHEELED ROBOT

 57

This appendix presents diagrams of all the bodies, points, frames, variables, and

constants and lists the Autolev code that was used to develop a dynamic model of the

robot that was used to do the initial sizing and hardware selection for the robot, and to

develop some of the preliminary control theory. The model is of a two-wheeled robot

with 3 degrees of freedom which include the rotation of each wheel, and the rotation of

the body about its longitudinal axis.

 58

 59

Autolev Model:

% File: MPCredo.al

% Date: March 3, 2010

% Author: Eric Olson

% Problem: This is a simulation of a robot with a wheel at ether

% of a central body. It moves by moving the central

% body about the central axis. This moves the mass of

% the robot off center and causes it to roll.

% r = right, l = left

% This simulation has the values for the bigger gear design.

%--

% Default settings

AutoEpsilon 1.0E-14 % Rounds off to nearest integer

AutoZ OFF % Turn ON for large problems

Digits 7 % Number of digits displayed for numbers

%--

% Newtonian, bodies, frames, particles, points

Newtonian N

Frames Cf % Frame used to define the contact force directions.

Bodies Wr, Wl, A, Mr, Ml % Wheels, central body, and roter

Points C % Central point of device

Points Cr, Cl % Wheel contact point

%--

% Variables, constants, and specified

Variables Cx', Cy' % distance from No to the center of the robot (not its CG)

Variables Wqr', Wql' % Angle between frames Cf and W

Variables Mqr', Mql' % Rotor angles

Variables Cq', Aq' % Angle between N and Cf, Angle between frames Cf

and A

Constants Grav % Local gravitational acceleration

Constants rW % Radius of wheels

Constants rA % Distance of Ao from central axis

Constants L % Distance between Wro and Wlo

Constants xM, rM, qM % Position of the rotors

Constants gM, gW % rotor and wheel gear radius

Variables Tr, Tl % Torque on wheels

% Specified Ff, Fftr, Fftl % Ff -Friction force out of the plane of the wheel, Fft -

Friction force tangent to the wheel

%--

% Motion variables for static/dynamic analysis

Variables u{8}' % Motion variables; derivatives

Cx' = u1

Cy' = u2

 60

Aq' = u3

Cq' = u4

Wqr' = u5

Wql' = u6

Mqr' = u7

Mql' = u8

%--

% Mass and inertia properties

Mass A=mA, Wr=mW, Wl=mW, Mr=mM, Ml=mM

Inertia A, IA11, IA22, IA33

Inertia Wr, mW*rW^2/2, mW*rW^2/4, mW*rW^2/4

Inertia Wl, mW*rW^2/2, mW*rW^2/4, mW*rW^2/4

Inertia Mr, IML, IMR, IMR

Inertia Ml, IML, IMR, IMR

%--

% Geometry relating unit vectors

Simprot(N, Cf, 3, Cq)

Simprot(Cf, A, 1, Aq)

Simprot(A, Wr, 1, Wqr)

Simprot(A, Wl, 1, Wql)

Simprot(A, Mr, 1, Mqr)

Simprot(A, Ml, 1, Mql)

%--

% Angular velocities

W_Cf_N> = Cq'*N3>

W_Wr_A> = Wqr'*A1>

W_Wl_A> = Wql'*A1>

W_A_Cf> = Aq'*Cf1>

W_Mr_A> = Mqr'*A1>

W_Ml_A> = Mql'*A1>

%--

% Position vectors

% There are three ways to define P_No_C>:

%P_No_C> = Cx*N1> + cy*N2> + rW*N3> % This works, but the simulation

gives wornings about close to singulare matracies, it keeps going though.

P_No_C> = Cx*Cf1> + cy*Cf2> + rW*Cf3> % This seems to work best.

