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ABSTRACT 

BUILDING BAYESIAN NETWORK BASED EXPERT SYSTEMS FROM RULES 

 

Saravanan Thirumuruganathan, MS 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor: Manfred Huber 

Combining expert knowledge and user explanation with automated reasoning in 

domains with uncertain information poses significant challenges in terms of 

representation and reasoning mechanisms. In particular, reasoning structures 

understandable and usable by humans are often different from the ones for automated 

reasoning and data mining systems. 

Rules are a convenient and human understandable way to express domain 

knowledge and build expert systems. Adding certainty factors to these rules presents one 

way to deal with uncertainty in rule based expert systems. However such systems have 

limitations in accurately modeling the domain. A Bayesian Network, on the other hand, is 

a probabilistic graphical model that allows accurate modeling of a domain and automated 

reasoning. But inference in Bayesian Networks is harder for humans to comprehend. 

In this thesis, we propose a method to combine these two frameworks to build 

Bayesian Networks from rules and derive user understandable explanations in terms of 
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these rules. Expert specified rules are augmented with strength parameters for 

antecedents and are used to derive probabilistic bounds for the Bayesian Network's 

conditional probability table. The partial structure constructed from the rules is fully 

learned from the data. The thesis also discusses methods for using the rules to provide 

user understandable explanations, identify incorrect rules, suggest new rules and perform 

incremental learning.   
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CHAPTER 1  

INTRODUCTION 

There are multiple frameworks to perform reasoning in domains with uncertain 

information. An ideal framework must have convenient mechanisms to perform 

theoretically consistent and automated reasoning. If human users are involved, it must be 

able to generate user understandable explanations for its predictions.  If the expert system 

also involves a domain expert, it should have mechanisms to elicit and store the domain 

knowledge of the expert.  

It is well known that experts are most comfortable in specifying their domain 

knowledge using sets of rules because rules model experts’ decision making process 

naturally. Research has shown that explanation of the diagnosis in terms of the expert 

specified rules is much more intuitive to the user than a set of raw values [Shortliffe and 

Buchanan, 1984]. By adding certainty factors to rules, we can enable them to also model 

uncertainty in the domain. Such a system will have convenient mechanisms to elicit 

expert knowledge and explain the reasoning process in a user understandable way using 

the expert specified rules. [Shortliffe and Buchanan, 1984].  

Rule based systems have limited ability to completely model the domain. A 

typical rule base is not exhaustive and hence only few of the dependencies that exist in 

the domain are modeled. Since rule based expert systems rely entirely on the rule base for 

prediction, the modeling of the domain remains inexact. Moreover certainty factors 

expect all rules to be specified in the exact direction in which they will be reasoned. It is 
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not possible to use a causal rule to perform diagnosis as rule inversion is not defined in 

the framework. This means that a diagnostic problem solving system must only have 

diagnostic rules. Mixing of predictive and diagnostic rules in the same rule set results in 

inconsistencies. Certainty factors also make additional assumptions about the rules that 

undermine their formal consistency. In addition, certainty factor based expert systems are 

static – they consist of a set of rules and certainty factors which do not change during the 

operation of the system. This means that the availability of additional data will not result 

in fine tuning of the system. The system expects the set of rules to be exhaustive and, as a 

result, if a set of observations are not handled by the existing rules then the system cannot 

make any meaningful diagnosis based on the partial data.  

Bayesian Networks, on the other hand, are an example of a probabilistic graphical 

model that has mechanisms to accurately model the domain’s dependencies and perform 

fully automated reasoning. They have a mathematically consistent way to specify 

uncertainty in the system. They allow a combination of expert knowledge and data where 

an expert can specify dependencies among nodes or partial network structure and the 

complete structure and parameters are learned from data.  If the expert is not available to 

provide us with the structure, it can also be learned from the data. Given a network, it is 

very easy to perform automated reasoning and for the network to make predictions based 

any a given set of evidence. In addition it is possible to make predictions about any node 

in the network based on the evidence.  There are multiple algorithms that adapt the 

network based on additional data so that it can fit the data very well.  

In practice, however, it is well known that experts have problems specifying their 

domain knowledge using probability and likelihood. This means that without data it is 
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very hard for the expert to encode his entire domain knowledge in a Bayesian Network. 

In addition, it is hard to concisely explain the inference process in a user understandable 

way.  

In this thesis, we propose a mechanism that combines the advantages of both 

frameworks. The expert specifies his domain knowledge using rules and certainty factors. 

These rules are used to bootstrap a partial Bayesian Network that is then fully learned 

from the available data. Using the Bayesian Network, we can perform fully automated 

reasoning in a consistent way and also generate the rationale for the prediction using 

rules.  

To further increase the descriptive power of the rules, we augment the rules 

specified by the expert with strength parameters and use it to estimate the residual 

evidence of the related rules that can be inferred from the original rule. This allows us to 

make maximum use of the expert specified rules to bootstrap the network. Based on the 

constructed network, we also introduce mechanisms for performing inference in the 

Bayesian Network and use the expert specified rules to generate user understandable 

explanations for the network’s predictions.  In addition to this, the proposed approach 

also makes it possible to perform incremental learning as new data arrives. Furthermore, 

using the information obtained from the data, the system provides mechanisms to identify 

bad rules and suggest new rules that can provide better explanations for predictions.  

The rest of this thesis is organized in the following fashion. Chapter 2 describes 

some of the related research in certainty factors, Bayesian Networks and Dempster Shafer 

theory. Chapter 3 describes the approach that this thesis takes to combine the advantages 

of the individual frameworks to construct a Bayesian Network that can generate 
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explanations in a user understandable fashion. Chapter 4 discusses the implementation 

details and the experiments performed in two different domains. Chapter 5 provides 

conclusions and future work.   
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CHAPTER 2  

RELATED WORK AND TECHNICAL BACKGROUND 

There have been multiple attempts in the past to build expert systems that can 

perform automated uncertainty reasoning and generate user understandable explanations. 

This chapter discusses two of the prominent frameworks to build expert systems for 

uncertain domains – rule based systems with certainty factors and Bayesian Networks. 

The certainty factor framework has convenient ways to elicit experts’ domain knowledge 

but its ability to perform automated reasoning is limited. Bayesian Networks, on the other 

hand, provide mechanisms to perform automated reasoning. However, intuitively 

explaining the predictions made to the users is hard. After discussing both the 

frameworks and their relative advantages and disadvantages, this chapter also discusses 

Dempster Shafer theory and the concept of evidence.  

2.1 Rule-Based Systems With Certainty Factors 

2.1.1 Adding Uncertainty to Rules 

Rule based expert systems represent the knowledge of a domain using a set of 

rules.  Rules can be considered to represent the relationships between entities/facts in the 

domain. The rules can be causal (from causes to effect) or diagnostic (from effects to 

causes). The certainty-factor (CF) model is a convenient framework to manage 

uncertainty in a rule-based system. It was originally designed for the MYCIN expert 

system [Shortliffe and Buchanan 1975]. It soon became the standard approach for 
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uncertainty management in rule-based systems due to the convenient way it provides to 

elicit rules and confidence on the rules from domain experts. 

  A diagnostic rule-based system, such as MYCIN, contains rules of the form “if e 

then h”. Here, e denotes evidence and h denotes the hypothesis. An expert expresses 

uncertainty in diagnostic rules by attaching a single certainty factor to each rule. In the 

original interpretation, Certainty Factors represent the expert's change in belief in the 

hypothesis h given the evidence e.  A positive value indicates that the expert's belief in h 

given e increases and a negative value indicates that the expert's belief decreases. It must 

be noted that a certainty factor does not represent a person’s absolute degree of belief in h 

given e.  In other words, certainty factors are not the same as probability values.  

2.1.2 Combining Rules  

The certainty factor framework has two operators to combine different rules under 

certain conditions. If two rules have the same consequent, then a new rule can be created 

by combining the two rules. This is called a parallel combination function.  Assuming 

CF1 and CF2 are the certainty factors for the two rules, the certainty factor of the new 

rule is given by, 

   

 
 

 
                                        
                                     

         

                     
               

  

If there are two rules where the evidence of the first rule is the hypothesis of the 

second, i.e. rules of the form “If A then B” and “If B then C”, they can be combined to a 

new rule of the form “If A then C”. This is called the serial combination of rules.  

Assuming CF1 and CF2 are the certainty factors for the two rules, the certainty factor of 

the new rule is given by,  
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More details about Certainty Factors can be found in [Heckerman and Shortliffe, 

1992]  and [Heckerman, 1992] .  

2.1.3 Probabilistic Interpretation Of Certainty Factors 

For a diagnostic rule “if e then h”, the certainty factor represents the expert's 

change in belief in the hypothesis h given the evidence e and not the absolute probability. 

[Heckerman, 1986] proved that the original probabilistic interpretation given in 

[Shortliffe and Buchanan, 1984] is inconsistent with the rules of probability. He went on 

to derive a new probabilistic interpretation of certainty factors based on their axioms that 

is also consistent with the framework of probability.  The new formulation gives a 

probabilistic interpretation of certainty factors based on the likelihood ratio, 

       
        

         
 

[Heckerman, 1986] showed that any monotonic transformation of the likelihood 

ratio produces a valid probabilistic interpretation of certainty factors. For this thesis, we 

will use the following interpretation: 

             
               

                                          
 

 

Where CF (h → e|ξ) is the certainty factor for the rule “if e then h” given by an expert 

with background knowledge ξ. p(h|ξ) is the expert’s probability (degree of belief) for h 

given ξ . p(h|e, ξ) is the expert’s probability for h given evidence e and ξ. 
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2.1.4 Problems Using Certainty Factors for Complex Domains 

Certainty factors, while very useful, have limited expressive power to accurately 

model real world dependencies.  Heckerman [Heckerman and Shortliffe, 1992] showed 

that the parallel and serial combination functions impose assumptions of conditional 

independence on the propositions involved in the combinations. In particular, when we 

use the parallel-combination function to combine CFs for the rules “if e1 then h” and “if 

e2 then h,” we assume implicitly that   e1 and e2 are conditionally independent given h 

and ⌐h. Similarly, when we use the serial-combination function to combine CFs for the 

rules “if a then b” and “if b then c,” we assume implicitly that a and c are conditionally 

independent, given b and ⌐b. Heckerman also showed that the combination functions for 

disjunction and conjunction impose specific forms of conditional dependence on the 

propositions involved in the combinations. Similarly, he showed that certain series of 

operations in the framework violate the modularity property.  

