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ABSTRACT

DATA ANALYTICS OVER HIDDEN DATABASES

Arjun Dasgupta, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Gautam Das

Web based access to databases have become a popular method of data delivery. A

multitude of websites provides access to their proprietary data through web forms. In order

to view this data, customers use the web form interface and pose queries on the underlying

database. These queries are executed and a resulting set of tuples (usually the top-k ones)

is served to the customer. Top-k along with strict limits on querying are constraints used

by the database providers to conserve the power of the underlying data distribution. De-

livering limited access only to tuples that satisfy a query enables providers to expose only

a small snippet of the entire inventory at a time. This method of data delivery prevents

analysts from deriving information on the holistic nature of data. Analytical queries on the

data statistics are hence blocked through these access restrictions.

The objective of this work is to provide detailed approaches that obtain results towards

inferring statistical information on such hidden databases, using their publicly available

front-end forms. To this end, we first explore the problem of random sampling of tuples

from hidden databases. Samples representing the underlying data open up a proprietary

database to a plethora of opportunities by giving external parties a glimpse into the holistic

aspects of the data. Analysts can use samples to pose aggregate queries and gain informa-

v



tion on the nature and quality of data. In addition to sampling, we also present efficient

techniques that directly produce unbiased estimate of various interesting aggregates. These

techniques can be also applied to address the more general problem of size estimation of

such databases.

In light of techniques towards inferring aggregates, we introduce and motivate the problem

of privacy preservation in hidden databases from the data provider’s perspective, where the

objective is to preserve the underlying aggregates while serving legitimate customers with

answers to their form-based queries.
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CHAPTER 1

INTRODUCTION

A large portion of data available on the web is present in the so called deep web. The

deep web (or invisible web or hidden web) is the name given to pages on the World Wide

Web that are not part of the surface web (pages indexed by common search engines). It con-

sists of pages which are not linked to other pages (e.g., dynamic pages which are returned

in response to a submitted query). The deep web is believed to contain 500 times more data

than the surface web [1]. A major part of data present on the hidden web lies behind form

like interfaces. These form based interfaces are based on a back end proprietary database

and a limited top-k query interface. The query interface is generally represented as a web

form that takes input from users and translates them into SQL queries. These queries are

then presented to the proprietary database and the top-k results provided to the user on the

browser. Many online resource locater services are based on this model. Databases with

such public web-based interfaces are present for many commercial sites, as well as govern-

ment, scientific, and health agencies.

Database Sampling is the process of randomly selecting tuples from a dataset. Database

sampling has been used in the past to gather statistical information from databases. It

has a wide range of applications, such as data analysis and data mining, statistics esti-

mation (such as building histograms), query optimization, approximate query processing,

and so on. However, this statistics gathering process is generally done by the owner of

the database. Given complete and unrestricted access to the database, a wealth of tech-

niques has been developed for efficiently selecting a random sampling of the tuples of the

1
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database [2, 3].

However, in today’s world where most databases are present behind a proprietary curtain,

there needs to be some way to obtain statistical information about the underlying data with

all these restrictions in place. This information can be then used to optimize and power a

multitude of applications. Statistics about a third party database can be used to obtain qual-

ity, freshness and size information inside web sources. It can be used to identify uniformity

or biases of topics. A typical example of an application which may use such information is

as follows: Consider a new web meta-service which retrieves data on restaurants in a city.

It fetches information from two or more web sources which provide data on restaurants

matching certain requirements. This service gets a query from the user and then feeds it to

the two or more participating restaurant search engines. The final result is a combined mix

of restaurant data from these underlying sources. Knowledge of the underlying databases

in this scenario would allow the makers of our restaurant service to call the database with

the best quality and data distribution (in relation to a specific query) preferentially over the

other sources.

Generating random samples from such hidden databases presents significant challenges.

The only view available into these databases is via the proprietary interface that allows

only limited access - e.g., the owner may place limits on the type of queries that can be

posed, or may limit the number of tuples that can be returned, or even charge access costs,

and so on. The traditional random sampling techniques that have been developed cannot

be easily applied as we do not have full access to the underlying tables.

Estimation of Aggregates is used heavily by analysts to understand the nature and quality

of data in a database. In the case of hidden databases, however, this is easier said than

done. The restrictive interfaces impose rules that prevent analysts from posing aggregate

queries. The size of online databases and constraints on querying load prevent such users

from downloading such datasets. Hence, mechanisms to estimate aggregates are essential
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tools that would allow analysts to comprehend such data sources on the web.

In this work, we provide a detailed look at the problem of uniform random sam-

pling from hidden databases along with related applications on estimating aggregates and

counts.

We restrict our focus to structured web databases that follow the under the given model:

A database with a web based form which lets the user choose from a set of attributes

{A1, A2, A3, ...Am} where each attribute may be Boolean, categorical or numeric, e.g.,

cuisine, price, distance, etc. The user chooses desired values for one or more of the at-

tributes presented (or ranges in the case of numeric attributes). This results in a query that

is executed against a back-end restaurant database where each tuple represents a restaurant.

The top-k answers (according to a ranking function) returned from the database are then

presented to the user.

Types of Interfaces Although a large variety of interfaces to hidden databases exist on the

web, we restrict our focus on the simplest and most widely prevalent kind of query in-

terfaces. The first kind of interfaces allows users to specify range conditions on various

attributes - however, instead of returning all satisfying tuples, such interfaces restrict the re-

turned results to only a few (e.g., top-k) tuples, sorted by a suitable ranking function. Along

with these returned tuples, the interface may also alert the user if there was an “overflow”,

i.e., if there were other tuples besides the top-k that also satisfied the query conditions but

were not returned. We refer to such interfaces as TOP-k-ALERT interfaces. Examples in-

clude MSN Stock Screener ( http://moneycentral.msn.com/investor/finder/customstocksdl.

asp) which has k = 25 and Microsoft Solution Finder (https://solutionfinder.microsoft.com/

Solutions/SolutionsDirectory.aspx?mode=search) which has k = 500. The second kind in-
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terfaces that we consider are similar to the above, except that instead of simply alerting

the user of an overflow, they provide a count of the total number of tuples in the database

that satisfy the query condition. We refer to such interfaces as TOP-k-COUNT interfaces.

An example is MSN Careers (http://msn.careerbuilder.com/JobSeeker/

Jobs/JobFindAdv.aspx) which has k = 4000.

We introduce the HIDDEN-DB-SAMPLER in Chapter 2 that aims to solve the prob-

lem of sampling from hidden databases having TOP-k-ALERT interfaces. It is based

on performing random walks over the space of queries, such that each execution of the

algorithm returns a random tuple of the database. HIDDEN-DB-SAMPLER follow a tech-

nique that starts with an extremely broad (therefore overflowing - Section 2.2) query,

and iteratively narrowing it down by adding random predicates, until a non-overflowing

query is reached. In Chapter 3, another sampler called COUNT-DECISION-TREE is

introduced which works on TOP-k-COUNT interfaces. It works by reducing costs by

utilizing information from historic queries issued by itself. Another sampler called the

HYBRID-SAMPLER which works by combining the HIDDEN-DB-SAMPLER and COUNT

-DECISION-TREE is also proposed in Chapter 3. All the above samplers work on valid

queries (Section 2.2) generated by queries on a web interface. Chapter 4 details the work-

ing of TURBO-DB-SAMPLER that uses the concept of a designated query that maps each

tuple in the database to a unique query (whether overflowing or not). This enables usage

of overflowing queries in the sampling process resulting in magnitudes of improvement in

efficiency.

There are two main objectives that all our sampling algorithms seeks to maximize:

• Quality of the sample: Due to the restricted nature of the interface, it is challeng-

ing to produce samples that are truly uniform, i.e., samples that deviate as little as

possible from the uniform distribution.
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• Efficiency of the sampling process: We measure efficiency of the sampling process

by the number of queries that need to be executed via the interface in order to collect

a sample of a desired size.

In addition to the techniques for sampling hidden databases, Chapter 5 deals with unbiased

methods of estimation of aggregates and number of tuples (size) in a database. For size es-

timation, our main result is HD-UNBIASED-SIZE, an unbiased estimator with provably

bounded variance. For estimating other aggregates, we extend HD-UNBIASED-SIZE

to HD-UNBIASED-AGG which produces unbiased estimations for aggregate queries. Fi-

nally, in Chapter 6, we detail COUNTER-SAMPLER, which is a privacy-preserving algo-

rithm that inserts dummy tuples to prevent the efficient sampling of hidden databases along

with theoretical analysis on the privacy guarantee for sensitive aggregates provided by the

COUNTER-SAMPLER.



CHAPTER 2

A RANDOM WALK APPROACH TO SAMPLING HIDDEN DATABASES

2.1 Introduction

A large portion of data available on the web is present in the so called deep web. The

deep web (or invisible web or hidden web) is the name given to pages on the World Wide

Web that are not part of the surface web (pages indexed by common search engines). It con-

sists of pages which are not linked to other pages (e.g., dynamic pages which are returned

in response to a submitted query). The deep web is believed to contain 500 times more data

than the surface web [1]. A major part of data present on the hidden web lies behind form

like interfaces. These form based interfaces are based on a back end proprietary database

and a limited top-k query interface. The query interface is generally represented as a web

form that takes input from users and translates them into SQL queries. These queries are

then presented to the proprietary database and the top-k results provided to the user on the

browser. Many online resource locater services are based on this model. Databases with

such public web-based interfaces are present for many commercial sites, as well as govern-

ment, scientific, and health agencies. To illustrate this scenario let us consider the example

of a generic restaurant finder service:

Example 1: Consider a web based form which lets the user choose from a set of attributes

{A1,A2,A3,...Am} where each attribute may be Boolean, categorical or numeric, e.g., cui-

sine, price, distance, etc. The user chooses desired values for one or more of the attributes

presented (or ranges in the case of numeric attributes). This results in a query that is ex-

ecuted against a back-end restaurant database where each tuple represents a restaurant.

6
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The top-k answers (according to a ranking function) returned from the database are then

presented to the user.

The principle problem that we consider in this chapter is: given such a restricted query in-

terface, how can one efficiently obtain a uniform random sample of the backend database

by only accessing the database via the public front end interface?

Database Sampling is the process of randomly selecting tuples from a dataset. Database

sampling has been used in the past to gather statistical information from databases. It

has a wide range of applications, such as data analysis and data mining, statistics esti-

mation (such as building histograms), query optimization, approximate query processing,

and so on. However, this statistics gathering process is generally done by the owner of

the database. Given complete and unrestricted access to the database, a wealth of tech-

niques has been developed for efficiently selecting a random sampling of the tuples of the

database [2, 3].

However, in today’s world where most databases are present behind a proprietary curtain,

there needs to be some way to obtain statistical information about the underlying data with

all these restrictions in place. This information can be then used to optimize and power a

multitude of applications. Statistics about a third party database can be used to obtain qual-

ity, freshness and size information inside web sources. It can be used to identify uniformity

or biases of topics. A typical example of an application which may use such information is

as follows: Consider a new web meta-service which retrieves data on restaurants in a city.

It fetches information from two or more web sources which provide data on restaurants

matching certain requirements. This service gets a query from the user and then feeds it to

the two or more participating restaurant search engines. The final result is a combined mix

of restaurant data from these underlying sources. Knowledge of the underlying databases
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in this scenario would allow the makers of our restaurant service to call the database with

the best quality and data distribution (in relation to a specific query) preferentially over the

other sources.

However, generating random samples from such hidden databases presents significant chal-

lenges. The only view available into these databases is via the proprietary interface that

allows only limited access - e.g., the owner may place limits on the type of queries that can

be posed, or may limit the number of tuples that can be returned, or even charge access

costs, and so on. The traditional random sampling techniques that have been developed

cannot be easily applied as we do not have full access to the underlying tables.

In this chapter we initiate an investigation of this important problem. In particular, we

consider single-table databases with Boolean, categorical or numeric attributes, where the

front end interface allows queries in which the user can specify values of ranges on a sub-

set of the attributes, and the system returns a subset (top-k) of the matching tuples, either

according to a ranking function or arbitrarily, where k is a small constant such as 10 or 100.

Our main result is an algorithm called HIDDEN-DB-SAMPLER, which is based on per-

forming random walks over the space of queries, such that each execution of the algorithm

returns a random tuple of the database. This algorithm needs to be run an appropriate

number of times to collect a random sample of any desired size. Note that this process

may repeat samples - i.e., we produce samples “with replacement“. There are two main

objectives that our algorithm seeks to achieve:

• Quality of the sample: Due to the restricted nature of the interface, it is challenging

to produce samples that are truly uniform. Consequently, the task is to produce

samples that have small skew, i.e., samples that deviate as little as possible from

the uniform distribution.

• Efficiency of the sampling process: We measure efficiency of the sampling process

by the number of queries that need to be executed via the interface in order to collect
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a sample of a desired size. The task is to design an efficient procedure that collects a

sample of the desired size as efficiently as possible.

Our algorithm is designed to achieve both goals - it is very efficient, and produces sam-

ples with small skew. The algorithm is based on three main ideas: (a) Early termination:

Often, a random walk may not lead to a tuple. To prevent wasted queries, our algorithm

is designed to detect such events as early as possible and restart a fresh random walk; (b)

Ordering of attributes: The ordering of attributes that guides the random walk crucially im-

pacts quality as well as efficiency we show that for Boolean databases a random ordering

of attributes is preferable over any fixed order, whereas for categorical databases with large

variance among the domain sizes of the attributes, a fixed ordering of attributes (from small

domains to large domains) is preferable for reducing skew; (c) Parameter to tradeoff skew

versus efficiency: Since sample quality and sampling efficiency are contradictory goals,

our algorithm is equipped with a parameter that can be tuned to provide tradeoffs between

skew and efficiency. A major contribution of this chapter is also a theoretical analysis of

the quantitative impact of the above ideas on improving efficiency and reducing skew. We

also describe a comprehensive set of experiments that demonstrate the effectiveness of our

sampling approach.

The rest of this chapter is organized as follows. In Section 2.2 we formally specify the prob-

lem and describe a simple but inefficient random-walk based strategy that forms the foun-

dation of our eventual algorithm. Section 2.3 is devoted to the development of HIDDEN-

DB-SAMPLER for the special case of Boolean databases. In Section 2.4 we extend the

algorithm for other types of data as well as other query interfaces. Section 2.5 discusses

related work, and Section 2.6 contains a detailed experimental evaluation of our proposed

approach. We conclude in Section 2.7.
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2.2 Preliminaries

2.2.1 Problem Specification

Throughout this chapter our discussion revolves around hidden databases and their

public interfaces. We start by defining the simplest problem instance. Consider a database

table D with n tuples {t1, ..., tn} over a set of m attributes A = {A1, ..., Am}. Let us as-

sume that the attributes are Boolean later in Section 4 we extend this scenario such that

the attributes may be categorical or numeric. We also assume that duplicates do not exist,

i.e., no two tuples are identical. This hidden backend database is accessible to the users

through a public web-based interface. We assume a prototypical interface, where users can

query the database by specifying the values of a subset of attributes they are interested in.

Such queries are translated into SQL queries with conjunctive selection conditions of the

form SELECT * FROM D WHERE X1 = x1 AND ... AND Xs = xs, where each Xi is

an attribute from A and xi is either 0 or 1. The set of attributes X = {X1, ..., Xs} ⊆ A is

known as the set of attributes specified by the query, while the set Y = A − X is known

as the set of unspecified attributes. Let Sel(Q) ⊆ {t1, , tn} be the set of tuples that satisfy

Q. Most web query interfaces are designed such that if Sel(Q) is very large, only the top-k

tuples from the answer set are returned, where k is usually a fixed constant such as 10 or

100. The top-k tuples are selected by a ranking function, which is either specified by the

user or defined by the system (e.g., in home search websites, a popular ranking function is

to order the matching homes by price). In some applications, there may not even be any

ranking function, and the system simply returns an arbitrary set of k tuples from Sel(Q).

These scenarios, where the answer set cannot be returned in its entirety, are called over-

flows. At the other extreme, if the system returns no results (e.g., the query is too specific)

an underflow occurs. In all other cases, where the system returns k or less tuples, we have

a valid query result.
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For the purpose of this work, we assume that when an overflow occurs, the user cannot

get complete access to Sel(Q) simply by scrolling through the rest of the answer list. The

user only gets to see the top-k results, and the website also notifies the user that there was

an overflow. The user will then have to pose a new query, perhaps by reformulating the

original with some additional conditions.

For most of the chapter, for ease of exposition, we restrict our attention to the case when

the front end interface restricts k = 1. I.e., for each query, either there is an overflow, or an

underflow, or a single valid tuple is returned. The case of k > 1 is discussed in Section 4.

The principal problem that we consider in this chapter is: given such a restricted query in-

terface, how can one efficiently obtain a uniform random sample of the backend database

by only accessing the database via the front end interface? Essentially the task is to de-

velop a hidden database sampler procedure, which when executed retrieves a random tuple

from D. Thus, such a sampler can be repeatedly executed an appropriate number of times

to get a random sample of any desired size.

Of course, since accessing the tuples of a hidden database uniformly at random is difficult,

such database samplers may not be able to achieve perfect uniformity in the tuple selection

process. To be able to measure the quality of the random samples obtained, we need to

measure how deviant is the sample distribution from the uniform distribution. More pre-

cisely, let the p(t) be the selection probability of t, i.e., probability that the sampler selects

tuple t from the database when executed once. We define the skew of the sample distribu-

tion as the standard deviation of these probabilities, i.e.,

skew =

√√√√∑
16i6n

(p(ti)− 1
n
)2

n

Next, we define the notion of efficiency of the random sampler. We will measure effi-

ciency by simply counting the total number of queries posed by the sampler to the front
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end interface in order to get a random sample of a desired size. Clearly, this notion of ef-

ficiency is rather simplistic for instance it assumes that all queries take the same time/cost

to execute. However, it is instructive to investigate sampling performance even with this

simplistic measure which we do in this work, and leave more robust efficiency measures

for future work.

Thus, our problem reduces to obtaining a random sample of a desired size with the least

skew in the most efficient way possible. As we shall see later, small skew and efficiency

are conflicting goals a very efficient sampler is likely to produce highly skewed samples

and vice versa. Indeed, as we shall see later, the samplers that we design do exhibit these

tradeoffs. In fact, the samplers that we develop have parameters that can smoothly tradeoff

skew against efficiency.

2.2.2 Random Walks through Query Space

In this sub-section, we develop a simple approach to designing such database sam-

plers. This approach is nave and inefficient, but it provides the foundation for the actual

algorithm that we develop in the next section.

Brute Force Sampler: One extremely simple algorithm that will produce perfect uniform

random samples is the BRUTE-FORCE-SAMPLER which does the following. Generate a

random Boolean tuple of m-bit, and query the interface to determine whether such a tuple

exists. I.e., the query will be a complete specification of all the tuple values, for which there

are two possible outcomes: either the query underflows, or else it returns a valid result. The

sampler repeats these randomly generate queries until a tuple is returned.

It is easy to see that this process will produce a perfect uniform random sample.

However, this is an extremely inefficient process, especially when we realize that the size

of most databases is much smaller that the size of the space of all possible tuples (i.e.,

n < 2m). Thus the success probability of BRUTE-FORCE-SAMPLER, i.e., the probabil-



13



         
  

     
          
         
       
     


          


         





         
         


       

       
         
           
          






        




            






          

        


         

            
       
       





          
            



         
       




     



 

 
 
        


 
      


      


 

       


         
        


       



 
      




 
    
         



   
   

   

   

   

   









 

  



 





631

Figure 2.1. Random walk through query space.

ity of reaching a valid tuple, is n/2m.To get a desired sample size of r, the expected number

of queries that will be executed is r ∗ (2m/n).

Random Walk View of Brute Force Sampler: An alternative view of this simple algorithm

which lays the foundations for the more sophisticated algorithm to follow later in the chap-

ter is to imagine a random walk through a binary tree in which the database tuples exist

at some of the leaves. To make this more precise, assume a specific fixed ordering of all

attributes, e.g. [A1A2...Am]. Consider Figure 2.1 which shows a database with three at-

tributes and four tuples, and a complete binary tree with 4(= m + 1) levels, where the

ith level (i 6 m) represents attribute Ai and the leaves represent possible tuples. The left

(resp. right) edge leading out of any internal node is labeled 0 (resp. 1). Thus, each path

from root to a leaf represents a specific assignment of Boolean values to attributes. Thus

the leaves represent combinations of all possible assignments of values to the attributes.

Note that only some of the leaves correspond to actual tuples in the database. In a real-

world database only a small proportion of the leaves will correspond to actual tuples, and
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vast majority of the remainder will be empty. The brute force sampler may be viewed as

executing a random walk in this tree. We start with the first attribute A1 and pick either

0 or 1 with equal probability. Next we pick either 0 or 1 as A2’s value and continue this

walk till we reach a leaf this tree. This random walk is essentially a random assignment of

values to all attributes i.e., it corresponds to the generation of a random query in the brute

force sampler described above. This randomly generated query is then fed to the interface,

which then either answers with a valid query, or fails (i.e. underflows).

2.2.3 Table of Notations

Table 5.3 lists all the notations that are used throughout the chapter (some of these

concepts will be introduced later in the chapter).

Table 2.1. Notations used in the Chapter

n Number of tuples in database
m Number of attributes in database
Sel(Q) Answer set of query Q, i.e., tuples that satisfy selection

condition of query
A1...Am Attributes of the database
p(t) Selection probability, i.e. the probability with which tuple

t gets selected by a random sampler
s(t) Access probability, i.e., the probability with which a tuple

is reached via a random walk
a(t) Acceptance probability, i.e., the probability with which a

tuple gets accepted into the sample, once it has been
reached by a random walk

d(t) Depth i.e. length of the shortest prefix of the path that
leads to t such that the corresponding query returns the
singleton tuple t

F Failure probability, i.e. the probability that a random walk
leads to an underflow and has to be aborted

S Success probability, = 1− F
C Scaling factor used to boost acceptance probabilities of all

tuples
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2.3 Random Walk based Sampling

In this section we develop the main ideas behind HIDDEN-DB-SAMPLER, our al-

gorithm for sampling the tuples of a database that is hidden behind a proprietary front end

query interface. In this section we assume Boolean databases only.

2.3.1 Improving Efficiency by Early Detection of Underflows and Valid
Tuples

We propose the following modification to BRUTE-FORCE-SAMPLER that signif-

icantly improves its efficiency. Assume that we have selected a fixed ordering of the at-

tributes. Instead of taking the random walk all the way until we reach a leaf and then

making a single query, what if we make queries while we are coming down the path? To

make this more precise, suppose we have reached the ith level and the path thus far is

A1 = x1;A2 = x2...Ai−1 = xi−1. Before proceeding further, we can execute the query that

corresponds to this prefix of the walk. If the outcome is an underflow, we can immediately

abort the random walk. If the outcome is a single valid tuple, we can select that tuple into

that sample. And only if the outcome is an overflow do we proceed further down the tree.

This situation is described in Figure 2.1. Note that if the algorithm proceeded along the

path [00], it will detect the valid tuplet1 and stop. Similarly, if it proceeded along the path

[1], it will detect the valid tuple t4 and stop. However, to detect the valid tuple t3, it has to

proceed along the path [011].

We discuss the impact of this proposed modification to BRUTE-FORCE-SAMPLER. Con-

sider a tuple t in the database. Define the depth d(t) of t to be the length of the shortest

prefix of the path that leads to t such that the corresponding query returns the singleton

tuple t. Thus for the example in Figure 2.1, d(t1) = 2, d(t2) = 3, d(t3) = 3 and d(t4) = 1.

For certain databases and for certain ordering of attributes, the following significant im-

provements can occur:
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• The average value of d(t) can be substantially smaller thanm, i.e., we will rarely have

to go all the way to the leaves. Likewise, the random walks that lead to underflows

can be fairly short.

• Moreover, the success probability (S) of a random walk leading to a valid tuple is

substantially larger than the brute force sampler.

For the example in Figure 2.1, the paths [00], [010], [011] and [1] lead to valid tuples

t1, t2, t3 and t4 respectively, whereas no paths lead to failure. Thus the success probability

is 1.

Of course, one has to remember that in the brute force sampler, each random walk is as-

sociated with only one query that is executed at the end of the walk, whereas in the early

detection approach we have to execute queries when visiting each node during a random

walk. In spite of this, the aggregated number of queries executed (for obtaining the same

sample size) in the latter is substantially smaller.

We now provide some theoretical justification as to why the success probability may be

substantially larger than that of the brute force sampler. Our theoretical results are limited

to certain simple i.i.d generated datasets (deriving success/failure probabilities for arbitrary

datasets appears to be substantially harder), but nevertheless they provide the inspiration

for our proposed algorithmic modification. Moreover, our experiments on a variety of real

as well as synthetic datasets (Section 6) also reinforce the advantage of this early detection

approach.

Consider a dataset D with n tuples having i.i.d. binary attributes with the probability of a 1

being p. Assume any arbitrary ordering of attributes, and consider a random walk starting

from the root of D. Let F (n, p) be the probability of a failure in the walk. We have the

following boundary conditions and recurrence for F (n, p):
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Theorem 2.3.1. Given an i.i.d. Boolean dataset with probability of 1’s being p, and any

ordering of attributes, we have

F (1, p) = 0

F (0, p) = 1

F (n, p) =
n∑
i=0

(
n

i

)
pi(1− p)n−iF (i, p)

Clearly, in a tree with one tuple the query will return the tuple, and success is certain,

while in a tree with no tuples failure is certain. For a tree with n rows with attribute

values independent and identically distributed, with the probability of a 1 being p, the

right branch (corresponding to the value 1) will have i nodes with the binomial probability(
n
i

)
pi(1− p)n−i, and the failure probability in the walk going to the right branch is F (i, p).

This concludes the proof of the theorem.

Note that if we interchange the values for the boundary conditions, we get an expression

for the success of a random walk. Figure 2.2 shows a MATLAB simulation of F (n, p)

as a function of n for various values of p. We observe that the failure probability is the

smallest for p = 0.5, but even for other values of p the probability of success is reasonably

high. The convergence of the curves for F (n, p) are to be expected: the third equation in

Theorem 2.3.1 is satisfied by any function F (n, p) that is constant with respect to n.

In contrast, note that the success probability of the brute force sampler (n/2m) is

significantly smaller because it depends upon m. Thus, early detection of underflows is

crucial in increasing the efficiency of the sampler.

However, this increased efficiency comes at a price, as skew is introduced in the sample

distribution. We discuss the issue of skew next, and how it can be controlled.

Aside: There is one further issue that merits discussion. While a random walk is in progress

and queries are leading to overflow, legitimate database tuples are being returned via the

query interface (recall that for each overflowing query, the system returns k tuples from

Sel(Q). However, these tuples are useless for assembling into a random sample because
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Figure 2.2. Failure probability in i.i.d. databases as a function of the number of tuples.

they have not been selected by a random procedure; they are either the top-k tuples with

the highest scores (in case a ranking function is used), or may even have been arbitrarily

picked by the system. Consequently they have to be ignored and the walk has to continue.

2.3.2 Reducing Skew and Random Ordering of Attributes

Early detection of underflows introduces skew into the sample. To see this, recall

from Table 5.3 that that s(t) is the access probability of tuple t, i.e., the probability that

tuple t is reached by a random walk (thus the selection probability, p(t) = s(t)/S where S

is the success probability of a random walk reaching any valid tuple). It is easy to see that

s(t) = 1/2d(t). But since there is variance among the depths at which the database tuples

are detected, there is variance among the values of s(t), which contributes to the skew. The

skew depends upon the specific database and the specific ordering of attributes used. For

the example in Figure 1, s(t1) = 1/4, s(t2) = 1/8, s(t3)=1/8 and s(t4)=1/2.

We first provide theoretical analysis that quantifies the skew for certain i.i.d. databases (as

before, we point out that analytical derivations of skew for general databases appears to

be extremely difficult). We follow this analysis with a discussion of techniques for signifi-
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cantly reducing skew without adversely impacting efficiency.

Quantifying Skew: Let D be an i.i.d. 0-1 database with n rows where the probability of

a 1 is 0.5. Assume any ordering of the attributes. For a tuple t, we shall refer to t(1...x)

as the prefix corresponding to the first x values of the tuple according to this order. Since

skew is defined as the standard deviation of p(t), and p(t) = s(t)/S, we basically need to

analytically derive the standard deviation of s(t).

Theorem 2.3.2. Given an i.i.d. Boolean dataset with p= 0.5 and any ordering of attributes,

we have

E[S] ≈ 1

2n ln 2

V ar(s) ≈ 3

4 ln 2(n2 + n)
− 1

4n2(ln 2)2

We will prove this theorem and at the same time provide some intuition for the distri-

bution of the probabilities Consider the distribution of the access probability of rows in the

i.i.d. model. Consider a row t in the database. Recall that the depth d(t) of t is the length

x of the shortest prefix t(1x) of t such that the query corresponding to this prefix returns

the singleton tuple t. Note that given the database D, the depth d(t) is a fixed quantity. We

analyze next the distribution of the depths of rows in the tree. Let q(x) be the probability

that a given tuplet in D has depth at most x. This happens if each of the other tuples u in

D differs from t in at least one of the positions 1...x, i.e., if for each u it is not the case that

u agrees with t on the x first positions, i.e., with probability (1 − 2−x). As the tuples are

independent, the probability that this happens for each of the n− 1 other rows in D is q(x)

= (1− 2−x)n−1. Thus the probability r(x) that the depth of a tuple t is exactly x is

r(x) = q(x)− q(x− 1) = (1− 2−x)n−1 − (1− 2−x+1)n−1

Figure 2.3 shows a MATLAB simulation of the distribution of r(x) for different val-

ues of n. We see that while most of the depths of the nodes are strongly concentrated around
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Figure 2.3. The prob r(x) of random row having depth x in an i.i.d. database p = 0.5.

log(n), there still are a considerable number of rows for which d(t) differs a lot from the

mean. As s(t) = 2−d(t), such differences translate to large differences in the sampling

probabilities.

The access probability s(t) = 2−d(t) is the probability of producing a query string that

agrees with t for d(t) positions.

Thus the probability that a tuple is selected depends very strongly on its depth, and the

sampling procedure has a strong bias towards rows with small depth, i.e., towards tuples

that are separated from others by short query prefixes.

We now leverage the relationship between the aggregate of the access probabilities and the

failure probability of the database. It is easy to see that

∑
t∈D

s(t) = 1− F (n, p)

This is because the probability that the walk terminates one of the valid tuples is ex-

actly 1− F (n, p). Thus,
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t∈D

s(t) = 1− F (n, p) =
∞∑
x=0

nr(x)2−x

=
∞∑
x=0

n(q(x)− q(x− 1))2−x (2.1)

This gives a non-recursive expression for F (n, p). The values computed from (2.1)

correspond exactly to the values obtained from Theorem 2.3.1. An asymptotic analysis of

(2.1) can be done by replacing sums with integrals; we thus obtain

∑
t∈D

s(t) =
∞∑
x=1

r(x)2−x

≈
∫ inf

1

(q(x)− q(x− 1))2−x dx = (2 ln 1)−2 ≈ 0.7213

This is in good agreement with Figure 2.2. Thus the expected value of the access probabil-

ity is,

E[s] = (1/n)
∞∑
x=1

r(x)2−x ≈ (2n ln 2)−1

The variance of s(t) can also be evaluated. After some simplifications we obtain,

E[S2] =
∞∑
x=1

r(x)2−2x ≈
∫ inf

1

(q(x)− q(x− 1))2−2x dx

=
3

4 ln 2
(n2 + n)−1

and
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V ar[s] = E[s2]− E[s]2 =
3

4 ln 2(n2 + n)
− 1

4n2(ln 2)2

This concludes the proof of Theorem 2.2. The analysis shows that for i.i.d. data with

p = 0.5, and for any ordering of attributes, the deviation Std[s] of s is very close to E[s].

As a MATLAB simulation shows in Figure 2.4, the relative skew is about 1, which is

significant.

 
Figure 2.4. The ratio Std[s]/E[s] as a function of the number of nodes.

Although Theorem 2.3.2 has been derived for specific i.i.d databases, the flavour of

the result has been corroborated by our experiments on a variety of datasets, which show

that samples collected by the random sampler modified with early underflow detection ex-

hibit skew. Therefore the task ahead of us is to develop additional techniques that reduce

the skew and yet do not adversely impact efficiency. We discuss these techniques next.

Reducing Skew by Random Ordering of Attributes: In our efforts to reduce skew, we

observe the importance of a having a favorable ordering of attributes that reduces the vari-

ance of s(t) (or equivalently, of p(t)). If the variance in the length of each walk is small



23

the skew in the s(t) will also be small. A very simple approach that we adopt is to preface

each random walk with a random ordering of the attributes, and use the resultant ordering

to direct the random walk. In our case, the intuition behind random orderings of attributes

is as follows. For a fixed ordering, the depth of a tuple, d(t), is fixed. If d(t) is large, then

s(t) is large, and therefore t is less likely to be reached by a random walk, whereas if d(t)

is small, then s(t) is small, and t is more likely to be reached. With random orderings of

attributes, s(t) for a tuple t now becomes a random variable whose expected value is much

closer to the average value of the access probabilities of all tuples.

In fact, as we theoretically analyze below, it can be shown for i.i.d. datasets with p = 0.5,

if we employ random orderings before initiating random walks, the variance of the access

probabilities of all tuples turns out to zero, i.e., there is no skew in the sampling process.

We caution that this theoretical result does not extend to more general datasets (e.g., when

p is different from 0.5, or correlated for datasets), and thus only serves as in inspiration to

adopt random orderings in our sampler. However our experiments (Section 6) on a variety

of real and synthetic databases make it amply clear that random reordering does indeed

reduce skew, sometimes dramatically so, without any appreciable decrease in performance.