P_C_Ao> = -rA*A3>

P_C_Wro> = (1/2)*L*A1>

P_C_Wlo> = -(1/2)*L*A1>

P_Wro_Cr> = -rW*Cf3>

P_Wlo_Cl> = -rW*Cf3>

P_C_Mro> = xM*A1> - rM*cos(qM)*A2> - rM*sin(qM)*A3>

P_C_Mlo> = -xM*A1> + rM*cos(qM)*A2> - rM*sin(qM)*A3>

 61

%--

% Velocities

V_C_N> = Dt(P_No_C>,N)

V_Ao_N> = Dt(P_No_Ao>,N)

V_Wro_N> = Dt(P_No_Wro>,N)

V_Wlo_N> = Dt(P_No_Wlo>,N)

V_Cr_N> = Dt(P_No_Cr>,N)

V_Cl_N> = Dt(P_No_Cl>,N)

V_Mro_N> = Dt(P_No_Mro>,N)

V_Mlo_N> = Dt(P_No_Mlo>,N)

%--

% Motion constraints

Dependent[1] = gW*Dot(W_Wr_A>,A1>) + gM*Dot(W_Mr_A>,A1>)

Dependent[2] = gW*Dot(W_Wl_A>,A1>) + gM*Dot(W_Ml_A>,A1>)

Dependent[3] = Dot(V_C_N>,Cf1>) % Wheels do not

slip

Dependent[4] = Dot(V_Wro_N> + Cross(W_Wr_N>,P_Wro_Cr>),Cf2>) % Wheel

rotation

Dependent[5] = Dot(V_Wlo_N> + Cross(W_Wl_N>,P_Wlo_Cl>),Cf2>)

% Auxiliary[1] = Dot(V_C_N>,Cf1>) % Wheels do not

slip

% Auxiliary[2] = Dot(V_Wro_N> + Cross(W_Wr_N>,P_Wro_Cr>),Cf2>) %

Wheel rotation

% Auxiliary[3] = Dot(V_Wlo_N> + Cross(W_Wl_N>,P_Wlo_Cr>),Cf2>)

% Auxiliary[2] = coef(express(V_Wro_N>,Cf),Cf2>) + rW*Wqr'

% Auxiliary[3] = coef(express(V_Wlo_N>,Cf),Cf2>) + rW*Wql' % For some

reason, this is different than the above value.

Constrain(Dependent[u7,u8,u1,u5,u6])

% Constrain(Dependent[u7,u8],Auxiliary[u1,u5,u6])

Pause

%--

% Angular accelerations

ALF_Cf_N> = Dt(W_Cf_N>,N)

ALF_Wr_N> = Dt(W_Wr_N>,N)

ALF_Wl_N> = Dt(W_Wl_N>,N)

ALF_A_N> = Dt(W_A_N>,N)

ALF_Mr_N> = Dt(W_Mr_N>,N)

ALF_Ml_N> = Dt(W_Ml_N>,N)

%--

% Accelerations

A_C_N> = Dt(V_C_N>,N)

A_Wro_N> = Dt(V_Wro_N>,N)

 62

A_Wlo_N> = Dt(V_Wlo_N>,N)

A_Ao_N> = Dt(V_Ao_N>,N)

A_Cr_N> = Dt(V_Cr_N>,N)

A_Cl_N> = Dt(V_Cl_N>,N)

A_Mro_N> = Dt(V_Mro_N>,N)

A_Mlo_N> = Dt(V_Mlo_N>,N)

%--

% Forces

Gravity(-Grav*N3>)

% Force_C> += Ff*Cf1>

% Force_Cr> += Fftr*Cf2>

% Force_Cl> += Fftl*Cf2>

%--

% Torques

Torque(A/Mr,Tr*A1>)

Torque(A/Ml,Tl*A1>)

% Torque(A/Mr,(Tr-Fq*Mqr)*A1>)

% Torque(A/Ml,(Tl-Fq*Mql)*A1>)

% Torque_Wr> += Fftr*rW*Cf1> % I'm not sure this should be included.