Besides their implicit assumptions and formal inconsistencies, rule based expert 

systems have other limitations. In particular, in a certainty factor based expert system 

diagnostic and causal rules cannot exist in the same rule base as their interaction will 

result in inconsistent results. Reversing of rules is not defined in the framework. This 

means that a rule based system with causal rules cannot be used for diagnostic problem 

solving. In addition, certainty factors are subjective values specified by the expert and 

there is no way in the framework to use data to tweak the values. Moreover, it is not 

possible to perform inference based on partial observation.  

[Heckerman and Shortliffe, 1992] contains additional discussion of the most 

important problems with the framework.  
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2.2 Bayesian Networks 

Certainty factor based rule based systems can be considered heuristic models as 

they use an expert's change in belief instead of mathematically consistent probability 

values. Bayesian Networks are an example of probabilistic graphical models which use 

graph and probability theory to manage uncertainty in reasoning.  

A Bayesian Network is a directed acyclic graph (DAG) whose nodes represent the 

variables in the problem domain and edges represent direct probabilistic dependencies 

among nodes.  Lack of edges between nodes corresponds to conditional independence. 

Each node in a Bayesian Network is associated with a set of probability distributions 

given by the conditional probability table. 

Conditional independence relationships among nodes in Bayesian Networks are 

determined by the notion of d-separation [Koller and Friedman, 2009].  Additionally, a 

node is independent of its ancestors given its parents. This means that, we can represent 

the joint distribution in a more compact way using Bayesian Networks.  

Bayesian Networks are a rigorous framework that allows accurate modeling of the 

domain and provides mechanisms for fully automated reasoning. It is possible to use a 

Bayesian Network to represent causal relationships between nodes in the domain and 

then use it to perform diagnostic problem-solving. More details can be found in [ Koller 

and Friedman, 2009].  

2.2.1 Inference 

Inference is the most common operation performed on a Bayesian Network. 

Probabilistic inference can be defined as computing the conditional probability 

distribution over values of unobserved nodes given the values of observed nodes. By 
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taking advantage of conditional probability assumptions, we can perform inference very 

effectively in most of the cases. Inference can be done by both exact and approximate 

methods.  

A common use of Inference is to perform diagnostic problem solving given the 

observation of the effects. The most likely cause that results in the observed effects is 

obtained by inference.  

2.2.2 Learning 

It is not always the case that we are provided with both the structure of the 

Bayesian Network and its probability distribution. In most cases we may not have either 

of them. Given the data, we can learn both of these.  

2.2.2.1 Parameter Learning 

The simplest scenario is that of parameter learning where we have a known 

structure (possibly from an expert) and the aim is to learn the conditional probability 

distribution that maximizes the likelihood of training data. The data can be fully or 

partially observed.  For fully observed data, we can use straight forward maximum 

likelihood estimation to find the parameters. In the case of partially observed data, we can 

use an EM algorithm to find the MLE of the parameters. Alternatively, we can use 

Bayesian parameter estimation using (possibly uniform) dirichlet priors [Jordan, 1999].  

2.2.2.2 Structure Learning 

In structure learning, only the data is available and the structure and parameters of 

the network have to be recovered from the data. This is a harder problem as [Robinson 

1977] showed that the number of possible Bayesian Networks for n nodes is super 

exponential in the order of       
. 
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There are two major approaches to learn the structure. The first is constraint-

based Structure Learning [Jordan, 1999].  In this case, the algorithm tries to find the 

independence relations between variables and then use them to find a network which best 

captures them. There are multiple tests for finding independence among variables 

[Jordan, 1999]. These algorithms are very intuitive and easy to implement. But they are 

very sensitive to the results of the individual independence tests. A few incorrect 

independence results are enough to produce an incorrect network structure. 

The second approach is score based learning [Jordan, 1999].  Here we consider all 

possible Bayesian Networks with n nodes and use some scoring function to determine 

how each Bayesian Network fits the original data. Due to the large number of candidates, 

we need to use heuristic-based search methods and an efficient way to calculate the 

structure scores.  We use decomposable scores which can be written as the sum or 

product of functions that depend only on a node and its parents.  If a score is 

decomposable, then it is easy to reuse the partial scores. BIC or Bayesian scores are the 

most commonly used scores [Koller and Friedman, 2009].  

Score-based learning defines a set of operators on the network like arc addition, 

deletion or reversal. Each of these operations is applied to the network and the score of 

the resulting network is calculated. The network with highest score is returned. If the data 

is not fully observed, then we can use EM based algorithms like Structural EM for 

structure learning [Friedman, 1998].  More details on learning Bayesian Networks are 

available in [Heckerman, 1999] and [Koller and Friedman, 2009].  
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2.3 Dempster-Shafer Theory 

Dempster-Shafer theory (DST) is a mathematical theory based on belief functions 

and evidential reasoning. It is primarily based on two ideas: obtaining degrees of belief 

for one question from subjective probabilities for a related question and using Dempster’s 

rule for combining such degrees of belief [Shafer and Pearl,1990].  

2.3.1 Terminology 

DST uses a number in the range [0,1] to indicate belief in a hypothesis given 

evidence. This number is considered as the degree to which the evidence supports the 

hypothesis. The hypothesis can be a set of related hypotheses and the impact of the 

evidence on the subset of hypotheses is represented by a basic probability assignment 

function denoted as m. m(A) is a measure of the portion of total belief committed to 

hypothesis A. m(A) can be considered as a generalization of a probability density 

function as it assigns a mass to each of the subset of the entire set of hypotheses,  . 

       

   

 

A belief function denoted as bel assigns the degree of belief to every subset A of 

hypotheses, the sum of beliefs committed to every subset of A by m. [Shafer and 

Pearl,1990].  

            

     

 

If    represents the complement of a set A, plausibility of a subset A denoted as 

pl(A) is defined as  
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Together, belief and plausibility define a belief interval in which the true 

probability resides. Belief can be considered as the lower bound and plausibility as the 

upper bound. As we get additional evidence, the bounds tighten and ultimately converge 

to the true probability. 

Given two independent basic probability assignment functions            , we 

can use Dempster’s rule of combination to combine them to get a new function [Shafer 

and Pearl,1990].   If there are two evidences that confirm the same hypothesis, then 

Dempster’s rule increases the belief in both of the evidences. Similarly, if two evidences 

contradict each other, then the belief in both of them is reduced.  

2.3.2 Rules as Evidences 

[Gordon and Shortliffe,1990] showed a possible interpretation of certainty factors 

in the evidence framework. They consider a rule to be an evidence which supports only 

one hypothesis to a certain degree. If a rule confirms a hypothesis with degree s, then it 

can be interpreted that the rule assigns s to the single hypothesis corresponding the 

consequent of the rule and 1-s to the remaining hypotheses. In this interpretation, the 

certainty factors associated with the rules can be viewed as basic probability assignment 

functions. [Gordon and Shortliffe,1990] also show that with this interpretation, the 

combination rules in certainty factors can be considered as a generalization of Dempster’s 

rule of combination. 

2.4 Summary 

Certainty factors were one of the early mechanisms to handle uncertain reasoning 

using rules. One of its advantages lies in the observation that rules are a convenient and 

human understandable way to build expert systems which produce meaningful 
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explanations of the reasoning results. But they do not model the domain completely and 

are not very useful for automated reasoning due to potential non modular interactions. 

The certainty factor framework does not have the ability to utilize additional data to 

tweak the expert system. Moreover, the framework does not have any mechanisms to 

invert diagnostic rules for predictive reasoning (or vice versa) and this relies heavily on 

the expert to define exact and sufficient rule sets in the format needed to solve the desired 

inference tasks.  

Bayesian Networks, on the other hand are, a theoretically consistent framework to 

accurately model a domain and perform fully automated reasoning. They allow a 

combination of expert knowledge and data where partial structure can be obtained from 

expert and parameters are learned from data. They have well known algorithms to do 

incremental learning and fast inference, and can handle partial observations and still 

perform inference. However it is hard to explain the inference performed by a Bayesian 

Network in a human understandable way. Also studies have shown that formulating 

knowledge in the form of probabilities is non intuitive even for experts [Henrion, 1986]. 

In this thesis, we propose a mechanism that combines the advantages of the 

certainty factors and Bayesian Network frameworks. The proposed mechanism can 

accept rules, bootstrap a network using these rules, learn the complete network from data, 

perform automated reasoning and explain the inference using human understandable 

rules.  
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CHAPTER 3  

METHODOLOGY 

Rules with certainty factors are a convenient way to express knowledge in a 

domain with uncertain information and generate user understandable explanations for 

predictions using the expert specified rules. Bayesian Network is framework that can 

efficiently perform automated reasoning. Using these two frameworks to create an expert 

system that can combine expert knowledge, user explanation along with automated 

reasoning poses a unique set of challenges. This chapter discusses ways by which the 

expert specified rules are used to bootstrap a Bayesian Network which in turn is used to 

learn the complete network from data. The resulting network's structure is influenced by 

the expert specified rules. The completed network can be used for inference and this 

chapter discusses how to generate explanations for the predictions using the rules. 