Consider a i.i.d Boolean dataset with p = 0.5. Now consider the sampling algorithm in

the case when the attributes are randomly reordered for each random walk. In this case the

depth d(t) of a row t is a random variable, and the access probability s(t) for t is obtained

by two randomizations: the first is the selection of the random ordering of the attributes,

and the second is the random walk determined by the random selection of values in the

query.

Theorem 2.3.3. Given an i.i.d. Boolean dataset with p = 0.5 and a random sampler with

random reordering of attributes as well as early termination, the resulting skew = 0.
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The key observation is the following. As in Theorem 2.3.2, denote by r(x) the prob-

ability that a random tuple has depth x in an i.i.d. database; earlier we derived a simple

expression for r(x). Let then r(x) be the probability that a fixed tuple has depth x, when

the probability is taken over random reorderings of the attributes. We have r(x) = r(x) by

the i.i.d. property: a fixed tuple t has depth in a random reordering of the attributes exactly

with probability r(x). (I.e., as functions from 0, 1, 2, ... to nonnegative reals, the functions

r and r are identical.).

In a random walk with a fixed ordering of the attributes the probability that a fixed tuple

t will be reached is 2−d(t), which for most tuples is different from the uniform value of

(1− F (n, p))/n. However, in a randomly reordered run the probability that the fixed tuple

t is reached is,

∞∑
x=0

r′(x)2−x =
∞∑
x=0

r(x)2−x =
(1− F (n, p))

n

i.e., the randomly reordered random walk produces unskewed results. This concludes the

proof of Theorem 3.

The result that random reordering leads to unskewed sampling in the i.i.d. case does not

hold for arbitrary databases. For example, suppose that there is a specific tuple t such

that uinD|u(i) = 1, 1 6 i 6 m/2 = t, i.e., tuple t is the only tuple having a 1 for half of

the attributes. Then any random ordering will, with high probability, include one of these

attributes early on, and thus there is an overwhelming bias towards selecting row t. Thus,

in general, we need the acceptance/rejection method that will be discussed next.

2.3.3 Reducing Skew and Acceptance/Rejection Sampling

In this section we introduce yet another idea that serves to reduce skew. Thus far,

we had assumed that whenever a tuple is reached via a random walk, it is accepted into the



25

sample. But we know that the probability of reaching a tuple varies from tuple to tuple,

depending on the depth at which the tuple is uniquely identified. However, we know that

skew is the result of variance among the access probabilities, even after performing random

reorderings of attributes followed by random walks. To counter this skew, we propose

rejection sampling, a procedure by which tuples are probabilistically accepted or rejected

once they have been reached by the random walk. In other words, rejection sampling is

used to compensate for the deviation in the access probabilities. We make this idea precise

as follows. Consider tuple t that is reached by a random walk. For that specific order of

attributes, its access probability is s(t) = 1/2d(t). Let us define a(t) as the acceptance

probability for tuple t, i.e., once t is reached, it is accepted with probability a(t). Thus, the

overall probability of selecting tuple t (for that specific ordering of attributes) is,

s(t) × a(t) = a(t)/2d(tt). So what is an appropriate value for a(t)? Since our goal is to

make the probability of selecting a tuple the same for all tuples (i.e., skew = 0), this can be

achieved if we make a(t) proportional to 2d(t). However, since a(t) is a probability, we have

to ensure that it is between 0 and 1. One seemingly reasonable setting is a(t) = 2d(t)/2m,

which is guaranteed to be between 0 and 1 since 1 6 d(t) 6 m. This way, we can ensure

that the probability of selecting t is 1/2m, i.e., the same for all tuples. Clearly, we will

now be able to produce a sample without any skew, since this probability is the same for

all tuples. However, we have reintroduced inefficiency into the sampler, since even though

our random walks stop early, most of the time the destination tuple gets rejected, leading

to wasted walks. Fortunately, we observe that it is not necessary to set the acceptance

probabilities to be that small. Consider Figure 2.5 which shows a binary tree for a specific

ordering of attributes. Notice that tuples are reached or uniquely identified at different

depths.

Suppose we knew dmax, the largest value of d(t) over all possible trees (corre-

sponding to all possible attribute orders) and all tuples. It is easy to see that setting
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Figure 2.5. Different Depths.

a(t) = 2d(t)/2dmax would also produce unbiased samples, but possibly more efficiently

than described above, in case dmax is smaller than m. However, dmax may still be very

large, rendering the approach inefficient. Moreover, it is unrealistic to assume that dmax

is known (or can be easily computed) beforehand. To overcome these problems, we adopt

the approach described next.

Boosting Acceptance Probabilities by Scaling Factor

We adopt the compromise approach where we boost the acceptance probabilities of each

tuple by a Scaling Factor C. Let C be a constant ≫= 1/2m. We define a(t) as,

a(t) = min(C2d(t), 1)

Let us discuss the impact of C on the sampling process. If C 6 1/2dmax then we would

still have un-skewed samples. However, if C 1/2dmax, then there is a chance that some

tuples that get identified after very long walks will get accepted with probability 1 (the min

operator is required in the definition of a(t) above to guarantee that it remains a probabil-

ity), thus introducing skew into the sample. Larger the C, more the chances of such tuples

entering the sample and thereby increasing skew. On the other hand, a large skew increases

efficiency, as the acceptance probabilities are boosted by C. Thus we may regard C as a
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convenient parameter that provides tradeoffs between skew and efficiency.

How do we estimate a suitable value for C? Recall that random ordering of attributes is the

primary mechanism for reducing variance among the access probabilities. Based on our

experimental evidence, it appears that setting C to be 1/2d, where d is somewhat smaller

than the the average depth at which tuples get uniquely identified, will work well. This

can be done adaptively where the average tuple depth is learned as more and more random

walks are accomplished.

2.3.4 Algorithm HIDDEN-DB-SAMPLER

In summary, we have suggested three ideas that can improve the performance of

BRUTE-FORCE-SAMPLER, and which we adopt in our HIDDEN-DB-SAMPLER: These

ideas are (a) early detections of underflow and valid tuples, (b) random reordering of at-

tributes, and (c) boosting acceptance probabilities via a scaling factor C. Thus, three ran-

dom procedures must be followed, in sequence, before a tuple get accepted into the sample.

Algortihm 1 gives the pseudo-code of HIDDEN-DB-SAMPLER for Boolean databases.

2.4 Extensions

The algorithm we developed in Section 3 was for the simplest scenario, where the

database was Boolean and the number of returned tuples was at most 1. In this section we

extend the algorithm to work for more general scenarios.

2.4.1 Generalizing for k > 1

Most front end interfaces return more than one tuple, and k is usually in the range of

10-100. It is fairly straightforward to extend HIDDEN-DB-SAMPLER for more general

values of k. In fact, when k is large, the efficiency of the algorithm actually increases.
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Algorithm 1 HIDDEN-DB-SAMPLER for Boolean Databases
1: random permutation [A1A2...Am]

2: Q⇐ {}

3: for i = 1 to m do

4: xi = random bit 0 or 1

5: Q = Q AND (Ai = xi)

6: Execute Q

7: if underflow then

8: go to 1

9: else if overflow then

10: continue

11: else

12: t = Sel(Q) /*when k = 1, Sel(Q) has one tuple*/

13: Toss coin with bias

14: min(C ∗ 2i, 1)

15: if head then

16: return t

17:

18: goto 1

19: end if

20: end if

21: end for
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Essentially, the algorithm is the same as before, but the random walk terminates either

when there is an underflow, or when a valid result set is returned (say k 6 k tuples). One

can see that in the latter case the termination is at least log(k) levels higher. Once these k

tuples are returned, the algorithm picks one of the k tuples with probability 1/k. I.e., the

access probability of the tuple that gets picked is therefore,

s(t) =
1

k′2d(t)−1

Then, the tuple is accepted with probability a(t) where,

a(t) = min{Ck′2d(t)−1, 1}

where C is a scale factor that boosts the selection probabilities to make the algorithm effi-

cient.

2.4.2 Categorical Databases

We define a categorical database to be one where each attribute Ai can take one of

several values from a multi-valued categorical domain Domi. Many real-world databases

have categorical attributes, and most front end interfaces reveal the domains of each at-

tribute - usually via drop down lists in query forms. Most of the algorithmic ideas remain

the same as for the Boolean database, the only difference being that the fan out at a node

at the ith level of the tree is equal to the size of Domi. The random walk selects one of the

| Domi | edges at random. The access probability for tuple t is therefore defined as

s(t) =
1∏

16i6d(t)

| Domi |

The rest of the extensions to the algorithm are straightforward. However, a crucial

point is worth discussing here. If the domain sizes of the attributes are more or less the

same, then the random ordering of attributes plays an important role in reducing skew.
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However, if there is large variance among the domain sizes e.g., in a restaurants database

for a city, there may be attributes with large domains such as zipcode, along with a at-

tributes with small domains such as cuisine the fixed order of sorting the attributes from

smallest to largest domains produces smaller skew compared to random orderings. This is

because for this specific fixed order, since most of the small domain values have numerous

representative tuples, most of the walks proceed almost to the bottom of the tree before the

walk can uniquely identify these tuples. Hence the variation in depth is small. In contrast,

if a large domain attribute such as zipcode appears near the top of the tree in a random or-

der, the walk will encounter quite early sub-trees that contain very few tuples. Thus some

of the walks will terminate much faster and the depths will have more variance. Likewise,

the inverse argument says that ordering the attributes from largest to smallest domains will

be more efficient but will produce larger skew. In our experiments (Section 6) we include

some results involving real-world categorical databases.

2.4.3 Numerical Databases

Real-world databases often have numerical attributes. Most query interfaces reveal

the domain of such attributes and allow users to specify numeric ranges that they desire

(e.g., a Price column in a homes database may restrict users to specifying price ranges

between $0 and $1M).

If we can partition each numeric domain into suitable discrete ranges, our random sampler

can work for such databases by treating each discrete range as a categorical value. However,

there is a subtle problem that must be overcome: the discretization should be such that that

each tuple in the database is unique in the resulting categorical version of the database. If

the discretization is too coarse such that more than k tupes have identical representations in

the categorical version, then we cannot guarantee a random sample because some of these

tuple may be permanently hidden from users by an adversarial interface.
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An alternate approach is to not discretize numeric columns in advance, but to repeatedly

keep narrowing the specified range in the query during the random walk. We make this

more precise as follows. For simplicity, consider a one-column database that has just one

numeric attribute, A. We can divide the domain of A into two halves, randomly select one

of the halves, and pose a query using this range. If there is an overflow, we can further

divide this range into two, and select one at random to query again. One can see that this

way we shall eventually be led to a valid tuple. This approach can be easily extended to a

multiple numeric attributes as follows. While the walk is progressing, a random attribute

is selected, including attributes already selected earlier. If we select an attribute selected

earlier, then we split its most recent queried range into two and pick one of the halves at

random to query.

This approach has the following disadvantage. Note that if the numeric data distribution

is spatially skewed (e.g, for a numeric attribute with domain [0, 1], the value of one tuple

may be 0, and the values of the remaining n− 1 tuples may be (1, 1− ε, 1− 2ε...), then the

first tuple will be selected for the sample with much higher probability than the remaining

tuples. One way of compensating for this effect is to dynamically partition the most recent

queried range into several ranges instead of just two halves, and then pick one of the ranges

at random. In general, an interesting open problem is how many queries in this query model

are needed to obtain an approximation to the probability density function of a real-valued

attribute.

2.4.4 Interfaces that Return Result Counts

Some query interfaces return to the user the top-k results, and in addition the total

count of all tuples that satisfy the query condition, | Sel(Q) |. E.g., most web search

engines will return the top-k web pages, but also reports the size of the result set. We

show how random sampling via such an interface can be done optimally without intro-
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ducing skew. For simplicity, assume a Boolean database. Assume any ordering of the

attributes. For each node u of the tree, let n(u) represent the number of leaves in the

sub-tree rooted at u that correspond to actual tuples. In this scenario, a weighted random

walk can be performed which is guaranteed to reach an actual leaf tuples on every at-

tempt. Starting from the root, and at every node u, we select either the left or right branch

with probability n(left(u))/n(u) and n(right(u))/n(u) respectively. These cardinalities

can be retrieved by making appropriate queries via front end interface, At every node,

edges are given weights to represent the density of their underlying subtree. Moreover,

n(left(u))/n(u) + n(right(x))/n(x) = 1. It is thus not hard to see that the selection

probability of each tuple is 1/n, thus guaranteeing no skew.

2.4.5 Interfaces that only Allow Positive Values to be Specified

Some web query interfaces only allow the user to select positive Boolean values. For

example, a database of homes typically has a set of Boolean attributes such as a Swimming

Pool, 3-Car Garage and so on, and the user can only select a subset of these features to

query. Thus, there is no way a user can request for houses that do not have swimming

pools be retrieved.

While such interfaces are quite common, it is not always possible to collect a uniform

random sample from such databases. Consider a tuple t1 that dominates another tuple t2,

in the sense that for attributes that have value 1 in t2, the corresponding attributes in t1

are also 1. If k = 1, then t2 can be permanently hidden from the user by an adversarial

interface that always prefers to return t1 instead of t2. The only way to solve this problem

is to assume that no tuple dominates more than k other tuples.
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2.5 Related Work

Traditionally database sampling has been used to reduce the cost of retrieving data

from a DBMS. Random sampling mechanisms have been studied in great detail e.g., [2–6].

Applications of random sampling include estimation methodologies for histograms and ap-

proximate query processing using techniques (see tutorial in [7]).

However, these techniques do not apply to a scenario where there is an absence of direct

access to the underlying database. A closely related area of sampling from a search en-

gines index using a public interface has been addressed in [8] and more recently [9]. The

technique proposed by [9], introduces the concept of a random walk on the documents on

the World Wide Web using the top-k results from a search engine. However, this document

based model is not directly applicable to hidden databases. In contrast to the database sce-

nario, the document space is not available as a direct input in the web model. This leads

to the use of estimation techniques which work on assumptions of uniformity of common

words across documents. Random sampling techniques on graphs have been implemented

using Markov Chain Monte Carlo techniques, e.g., Metropolis Hastings [10,11] techniques

and Acceptance/Rejection technique [12].

Hidden databases represent a major part of the World Wide Web and are commonly re-

ferred to as the hidden web. The size and nature of the hidden web has been addressed

in [1, 13–15]. Probing and classification techniques on textual hidden models have been

addressed by [16] while techniques on crawling the hidden web were studied by [17].

2.6 Experimention and Results

In this section, we describe our experimental setup, and our results using the HIDDEN-

DB-SAMPLER and draw conclusions on the quality and performance of our technique.

The results from a related model proposed by Bar-Yossef et. al. [BG06] for sampling web
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pages are also compared with our approach.

Hardware All experiments were run on a machine having 1.8 Ghz P4 processor with 1.5

GB RAM running Fedora Core 3. All our algorithms were implemented using C++ and

Perl.

Implementation and Setup We ran our algorithm on two major groups of databases. The

first group comprised of a set of small Boolean datasets with 500 tuples and 15 attributes

each. (Small datasets makes it relatively easy to measure skew, because we can run the sam-

pler millions of times, and measure the frequencies with which each tuple gets selected.)

Several such datasets with varying proportions of 1 and 0 were synthetically generated. We

defined p as the ratio of 1s in a Boolean set. For brevity, we have focused on i.i.d. data with

p = 0.5 and p = 0.3 in addition to a mixed dataset with varying proportions of 1s (p = 0.5,

0.3 and 0.2) combined vertically and horizontally with varied proportions. A real dataset

of 500 tuples manufactured using real data crawled from the Yahoo Autos website was also

used. This was used to demonstrate the effectiveness of our methods for non-i.i.d. (i.e.,

correlated) data. The other group comprised of large datasets of sizes between 300,000 to

500,000 each. These datasets were primarily used for performance experiments. Some of

them were synthetically generated in a similar manner, with the exception of a real world

dataset on restaurants information collected from www.yellowpages.com. The real dataset

consisted of information on various restaurants with 10 attributes like price, cuisine, dis-

tance, ratings, etc having varying number of states (largest=25, smallest=5). All numerical

attributes were grouped into finite ranges and categorized. To speed up execution, we simu-

lated the interface and database retrieval by storing the data in main memory. The interface

was used to look up top-k matches to a specific query. Different top-k values were also

used to measure the change in performance. All execution and retrieval were done from
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main memory. These datasets with their associated interfaces were used to run experiments

on the quality and performance of our technique.

Parameters We had defined skew as the standard deviation over the selection probabilities

in Section 2.1. In all the experimental results described below, we actually discuss relative

skew, which is skew times the size of the dataset. As discussed above, this measure is eas-

ily verifiable for small datasets. Unfortunately, it is not practical to measure skew for large

datasets, because that would require running the sampler many times more than the size

of the large datasets. Thus, for large datasets, we define a new variant of skew where we

compared the marginal frequencies of a few selected attribute values in the original dataset

and in the sample:

MarginalSkew =

√√√√√∑v∈V1− pS(v)

pD(v)


| A |

Here V is a set of values with each attribute contributing a representative value, and pS(v)

(resp. pD(v)) is the relative frequency of value v in the sample (resp. dataset). The intuition

is that if the sample is a true uniform random sample, then the relative frequencies of any

value will be the same as in the original dataset. Quality measurements for a small number

of samples generated from a large dataset were done using this measure. Efficiency (or

performance) was measured by counting the number of queries that were executed by the

sample to reach a certain desired sample size.



36

2.6.1 Experiments on Quality

2.6.1.1 Small Databases

The HIDDEN-DB-SAMPLER was first run on the small datasets to generate a very

large number of samples (around 300,000 samples were collected from the 500 tuple

datasets). Two types of experiments were run here. First, we considered fixed ordering

of the attributes in our datasets. We tried out several fixed orderings. Next, a random

ordering was used for selecting attributes at every level in the walk. Next the idea of ac-

ceptance/rejection sampling was introduced. We begin by using the best value of the path

that corresponds to the longest walk on the query space to accept tuples. Since a very large

number walk are run for a small dataset, we could find the depth of the longest walk. The

scaling factor C was then introduced. C was varied starting from the value corresponding

to the longest walk and then progressively increased till we reached a point where the im-

pact of C became ineffective and all tuples that were reached by the walks were getting

accepted.

Figure 2.6 shows the results of these experiments. We observed that the random

ordering of attributes does much better than any of the fixed orderings that we tried. This

corroborates our previous analysis on the effectiveness of random ordering to improve qual-

ity. Moreover, for all cases as C was increased the value of skew got larger. This indicates

the tradeoff in terms of skew while estimating C. Finally, the algorithm produced smaller

skew in the case of p = 0.5 compared to the dataset with p = 0.3. (The theoretical skew

for p = 0.5 should be zero, but the non-zero skew that was observed was an artifact of

the sampling process). Figures 2.7 and 2.8 shows similar behavior for mixed data and

correlated data.
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Figure 2.6. Effect of Scaling Constant C on Skew for small datasets.
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Figure 2.7. Effect of Scaling Constant C on Skew for Mixed Data.
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Figure 2.8. Effect of C on skew for Correlated data.
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Figure 2.9. Marginal Skew v/s C for synthetic large data.

2.6.1.2 Small Databases

We ran our experiments on synthetic large databases. In this scenario we limited

our random walks to collect 5000 samples. Marginal Skew was used to measure quality.

Marginal frequencies over all the 1 values of the attributes were collected in both the sample

as well as the dataset. Figure 2.9 (p = 0.3) represents the change in marginal skew for

various values of the scaling constant C, for random ordering and a specific fixed ordering.

As C increases, the marginal skew increases for both fixed and randomly ordered attributes

with random ordering producing better results compared to any fixed ordering that we tried.

We observe a similar trend as in small datasets. In contrast to these Boolean scenarios, the

quality results from our experiments on the real world categorical database indicate lower

marginal skews for the fixed order of attributes from (smallest domains to largest domains).

In the categorical scenario, most of the attributes have small domains, and only very few

have large domains. Thus, most of the walks proceed almost to the bottom of the tree since

most of the small domain values have numerous representative tuples.
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Figure 2.10. Marginal Skew based measure for real large data.
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Figure 2.11. Performance of HIDDEN-DB-SAMPLER for a top-1 query interface.

2.6.2 Experiments on Performance

2.6.2.1 Small Databases

We measure performance as the amount of work done with respect to the number

of queries issued to the number of samples retrieved. This metric is used over all our

performance experiments. Figure 2.12 indicates the queries versus sample size tradeoffs

for a small mixed dataset. This experiment shows that the performance of fixed ordering

is dependent on the specific ordering used (sometimes it performs better and sometimes

worse w.r.t. random ordering). Figure 2.13 indicates the increase in efficiency of our
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random order random walks when k in top-k is increased from a restrictive top-1 scenario.

By increasing k we allow the random walks to terminate at a comparatively higher level in

the query tree. Thus, performance improves as k is increased.

2.6.2.2 Large Databases

Figure 2.14 shows the number of queries v/s sample size for a 500,000 tuple database

with p = 0.3. As with the small datasets the performance of fixed order depends on the

specific order used and was often worse than randomly ordered attributes. The situation for

our categorical large dataset is however different (Figure 2.15). Performance is optimal for

a fixed ordering of attributes in this scenario where the attributes with the largest domains

are placed before the smaller ones. If the variance of attribute states is high as is in our case,

the very first step of the random walk may reach sub-trees that contain very few tuples, and

thus some of the walks will terminate much faster compared to other orders. Thus, when

the variance in attribute states is high this type of an arrangement yields better performance.
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Figure 2.12. Performance of HIDDEN-DB-SAMPLER for a top-1 query interface.

Performance V/S Quality

Figure 2.16 depicts a comparative view of skew versus number of queries for various values



41













         
        
        
        
         







         




           


       

          
   
    


 

























    










































   































    




































    




















639

Figure 2.13. Effect of varying top-k on performance.
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Figure 2.14. Performance for synthetic dataset with p = 0.3.
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Figure 2.15. Marginal Skew based measure for real large data.
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of C. The best performance and quality yield is when C is estimated without any error. As

the estimation of C looses its accuracy, performance and quality goes down.
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Figure 2.16. Performance versus Quality measure .




   
























   

































 






     
          
      

   

          
 
        

      






















    























































 

        
         
    
        
        
        
      



 




 



 



 



 
 




 



 



 






























640

Figure 2.17. Quality Comparisons.

HIDDEN-DB-SAMPLER versus Metropolis-Hastings Sampler

A comparative scenario between the HIDDEN-DB-SAMPLER and a competitor suggested

by [BG 06] for sampling the index of search engines using Metropolis Hastings technique

was evaluated (Figure 2.17). We implemented this technique on a small mixed Boolean

dataset with a top-50 interface. A burn in period of 10 hops was used. The Random Walk

based sampler suffered from an inherent skew in that it estimates a rejection sampling phase
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on the basis of the number of queries that it can form of a single document (our equivalent

to a tuple). However, this approach does not work well for the hidden database model since

unlike the document model; the space of queries does not differ for individual tuples in the

database.

2.7 Conclusion

In this work we initiate an investigation of the problem of random sampling of hidden

databases on the web. We propose random walk schemes over the query space provided

by the interface to sample such databases. A major contribution of this work is also a

theoretical analysis of the quantitative impact of our ideas on improving efficiency and

quality of the resultant samples. We also describe a comprehensive set of experiments that

demonstrate the effectiveness of our sampling approach.



CHAPTER 3

LEVERAGINING COUNT INFORMATION IN SAMPLING
HIDDEN DATABASES

3.1 Introduction

3.1.1 Hidden Databases

A large portion of data available on the web is present in the so called “deep web”.

The deep web consists of private or hidden databases that lie behind form-like query inter-

faces. These query interfaces allow external users to browse these databases in a controlled

manner. Typically users provide inputs in the form interface which are then translated into

SQL queries for execution and the results provided to the user on the browser.

We focus on two of the simplest and most widely prevalent kind of query interfaces.

The first kind of interfaces allows users to specify range conditions on various attributes

- however, instead of returning all satisfying tuples, such interfaces restrict the returned

results to only a few (e.g., top-k) tuples, sorted by a suitable ranking function. Along with

these returned tuples, the interface may also alert the user if there was an “overflow”, i.e., if

there were other tuples besides the top-k that also satisfied the query conditions but were not

returned. We refer to such interfaces as TOP-k-ALERT interfaces. Examples include MSN

Stock Screener ( http://moneycentral.msn.com/investor/finder/customstocksdl.asp) which

has k = 25 and Microsoft Solution Finder (https://solutionfinder.microsoft.com/Solutions/-

SolutionsDirectory.aspx?mode=search) which has k = 500. The second kind interfaces

that we consider are similar to the above, except that instead of simply alerting the user of

an overflow, they provide a count of the total number of tuples in the database that satisfy

the query condition. We refer to such interfaces as TOP-k-COUNT interfaces. An example

44
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is MSN Careers ( http://msn.careerbuilder.com/JobSeeker /Jobs/JobFindAdv.aspx) which

has k = 4000.

3.1.2 The Problem of Sampling from Hidden Databases

There has been interesting recent focus on the problem of sampling from hidden

databases [18]: given such restricted query interfaces, how can one efficiently obtain a uni-

form random sample of the backend database by only accessing the database via the public

front end interface? Database sampling is the process of randomly selecting tuples from

a database and is useful in gathering statistical information about the data. Likewise, ran-

dom samples from hidden databases can be extremely useful to third-party applications in

obtaining insight into the hidden data. However, sampling from hidden databases presents

significant challenges as the only view available into these databases is via the proprietary

interface that allows only limited access. Thus traditional database sampling techniques

that require complete and unrestricted access to the data (e.g., [2, 3]) cannot be easily ap-

plied. In [18] an interesting approach named HIDDEN-DB-SAMPLER was proposed for

sampling from hidden databases with TOP-k-ALERT interfaces. The approach was based

on a random drill-down over the space of all queries executable via the form interface,

starting with an extremely broad (therefore overflowing) query, and iteratively narrowing it

down by adding random predicates, until a non-overflowing query is reached. Once such a

non-overflowing query is reached, one of the returned tuples is randomly picked for inclu-

sion into the sample. This process can be repeated to get samples of any desired size. The

chapter proposed several variants of HIDDEN-DB-SAMPLER, depending on whether the

database consisted of only Boolean attributes or also included categorical attributes. While

much of the work was devoted to sampling from TOP-k-ALERT interfaces, a simple ap-

proach for sampling from TOP-k-COUNT interfaces was also proposed.
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3.1.3 Outline of Technical Results

In this chapter we revisit the hidden database sampling problem, and present vastly

superior sampling techniques than those proposed in our preliminary work [18]. Unlike

our earlier work, our main focus here is on the TOP-k-COUNT interface. However, we

also show how a novel hybrid technique can be utilized to also extend our techniques to

TOP-k-ALERT interfaces. We briefly describe our new contributions below.

There are two main objectives that any hidden database sampling algorithm should

seek to achieve:

• Sample bias: Due to the restricted nature of the interface, it is challenging to pro-

duce samples that are truly uniform random samples. Consequently, the task is to

produce samples that have small bias, i.e., samples that deviate as little as possible

from uniform.

• Efficiency: We measure efficiency of the sampling process by the number of queries

that need to be executed via the interface in order to collect a sample of a desired size.

The task is to design an efficient sampling procedure that executes as few queries as

possible.

Our Algorithm for TOP-k-COUNT Interfaces: We first discuss our results for TOP-k-

COUNT interfaces. As was briefly described in [18], it is fairly straightforward to design a

random drill-down procedure that produces samples without any bias. However, the proce-

dure suffers from poor efficiency - it has to execute an inordinate number of queries before

obtaining reasonable sized samples. In the current chapter we have carefully investigated

this problem, and have designed COUNT-DECISION-TREE, a vastly more efficient algo-

rithm. This is one of the principal results of our work.

The new procedure COUNT-DECISION-TREE is based on two main ideas. The

first idea is to continuously log the query history while the sampling is in progress - i.e.,
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record (as materialized views) all executed queries and their returned counts. We then

design a sampling procedure that tries to leverage the query history as much as possible,

where in preparing the next query to execute, preference is given to queries that already

appear in the query history, thereby replacing a costly query execution with a fast local

look-up at the client’s end. In fact, utilization of query history offers opportunities of query

inference in addition to simple reuse - the former refers to queries that may not have been

directly executed in the past, but whose counts can be inferred from the ones that have

been executed. In the chapter, we carefully explore our idea of logging query history, and

provide both a theoretical analysis of the number of queries saved by this approach, as well

as substantial experimental evidence to corroborate our analytical findings.

The second idea is to generalize the notion of attribute ordering used in [18] to that

of a decision tree. In the earlier work, the random drill-down procedure was guided by an

ordering of the attributes, such that each new predicate selected for narrowing the query

involved a random value of the next attribute present in the attribute order. For the case of

TOP-k-COUNT interfaces, it was suggested that any specific attribute order was adequate

for obtaining unbiased samples. In the current chapter, we make non-trivial enhancements

to this simplistic scheme to obtain unbiased samples, but with significant performance im-

provements. Our new approach may be considered as the execution of multiple random

drill-down procedures (where each such procedure results in the selection of a random

sample tuple) except that we always adhere to following paths down a decision tree. In

this chapter, a decision tree over the database tuples is a tree where all internal nodes are

attributes, all leaf nodes are tuples, and each edge leading out of a node is labeled with a

unique value from that attribute’s domain, along with a transition probability proportional

to the number of leaf tuples that can be reached by following that edge. This transition

probability is used to select the edge during random drill-down. Each path from the root to
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a leaf encounters a subset of the attributes in the interface, but the same attribute is never

repeated along a path.

Clearly the use of a decision tree is a generalization over using any fixed attribute

order - the latter essentially refers to a decision tree that has the same attributes at any given

level of the tree. More importantly, while any legitimate decision tree can be used to obtain

unbiased samples, the challenge is in designing a decision tree that achieves the maximum

efficiency. This problem is complicated by the fact that this tree cannot be created in its

entirety, as complete access to all database tuples is impractical; thus this tree has to be

built and used on-the-fly, i.e., while the sampling is in progress. Thus if we take a snapshot

at any time during the sampling process, we will essentially have created a partial decision

tree, with only a few paths extending all the way to the leaves (corresponding to those

tuples that have been included in the sample thus far).

Our investigations of such an optimal decision tree-based approach led to several

interesting technical results. A theoretical study revealed interesting connections with the

seemingly unrelated NP-hard problem of entity identification in the design of interactive

question-answering systems [19]. Thus we show that drawing samples in an optimal man-

ner using the decision tree approach is computationally intractable. However, our COUNT-

DECISION-TREE algorithm is based on a carefully designed heuristic for incrementally

building an efficient decision tree while the sampling is in progress, with the goal being

that the remaining samples can be obtained in as few queries as possible. This heuristic is

based on the online computation of a savings function that attempts to select new queries

that: (a) leverage the query history and try to reuse as many past queries as possible, and

(b) have the best chance of reaching a random tuple as quickly as possible. Although pri-

marily a heuristic, we are able to provide important analytical arguments as to why such

a heuristic is expected to do well. Our experiments corroborate our conceptual and ana-

lytical arguments to show that COUNT-DECISION-TREE is an order of magnitude more
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efficient than the previous algorithm presented in [18] for drawing random samples from a

TOP-k-COUNT interface.

Our Algorithm for TOP-k-ALERT Interfaces: We next discuss our results for TOP-k-

ALERT interfaces. Unlike TOP-k-COUNT interfaces, it is quite difficult to draw a random

sample from a TOP-k-ALERT interface without introducing bias into the resultant sample.

In fact, bias and efficiency are contradictory goals, and the earlier algorithm HIDDEN-

DB-SAMPLER in [18] is actually a parameterized procedure which trades off bias against

efficiency. In the current chapter we propose a new parameterized procedure, ALERT-

HYBRID, for drawing random samples from a TOP-k-ALERT interface which is signif-

icantly better than HIDDEN-DB-SAMPLER. This is second main algorithm presented in

our work.

We provide a brief outline of the idea of ALERT-HYBRID. The algorithm consists

of two phases. The first phase consists of a drawing a fairly small random sample with very

small bias (henceforth called a pilot sample) using the earlier HIDDEN-DB-SAMPLER

algorithm. Then in the second phase, the remaining desired number of samples is drawn

from the alert interface, except that we use our COUNT-DECISION-TREE algorithm to

draw the remaining samples. Although the interface does not have the capability to provide

count information for queries, we use the pilot sample to estimate count information for

queries. This is done using standard approximate query processing techniques [7, 20, 21]

by executing each query locally on the pilot sample and appropriately scaling the result

to estimate the count for the entire database. Interestingly, the “hybrid” idea of using a

small amount of pilot samples to bootstrap COUNT-based sampling is inspired by similar

sampling approaches considered in other unrelated contexts [4, 22]. Because the counts

are only estimates, we are not able to completely remove bias from the resultant sample,

however our experiments show that ALERT-HYBRID is significantly better than HIDDEN-
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DB-SAMPLER for drawing random samples from a TOP-k-ALERT interface - for the

same bias (same efficiency), it produces samples more efficiently (with less bias).

In summary, the main contributions of this chapter are:

• We revisit the problem of random sampling from hidden databases with proprietary

form interfaces.

• We present COUNT-DECISION-TREE, an efficient algorithm for drawing random

samples without bias from hidden databases with TOP-k-COUNT interfaces. The

algorithm is based on two ideas: (a) the use of query history, and (b) the use of a de-

cision tree. We provide several theoretical insights into the behavior and performance

of this algorithm.