% Torque_Wl> += Fftl*rW*Cf1>

%--

% Equations of motion

Zero = Fr() + FrStar() % Find equations of motion

Kane()

%--

CNx = coef(express(P_No_C>,N),N1>) % Center of the system

CNy = coef(express(P_No_C>,N),N2>)

CNz = coef(express(P_No_C>,N),N3>)

CVx = coef(express(V_C_N>,N),N1>) % Velocity of the center of

the system

CVy = coef(express(V_C_N>,N),N2>)

CVz = coef(express(V_C_N>,N),N3>)

% Point Coordinates in Frame N

Wrx = Dot(P_No_Wro>,N1>) % Center of the right wheel

Wry = Dot(P_No_Wro>,N2>)

Wrz = Dot(P_No_Wro>,N3>)

Crx = Dot(P_No_Cr>,N1>) % Right wheel contact point

Cry = Dot(P_No_Cr>,N2>)

Crz = Dot(P_No_Cr>,N3>)

 63

Wrx0deg = Dot(P_No_Wro> + rW*Wr2>,N1>) % A point at the edge of the

right wheel

Wry0deg = Dot(P_No_Wro> + rW*Wr2>,N2>)

Wrz0deg = Dot(P_No_Wro> + rW*Wr2>,N3>)

Wrx180deg = Dot(P_No_Wro> - rW*Wr2>,N1>) % A point at the edge of the right

wheel

Wry180deg = Dot(P_No_Wro> - rW*Wr2>,N2>)

Wrz180deg = Dot(P_No_Wro> - rW*Wr2>,N3>)

Wgrx = Dot(P_No_C> + (xM+0.1*L)*Wr1>,N1>) % Center of right wheel gear

Wgry = Dot(P_No_C> + (xM+0.1*L)*Wr1>,N2>)

Wgrz = Dot(P_No_C> + (xM+0.1*L)*Wr1>,N3>)

Mrx = Dot(P_No_Mro>,N1>) % Right rotor

Mry = Dot(P_No_Mro>,N2>)

Mrz = Dot(P_No_Mro>,N3>)

Wlx = Dot(P_No_Wlo>,N1>) % Center of the left wheel

Wly = Dot(P_No_Wlo>,N2>)

Wlz = Dot(P_No_Wlo>,N3>)

Clx = Dot(P_No_Cl>,N1>) % Left wheel contact point

Cly = Dot(P_No_Cl>,N2>)

Clz = Dot(P_No_Cl>,N3>)

Wlx0deg = Dot(P_No_Wlo> + rW*Wl2>,N1>) % A point at the edge of the

left wheel

Wly0deg = Dot(P_No_Wlo> + rW*Wl2>,N2>)

Wlz0deg = Dot(P_No_Wlo> + rW*Wl2>,N3>)

Wlx180deg = Dot(P_No_Wlo> - rW*Wl2>,N1>) % A point at the edge of the left

wheel

Wly180deg = Dot(P_No_Wlo> - rW*Wl2>,N2>)

Wlz180deg = Dot(P_No_Wlo> - rW*Wl2>,N3>)

Wglx = Dot(P_No_C> - (xM+0.1*L)*Wr1>,N1>) % Center of left wheel gear

Wgly = Dot(P_No_C> - (xM+0.1*L)*Wr1>,N2>)

Wglz = Dot(P_No_C> - (xM+0.1*L)*Wr1>,N3>)

Mlx = Dot(P_No_Mlo>,N1>) % Left rotor

Mly = Dot(P_No_Mlo>,N2>)

Mlz = Dot(P_No_Mlo>,N3>)

 64

Ax = Dot(P_No_Ao>,N1>) % CG of the central body

Ay = Dot(P_No_Ao>,N2>)

Az = Dot(P_No_Ao>,N3>)

%--

% Check

Check = NiCheck()