Additional challenges like identifying incorrect rules, proposing new rules for 

explanation and incremental learning are also discussed. Moreover, this chapter 

introduces a parameter to certainty factors that allow an expert to specify additional types 

of uncertainty in the rules that significantly increases their descriptive range and their 

ability to bootstrap the Bayesian Network parameters. 

3.1 From Certainty Factors to Bayesian Networks 

[Henrion, 1986] and [Shortliffe and Buchanan, 1984] showed that experts are 

more comfortable with specifying their domain knowledge using rules and certainty 

factors instead of absolute probabilities or likelihood. But [Heckerman and Shortliffe, 
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1992] argued that uncertain reasoning using certainty factors in rule based systems can 

potentially result in non modular interactions which undermine their theoretical 

consistency. On the other hand, Bayesian Networks are one mechanism to do uncertain 

reasoning in a consistent and theoretically sound way. Moreover, they facilitate the 

combination of domain knowledge and data easily.  

Due to their expressive nature, many rule based expert systems like HEPAR and  

PathFinder have been converted to utilize Bayesian Networks [Korver and Lucas , 1993], 

[Heckerman, 1989]. But in all these cases, original rules were primarily utilized as a way 

to identify domain variables. They were not used either in the construction of the 

Bayesian Network structures or the computation of its conditional probability tables. 

Others like [Zhang and Luo, 1997] have tried to estimate probabilities from Certainty 

Factors but require the expert to give an extensive set of related rules which may not be 

practical. 

In this chapter, we propose a method to combine the certainty factor and Bayesian 

Network frameworks by augmenting the rules with an additional strength parameter 

which is used to estimate the evidence contributed by the related rules. A partial Bayesian 

Network whose structure is guided by the rules is constructed and assigned with a 

consistent set of parameters based on the rules’ evidence. Given a set of data, the 

complete network is learned from data and used to perform automated reasoning. Using 

the rules and the network, we also discuss ways to explain the inference in a way 

understandable by users by using the expert specified rules. Furthermore, we also 

introduce mechanisms to identify wrong rules, identify new rules and perform 

incremental learning.   



 

17 

 

3.2 Rules and Certainty Factors 

A typical rule based expert system using the certainty factor framework consists 

of rules in the following format: 

RM1: If A AND B THEN C (CF1) 

Where RM1 is a rule in the rule set and CF1 is the certainty factor associated with the 

rule. A temporal rule can potentially involve antecedents in different time frames. A 

simple example can be, 

RM2: If current response for Q1 = previous response for Q1 THEN D (CF2) 

3.3 Augmentation of Rules 

For the purpose of this thesis, an additional strength parameter is added to each of 

the antecedents in the rule. With this parameter, the rule will look like: 

RM3: If A (S1) AND B (S2) THEN C (CF3) 

Compared with RM1, the new rule RM3 has two additional parameters – S1 and 

S2. S1 and S2 provide information about the strength of the antecedents A and B. 

Intuitively, strength of an antecedent is the degree to which it has to be present for the 

rule to be applicable. These values represent the absolute strength of individual 

antecedents and do not depend upon the values of the other antecedents in the same rule. 

This means that the strengths need not add up to 1 and that they do not represent the 

probability of the corresponding antecedents. 

Given a single rule with strength parameters for its antecedents, it is now possible 

to estimate the residual evidence of the expert specified rule given that antecedents are 

not true and thus to provide evidence bounds on negated antecedents. As discussed in 

section 2.3.2, a rule with certainty factor can be considered as representing a belief 
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function that adds a piece of evidence for its conclusions given the antecedents. With the 

addition of the strength parameter, the rules become more expressive. Now, they become 

a belief function that can potentially provide evidence given each of the subsets of the 

hypothesis space formed by the rule’s premises.  

3.3.1 Derivation of Residual Evidence 

Consider the following rule: 

RM5: If A (0.7) AND B (0.8) THEN C (0.9) 

The values 0.7 and 0.8 are the strengths of antecedents A and B. In other words, 

they reflect the degree to which the expert expected the antecedents A and B to be in the 

rule. A rule with strength parameters can be considered as a belief function that can 

provide evidence for the related rules whose antecedents are the variations of the original 

rule’s antecedents. Using the interpretation that rule with strength parameter is a belief 

function and strength of an antecedent is the degree to which the expert believes the 

antecedent has to be present in the rule, it is possible to estimate the residual evidence 

that RM5 provides if some of the antecedents of RM5 do not hold.  

In RM5, the expert has provided the strength of A as 0.7. If the antecedent does 

not hold, then the evidence provided by the RM5 is diluted by 0.3 (1-0.7). In other words, 

the expert believes that in the absence of the antecedent A, the rule provides only 30% of 

the evidence it provided when all its antecedents hold. An alternative way is to consider 

the rule as a line of reasoning. A rule provides reasoning for the consequent to hold when 

its antecedents are true. Now, if part of the antecedents is not true, then the line of 

reasoning might still hold but it is proportionally weakened. This means that the evidence 
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provided by the pseudo rule which incorporates the partial antecedents must be 

proportionally reduced based on the degree of belief for the original antecedents. 

This leads to the creation of a pseudo-rule from RM5 of the form,  

RM6: If  ⌐A  AND B  THEN C (0.27) 

The certainty factor for RM6 is derived by subtracting A’s strength from 1 and 

multiplying it with the RM5’s certainty factor. Considering certainty factor as evidence, 

we proportionally reduce the evidence provided by RM5 by the degree of belief we had 

on antecedent A for RM5.  

The same method applies when A is a discrete non binary variable. Assuming, A 

can have 3 different values and we have the following rule:  

RM7: If A=1 (0.8) AND B (0.6) THEN C (0.8) 

The bound for rules involving other values of A are estimated as follows: For 

RM7, any other value of A can have strength of at most 0.2 (1-0.8). This means that the 

evidence provided by any variation of RM7 not having a value of A=1 is reduced by 

20%. This results in two rules each with a certainty of 0.16.  

RM8: If A=2  AND B  THEN C (0.16) 

RM9: If A=3  AND B  THEN C (0.16) 

It is important to note here that the certainty factor in these rules represent solely 

the residual evidence from rule RM5 and not the evidence that the expert would assign to 

the new rule if he/she were to provide it manually. As such it is more clearly interpreted 

as a minimum of the evidence that an explicitly specified rule should have. 
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3.4 Construction of Bayesian Network from Rules 

It is well known that experts are comfortable specifying predictive rules and that 

causal Bayesian Networks result in the most compact network [Henrion, 1986] [Horvitz 

et al, 1988].   To construct a Bayesian Network from rules, it must be possible to map the 

rules to the Bayesian Network’s structure and parameters. This section discusses ways to 

bootstrap a Bayesian Network from the rule base.  

3.4.1 From Rules to Bayesian Network Structure 

A rule indicates a statistical dependency between the antecedent and the 

consequent and decides whether the relation between them is causal or diagnostic. 

Intuitively, if the expert provides a set of rules, a partial Bayesian Network with the 

antecedents as the parent nodes and the consequent as the child node can be constructed.  

If all the rules are causal, the result is a partial causal Bayesian Network. It is possible 

that the rule base contains a mix of causal and diagnostic rules. In a typical learning 

algorithm, parent and child are determined by a statistical independence tests. Here, we 

assume that the expert’s domain knowledge allows him to identify some of the parents 

and their children nodes in the Bayesian Network.  

Consider a domain with 5 boolean variables - A,B,C,D and E. If the rule base 

contains the rule,  

RM4 : IF A (0.7) AND B (0.8) THEN C (0.9) 

Then we can infer that the rule implies the partial Bayesian Network structure as 

shown in Figure 3-1.  
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Figure 3-1 Partial network structure learned from rules 

 

3.4.2 From Certainty Factors to Probabilities 

Once we have a partial Bayesian Network a set of related rules with evidence, the 

next step is to fill conditional probability entries for the node. The probabilistic 

interpretation in [Heckerman, 1986] provides a way to convert a certainty factor for a rule 

to a conditional probability value. 

             
               

                                         
 

Where CF (h → e|ξ) is the certainty factor for the rule “if e then h” given by an expert 

with background knowledge ξ . p(h|ξ) is the expert’s probability (degree of belief) for h 

given ξ . p(h|e, ξ) is the expert’s probability for h given evidence e and ξ. 

After basic algebraic manipulations, we can derive the formula for the conditional 

probability p(h|e, ξ) given the certainty factor for the rule and the prior p(h|ξ).  
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Consider a rule: 

RM10: If A(0.7)  AND B(0.8)  THEN C (0.9) 

For this rule, we can infer that nodes corresponding to A and B are parents of 

node C. Also from Heckerman’s formula, we will be able to derive the value of P(C|AB).  

Using the strength factors, it is possible to derive the residual evidence provided by 

RM10 to related rules.  

RM11: If  ⌐A  AND B  THEN C (0.27) 

RM12: If A  AND ⌐B  THEN C (0.18) 

RM13: If  ⌐A  AND ⌐B  THEN C (0.054) 

 From RM11-RM13, we can calculate the corresponding estimated residual 

probabilities for P(C|⌐AB), P(C|A⌐B) and P(C|⌐A⌐B) using Heckerman’s formula. 

However as stated previously, these residual probabilities only reflect the evidence left 

over from the original rule and might not therefore underestimate the actual conditional 

probability. To address this, the approach presented in the thesis takes a more evidence-

based stance to derive the conditional probability estimate from the rules as detailed in 

the following sections 3.4.2.1 and 3.4.2.2. Assuming the prior probability of C is 0.6, 

Table 3-1 summarizes our knowledge about the conditional probability table for C so far. 