• We present ALERT-HYBRID, an efficient algorithm for drawing random samples

with small bias from hidden databases with TOP-k-ALERT interfaces. The algo-

rithm is based on using a pilot sample to bootstrap the COUNT-DECISION-TREE

algorithm to draw the samples.

• We provide a thorough experimental study that demonstrates the significance of our

theoretical results and the superiority of our algorithms over previous efforts.

The rest of this chapter is organized as follows. We briefly review the existing sample

algorithms for hidden databases in Section 2. In Sections 3 and 4, we introduce our two

major algorithms, COUNT-DECISION-TREE and ALERT-HYBRID, respectively. Sec-

tion 5 presents the experimental results. Related work is reviewed in Section 6, followed

by final remarks in Section 7.
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3.2 Preliminaries

3.2.1 Models of Hidden Databases

We restrict our discussion in this work to categorical data - we assume a simple dis-

cretization of numerical data to resemble categorical data. Apparently, different discretiza-

tion will lead to different performance of sampling. How to design an optimal discretization

scheme is left as an open problem.

Consider a hidden database tableD withm tuples t1, . . . , tm and n attributesA1, . . . , An

with respective domains Dom1, . . . , Domn. The table is only accessible to users through

a web interface. We assume a prototypical interface where users can query the database by

specifying values for a subset of attributes. Thus a user query QS is of the form:

SELECT ∗ FROM D WHERE Ai1 = vi1& . . .&Ais = vis ,

where vij is a value from Domij .

Let Sel(QS) be the set of tuples in D that satisfy QS . As is common with most

web interfaces, we shall assume that the query interface is restricted to only return k tuples,

where k � m is a pre-determined small constant (such as 10 or 50). Thus, Sel(QS) will be

entirely returned only if |Sel(QS)| ≤ k. If the query is too broad (i.e., |Sel(QS)| > k), only

the top-k tuples in Sel(QS) will be selected according to a ranking function, and returned

as the query result. The interface will also notify the user that there is an overflow, i.e.,

that not all tuples satisfying QS can be returned. At the other extreme, if the query is too

specific and returns no tuple, we say that an underflow occurs. If there is neither overflow

nor underflow, we have a valid query result.

For the purpose of this chapter, we assume that a restrictive interface does not allow

the users to “scroll through” the complete answer Sel(QS) when an overflow occurs forQS .

Instead, the user must pose a new query by reformulating some of the search conditions.

We argue that this is a reasonable assumption because many real-world top-k interfaces
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(e.g., Google) only allow “page turns” for limited (100) times before blocking a user by IP

address.

Based on the response provided by the interface when there was an overflow, we

classify the interfaces for hidden databases into two categories: TOP-k-ALERT and TOP-

k-COUNT. If the interface only issues a Boolean alert i.e., whether there were other tuples

besides the top-k that also satisfied the query conditions but were not returned, then the

interface is TOP-k-ALERT. If the interface also provides a count of the total number of

tuples in the database that satisfy the query condition, we call the interface as TOP-k-

COUNT.

3.2.2 A Running Example

Table 3.1 depicts a simple dataset which we will use as a running example throughout

this chapter. There are 8 tuples and 7 attributes, including 3 Boolean and 5 categorical with

domain size ranging from 4 to 8.

Table 3.1. Example: Input Table

A1 A2 A3 A4 A5 A6 A7

t1 0 0 0 0 0 0 0
t2 0 1 0 0 2 0 1
t3 1 0 0 1 1 0 2
t4 1 0 1 1 2 0 3
t5 2 1 0 0 2 1 4
t6 2 1 0 1 2 2 5
t7 3 1 1 1 3 3 6
t8 4 0 1 1 3 0 7
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3.2.3 Prior Sampling Algorithms

In this subsection we review three variants of HIDDEN-DB-SAMPLER, the sam-

pling algorithm presented in our earlier work [18] for obtaining random samples from hid-

den databases.

1. ALERT-ORDER: We first describe a variant that was designed for TOP-k-ALERT in-

terfaces (for the rest of this chapter we refer to this variant as ALERT-ORDER). Assume a

specific fixed ordering of all attributes, e.g. A1, . . . , An. Consider Figure 3.1 a) which rep-

resents an attribute-order tree over the database tuples, where all internal nodes at the ith

level are labeled by attribute Ai. Each internal node Ai has exactly |Domi| edges leading

out of it, labeled with values from Domi. Thus, each path from the root to a leaf rep-

resents a specific assignment of values to attributes, with the leaves representing possible

database tuples. Note that since some domain values may not lead to actual database tu-

ples, only some of the leaves representing actual database tuples are marked solid, while

the remaining leaves are marked empty.

The ALERT-ORDER sampler executes a random walk in this tree to obtain a random

sample tuple. To simplify the discussion, assume k = 1. Suppose we have reached the ith

level and the path thus far represents the query A1 = v1& . . .&Ai−1 = vi−1. The algorithm

selects one of the domain values of Ai uniformly at random, say vi, adds the condition

Ai = vi to the query, and executes it. If the outcome is an underflow (i.e., leads to an empty

leaf), we can immediately abort the random walk. If the outcome is a single valid tuple,

we can select that tuple into that sample. And only if the outcome is an overflow do we

proceed further down the tree.

This random walk may be repeated a number of times to obtain a sample (with re-

placement) of any desired size. One important point to note is that this method of sampling

introduces bias into the sample, as not all tuples are reached with the same probability.
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Techniques such as acceptance/rejection sampling are further employed for reducing bias

(see [18] for further details).

For this scheme, clearly the order of the attributes can play an important role in the

efficiency of the sampling process. It was suggested in [18] that the attributes be ordered

from largest to smallest domain sizes.

2. ALERT-RANDOM: For the special case of Boolean data, since the domain sizes are

the same for all attributes, it was suggested that instead of using a specific fixed attribute

order, a fresh random ordering of attributes be used before every random walk. It was

shown that such a scheme helps reduce the bias more than any fixed order attribute scheme.

Henceforth we refer to this variant as ALERT-RANDOM.

3. COUNT-ORDER: We now turn our attention to TOP-k-COUNT interfaces. It was

pointed out in [18] that, when COUNT information is returned for each query, a random

walk scheme can be designed to generate completely unbiased samples. Thus, no bias

reduction techniques need to be used later. Henceforth we refer to this variant as COUNT-

ORDER. For a given node in the attribute-order tree, instead of choosing edges with uni-

form probability, COUNT-ORDER chooses an edge with probability proportional to the

COUNT of that edge (i.e., proportional to the number of actual tuples that can be reached

following that edge). For example, suppose we have reached the ith level and the path thus

far represents the query A1 = v1& . . .&Ai−1 = vi−1. Let the current attribute under con-

sideration, Ai, have |Domi| = bi edges labeled with values v1
i , . . . , v

bi
i . Then, the random

walk follows edge vji (i.e., adds Ai = vji to the query) with probability equal to

P (vji ) =
COUNT(A1 = v1, . . . , Ai−1 = vi−1, Ai = vji )

COUNT(A1 = v1, . . . , Ai−1 = vi−1)
.
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b) A decision tree

A1

A2 A3 A4

0 1 2 3 4

0 1 0 1 0 1

A1
0 1 2 3 4

0 1 0 1 0 1
A2

A3

0 1 0 1

0 1
A4

a) An attribute-order tree

t1 t2

t3 t4

t5 t6

t7 t8

t1 t2 t3 t4 t5 t6

t7 t8

valid queryInternal node underflow

Figure 3.1. Attribute-Order Tree vs. Decision Tree.

Consider the impact of this approach to the bias of the obtained samples. The prob-

ability that a random walk hits a tuple t = 〈v1, . . . , vn〉 in the database is

P (t) =
n∏
i=1

Pr{vi is chosen for Ai} (3.1)

=
n∏
i=1

COUNT(A1 = v1, . . . , Ai−1 = vi−1, Ai = vi)

COUNT(A1 = v1, . . . , Ai−1 = vi−1)
(3.2)

=
1

m
(3.3)

where, recall thatm is the number of tuples in the database and COUNT(A1 = v1, . . . , Ai−1 =

vi−1) = COUNT(∗) = m for i = 1. Thus, the count-based sampling generates unbiased

samples.

3.3 COUNT-DECISION-TREE

In this section we present the main ideas of COUNT-DECISION-TREE, our algo-

rithm for sampling a hidden database with TOP-k-COUNT interface.
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3.3.1 Motivation

Although the simple COUNT-ORDER algorithm explained in Section 5.2 can gen-

erate unbiased samples, it also introduces a significant challenge, as the number of queries

required for sampling categorical databases may increase dramatically compared with both

TOP-k-ALERT algorithms. To understand this, consider a random walk from a node to one

of its b successors in the tree. In both TOP-k-ALERT algorithms, an edge is chosen uni-

formly at random from [1, b], and only one query corresponding to the chosen edge needs to

be issued. However in COUNT-ORDER, the counts of all edges must be first determined in

order to compute their respective transition probabilities, after which an edge is randomly

selected to follow. This requires b − 1 queries1. Thus, COUNT-ORDER may require a

large number of queries for sampling categorical databases, especially for attributes with

large domains.

The rest of this section is devoted to techniques for improving the efficiency of sam-

pling TOP-k-COUNT interfaces.

We first introduce a generalization of an attribute-order tree to a decision tree on

the hidden database. The key extension of a decision tree is that it allows each level of

the tree to contain different attributes. Figure 3.1 a) and b) illustrates both types of trees

for the database in Table 3.1 for the case k = 1. Random walks over decision trees are

likely to be more efficient than over attribute-order trees, as by leveraging the flexibility of

selecting multiple attributes for nodes at the same level, a compact decision tree features

a shorter depth and a smaller total number of possible queries. For the example in Fig-

ure 3.1, when one sample tuple needs to be collected, the decision tree provides a saving of

(1/4 × 1 + 1/4 × 2) = 3/4 queries in comparison with the attribute-order tree. We defer

a more thorough analysis of the advantages of decision trees over attribute-order trees to

Section 3.3.3.
1The remaining count can be inferred from these b− 1 counts and the count of the current node.
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Suppose we are given the structure of a decision tree over a hidden database - i.e., the

entire tree is available, barring the various COUNT information (or transition probabilities

associated with the edges). Algortihm 2 depicts a count-based sampling algorithm that

performs random walks on this decision tree to collect a sample with s tuples (in the figure

we use the notation |u| to refer to the count of node (or edge) u, i.e., the number of database

tuples below u in the tree). We would like to make several remarks regarding the algorithm.

First, this is of course a hypothetical scenario, as such a tree is not available for hidden

databases, and in fact has to be constructed on-the-fly (which will be discussed later in the

chapter). Second, queries corresponding to nodes in the upper level (e.g., root) of the tree

may be reused by many random walks, especially if s is large. This motivates us to consider

the impact of query history in Section 3.3.2. Third, no matter how the decision tree is

structured, the sampling algorithm always generates unbiased samples. Fourth, the number

of queries, however, may vary significantly between different structures. An interesting

challenge is to identify a structure which achieves the optimal efficiency. We will address

this challenge in Sections 3.3.3.

3.3.2 Improving Efficiency: Query History

We start our discussion on improving the efficiency of count-based sampling by a

simple strategy: take advantage of the query history. That is, the sampling algorithm

should only send to the hidden database “new” queries which have never been asked before

and cannot be inferred from the history. An example of inference is the computation of

COUNT(a1 = 1) from COUNT(∗) and COUNT(a1 = 0).

We discuss the impact of leveraging query history to improve sampling efficiency.

The following theorem provides a lower bound on the number of queries saved by consult-

ing the query history.
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Algorithm 2 Sampling TOP-k-COUNT with a Given Decision Tree

Require: r: root node of the decision tree

1: for i = 1 to s do

2: Obtain the i-th sample as DT SAMP(r).

3: end for

4: function DT SAMP(u)

5: . Let u have b values v1, . . . , vb and edges u1, . . . , ub

6: Query b− 1 edges for counts of u1, . . . , ub.

7: Randomly pick j ∈ [1, b] s.t. Pr{j picked} = |uj|/|u|.

8: if |uj| ≤ k then

9: return a random tuple from the answer to uj

10: else

11: return DT SAMP(uj).

12: end if

13: end function

Theorem 3.3.1. For the algorithm in Figure 2, the number of queries saved by consulting

the query history for obtaining s samples (s · k � m) of a hidden database of size m is at

least

sQH > s ·
(

(b− 1) · logb s− 2− b

b− 1

)
, (3.4)

where b (b ≥ 2) is the minimum domain size of an attribute.

We omit the proof due to space limitation. An observation from the theorem is

that the saving from history is significant when s is large. For example, obtaining 5, 000

samples from a Boolean database will lead to a saving of at least 41, 438 queries. For

a 100,000-tuple i.i.d. Boolean database where the 1’s and 0’s are uniformly distributed

with probability 0.5 each, it implies an expected saving of at least 49.90% when k = 1
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(from 83, 048 to at most 41, 610). The saving will be even larger for a categorical database

with b > 3. For example, when b = 5, the saving is at least 89, 590 queries. Again, for a

100,000-tuple i.i.d. database with each attribute following uniform distribution on 5 values,

it implies an expected saving of 62.62% (from 143, 067 to 53, 317).

Theorem 3.3.1 provides a lower bound on the number of queries saved by the history.

Now consider an even more important problem for leveraging history: how many unique

queries are needed to sample a hidden database with a TOP-k-COUNT interface? We

investigate this problem below. In particular, we consider the maximum number of queries

needed in the extreme case where all branches are traversed. The result will also form the

foundation for our discussion of building the decision tree in Section 3.3.3.

Tree A Tree B

Tree C

A2

A5 A6

A7

0 1 2 3 0 1 2 3

0 1

0 1 2 3 4 5 6 7

A2

A5 A7

0 1 2 3 0 1 2 3

0 1

4

Tree D

A1

A2 A3 A4

0 1 2 3 4

0 1 0 1 0 1

t1 t2 t3 t4 t5 t6

t7 t8

t1 t3 t4 t8 t2 t5 t6 t7

t1 t2 t3 t4 t5 t6 t7 t8 t1 t3 t4 t8 t5t2 t6 t7

5 6 7

Figure 3.2. Examples of Decision Trees.

First, we consider a special case of decision trees referred to as loaded decision

trees. A tree is loaded iff it does not have any empty leaves. For example, of the four trees

in Figure 3.2 corresponding the running example database in Table 3.1, trees A, B, and C

are loaded, while tree D is not. In the following, we will first derive the maximum number

of unique queries required for sampling a loaded tree. After that, we extend the result to

general decision trees.
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Theorem 3.3.2. Given the structure of a loaded decision tree, the total number of unique

queries required for obtaining s samples through a TOP-k-COUNT interface is at most

m− 1.

Proof. Let |Li| and |Ωi| be the number of all (internal and leaf) nodes and internal nodes

in level i, respectively (root is level 1, let the maximum levels be h). Then, the maximum

number of queries issued for level i is |Li+1| − |Ωi| because each internal node has one

query saved through history inference. Thus, the maximum total number of queries issued

is
h−1∑
i=1

(|Li+1| − |Ωi|) =
h∑
i=1

|Li| −
h−1∑
i=1

|Ωi| − 1 = m− 1. (3.5)

This is due to two reasons. First,
∑h

i=1 |Li|−
∑h−1

i=1 |Ωi| is equal to the total number of leaf

nodes because all nodes in level h are leaves. Second, the number of leaves is m.

The theorem shows that given a loaded decision tree, the maximum number of unique

queries required for count-based sampling of the tree only depends on the number of tuples

in the database, and not by the number of attributes or their domain sizes. For example,

trees A, B and C in Figure 3.2 all have 7 unique queries for count-based sampling: Tree

A has 1 at the level 1 and 6 at level 2; Tree B has 4 at level 1 and 3 at level 2; while all 7

queries for Tree C are at the same level.

We now consider the extension to general decision trees. Again, we would like to

remark that in practice, we will not be provided with the structure of a decision tree; rather

queries must be issued to both construct the decision tree and sample from it. If a decision

tree is constructed without consulting the complete database, empty branches often occur

and the tree is usually not loaded. Thus, the sampling of a decision tree that has empty

leaves is arguably a more practical scenario.

Each edge leading to an empty leaf leads to one additional query, as we can observe

from tree D in Figure 3.2. To analyze the number of empty leaves, we consider an example



61

of m-tuple i.i.d. Boolean dataset studied in [18], where each attribute takes the value of

1 with probability p. Let L(m, k, p) be the expected number of empty leaves for such a

dataset. We have

L(0, k, p) = 1. (3.6)

L(1, k, p) = 0. (3.7)

. . .

L(k, k, p) = 0. (3.8)

L(m, k, p) =
m∑
i=0

(m
i

)
pi(1− p)m−i(L(i, k, p) + L(m− i, k, p)). (3.9)

Note that althoughL(m, k, p) appears in both the left and right side of (3.9), it can neverthe-

less be solved from the equation. Figure 3.3 depicts the relationship between the number

of empty leaves and the number of tuples when k = 1. The results are computed from

(3.6)-(3.9) using Matlab simulation. As we can see, L(m, p) and m roughly follow a linear

relationship. Based on (3.9) and Theorem 3.3.2, we have the following corollary.

Corollary 3.3.1. Given an i.i.d. Boolean dataset where each attribute takes the value of

1 with probability p, for all s ≥ 1, the total number of queries required for obtaining s

samples through a top-k interface with COUNT is at most m− 1 + L(m, k, p).
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Figure 3.3. The number of empty leaves vs. the number of tuples when k = 1.
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3.3.3 Improving Efficiency: Constructing Decision Tree

3.3.3.1 Motivation and Hardness

Theorem 3.3.2 indicates that, if a very large number of samples need to be collected,

then every decision tree without empty leaves will have the same efficiency because the

total number of queries only depends on the size of the database. Nonetheless, the design

of the decision tree may play an important role in reality due to the following two reasons:

• Since the number of samples required in practice is usually much smaller than the

size of the database, many of the m − 1 queries may not be issued; thus different

decision trees may have different impact on efficiency.

• As we can see from Figure 3.3, the number of empty leaves may be significant,

especially when the attributes skew towards a few values.

We now discuss the design of an efficient decision tree, in particular the following

problem: Given s, the number of samples to be collected, design a decision tree with the

minimum sampling cost, i.e., the minimum expected number of queries required to collect

s unbiased samples.

Unfortunately, this problem is hard even if the decision tree can be constructed with

full access to the m tuples. Consider a special case of the problem when s = 1 and k = 1

for Boolean databases. The problem is essentially the same as computing a decision tree

with no empty leaves that has the minimum average path length from root to the leaves.

This is equivalent to a well-known problem of constructing an optimal decision tree for

the entity identification problem [19], for which the following hardness result is known

from [19]:

Theorem 3.3.3. (from Theorem 4.1 in [19]) When s = 1 and k = 1, it is NP-hard to

construct a decision tree over a Boolean database with the minimum sampling cost, or

even approximate it within a factor of Ω(logm).
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3.3.3.2 Basic Ideas

Due to the hardness of the problem, we propose a heuristic greedy algorithm to

construct an efficient decision tree. We remind the reader that the tree cannot be created in

its entirety, as complete access to all database tuples is impractical; the tree has to be built

and used on-the-fly. At any time during the sampling process, we will essentially have

created a partial decision tree, with only a few paths extending all the way to the leaves

(corresponding to those tuples that have been included in the sample thus far).

We first discuss the intuition behind the algorithm: the saving and expense associated

with each node in the decision tree. For the ease of understanding, we restrict our attention

to k = 1 in the discussion of intuition, but will present the algorithm with arbitrary k.

Saving: Recall from the proof of Theorem 3.3.2 that, when k = 1, a decision tree without

empty branch requires exactly m − 1 total queries when the number of queries s → ∞.

Consider these as the baseline queries for the sampling process. As we mentioned above,

the actual number of queries varies from the baseline due to two possible reasons:

• When s is small, a subtree may never be encountered by a random walk. Note that a

never-encountered subtree with m tuples yields a reduction of m− 1 on the number

of queries. Let the total reduction be R(s).

• Each empty leaf leads to an increase of 1 on the number of queries. Let the total

increase be L.

Thus, the actual number of queries is m − 1 − (R(s) − L). We say that the decision tree

yields a saving of R(s)− L.

Note that unlike the number of baseline queries which is independent of the structure

of the decision tree, R(s)−L strongly depends on the tree structure. For example, consider

trees in Figure 3.2. Tree C offers no saving at all, because all possible queries will be issued
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to collect the first sample. When s = 1, the saving of tree B is 3 because one of the 2nd

level nodes (A5 and A6) cannot be encountered by the random walk.

The saving also depends on s. When s increases, the saving of tree B decreases

rapidly because it is very likely that both A5 and A6 will be encountered. Nonetheless, tree

A might still offer some saving if one of the three nodes (A2, A3, A4) are not encountered

by random walks. Thus, a critical challenge is to construct a decision tree with maximized

saving given s.

Consider the saving associated with not reaching a node u of Ai (but reaching its

ancestors). Denote such saving by R(s, u)− L(u). Consider R(s, u) first. Recall that bi is

the domain size of ai. Let uj be the edge of u which corresponds to the j-th value of Ai,

and |uj| be the number of tuples below uj . Define

R(s, u) =

bi∑
j=1

Pr{uj is not traversed, u is reached} · (|uj| − 1)

=

bi∑
j=1

((
1− |uj|

m

)s
−
(

1− |u|
m

)s)
· (|uj| − 1),

and

L(u) = |{j|j ∈ [1, bi], |uj| = 0}|. (3.10)

It is easy to see that R(s) =
∑

uR(s, u), L =
∑

u L(u), and

R(s)− L =
∑
u

(R(s, u)− L(u)). (3.11)

We refer to R(s, u)− L(u) as the saving of u. Table 3.2 shows the saving of the root node

for trees A, B and C in Figure 3.2. As we can see, tree B offers the greatest saving when

s = 1, but its saving decreases rapidly to below tree A when s increases to > 3. As we

discussed above, tree C has a saving of 0.
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Table 3.2. Example: Saving

s 1 2 3 4 5 6
Tree A 2.2500 1.6875 1.2656 0.9492 0.7119 0.5339
Tree B 6.0000 3.0000 1.5000 0.7500 0.3750 0.1875
Tree C 0 0 0 0 0 0

Expense: The saving function R(s) − L concerns how many queries are saved from the

baseline m− 1 queries. Now consider the opposite view: how many queries are executed,

starting from 0 queries? Let C be this number. Note that C = m− 1− (R(s)−L). Define

C(u) = Pr{u is reached} · (bi − 1) (3.12)

=

(
1−

(
1− |u|

m

)s)
· (bi − 1). (3.13)

Again, we have C =
∑

uC(u). We refer to C(u) as the expense of u.

Intuition of Constructing a Decision Tree: The task of constructing a decision tree is

essentially to select an attribute label for each node: first, select an attribute for the root,

and then recursively choose an attribute for each child, and so on. During the process, we

aim to increase
∑

u(R(s, u) − L(u)) and reduce
∑

uC(u). However, note that the total

number of nodes depends on the structure of the decision tree, and may not be known

during the construction. Thus, while selecting an attribute for a node u, we propose a

heuristic of maximizing the saving per expense ratio

SER(s, u) =
R(s, u)− L(u)

C(u)
. (3.14)

Due to the constraint that
∑

u(R(s, u)−L(u)+C(u)) = m−1, limiting the ratio also limits

the number of queries issued for sampling. In particular, we have the following theorem:

Theorem 3.3.4. If all nodes in the decision tree satisfies SER(s, u) ≥ σ, then the expected

number of queries for obtaining s samples is at most (m− 1)/(σ + 1).
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For data in Table 3.1, Table 3.3 shows the SER of different attributes for choosing

the root node when s = 1 and s = 10. Note that A7 is not shown in the table because its

SER is always 0. As we can see, A2 will be chosen as the root when s = 1, while A1 will

be chosen when s = 10. This is consistent with our intuition discussed above.

Table 3.3. Example: SER for the root node

A1 A2 A3 A4 A5 A6

s = 1 0.5625 3.0000 2.7500 2.7500 0.7500 0.5000
s = 10 0.0422 0.0059 0.0184 0.0184 0.0197 0.0001

Computation of SER(s, u): For computing SER(s, u), four variables are needed: the

number of samples s, the COUNT of the current node |u|, the domain size bi and the branch

counts |uj|. Among them, |u| and s are already determined, while bi and |uj| depend on

the selected attribute. bi can be learned through domain knowledge. However, |uj| have to

be queried from the hidden database. For high-domain-size attributes, |uj| requires a large

number of queries, which jeopardize our ultimate objective of minimizing the total number

of queries.

Fortunately, the exact computation of SER(s, u) might not be necessary for our al-

gorithm. Note that to select an attribute for node u, we only need to determine which

attribute returns the largest SER(s, u). An important observation is that R(s, u) − L(u)

may vary significantly between attributes of different domain size. For example, consider

the selection between two attributes A1, A2 for the root node. Both follow uniform distri-

bution with domain size b1 = 2 and b2 = 10. Note that when m � 10, neither of them is

likely to have L(u) > 0. Thus,

SER(s, a1) =
m− 2

2s
� (m− 10) · 9s

9 · 10s
= SER(s, a2).
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Clearly, in this case, a rough estimation of |uj| would be sufficient for choosing between

the two attributes.

We leverage this property of SER(s, Ai) by approximating its value with the mini-

mum number of queries. The simplest choice is to assume that all attributes follow the uni-

form distribution, and to compute |uj| = |u|/bi. However, we found through experiments

that this approximation is oversimplified because many attributes in real-world datasets

have highly skewed value distribution.

Thus, we propose to first issue a small number (
∑

i bi) of marginal queries, and then

estimate |uj| based on the conditional independence assumption: The marginal queries are

COUNT(Ai = v1), . . . , COUNT(Ai = vbi) for all attributes Ai. To select an attribute for

node u, we estimate the COUNT of branch uj for attribute Ai by

|uj|e = |u| · COUNT (ai = vj)

COUNT (∗)
. (3.15)

However, note that once an attribute ai is selected, we will actually query all |uj| in order to

determine the probability for following each branch. By doing so, we save the queries used

for constructing but not sampling the decision tree (i.e., queries |uj| for attributes which are

not eventually chosen), without affecting the unbiasedness of the collected samples.

3.3.4 Algorithm COUNT-DECISION-TREE

Figure 3 depicts COUNT-DECISION-TREE, our algorithm for sampling TOP-k-

COUNT interfaces. It performs the following alternative steps: a) determine the attribute

for the current node (Lines 1 to 3), then b) determine which branch to follow, and so on.

The estimation of SER(s, u) is used to determine the attribute (Line 6). Note that once

an attribute is chosen for a node, it is available for reuse for future samples in order to

leverage the query history. Determining the next edge involves the execution of bi − 1

queries (Line 8), followed by a random picking of the next edge (Line 10).
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Algorithm 3 COUNT-DECISION-TREE
Require: Attr(·) = ∅ if not assigned

1: for i = 1 to s do

2: Obtain the i-th sample as DT SAMP(s− i+ 1, 〈〉).

3: end for

4: function DT SAMP(st, path)

5: if Attr(path) = φ then

6: Attr(path) = arg max((R(st, u, k)− L(u, k)) /C(u)).

7: end if

8: Query b− 1 branches. (Only issue those not in history)

9: Randomly pick j ∈ [1, b] s.t. Pr{j picked} = |uj|/|u|.

10: if |uj| ≤ k then

11: return a random tuple from the answer to uj

12: else

13: return DT SAMP(st, path‖Attr(path) = vj).

14: end if

15: end function

COUNT-DECISION-TREE also extends the previous discussion by addressing the

cases with interface parameter k > 1. Clearly, the value of C(u) is unaffected. For com-

puting the saving R(s, u) − L(u), we define the number of baseline queries as m/k − 1.

Thus, the saving becomes

R(s, u, k) =

bi∑
j=1

((
1− |uj|

m

)s
−
(

1− |u|
m

)s)
·
(
|uj|
k
− 1

)
,

and

L(u, k) =
∑

j|j∈[1,bi],|uj |<k

k − uj
k

. (3.16)
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3.4 ALERT-HYBRID

In this section, we present the main ideas behind ALERT-HYBRID, our new algo-

rithm for sampling hidden database behind a TOP-k-ALERT interface.

3.4.1 Basic Ideas

A major problem of ALERT-ORDER, the state-of-the-art algorithm for sampling

TOP-k-ALERT interfaces, is the bias of the collected samples. Since ALERT-ORDER

chooses each branch of a node with equal probability, those tuples on upper levels of the

tree (which require shorter walk from the root) are more likely to be sampled. Although

an acceptance-rejection module was introduced to reduce the bias [18], not many samples

can be rejected in order to maintain the efficiency of ALERT-ORDER. As a result, the

remaining bias may still be significant, as we will illustrate in the experiments.

On the other hand, the algorithms we just discussed for TOP-k-COUNT interfaces

generate no bias because each branch is chosen with probability proportional to its COUNT.

As a result, each tuple is sampled with equal probability. Clearly, the COUNT information

which is absent from TOP-k-ALERT interfaces can play an important role on reducing the

bias of collected samples.

Fortunately, the COUNT information is not completely out of reach in TOP-k-ALERT

interfaces. In particular, after a small number of samples are collected, the COUNT of cer-

tain queries may be estimated from the collected samples.

Thus, we propose ALERT-HYBRID, a two-phase procedure by which the sampler

first collects a small number (say s1) of pilot samples for COUNT estimations, and then

use the estimated COUNT to facilitate the collection of the remaining (much larger) s− s1

samples. The s1 samples can be simply collected by ALERT-ORDER, parameterized to

produce samples with small bias. The small bias in the s1 samples is desirable because

it helps in accurate COUNT estimations in the second phase. Although this requirement
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makes the ALERT-ORDER procedure less efficient, the relatively small number of the pilot

samples required ensures that the cost of the first phase is a modest portion of the overall

sampling cost.

For the remaining s − s1 samples, note that we cannot directly use the COUNT-

DECISION-TREE algorithm because not all nodes can have COUNT accurately estimated

from a very small number (s1 � m) of samples. Thus, we propose a hybrid approach

which integrates COUNT-based and ALERT-based sampling. In particular, after collect-

ing the s1 samples, we invoke the COUNT-DECISION-TREE algorithm until reaching a

node u with COUNT in the collected samples less than a threshold, say cS. At this node,

there are not enough collected samples to support a robust estimation of the probability

for following each edge. Thus, a natural choice is to switch to ALERT-based sampling.

In particular, ALERT-ORDER is called to collect a sample under node u. As we can see,

this hybrid approach starts with COUNT-based sampling at the upper levels of the tree, and

then switches to ALERT-based when there is not enough support from the collected sam-

ples. Initially, the switch from COUNT-based to ALERT-based sampling may occur early

at the upper levels. However, when more samples are collected (at the second phase), more

nodes will be able to support COUNT-based sampling, and thus the switch may occur later.

There are two important parameters in the algorithm: s1, the number of pilot samples

collected for initial count estimation, and cS, the count threshold for switching to ALERT-

ORDER. The setting of s1 influences the efficiency of ALERT-HYBRID for two reasons:

First, with a small s1, the constructed decision tree is unlikely to be optimal, and therefore

may require more queries in the second phase. Second, if s1 is too large, there will be a

large number of queries spent in collecting the pilot samples. Note that these queries are

unlikely to be reused in the second phase because COUNT-DECISION-TREE may use a

different tree from the attribute-order tree used by ALERT-ORDER in the first phase.



71

The setting of cS influences the bias of the collected samples. Note that in the count-

based sampling part of the tree, the probability of following each branch is determined by

the COUNT information estimated from the samples. Thus, error on the estimated COUNT

will lead to biased samples. Thus, the value of cS should be large enough to enable a stable

estimation for the probability of following each edge. Nonetheless, if cS is too large, a

random walk might switch to ALERT-ORDER at very early stage of a random walk, and

thereby introduce more bias to the samples.

We will discuss the impact of different settings of s1 and cS in greater details in the

experimental results section. Nonetheless, we would to remark that, although the experi-

mental results verify the effect of s1 and cS on the efficiency and bias of ALERT-HYBRID,

for the class of datasets we tested, the efficiency and bias are not very sensitive to s1 and cS

as long as the parameters are set within a reasonable range. How to determine the optimal

values for s1 and cS is left as an open problem for future work.

3.4.2 Algorithm ALERT-HYBRID

Figure 4 depicts the detailed algorithm for ALERT-HYBRID. In the algorithm, TS is

the set of collected samples (to which a newly acquired sample is appended); and TS(path)

(resp. T (path)) is the subset of tuples in TS (resp. T ) which satisfy the selection conditions

in path.

The basic steps can be stated as follows. First, the algorithm collects s1 pilot samples

before using the hybrid sampling method to collect the other samples. During the hybrid

sampling, ALERT-ORDER is used when the current node has COUNT less than cS in TS.

Otherwise, COUNT-DECISION-TREE is used, with the only difference that the counts of

the current node (i.e., |u|e) and all edges (i.e., |uj|e) are estimated from the samples rather

than queried from the database. Clearly, the saving function Re(st, u)− Le(u)− Ce(u) is
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estimated as well. Both the pilot samples and the samples collected by hybrid sampling are

returned.

3.5 Experimental Results

In this section, we describe our experimental setup, compare our two algorithms with

the existing ALERT-RANDOM, ALERT-ORDER, and COUNT-ORDER algorithms, and

draw conclusions on the impact of our three main ideas: leveraging query history, con-

structing an efficient decision tree, and sampling TOP-k-ALERT interfaces with ALERT-

HYBRID. Note that the existing algorithms for comparison were proposed as the HIDDEN-

DB-SAMPLER in [18].