%--

% Units system for CODE input/output conversions

UnitSystem kg,meter,sec

%--

% Integration parameters and values for constants and variables

Input tFinal=4, integStp=0.02, absErr=1.0E-08, relErr=1.0E-08

Input Grav=9.81 m/sec^2, rW=0.0135 m, rA=0.004 m, L=0.045 m % Input constants

Input xM = 0.012 m, rM = 0.0075 m, qM=pi/4 rad

Input gM=0.0025 m, gW=0.0050 m

Input mA=0.015 kg, mW=0.002 kg, mM=0.0002 kg

Input IA11=7.0-7 kg*m^2, IA22=2.0e-6 kg*m^2, IA33=1.5e-6 kg*m^2

Input IML=5e-10 kg*m^2, IMR=5e-10 kg*m^2

Input Cx=0.005 m, Cy=0.005 m, u2=0 m/sec % Initial values

Input Wqr=0 rad, Wql=0 rad, Mqr=0 rad, Mql=0 rad

Input Cq=0 rad, Aq=0 rad, u3=0 rad/sec, u4=0 rad/sec

Input Tr=0.8e-5 newtons*m, Tl=0.8e-5 newtons*m

Input WCheck1=0 newton*m

%--

% Quantities to be output from CODE

Output Check newton*m, t sec, Aq deg, Cq deg % 1

Output t sec, CNx m, CNy m, CNz m % 2

Output t sec, Cq rad, Aq rad, Wqr rad, Wql rad, & % 3

 Mqr rad, Mql rad, Cx m, Cy m, &

 u2 m/sec, u3 rad/sec, u4 rad/sec

Output t sec, Ax m, Ay m, Az m, Wrx m, Wry m, Wrz m, & % 4

 Wlx m, Wly m, Wlz m, Mrx m, Mry m, Mrz m, &

 Mlx m, Mly m, Mlz m

Output t sec, Wrx0deg m, Wry0deg m, Wrz0deg m, & % 5

 Wrx180deg m, Wry180deg m, Wrz180deg m, &

 Wlx0deg m, Wly0deg m, Wlz0deg m, &

 Wlx180deg m, Wly180deg m, Wlz180deg m, &

 Crx m, cry m, Crz m, Clx m, Cly m, Clz m, &

 Wgrx m, Wgry m, Wgrz m, Wglx m, Wgly m, Wglz m

Output rW m, rA m, L m, xM m, rM m, qM m, gM m, gW m % 6

Output t sec, Tr newtons*m, Tl newtons*m % 7

% Output t sec, Ff newtons, Fftr newtons, Fftl newtons % 8

%--

 65

% Matlab code generation for numerical solution

Code dynamics() MPCredo.m

 66

APPENDIX C

SIMPLIFIED AUTOLEV DYNAMIC MODEL

 67

This is the Autolev code used to develop the dynamic model that was the basis

for all the control development and simulation presented in this paper. This model is

similar to the previous one except that the body does not have the freedom to rotate

about its axis, and the wheel constraints are simplified to slider constraints.

Autolev Model:

% File: SimplifiedForControl.al

% Date: January 26, 2010

% Author: Eric Olson

% Problem: This is a simplified model for control development.

%--

% Default settings

AutoEpsilon 1.0E-14 % Rounds off to nearest integer

AutoZ OFF % Turn ON for large problems

Digits 7 % Number of digits displayed for numbers

%--

% Newtonian, bodies, frames, particles, points

Newtonian N

Bodies A

Points Ar, Al

%--

% Variables, constants, and specified

Variables Gx', Gy' % distance from No to Ao

Variables Cq' % Angle between N and Cf

Variables Fr, Fl % Forces acting on A

Constants L % Length of A

Constants xM, rM, qM % Position of the rotors

Specified Ff % Friction force that keeps A from moving axialy

%--

% Motion variables for static/dynamic analysis

Variables u{3}' % Motion variables; derivatives

Gx' = u1

Gy' = u2

Cq' = u3

%--

% Mass and inertia properties

Mass A=mA

Inertia A, IA11, IA22, IA33

%--

% Geometry relating unit vectors

 68

Simprot(N, A, 3, Cq)

%--

% Angular velocities

W_A_N> = Cq'*N3>

%--

% Position vectors

P_No_Ao> = Gx*A1> + Gy*A2>

P_Ao_Ar> = 0.5*L*A1>

P_Ao_Al> = -0.5*L*A1>

%--

% Velocities

V_Ao_N> = Dt(P_No_Ao>,N)

V_Ar_N> = Dt(P_No_Ar>,N)

V_Al_N> = Dt(P_No_Al>,N)

%--

% Motion constraints

Auxiliary[1] = coef(express(V_Ao_N>,A),A1>) % Does not slip

Constrain(Auxiliary[u1])

Pause

%--

% Angular accelerations

ALF_A_N> = Dt(W_A_N>,N)

%--

% Accelerations

A_Ao_N> = Dt(V_Ao_N>,N)

A_Ar_N> = Dt(V_Ar_N>,N)

A_Al_N> = Dt(V_Al_N>,N)