Table 3-1  From Rules to Conditional Probability Table- I 

 Certainty 

factors(specified or 

residual) 

Probability estimated 

from Heckerman’s 

formula 

P(C|AB) 0.9 0.96 

P(C|⌐AB) 0.27 0.72 

P(C|A⌐B) 0.18 0.68 

P(C|⌐A⌐B) 0.054 0.62 
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3.4.2.1 From Certainty Factors to Evidence 

Even though it is possible to calculate conditional probabilities from each rule 

using Heckerman's formula, it is unlikely that the calculated probabilities are accurate. 

One reason is that the probabilities are highly sensitive to the certainty factors provided 

by experts which are subjective in nature. Also, to calculate an exact conditional 

probability for say, P(C|AB), we need an exhaustive set of rules involving C . Even if 

some of the rules involving C are not explicitly specified by the expert then the 

probability calculated will not be accurate. Additionally, it is possible that the rule base 

contains rules which overlap and that some rules that are subsets of others. In this case, to 

identify the exact conditional probability, the independence relations between rules have 

to be known. This relation can be potentially analyzed from the data, but if data is not 

available then there is no reliable mechanism to find the relation between two 

overlapping rules and deduct the influence. Hence the probability calculated from each 

rule will not be accurate. But given a set of rules, it is possible to find the bounds for the 

conditional probability. If one of the rules provides conditional probability (or belief) x, 

then we know that the correct conditional probability is at least x. It is possible that some 

other unspecified rule exists which increases the conditional probability, but given that 

the rule is correct, the ultimate conditional probability should lie between x and 1.  

A similar argument can be made for related rules (like RM11-RM13) whose 

residual evidence is derived from the expert specified rule (RM10). Consider pseudo rule 

RM11.  

RM11: If  ⌐A  AND B  THEN C (0.27) 
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If the expert has not specified RM11 explicitly, then 0.27 is the residual evidence 

provided by RM10 to RM11. On the other hand if the expert has specified RM11 

explicitly, there are two consistent possibilities: i) The certainty factor of the rule can be 

larger or ii) smaller than that of RM10(0.27). If it is greater, then RM11 provides a more 

precise bound for the evidence and is used. If it is smaller, then the residual evidence 

from RM10 is higher than the explicitly specified rule. We can infer that the strength 

factors in RM10 are not consistent with the explicitly specified rule RM11. The residual 

evidence from RM10 provides a more precise bound and will be used. In either case, the 

residual evidence obtained from RM10 is the lower bound for the ultimate evidence.  

Instead of directly using the probabilistic interpretation of certainty factor to 

bootstrap the Bayesian Network parameters, this work uses an evidence based 

interpretation. The evidence (either explicitly specified or residual) forms the belief for 

the hypothesis and is used as a lower bound for the derivation of the actual conditional 

probability values. 

From the certainty factors of the rule and the strength of individual antecedents, 

we can directly calculate the lower probabilistic bound for each of the entries in the 

conditional probability table. We cannot use a similar approach for the calculation of 

upper bounds as individual rules do not specify an estimate of the counter evidence. The 

system presented, therefore assigns the default value of 1 for the upper bound for each 

entry in the conditional probability table unless we have additional knowledge to refine 

the bound. 

Intuitively, it can be argued that the upper bound is unlikely to be 1. If any entry 

in the conditional probability table has a value of 1, then we have potentially a rule with 
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stronger predictive power than the existing rules in the rule base. This also means that the 

expert would have most likely specified this rule. But since it cannot be assumed that the 

expert will always specify the complete set of highly predictive rules, we have to look for 

other concrete ways to refine the upper bound. 

From an evidence standpoint, the plausibility of a belief interval of a hypothesis is 

given by subtracting the belief we have in its complement from 1. If two hypotheses are 

complementary, we can use one of them to determine the plausibility of the other. For 

example, consider the rule: 

RM14: If  A (0.8) AND B (0.6) THEN C (0.9) 

It is straightforward to derive the lower bound for P(C|AB) and other entries in 

the conditional probability table for C. But unless our rule base contains a lower bound 

for P(⌐C | A B) we will not be able to refine the upper bound of P(C|AB). To achieve 

this, our rule base must contain the following (or related) rule, 

RM15: If  A (S1) AND B (S2) THEN ⌐C (CF19) 

If such a rule exists, then we can refine the upper bound for P(C|AB) as by the 

rules of probability P(C|AB) and P(⌐C|AB) must sum to 1. Thus rules RM14 and RM15 

provide an upper bound for all the entries in the conditional probability for C.  

Based on the previous discussions, we can augment our knowledge about the 

conditional probability table for C with their probabilistic bounds as shown in Table 3-2. 

Table 3-2 From Rules to Conditional Probability Table- II 

 Certainty 

factors(specified or 

residual) 

Probability estimated 

from Heckerman’s 

formula 

Probabilistic 

bounds 

P(C|AB) 0.9 0.96 [0.96,1] 

P(C|⌐AB) 0.27 0.72 [0.72,1] 

P(C|A⌐B) 0.18 0.68 [0.68,1] 

P(C|⌐A⌐B) 0.054 0.62 [0.62,1] 
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3.4.2.2 Evaluating the Consistency of Rules 

When the expert specifies multiple rules, it is possible that some of the certainty 

factors associated with rules are not consistent with each other. Since we are performing 

a probabilistic interpretation of certainty factors, it is easy to detect inconsistencies as 

they will violate the axioms of probability. This section examines some of the common 

scenarios: 

RM16: If  A (S1) AND B (S2) THEN C (CF16) 

RM17: If  A (S3) AND B (S4) THEN ⌐C (CF17) 

Consider RM16 and RM17.  RM16 determines P(C|AB) and RM17 allows us to 

determine P(⌐C | AB). By the axioms of probability, the individual bounds for P(C|AB) 

and  P(⌐C | AB) must contain at least a pair of values that sum to 1. This will allow us to 

determine inconsistent values for CF16 and CF17.   

3.4.2.3 Constructing a Consistent Conditional Probability Table 

Once we have a set of probabilistic bounds for entries in the conditional 

probability table for the partial Bayesian Network, the next step is to determine a set of 

probability assignments that are consistent with the individual bounds and also the 

axioms of probability. All the nodes of the Bayesian Network which are not involved in 

any rules are assigned a probability distribution with uniform dirichlet priors.  

A consistent value for a conditional probability entry lies between the lower and 

upper probabilistic bound (inclusive) derived from the rules. Additionally, the sum of the 

entry and its negation must sum to 1. For e.g. P(C|AB) and P(⌐C|AB) must sum up to 1. 

If there are two rules, one of which is the superset of other we will have an additional 
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constraint to enforce the marginalization rule. This means that if we have two rules like 

IF A AND B AND C THEN D and IF B AND C THEN D then we have an additional 

constraint to ensure that  

                                    

Where P(A) and P(⌐A) are constants calculated from data. If the rules that overlap 

like IF A AND B THEN D and IF B AND C THEN D, we have two additional 

constraints: 

                                    

                                    

 As above the value of P(A), P(⌐A), P(C) and P(⌐C) are calculated from data.  If 

any of the prior probabilities cannot be learned from the data, then they are assumed to be 

uniformly distributed. Additionally, to ensure that the consistent values fall in the middle 

of the probabilistic bound as possible, some tolerance variables are introduced whose 

absolute values lie between half of the width of the probabilistic bound. For e.g. if the 

probabilistic bound for P(Z|XY) is [0.5,1] then the value of tolerance variable ∆P(Z|XY) 

lies between ±0.25. 

Thus, from the rule base we can derive a set of constraints for the conditional 

probability entries. The next step is to assign consistent values that satisfy these 

constraints. This can b performed using either Linear Programming or by sampling the 

probability space. The current system uses Linear Programming for solving the 

constraints. As an example, the constraints for rules RM10-RM13 are the following:  

a) 0.96 ≤  P(C|AB) ≤ 1 , 0.72 ≤  P(C|⌐AB) ≤ 1 , 0.68 ≤  P(C|A⌐B) ≤ 1 and 0.62 ≤  

P(C|⌐A⌐B) ≤ 1 
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b) P(C|AB) + P(⌐C|AB) = 1 , P(C|⌐AB) + P(⌐C|⌐AB) = 1, P(C|A⌐B) + 

P(⌐C|A⌐B) = 1 and P(C|⌐A⌐B) + P(⌐C|⌐A⌐B) = 1 

c) -0.02 ≤  ∆P(C|AB) ≤ 0.02 , -0.14 ≤  ∆P(C|⌐AB) ≤ 0.14 , -0.16 ≤  ∆P(C|A⌐B) ≤ 

0.16 and -0.19 ≤  ∆P(C|⌐A⌐B) ≤ 0.19  

d) 1 – P(C|AB) + ∆P(C|AB) = P(C|AB) – 0.96 , 1 – P(C|⌐AB) + ∆P(C|⌐AB) = 

P(C|⌐AB) – 0.72 , 1 – P(C|A⌐B) + ∆P(C|A⌐B) = P(C|A⌐B) – 0.68 and 1 – 

P(C|⌐A⌐B) + ∆P(C|⌐A⌐B) = P(C|⌐A⌐B) – 0.62 

 The objective function is to maximize P(C|AB) + P(¬C|AB) + P(C|¬AB) + 

P(¬C|¬AB) + P(C|A¬B) + P(¬C|A¬B) + P(C|¬A¬B) + P(¬C|¬A¬B)  

 Performing linear programming for the rules RM10-RM13 provides one set of 

probability values for the conditional probability table that satisfy the constraints.  