3.5.1 Experimental Setup

3.5.1.1 Hardware

All experiments were on a machine with Intel Xeon 2GHz CPU with 4GB RAM

and Windows XP operating system. All our algorithms were implemented using C# and

Matlab.

3.5.1.2 Datasets

We conducted the experiments on three types of datasets: Boolean Synthetic, Yahoo!

Auto, and Census. For all datasets, we tested a TOP-k-COUNT interface with k = 10.

Boolean Synthetic: Two Boolean synthetic datasets were generated. Both have 200, 000

tuples. The first one is generated as i.i.d. data having 80 attributes with the probability

of 1 being 25%. We refer to this dataset as the Boolean-i.i.d. dataset. The second dataset

is generated in a way such that different attributes have diverse distribution. In particular,

there are 40 independent attributes, 5 of which have uniform distribution, while the others
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Algorithm 4 ALERT-HYBRID
1: for i = 1 to s1 do

2: TS[i]← ALERT-ORDER(T ).

3: end for

4: for i = s1 to s do

5: TS[i]← HYBRID SAMP(s− i+ 1, 〈〉).

6: end for

7: function HYBRID SAMP(st, path)

8: if COUNT(TS(path)) < cS then

9: return ALERT-ORDER(T (path))

10: else if Attr(path) = φ then

11: Attr(path) = arg maxRe(st, u)− Le(u)− Ce(u).

12: end if

13: Randomly pick j ∈ [1, b] with P (j) = |uj|e/|u|e.

14: Query q = (path‖Attr(path) = vj).

15: if q is a valid query then

16: return a random tuple from the answer to q

17: else

18: return HYBRID SAMP(st, path‖Attr(path) = vj).

19: end if

20: end function
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have the probability of 1 ranging from 1/160 to 35/160 with step of 1/160. We refer to

this dataset as the Boolean-mixed dataset.

Yahoo! Auto: The Yahoo! Auto dataset consists of data crawled from a real-world hidden

database at http://autos.yahoo.com/. In particular, it contains 15,211 used cars for sale in

the Dallas-Fort Worth metropolitan area. There are 32 Boolean attributes, such as A/C,

Power Locks, etc, and 6 categorical attributes, such as Make, Model, Color, etc. The

domain size of categorical attributes ranges from 5 to 447.

Census: The Census dataset consists of the 1990 US Census Adult data published on the

UCI Data Mining archive. After removing attributes with domain size greater than 100, the

dataset had 12 attributes and 32,561 tuples. It is instructive to note that the domain size of

the attributes of the underlying data is unbalanced in nature. The attribute with the highest

domain size has 92 categories and the lowest-domain-size attributes are Boolean.

3.5.1.3 Parameter Settings

The experiments involve five algorithms. Among them, ALERT-RANDOM and

COUNT-DECISION-TREE are parameter-less. ALERT-ORDER requires a parameter called

scaling factorC for the acceptance/rejection module, in order to tradeoff between efficiency

and bias. Following the heuristic in [18], for Boolean datasets, we set C = 1/2l where l

is the average length of random walks for collecting the samples. For categorical data, we

consider various values of C to tradeoff between efficiency and bias. COUNT-ORDER

requires input of an (arbitrary) attribute order. We randomly generate the order in our ex-

periments. Our ALERT-HYBRID approach requires two parameters: the number of pilot

samples s1 and the switching count threshold cS. We set s1 = 100 and cS = 10 by default,

but conducted experiments with various other combinations.
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3.5.1.4 Performance Measures

For each algorithm, there are two performance measures: efficiency and bias. Effi-

ciency of a sampling algorithm was measured by counting the number of queries that were

executed to reach a certain desired sample size. To measure the bias of collected samples,

we use the same measure as [18] which compares the marginal frequencies of attribute

values in the original dataset and in the sample:

bias =

√√√√∑v∈V

(
1− pS(v)

pD(v)

)2

|V |
. (3.17)

Here V is a set of values with each attribute contributing one representative value, and pS(v)

(resp. pD(v)) is the relative frequency of value v in the sample (resp. dataset). The intuition

is that if the sample is unbiased uniform random sample, then the relative frequency of any

value will be the same as in the original dataset. However, note that even for uniform

random samples, this method of measuring bias will result in small but possibly non-zero

bias.

3.5.2 Comparison with Existing Algorithms

3.5.2.1 COUNT-DECISION-TREE

We compared the performance of COUNT-DECISION-TREE with three existing

algorithms: COUNT-ORDER, ALERT-ORDER, and ALERT-RANDOM (note: although

the latter two algorithms are designed for ALERT interfaces, they can sample from COUNT

interfaces by ignoring the returned counts).

For COUNT-ORDER, our direct competitor for COUNT interfaces, we conducted

the comparison on both Yahoo! Auto and Census datasets. The number of queries issued

are shown in Figures 3.4. Note that both algorithms generate unbiased samples. As we can

see, our algorithm requires orders of magnitude fewer queries than COUNT-ORDER.
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Figure 3.4. Number of queries vs. samples.
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Figure 3.5. Number of queries vs. samples.

For ALERT-ORDER, we conducted the comparison on the categorical Census dataset.

In particular, we tested ALERT-ORDER with two settings of the scaling factor [18]: C =

1/15000 and C = 1/400000. The number of queries issued and the bias of samples col-

lected are shown in Figures 3.5 and 3.6, respectively. As we can see, our algorithm signifi-

cantly outperforms both settings of ALERT-ORDER in efficiency and bias (recall that even

though our measurements show non-zero marginal bias, technically COUNT-DECISION-

TREE has no bias).
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Since ALERT-RANDOM was designed for Boolean datasets [18], we performed the

comparison on the Boolean-mixed dataset. As seen in Figures 3.7 and 3.8, our algorithm

significantly outperforms ALERT-RANDOM in both efficiency and bias.

Figure 3.6. Bias vs. Number of samples.

Figure 3.7. Number of queries vs. samples.
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Figure 3.8. Bias vs. Number of samples.

Figure 3.9. # queries vs. # samples.

Figure 3.10. Bias vs. Number of samples.
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Figure 3.11. # of queries saved by history.

3.5.2.2 ALERT-HYBRID

We compared the performance of ALERT-HYBRID with both existing algorithms

for ALERT interfaces: ALERT-RANDOM and ALERT-ORDER. Figures 3.9 and 3.10

shows results on the Boolean-i.i.d. dataset. We see that ALERT-HYBRID requires sig-

nificantly fewer queries than both of the previous approaches, and produces substantially

less bias than ALERT-ORDER.

3.5.3 Effects of History and Decision Tree for COUNT-DECISION
-TREE

The above subsection illustrates the improvement of our COUNT-DECISION-TREE

algorithm over the prior algorithms. The improvement comes from a combination of two

techniques: query history and decision tree. In this subsection, we illustrate the effect of

each technique separately.

First, we consider the effect of query history on the performance of COUNT-DECISION-

TREE. We conducted the experiments on both categorical (Census) and Boolean (i.i.d.)

datasets. Figure 3.11 depicts the number of queries saved by considering history. As we



80

can see, the saving is roughly linear to the number of samples, and is not sensitive to the

value of k. This is consistent with our intuition from Theorem 3.3.1.

Then, we consider the effect of decision tree construction on the performance of

COUNT-DECISION-TREE. To remove the effect of history, we added the technique of his-

tory saving to COUNT-ORDER, and then compared its efficiency with COUNT-DECISION-

TREE. The results for Yahoo! Auto and Census datasets are shown in Figures 3.12. As

we can see, for collecting 1,000 samples, we achieve 289% and 520% improvement on

efficiency for Yahoo! Auto and Census datasets, respectively, while providing unbiased

samples.

3.5.4 Analysis of ALERT-HYBRID

We first consider the effect of using pilot samples to bootstrap COUNT-based sam-

pling in ALERT-HYBRID. In particular, we compare its efficiency with ALERT-ORDER

after adding the technique of history saving to ALERT-ORDER. The result for the Boolean-

i.i.d. dataset is shown in Figure 3.13. As we can see, the “hybrid” technique by itself not

only reduces bias (as shown in Figure 3.10), but also significantly improves the sampling

efficiency (by 188% when s = 1, 000).

Figure 3.12. # of queries vs. # of samples.
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Figure 3.13. # of queries vs. # of samples.

Figure 3.14. Number of queries and bias vs. s1 for ALERT-HYBRID.

An interesting observation from Figure 3.13 is that most queries issued by ALERT-

HYBRID are for collecting the pilot samples. After the pilot samples are collected, the

number of queries per remaining sample is much lower than that of the ALERT-ORDER

and ALERT-RANDOM algorithms. The reason is that no query needs to be issued for a

node that enables COUNT-based sampling. Clearly, we can expect the efficiency improve-
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Figure 3.15. Number of queries and bias vs. cS for ALERT-HYBRID.

ment of ALERT-HYBRID to be even more significant as the number of samples becomes

larger.

We now consider the effect of the two parameters s1 and cS on the performance of

ALERT-HYBRID. Figure 3.14 shows the change of efficiency and bias when s1 ranges

from 50 to 250 and cS is fixed at 10. As we can see, increase on s1 reduces bias, because

the larger number of pilot samples delays the switching to ALERT-ORDER which gener-

ates higher bias. On the other hand, the greater s1 is, the more queries need to be issued

because the queries used to obtain the pilot samples are unlikely to be reused during hybrid

sampling.

Figure 3.15 shows the change of efficiency and bias when cS ranges from 1 to 25 and

s1 is fixed at 100. As we can see, when cS is too low (e.g., 1), the bias is high because

the estimated count used for count-based sampling has a high error. Nonetheless, when cS

is too large, the bias becomes higher again because switching to ALERT-ORDER in the

hybrid sampling phase occurs earlier which introduces higher bias. This is consistent with

our discussion in Section 3.4.
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3.6 Related Work

Crawling and Sampling from Hidden Databases: There has been prior work on crawling

as well as sampling hidden databases using their public search interfaces. Several papers

have dealt with the problem of crawling and downloading information present in hidden

text based databases [8,23,24]. [17,25,26] deal with extracting data from structured hidden

databases. [27] and [28] use query based sampling methods to generate content summaries

with relative and absolute frequencies while [29, 30] uses two phase sampling method on

text based interfaces. On a related front [31, 32] discuss top-k processing which considers

sampling or distribution estimation over hidden sources. A closely related area of sampling

from a search engines index using a public interface has been addressed in [8] and more

recently [9, 33]. In [18] the authors have developed techniques for random sampling from

structured hidden databases leading to the HIDDEN-DB-SAMPLER algorithm. The hybrid

technique used in ALERT-HYBRID has also been used for other sampling applications

such as block-level sampling [4] and sampling peer-to-peer networks [22].

Approximate Query Processing and Database Sampling: Approximate query process-

ing (AQP) for decision support, especially sampling-based approaches for relational databases,

has been the subject of extensive recent research; e.g., see tutorials by Das [20] and Garo-

falakis et al [7], as well as the report [21] and the references therein.

3.7 Conclusion

In this chapter, we investigated techniques which leverage the COUNT information

to efficiently acquire unbiased samples of hidden databases. In particular, we proposed

the COUNT-DECISION-TREE algorithm based on two ideas: (a) the use of query history,

and (b) the construction and use of an efficient decision tree. We also discuss variants

for TOP-k-ALERT interfaces which do not provide COUNT information. In particular,
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we presented ALERT-HYBRID based on using pilot samples to bootstrap the COUNT-

DECISION-TREE algorithm draw the samples. Our thorough experimental study demon-

strates the superiority of our sampling algorithms over the existing algorithms.



CHAPTER 4

TURBO-CHARGING HIDDEN DATABASE SAMPLERS WITH
OVERFLOWING QUERIES AND SKEW REDUCTION

4.1 Introduction

In this chapter we consider the problem of random sampling over online hidden

databases. A hidden database, such as Google Base [34] and Yahoo! Auto [35], allows

external users to access its contents via a restricted form-like web interface. This restricted

query interface primarily allows users to execute search queries by selecting the desired

values for one or more attributes, e.g.,

SELECT * FROM D WHERE a1 = v1 AND a3 = v3

and the system responds by returning a few (e.g., top-k where k is a small constant such as

20 or 50) tuples that satisfy the selection conditions, sorted by a suitable scoring function.

Along with these returned tuples, the interface also usually alerts the user if there was an

“overflow”, i.e., if there are other tuples besides the top-k ones that also satisfy the query but

cannot be returned. The scoring function may be simple (e.g., based on a single attribute)

or complex (e.g., computed from multiple attributes), static (i.e., independent of the search

query) or dynamic, and may be known or unknown to the users.

Recently, there has been growing interest by third-party applications in obtaining

random samples of the data in online hidden databases [18, 36, 37]. Such samples can be

of great benefit to third-party applications, because various analytical tools can be enabled

from the sample. For example, statistical information about the data can be derived, such as

useful aggregates [18, 36]. A variety of sampling methods can be employed to produce the

random samples - e.g., simple random sampling, stratified sampling, etc. For the purpose

85
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of this chapter, we focus on simple random sampling which selects each tuple with equal

probability. A justification for this choice is provided in Section 4.5. In the latter part of

this work, unless otherwise specified, our usage of term “sampling” refers specifically to

simple (uniform) random sampling.

Our previous work [36] shows that, for hidden databases which provide the actual

COUNT information (i.e., the total number of tuples that satisfy the given query) along with

the top-k returned tuples, uniform random sampling can be done very efficiently. While

a lot of hidden databases provide such COUNT information, numerous others do not or

provide notoriously inaccurate COUNT information (e.g., Google). For these COUNT-

less hidden databases, it has been challenging to develop effective sampling algorithms,

primarily because complete and unrestricted access to the data is disallowed. We focus

on the uniform random sampling of COUNT-less hidden databases in this chapter, and

summarize below the current state-of-the-art of such samplers.

4.1.1 Current State-of-the-Art Samplers

There are two main objectives that a sampling algorithm should seek to achieve:

• Efficiency: The efficiency of the sampling process is measured by the number of

queries that need to be executed via the web interface in order to collect a sample of

a desired size. The task is to design an efficient sampling procedure that executes as

few queries as possible.

• Minimizing Skew: Due to the restricted nature of the interface, it is challenging to

produce samples that are truly uniform random samples. Consequently, the task is

to produce samples that have small skew, i.e., the probability for each tuple to be

selected should deviate as little as possible from the uniform distribution.

A state-of-the-art sampler for hidden databases is the HIDDEN-DB-SAMPLER, pro-

posed in [18]. This approach is based on a random drill-down process of queries executable
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via the form-like interface - it starts with an extremely broad (therefore overflowing) query,

and iteratively narrowing it down by adding random predicates, until a non-overflowing

query is reached. If such a query answer is not empty, one of the returned tuples is ran-

domly picked for inclusion into the sample (subject to a probabilistic rejection test to re-

duce skew). Otherwise, the drill-down process restarts from the extremely broad query.

This process can be repeated to get samples of any desired size.

However, HIDDEN-DB-SAMPLER and all other existing hidden database samplers

(i.e., COUNT-DECISION-TREE [36] and HYBRID-SAMPLER [36]) have a main defi-

ciency in that they ignore all overflowing queries. In the design of these samplers, tuples

returned as the result of an overflowing query are assumed to be useless for assembling

into a random sample because they have been selected not by a random procedure, but

preferentially based on the pre-determined scoring function. Thus, overflowing queries are

ignored in order to avoid favoring highly ranked tuples and thereby incurring high skew in

the retrieved sample. While not using overflowing queries is a simple solution to eliminate

the effect of scoring function on skew, it also significantly increases the number of queries

required for sampling, thus adversely impacting efficiency. For example, during the ran-

dom drill-down process, existing hidden database samplers have to execute a large number

of overflowing queries before they encounter a non-overflowing one.

4.1.2 Main Technical Contributions

In this chapter, one of our main contributions is to propose novel techniques that

leverage overflowing queries to turbo-charge the efficiency of samplers. Thus, overflow-

ing queries that were ignored by prior samplers can now be properly utilized during the

sampling process. In particular, we develop TURBO-DB-SAMPLER, a sampler for hid-

den databases that is an order of magnitude (10 times in our experiments) more efficient

than the existing HIDDEN-DB-SAMPLER. The main idea behind our approaches is the
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novel concept of a designated query that maps each tuple in the database to a unique query

(whether overflowing or not) executable via the form-like interface, and a designation test

procedure that efficiently determines whether a query is designated for a tuple.

We also find that, for hidden databases with static scoring functions (i.e., which are

independent of the search queries), a simpler designation test is available which enables

the sampling efficiency to be further improved by a novel scheme called level-by-level

sampling. This scheme skips queries in the drill-down process whose results are not picked

for inclusion into the sample. With this scheme, we develop TURBO-DB-STATIC, an

algorithm that achieves an additional speedup factor of 2 for databases with static scoring

functions.

The second main contribution of our chapter is that our algorithms also significantly

reduces sampling skew. In particular, we propose a novel scheme of concatenating sam-

pling with crawling to reduce sampling skew. The basic idea is to switch to crawling from

the random drill-down process if we encounter a query which remains overflow after adding

a large number of predicates (i.e., a long overflowing query). The premise here is that a

long overflowing query is an indication of a dense cluster of data tuples - over which the

random drill-down technique produces an extremely high skew. The usage of crawling over

such dense clusters significantly reduces the sampling skew while maintaining a low query

cost because the number of queries needed for the crawling of such a cluster is linearly

bounded by the number of tuples matching the long overflowing query, which is usually

small. While this concatenated scheme is not able to completely remove skew, we show

that TURBO-DB-SAMPLER incurs orders of magnitude smaller skew than HIDDEN-DB-

SAMPLER and other state-of-the-art samplers.

The contributions of this chapter may be summarized as follows:
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• We develop a novel technique of using designated queries and designation tests to

leverage overflowing queries and thereby dramatically improve the efficiency of sam-

pling.

• We develop a novel technique of concatenating sampling with crawling to signifi-

cantly reduce sampling skew.

• For hidden databases with static scoring functions, we develop a novel technique of

level-by-level sampling to further improve sampling efficiency substantially.

• For hidden databases with arbitrary scoring functions, we put together the first two

techniques to develop a generic TURBO-DB-SAMPLER which achieves a speedup

factor of more than 5 over HIDDEN-DB-SAMPLER [18].

• For hidden databases with static scoring functions, we put together all three tech-

niques to develop TURBO-DB-STATIC which further improves sampling efficiency

by a speedup factor of 2.

• We run extensive experiments to demonstrate the effectiveness of our proposed sam-

pling algorithms. In particular, we tested our results on both synthetic datasets and a

real-world dataset crawled from Yahoo! Auto [35]. The experimental results demon-

strate the superiority of our sampling algorithms over the previous efforts.

The rest of this chapter is organized as follows: We define the problem and briefly review

the existing samplers in Section 2. In Sections 3, we introduce TURBO-DB-SAMPLER,

our major sampling algorithm, and its two main ideas: leveraging overflowing queries with

designation tests, and reducing skew by concatenating sampling with crawling. In Section

4, we introduce TURBO-DB-STATIC, a sampling algorithm which leverages the static

scoring function to enable a more efficient designation test and a level-by-level sampling

scheme that further improves efficiency. We present related discussions in Section 5. Sec-

tion 6 shows the experimental results. Related work is reviewed in Section 7, followed by

final remarks in Section 8.
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4.2 Preliminaries

In this section, we introduce a model of hidden databases, define the performance

measures for sampling over hidden databases, and review the state-of-the-art HIDDEN-

DB-SAMPLER.

4.2.1 Model of Hidden Databases

Hidden databases on the web receive queries from users through web forms. To

form a query, users are generally provided with drop down boxes, check boxes, text boxes

or other common HTML form elements. After a query is selected by the user, a request

is submitted and the hidden database system return tuples matching the user query. Large

databases generally restrict users access to top-k tuples which may be presented on one

pages or over multiple pages (accessed by page turns or clicking next at the bottom of the

results page). Below, we provide a simple formalization of this model.

Consider a hidden database table T with n tuples t1, . . . , tn and m attributes a1, . . . , am

which have respective domains of D1, . . . , Dm. We restrict our discussion in the most

part of this work to categorical data, and discuss the extension to numerical databases

in Section 4.5.2. We point out that a large number of hidden database systems can be

transformed into categorical data by applying simple transformations. As an example,

consider a price-range attribute which provides upper and lower bounds. This can be used

as a combination of discrete intervals with an upper and lower bound. Table 4.1 shows an

example with n = 4, m = 3 and Di = {0, 1} (i ∈ [1, 3]). Suppose k = 1 and the four

tuples ranked by score from high to low are t1, . . . , t4. This table will be used throughout

the chapter as a running example.
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Table 4.1. A Running Example for Hidden Databases

a1 a2 a3

t1 0 0 0
t2 0 0 1
t3 1 0 0
t4 1 1 0

4.2.1.1 Model of Query Input and Output

The hidden database table is only accessible to users through a web-based search

interface which allows users to query the database by specifying values for a subset of

attributes. Thus a user query QS is of the form: SELECT ∗ FROM T WHERE ai1 =

vi1& . . . &ais = vis , where {ai1 , . . . , ais} ⊆ [0,m − 1] and vij ∈ Dij . For the running

example, a user may specify a query SELECT ∗ FROM T WHERE a1 = 0 AND a2 =

0.

The query interface is restricted to only return k tuples, where k is a pre-determined

small constant (such as 20 or 50). Thus, the tuples that match a query QS , Sel(QS), will

be entirely returned only if |Sel(QS)| ≤ k. If the query is too broad (i.e., |Sel(QS)| >

k), only the top-k tuples in Sel(QS) (according to a scoring function) will be returned

as the query result. The interface will also notify the user that there is an overflow, i.e.,

that not all documents matching QS can be returned. For example, if k = 1, a query in

the running example, QS: SELECT ∗ FROM T WHERE a1 = 0 cannot be entirely

returned because Sel(QS) = {t1, t2} contains more than k tuples. As a result, t1, t2 have to

be evaluated against the scoring function, and the one with the higher score will be returned

along with an overflow notification.

At the other extreme, if the query is too specific and matches no tuple, we say that an

underflow occurs. In the running example, QS: SELECT ∗ FROM T WHERE a1 = 1
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AND a3 = 1 underflows. If there is neither overflow nor underflow, we have a valid query

result. An example of valid query is QS:SELECT ∗ FROM T WHERE a1 = 0 AND

a3 = 1 in the running example. In this chapter, we assume the query answering system to

be deterministic, i.e., the same query executed again will produce the same set of results.

For the purpose of this chapter, we assume that a restrictive interface does not allow

the users to “scroll through” the complete answer Sel(QS) when an overflow occurs for

QS . Instead, the user must pose a new query by reformulating the search conditions. We

argue that this is a reasonable assumption because many real-world top-k interfaces (e.g.,

Google Base [34], Yahoo Auto [35]) only allow “page turns” for limited (100) times.

Since the tuples returned by a query may not include tuples that match the query,

for the purpose of clarification, we distinguish the meaning of three verbs: match, return,

and draw, which are extensively used in the chapter. We say a tuple matches a query iff

the tuple is in the hidden database and satisfies the selection condition of the query. The

number of tuples that match a query may be greater than k. We say a tuple is returned by a

query iff the tuple is one of those that are actually displayed on the query output interface as

the response to that query. The number of tuples that a query can return is always smaller

than or equal to k. While a tuple returned by a query always matches the query, the reverse

is not always true. We say a tuple is drawn from a query during the sampling process iff

the sampler selects the tuple from the returned answer of the query, and then uses that tuple

as a sample tuple. A sample tuple drawn from a query must be returned by the query and

therefore matches the query. Again, the reverse is not always true.

4.2.1.2 Model of Scoring Function

There are two types of scoring functions for a hidden database: One is static in that

each tuple’s score is a function of the tuple value, and does not change with different user-

issued search queries. For example, a real estate database may score each tuple (i.e., house)
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by its price (i.e., an attribute value), and only display the k cheapest houses. The scoring

function we use for the running example is also static. The other type of scoring function

is query-dependent and is a function of both the tuple value and the search query. For

example, the real estate database may score each tuple by price if price is not included in

the search conditions, or by the number of bedrooms if price is included. In this chapter,

unless otherwise specified (e.g., in Section 4.4 which focuses on static ranking functions),

we consider generic ranking functions which may be static or query-dependent.

4.2.2 Performance Measures

Recall from the introduction that our objective is to generate a uniform random sam-

ple over the hidden web database. Such a sampling algorithm should be measured in terms

of efficiency and skew which we formally define as follows.

• Efficiency: For a given (desired) sample size s, we measure the efficiency of a sam-

pler by the expected number of queries it issues to the form-like web interface in

order to obtain s sample tuples.

• Skew: We define the level of skew as the standard deviation of the probability for a

tuple to be sampled. i.e.,

γ =

√√√√ 1

n
·

n∑
i=1

(
Pr{ti is chosen as the sample} − 1

n

)2

(4.1)

We observe later that the above measures tradeoff against each other. The parameter of our

system enables the user to strike the right balance according to their specific needs.

4.2.3 HIDDEN-DB-SAMPLER

We now review HIDDEN-DB-SAMPLER, the sampling algorithm presented in our

earlier work [18] for obtaining random samples from hidden databases. Consider a tree

constructed from an arbitrary order of all attributes, say a1, . . . , am. Let the root be the
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Figure 4.1. HIDDEN-DB-SAMPLER for the Running Example.

Level 1. All internal nodes of the tree at the ith level are labeled by attribute ai. Each

internal node ai has exactly |Di| edges leading out of it, labeled with values fromDi. Thus,

each path from the root to a leaf represents a specific assignment of values to attributes,

with the leaves representing possible database tuples. Figure 4.1 depicts such a query tree

for a Boolean database. This tree will be used as a running example throughout the chapter.

Note that since some domain values may not lead to actual database tuples, only some of

the leaves representing actual database tuples are marked solid, while the remaining leaves

are marked underflowing.

HIDDEN-DB-SAMPLER issues queries from the tree to obtain a random sample

tuple. To simplify the discussion, assume k = 1. Suppose we have reached the i-th level

(suppose that the root level is Level-0) and the path thus far represents the query a1 =

v1& . . .&ai = vi.. The algorithm selects one of the domain values of ai+1 uniformly

at random, say vi+1, adds the condition ai+1 = vi+1 to the query, and executes it. If the

outcome is an underflow (i.e., leads to an empty leaf), we can immediately abort the random

walk. If the outcome is a single valid tuple, we can select that tuple into that sample. And

only if the outcome is an overflow do we proceed further down the tree.

This random walk may be repeated a number of times to obtain a sample (with re-

placement) of any desired size. One important point to note is that this method of sampling

introduces skew into the sample, as not all tuples are reached with the same probability.
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Techniques such as acceptance/rejection sampling are further employed for reducing skew

(see [18] for further details).

4.3 TURBO-DB-SAMPLER

In this section, we describe TURBO-DB-SAMPLER, our algorithm for sampling a

hidden database. TURBO-DB-SAMPLER features two main ideas: it leverages overflow-

ing queries to significantly improve the efficiency of sampling; and concatenate sampling

with crawling to substantially reduce the skew of samples. In the following, we first de-

velop two samplers: OVERFLOW-SAMPLER and CONCATENATE-SAMPLER with the

two respectively, and then combine them together to construct TURBO-DB-SAMPLER.

4.3.1 Improve Efficiency: Leverage Overflows

4.3.1.1 Basic Idea

We leverage overflowing queries by ignoring the overflowing flag and treating an

overflowing query in the same way as a valid query that returns k tuples. However, doing

so makes a tuple with a higher score to be returned by more queries, and to have a higher

probability of being selected into the sample. To eliminate such score-related skew, we

place a restriction on the selection of a tuple into the sample. In particular, we define one

designated query (in the set of all interface-executable queries) for each tuple in the hidden

database, and require each selected sample tuple to go through a designation test - i.e., we

enforce a rule that a tuple can be selected into the sample only if it is retrieved from the

result of its designated query. Note that the designated query for a tuple can be either valid

or overflowing.

To understand the effect of this change on hidden database sampling, let us first

investigate a simple application of it to the random drill-down process of HIDDEN-DB-
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SAMPLER. At this moment, let us assume that the designation test can be done without

issuing any additional query to the web interface. We will discuss details about the cost of

designation test in the next step. There are two possible outcomes of this change for the

generation of one sample tuple:

• First, the random drill-down process might select a sample tuple from an overflow-

ing query, leading to an earlier termination of the random drill-down process. This

reduces the number of queries that need to be issued.

• However, depending on the definition of designated query, there might be a second

outcome where the sampler has to drill deeper down the tree than HIDDEN-DB-

SAMPLER if, according to the designated query definition, none of the overflowing

and valid queries issued on upper levels are the designated queries for the tuples they

return.

One can see from the two outcomes that the impact of this change on the efficiency

of sampling is determined by the definition of designated queries. Indeed, if the designated

query of a tuple is defined to be the highest-level valid query that returns the tuple, then

HIDDEN-DB-SAMPLER remains the same after applying the change because no over-

flowing query will serve as the designated query for a tuple anyway.

To improve sampling efficiency, we define the designated query of a tuple as follows:

Definition 4.3.1. For a given query tree, the designated query of a tuple t is the highest-

level query (valid or overflowing) that returns t. We denote the designated query by q(t).

Figure 4.2 shows the designated queries of all four tuples for the running example in

Table 4.1 (recall that k = 1 in the example). One can see from the figure that, compared

with HIDDEN-DB-SAMPLER, t1 and t3 may be retrieved by higher-level overflowing

queries. There are two important observations from this definition of designated queries:

• First, note that for a given tuple t, at any given level, there is at most one query

which returns t. Thus, the definition guarantees each tuple to have one and only one
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Figure 4.2. Designated Queries in the Running Example.

designated query. This observations ensures that a tuple with higher score will not

be selected with higher probability after leveraging overflowing queries.

• Second, if the drill-down process is used, the designation test can be done without

issuing any additional queries. To understand why, consider the designation test for

a query Q and a tuple t which is selected from the result of Q. When the drill-down

process reaches Q, it must have issued all queries on the path between the root node

and Q, which include all possible higher-level queries that may return t. Thus, the

sampler can just look up the answers of these queries from the historic log, and then

pass the designation test iff t was never returned in these queries.

4.3.1.2 Algorithm OVERFLOW-SAMPLER

We now describe OVERFLOW-SAMPLER, the sampling algorithm which uses our

definition of designated queries. Similar to HIDDEN-DB-SAMPLER, OVERFLOW-SAM-

PLER uses C to be the cut-off level for balancing between efficiency and skew. Since most

overflowing queries occur on higher levels of the tree, for the purpose of this subsection,

we focus on the sampling of such tuples on or above Level-C, and defer the discussion of

sampling tuples below Level-C to the next subsection which specifically addresses this is-

sue. Therefore, we assume that no tuple is hidden below Level-C - i.e., all Level-C queries

are valid or underflowing.
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OVERFLOW-SAMPLER again uses a random drill-down process starting from the

root level of a given query tree. However, before drilling down the tree, the sampler first

determines whether the sample tuple can be drawn from the root query. In particular, it

randomly chooses a tuple from those returned by the root query, and selects it as a sample

with probability of

p0 =
|d(Q0)|
k · π(C)

, (4.2)

where |d(Q0)| is the number of tuples that have the root query as their designated query,

and function π(·) is defined as

π(i) =
i∏

j=1

|Dj| (4.3)

which is the product of the domain size of attributes a1 to ai. Let π(0) = 1. For example,

the root query in our running example returns t1 with probability of 1/23. Note that accord-

ing to our definition of the designated query, a tuple has the root as its designated query

iff it is returned by the root query. As such, d(Q0) = |Q0|, the number of tuples returned

by Q0. Therefore, OVERFLOW-SAMPLER selects each tuple returned by the root with

probability of

1

|Q0|
· p0 =

1

|Q0|
· |Q0|
k · π(C)

=
1

k · π(C)
. (4.4)

If a sample tuple is not selected from the root and the root is overflowing, then

OVERFLOW-SAMPLER starts the random drill-down process. Note that if the root is

valid or underflowing, then no query with additional predicates can serve as the designated

query for any tuple. Thus, the sampling process has to restart in this case.

Different from HIDDEN-DB-SAMPLER, in the drill-down process, OVERFLOW-

SAMPLER follows each outgoing branch with different probability. The purpose of doing

so is to address the fact that tuples returned from upper levels of the tree may also satisfy
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the outgoing branches, but will not be returned by any lower level queries. Therefore, these

tuples must be excluded from consideration in the computation of outgoing probabilities. In

particular, OVERFLOW-SAMPLER follows an outgoing branch ai = vi (of a Level-(i−1)

node Qi−1) with probability of

βi(vi) =
π(i− 1)

π(i)
· k · π(C)− |f(Qi−1, v)| · π(i)

k · π(C)− |f(Qi−1)| · π(i− 1)
, (4.5)

where f(Qi−1) is the set of tuples returned byQ0, . . . , Qi−1 which satisfyQi−1, and f(Qi−1, vi)

is the subset of f(Qi−1) which further satisfies ai = vi. In the running example, we have

β0(0) = (1/2) · (23 − 2)/(23 − 1) = 3/7 and β0(1) = (1/2) · 23/(23 − 1) = 4/7. Thus,

the sampler follows the left and right branches of the root node with probability of 3/7 and

4/7, respectively. This is consistent with the intuition that, since the tuple returned by the

root “belongs to” the left branch, the drill-down process should turn to the left with lower

probability.