%--

% Forces

Force_Ao> = Ff*A1>

Force_Ar> = Fr*A2>

Force_Al> = Fl*A2>

%--

% Equations of motion

Zero = Fr() + FrStar() % Find equations of motion

Kane(Ff) % Simplify and/or solve

%--

% Point Coordinates in Frame N

Ax = coef(express(P_No_Ao>,N),N1>) % CG of A

Ay = coef(express(P_No_Ao>,N),N2>)

Az = coef(express(P_No_Ao>,N),N3>)

AVx = coef(express(V_Ao_N>,N),N1>) % CG of A

AVy = coef(express(V_Ao_N>,N),N2>)

 69

AVz = coef(express(V_Ao_N>,N),N3>)

Axr = coef(express(P_No_Ar>,N),N1>) % Right end

Ayr = coef(express(P_No_Ar>,N),N2>)

Azr = coef(express(P_No_Ar>,N),N3>)

Axl = coef(express(P_No_Al>,N),N1>) % Left end

Ayl = coef(express(P_No_Al>,N),N2>)

Azl = coef(express(P_No_Al>,N),N3>)

%--

% Check

Check = NiCheck()

%--

% Units system for CODE input/output conversions

UnitSystem kg,meter,sec

%--

% Integration parameters and values for constants and variables

Input tFinal=5, integStp=0.02, absErr=1.0E-08, relErr=1.0E-08

Input L=0.045 m % Input constants

Input mA=0.015 kg

Input IA11=7.0-7 kg*m^2, IA22=2.0e-6 kg*m^2, IA33=1.5e-6 kg*m^2

Input Gx=0.000 m, Gy=0.000 m, u2=0 m/sec % Initial values

Input Cq=0 rad, u3=0 rad/sec

Input Fr=0.0e-4 newtons, Fl=0.0e-4 newtons

Input WCheck1=0 newton*m

Input Axd=0.1 m, Ayd=0.1 m

%--

% Quantities to be output from CODE

Output Check newton*m, t sec, Cq deg % 1

Output t sec, Cq rad, L m % 2

Output t sec, Ax m, Ay m, Az m, Axr m, Ayr m, Azr m, & % 3

 Axl m, Ayl m, Azl m, AVx m, AVy m, AVz m

Output t sec, Fr newtons, Fl newtons, Ff newtons % 4

Output t sec, Axd m, Ayd m % 5

%--

% Matlab code generation for numerical solution

Code dynamics() SimplifiedForControl.m

 70

APPENDIX D

CONTROLLER STABILITY

 71

From section 2.3.1, it was shown that the derivative of the Lyapunov function

(16) using the proposed controller could be simplified to equation (23).

From the Autolev program, the equations of motion for this dynamic model are,

Or in the standard form,

Equations (11), (12), and (15) show that,

Therefore,

Substituting this into equation (23) gives,

The first and last terms in this equation are obviously negative, however to show that

the middle term is negative, it is necessary to find the relationship between and .

This will be accomplished using the relationships between
,

, and .

 72

From this Figure it is apparent that,

This equation applies as long as and do not equal zero. It should be noted that

and will never become zero while the controller is in effect since an area is defined

around the desired point in which the controller does not take effect, as is stated in

sections 2.3.2 and 2.3.3. Taking the derivative of this and rearranging the terms results

in an expression that relates and .

 73

Again using the relation , this equation becomes,

Substituting this back into the expression for yields,

If the desired point is restated through some transformation as the origin of a new

coordinate system, then . The error in the direction and then be

rewritten as . Using this, and the relation , can be

farther rearranged to,

This equation can be rearranged farther to,

From this, it is apparent that is always negative, that is energy will be subtracted from

the system and the system will eventually reach the goal in a stable manner.

 74

APPENDIX E

PARTS UTILIZED

 75

 This is a list of all the off-the-shelf parts that went into the robot.

Product Part Number Price Quantity

Micro Planetary Gear Motor GH6123 $16 2

Qik Dual Serial Motor Controller ROB-09106 $25 1

Bluetooth SMD Module - Roving Networks WRL-08497 $30 1

Polymer Lithium Ion Batteries - 100mAh PRT-00731 $7 1

Motor Gear GM0.5-10-14 $2 2

Spur Gear GS0.5-20-19 $2 2

1.23" Micro Sport Wheels 2pc

$2 1

 76

APPENDIX F

WIRING DIAGRAM

 77

 This is the wiring schematic used to connect all the electrical components used

in the robot. The motors are connected only to the motor control board. All the

components accept the same voltage.