Table 3-3 From Rules to Conditional Probability Table- III 

 Certainty 

factors(specified or 

residual) 

Probability 

estimated from 

Heckerman’s 

formula 

Probabilistic 

bounds 

Consistent 

probability 

value from 

linear 

programming 

P(C|AB) 0.9 0.96 [0.96,1] 0.99 

P(C|⌐AB) 0.27 0.72 [0.72,1] 0.87 

P(C|A⌐B) 0.18 0.68 [0.68,1] 0.85 

P(C|⌐A⌐B) 0.054 0.62 [0.62,1] 0.82 

 

3.5 Learning the Bayesian Structure 

From the previous steps, we obtain a partial Bayesian Network structure and a 

consistent conditional probability table for each node involved in the rules. If a node is 

not used in any rule, then it is initialized with uniform dirichlet priors. For each rule, the 

consequent becomes a child and the antecedents become the parent. To further complete 

and adjust the network structure, available data can be used in the context of a structure 
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learning algorithm. The structure learning algorithm is bootstrapped with the partial 

Bayesian Network obtained from the rules. The current system implements modified 

versions of two popular structure learning algorithms – Greedy Structure Learning and 

Structural Expectation Maximization (SEM). 

3.5.1 Greedy Structure Learning 

Greedy Structure Learning [Chickering, 2002] is a popular search based 

algorithm. It accepts an initial Bayesian Network that in this case has edges 

corresponding to rules and conditional probability table entries from constraints. This is 

the partial structure that is implied by the rules. The basic algorithm defines three 

operators to iteratively modify the Bayesian Network in order to obtain an incremental 

improvement of the structure – edge addition, edge deletion and edge reversal. In the 

approach presented here, we constrain the algorithm such that none of the edges specified 

by the original rules are modifiable. This means that any edge created using rules cannot 

be deleted or inverted. For each step, the algorithm finds the potential neighbors obtained 

by performing a single operation on the network, scores each of them and selects the 

structure that leads to the best improvement in the score. This process is continued until 

any single operator does not improve the score. In the modified greedy search used here, 

only the original structure cannot be modified. However, we allow the local probability 

distributions of all the nodes to float. This means that the conditional probability entries 

in the learned structure need not be the same as the initial entries determined from the 

rules and can potentially violate the probabilistic bounds that were calculated. Such 

violations can later be used to flag potential issues with rules that are inconsistent with 

the data (see section 3.6) 
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3.5.2 Structural EM Algorithm 

Structural EM [Friedman, 1997], [Friedman, 1998] is an iterative structure 

learning used when the data is not fully observed. This is useful in projects where the 

data can only be partially observed. It is based on the Expectation-Maximization 

principle [Dempster et al, 1977]. The algorithm here starts from an initial structure that is 

constructed based on the rules. At each step, it generates a complete data set based on the 

current model. It then computes the expectation of the score for all the Bayesian 

Networks in the neighborhood of the current model and chooses the one which 

maximizes the score. It uses greedy search to learn the optimal structure at each step. 

Using RM10-RM13 as an example, the complete network learned from the data is shown 

in Figure 3-2. The conditional probability table for node C that is learned from the data is 

shown in Table 3-4. 

 

 

 

Figure 3-2 Complete structure learned from data 
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Table 3-4 From Rules to Conditional Probability Table- IV 

 Certainty 

factors(specified 

or residual) 

Probability 

estimated 

from 

Heckerman’s 

formula 

Probabilistic 

bounds 

Consistent 

probability 

value from 

linear 

programming 

Probability 

learned 

from Data 

P(C|AB) 0.9 0.96 [0.96,1] 0.99 0.96 

P(C|⌐AB) 0.27 0.72 [0.72,1] 0.87 0.82 

P(C|A⌐B) 0.18 0.68 [0.68,1] 0.85 0.78 

P(C|⌐A⌐B) 0.054 0.62 [0.62,1] 0.82 0.88 

 

3.5.3 Incremental Learning 

Some of the domains in which the approach presented in this thesis is going to be 

applied have a steady stream of incremental data. In this case, the system uses rules, 

certainty factors and the available data to learn the initial structure. As we get more data, 

the existing Bayesian Network must be adjusted so that it still fits the data. This 

incremental learning happens periodically. The new data can result in a modification of 

parameters and potentially even the structure. Currently, the system performs parameter 

estimation of the conditional probability table for the existing structure using the data.  In 

other words, it does not start the structure learning from scratch each time we get new 

data.  If there is a large divergence between the model before and after the learning from 

the incremental data, we can make a decision to perform structure learning again. This 

gives the system the ability to perform batch and online learning [Bauer et al,1997].  

3.6 Detecting Potential Incorrect Rules 

As indicated in section 3.5.1, the incorporation of data into the network structure 

and parameters can lead to conditional probability entries that are inconsistent with the 

bounds derived from the rules. This, in turn, can indicate that the certainty and strength 

factors or, in extreme cases, even a rule might be incorrect. To use this, the learned 
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Bayesian Network structure and parameters are compared with the original Bayesian 

Network that is used as a seed. In particular, the learned probability values are compared 

to the bounds that were derived from the rules. If the learned values fall outside the 

bounds by more than a tolerance value, the system identifies a potential problem with the 

corresponding rule and asks the expert to verify the rules. This is an inexpensive way to 

determine any issues in rules as it uses the original probability bounds to determine 

deviations. 

An alternate, but expensive, method which would identify rule conflicts in more 

detail and could attempt to automatically resolve them is to perform structure learning for 

different subsets of rules. For each subset, this corresponds to ignoring some subset of the 

rules and to learn a new structure with the reduced set of rules. If any of the structures 

learned have a higher score than the structure learned with all the rules, the potentially 

incorrect rule can be identified whose veracity can then be verified with the expert.  

3.7 Explanation of Predictions 

Once a Bayesian Network has been constructed, it can be used for predictions. 

For example, the system can be used for classification where given a set of records 

inference is used to find the most likely value for a target random variable. Similarly, the 

method can be used interactively where the user enters observations and is interested in 

the distribution of specific unobserved variables. For example, in a credit card domain 

(see section 4.2), the user can provide the details of a transaction and might be interested 

in the probability that it is fraudulent.  
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3.7.1 Generating Explanations 

Once the system has a distribution of the variable, it has to explain the prediction 

to the user. Doing this purely from the Bayesian Network is very difficult as explanations 

in terms of the network’s probability distribution are exceedingly difficult for users (and 

even experts) to understand. On the other hand, knowledge encoded in the rules should be 

understandable to the expert. As a consequence, the system presented here derives 

explanation for Bayesian Network predictions using the original rules in the system.  

The user provides a set of observations and variables whose distribution he is 

interested in. The system performs the inference and finds the rules in the rule base 

whose consequent matches the most likely value of the predicted variable. The system 

finds the Bayes factor for each of the matching rules.  A higher value of Bayes Factor 

means that the rule is strongly supported by the data and has a higher likelihood of 

occurrence that its complement. Bayes factor BF [Yuan and Lu, 2008] for the a rule of 

the form “If A then B” is defined as, 

        
      

        
 

Bayes Factor is calculated for each matching rule and the rules are sorted in 

descending order based on their Bayes Factor. The rule with the highest Bayes factor can 

be considered as the strongest rule. The system will use the rules (from strongest to 

weakest) in explaining the rationale of the prediction.  In the case of overlapping rules, it 

is possible that multiple rules apply to a single record. The system takes the strongest rule 

and gives the user the percentage of the data that the strongest rule explains. After that, 

all the records where strongest rule applies are removed. The other rules are considered to 

augment the primary rule and the process is continued.  
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For example, consider the system with the following rules: 

RM18 : IF A AND  B THEN D 

RM19 : IF C AND E THEN D 

To obtain a prediction, the user will provide a set of observations and also 

indicate the set of variables whose distribution he is interested in (e.g. D). After 

inference, if the system finds that D is likely, it displays the belief to the user. It also tries 

to use the set of applicable rules to explain its rationale. In this scenario, we notice that 

both RM18 and RM19 are applicable.  

Let us consider that we have 100 records which have the value of D that the 

system predicted. 60 of the records satisfy RM18 and 50 of them satisfy RM19. There is 

also an overlap of 30 records for which both RM18 and RM19 hold. The system performs 

the inference and gets the probability that D is true. Using the Bayes factor, if the system 

determines that RM18 is the strongest rule, it removes those 60 records. Of the remaining 

40 records, 20 of them can be explained by RM19 and there are no rules in the rule base 

that explain then other 20.  

So the explanation of the system will provide the following : The probability that 

the system expects D to hold, the fraction of evidence that agree with strongest rule, the 

fraction of evidence that other applicable rules add to the strongest rule and the fraction 

of evidence that cannot be explained from the rules (or inferred from the data). 

3.8 Suggesting New Rules 

In a typical scenario, most of the evidence can be explained by the rules available 

in the dataset. For example, in the example described above, only 20% of the evidence 

was not explained by the rules. If for some prediction the system was not able to use rules 
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to explain a significant amount of the evidence, this indicates that this is a potential 

scenario to mine for new rules. In this case, the system uses lack of sufficient rules for 

explanation to mine new rules.  

Continuing the example above,  if the user tries to find the likelihood of say E, the 

system will not be able to use any of the rules in the rule set to explain the reason for its 

prediction. The system will then try to perform association rule mining [Agarwal et al, 

1993] on the set of records for which E holds to find potential rules which can explain the 

prediction for E. 

The new rules that are mined are compared with the existing rules to make sure 

that they are not subsets or supersets of the existing rules. The system also calculates the 

certainty factor of the rule using Heckerman’s formula and assigns default strength as 1. 