During the drill down process, after issuing each query, the sampler again needs to

determine whether the sample tuple can be drawn from the results. Consider such a process

for a Level-i query Qi. Let the list of queries issued so far by the drill down process be

Q0, . . . , Qi−1, at levels 0 to i− 1, respectively. The sampler first computes d(Qi) as

d(Qi) = Qi\(Q0 ∪ · · · ∪Qi−1). (4.6)

For instance, in the running example, query with predicates (a1 = 0)&(a2 = 0) has d(Q) =

t1\t1 = ∅. If d(Qi) is not empty, the sampler randomly draws a tuple from d(Qi) and

selects it as a sample with probability of

pi =
|d(Qi)|

k · π(C) · (
∏i−1

j=1 βj(vj)) ·
∏i−1

j=1(1− pj)
. (4.7)

We can derive the value of pi from this iterative formula and the value of p0 in (4.2):

pi =
|d(Qi)| · π(i)

k · π(C)− |f(Qi−1, vi)| · π(i)
. (4.8)
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In the running example, when query (a1 = 1) is issued, the sampler has probability of

21/(23 − 0) = 1/4 to select t3 as the sample. Note that there is always pi ≤ 1. To

understand why, note that pi increases monotonically with i. When i = C, we have

pC =
|d(QC)|

k − |f(QC−1, vC)|
, (4.9)

Since d(QC) and f(QC−1, vC) are mutually exclusive sets of tuples that satisfy QC , ac-

cording to our assumption for all Level-C queries to be valid or underflowing, there must

be |d(QC)|+ |f(QC−1, vC)| ≤ k. Therefore, pC ≤ 1.

From the definition of pi, one can derive that the probability for a tuple with desig-

nated query Qi to be selected as a sample is(
i∏

j=1

βj(vj)

)
·

(
i−1∏
j=0

(1− pj)

)
· 1

|d(Qj)|
· pi =

1

k · π(C)
(4.10)

which is constant across all levels. Again, if no sample is drawn and Qi overflows, the

drill down process continues to deeper levels. Otherwise, the sampler either terminates (if

enough sample has been collected) or restarts from the root.

Algorithm 5 depicts the pseudocode for OVERFLOW-SAMPLER. For setting the

value of the parameter C, we follow the heuristic rule in [18] that C be set as the average

depth of a random walk. In the running example, this leads to an assignment of C =

(0 + 1 + 2 + 3)/4 = 1.5. Note that in practice, a sampler has no prior knowledge of

the average depth. Nonetheless, as discussed in [18], the value of C can be determined

adaptively during the sampling process because the average depth can be learned as more

and more random walks are accomplished.

4.3.1.3 Analysis of Improvement on Efficiency

We now discuss the efficiency comparison between OVERFLOW-SAMPLER and

HIDDEN-DB-SAMPLER. First, one can observe that, to achieve the same level of skew,
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Algorithm 5 OVERFLOW-SAMPLER for Levels 1 to C
Require: C, a pre-determined cut-off level

1: Q← SELECT * FROM D, prod← 1, i← 0.

2: Issue query Q, Compute d(Q).

3: p← |d(Q)| · π(i)/(k · π(C) · prod).

4: Randomly generate r ∈ (0, 1) according to uniform distribution.

5: if r ≤ p then

6: Randomly choose a tuple from d(Q) as sample. exit.

7: end if

8: if Q overflows then

9: prod← prod · (1− p). i← i+ 1.

10: Randomly generate v ∈ Di. Add predicate ai = v to Q.

11: Goto 2

12: else

13: Goto 1

14: end if

the number of queries required by OVERFLOW-SAMPLER never exceeds that of HIDDEN-

DB-SAMPLER. To understand why, consider the execution of both samplers with the

same value of C over the same hidden database. As we have shown, for both algorithms,

a random drill-down process draws each tuple on or above Level-C with probability of

1/(k · π(C)). However, for any tuple, the number of queries (i.e., levels to step down)

required by OVERFLOW-SAMPLER to draw the tuple is always smaller than or equal to

that of HIDDEN-DB-SAMPLER. Thus, OVERFLOW-SAMPLER can only improve the

efficiency of sampling for a given level of skew.
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In the following, we quantitatively analyze the efficiency improvement provided by

OVERFLOW-SAMPLER. Since OVERFLOW-SAMPLER is only used for sampling tu-

ples on or above Level-C, the ratio of improvement depends on the value of C. As previ-

ously discussed, we set the value of C to be the average depth of a random walk for both

algorithms. Similar theorems can be derived for other settings of C.

Theorem 4.3.1. For a given query tree with uO overflowing nodes, n tuples, and a top-k

interface, the ratio between the query cost of HIDDEN-DB-SAMPLER and OVERFLOW-

SAMPLER on obtaining one sample tuple is

E(cost of HIDDEN-DB-SAMPLER)

E(cost of OVERFLOW-SAMPLER)
≥ 2k·uO/n. (4.11)

We omit the proof due to space limitation. The theorem follows directly from the

following observation: If a tuple appears in d overflowing queries, then the random walk

to reach this tuple in HIDDEN-DB-SAMPLER is d levels longer than in OVERFLOW-

SAMPLER. Thus, on average the length of a random walk that draws a sample tuple in

OVERFLOW-SAMPLER is k · uO/n shorter than that in HIDDEN-DB-SAMPLER. In

the running example, such average length is (0 + 1 + 2 + 3)/4 = 1.5 for OVERFLOW-

SAMPLER and (2 + 2 + 3 + 3)/4 = 2.5 for HIDDEN-DB-SAMPLER, leading to a differ-

ence of exactly k · uO/n = 1 · 4/4 = 1. Since each attribute has at least two values, 2k·uO/n

serves as a lower bound for the improvement ratio.

The theorem indicates that OVERFLOW-SAMPLER can achieve a significant im-

provement ratio in practice. For example, consider a 50-attribute, 10, 000-tuple, Boolean

i.i.d dataset with probability of 1 being 0.1 for each attribute and k = 1. There are an

expected number of 31, 176.95 overflowing queries in the query tree. According to the

theorem, by leveraging overflowing queries one can reduce the expected query cost by a

factor of at least 8.68.
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4.3.2 Reduce skew: Concatenate with Crawling

4.3.2.1 Basic Idea

As we mentioned in the previous subsection, both HIDDEN-DB-SAMPLER and

OVERFLOW-SAMPLER can produce unbiased samples if all Level-C queries are valid.

Thus, sampling skew is caused by the different selection probability of tuples with desig-

nated queries below the cutoff Level-C. For example, if a tuple is only returned by a leaf-

level query but not higher-level ones (e.g., due to the tuple’s low score), then HIDDEN-

DB-SAMPLER selects this tuple with probability only π(C)/π(m) ≤ 1/2m−C times of

that for a tuple returned on or above Level-C.

To reduce the skew for sampling these low-level tuples, our main idea is to concate-

nate sampling with crawling on levels below Level-C. In particular, the sampling of tuples

below Level-C starts when OVERFLOW-SAMPLER reaches an overflowing query Q at

Level-C but could not select a sample from it (due to rejection sampling in Line 5 of Algo-

rithm 5). Instead of further conducting the random walk to drill below Level-C, we switch

to the crawling of the subtree of Q, and compute Ω(Q), the set of all tuples in the database

that match Q. Then, we randomly choose a tuple from Ω(Q) and return it as a sample after

a rejection sampling step which will be discussed in detail later. The crawling process can

be performed as a depth-first search of the subtree with root beingQ. The depth-first search

backtracks from a node if the node is already valid or underflowing.

The concatenation of sampling with crawling has two main implications on the per-

formance of sampling:

• The concatenated process substantially reduces the skew of selection probability for

tuples below Level-C. Unlike in HIDDEN-DB-SAMPLER where a tuple’s selection

probability decreases exponentially with its level index below Level-C, the concate-

nation idea ensures equal selection probability for all (lower-level) tuples in the sub-
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tree of an overflowing Level-C node. As we shall show at the end of this subsection,

the difference between the selection probability of different tuples is substantially

reduced with the concatenated process.

• The effect of crawling on sampling efficiency is insignificant for practical databases.

The crawling of a subtree in which nT tuples have designated queries below Level

C requires O(nT) queries. In the theoretical worst case, the subtree may contain as

many as nT = max(n−k, k ·π(m)/π(C)−k) tuples which leads to an unacceptably

large query cost. Nonetheless, we argue that this case is extremely unlikely to occur

in practice because it indicates that attributes a1, . . . , aC (in the upper levels) are

incapable of distinguishing tuples, and should be excluded from the form-like web

interface. For real-world datasets, when C is reasonably large (e.g., k · π(C) ≈ n),

the number of tuples in each subtree should be fairly small.

4.3.2.2 Algorithm CONCATENATE-SAMPLER

We now describe the detailed design of CONCATENATE-SAMPLER, our algorithm

for sampling tuples with designated queries below Level-C by concatenating sampling with

crawling.

Recall from the above subsection that, when all Level-C queries are valid or under-

flowing, a random drill-down process of OVERFLOW-SAMPLER selects each tuple with

probability ζ = 1/(k · π(C)). When there exists tuples below Level-C (i.e., there exists

Level-C overflowing queries), however, it is no longer possible to always select each tu-

ple with probability of 1/(k · π(C)). To understand why, consider an extreme case where

all Level-C queries overflow. In this case, the number of tuples n > k · π(C), making it

impossible to select each tuple with probability of 1/(k · π(C)).
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Thus, in order to support the sampling of tuples below Level-C, we have to decrease

the value of ζ . In particular, we consider a new (target) selection probability

ζI =
1

(k + n0) · π(C)
, (4.12)

where n0 is the maximum number of tuples that match a Level-C overflowing query. Al-

though the sampler has no prior knowledge of n0, it can learn it adaptively when more

Level-C subtrees are crawled. The adaption of OVERFLOW-SAMPLER to this new se-

lection probability can be easily done by replacing k in Algorithm 5 with k + n0. Thus, in

the following, we focus on the sampling of tuples with designated queries below Level-C

with selection probability as close to ζI as possible (i.e., to achieve minimum skew).

Algorithm 6 CONCATENATE-SAMPLER for Levels C + 1 to m
1: Crawl the subtree of Q. Suppose that nT tuples with designated queries below Level

C are collected.

2: With probability of nT/n0, return a tuple randomly chosen from the nT tuples.

3: Update the value of n0 if necessary.

Let QC be a Level-C overflowing query. After adapting OVERFLOW-SAMPLER

to the new ζI, a tuple randomly drawn from the returned result of QC is selected as a

sample with probability of pC = |d(Qi)|/(k + n0 − |f(QC−1, vC)|). If it is not selected as

a sample, our CONCATENATE-SAMPLER will be invoked with probability of n0/(k +

n0−|f(QC)|). This way, givenQC , the overall probability for a random-drill down process

to switch to the crawling of the subtree of QC is n0/((k + n0) · π(C)).

Once the CONCATENATE-SAMPLER is invoked, we crawl the subtree of QC and

randomly draw from the crawling result a tuple t with designated query below Level C.

Suppose that the subtree includes nT such tuples. Then, with probability of max(nT, n0)/n0,
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we select t as a sample tuple. Otherwise, CONCATENATE-SAMPLER is aborted and

OVERFLOW-SAMPLER restarts from the root level.

Algorithm 6 depicts pseudocode of CONCATENATE-SAMPLER.

4.3.2.3 Analysis of Reduction on Skew

We now discuss the skew comparison between CONCATENATE-SAMPLER and

HIDDEN-DB-SAMPLER. One can observe that CONCATENATE-SAMPLER can still be

skewed - if an overflowing query at Level C has a subtree with size more than (the current

value of) n0, then tuples with designated queries in this tree will be sampled with lower

probability than the others. In particular, a tuple in a nT-tuple subtree will be selected with

probability min(1, n0/nT) times of that for a tuple on or above Level C.

However, as we argued in the beginning of this subsection, with a reasonable value

of C (e.g., π(C) ≈ n), we expect nT ≤ n0 to hold true for most subtrees. Even when

nT > n0, the ratio between the highest and lowest selection probability for different tuples

is at most n/n0, which in many cases is still much smaller than the π(m)/π(C) ratio for

HIDDEN-DB-SAMPLER, because for most hidden databases the size of the database n is

orders of magnitude smaller than the space of all possible tuple values (π(m)).

The following theorem further investigates the skew comparison for an i.i.d. Boolean

dataset with probability of 1 being 0.5 and k = 1.

Theorem 4.3.2. When 2C � n and m is sufficiently large, the level of skew of HIDDEN-

DB-SAMPLER γH and that of TURBO-DB-SAMPLER γT satisfies

γT

γH

< 2C/2+1 ·
(
n− 1

2C

)n0/2

(4.13)

which is much smaller than 1 given a reasonably large n0.

We omit the proof due to space limitation. One can see from the theorem that the

sample skew is significantly smaller in CONCATENATE-SAMPLER than HIDDEN-DB-
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SAMPLER. For example, given a Boolean database with 10, 000 tuples, 100 attributes, and

C = 20, when n0 = 5, CONCATENATE-SAMPLER has a skew of 0.018 times that of

TURBO-DB-SAMPLER. The skew ratio will further reduce for a larger value of n0.

Since the adoption of CONCATENATE-SAMPLER also incurs query cost on the

crawling of low-level tuples, we analyze the expected query cost incurred by CONCATEN-

ATE-SAMPLER. In particular, we integrate the lower-level sampling of CONCATENATE-

SAMPLER with the higher-level sampling of HIDDEN-DB-SAMPLER, and then compare

it with a pure HIDDEN-DB-SAMPLER which uses the random walk theme throughout all

levels. The comparison is analyzed in the following theorem.

Theorem 4.3.3. If n and m are sufficiently large, when a Level-C subtree contains at most

n0 tuples, to achieve the same level of skew, the ratio between the query cost of HIDDEN-

DB-SAMPLER and CONCATENATE-SAMPLER on obtaining one sample is

E(cost of HIDDEN-DB-SAMPLER)

E(cost of CONCATENATE-SAMPLER)

≥ n0 · π(C) · k
(k + n0) · π(C) + n0 · n/2

(4.14)

Again, we omit the proof due to space limitation. One can see from the theorem

that despite of requiring the crawling of a subtree, CONCATENATE-SAMPLER actually

requires substantially fewer queries than HIDDEN-DB-SAMPLER to achieve the same

level of skew. In the above Boolean database example with n = 10, 000,m = 100, and

C = 20, when n0 = 5, the theorem indicates that the cost of HIDDEN-DB-SAMPLER is

at least 16.60 times that of CONCATENATE-SAMPLER.
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4.3.3 Algorithm TURBO-DB-SAMPLER

Algorithm 7 depicts the pseudocode for TURBO-DB-SAMPLER.

Algorithm 7 TURBO-DB-SAMPLER
Require: Parameters C and n0 set adaptively during sampling

1: Q← SELECT * FROM D, prod← 1, i← 0.

2: Issue query Q, Compute d(Q).

3: p← |d(Q)| · π(i)/((k + n0) · π(C) · prod).

4: Randomly generate r ∈ (0, 1).

5: if r ≤ p then

6: Randomly choose a tuple from d(Q) as sample. exit.

7: end if

8: if Q overflows then

9: prod← prod · (1− p). i← i+ 1.

10: Randomly generate v ∈ Di. Add predicate ai = v to Q.

11: Goto 2 if i ≤ C, Goto 15 otherwise.

12: else

13: Goto 1

14: end if

15: Crawl the subtree of Q. Suppose that nT tuples with designated queries below Level

C are collected.

16: With probability of nT/n0, return a tuple randomly chosen from the nT tuples.
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4.4 Turbo-Charging Samplers for Static scoring Functions

In this section, we describe TURBO-DB-STATIC, our algorithm for sampling a hid-

den database with a static scoring function. TURBO-DB-STATIC integrates the two ideas

we discussed for TURBO-DB-SAMPLER (i.e., leveraging overflows and concatenating

sampling with crawling), as well as a third idea of level-by-level sampling which is en-

abled by a unique property of static scoring functions and is capable of further improving

the efficiency of sampling. We discuss this idea in this section.

4.4.1 Improve Efficiency: Level-by-Level Sampling

4.4.1.1 Basic Idea

We first describe the basic idea of level-by-level sampling, and then explain why it

only applies to hidden databases with static scoring functions.

Similar to OVERFLOW-SAMPLER, the objective of level-by-level sampling is to

further improve the efficiency for sampling tuples with designated queries on or above the

cutoff level C. For sampling these tuples, both OVERFLOW-SAMPLER and HIDDEN-

DB-SAMPLER perform random walks and terminates a random walk when (1) one of the

tuples the current query returns is selected as a sample, and/or (2) the random walk reaches

a valid or underflowing query. However, such a technique has the following efficiency

problem: Almost all top-level queries will be issued because every random walk initiates

from there. Although the number of these queries is small in comparison with the total

number of possible queries and/or the size of the database, the cost of issuing them may

be significant for drawing a small number of samples. Nonetheless, we argue that issuing

these top-level queries are hardly useful for sampling due to the following two reasons:
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• Tuples with top-level designated queries form only a very small fraction of the database.

Thus, these top-level queries have slim chances of actually contributing a sample tu-

ple drawn from their returned answers.

• The role of top-level queries on the “early termination” of a random walk is also

doubtful: Unless a database is extremely skewed, it is unlikely that these high-level

queries can be underflowing or valid.

To address this problem, the main idea of level-by-level sampling is to perform the

sampling successively for each level of the query tree, with the order downward from the

root, and to issue a growing number of queries per level during the step-down process. If

a query Q is not underflowing, we perform designation tests to find the set of tuples with

designated queries being Q, and then randomly choose a tuple t from these tuples. We

select t as a sample after subjecting it to a rejection sampling test. The sampling process

terminates when a sample tuple is selected. If no tuple is chosen on or above Level C,

we randomly choose an overflowing query from Level-C and execute CONCATENATE-

SAMPLER over it. If CONCATENATE-SAMPLER cannot select a sample (i.e., due to

rejection sampling based on the subtree size), we again randomly choose a Level-C over-

flowing query and repeatedly execute CONCATENATE-SAMPLER until a sample tuple is

selected.

As we shall show in the detailed algorithm, level-by-level sampling has two main

features that contribute to the improvement of sampling efficiency:

• Level-by-level sampling issues top-level queries with extremely small probability

due to their unlikeliness of being selected to contribute a sample tuple.

• Unlike the random walk process which often aborts without returning a sample, level-

by-level sampling always return a sample from each step-down process.

Finally, note that level-by-level sampling only applies to static scoring functions due

to the requirement of designation test. Unlike OVERFLOW-SAMPLER, level-by-level
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sampling does not have a drill-down process. Therefore, when a query Q is issued, queries

on the path between the root and Q may not have been issued before. As a result, the des-

ignation test cannot be performed based on the historic query answers as in OVERFLOW-

SAMPLER. A simple method to perform this test is to actually issue every query on the

path. However, doing so leads to significant query cost and is contradictory to our idea of

avoid issuing top-level queries.

On the other hand, it is possible to perform the designation test efficiently when the

hidden database has a static scoring function. In this case, only a single query needs to

be issued for designation test: To check whether a given query Q is the designated query

of a tuple t that it returns, we only need to check whether the parent of Q returns t. If

it does not, then Q is the designated query of t, and vice versa. In the running example,

to determine whether (a1 = 1)&(a2 = 1) is the designated query for t4, we only need to

judge whether query a1 = 1 returns t4, and do not need to issue the root query. In general,

the reason is that if t is not returned by the parent query, it certainly cannot be returned by

upper-level queries due to the static nature of the scoring function. Therefore, t must have

Q as its designated query.

4.4.1.2 Algorithm LEVEL-SAMPLER

Algorithm 8 depicts LEVEL-SAMPLER, our baseline algorithm for level-by-level

sampling. The following discussion consists of two parts: First, we make a few remarks on

applying LEVEL-SAMPLER in practice. Then, we show that it samples each tuple with

designated queries on or above Level C with equal probability.

One can see from Algorithm 8 that LEVEL-SAMPLER requires the knowledge of

n, the number of tuples in the database. We argue that such knowledge is usually available

in practice, as many hidden database providers publicize their database size as an adver-

tisement for usability. If the knowledge of n is not available, an upper-bound estimate of
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it can be used. In this case, all tuples with designated query on or above Level C will still

be sampled with equal probability, but the probability will be different from those tuples

below LevelC. Nonetheless, we shall demonstrate in the experimental results that the skew

is extremely small even with an inaccurate estimation of n, and much smaller than the skew

of the existing algorithms.

Another note of caution from Algorithm 8 is that the cutoff level C must be cho-

sen such that k · π(C) ≤ n. Since we would like to sample as many tuples by LEVEL-

SAMPLER as possible, to avoid the skew of CONCATENATE-SAMPLER, a natural choice

is to set C to be the maximum value that satisfies k · π(C) ≤ n. In Section 4.4.2, we shall

show how the value of C can be further increased by pruning the query tree.

Algorithm 8 LEVEL-SAMPLER for Levels 1 to C
1: h = 0.

2: With probability of (1− k · π(h)/n), Goto 8. Otherwise, randomly choose a query Q

from Level-h.

3: Goto 10 if Q is empty. Otherwise randomly pick a tuple t from the result of Q.

4: Generate r ∈ (0, 1) uniformly at random.

5: if r ≤ |Q|/k and Q is the designated query for t then

6: return t as sample and exit.

7: else if r ≤ |Q|/k and Q is not the designated query for t then

8: With probability of k · π(h)/n, Goto 2.

9: end if

10: if h ≤ C − 1 then

11: Set h = h+ 1, goto 2

12: else exit

13: end if
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We now show that LEVEL-SAMPLER is equivalent with OVER-FLOW-SAMPLER

(for static scoring functions) by proving that it generates unbiased samples when all Level-

C queries are valid or underflowing.

Theorem 4.4.1. LEVEL-SAMPLER returns each tuple with designated query on or above

Level C with probability of 1/n.

Proof. We prove the unskewedness of LEVEL-SAMPLER in two steps: First, we show

that once LEVEL-SAMPLER reaches Level h (h ∈ [1, C]), each tuple with designated

query at Level h has probability of 1/(n− nh−1) to be returned as a example, where nh−1

is the number of nonempty (i.e., valid and overflowing) nodes at Level h − 1 (for h = 0,

we assume that n−1 = 0). Then, we show that the overall probability for each tuple to be

returned is 1/n.

Note from Algorithm 8 that once LEVEL-SAMPLER reaches Level h, the probabil-

ity for LEVEL-SAMPLER to not return a tuple from Level h is

p(h) = 1− k · π(h)

n
+
k · π(h)

n
·
(
k · π(h)− nh
k · π(h)

+
nh−1

k · π(h)
·(

1− k · π(h)

n

)
+

nh−1

k · π(h)
· k · π(h)

n
·
(
k · π(h)− nh
k · π(h)

+
nh−1

k · π(h)
·
(

1− k · π(h)

n

))
+

(
nh−1

k · π(h)
· k · π(h)

n

)2

·

(4.15)

(
k · π(h)− nh
k · π(h)

+
nh−1

k · π(h)
·
(

1− k · π(h)

n

))
+ · · ·

= 1− k · π(h)

n
+
k · π(h)

n
·

1− nh−nh−1

k·π(h)
− nh−1

n

1− nh−1

n

(4.16)

= 1− k · π(h)

n
+
k · π(h)

n
− nh − nh−1

n− nh−1

(4.17)

=
n− nh
n− nh−1

(4.18)
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When the algorithm does return a tuple from Level h, it is easy to verify that all tuples with

designated query at Level h are returned with equal probability. Note that since k = 1,

the number of tuples with designated query at Level h is nh − nh−1. Thus, once LEVEL-

SAMPLER reaches Level h, the probability for each tuple at Level h to be returned is

(1− p(h))/(nh − nh−1) = 1/(n− nh−1).

Since LEVEL-SAMPLER reaches Level h iff it cannot retrieve the sample from

Levels 0 to h − 1, for a given tuple with designated query at Level h, the probability for

LEVEL-SAMPLER to select the tuple as a sample is(
h−1∏
i=1

(
1− xi

n− ni−1

))
· 1

n− nh−1

=
1

n
(4.19)

The derivation is due to the fact that n−ni = n−ni−1−xi. Thus, the algorithm generates

unskewed simple random samples from tuples with designated queries at Levels 1 toC.

4.4.1.3 Analysis of Improvement on Efficiency

Let π−1(i) be the maximum value of x that satisfies pi(x) ≤ i. The following the-

orem shows that LEVEL-SAMPLER is significantly more efficient than HIDDEN-DB-

SAMPLER and OVERFLOW-SAMPLER on sampling tuples with designated queries on

or above Level C.

Theorem 4.4.2. The expected number of queries issued by LEVEL-SAMPLER to sample

each Level-C-retrievable tuple with probability of 1/n is

E(Cost of LEVEL-SAMPLER) ≤
h∑
i=0

2i+1

n
≤ 4 (4.20)

Such expected number for HIDDEN-DB-SAMPLER and OVERFLOW-SAMPLER is at least

π−1(n/k)− 1.

We omit the proof due to space limitation. Note that the upper bound derived for

LEVEL-SAMPLER holds on arbitrary distribution of tuples.
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4.4.2 Algorithm TURBO-DB-STATIC

Algorithm 9 depicts TURBO-DB-STATIC, an integration of all three ideas - lever-

aging overflowing queries, concatenating sampling with sampling, and level-by=level sam-

pling. In the algorithm,

ρ(j, i) = k ·
i−1∏
b=j

|Db| (4.21)

where |Db| is the domain size of Attribute ab. For a Boolean database, ρ(j, i) = k · 2i−j .

Recall from Section 5.2 that a0, . . . , am−1 are the attributes. card(q) is the number of tuples

returned by q. Root is Level 0. n0 is the pre-determined threshold for crawling. One can

see that the algorithm utilizes the two efficiency-improving strategies, query-tree pruning

and breath-first sampling:

Query-Tree Pruning: The simplest way to obtain the answer to a query is to issue the

query (through the web interface), as is done in Algorithm 9. TURBO-DB-SAMPLER

improves sampling efficiency by sending a query to the hidden database only if the query

cannot be inferred from the historic query answers. For example, if a historic query returns

valid or underflow, then no successor of the query needs to be issued, because its answer

can be readily inferred from the historic query answer (by matching the returned tuples with

the new query’s search conditions). This strategy can be considered as pruning the query

tree based on historic queries - the subtree of any issued underflowing and valid queries

can be removed from the tree because the corresponding queries need not to be issued in

the future.

Breath-First Sampling: TURBO-DB-SAMPLER also improves efficiency by performing

breath-first search for the s samples to be collected i.e., for each given level h, execute

LEVEL-SAMPLER for all of the s samples which have not been returned from higher

levels. The premise of this idea is that one would prefer issuing higher-level queries first,

in order to prune the search space for lower-level queries and to increase the cutoff level C.
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4.5 Discussions

4.5.1 Uniform Random Sampling vs Weighted and Stratified
Sampling

As we mentioned in the introduction, traditional database sampling can be done in a

variety of ways besides uniform random sampling. Two popular techniques are stratified

sampling and weighted sampling. In this subsection, we discuss our choice of uniform

random sampling for hidden databases.

A unique challenge to hidden database sampling is the lack of access to the popula-

tion being sampled. This presents a significant obstacle to stratified sampling, because it

has to (1) select an appropriate stratification variable which partitions all tuples into rela-

tively homogeneous subgroups, and (2) determine the size of each subgroup. While these

two tasks can be easily done for a traditional database [38], it is not immediately clear how

they can be accomplished for a hidden database without incurring significant query cost.

Another possible way to sampling hidden database is weighted sampling. Such a

scheme has been proposed for sampling search engines [39] to estimate aggregate query

answers. Adapted to hidden database sampling, it works as follows: instead of performing

rejection sampling on a tuple before selecting it as a sample, this scheme always selects

such a tuple while associating it with a weight computed from the probability that such a

tuple is selected. For example, consider a hidden database with k = 1000 and two attributes

a1, a2. There are 1000 tuples with a1 = 0 and 1 with a1 = 1. If we adapt HIDDEN-DB-

SAMPLER to the weighted sampling scheme, the tuples with a1 = 0 will be assigned a

weight of w0 = 2000/1001 while the tuple with a1 = 1 has weight of w1 = 2/1001. This

way, ∀i ∈ {0, 1},

Pr{a tuple with a = i is selected} · w0 =
1

1001
. (4.22)
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A main problem of this weighted sampling scheme is that its accuracy on answering

an aggregate query depends on whether the selection probability distribution of all tuples

is aligned with the aggregate query. To understand why, consider the above example and

an aggregate query SELECT AVG(a2) FROM D. To estimate the answer to this query,

the weighted sampling scheme computes the mean of t[a2] · w(t) for all sample tuples,

where t[a2] and w(t) are the value of a2 and the weight for a sample tuple t, respectively.

If a2 = 1.001 and 1001 for all tuples with a1 = 0 and 1, respectively, then the weighted

sampling performs perfectly with zero standard error because 1.001 · w0 = 1001 · w1 = 2.

However, if a2 = 1001 and 1.001 for tuples with a1 = 0 and 1, respectively,

the weighted sampling scheme performs significantly worse than uniform random sam-

pling. Note that in this case, t[a2] · w(t) = 2000 and 0.002, respectively. The vari-

ance of it is ((2000 − 1000.001)2 + (0.002 − 1000.001)2)/2 = 999998. In compari-

son, the variance of t[a2] for a sample tuple t generated by uniform random sampling is

(1000/1001) · (1001 − 1000.001)2 + (1/1001) · (1.001 − 1000.001)2 = 998.001. Note

that when issuing the same number of queries, the weighted sampling scheme gener-

ates 1/(1/2 + 1/2000) = 1.998 times as many samples as the original HIDDEN-DB-

SAMPLER. Thus, given the same query cost, the standard error produced by weighted

sampling is
√

999998/(998.001 · 1.998) = 22.394 times that of uniform random sampling.

Since we do not assume knowledge of the aggregate query to be estimated in this

chapter, we choose uniform random sampling as our objective. We shall investigate the

design of sampling techniques with knowledge of the target aggregate queries in the future

work.

4.5.2 Extensions for Numerical Databases

For numerical databases, a sampler can first discretize the numerical data to resem-

ble categorical data before applying the sampling algorithms discussed in this chapter.
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However, different discretization techniques have different impact on the performance of

sampling. Given our preference of minimizing n0 to reduce the quest cost, a equal-size

discretization might be preferred. Nonetheless, how to determine the optimal number of

intervals and choose an optimal discretization scheme is left as an open problem.

4.6 Experimental Results

In this section, we describe our experimental setup and compare our TURBO-DB-

SAMPLER and TURBO-DB-STATIC with the exiting HIDDEN-DB-SAMPLER [18] and

HYBRID-SAMPLER algorithms [36].

4.6.1 Experimental Setup

Hardware: All experiments were on a machine with Intel Xeon 2GHz CPU with 4GB

RAM and Windows XP operating system. The sampling algorithms were implemented

using C# and Matlab.

Yahoo! Auto Dataset: The Yahoo! Auto dataset consists of data crawled from a real-world

hidden database at http://autos.yahoo.com/. In particular, it contains 200,000 used cars for

sale in the Dallas-Fort Worth metropolitan area. There are 32 Boolean attributes, such as

A/C, Power Locks, etc, and 6 categorical attributes, such as Make, Model, Color, etc. The

domain size of categorical attributes ranges from 5 to 447.

System Implementation: We set k = 100. Since the database query processing technique

is relatively deterministic, we implemented our own in-memory database engine using Mat-

lab. All tuples are ranked lexicographically.

Parameter Settings: The experiments involve four algorithms: HIDDEN-DB-SAMPLER

[18], HYBRID-SAMPLER [36], as well as TURBO-DB-SAMPLER and TURBO-DB-

STATIC introduced in this chapter. TURBO-DB-SAMPLER and TURBO-DB-STATIC

require one parameter: the cutoff level C for switching from sampling to crawling. We
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conducted experiments with various values of C ranging from 5 to 15. HIDDEN-DB-

SAMPLER also requires the cut-off level C as a parameter to balance between efficiency

and skew. Following the heuristic in [18], we set C for HIDDEN-DB-SAMPLER to be the

average length of random walks that reach a valid query. HYBRID-SAMPLER requires

two parameters: the number of pilot samples s1 and the switching count threshold cS. We

set s1 = 20 and cS = 5.

Performance Measures: For each algorithm, there are two performance measures: effi-

ciency and skew. Efficiency of a sampling algorithm was measured by counting the number

of unique queries that were executed to reach a certain desired sample size. For measur-

ing the skew of collected samples, there has not been a widely accepted measure. Thus,

we follow the same measure as [18] which compares the marginal frequencies of attribute

values in the original dataset and in the sample:

skew =

√√√√∑v∈V

(
1− pS(v)

pD(v)

)2

|V |
. (4.23)

Here V is a set of values with each attribute contributing one representative value, and pS(v)

(resp. pD(v)) is the relative frequency of value v in the sample (resp. dataset). Again, even

unskewed samples may have small but possibly non-zero value of the measure.

4.6.2 Comparison with State-of-The-Art Samplers

We tested TURBO-DB-SAMPLER and TURBO-DB-STATIC on the Yahoo! Auto

dataset and compared them against HIDDEN-DB-SAMPLER and HYBRID-SAMPLER

in terms of the tradeoff between efficiency and skew. Figure 4.3 depicts the results. For

TURBO-DB-SAMPLER, we set C to be the average length from the root to the designated

query of a tuple. For TURBO-DB-STATIC, we setC to be the maximum value that satisfies

the requirement of k ·π(C) ≤ n. The different points in the figure are generated by varying

the number of sample tuples to be collected between 1 and 500. One can see from the
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Figure 4.4. Number of Queries vs. Number of Samples.

figure that the samplers we proposed in this chapter provides significant improvement over

the existing algorithms on the tradeoff between efficiency and skew.