 78

APPENDIX G

LABVIEW GUI

 79

his shows the front end of the LabVIEW program. All the various controls can

be seen on the right.

 80

APPENDIX H

EXAMPLE LABVIEW CODE

 81

 In this section, more of the LabVIEW code is shown.

This part of the program sets up the windows voice recognition software, and defines

the recognized terms.

This part of the program does vision calibration.

 82

This part of the program finds the robot and locates it relative to the reference frame.

This program initializes the Bluetooth connection.

This program takes the mouse user input to generate a desired location for the robot.

 83

This is the feedback part of the program.

 84

This is the PD control VI.

This is the path planning coefficient VI

This is the time dependent part of the path generation.

 85

APPENDIX I

SETUP

86

This is the basic setup for the robot. There is a workspace, which the robot

drives on, with calibration images, and there is a camera, which is used for position

feedback, looking down on the workspace.

87

REFERENCES

[1] G. Reina, M. M. Foglia, A. Milella and A. Gentile, "Visual and Tactile-Based

Terrain Analysis Using a Cylindrical Mobile Robot," Journal of Dynamic Systems,

Measurement, and Control, J. Dyn. Sys. , Meas. , Control, vol. 128, pp. 165-170, March

2006, 2006.

[2] V. A. Joshia and R. N. Banavar, "Motion analysis of a spherical mobile robot,"

Cambridge University Press, vol. 27, pp. 343-353, June 30 2008, 2009.

[3] Yue Ming, Deng Zongquan, Yu Xinyi and Yu Weizhen. Introducing HIT spherical

robot: Dynamic modeling and analysis based on decoupled subsystem. Presented at

Robotics and Biomimetics, 2006. ROBIO '06. IEEE International Conference on.

[4] Daliang Liu, Hanxu Sun and Qingxuan Jia. A family of spherical mobile robot:

Driving ahead motion control by feedback linearization. Presented at Systems and

Control in Aerospace and Astronautics, 2008. ISSCAA 2008. 2nd International

Symposium on.

[5] Qiang Zhan, Tingzhi Zhou, Ming Chen and Sanlong Cai. Dynamic trajectory

planning of a spherical mobile robot. Presented at Robotics, Automation and

Mechatronics, 2006 IEEE Conference on.

88

[6] Qiang Zhan, Yao Cai and Zengbo Liu. Near-optimal trajectory planning of a

spherical mobile robot for environment exploration. Presented at Robotics, Automation

and Mechatronics, 2008 IEEE Conference on.

[7] T. Das, R. Mukherjee and H. Yuksel, "Design considerations in the development of

a spherical mobile robot," in The International Society for Optical Engineering, SPIE,

Orlando, FL, USA, 2003, pp. 61-71.

[8] Amir Homayoun Javadi A and P. Mojabi. Introducing august: A novel strategy for

an omnidirectional spherical rolling robot. Presented at Robotics and Automation, 2002.

Proceedings. ICRA '02. IEEE International Conference on.

[9] Her-Terng Yau, Cheng-Chi Wang, Neng-Sheng Pai and Ming-Jyi Jang. Robust

control method applied in self-balancing two-wheeled robot. Presented at Knowledge

Acquisition and Modeling, 2009. KAM '09. Second International Symposium on.

[10] S. A. Stoeter, I. T. Burt and N. Papanikolopouslos. Scout robot motion model.

Presented at Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE

International Conference on.

[11] Qingxuan Jia, Xiaowei Cao, Hanxu Sun and Jingzhou Song. A novel design of A

two-wheeled robot. Presented at Industrial Electronics and Applications, 2007. ICIEA

2007. 2nd IEEE Conference on.

89

[12] P. Oryschuk, A. Salerno, A. M. Al-Husseini and J. Angeles. (2009, Experimental

validation of an underactuated two-wheeled mobile robot. Mechatronics, IEEE/ASME

Transactions on 14(2), pp. 252-257.