The set of rules which have a certainty factor above some threshold are suggested to the 

user who may potentially accept or reject them. Accepted rules are added to the rule set 

and are used for future explanations. They do not result in any immediate alteration of 

structure or parameters. 
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CHAPTER 4  

EXPERIMENTAL RESULTS 

4.1 Implementation Details 

This thesis was primarily implemented using Python. The Open Bayes [Open 

Bayes,  2004] library provided the framework for representing Bayesian Networks.  The 

code consists of modules to represent Bayesian Networks , perform inference, perform 

parameter and structure learning, parse rules, perform rule based structural learning and 

explanation of predictions. The system has two inference engines - Junction tree for exact 

inference and MCMC for approximate inference. It also consists of two structure learning 

algorithms – greedy structural learning for complete data and SEM for incomplete data.  

The GNU Linear Programming Kit (glpk) was used to find the consistent probability 

assignments. 

4.2 Data Sets 

Two datasets were primarily used for performing experiments.  Alarm is one of 

the common benchmark networks used to test structure learning algorithms. It is 

introduced in [Beinlich et al, 1989] and was designed to monitor patients in an intensive 

care unit. The primary purpose is to assist anesthetists in interpreting changes in vital 

signs in patients. The network shown in Figure 4-1 consists of 37 discrete variables 

whose cardinality ranges from two to four. The variables represent observations from an 

intensive care unit like the patients history and device readings.  
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Figure 4-1 Original Alarm Network 

Some of the variables of the network that were used in the rules are explained 

here. For further discussion refer to [Beinlich et al, 1989].The heart rate of the patient is 

modeled by the variable HR.  HREK represents the heart rate as measured by the EKG 

monitor. Heart rate also influences heart rate / blood pressure represented by the variable 

HRBP.  Failure of the heart to circulate blood is modeled by left ventricular failure (LVF) 

. Hypovolemia (HYP) occurs if the heart does not have enough blood to circulate. The 

stroke volume (STKV) is the amount of blood pumped out of the heart. Stroke volume 

(STKV) and left ventricular end-diastolic volume (LVV) provide a way to monitor the 
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heart's performance.  Hypovolaemia (HYP) and left ventricular failure (LVF) adversely 

affect the heart's performance.  Heart rate (HR) and stroke volume (STKV) influence the 

amount of blood circulated per minute, also called cardiac output (CO).  The resistance of 

the blood vessels to blood circulation is modeled by total peripheral resistance (TPR).  

The cardiac output (CO) and the total pulmonary resistance (TPR) determine the blood 

pressure (BP).  Anaphylaxis (APL) corresponds to the medical condition where TPR is 

reduced. The breathing pressure of the patient is modeled by PRSS.  

The second data set used for experiments is from UCSD’s Data Mining contest 

from 2009 [UCSD, 2009]. The data consisted of e-commerce transactions from FICO and 

the aim is to predict whether a transaction is fraudulent. The dataset consists of 19 

attributes including transaction details like time, customer address location, amount, 

originating domain and other proprietary fields. The attributes corresponding to amount 

and total amount were discretized.  

4.3 Representation of Rules 

All the rules in the thesis were represented in accordance with Java Rules Engine 

API Specification (JSR 94).  This is a generic specification that allows rules to be 

specified and accessed regardless of the language. Additional attributes were added to 

represent certainty factors and the strength for the individual antecedents.  Currently the 

system considers only rules with AND operators.  A sample rule and its representation 

are given below: 

RE1 : IF A (0.6) AND B (0.7) THEN C (0.8) 

Here, 0.8 is the certainty factor for the rule R3 and 0.6 and 0.7 are the respective 

strength of variables A and B. This rule is represented as: 
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<rule name="RE1"> 

<parameter identifier="record"/> 

<condition strength='0.6'>record.A == 1<condition> 

<condition strength='0.7'>record.B == 1<condition> 

<consequence cf='0.8'>record.C == 1</consequence> 

</rule> 

This framework also allows for arbitrarily complex rules using multiple 

parameters and conditions. As an example, consider a rule with temporal condition that 

indicates that the user’s response must match his/her previous response. The rule and its 

equivalent representation is: 

RE2: IF current response for Q1 = previous response for Q1 (0.7) THEN D (0.9) 

<rule name="RE2"> 

<parameter identifier="curRecord"/> 

<parameter identifier="prevRecord"/> 

<condition strength='0.7'>curRecord.Q1 == prevRecord.Q1<condition> 

<consequence cf='0.9'>curRecord.D == 1 </consequence> 

</rule> 

 

4.4 Setup 

Typically the rules and their associated parameters will be specified by an expert. 

For the purpose of this thesis, the rules for the alarm and online transaction domain were 

mined from the data using association rule mining [Agarwal et al, 1993]. For each of the 

rules, the values of support, confidence and certainty factor are calculated. The rules with 

a highest values for these factors were added to the rule base. For each of the rules added 

to the dataset, the certainty factor was calculated using Heckerman’s formula 

[Heckerman, 1986]. The values of prior and conditional probability used in Heckerman’s 

formula were obtained from the data.  If the data is not available, a uniform prior is 

assumed.  

For the alarm network, a dataset of 20,000 records is used for training. A separate 

dataset of 10,000 records sampled from the original alarm network [Beinlich et al, 1989] 



 

40 

 

was used for testing. In the case of online transaction network, there are around 95,000 

records in the original dataset. Repeated random sub sampling is used to split the data 

into training and testing datasets. This procedure is repeated for 26 times and the results 

were averaged.  

Two measures are used to compare the desirability of the candidate networks. The 

first measure used is the BIC score of the candidate network using the testing 

dataset[Koller and Friedman, 2009]. The second is the classification error which is 

defined as the ratio of incorrectly classified records to the total number of records.  

4.5 Experiments 

Different sets of experiments were conducted to highlight the various modules of 

the proposed system. In the first set of experiments, the system was provided with a rule 

base consisting of correct rules (with certainty factors and strength). This demonstrates 

the bootstrapping of initial network and how the rules influence the complete structure 

that is learned from the data. This experiment also analyzes the advantages provided by 

the bootstrapping approach proposed by this thesis. Compared with a network that learns 

its entire structure from data, the network that is bootstrapped from rules needs a smaller 

dataset before it can make meaningful predictions. This experiment also analyzes the 

impact of the size of the rule base by comparing the networks learned from rule bases 

with different sizes.  

In the second set of experiments, incorrect rules were added to the rule base and 

the deviation between initial and learned Bayesian Network is observed. This experiment 

also shows how the system can inform the user about potentially incorrect rules.  In the 
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third set of experiments, the system is asked to make predictions based on observations 

and explain its predictions using the expert specified rules.  

4.5.1 Bootstrapping and Learning a Bayesian Network from Rules  

In this experiment, we look at how the system learns the network structure from a 

rule base which contains rules with appropriate strength and certainty factors.   

4.5.1.1 Alarm Network Experiments 

As a simple example, let us analyze the scenario where the rule base consists of 

only the following rule:  

RE3: If LVF = FALSE (0.99) AND HYP = FALSE (0.8) THEN STKV = NORMAL (0.9) 

 Using the methods described in the thesis, we can derive the evidence for related 

rules that can be obtained from RE3. The related rules and the residual evidence are:  

RE4 : If LVF = FALSE  AND HYP = TRUE  THEN STKV = NORMAL (0.18) 

RE5 : If LVF = TRUE  AND HYP = FALSE  THEN STKV = NORMAL (0.009) 

RE6 : If LVF = TRUE  AND HYP = TRUE  THEN STKV = NORMAL (0.018) 

 By applying Heckerman’s formula we can derive the conditional probability and 

use it to estimate the probabilistic bounds. A set of probability assignments consistent 

with the bounds are obtained using linear programming. Finally, the structure learning 

algorithm learns the complete structure from the bootstrapped structure and parameters 

provided.  

 Table 4-1 shows the bounds and bootstrapped values for the conditional 

probabilities resulting from the rules as well as the final learned probability value after 

refinement with data. 
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Table 4-1 Alarm - Conditional Probability table for a correct rule 

LVF HYP Certainty 

Factor 

Probabilistic Bound for 

STKV = NORMAL 

Consistent value 

of Probability 

Probability 

after learning 

False False 0.9 [0.85,1] 0.93 0.89 

False True 0.18 [0.54,1] 0.77 0.51 

True False 0.009 [0.08,1] 0.53 0.04 

True True 0.018 [0.11,1] 0.56 0.01 

 

From this experiment, we can see that the final conditional probability for the 

original rule that is learned from the data stays within the bounds calculated from the 

rule. Furthermore, we can see that the final learned structure has both LVF and HYP as 

parents for STKV.  
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Figure 4-2 Alarm network learned with single rule 

 In a typical scenario, the rule base will contain multiple rules.  To illustrate the 

performance of the system under these conditions, a rule base for the Alarm network with 

the following rules was constructed.  