Figure 4.4 and Figure 4.5 depicts the change of query cost and skew during the

process of collecting 100 samples, respectively. Note that only TURBO-DB-SAMPLER,

HIDDEN-DB-SAMPLER, and HYBRID-SAMPLER are shown in these figures due to the

breath-first sampling scheme we used for TURBO-DB-STATIC - i.e., it collects all samples

for one level before going to the next. One can see from the figures that TURBO-DB-

SAMPLER significantly outperforms the existing algorithms in terms of both efficiency

and skew.
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4.6.3 Evaluation of Parameter Settings

We now investigate the change of efficiency and skew of our algorithms with the cut-

off level parameter C. Figure 4.6 depicts the change of query cost and skew for TURBO-

DB-SAMPLER to collect 100 samples when C varies between 7 and 15. One can see

that while the skew is reduced when C increases, the number of queries remain roughly

constant for different values of C. This is because with a larger C, while the OVERFLOW-

SAMPLER part of TURBO-DB-SAMPLER needs to issue more queries due to the re-

duced acceptance probability, the CONCATENATE-SAMPLER part, however, requires

fewer queries because the subtree that needs to be crawled becomes smaller.

Figure 4.7 depicts the change of query cost and skew for TURBO-DB-STATIC to

collect 100 samples when C varies between 5 and 10 (the maximum value allowed by the

algorithm requirement of k ·π(C) ≤ n). One can see that unlike TURBO-DB-SAMPLER,

a larger value of C reduces both skew and query cost for TURBO-DB-STATIC. This is

because when C is too small (e.g., 5 or 6 in our dataset), the query cost is dominated

by crawling, the cost of which can be significantly reduced with a larger C. The value

assignment of C we suggested in the chapter is 10 for this dataset which, as one can see

from the figure, achieves a fairly good tradeoff between efficiency and skew.

4.7 Related Work

Crawling and Sampling from Hidden Databases: There has been prior work on crawl-

ing as well as sampling hidden databases using their public search interfaces. [17, 25, 26]

deal with extracting data from structured hidden databases. [27] and [28] use query based

sampling methods to generate content summaries with relative and absolute frequencies

while [29, 30] uses two phase sampling method on text based interfaces. On a related

front [31, 32] discuss top-k processing which considers sampling or distribution estima-
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tion over hidden sources. A closely related area of sampling from a search engines in-

dex using a public interface has been addressed in [8] and more recently [9, 33]. In [18]

and [36] the authors have developed techniques for random sampling from structured hid-

den databases leading to the HIDDEN-DB-SAMPLER, COUNT-BASED-SAMPLER, and

HYBRID-SAMPLER algorithms.

Approximate Query Processing and Database Sampling: Approximate query process-

ing (AQP) for decision support, especially sampling-based approaches for relational databa-

ses, has been the subject of extensive recent research; e.g., see tutorials by Das [20] and

Garofalakis et al [7], as well as [21] and the references therein.

4.8 Conclusion

In this paper, we investigated techniques which leverage overflowing queries to ef-

ficiently sample a hidden database. In particular, we proposed TURBO-DB-SAMPLER

which significantly improves sampling efficiency while allowing much smaller skew than

state-of-the-art samplers. We also proposed TURBO-DB-STATIC, an algorithm that achieves

additional speedup for databases with static scoring functions. Our thorough experimental

study demonstrates the superiority of our sampling algorithms over the existing algorithms.
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Algorithm 9 TURBO-DB-STATIC
1: Set h = 0. Λ(i) = ρ(0, i) for i ∈ [0,m− 1]. W [i] = ∅ for i ∈ [1, s].

2: for all i ∈ [1, s] with W [i] = ∅ do

3: With probability of 1− Λ(h)/n, Goto 16 for the next loop.

4: Randomly choose a query q from Level h. With probability of card(q)/k, ran-

domly pick a tuple from the result of q as t.

5: if a valid or underflowing ancestor of q was issued then

6: Goto 4 if t = ∅.

7: else if q is valid or underflowing then

8: for i = h+ 1 to m do Λ(i) = Λ(i)− ρ(h, i) + card(q)

9: end if

10: if t 6= ∅ then

11: Issue query P (q), the parent of q.

12: if t ∈ P (q) then with probability of Λ(h)/n, Goto 4.

13: else Set W [i] = t.

14: end if

15: end if

16: end for

17: if Λ(h+ 1) ≤ n then

18: Set h = h+ 1, Goto 2

19: end if //below switch to CONCATENATE-SAMPLER

20: Randomly select an overflowing query q from Level h.

21: Crawl the subtree of q with nT tuples below Level h.

22: With probability of nT/n0, return a tuple chosen uniformly at random from the nT

tuples, otherwise Goto 20.



CHAPTER 5

UNBIASED ESTIMATION OF SIZE AND OTHER AGGREGATES OVER
HIDDEN DATABASES

5.1 Introduction

In this chapter, we develop novel techniques to answer various types of aggregate

queries, such as database size, over hidden web databases. Our techniques are efficient and

provide estimates with small error. Most importantly, our estimations are unbiased, which

none of the existing non-crawling techniques can achieve.

Hidden databases: Hidden databases are widely prevalent on the web. They feature re-

strictive form-like interfaces which allow users to form a search query by specifying the

desired values for one or a few attributes, and the system returns a small number of tuples

satisfying the user-specified selection conditions. Due to limitations of a web interface,

the number of returned tuples is usually restricted by a top-k constraint - when more than

k tuples in the database match the specified condition, only k of them are preferentially

selected by a ranking function and returned to the user.

Problem Definition: The problem we consider in this chapter is how to use the web inter-

face to estimate the size and other aggregates of a hidden database:

• Estimating the number of tuples in a hidden database is by itself an important problem.

Many hidden databases today advertise their (large) sizes on public venues to attract

customers. However, the accuracy of such a published size is not (yet) verifiable, and

sometimes doubtful, as the hidden database owners have the incentive to exaggerate

their sizes to attract access. Furthermore, many hidden databases, such as the job-

125
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hunting monster.com, do not publicize their total sizes, while such information can be

useful to the general public as an economic indicator for monitoring job growth.

• More generally, the ability to approximately answer aggregate queries can enable a

wide range of third-party data analytics applications over hidden databases. For ex-

ample, aggregates may reveal the quality, freshness, content bias and size of a hidden

database, and can be used by third-party applications to preferentially select a hidden

database with the best quality over other hidden databases.

Challenges: A simple approach to obtain the size of a hidden database is to crawl all tuples

and then count them. A number of techniques have been proposed for the crawling of

hidden databases [25,26,40]. This approach, however, requires an extremely large amount

of queries to be issued through the web interface. Such a high query cost is infeasible in

practice because most hidden databases impose a per-user/IP limit on the number of queries

one can issue. For example, Yahoo! Auto, a popular hidden database, has a limit of 1,000

queries per IP address per day.

Capture-recapture is another approach extensively studied in the field of statistics for

population size estimation [41], and has been recently used to estimate the size of a search

engine’s corpus [42–44]. This approach is built upon the sampling of a population, and es-

timates the population size according to the recaptures counts of entities being sampled. In

particular, for a population of m entities, the capture-recapture approach requires a sample

of size Ω(
√
m) to form a reasonable estimation.

However, applying capture-recapture over the existing sampling techniques for hid-

den databases leads to two problems, on estimation error and query cost, respectively. First,
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the estimations generated this way are biased and may have high variance1. Not only is the

capture-recapture approach in general known to produce biased estimations with high vari-

ance for large populations [41], but all underlying sampling techniques in the literature for

hidden databases are also biased with the bias unknown [18, 36]2. For many data analytics

applications (e.g., to fairly compare the hidden database size of competing providers), how-

ever, the unbiasedness of an estimator is a requirement that cannot be waived. In addition,

the estimation variance must be clearly understood and minimized to derive a meaning-

ful confidence interval for the estimation. This cannot be achieved by directly applying

capture-recapture over existing hidden database sampling techniques.

Furthermore, to enable an accurate estimation, capture-recapture requires an intoler-

ably large number of queries to be issued. This is due to a distinct challenge for sampling

hidden databases, i.e., the significant difference between the size of the database and the

set of all possible queries [18, 36]. Such a drastic difference stands in contrast to sampling

a search engine’s corpus, for which a common assumption is the existence of a (reasonably

small) pool of queries that recall almost all documents [8, 9, 39]. Due to such drastic dif-

ference, each of the Ω(
√
m) sample tuples requires a small but non-negligible number of

queries to generate. As a result, the capture-recapture approach requires a very large query

cost over hidden databases which renders it impractical.

Similar to the challenges for estimating the hidden database size, significant obstacles

are present for estimating aggregates over a hidden database. The existing sampling-based

techniques are not designed to answer aggregate queries, but to sample all tuples with equal

1A random estimator θ̃ for an aggregate θ is considered to be biased if E[θ̃] 6= θ. The mean

squared error of the estimator is defined as E[(θ̃ − θ)2], which is the same as the variance of θ̃ for

an unbiased estimator. It is usually desirable for estimators to be unbiased and have small variance.
2Excluded from consideration here are sampling techniques designed under the assumption that

the hidden database truthfully disclose its size e.g., [36].
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probability. Thus, while these techniques may support an estimation of AVG queries, they

cannot answer SUM or COUNT queries. Furthermore, even when the precise database size

is given, one still cannot generate unbiased estimates from these techniques because the

sampling is performed with a biased selection probability distribution over all tuples, and

moreover the bias is unknown.

Outline of Technical Results: In this chapter we initiate a study of estimating, without

bias, the size and other aggregates over a hidden database. For size estimation, our main

result is HD-UNBIASED-SIZE, an unbiased estimator with provably bounded variance.

For estimating other aggregates, we extend HD-UNBIASED-SIZE to HD-UNBIASED-

AGG which produces unbiased estimations for aggregate queries.

HD-UNBIASED-SIZE is based on performing random walks over the query space,

by starting with a query with very broad selection conditions, and drilling down by adding

random conjunctive constraints to the selection condition, until the query selects at most k

tuples. It features three key ideas: backtracking, weight adjustment, and divide-&-conquer.

Backtracking enables the unbiasedness of estimation. Weight adjustment and divide-&-

conquer both reduce the estimation variance, with divide-&-conquer delivering the most

significant reduction for real-world hidden databases.

Backtracking applies when the random walk hits an empty query. Instead of com-

pletely restarting the walk, we backtrack to the previous query and attempt adding another

constraint, in order to ensure that each trial of the random walk ends with a non-empty

query. The key implication of backtracking is that it enables the precise computation of the

selection probability for the returned tuples. As a result, HD-UNBIASED-SIZE is capable

of generating an unbiased estimation for the database size.

We note that there is a key difference between backtracking-enabled random walks

and the existing sampling techniques over hidden databases. The existing techniques aim
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to produce uniform random samples but eventually fall short with unknown bias. In com-

parison, our random walk intentionally produces biased samples, but the bias of the sample

is precisely known. As a result, our estimation technique is capable of completely cor-

recting the sampling bias and producing unbiased estimations of database size and other

aggregates.

While a backtracking-enabled random walk produces no bias, the variance of its esti-

mation may be large when the underlying data distribution is highly skewed. The objective

of weight adjustment is to reduce the estimation variance by “aligning” the selection prob-

ability of tuples in the database to the distribution of measure attribute (to be aggregated).

For our purpose of estimating the database size, the measure attribute distribution is uni-

form (i.e., 1 for each tuple). Thus, we adjust the transitional probability in the random walk

based on the density distribution of “pilot” samples collected so far. After weight adjust-

ment, each random walk produces an unbiased estimate with gradually reduced variance.

While weight adjustment has the estimation variance converging to 0, the conver-

gence process may be slow for a database that is much smaller than its domain size (i.e.,

the set of all possible tuples). Divide-&-conquer is proposed to address this problem by

carefully partitioning the database domain into a large number of subdomains, such that

the vast majority of tuples belong to a small number of subdomains. Then, we perform ran-

dom walks over certain subdomains and combine the results for estimation of the database

size. The reduced size mismatch between the (sub-) query space and the database signif-

icantly reduces the final estimation variance, while only a small number of subdomains

need to be measured, leading to very small increase on query cost.

A major contribution of this chapter is also a theoretical analysis of the quantita-

tive impact of the above ideas on reducing variance. We also describe a comprehensive

set of experiments that demonstrate the effectiveness of HD-UNBIASED-SIZE and HD-

UNBIASED-AGG over both synthetic and real-world datasets, including experiments of
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directly applying these algorithms over the web interface of a popular hidden database

websites, Yahoo! Auto.

In summary, the main contributions of this chapter are as follows:

• We initiate the study of unbiased estimation of the size and other aggregates over a

hidden database through its restrictive web interface.

• We propose a backtracking-enabled random walk technique to estimate hidden database

size and other aggregates without bias. To the best of our knowledge, this is the first

time an aggregate can be estimated without bias over a hidden database.

• We also propose two other techniques, weight adjustment and divide-&-conquer, to

reduce the estimation variance.

• We combine the three techniques to produce HD-UNBIASED-SIZE, an efficient and

unbiased estimator for the hidden database size. Similarly, we propose HD-UNBIASED-

AGG which supports various aggregate functions and selection conditions.

• We provide a thorough theoretical analysis and experimental studies that demonstrate

the effectiveness of our proposed approach over real-world hidden databases.

Chapter Organization: The rest of this chapter is organized as follows. In Section 2

we introduce preliminaries and discuss simple but ineffective algorithms for aggregate

estimation over hidden databases. Sections 3 and 4 are devoted to the development of

HD-UNBIASED-SIZE, focusing on achieving unbiasedness and reducing variance, respec-

tively. In Section 5 we discuss the parameter settings for HD-UNBIASED-SIZE and extend

it to HD-UNBIASED-AGG. Section 6 contains a detailed experimental evaluation of our

proposed approaches. Section 7 discusses related work, followed by conclusion in Section

8.
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5.2 Preliminaries

5.2.1 Models of Hidden Databases

We restrict our discussion in this chapter to categorical data - we assume that numer-

ical data can be appropriately discretized to resemble categorical data, and exclude tuples

with null values from consideration. Consider a hidden database table D with m tuples

t1, . . . , tm and n attributes A1, . . . , An. We assume no duplicate tuple exists in D. Let

Dom(·) be a function that returns the domain of one or more attributes. As such, Dom(Ai)

represents the domain of Ai, and Dom(Ai, Aj) represents the Cartesian product of the do-

mains of Ai and Aj . |Dom(Ai)| represents the cardinality of Dom(Ai), i.e., the number of

possible values of Ai.

The table is only accessible to users through a web-based interface. We assume a

prototypical interface where users can query the database by specifying values for a subset

of attributes. Thus a user query q is of the form:

SELECT ∗ FROM D WHERE Ai1 = vi1& . . .&Ais = vis ,

where vij is a value from Domij .

Let Sel(q) be the set of tuples in D that satisfy q. As is common with most web

interfaces, we shall assume that the query interface is restricted to only return k tuples,

where k � m is a pre-determined small constant (such as 10 or 50). Thus, Sel(q) will

be entirely returned iff |Sel(q)| ≤ k. If the query is too broad (i.e., |Sel(q)| > k), only

the top-k tuples in Sel(q) will be selected according to a ranking function, and returned as

the query result. The interface will also notify the user that there is an overflow, i.e., that

not all tuples satisfying q can be returned. At the other extreme, if the query is too specific

and returns no tuple, we say that an underflow occurs - i.e., the query is empty. If there is

neither overflow nor underflow, we have a valid query result. Without causing confusion,
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we also use q to represent the set of tuples returned by q. Note that the number of returned

tuples |q| = min(k, |Sel(q)|).

For the purpose of this chapter, we assume that a restrictive interface does not allow

users to “scroll through” the complete answer Sel(q) when q overflows. Instead, the user

must pose a new query by reformulating some of the search conditions. This is a reason-

able assumption because many real-world top-k interfaces (e.g., Google) only allow “page

turns” for limited (e.g., 100) times.

A running example: Table 5.1 depicts a simple table which we shall use as a running

example throughout this chapter. There are m = 6 tuples and n = 5 attributes, including

four Boolean (A1, . . . , A4) and one categorical (A5 ∈ [1, 5], only 1 and 3 appear in the

table).

Table 5.1. Example: Input Table

A1 A2 A3 A4 A5

t1 0 0 0 0 1
t2 0 0 0 1 1
t3 0 0 1 0 1
t4 0 1 1 1 1
t5 1 1 1 0 3
t6 1 1 1 1 1

5.2.2 Performance Measures

We consider the estimation of aggregate queries with conjunctive conditions of the

form SELECT AGGR(Aj) FROM D WHERE Ai1 = vi1& . . .&Ais = vis where AGGR

is the aggregate function. For example, such an aggregate query might be the number of

tuples in the database which we focus on for most part of the chapter. It may also be the
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SUM of prices for all inventory cars of a car dealership’s hidden database (i.e., the inventory

balance).

An aggregate estimation algorithm for hidden databases should be measured in terms

of estimation accuracy and query efficiency:

• Estimation Accuracy: The mean squared error of an estimator is a composition of

its bias and variance. Consider an estimator θ̃ for an aggregate θ. Then MSE(θ̃) =

E[(θ̃−θ)2] = E[(θ̃−E(θ̃))2]+(E[θ̃]−θ)2 = Var(θ̃) + Bias2(θ̃), whereE[·] represents

expected value. The task is to design unbiased estimators with minimum variance.

• Query Efficiency: Many hidden databases impose limits on the number of queries

from a user. The task is to minimize the number of queries issued through the web

interface to achieve a given level of estimation accuracy.

5.2.3 Simple Aggregate-Estimation Algorithms

BRUTE-FORCE-SAMPLER: This algorithm randomly composes a fully-specified query

A1 = v1, . . . , An = vn by generating each vi from Dom(Ai) uniformly at random. There

are two possible outcomes: either underflow or valid. After repeating this process for h

times, let hV be the number of tuples found. Then, one can estimate the database table

size as m̃ = |Dom(A1, . . . , An)| · hV/h. It is easy to see that this process will produce

an unbiased estimate. Other aggregates can be estimated without bias in a similar way.

However, BRUTE-FORCE-SAMPLER is extremely inefficient because the probability for

a fully-specified query to return valid is extremely small (i.e., m � |Dom(A1, . . . , An)|)

[18].

CAPTURE-&-RECAPTURE: The Lincoln-Petersen model [45] is a well-known capture-

&-recapture estimator for the size of a closed population. Consider the case where we

collect two samples, C1 and C2, of a hidden database. The Lincoln-Peterson estimator

gives m̃ = |C1| · |C2|/|C1 ∩ C2| where |Ci| is the number of tuples in Ci and |C1 ∩ C2|
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is the number of tuples that appear in both samples. The estimation tends to be positively

biased [41]. One can see that the estimator only works when each sample includes (at least)

Ω(
√
m) tuples, which leads to an extremely expensive process for hidden databases.

5.2.4 Hidden Database Sampling

The basic idea behind the HIDDEN-DB-SAMPLER [18] and its extension HYBRID-

SAMPLER [36] is to perform a random drill-down starting with extremely broad (and thus

overflowing) queries, and iteratively narrowing it down by adding randomly selected pred-

icates, until a valid query is reached. In particular, consider a Boolean database. The

sampler starts with query SELECT * FROM D. If the query overflows, it is expanded by

adding a randomly selected predicate on a1 (either “a1 = 0” or “a1 = 1”). If the expanded

query still overflows, we further expand it by adding random predicates for a2, . . . , an

respectively one at a time. This random walk process leads us to either a valid or an under-

flowing query. If it reaches an underflow, we restart the random walk. If the process reaches

a valid query, we randomly choose a returned tuple and include it in the sample. Since this

random walk process more likely chooses tuples returned by “short” valid queries, we have

to apply rejection sampling at the end of the random walk. In particular, a sample tuple is

rejected with probability 1 − C/2h, where C is a pre-determined parameter and h is the

number of predicates in the query from which the tuple is retrieved.

5.3 Unbiasedness for Size Estimation

In this section, we develop the main ideas that enable the unbiasedness of estimation

for the size of a hidden database.
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Table 5.2. Notations used in the Chapter

D hidden database
k maximum number of tuples returned
t1....tm set of tuples in D
A1....An set of attributes in D
Sel(q) tuples in D that satisfy the selection conditions of q
|Dom| domain size of the Cartesian product of all attributes
|Dom(·)| domain size of the Cartesian product of selected attributes
ΩTV set of all top-valid nodes
p(q) probability of q being selected in a drill down
r number of drill downs performed over each subtree
DUB maximum subdomain size for each subtree
s2 estimation variance

A1

A2

A3

A4

q2

q1

q3

q4

T

T

TT T
T

T : Top-valid query:  Valid query :  Underflow:  Overflow

q'2

q'1

t1 t2 t3 t4 t5 t6

0 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 10

0 10 1

0 1

branches initially chosen at random

Figure 5.1. Query Tree for the Running Example.

5.3.1 Random Drill-Down With Backtracking

We start with a hidden database with all Boolean attributes, and extend this scenario

to categorical attributes in the next subsection. To understand the idea, consider a query

tree as depicted in Figure 5.1 (for the first four Boolean attributes of the running example in

Table 5.1). Each level of the tree represents an attribute, while each outgoing edge from a

level represents a possible value of that attribute. Thus, each node represents a conjunctive

query defined by the AND of predicates corresponding to the edges from the root to this

node. For example, q2 in Figure 5.1 represents SELECT * FROM D WHERE A1 = 1

AND A2 = 0. We call a node overflowing, valid, or underflowing according to the result
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of its corresponding query. Figure 5.1 shows the class of each node when k = 1. We also

introduce the definition of a top-valid node:

Definition 5.3.1. [Top-Valid Query] Given a query tree, a valid query is top-valid iff its

parent is overflowing.

All top-valid queries in Figure 5.1 are marked with symbol T. One can see from

this definition that each tuple belong to one and only one top-valid node. For example,

Figure 5.1 has 6 top-valid queries corresponding to 6 tuples as k = 1.

The main process of BOOL-UNBIASED-SIZE is a random procedure which sam-

ples top-valid nodes with certain probability distribution. If we know the probability p(q)

for each top-valid node q to be chosen, then for any sample node q, we can generate an

unbiased estimation for the database size as |q|/p(q), where |q| is the number of tuples

returned by q.

Following this basic idea, BOOL-UNBIASED-SIZE consists of two steps: The first

is a random drill-down process over the query tree to sample a top-valid node. The second is

to compute p(q) for the sampled node. The entire process can be repeated for multiple times

to reduce the variance of estimation. Both steps may require queries to be issued through

the interface of the hidden database. We describe the two steps respectively as follows,

with the pseudocode summarized in Figure 10. Note that the two steps are interleaved in

the pseudocode.

The random drill-down process starts from the root node. We choose a branch uni-

formly at random and issue the corresponding query q. There are three possible outcomes:

• If q overflows, we further drill down the tree by selecting each branch of q with equal

probability.

• If q is valid, i.e., it returns |q| (1 ≤ |q| ≤ k) tuples without an overflow flag, then we

conclude the random walk.
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Algorithm 10 BOOL-UNBIASED-SIZE

1: q ← root node. p← 1. i← 1.

2: Randomly generate v ∈ {0, 1}.

3: Issue q′ ← q ∧ (Ai = v). . for Step 1 (random drill-down)

4: if q′ underflows then

5: q ← q ∧ (Ai = 1− v). Goto 2. . Backtracking

6: else if q′ overflows then

7: Issue q ∧ (Ai = 1− v). . for Step 2 (computing p(q))

8: if q ∧ (Ai = 1− v) is nonempty then

9: p← p/2. . Update p(q)

10: end if

11: q ← q′. i← i+ 1. Goto 2.

12: end if

13: return m̃← |q|/p. . Return an estimation for database size

• If q underflows, then we backtrack by considering q′, the sibling of q - i.e., the node

that shares the same parent with q. For example, the sibling of q2 in Figure 5.1 is

q′2. Note that the parent of q must be overflowing because otherwise the drill-down

process will terminate before reaching q. Thus, q′ must overflow. We randomly

choose a branch coming out of q′ and follow it to further drill down the tree.

One can see that a drill-down process always terminates with a top-valid node. An

example of a random drill-down is shown in Figure 5.1 with bold edges representing the

branches that were initially chosen at random. In this example, backtracking happens when

q2 was chosen - since q2 overflows, we backtrack and continue drilling down from its sib-

ling node q′2. Note that with backtracking, a top-valid node like q4 may be reached under
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multiple possibilities of the initially chosen branches. For example, when q1, q
′
2, q3, q4 were

initially chosen, q4 would also be reached by the drill-down.

We now consider the second step which computes p(q). Note that there is a unique

path from the root node to a top-valid node q - for a random drill-down to reach q, although

edges on this path might not be initially chosen, they must be finally followed (after back-

tracking). For example, such a path for q4 in Figure 5.1 goes through q1, q
′
2, q3 in order. For

each edge of the path, there are only two possible scenarios for choosing between the edge

and its sibling (from which the drill-down must choose one to follow):

• Scenario I: Both branches are non-underflowing. In this case, each branch is chosen

with 50% probability. The selection between q1 and q′1 in Figure 5.1 is an example of

this scenario.

• Scenario II: One branch is overflowing while the other is underflowing. In this case,

the overflowing branch will always be chosen. The selection between q2 and q′2 in

Figure 5.1 is an example of this scenario, and q′2 is always chosen.

In order to compute p(q), we must know which scenario occurs for each level from

the root to q. This may or may not require additional queries to be issued. In particular, no

additional query is needed for the last level before reaching q, as Scenario 1 always occurs

there. No query is needed for levels when backtracking applies either, because one branch

must underflow. However, for any other level, we must issue the sibling query to determine

the correct scenario. Consider the bold edges in Figure 5.1. Since q1 was selected during

random drill-down, we do not know whether q′1 is underflowing (Scenario I) or not (II).

Thus, we must now issue q′1 to determine which scenario actually occurred.

After learning the number of occurrences for Scenarios I and II, we can then compute

p(q). For a query q with h predicates, let h1 and h − h1 be the number of occurrences for

Scenario I and II, respectively. We have p(q) = 1/2h1 . For example, q4 in Figure 5.1 has

h1 = 2 (i.e., while issuing q1 and q4) and p(q) = 1/4, leading to an estimation of |q|/p(q) =
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4. Note that this estimation is an instantiation of the Horvitz-Thompson Estimator [46]. The

following theorem shows its unbiasedness:

Theorem 5.3.1. [Estimate (un-)Biasness] The estimate generated by the drill-down pro-

cess is unbiased, i.e., its expected value taken over the randomness of q is

E

[
|q|
p(q)

]
= m. (5.1)

Proof. Let ΩTV be the set of all top-valid nodes in the tree. Since each tuple belongs to

one and only one top-valid node, we have
∑

q∈ΩTV
|q| = m. Since the random drill-down

process always terminates on a top-valid query,

E

[
|q|
p(q)

]
=
∑
q∈ΩTV

p(q) · |q|
p(q)

= m

5.3.2 Smart Backtracking for Categorical Data

We now discuss how to apply unbiased size estimation to a categorical database. Two

changes are required:

• First, Boolean attributes ensure that the sibling of an underflowing node always over-

flow. There is no such guarantee for categorical databases. Thus, to successfully

backtrack from an underflowing branch, we must find one of its sibling branches

that returns non-empty and count the number of such non-empty siblings (in order

to compute p(q)). Note that a non-empty branch always exists given an overflow-

ing parent node. A simple backtracking approach is to query all branches to find

the (COUNT of) non-empty ones, and then randomly choose a non-empty branch to

follow.

• The other change required is the computation of p(q). If the above-mentioned simple

backtracking is used, the computation of p(q) becomes p(q) = 1/
∏h−1

i=1 ci, where
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ci is the number of non-underflowing branches for the i-th predicate en route to the

top-valid query q.

The two changes for categorical databases do not affect the unbiasedness of the es-

timation as the proof of Theorem 5.3.1 remains unchanged. These changes, however, do

affect the query cost of the drill-down process. In particular, if the above simple back-

tracking technique is used, we must issue queries corresponding to all branches to find the

number of non-empty ones, leading to a high query cost for large-fanout attributes.

To reduce such a high query cost, we develop smart backtracking which aims to

avoid testing all branches of a high fanout attribute. Consider a categorical attributeAi with

possible values v1, . . . , vw (w = |Dom(Ai)|). Assume a total order of the values which can

be arbitrarily assigned for cardinal or ordinal attributes. In the following, we describe the

random drill-down and the computation of p(q) with smart backtracking, respectively.

To choose a branch of Ai for further drill down, we first randomly choose a branch

vj . Backtracking is required if vj underflows. With smart backtracking, we test the right-

side neighbors of vj (in a circular fashion), i.e., v(j mod w)+1, v((j+1) mod w)+1, etc, in order

until finding one that does not underflow, and follow that branch for further drill down.

Figure 6.3 (a) demonstrates the branches for the categorical attribute A5 in the running

example with w = 5. To backtrack from q4, we test q5 and then q1. Since q1 returns

nonempty, we follow branch q1 for further drill-down.

A5

q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

queries issued

branch to follow

queries not issued
(a) (b)

Figure 5.2. An Example of Smart Backtracking.
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We now consider the computation of p(q). With the new strategy, the probability

for choosing a non-empty branch vj is (wU(j) + 1)/w, where wU(j) is the number of

consecutive underflowing branches immediately preceding vj (again in a circular fashion).

For example, in Figure 6.3, q1 and q5 have wU = 2 and 1, respectively. To compute wU(j),

we need to issue queries corresponding to the left-side neighbors of vj , i.e., v((j−2) mod w)+1,

v(j−3) mod w+1 etc, in order until finding a non-empty branch. Then, we learn wU(j) and is

able to compute the probability of following vj . Figure 6.3 (a) and (b) shows the queries

one needs to issue after committing to branch q1 and q3, respectively.

With smart backtracking, for a given node, the expected number of branches one

need to test is

QC = 1 +
w∑
j=1

(wU(j) + 1)2

w
, (5.2)

where wU(j) = −1 if vj is an empty branch. For example, QC = 3.6 for A5 in Fig-

ure 6.3. For attributes with larger fanouts, smart backtracking may reduce the query cost

more significantly.

5.3.3 Discussion

5.3.3.1 Comparison with Prior Samplers

To illustrate the effectiveness of our backtracking-enabled random drill-down ap-

proach, we compare it with two prior algorithms discussed in the preliminary section:

BRUTE-FORCE-SAMPLER which also generates unbiased size estimations, and HIDDEN-

DB-SAMPLER which can be used with CAPTURE-&-RECAPTURE to produce biased

size estimations.

Comparison with BRUTE-FORCE-SAMPLER: Both our random drill-down technique

and BRUTE-FORCE-SAMPLER use a random process to select valid queries for estimat-

ing the size of a hidden database. The key difference is the success probability of such a
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random process. As we discussed in Section 5.2, BRUTE-FORCE-SAMPLER has an ex-

tremely low success rate because the database size is usually orders of magnitude smaller

than the query space. Our approach, on the other hand, guarantees to find one (top-)valid

query in every trial of the random walk, thanks to a combination of random drill-down

and backtracking techniques. Such a difference on the success rate leads to a dramatic

difference on the query cost. For example, consider a Boolean database with m tuples, n

attributes, and k = 1. While BRUTE-FORCE-SAMPLER requires an average of 2n/m

queries to find a valid query and produce an estimate, we require at most n queries (i.e., the

longest possible drill-down) to do so.

Comparison with HIDDEN-DB-SAMPLER: There are two key differences between the

random drill-down process in our approach and that in HIDDEN-DB-SAMPLER [18]. The

first is our introduction of backtracking. With HIDDEN-DB-SAMPLER, the random drill-

down process incurs an “early termination” (i.e., restarts from the root) if it reaches an

underflowing node. As a result, one has to know the probability of early termination pE in

order to compute the probability of reaching a query q with h predicates:

p(q) =
1

(1− pE) ·
∏h

i=1 |Dom(Ai)|
(5.3)

Unfortunately, it is extremely difficult to approximate pE to the degree that supports

an accurate estimation of p(q). The reason is that (1− pE) ≈ 0 for many hidden databases,

especially categorical ones with large fan-out attributes, whose sizes are order of magnitude

smaller than the domain of all possible values. As a result, an extremely large number of

random drill-downs must be taken before p(q) can be accurately estimated - which makes

HIDDEN-DB-SAMPLER impossible to use for estimating the database size. Our tech-

nique, on the other hand, introduces backtracking to ensure that no random drill-down ter-

minates without reaching a valid query, thereby enabling the precise computation of p(q).
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It is the introduction of backtracking that essentially enables us to produce an unbiased

estimate for the database size.

The second difference is on the sampling technique: HIDDEN-DB-SAMPLER uses

rejection sampling which discards results of short random drill-downs with high probability

to approximate a uniform selection probability for all tuples. Our approach, on the other

hand, uses a weighted sampling technique which accepts all results and associate each

with its selection probability p(q). Then, the final estimate is adjusted by p(q) to produce

an unbiased estimation. This change makes our approach a highly efficient algorithm for

many hidden databases, because a random drill-down process always produces an estimate.

In comparison, HIDDEN-DB-SAMPLER may have the reject a large number of random

drill-downs before accepting the one as a uniform random sample.

5.3.3.2 Disadvantages on Estimation Variance

While our backtracking-enabled drill-down technique produces unbiased estimates,

note that the mean squared error of an estimator depends on not only bias but also variance.

A disadvantage of our approach is that it may incur high estimation variance for a database

with highly skewed distribution, as illustrated by the following theorem. Recall that ΩTV

is defined as the set of all top-valid nodes i.e., valid nodes that have overflowing parents.