[13] M. Defoort, J. Palos, A. Kokosy, T. Floquet and W. Perruquetti, "Performance-

based reactive navigation for non-holonomic mobile robots," Robotica, vol. 27, pp. 281-

290, 2009.

[14] Han Jian-hai, Zhao Shu-shang, Li Ji-shun and Li Hang. Research on developed

parallel two-wheeled robot and its control system. Presented at Automation and

Logistics, 2008. ICAL 2008. IEEE International Conference on.

[15] Kane Dynamics. (2005, Autolev. 4Available: http://autolev.com/index2.html.

[16] MathWorks. (2009, MATLAB. R2009aAvailable: www.mathworks.com.

[17] D. Chen, F. Bai and L. Wu. Kinematics control of wheeled robot based on angular

rate sensors. Presented at Robotics, Automation and Mechatronics, 2008 IEEE

Conference on.

[18] Ching-Chang Wong, Hou-Yi Wang, Kuan-Hua Chen, Chia-Jun Yu and H.

Aoyama. Motion controller design for two-wheeled robot based on a batch learning

structure. Presented at SICE Annual Conference, 2008.

http://autolev.com/index2.html
http://www.mathworks.com/

90

[19] Y. Ichihara and K. Ohnishi. Path planning and tracking control of wheeled mobile

robot considering robots capacity. Presented at Industrial Technology, 2006. ICIT 2006.

IEEE International Conference on.

[20] S. Hashim and Tien-Fu Lu. A new strategy in dynamic time-dependent motion

planning for nonholonomic mobile robots. Presented at Robotics and Biomimetics

(ROBIO), 2009 IEEE International Conference on.

[21] E. Papadopoulos, I. Poulakakis and I. Papadimitriou, "On Path Planning and

Obstacle Avoidance for Nonholonomic Platforms with Manipulators: A Polynomial

Approach," The International Journal of Robotics Research, IJRR, vol. 21, pp. 367-383,

4, April 2002, 2002.

[22] M. W. Spong, S. Hutchinson and M. Vidyasagar, "8.1 PD control revisited," in

Robot Modeling and Control, C. F. Shultz, Ed. NJ: John Wiley & Sons, Inc., 2006, .

[23] G. Oriolo and Y. Nakamura, "Control of mechanical systems with second-order

nonholonomic constraints: Underactuated manipulators," in Proceedings of the IEEE

Conference on Decision and Control, 1991, pp. 2398-2403.

[24] M. Deng, A. Inoue, K. Sekiguchi and L. Jiang. (2010, 6). Two-wheeled mobile

robot motion control in dynamic environments. Robot. Comput. Integrated Manuf.

26(3), pp. 268-272.

91

[25] K. Sekiguchi, Mingcong Deng and A. Inoue. Obstacle avoidance and two wheeled

mobile robot control using potential function. Presented at Industrial Technology, 2006.

ICIT 2006. IEEE International Conference on.

[26] L. A. Pars, A Treatise on Analytical Dynamics. New York: Wiley & Sons, 1955.

[27] Gizmoszone. (2010, Gizmoszone. 2010(July), Available: www.gizmoszone.com.

[28] SparkFun. (2010, SparkFun. 2010(July), Available: www.sparkfun.com.

[29] National Instruments. (2009, LabVIEW. 2009Available: www.NI.com.

http://www.gizmoszone.com/
http://www.sparkfun.com/
http://www.ni.com/

92

BIOGRAPHICAL INFORMATION

Eric Olson graduated Magna Cum Laude from the Honors College of the

University of Texas at Arlington in 2009 with a degree in Mechanical Engineering.

Immediately following graduation, he presented a conference paper he had co-authored

with Dr. Alan Bowling entitled Human-Robot Team Dynamic Performance in Assisted

Living Environments. While at UTA, Eric has worked as a lab instructor in Design

Graphics, a research assistant studying differential scanning calorimetry, and as a

graduate teaching assistant for Kinematics and Dynamics of Machines, Mechanical

Design I, and Structural & Mechanical Behavior of Materials. Eric’s particular interests

include robotics and automation, and he hopes to work in a related field after receiving

his Masters of Science in Mechanical Engineering degree.