RE7: IF LVF = TRUE (0.6) AND HYP=TRUE (0.6) THEN LVV = LOW (0.9) 

RE8: If LVF = FALSE (0.99) AND HYP = FALSE (0.8) THEN STKV = NORMAL(0.9) 

RE9 : IF HR = HIGH(0.9) AND STKV = HIGH (0.6) THEN CO = HIGH (0.9) 

RE10 : IF HR = LOW (0.6) AND STKV = LOW (0.9) THEN CO = LOW (0.99) 

RE11 : IF CO = HIGH(0.8) AND TPR = HIGH(0.6) THEN BP = HIGH (0.8) 

RE12 : IF CO=NORMAL(0.7) AND TPR=NORMAL(0.6) THEN BP = NORMAL (0.8) 



 

44 

 

RE13 : IF APL = TRUE (0.6) THEN TPR = LOW (0.9) 

RE14 : IF HR = HIGH(0.99) THEN HREK = HIGH (0.6) 

RE15 : IF HR = HIGH(0.99) THEN HRBP = HIGH (0.6) 

RE16 : IF VLNG = LOW(0.7) AND ACO2 = LOW (0.8) THEN ECO2 = LOW (0.9) 

RE17 : If KINK=FALSE(0.9) AND VTUB=LOW (0.8) THEN PRSS=HIGH (0.6) 

RE18 : If VTUB=NORMAL(0.6) AND INT=NORMAL(0.9) THEN PRSS=HIGH (0.8) 

 These rules were obtained by analyzing the dependencies among Alarm network's 

diagnostic and intermediate nodes [Beinlich et al, 1989]. The prior and conditional 

probabilities were obtained from the data and the certainty factor for each rule was 

calculated from the Heckerman's formula [Heckerman, 1986]. The strength factor for an 

antecedent in a rule is estimated as the ratio of the number of records where both the 

antecedent and the consequent hold to the total number of records where the consequent 

holds. The values of the certainty factors and strength calculated were rounded to the 

nearest tenth of a fraction.  

If this rule base is used to bootstrap the alarm network, then the system learns the 

network structure shown in Figure 4-3. The nodes involved in the rules are highlighted. 

As in the initial example, the bootstrapped network was able to accurately represent the 

data generated from the original alarm network. 
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Figure 4-3 Alarm network learned from rule base 

To evaluate the benefits of bootstrapping the network, we test if bootstrapping the 

Bayesian Network reduces the number of records that the network needs before it can 

perform predictions with reasonable accuracy. 

The training dataset for the alarm network has 20000 records. To evaluate the 

effect of more data, 1000 records are initially selected at random from the training 

dataset. This partial dataset is used to learn two networks – one whose structure is 

bootstrapped from the rules and another with an empty initial structure. Both these 
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networks are compared according to their score, size and their classification error on the 

testing dataset. This process is repeated for 26 times and the average value of BIC score 

and classification error is noted. The whole experiment is repeated for partial datasets 

whose size varies from 1000 to 20000 in multiples of 1000 and the resulting BIC score 

and classification error rates are presented in  Table 4-2 and Table 4-3 respectively. 

Table 4-2 Impact of dataset size on network learned I 

Dataset Size Network bootstrapped with rules Network seeded with empty 

structure 

 #Edges BIC Score #Edges BIC Score 

1000 44 -112605.4 46 -113218.3 

2000 45 -111472 47 -112666.2 

3000 47 -111324.3 48 -112601.8 

4000 46 -110896.3 47 -112117.9 

5000 47 -110855.9 47 -112117.9 

10000 48 -110486.3 52 -111246.5 

15000 48 -110486.3 52 -111246.6 

20000 50 -110500 53 -111281.5 

 

From Table 4-2, we can see with as few as 4000 records, the bootstrapped 

network converges to a structure that is close to the structure that is learned using the 

entire training dataset with 20,000 records. When no rules were used to bootstrap the 

network, around 10,000 records were needed before the network approached the structure 

learned with the entire dataset. 

 Each of the networks learned with partial datasets were also used for 

predicting the value of nodes involved in the rules. As an example, the learned network is 

used to predict the value of STKV in the test dataset. From Table 4-3, it can be noticed 

that when the network is bootstrapped with rules, the learned network approaches the 

classification error of the network which uses the entire training dataset with as few as 

4000 records. Additionally, when we do a paired t-test for both the networks, the 
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difference between classification errors are statistically significant for up to 4000 records. 

After 5000 records, the two networks converge to almost similar classification error rates. 

It must be noted that when the number of records used for training is low, MCMC based 

inference engines perform the best. 

Table 4-3  Impact of dataset size on network learned II 

Dataset 

Size 

Mean 

Classification 

error (CE) for 

STKV using 

Network 

bootstrapped  

with rules 

Classification 

error for STKV 

using Network 

bootstrapped with 

empty structure 

Statistics 

Mean of 

difference in 

CE 

Std Dev 

of 

difference 

in CE 

P value 

for t(25) 

1000 0.176 0.269 0.093 0.021 2.20E-

016 

2000 0.173 0.263 0.091 0.023 2.20E-

016 

3000 0.173 0.220 0.047 0.017 1.91E-

013 

4000 0.173 0.186 0.012 0.031 0.0514 

5000 0.175 0.176 0.001 0.010 0.6011 

10000 0.173 0.174 0.001 0.009 0.8448 

15000 0.174 0.175 0.001 0.004 0.4739 

20000 0.174 0.175 0.001 0.003 0.05629 

 

To test the impact of the rule base size on the network quality, a new rule base 

with only 3 out of the 12 rules from the original rule base was constructed. The rules 

included are: 

RE7: IF LVF = TRUE (0.6) AND HYP=TRUE (0.6) THEN LVV = LOW (0.9) 

RE8: If LVF = FALSE (0.99) AND HYP = FALSE (0.8) THEN STKV = 

NORMAL(0.9) 

RE16 : IF VLNG = LOW(0.7) AND ACO2 = LOW (0.8) THEN ECO2 = LOW 

(0.9) 
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 The experiment was very similar to the previous experiment. 1000 records are 

initially selected at random from training dataset and were used to create two networks – 

one whose structure is bootstrapped with the partial rule base and another with an empty 

structure. The score, size and classification error are calculated on the testing dataset. 

This process is repeated for 26 times and the average values are calculated. The whole 

experiment is repeated for datasets with size ranging from 1000 to 20,000 in multiples of 

1000.   The structure that is learned from the partial rule base is given in Figure 4-4 .  

 

Figure 4-4 Alarm Network learned from smaller rule base 

Table 4-4 and Table 4-5 show the results of the experiment. When the rule base 

has a reduced number of rules, the network still needs less data to converge to a final 
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structure. The structural complexity and score are worse than the network learned with 

full rule base but better than the network learned with incorrect rules.  

Table 4-4 Impact of Rule Base Size on Network Learned I 

Dataset Size Network bootstrapped with full 

set of rules  

Network seeded with partial 

set of rules 

 #Edges BIC Score #Edges BIC Score 

1000 44 -112605.4 44 -112705.5 

2000 45 -111472 45 -111586.3 

3000 47 -111324.3 46 -111521.9 

4000 46 -110896.3 46 -111063.4 

5000 47 -110855.9 46 -111063.4 

10000 48 -110486.3 50 -111166.5 

15000 48 -110486.3 50 -111166.6 

20000 50 -110500 52 -111203 

 

From Table 4-5 we can see that the classification error of the network learned 

with partial rule base is very close to the classification error of the network learned with a 

larger rule base. We can also see that when we do a paired t-test for networks learned 

with different rule bases, the difference between classification errors are statistically 

significant for up to 4000 records. After 5000 records, the two networks converge to 

almost similar classification error rates. This shows the quality of the Bayesian Network 

that is learned is influenced by the size (and quality) of the rule base. A larger rule base 

result in a superior network but the system does provide good results even when 

bootstrapped with a smaller rule base.  

 

 

 



 

50 

 

Table 4-5 Impact of Rule Base Size on Network Learned II 

Dataset 

Size 

Mean 

Classification 

error (CE) for 

STKV using 

Network 

bootstrapped  

with rules 

Classification 

error for STKV 

using Network 

bootstrapped 

with empty 

structure 

Statistics 

Mean of 

difference in 

CE 

Std Dev 

of 

difference 

in CE 

P value 

for t(25) 

1000 0.175 0.269 0.094 0.024 2.20E-

016 

2000 0.176 0.263 0.087 0.024 6.95E-

016 

3000 0.175 0.220 0.045 0.023 4.84E-

010 

4000 0.173 0.186 0.013 0.031 0.04898 

5000 0.175 0.176 0.001 0.015 0.8208 

10000 0.174 0.174 0.001 0.007 0.849 

15000 0.172 0.175 0.002 0.004 0.006793 

20000 0.174 0.175 0.001 0.003 0.1559 

 

This experiment shows that the presented approach to incorporating rules to 

bootstrap a Bayesian Network significantly decreases the need for data to make accurate 

prediction and is capable of efficiently translating the rules into Bayesian Network 

structure that accurately reflect the expert knowledge and the data. 

4.5.1.2 Online Transaction Experiments 

Consider the following rule base for the online transaction dataset: 

RE19 : IF FLAG1 = 1(0.8) THEN  FLAG4 = 1 (0.9) 

RE20: IF FIELD3  = 2247  (0.6) THEN RESULT =1  (0.9) 

RE21 : IF FIELD3 = 2389  (0.6) THEN RESULT =1  (0.9) 

RE22 : IF FIELD1=4 (0.5) THEN RESULT=1 (0.8) 

RE23 : IF FLAG5=6 (0.5) THEN RESULT=1 (0.8) 
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The rules were obtained by using association rule mining [Agarwal et al, 1993] on 

the entire transaction dataset. For each of the candidate rules with high confidence, the 

certainty factors were calculated. Rules with high certainty factors are added to the rule 

base. The certainty factor and strength parameters are rounded to the nearest tenth. The 

network that is learned after bootstrapping with the rule base is show in Figure 4-5. The 

nodes involved in the rules are highlighted. 

 

Figure 4-5 Online transaction network learned from rule base 
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 Again, the network was able to accurately reflect the relation in the transaction 

data set. 