Theorem 5.3.2. [Estimation Variance] The estimation generated by the random drill-

down process over a categorical database has variance

s2 =

( ∑
q∈ΩTV

|q|2

p(q)

)
−m2. (5.4)

The proof directly follows from the variance definition.

Observe from Theorem 5.3.2 that the estimation variance can be large when there are

deep top-valid queries in the tree, which usually occur in database with skewed distribution.

In particular, consider a Boolean database with n + 1 tuples t0, t1, . . . , tn that satisfy the
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following condition: For any ti (i ∈ [1, n]), ti has the opposite values as t0 on attributes

an−i+1, . . . , an, and the same values on all other attributes i.e., ∀j ∈ [1, n − i], t0[aj] =

ti[aj], ∀j ∈ [n − i + 1, n], t0[aj] = 1 − ti[aj]. Figure 6.4 illustrates this scenario when

k = 1. Note that all underflowing branches are omitted in the figure.

...

t1t0 t2 tn-1 tn

...
...

...

Figure 5.3. A Worst-Case Scenario.

One can see that, when k = 1, there are two n-predicate queries (e.g., t0 and t1) in

the tree that both are top-valid queries. Note that the value of p(q) for these two queries are

1/2n. Thus, the variance is at least s2 > 2n+1 −m2. Since the domain size is usually order

of magnitude larger than the database size i.e., 2n � m, the variance can remain extremely

large even after a substantial number of random drill-downs. For example, if the database

has 40-attribute and one million tuples, at least 1012 random drill-downs are required to

reduce the variance to m2, which still leads to significant error. The following corollary

illustrates the generic case for categorical databases with an arbitrary k.

Corollary 5.3.1. [Worst-Case Estimate Variance for BOOL-UNBIASED-SIZE] The

worst-case estimate variance for an n-attribute, m-tuple hidden database with a top-k

interface satisfies

s2 > k2 ·

(
n−1∏
i=1

|Dom(Ai)|

)
−m2. (5.5)

Due to space limitations, we do not include the proof of the corollary. Note that

this corollary shows a probabilistic lower bound which still assumes the randomness of

the drill-down process (i.e., it considers the worst-case database instance, not the worst-

case random walk). One can see from the corollary that the variance may be even more
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significant in the generic case, because the variance increases linearly with k2. The next

section is an effort dedicated to reduce the estimation variance.

5.4 Variance Reduction

In this section, we describe two ideas to reduce the estimation variance: weight ad-

justment and divide-&-conquer.

5.4.1 Weight Adjustment

Weight adjustment is a popular technique for variance reduction in sampling tradi-

tional databases. In this subsection, we describe how weight adjustment can be applied over

hidden databases3. In particular, we show that while weight reduction in general reduces

estimation variance, the remaining variance is still significant for certain hidden databases

with highly skewed distributions.

5.4.1.1 Main Idea

The random drill-down process in BOOL-UNBIASED-SIZE essentially performs a

sampling process over all top-valid nodes of the hidden database, with varying selection

probability for different nodes. As any weighted-sampling estimator, the estimation vari-

ance is determined by the alignment between the selection probability distribution and the

3Note that while the COUNT-based sampling part of the ALERT-HYBRID algorithm [36] can

also be considered weighted sampling, the key difference between ALERT-HYBRID and the tech-

nique discussed here is how the weights are computed are the implications of imperfectly estimated

weights. In ALERT-HYBRID, the weights are estimated based on a small pool of pilot sample tu-

ples, and estimation errors on weights lead to biased samples [36]. Here, the weights are determined

by COUNT estimations from prior drill downs, and imperfectly estimated weights do not affect the

unbiasedness of BOOL-UNBIASED-SIZE.
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distribution of the measure attribute (i.e., the attribute to be aggregated). For our purpose,

the measure aggregate is |q|, the size of a top-valid node. With BOOL-UNBIASED-SIZE,

the selection probability for q is p(q), which is generally independent of its measure at-

tribute |q|. Thus, in some cases, the selection probability may be perfectly aligned with the

measure attribute. For example, when k = 1 and all top-valid nodes have exactly log2m

predicates, we have p(q) = 1/m and 0 variance according to Theorem 5.3.2. Nonetheless,

there are also cases where these two distributions are badly misaligned which lead to an

extremely large variance. An example of such a case was depicted in Figure 6.4 - where

certain top-valid nodes reside on the leaf level, much deeper than other top-valid nodes.

The main idea of weight adjustment is to adjust the probability for following each

branch (and thereby change the eventual selection probability for top-valid nodes), so as to

better align the selection probability distribution p(q) with the distribution of |q|. The ideal

objective is to achieve the perfect alignment with 0 variance - i.e., each top-valid node q

has p(q) = |q|/m. Of course, such a perfect alignment is not possible without complete

knowledge of the measure attribute distribution. However, prior “pilot” samples can help

in estimating this distribution, as we shall discuss as follows.

To understand how to approximate this perfect alignment from the pilot samples,

consider a node qP with w branches qC1, . . ., qCw. Each branch qCi defines a subset of the

database DCi consisting of all tuples that have corresponding top-valid nodes “under” qCi.

That is, all tuples in DCi match the selection conditions of qCi. For example, in Figure 5.1,

t1, . . . , t4 are under q′1 while t5 and t6 are under q1. The optimal alignment is to select each

branch qCi with probability proportional to the size of its corresponding sub-database i.e.,

|DCi|. For example, in the running example depicted in Figure 5.1, q′1 and q1 should be

chosen with probability 4/6 and 2/6, respectively.

If the precise size of DCi is known for every branch, then the probability for each

top-valid node q to be picked up is p(q) = |q|/m, which leads to a perfect alignment that
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produces 0 variance. Without knowledge of |DCi|, we estimate it from the prior samples

of top-valid nodes. In particular, let qH1, . . . , qHs be the historic top-valid queries reached

under qCi, we estimate |DCi| as

|DCi| ≈
1

s
·

s∑
j=1

|qHj|
p(qHj|qij)

, (5.6)

where p(qHj|qij) is the conditional probability for the random drill-down process to reach

qHj given the fact that it reaches qCi. Note that p(qHj|qij) can be computed based on branch

selection probability for each branch on the path from qij to qCi. Consider the running

example in Figure 5.1. If there is one historic drill down (without weight adjustment)

through q1 which hits q4, then we estimate the subtree size for q1 as 1 · (1/2)/(1/4) = 2,

where 1/2 and 1/4 are the probability for the random walk to reach q1 and q4, respectively.

Intuitively, p(qHj)/p(qij) is the conditional probability of reaching qHj had the random

walk started at node qij . Thus, the estimation in (5.6) can be derived in analogy to our size

estimation in BOOL-UNBIASED-SIZE.

Unbiasedness: Note that weight adjustment does not affect the unbiasedness no matter

how accurate the estimation of |DCi| is. The reason is that we always know precisely the

probability we used to follow each branch, and therefore can compute p(q) precisely for

each top-valid node reached by a random drill-down.

5.4.1.2 Effectiveness on Variance Reduction

The power of weighted sampling (a.k.a. importance sampling) on reducing estima-

tion variance has been well studied in statistics (e.g., [47]) and database sampling [48].

Unfortunately, for the purpose of this chapter, weight adjustment still cannot address the

worst-case scenario depicted in Figure 6.4, where the existence of deep top-valid nodes

leads to an extremely large estimation variance. The difficulty for weight adjustment to ad-

dress this scenario comes from two perspectives: First, such a deep-level node is unlikely
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to be reached by a historic drill-down, leading to low probability of applying the weight

adjustment in the first place. Second, even with historic trials hitting the node, the relative

error is likely to be high for estimating the size of a small subtree.

Corollary 5.4.1. [Worst-Case Estimate Variance with Weight Adjustment] For an n-

attribute, m-tuple hidden database, after r random drill-downs, the worst-case estimation

variance generated by the random-drill down with weight adjustment satisfies

s2 ≥ 2n−log2 r ·m
n− log2 r + 1

−m2. (5.7)

The corollary shows the worst-case scenario still generates unacceptably high vari-

ance even after applying weight adjustment. Note that it is again a probabilistic lower

bound which assumes the randomness of the drill-down process. According to Corol-

lary 5.4.1, for a 40-attribute 100, 000-tuple database, s2 ≥ 354.29 · m2 even after 1, 000

random drill-downs have been performed.

5.4.2 Divide-&-Conquer

We now describe the idea for divide-&-conquer, a variance reduction technique

which is independent of weight adjustment but can be used in combination with it. As

mentioned in the introduction, divide-&-conquer provides the most significant variance

reduction especially for the worst-case scenarios.

5.4.2.1 Motivation and Technical Challenge

Our discussions for Corollary 5.3.1 and 5.4.1 indicate deep top-valid nodes as the

main source of high variance before and after weight adjustment, respectively. More fun-

damentally, the cause for the existence of deep top-valid queries lies on the significant

difference between the database size m and the domain size |Dom|. To understand why,

consider the case where k = 1. A deepest (i.e., leaf-level) top-valid query returns |Dom| as
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the estimation, while the actual size is m. The following theorem further formalizes such a

fundamental cause of high variance:

Theorem 5.4.1. [Upper Bound on Estimation Variance] When k = 1, the estimation

variance of a random drill down satisfies

s2 ≤ m2 ·
(
|Dom|
m

− 1

)
. (5.8)

The theorem shows a large value of |Dom|/m as a cause of high estimation variance

of HD-UNBIASED. The main motivation for divide-&-conquer is to partition the originally

large domain into smaller, mutually exclusive, subdomains so as to reduce |Dom| for the

subdomains. Note that the partitioning strategy must be carefully designed somwill not be

significantly reduced. To understand why, consider an otherwise simple strategy of dividing

the domain randomly into b mutually exclusive subdomains, using HD-UNBIASED-SIZE

to estimate each, and take the sum as the total size estimation. This partitioning strategy

reduces |Dom| and m with the same ratio b, leaving |Dom|/m unchanged. As a result,

according to Theorem 5.4.1, the total estimation variance is only reduced by a factor of

b, which is offset by the additional queries required for executing HD-UNBIASED-SIZE

over the b subdomains.

One can see that, to solve this problem, the domain must be partitioned in a way

such that while the number of subdomains may be large (such that each subdomain can be

small), the vast majority of tuples appear in only a small number of subdomains. Then, for

these subdomains, the ratio of subdomain size over the number of tuples in the subdomain

is small, allowing a reduced estimation variance for the total database size. Note that the

other sparsely packed subdomains will not adversely affect the estimation variance to a

significant degree because of the limited number of tuples contained in the subdomains.
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Figure 5.4. An Example of Tree-based Partitioning.

5.4.2.2 Main Idea

To gather most tuples into a few small subdomains, we propose a query-tree-based

recursive partitioning of the domain. We start with Boolean databases and then extend the

results to categorical data at the end of this subsection. Consider the tree shown in Fig-

ure 5.1 which is also depicted in Figure 5.4. Originally, the domain includes the entire tree

which includes a top-valid node for each tuple. We partition the domain into subdomains

corresponding to subtrees with n0 levels. Figure 5.4 depicts an example of such a partition

with n0 = 3. Consider the root to be the first level. The partition generates one subtree

from the first to the n0-th level, 2n0−1 subtrees from the n0-th to the (2n0− 1)-th level, etc.

For example, T1 in Figure 5.4 is the 1-to-3 level subtree, and T2, . . . , T5 are the four 3-to-5

level subtrees. Note that the root node of a (i ·n0− i+1)-to-(i ·n0− i+n0)-th level subtree

is also a bottom-level node of a (i · n0 − 2i+ 1)-to-(i · n0 − 2i+ n0)-th level subtree. For

example, the root node of T2 is a leaf-level node of T1 in Figure 5.4. A tuple is included in a

subtree iff its corresponding top-valid node is a non-root node of the subtree. For example,

in Figure 5.4, t1 and t4 are included in T2 and T3, respectively. One can see that each tuple

belongs to one and only one subtree. Thus, the subtrees form a mutually exclusive partition

of the original domain.
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With the subtree partitioning strategy, our size estimation algorithm can be stated

as the following recursive procedure: We start with the top-most subtree (e.g., T1 in Fig-

ure 5.4) and start to perform the random drill-down process over the subtree. In particular,

we perform r random drill-downs where r is a pre-determined parameter, the setting of

which will be discussed in Section 5.5. Note that each random drill-down may terminate

at two types of nodes: a top-valid node or a bottom-level overflowing node of the subtree,

which we refer to as a bottom-overflow node.

For each top-valid node qTV which terminates a random drill-down of the top-most

subtree, we compute δ(qTV) = r · p(qTV), where p(qTV), as defined in Section 5.3, is the

probability for a random drill-down to reach qTV. Intuitively, r · p(qTV) is the expected

number of random drill-downs that will terminate at qTV. For example, in Figure 5.4, with

r = 2 random drill-downs per subtree, we have δ(qB) = 2 · (1/4) = 1/2. Note that when

r = 1, δ(qTV) = p(qTV).

For each bottom-overflow node qBO which terminates a random drill-down of the

top-most subtree, we perform the random drill-down process over the subtree with root of

qBO, again with r drill-downs. This recursive process continues until no bottom-overflow

node is discovered. For a top-valid node q′TV captured in a subtree with root of qR, we

compute

δ(q′TV) = r · p(q′TV) · δ(qR), (5.9)

where p(q′TV) is the probability for a random drill-down over the subtree (of qR) to reach

q′TV, and δ(·) for a bottom-overflow node qR is defined in the same way as for a top-

valid node in (5.9). Again, δ(q′TV) is intuitively the expected number of drill-downs that

terminate at q′TV. For example, in Figure 5.4 with r = 2, we have δ(qA) = 1/2 and

δ(qC) = 2 · (1/2) · (1/2) = 1/2. Note that when r = 1, there is δ(q) = p(q) for all nodes
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in all subtrees, essentially reverting the random drill-down process to the state without

divide-&-conquer.

Let QTV be the set of top-valid nodes captured by the random drill-downs over all

subtrees. We estimate the database size as

m̃ =
∑
q∈QTV

|q|
δ(q)

. (5.10)

The unbiasedness of this estimator follows from Theorem 5.3.1.

For categorical data, the only change required is the depth of each subtree. Instead of

having n0 levels for all subtrees, we maintain a (approximately) constant domain size for

each subtree. As a result, a categorical subtree could be shallow or deep depending on the

fan-outs of attributes involved. In particular, we set DUB as an upper bound on the domain

size (DUB ≥ maxi |Dom(Ai)|). Each subtree should have the maximum number of levels

without exceeding DUB. In the running example, if A1, . . . , A5 is the attribute order and

DUB = 10, then Levels 1-4 (i.e., A1, A2, A3 with domain size of 23 = 8) and 4-6 (i.e.,

A4, A5 with domain size of 2 × 5 = 10) become the two layers of subtrees. One can see

that the unbiasedness is unaffected by the change.

5.4.2.3 Effectiveness on Variance Reduction

Divide-&-conquer is effective on reducing the estimation variance because it pro-

vides a significantly better alignment between the selection probability distribution for top-

valid nodes and the measure attribute distribution. To understand why, consider a Boolean

database with k = 1 and two top-valid nodes q and q′, at the second level (i.e., as a child of

the root) and the bottom-level (i.e., n+1-th level), respectively. Without divide-&-conquer,

at the first drill-down, q has selection probability of 1/2 while q′ may have selection proba-

bility as small as p(q′) = 1/2n. This forms a striking contrast with the uniform distribution
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of the measure attribute (i.e., |q|/m = |q′|/m = 1/m for each top-valid node), leading to a

bad alignment between the two.

With divide-&-conquer, the selection probability for a deep top-valid node like q′ is

significantly increased, while that for a shallow top-valid node like q remains the same. In

particular, the expected number of random drill-downs that choose q is δ(q) = r/2. The

expected number for q′ is at least

δ(q′) ≥ r
b n−1

n0−1
c

2n
, (5.11)

where n0 is the depth of a subtree and r is the number of drill downs conducted over each

subtree. One can see that the difference between δ(q) and δ(q′) is reduced by a factor

of rb(n−1)/(n0−1)c) after divide-&-conquer, leading to a better alignment with the measure

attribute distribution.

The total number of queries issued by the divide-&-conquer technique depends on

the underlying data distribution. While theoretically a large number of queries may be

issued, in practice the query cost is usually very small due to two reasons: (1) One can see

from (5.11) that even a very small r can significantly improve the alignment and thereby

reduce the estimation variance. (2) As the experimental results show, for real-world hidden

databases, even with a highly skewed distribution, the top-valid nodes are likely to reside on

a small number of subtrees. Furthermore, the following theorem shows that with the same

query cost divide-&-conquer can significantly reduce the worst-case estimation variance.

Theorem 5.4.2. [Estimation Variance with D&C] When n is sufficiently large, for a

given number of queries, in the worst case scenario where a random drill-down without

divide-&-conquer generates the largest variance s2, the estimation variance with D&C,

s2
DC, satisfies

s2

s2
DC

= O

(
rlogDUB

|Dom(A1,...,An)|

logDUB
|Dom(A1, . . . , An)|

)
, (5.12)
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where r is the number of drill-downs performed for each subtree, and DUB is an upper

bound on the subdomain size of a subtree.

The proof of the theorem is not included due to space limitation.

5.5 Discussions of Algorithms

5.5.1 HD-UNBIASED-SIZE

Parameter Settings: By combining the three ideas, i.e., backtracking-enabled random

walk, weight adjustment and divide-&-conquer, Algorithms HD-UNBIASED-SIZE fea-

tures two parameters: r, the number of random drill-downs performed on each subtree,

and DUB, the upper bound on the domain size of a subtree. While neither parameter

affects the unbiasedness of estimation, they both affect the estimation variance as well

as query efficiency. At the extreme cases, divide-&-conquer is disabled when r = 1 or

DUB = |Dom(A1, . . . , An)|, and crawling essentially occurs when r is extremely large or

DUB is extremely small. Thus, an appropriate setting for r andDUB should make a tradeoff

between estimation variance and query cost. Theoretical derivation of the optimal values

for r andDUB is difficult because of their dependencies on the underlying data distribution.

Fortunately, as indicated by Theorem 5.4.2 and verified by our experiments, the depth of

a subtree is the most important factor that determines the estimation variance because the

variance changes exponentially with the depth. r, on the other hand, is not a very sensitive

factor for the estimation variance. Thus, to perform HD-UNBIASED-SIZE over a hidden

database, one should first determine DUB according to the variance estimation. Then, start-

ing from r = 2, one can gradually increase the budget r until reaching the limit on the

number of queries issuable to the hidden database.

Attribute Order: We propose to arrange the attributes in decreasing order of their fanouts

(i.e., |Dom(Ai)|) from the root to the leaf level of the query tree. The reason lies on the
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query cost with smart backtracking. Recall from Section 5.3.2 that, with smart tracking, the

expected number of branches one need to test for a given node is QC = 1+
∑w

j=1(wU(j)+

1)2/w, where wU(j) is the number of underflowing branches immediately preceding the

j-th branch. One can see that wU(j) is in general minimized when a high fanout attribute is

placed at the top levels of the tree. Thus, the overall query cost will be reduced by sorting

all attributes from largest to smallest domains.

5.5.2 HD-UNBIASED-AGG

In this section we discuss HD-UNBIASED-AGG, by extending HD-UNBIASED-

SIZE to answer SUM and AVG aggregate queries, as well as queries with selection condi-

tions. While our sampler provides unbiased estimates of SUM queries, we point out that it

cannot provide unbiased estimations of AVG queries.

For answering SUM and AVG queries: The same random drill-down process can be

used to generate unbiased estimate for SUM queries. There is only a slight change on

computing the estimation. Consider a SUM query SELECT SUM(Ai) FROM D. For a

random drill-down process (with divide-&-conquer), an unbiased estimator for the SUM

query is

∑
q∈qTV

∑
t∈q

t[Ai]

δ(q)
, (5.13)

where
∑

t∈q t[Ai] is the sum of attribute values Ai for all tuples in q, and QTV is the set of

top-valid nodes captured by the random drill-downs over all subtrees.

However, note that the random drill-down process cannot be used as an unbiased

estimator for AVG queries. The direct division of the unbiased SUM and COUNT estima-

tors lead to a biased AVG estimator. This is consistent with the observation in [18] that it

is extremely difficult to generate unbiased AVG estimations without issuing a very large

number of queries (e.g., by using BRUTE-FORCE-SAMPLER).
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For answering queries with selection conditions: Our previous discussions have been

focused on queries that select all tuples in the database. The random drill-down approach

can also generate unbiased SUM and COUNT estimates for queries with conjunctive selec-

tion conditions. In particular, a conjunctive query can be considered as selecting a subtree

which is defined with a subset of attributes (as levels) and, for each attribute involved, a

subset of its values (as branches). The random drill-down approach can be applied to the

subtree directly to generate unbiased estimations.

5.6 Experiments and Results

In this section, we describe our experimental setup and present the experimental

results. We carry out empirical studies to demonstrate the superiority of HD-UNBIASED-

SIZE and HD-UNBIASED-AGG over BRUTE-FORCE-SAMPLER and CAPTURE-&-

RECAP-TURE discussed in Section 5.2. We also draw conclusions on the individual im-

pact of weight adjustment and divide-&-conquer on reducing the estimation variance.

5.6.1 Experimental Setup

1) Hardware and Platform: All our experiments were performed on a 1.99 Ghz

Intel Xeon machine with 4 GB of RAM. The HD-UNBIASED-SIZE and HD-UNBIASED-

AGG algorithms was implemented in MATLAB for testing offline datasets, and PHP for

executions over the real Yahoo! Auto website.

2) Data Sets: Recall that we proposed three algorithms in the chapter: BOOL-

UNBIASED-SIZE, which applies only to Boolean data, and HD-UNBIASED-SIZE/AQP

which apply to both Boolean and categorical data. To test their performance, we consider

both Boolean and categorical datasets. To properly evaluate the accuracy of the estimations,

we need to know the ground truth on the aggregates being estimated. Thus, we perform
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the performance comparison experiments on offline datasets to which we have full access.

Meanwhile, to demonstrate the practical impact of our techniques, we also test the algo-

rithms over an online hidden database. Both offline and online databases are described as

follows. For all databases, we set k = 100 unless otherwise specified.
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Figure 5.5. MSE vs. query cost.
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Figure 5.6. Relative error.

Boolean Synthetic: We generated two Boolean datasets, each of which has 200, 000 tuples

and 40 attributes. The first dataset is generated as i.i.d. data with each attribute having
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Figure 5.8. SUM relative error.
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probability of p = 0.5 to be 1. We refer to this dataset as the Bool-iid dataset. The second

dataset is generated in a way such that different attributes have different distribution. In

particular, there are 40 independent attributes. 5 have probability of p = 0.5 to be 1, while

the others have the probability of 1 ranging from 1/70 to 35/70 with step of 1/70. One

can see that this dataset features a skewed distribution. We refer to it as the Boolean-mixed

dataset.

Offline Yahoo! Auto: The offline Yahoo! Auto dataset consists of data crawled from the

Yahoo! Auto website http://autos.yahoo.com/, a real-world hidden database, in 2007. In

particular, the original crawled dataset contains 15, 211 used cars for sale in the Dallas-

Fort Worth metropolitan area. We enlarged the dataset to 188, 790 tuples by following the

original distribution of the small dataset, in order to better test the ability of our algorithms

over large databases. In particular, the DBGen synthetic data generator [49] was used.

There are a total of 38 attributes including 32 Boolean ones, such as A/C, POWER LOCKS,

etc, and 6 categorical attributes, such as MAKE, MODEL, COLOR, etc. The domain sizes

of categorical attributes range from 5 to 16.

Online Yahoo! Auto: We also tested our algorithms over the real-world web interface

of Yahoo! Auto, a popular hidden database. In particular, we issue queries through the ad-

vanced used car search interface available at http://autos.yahoo.com/listings/

advanced_search. A specific requirement of this webpage is that either MAKE/MODEL

or ZIP CODE must be specified for a query to be processed. To address this requirement,

we place the MAKE/MODEL attribute at the top of our query tree and issue every query

with its value specified.

3) Aggregate Estimation Algorithms: We tested three algorithms in this chapter:

BOOL-UNBIASED-SIZE, HD-UNBIASED-SIZE, and HD-UNBIASED-AGG. BOOL-U-

NBIASED-SIZE is parameter-less, while both HD-UNBIASED-SIZE and HD-UNBIA-

SED-AGG feature two parameters: r, the number of drill-downs performed over each sub-
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tree, and DUB, the maximum subdomain size for each subtree. We tested our algorithms

with various parameter settings to illustrate how r and DUB can be properly set in practice.

We also tested two baseline aggregate-estimation algorithms discussed in Section 5.2:

BRUTE-FORCE-SAMPLER [18] and the use of CAPTURE-&-RECAPTURE with HIDD-

EN-DB-SAMPLER [18]. BRUTE-FORCE-SAMPLER cannot return any result during our

test of issuing 100, 000 queries, because of the drastic difference between the size of the

database and set of all possible tuples. Thus, we compared the performance of our algo-

rithms with CAPTURE-&-RECAPTURE in the experimental results.

4) Performance Measures: For query cost, we focus on the number of queries issued

through the web interface of the hidden database. For estimation accuracy, we tested three

measures: (1) the mean squared error (MSE), (2) the relative error (i.e., |θ̃ − θ|/θ for

an estimator θ̃ of aggregate θ), and (3) error bars (indicating one standard deviation of

uncertainty).

5.6.2 Experimental Results

We compared the performance of HD-UNBIASED-SIZE, BOOL-UNBIASED-SIZE

and CAPTURE-&-RECAPTURE over a Boolean database. For HD-UNBIASED-SIZE,

we set parameters r = 4 and DUB = 25. Figure 5.5 depicts the tradeoff between MSE and

query cost for the three algorithms for BOOLEAN-iid and BOOLEAN-mixed datasets.

One can see from the figure that for both datasets, BOOL-UNBIASED-SIZE and HD-

UNBIASED-SIZE generates orders of magnitude smaller MSE than CAPTURE-&-RECA-

PTURE. Compared with BOOL-UNBIASED-SIZE, HD-UNBIASED-SIZE is capable of

further reducing the MSE by up to an order of magnitude (for BOOLEAN-MIXED) thanks

to the integration of weight adjustment and divide-&-conquer, the individual effect of each

will be discussed later in this section.



162

Another observation from Figure 5.5 is that the MSE for Boolean-mixed is higher

than that for Boolean-iid. This is consistent with our discussions in Section 5.3.3.2 which

show that the MSE is higher over a skewed data distribution, like that of BOOLEAN-

Mixed.

To provide an intuitive demonstration of the estimation accuracy, Figure 5.6 de-

picts the tradeoff between relative error and query cost for the three algorithms under the

same settings as Figure 5.5. Figure 5.7 further shows the error bars for HD-UNBIASED-

SIZE. One can see that both BOOL-UNBIASED-SIZE and HD-UNBIASED-SIZE are ca-

pable of producing smaller than 2% relative error for both datasets with fewer than 500

queries. In particular, all error bars of HD-UNBIASED-SIZE are within the range of 99%-

101.5%. This shows that our algorithm is capable of producing accurate estimates even

for a database with skewed underlying distribution, like Boolean-Mixed. Figures 5.8 and

5.9 depict the performance of HD-UNBIASED-SUM over the SUM of a randomly chosen

attribute. The observations are similar to the COUNT case.

We tested HD-UNBIASED-SIZE with varying database size m. Figures 5.10 and

5.11 depict the change of MSE and query cost, respectively, when m varies from 50, 000

to 300, 000. The parameters are r = 4 and DUB = 16. One can see from the figure that

the MSE increases (approximately) linearly with the database size. This is consistent with

our theoretical analysis in Theorem 5.4.1. The query cost also increases linearly with m,

showing the scalability of our algorithm to large databases. One can observe from the

figures that while the increase of query cost with m is always equal for Boolean-iid and

Boolean-Mixed, the difference between their MSE become larger when m increases. This

is because the larger the Boolean-Mixed database is, the “more skewed” its distribution on

the query tree will be, leading to a larger estimation variance.

To study how the value of k for the top-k interface affects the performance of our

algorithm, we tested HD-UNBIASED-SIZE with k ranging from 100 to 500. The changes
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of MSE and query cost are shown in Figure 5.12. One can see that from the figure that with

a larger k, both MSE and query cost decreases, leading to a more efficient and accurate

estimation.
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Figure 5.13. Individual effects.
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Figure 5.14. Yahoo! Auto.

We also studied the individual effects of weight adjustment and divide-&-conquer

to variance reduction. In particular, we tested the performance of the following four al-

gorithms over the categorical offline Yahoo! Auto dataset: (1) HD-UNBIASED-SIZE,



164

4 5 6 7 8
1

2

3

4

5
x 10

10

M
S

E

 

 

MSE

4 5 6 7 8
0

500

1000

1500

2000

Q
ue

ry
 c

os
t

r

 

 

Query cost

Figure 5.15. Effect of r.
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Figure 5.16. Effect of DUB.

(2) HD-UNBIASED-SIZE without weight adjustment, (3) HD-UNBIASED-SIZE with-

out divide-&-conquer (i.e., by setting r = 1), and (4) HD-UNBIASED-SIZE with neither

weight adjustment nor divide-&-conquer. For HD-UNBIASED-SIZE, we set r = 5 and

DUB = 16. Figure 5.13 depicts the tradeoff between MSE and query cost for all four algo-

rithms. Figure 5.14 further shows the error bars for (1) which has the best performance.

We studied how the parameters of HD-UNBIASED-SIZE affect its performance.

Figure 5.15 depicts the change of MSE and query cost when r, the number of drill-downs

per subtree, varies between 4 and 8. We conducted the experiment with DUB = 16. One



165

can see that the larger r is, the more queries will be issued, and the smaller the estimation

variance will be. This is consistent with our intuitive discussions in Section 5.5.1.

Figure 5.16 shows the change of MSE and query cost when DUB varies between 16

and 104544 (the domain size of the database). The experiment was conducted when r = 5.

One can see from the figure that the larger DUB is, the fewer queries need to be issued, but

the MSE will increase correspondingly.

We also tested the impact of r on the tradeoff between MSE and query cost. In par-

ticular, we setDUB = 16. For each value of r, we repeat the execution of HD-UNBIASED-

SIZE for certain number of times to reach a similar query cost. Then, we compute MSE

based on the average of the estimations from the repeated runs. The results are as follows.

Table 5.3. MSE vs Query Cost

r 3 4 5 6 7 8
Query Cost 440 466 494 373 473 607
MSE (×1010) 4.53 4.84 4.29 4.83 4.66 3.53

One can see that the tradeoff between MSE and query cost is not sensitive to the

value of r. This verifies our discussions in Section 5.5.1 for the setting of r.

Finally, we tested HD-UNBIASED-SIZE and HD-UNBIASED-AGG over the real-

world web interface of Yahoo! Auto. Note that Yahoo! enforces a limit on the frequency of

queries issued from an IP address. This prevents us from issuing a large number of queries

for the experiments. In particular, we conducted 10 executions of HD-UNBIASED-SIZE to

estimate the number of Toyota Corollas in the database (issuing an average of 193 queries

per execution). The parameters are set as r = 30, DUB = 126. Figure 5.17 shows the

estimations generated after each round of execution. One can see from the figure that our
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estimations are close to 13613, the COUNT disclosed on the Yahoo! website. Figure 5.18

shows estimations generated by HD-UNBIASED-AGG for the total inventory balance (i.e.,

sum of prices) for cars of five popular models, with up to 1, 000 queries issued for each

estimation. The ground truth on such information is not disclosed on the Yahoo! website.

5.7 Related Work

Crawling and Sampling from Hidden Databases: There has been prior work on crawl-

ing as well as sampling hidden databases using their public search interfaces. Several pa-
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pers have dealt with the problem of crawling and downloading information present in hid-

den text based databases [8, 23, 24]. [25, 26, 40] deal with extracting data from structured

hidden databases. [27] and [28] use query based sampling methods to generate content

summaries with relative and absolute word frequencies while [29,30] uses two phase sam-

pling method on text based interfaces. [31, 32] discuss top-k processing which considers

sampling or distribution estimation over hidden sources. In [18, 36] techniques have been

developed for random sampling from structured hidden databases leading to the HIDDEN-

DB-SAMPLER algorithm. Techniques to thwart such sampling attempts have been devel-

oped in [37].

Sampling and Size Estimation for Search Engine’s Corpse: The increase in popularity

of search engines has motivated the research community to develop techniques to discover

its contents. [42, 50] studied the estimation by capture-recapture method to identify the in-

dex size of a search engine. [9] employed Monte Carlo methods to generate a near-uniform

sampling from the search engine’s corpus, while taking into consideration the degrees of

documents and cardinalities of queries. With approximate document degrees, techniques

for measuring search engine metrics were proposed in [39]. Sampling online suggestion

text databases were discussed in [51] to significantly improve the service quality of search

engines and to study users’ search patterns.

5.8 Conclusion

In this chapter we have initiated an investigation of the unbiased estimation of the

size and other aggregates over hidden web databases through its restrictive web interface.

We proposed backtrack-enabled random walk schemes over the query space to produce

unbiased estimates for SUM and COUNT queries, including the database size. We also

proposed two ideas, weight adjustment and capture-&-recapture, to reduce the estimation

variance. We provided theoretical analysis for estimation accuracy and query cost of the
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proposed ideas. We also described a comprehensive set of experiments that demonstrate

the effectiveness of our approach over synthetic and real-world hidden databases.



CHAPTER 6

PRIVACY PRESERVATION OF AGGREGATES IN HIDDEN DATABASES:
WHY AND HOW?

6.1 Introduction

Databases with public web-based search interfaces are available for many govern-

ment, scientific, and health-care websites as well as for many commercial sites. Such sites

are part of the much talked about hidden web and contain a lot of valuable information.