4.5.2 Detection of Incorrect Rules 

In this experiment, we add an incorrect rule to the rule base and observe how the 

system recognizes the incorrect rule. Consider that the expert specified the following 

incorrect rule for the alarm dataset:  

RE24 : If PAP = NORMAL (0.9) AND ANES = TRUE (0.9) then LVF = TRUE (0.9) 

Using the methods described in the thesis, we can derive the evidence for related 

rules from RE24. The related rules and the residual evidence are:  

RE25 : If PAP = LOW  AND ANES = TRUE  then LVF = TRUE (0.09) 

RE26: If PAP = LOW  AND ANES = FALSE  then LVF = TRUE (0.009) 

RE27 : If PAP = HIGH  AND ANES = TRUE  then LVF = TRUE (0.09) 

RE28 : If PAP = HIGH  AND ANES = FALSE  then LVF = TRUE (0.009) 

RE29 : If PAP = NORMAL  AND ANES = FALSE  then LVF = TRUE (0.09) 

Table 4-6 provides the conditional probabilities, their probabilistic bounds, the 

bootstrapped values provided by linear programming and the final values learned by the 

structure learning algorithm.  

Table 4-6 Alarm - Conditional Probability table for an incorrect rule 

PAP ANES Certainty 

Factor 

Probabilistic bound 

for rule LVF = 

TRUE 

Consistent 

value of 

Probability 

Probability 

after learning 

NORMAL TRUE 0.9 [0.6,1] 0.84 0.04 

LOW TRUE 0.09 [0.059,1] 0.48 0.05 
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LOW FALSE 0.01 [0.0508,1] 0.48 0.05 

HIGH TRUE 0.09 [0.059,1] 0.48 0.03 

HIGH FALSE 0.01 [0.0508,1] 0.48 0.06 

NORMAL FALSE 0.09 [0.059,1] 0.48 0.05 

 

 From this data, it can be noted that the final conditional probability that is learned 

from the data for RE24 falls significantly from the probability bounds derived from the 

rule. This is an indication that the rule that is specified by the expert might be incorrect.  

This can be used to elicit a rule refinement from the expert which not only leads 

to better explanation but also improves the final network structure. The latter is due to the 

fact that incorrect rules results in a Bayesian Network whose structural complexity is 

high. To show this, let us compare the Bayesian Network learned from the incorrect rule 

RE24 (shown in Figure 4-6) with the one learned from rules RE7-RE18 (Figure 4-3). 

Table 4-7 Comparison of Alarm Bayesian Networks 

 Bayesian Network generated with 

Correct Rules [RE7-RE18] 

Bayesian Network generated 

with Incorrect Rule [RE24] 

BIC Score -110500.0 -111386.4 

#Edges 50 55 

Classification 

Error for LVF 

0.0156 0.0472 

 

From Table 4-7 which shows the network’s complexity and accuracy, we can see 

that the Bayesian Network generated from incorrect rule RE24 has 5 more edges than the 

one learned from correct set of rules. This network also has a lower BIC score [Koller 

and Friedman, 2009] and has a classification error that is around 3 times higher than the 

Bayesian Network learned from correct set of rules. 

Table 4-6 - Continued 
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The system provides the following message: “Please verify rule RE24. The final 

probability learned from the data does not fall within the bounds estimated from the 

values specified in the rules”.  

 

Figure 4-6 Alarm network learned with incorrect rules 

In addition to specifying a rule with incorrect certainty factor, the expert can also 

specify a rule with incorrect strength factors. When the certainty factor is different from 

the correct value, it can be detected when the final conditional probability for the rule that 

is learned from data deviates from the estimated probabilistic bounds. Similarly, it is 

possible to detect incorrect strength values when some of the probability values in the 

conditional probability table deviates from the estimated probabilistic bounds. Consider a 

variation of rule RE8 with incorrect strength factor for LVF.  
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RE31: If LVF = FALSE (0.8) AND HYP = FALSE (0.8) THEN STKV = NORMAL (0.9) 

 The related rules and the residual evidence that can be derived from RE31 are:  

RE32 : If LVF = FALSE  AND HYP = TRUE  THEN STKV = NORMAL (0.18) 

RE33 : If LVF = TRUE AND HYP = FALSE  THEN STKV = NORMAL (0.18) 

RE34: If LVF = TRUE  AND HYP = TRUE  THEN STKV = NORMAL (0.036) 

 The network is bootstrapped from the rules and the complete structure is learned 

from the data. The conditional probability table for STKV that is learned from data is 

given in the table below. The conditional probability entry where both LVF and HYP are 

false lies within the estimated probabilistic bound. This implies the rule has an acceptable 

value for certainty factor. The conditional probability entries for the last two rows where 

LVF = TRUE deviates from the estimated probabilistic bound beyond a tolerance value. 

When this happens we can conclude that the strength value for LVF is incorrect. When 

the value of strength is updated to 0.99 (from 0.8) as in RE8, all the final probabilities 

occur between the estimated probabilistic bound which shows that the rule has correct 

values for certainty factor and strength. 

Table 4-8 Alarm - Conditional Probability table for an incorrect rule II 

LVF HYP Certainty 

Factor 

Probabilistic 

Bound for STKV = 

NORMAL 

Consistent 

value of 

Probability 

Probability 

after learning 

FALSE FALSE 0.9 [0.85,1] 0.93 0.89 

FALSE TRUE 0.18 [0.54,1] 0.77 0.51 

TRUE FALSE 0.18 [0.54,1] 0.77 0.04 

TRUE TRUE 0.04 [0.13,1] 0.57 0.01 
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Similarly rule verification capabilities can be shown with the online transaction 

data. Consider that the expert specified an incorrect rule for the online transaction rule 

base: 

RE30 : If FLAG4=1(0.9)  THEN RESULT=1 (0.9) 

If this rule is used to bootstrap the network we get the network in Figure 4-7 . 

 

Figure 4-7 Online transaction network learned from incorrect rule 

Comparing this network with the one that was bootstrapped with rules RE25-

RE29, we can again see that this network has a lower score, slightly higher classification 

error and edges. 
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Table 4-9 Comparison of Online transaction networks learned 

 Bayesian Network generated with 

Correct Rules [RE25-RE29] 

Bayesian Network 

generated with Incorrect 

Rule [RE30] 

BIC Score -320671.4 -327134.7 

#Edges 29 30 

Classification 

Error 

0.0124 0.0217 

 

These experiments show the ability of the presented approach to identify incorrect 

or partially correct rules, thus providing an important tool for an expert to validate prior 

knowledge expressed in the form of rules. 

4.5.3 Providing Rule Based Explanations 

This experiment shows the explanation capabilities of the system. For this 

experiment, we use the alarm network. Let us assume that the user made the observation 

that variable KINK has the value FALSE. The user wants to predict the value of pressure 

reading.  The system performs inference and finds the following: 

a) P(PRESS=ZERO) = 0.016,  P(PRESS=LOW) = 0.15, P(PRESS=NORMAL) = 

0.13 and  P(PRESS=HIGH) = 0.71.  

b) There are two rules which satisfy the suggestion: 

a. RE17 : If KINK=FALSE AND VTUBE=LOW THEN PRESS=HIGH 

b. RE18 : If VTUBE=NORMAL AND INT=ESOPHAGAL THEN 

PRESS=HIGH 

The system estimates the conditional probability of each applicable rule based on 

the observations. For RE17, P(PRESS=HIGH| KINK=FALSE AND VTUBE=LOW) = 

0.48 and for RE18, P(PRESS=HIGH|VTUBE=NORMAL,INT=ESOPHAGAL) = 0.7. 
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From this we can calculate that the Bayes Factor for RE17 is 0.92 and RE18 is 2.3. This 

means that RE18 is the rule with most explanatory power. 

The system generates the following explanation: “We believe with 71% percent 

confidence that the value of PRESS is HIGH. Our reasoning is based on the following 

evidence: 95% of the past records under similar circumstances agreed with rule RE18 (If 

KINK=FALSE AND VTUBE=LOW THEN PRESS=HIGH). Also 3% of the past 

records  add additional evidence that can be explained by RE17 (If VTUBE=NORMAL 

AND INT=ESOPHAGAL THEN PRESS=HIGH)”.  
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Certainty factor based expert systems and Bayesian Networks are two popular 

frameworks to perform uncertain reasoning. Both have their own advantages and 

disadvantages. In this thesis, we have proposed an approach that combines the ability to 

efficiently elicit expert knowledge and generate user understandable explanation using 

rules with the automated reasoning capabilities of the Bayesian Network. The domain 

knowledge is expressed using rules with certainty factors that are augmented with 

strength parameters for antecedents. Using the certainty factors and strength parameters, 

the residual evidence for rules that are variations of the expert specified rules can be 

estimated and is used to derive their probabilistic bounds for conditional probabilities. A 

consistent set of probability assignments that satisfy the constraints is then obtained using 

linear programming. These conditional probability values together with partial structure 

determined from the rules are used to bootstrap a Bayesian Network. From the data, a 

complete Bayesian Network whose structure is influenced by the rules is learned.  This 

network can then be used to perform automated inference and can explain its predictions 

using the expert specified rules. Other issues like incremental learning, identifying 

incorrect rules, proposing new rules are also addressed, resulting in a consistent 

framework that combines the advantages of rule based systems with the data driven 

capabilities of Bayesian Networks. 
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5.2 Future Work 

Currently, the proposed method can handle only static rules and networks. Rules 

with temporal components have to be added using static nodes. The use of dynamic 

Bayesian Networks should be explored as a way to more accurately model temporal 

rules. This will allow the system to handle more expressive rules.  

Also, currently the system can only notify the expert of potentially incorrect rules. 

If the expert insists on keeping the rule, a mechanism must be developed which can find 

the next best possible structure. This might involve modification of other rules or 

modification of the network structure. Similarly, it is possible that during incremental 

learning, the best way to fit the data might require a structural change. Handling 

incremental structural learning under the constraint of existing rules has to be explored.  
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