These sites provide controlled access to their databases through their search interfaces.

The simplest and most widely prevalent kind of search interface over such databases al-

lows users to specify selection conditions (point or range queries) on a number of attributes

and the system returns the tuples that satisfy the selection conditions. Sometimes the re-

turned results may be restricted to a few (e.g., top-k) tuples, sorted by one or more ranking

functions predetermined by the hidden web site. To illustrate the scenario let us consider

the following examples.

Example 1:An auto dealer’s web form lets a user choose from a set of attributes e.g.,

manufacturer, car type, mileage, age, price, engine type, etc. The top-k answers, sorted

according to a ranking function such as price, are presented to the user, where k is a small

constant such as 10.

Example 2:An airline company’s flight search form lets a user search for a flight by spec-

ifying a set of attributes such as departure and destination cities, date, number of stops,

carrier, and cabin preferences. The top-k flights, sorted according to a ranking function

such as price, are presented.

In this paper, our key observation is that there is a large class of such websites where

169
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individual result tuples from search queries are public information and raise no privacy

concerns (e.g., availability of a specific model of car, schedule for a specific flight). How-

ever, such sites would like to suppress inference of aggregate information. In Example 1,

while the auto dealer wishes to allow potential car buyers to search its database, it would

not like to make public information that enables competitors to infer its inventory, e.g.,

that a certain popular car has been in short supply at the dealership in recent weeks. If the

competitors were able to infer such aggregate information, then this would allow them to

take advantage of the low inventory by a multitude of tactics (e.g., stock that vehicle, make

appropriate adjustments to price).

Likewise in Example 2, an airline company would not wish to reveal information that en-

ables terrorists to predict which flights, on what dates, are more likely to be relatively

empty. In recent hijackings such as 9/11 and Russian aircraft bombing of 2004, terrorists’

tactics are believed to be to hijack relatively empty flights because there would be less re-

sistance from occupants. If terrorists are able to infer aggregate information such as Friday

afternoon flights from Washington DC to Denver are emptier than others on average, they

could leverage this information to plan their attacks.

Of course, extremely broad aggregate information is usually well known and publicly avail-

able - e.g., that family sedans are more common than sports cars, or that flights are usually

empty on Christmas Day. It is the inferences of relatively fine-grained aggregates as il-

lustrated by the examples above that need to be protected against, as the impact of such

inference can range from being merely disadvantageous to the data publisher to posing

serious security threats to society at large. Also, aggregates collected from human efforts

(through domain knowledge) do not provide any form of statistical guarantees, which may

be particularly relevant for fine-grained aggregates.

It is important to recognize that our scenario of Privacy Preservation of Aggregates is in

sharp contrast to the traditional privacy scenarios, where the individual information needs
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to be protected against disclosure but aggregate information that does not lead to inference

to an individual’s information is considered acceptable disclosure. To our best knowledge,

this form of data privacy is novel and has not been explored by researchers.

The goal of this paper is to propose techniques that can enable the owner of a hidden

database to guarantee the privacy of aggregate information without compromising the util-

ity of search queries submitted through the front-end search interfaces.

Because most interfaces only allow a limited number of search results to be returned, and

do not allow aggregate queries (e.g., a query such as “SELECT COUNT(*) FROM D where

¡selection-condition¿”) to be directly executed, it may seem that aggregate information is

already adequately protected from bots or malicious users, as they would have to execute

an inordinate number of search queries to collect enough returned tuples to aggregate at

their end. However, in our recent works [18], [18], [36], we have studied how an external

application can leverage the public interface of a hidden database to draw high quality uni-

form random samples of the underlying data, which can then be used to approximately infer

fine-grained aggregates. As the size of the samples collected increases, the estimation of

aggregates becomes more robust. In particular, we proposed two samplers that can be used

against a wide variety of existing hidden databases: HIDDEN-DB-SAMPLER [18] and

HYBRID-SAMPLER [36]. These approaches can be very effective, as in many cases, ap-

proximate aggregates can provide the critical insights into the data. These samplers obtain

samples from the restrictive interface provided by hidden databases in an efficient manner

by optimizing the number of queries posed to the database. Thus, our main challenge is to

develop techniques to thwart such sampling attacks.

Technical Challenge: Given a hidden database, develop techniques that make it very dif-

ficult to obtain uniform random samples of the database via its search interface without

necessitating human intervention.

Note that if we were to accept a “human in the loop“, then a seemingly simple solution is
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to embed into the search interface a human-readable machine-unrecognizable image called

CAPTCHA [52], and to require each user to provide a correct CAPTCHA solution before

executing every search query. This strategy is used in a number of real-world websites .

Nonetheless, a key limitation of this approach is that it eliminates the possibility of any au-

tomated access, including legitimate ones such as third-party web services, over the hidden

database. Such limitation is becoming increasingly problematic with the growing popular-

ity mash-up web applications.

Thus, we aspire to develop techniques that allow search queries issued by bona fide users,

both human as well as third-party web applications, but at the same time make it very dif-

ficult for adversaries including automated bots by forcing them to execute an inordinate

number of search queries before they can obtain a small random sample of the database.

While there has been significant recent work in the areas of privacy preserving data min-

ing [53–55], data publishing [56], OLAP [57], and information sharing [58], these tech-

niques are inadequate for our purposes. Unlike our scenario, these techniques are appropri-

ate where the privacy of the individual needs to be preserved - e.g., in a medical database,

it is acceptable to reveal that the number of HIV patients is 30% more than cancer patients,

but not acceptable to reveal that a particular patient has HIV. Tuplewise privacy preservation

techniques such as encryption [58], data perturbation [53] and generalization methods [56]

cannot be used in our framework either as obfuscating individual data tuples is not an op-

tion since tuples need to be made visible to normal search users. The well-studied online

query auditing [59], which answers or denies a query based on the user’s query history, is

also not applicable in our scenario as these websites provide public interfaces and cannot

monitor individual users’ history of past queries.

Our Approach: In this paper we present novel techniques for protecting aggregates over

hidden databases. We propose a privacy-preserving algorithm called COUNTER-SAMPLER,

which can be used to defend against all possible sampling attacks. The key idea used in
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COUNTER-SAMPLER is to insert into the hidden database a small number of carefully

constructed dummies tuples, i.e., tuples that do not exist in the original hidden database

but are composed of legitimate attribute values.

The reasons why dummy tuples can be effective at defending against sampling attacks are

subtle - we defer a detailed discussion for later in the paper, but provide brief intuition here.

Our approach builds on the observation that all existing sampling attacks retrieve uniform

random sample from tuples returned by queries that select at most k tuples each (where k

is a small constant such as 10 or 100), because otherwise the search on the hidden database

will return only the top-k tuples sorted by ranking functions unknown to the sampler, and

hence cannot be assumed to be random. In other words, we target a common character-

istic of samplers to find ”valid“ search queries that neither ”overflow“ (i.e., do not have

broad conditions that select more than k tuples) nor ”underflow” (i.e., do not have narrow

conditions that select no tuple). Thus, the key idea of COUNTER-SAMPLER is to care-

fully construct and insert dummy tuples into the database such that most valid (and some

underflowing) queries are converted to overflowing queries, thus significantly decreasing

the proportion of valid queries within the space of all possible search queries. As a result,

any sampler which generates samples from valid queries has to execute a huge number of

queries before it encounters enough valid queries be able to generate a uniform random

sample. Of course, the presence of dummy tuples presents an inconvenience to normal

search users or applications, which have to now distinguish the real tuples from the dummy

tuples in the returned results of any search query. How to distinguish dummy tuples from

real tuples is discussed later in the paper. Nevertheless, to reduce such inconveniences,

our objective is to minimize the number of inserted dummy tuples while providing the de-

sired privacy guarantees. Our analytical as well as experimental results show that only a

small number of dummy tuples are usually inserted by COUNTER-SAMPLER to provide

adequate privacy guarantees.
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Summary of Contributions:

• We define the novel problem of Privacy Preservation of Aggregates in Hidden Databases.

• We develop COUNTER-SAMPLER, a privacy-preserving algorithm that inserts dummy

tuples to prevent the efficient sampling of hidden databases.

• We provide theoretical analysis on the privacy guarantee for sensitive aggregates

provided by COUNTER-SAMPLER.

• We describe a comprehensive set of experiments that demonstrate the effectiveness

of COUNTER-SAMPLER. Although it is universally effective against all possible

sampling attacks, we demonstrate its effectiveness against the state-of-the-art sam-

pling algorithms, HIDDEN-DB-SAMPLER [18] and HYBRID-SAMPLER [36].

6.2 Preliminaries

6.2.1 Hidden Databases

In most of this paper, we restrict discussions to categorical data - we discuss exten-

sions to numerical data later. Consider a hidden database tableD withm tuples t1, ..., tm on

N attributes a1, ..., aN . The table is only accessible through a web-based interface where

users can issue queries that specify values for a subset of the attributes, say a1, ..., an. We

refer to such queries as the search queries, which are of the form: QS: SELECT * FROM

D WHERE ac1 = vc1 AND ... AND acu = vcu, where vc1, ..., vcu are from the do-

mains of ac1, ..., acu ∈ a1, ..., an, respectively.

Let Sel(QS) be the set of tuples in D that satisfy QS . As is common with most web inter-

faces, we assume that the query interface is restricted to only return up to k tuples, where

k << m is a pre-determined small constant. If the query is too broad (i.e., |Sel(QS)| > k),

only the top − k tuples in Sel(QS) will be selected according to a ranking function, and

returned as the query result. The interface will also notify the user that there is an overflow.
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At the other extreme, if the query is too specific and returns no tuple, we say that an under-

flow occurs. If there is neither an overflow nor an underflow, we have a valid query result.

In this paper, we assume that the interface does not allow a user to “scroll through” the

complete answer Sel(QS) when an overflow occurs. We argue that this is a reasonable as-

sumption because many real-world top-k interfaces only allow a limited number of “page

turns”. Google, for example, only allows 100 page turns (10 results per page) per query.

This essentially makes Google a top-1000 interface in our model.

6.2.2 Privacy Requirements

Consider aggregate queries of the form: SELECT AGGR(∗) FROM D WHERE

ac1=vc1 AND ... AND acu = vcu, where AGGR(.) is an aggregate function such as

COUNT, SUM, etc, and vc1, ..., vcu are from the domains of ac1, ..., acu, respectively. Let

Res(QA) be the result of such an aggregate query. As discussed earlier, due to privacy con-

cerns the owner of a hidden database may consider certain aggregate queries to be sensitive

and would not willingly disclose their results.

To quantify privacy protection, we first define the notion of disclosure. Similar to the pri-

vacy models for individual data tuples [59], we can define the exact and partial disclosure

of aggregates. Exact disclosure occurs when a user learns the exact answer to an aggregate

query. Exact disclosure is a special case of partial disclosure; the latter occurs when there

is a significant change between a user’s prior and posterior confidence about the range of a

sensitive query answer.

In this paper we consider the (broader) partial disclosure notion because approximate an-

swers are often adequate for aggregate queries. Carrying the same spirit in the privacy-

game notion for individual data tuples [60], we define the following (ε, δ)-privacy game

between a user and the hidden database owner for a sensitive aggregate query QA:

• The owner chooses its defensive scheme.



176

• The user issues search queries and analyzes their results to try and estimateRes(QA).

• The user wins if ∃x such that the user has confidence > δ that Res(QA) [x, x + ε].

Otherwise, the user loses.

Based on the (ε, δ)-game notion, we define the privacy requirement for a hidden

database as follows:

Definition 2.1: We say that a defensive scheme achieves (ε, δ, p)-privacy guarantee for QA

iff for any user, PrA wins (ε, δ)-privacy game for QA ≤ p.

The probability is taken over the (possible) randomness in both the defensive scheme and

the attacking strategy. Note that if a defensive scheme achieves (ε, δ, p)-privacy guarantee,

then no user can win a (ε0, δ0)-privacy game with probability of p0 if ε0 ≤ ε, δ0 ≥ δ, and

p0 ≥ p. Thus, the greater ε or the smaller δ and p are, the more protection a (ε, δ, p)-privacy

guarantee provides.

6.2.3 Attack: Cost and Strategies

A user cannot directly execute aggregate queries. Instead, it must issue search queries

and infer sensitive aggregates from the returned results. There may be an access fee for

search queries over a proprietary hidden database. Even for hidden databases with pub-

licly available interfaces, the server usually limits the number of queries a user can issue

before blocking the user’s account or IP address (e.g., Google SOAP Search API enforces

a limit of 1,000 queries per day [61]). Thus, we define the attacking-cost limit umax as

the maximum number of search queries that a user can issue. Such limits make it unre-

alistic for an attacker to completely crawl a large hidden database. However, as recent

research [18, 36][DDM07, DZD09] has shown, such databases are vulnerable to sampling

attacks, which are based on the generation of uniform random samples (with replacement)

from the database and the approximate estimation of sensitive aggregates from the samples.
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6.2.4 Defense: Dummy Insertion

We study the strategy of inserting dummy tuples to defend against sampling attacks.

To enable a bona fide search user to distinguish real tuples from dummies, we propose

to accompany each returned tuple with a CAPTCHA flag indicating whether it is real or

dummy. Unlike the CAPTCHA challenge discussed in earlier, our scheme applies to a

large class of third-party applications such as meta-search engines . In particular, a meta-

search engine queries several hidden databases based on a search condition specified by

an end-user, and then returns the union of all returned tuples after (re-)sorting or filtering.

In the process, it treats all tuples in the same manner regardless of real or dummy. The

engine does not parse any CAPTCHA itself, and instead simply forwards the tuples with

the CAPTCHA flags they receive from the hidden database to end-users.

An important note of caution is that the attribute values of a dummy tuple may allow an

adversary to identify it as a dummy, essentially incapacitating the CAPTCHA flag. In

particular, an adversary may identify a dummy tuple by checking whether its attribute val-

ues violate constraints obtained by the adversary through external knowledge (e.g., that the

airline in Example 2 does not operate any flight out of Seattle, WA). A solution to this prob-

lem requires the proper modeling of external knowledge, which we will leave as an open

problem. In this paper, we assume that there exists a dummy-generating oracle DUMMY-

ORACLE(m0, C) which generates dummy tuples that (1) satisfy the search condition C,

and (2) cannot be identified as a dummy by the adversary. The oracle terminates when ei-

ther no more tuples satisfying the above conditions can be generated, or m0 dummy tuples

have been generated, whichever occurs first.

The objective of defense is to protect sensitive aggregates while maintaining the utility of

search queries to normal users. We measure the (loss of) utility by the number of inserted

dummy tuples: more dummy tuples increases inconvenience for normal users and hence

reduces utility . The problem studied for the remainder of this paper is formally defined as
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follows:

Problem: Given the attacking-cost limit and a set of sensitive aggregate queries, the ob-

jective of dummy insertion is to achieve(ε, δ, p)-guarantee for each aggregate query while

minimizing the number of inserted dummy tuples.

6.3 COUNTER-SAMPLER

In this section, we present the detailed algorithm of COUNTER-SAMPLER and

analyze its performance.

6.3.1 Algorithm COUTER-SAMPLER

Algorithm COUNTER-SAMPLER consists of two steps: d-level packing (Lines 1-6)

and b-neighbor insertion (Lines 7-15). The subroutine DUMMY-ORACLE was discussed

earlier. Lines 1-6 ensure that no (d-1)-predicate (or shorter) query will underflow, while

Lines 7-15 ensure that no (b-1)-predicate (or shorter) query will be valid. Thus, Algorithm

COUNTER-SAMPLER achieves d-level packing and b-neighbor insertion.

Note that while COUNTER-SAMPLER does not require the hidden database D to be

Boolean, for ease of discussion our following analysis will be restricted to Boolean databases.

We will discuss categorical and numerical databases later. Also, for this moment, we as-

sume b and d are parameters set by the hidden database owner. How they should be deter-

mined will be discussed later.

6.3.2 Privacy Guarantee

To provide a privacy guarantee against any sampler that aims to draw uniform ran-

dom samples from the hidden database, we will first prove a lower bound on the expected

number of search queries required for a sampler to find s uniform random sample tuples

over a Boolean hidden database. Based on the bound, we will derive a (ε, δ, p)-privacy
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Algorithm 11 COUNTER-SAMPLER(b, d, k)

1: . Start of d-level packing

2: for each set S of d− 1 attributes do

3: KS = Cartesian product of domains of attributes in S

4: DS = SELECT S FROM D

5: for each tuple t in SELECT * FROM KS −DS do

6: C = ∧ai∈S(ai = t[ai])

7: D = D ∪DUMMY −ORACLE(k + 1, C)

8: end for

9: end for

10: . Start of b-neighbor insertion

11: DDUMMY = φ

12: for each set S of b− 1 attributes do

13: DS = SELECT S FROM D

14: NS = SELECT S, COUNT(*) FROM D ∪ DUMMY GROUP BY S HAVING

COUNT(*) > k

15: for each tuple t in SELECT * FROM DS - NS[S] do

16: C = ∧ai∈S(ai = t[ai])

17: c = SELECT COUNT(*) FROM D ∪ DDUMMY WHERE C

18: DDUMMY = DDUMMY ∪ DUMMY-ORACLE(k + 1− c, C)

19: end for

20: end for

21: D = D ∪ DDUMMY
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guarantee achieved by COUNTER-SAMPLER.

Before formally presenting the results, we would like to point out that although Algorithm

COUNTER-SAMPLER is quite intuitive, the theoretical analysis is quite challenging and

consequently the derived bounds are rather loose. We also point out that the results address

the class of samplers that use finding valid queries as a part of their sampling strategy.

Our goal of presenting these analytical results is not to promote the tightness of bounds,

but to demonstrate the versatility of COUNTER-SAMPLER in defending against any arbi-

trary sampler. However, as our experiments show, the actual performance is much better in

practice.

Lemma 6.3.1. For a Boolean hidden database with m tuples, after COUNTER-SAMPLER

has been executed with parameters b and d such that 4s(b−d)(d+1) ≤ 3d andm ≤ 2d−1,

any sampler needs at least an expected number of 4s(b − d)/3 search queries to find s

uniform random sample tuples over the database.

Due to space limitation, we omit the proof, and the full details are available at [62].

Interestingly, the bound is decreasing with d, which seems to suggest that d-level packing

is hurting the defense. However, this is not true because, in order for the lemma to hold, d

must be large enough to satisfy the two conditions in the lemma. The reason why the bound

decreases with d is because a “smart” sampler (which may be aware of the COUNTER-

SAMPLER algorithm and hence knows b and d) does not need to issue any queries with

fewer than d-predicates. Based on the lemma, the following Theorem 4.2 provides privacy

guarantees for sensitive COUNT aggregate queries. Recall from earlier that the attacking-

cost limit umax is the maximum number of search queries that an adversary can issue.

Theorem 6.3.1. For a Boolean hidden database with m tuples, when all samplers have an

attacking-cost limit umax, for any COUNT query with answer in [x, y], the hidden database

owner achieves (ε, δ,50%)-privacy guarantee if COUNTER-SAMPLER has been executed

with parameters b and d which satisfy:
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(a) d ≥ lgm+ 1 and 3d−1/(d+ 1) ≥ umax

(b) b ≥ d+ (3εumax/(32min(x(m− x), y(m− y))(erf−1(δ))2)

The details of the proof are available in [62], but in brief, Conditions (a) and (b)

directly follow from Lemma 6.3.1 and a lower bound on the number of samples required

to win a (ε, δ)-privacy game, which can be derived via standard sampling theory. The the-

orem can be easily extended to other types of aggregates (e.g., SUM) by making proper

assumptions on the distribution of the measure attribute.

Theorem 4.2 provides guidelines on the parameter settings for b and d. In particular, Con-

ditions (a) and (b) imply lower bounds on d and b, respectively. Note that the smaller b or

d is, the fewer dummy tuples are required. Thus, to achieve a (ε, δ, 50%)-privacy guaran-

tee, for a given attacking-cost limit umax, we should first set d to be the minimum value

that satisfies Condition (a), and then compute b as the minimum value that satisfies Condi-

tion (b). Ideally, we can follow these settings to make Algorithm COUNTER-SAMPLER

parameter-less. Nonetheless, as discussed earlier, this theorem only provides necessary

but not sufficient conditions for (ε, δ, 50%)-privacy guarantee. In practice, other (tighter)

bounds on the b and d suffice, as we will demonstrate in the experimental results.

An interesting observation is that Condition (b) depends on the range[x, y] of COUNT

query answers. In particular, for given values of umax, b, d, and δ, the value of ε is maxi-

mized when x = y = m/2. This shows that COUNTER-SAMPLER provides the strongest

privacy guarantee when a COUNT query is neither too broad nor too narrow. This is con-

sistent with our objective of protecting fine-grained aggregates.

It is important to note that the privacy guarantee holds for all COUNT queries against pos-

sible sampling algorithms. This renders inference-based attacks that try to infer aggregates

by combining answers of two or more non-sensitive queries, useless.
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6.3.3 Number of Inserted Dummy Tuples

The privacy guarantee derived above is independent of the interface parameter k.

The number of inserted dummy tuples however, depends on k because, intuitively, for a

larger k more dummy tuples are required for making underflowing or valid queries over-

flow. The number of inserted dummy tuples also depends on the original data distribution.

For example, when the data is densely distributed into a few clusters, b-neighbor insertion

requires much fewer dummy tuples than when all attributes are i.i.d. with uniform distri-

bution. For d-level packing, the i.i.d. case requires much fewer dummy tuples than when

the data is highly skewed (e.g., all attributes have probability of 99% to be 1). Because of

this dependency, we will not attempt a theoretical analysis of the number of dummy tuples

inserted, and instead present a thorough experimental evaluation.

6.3.4 Efficiency and Implementation Issues

Given b and d, the time complexity of COUNTER-SAMPLER isO(nCd?1∗max(2d,m)+

nCb?1 ∗m), where n is the number of (searchable) attributes and m is the number of tuples.

The efficiency is usually not a concern because (1) COUNTER-SAMPLER only needs to

be executed once as a pre-processing step for a static database, and (2) n is usually quite

small for a hidden database with web interface. However, COUNTER-SAMPLER can

be slow when n is large. To address this problem, we present RANDOM-COUNTER-

SAMPLER, a randomized version which replaces the enumeration of all (d− 1) or (b− 1)

attribute sets by checking such attribute sets at random.

Since the dummy tuples inserted for one attribute set may also overflow queries cor-

responding to other attribute sets, the number of dummy tuples required for the not-yet-

chosen attribute sets decreases quickly. We terminate the process when no dummy tuple is

inserted for h consecutive iterations. Thus, even when n is large, RANDOM-COUNTER-

SAMPER is able to terminate quickly with a small probability of error.
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Figure 1. Query Trees for Examples A 

and B 

Figure 6.1. Query Trees for Examples A and B.

Algorithm 12 RANDOM-COUNTER-SAMPLER(b, d, k)

1: Randomly choose a set S of d− 1 attributes

2: Call Lines 2 - 6 of Algorithm COUNTER-SAMPLER

3: Goto 1 until no dummy has been inserted for h iterations

4: DDUMMY = φ

5: Randomly choose a set S of b− 1 attributes

6: Call Lines 9 - 14 of Algorithm COUNTER-SAMPLER

7: Goto 5 until no dummy has been inserted for h iterations

8: D = D ∪ DDUMMY

6.4 Experiments and Results

In this section, we describe our experimental setup and present the experimental

results. Note we provide theoretical privacy guarantees against all possible samplers. We

now carry out empirical studies for two state-of-the-art sampling algorithms, HIDDEN-

DB-SAMPLER and HYBRID-SAMPLER for Boolean and categorical hidden databases.

We also draw conclusions on the individual impact of high-level packing and neighbor

insertion on the delay of sampling attacks and the number of inserted dummy tuples.



184

6.4.1 Experimental Setup

1. Hardware and Platform: All our experiments were performed on a 1.99 Ghz In-

tel Xeon machine with 4 GB of RAM. The COUNTER-SAMPLER algorithm was

implemented in MATLAB. We set h = 40 for the randomized version.

2. Data Sets: HIDDEN-DB-SAMPLER recommends different strategies for Boolean

and categorical databases (with random order of attributes for the former and fixed

order for the latter). Thus, we consider both Boolean and categorical datasets. Note

that in order to apply COUNTER-SAMPLER, these datasets are offline ones to which

we have full access.

Boolean Synthetic: We generated two Boolean datasets, each of which has 100,000

tuples and 30 attributes. The first dataset is generated as i.i.d. data with each attribute

having probability of p = 0.3 to be 1. We refer to this dataset as the Bool-0.3 dataset.

The second dataset is generated in a way such that different attributes have different

distribution. In particular, there are 30 independent attributes, 5 have probability of

p = 0.5 to be 1, 10 have p = 0.3, the other 10 have p = 0.1. We refer to this dataset

as the Bool-mixed dataset. Categorical Census: The Census dataset consists of the

1990 US Census Adult data published on the UCI Data Mining archive [63]. After

removing attributes with domain size greater than 100, the dataset had 12 attributes

and 32,561 tuples. It is instructive to note that the domain size of the attributes of the

underlying data is unbalanced in nature. The attribute with the highest domain size

has 92 categories and the lowest-domain-size attributes are Boolean.

3. Sampling Algorithms: We tested two state-of-the-art sampling algorithms for hid-

den databases: HIDDEN-DB-SAMPLER [18] and HYBRID-SAMPLER [36].

HIDDEN-DB-SAMPLER has two variations, HIDDEN-DB-RANDOM and HIDDE-

N-DB-FIXED, which use random and fixed order of attributes, respectively. HIDDEN-

DB-RANDOM can only be applied to Boolean data, while HIDDEN-DB-FIXED
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can also be applied to categorical data. HIDDEN-DB-RANDOM is parameter-less,

while HIDDEN-DB-FIXED requires a parameter called scaling factor C for the ac-

ceptance/rejection module, in order to balance between efficiency and bias. Follow-

ing the heuristic in [18], we set C = 1/2l where l is the average length of random

walks for collecting the samples.

HYBRID-SAMPLER has two parameters: s1, the number of pilot samples collected

for optimizing future sampling, and cS , the count threshold for switching between

HYBRID-SAMPLER and HIDDEN-DB-SAMPLER. Following the settings in [36],

we set s1 = 20 and cS = 5.

4. Performance Measures for COUNTER-SAMPLER: We evaluated two perfor-

mance measures for COUNTER-SAMPLER. The first is privacy protection, i.e., the

delay (or inefficiency) forced onto the sampling algorithms by COUNTER-SAMPLER.

This is measured by the number of unique queries issued by HIDDEN-DB-SAMPLER

and HYBRID-SAMPLER to obtain a certain number of samples. The second mea-

sure is the loss of utility, i.e., the overhead incurred to bona fide users. In particular,

we used the number of dummy tuples inserted by COUNTER-SAMPLER, as dis-

cussed in earlier.

 

Figure 6.2. Number of queries before and after COUNTER-SAMPLER for Boolean.
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Figure 6.3. Delay of sampling vs. Percentage of dummy tuples.

 
Figure 6.4. Number of queries before and after COUNTER-SAMPLER for Census.

6.4.2 Effectiveness of COUNTER-SAMPLER

HIDDEN-DB-RANDOM: Since HIDDEN-DB-RANDOM only supports Boolean data,

we tested the effectiveness of COUNTER-SAMPLER on defending against HIDDEN-

DB-RANDOM over the two Boolean synthetic datasets. We first applied COUNTER-

SAMPLER with a fixed pair of parameters b = 10 (for b-neighbor insertion) and d = 6

(for d-level packing) when k = 1. In this case, COUNTER-SAMPLER inserts 29218 and

32717 dummy tuples for the Bool-0.3 and Bool-mixed datasets, respectively, leading to a
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Figure 6.5. Delay of sampling vs. number of dummy tuples.

proportion of 22.6% and 24.7% tuples of the final database being dummies. Figure 6.2

depicts the number of queries required by HIDDEN-DB-RANDOM to obtain 1 to 100

samples before and after COUNTER-SAMPLER is used. One can see from the figure that

for both datasets, COUNTER-SAMPLER significantly increases the number of queries

HIDDEN-DB-RANDOM has to issue. For example, to draw 100 samples from the Bool-

mixed dataset, HIDDEN-DB-RANDOM requires only 1987 queries before COUNTER-

SAMPLER is applied, but 23751 queries afterwards.

We also tested the tradeoff between the delay of HIDDEN-DB-RANDOM and the number

of dummy tuples inserted by COUNTER-SAMPLER. To do so, we set d = 5 and vary b

between 10, 12, and 15. Again, k = 1. Figure 6.3 depicts relationship between the per-

centage of dummy tuples in the final database and the average number of queries required

by HIDDEN-DB-RANDOM to obtain a sample during the process of drawing 50 samples.

One can see from the figure that the sampler can be delayed by orders of magnitude with a

moderate number of dummy tuples. For example, HIDDEN-DB-SAMPLER requires over

700 times more queries when there are 43.7% dummy tuples in the dummy-inserted ver-

sion of the Bool-mixed dataset.

HIDDEN-DB-FIXED: In [18], HIDDEN-DB-FIXED is recommended over HIDDEN-
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DB-RANDOM for categorical data as it generally yields a smaller bias in the samples.

Thus, we tested the effectiveness of COUNTER-SAMPLER in defending against HIDDEN-

DB-FIXED over the Census dataset. We set k = 10 by default unless otherwise noted.

Similar to the experiments on Boolean synthetic datasets, we first applied COUNTER-

SAMPLER with a fixed pair of parameters cd = 50 (for high-level packing) and cb = 500

(for neighbor insertion). In this case, COUNTER-SAMPLER inserts 10697 dummy tu-

ples, leading to a proportion of 24.7% tuples of the final database being dummies. Fig-

ure 6.4 depicts the number of queries required by HIDDEN-DB-FIXED to obtain 1 to 100

samples before and after COUNTER-SAMPLER is used. One can see from the figure

that COUNTER-SAMPLER significantly increases the number of queries HIDDEN-DB-

FIXED needs to issue. For example, to obtain 30 samples, HIDDEN-DB-FIXED needs

only 277 queries before COUNTER-SAMPLER is applied, but 1423 queries afterwards.

We again tested the relationship between the delay of HIDDEN-DB-FIXED and the num-

ber of inserted dummy tuples. To do so, we set cd = 100 and varied cb between 500, 1000,

and 1500. Figure 6.5 depicts the results. As we can see, COUNTER-SAMPLER delays

HIDDEN-DB-FIXED by more than ten-fold, from 6.41 to 69.07 queries per sample, when

53.4% tuples of the final database are dummies.

We also tested COUNTER-SAMPLER with varying cd. Figure 6.6 shows the number of

queries required by HIDDEN-DB-FIXED for each sample (while drawing 100 samples)

when cd varies from 0 to 300. One can observe from the figure a pattern that holds for all

three cases of cb = 500, 1000, and 1500: when cd increases, the number of queries required

by HIDDEN-DB-FIXED first increases, and then decreases. This verifies what is indicated

by our theoretical results in Lemma 4.1 and Theorem 4.2: once the value of d (resp. cd)

used by high-level packing reaches a threshold, the further increase of d (resp. cd) can only

reduce, and not improve, the protection provided by COUNTER-SAMPLER.

We tested COUNTER-SAMPLER with varying database sizes. In particular, we con-
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structed 10 databases with 10,000 to 100,000 tuples by sampling with replacement from

the Census dataset. Then, we applied COUNTER-SAMPLER with cb = 500 and cd = 50

to all of them. Figure 6.7 shows the percentage of dummy tuples in the dummy-inserted

databases. One can see that this percentage decreases rapidly when k increases. For exam-

ple, the percentage is 49.11% for the 10,000-tuple database but only 5.77% for the 100,000-

tuple database. Meanwhile, the privacy protection provided by COUNTER-SAMPLER re-

mains effective, as demonstrated in Figure 6.8.

We also studied the impact of the interface parameter k on COUNTER-SAMPLER. In par-

ticular, we tested cases where k ranges from 10 to 50. To highlight the change of sampling

efficiency with k, we used the case where k = 10 as the baseline scenario, and calculated

the relative number of queries required by HIDDEN-DB-FIXED for other values of k (for

collecting the same number (100) of samples). Figure 6.9 shows the results before and

after COUNTER-SAMPLER with cb = 500 and cd = 50 is applied. One can see from the

figure that without COUNTER-SAMPLER, the number of queries required by HIDDEN-

DB-FIXED decreases rapidly with increasing k. After COUNTER-SAMPLER is applied,

however, the number of queries remains stable for all values of k. This is consistent with the

fact that our privacy guarantees derived in Lemma 6.3.1 and Theorem 6.3.1 are independent

of the value of k.

 

Figure 6.6. Delay of sampling vs. cd for high-level packing.
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Figure 6.7. Percentage of Dummy Tuples vs. Database Size.

 

Figure 6.8. Efficiency of sampling vs. Database Size.

Figure 6.10 shows the change in the number of dummy tuples with k when cb = 500

and cd = 50. Naturally, with a larger k, more dummy tuples are needed to achieve the same

values of cb and cd. Nonetheless, recall from Figure 6.7 that the percentage of dummy

tuples decreases rapidly with the database size. Thus, for a real-world hidden database

which has a very large number of tuples and also a large k, the percentage of dummy tuples

inserted by COUNTER-SAMPLER should remain small.

HYBRID-SAMPLER: To demonstrate the universality of COUNTER-SAMPLER on de-

fending against any samplers, we tested it against another sampling algorithm, HYBRID-
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Figure 6.9. Efficiency of sampling vs. k.

SAMPLER [36], over the two Boolean synthetic datasets. Similar to Figure 6.1, we set

b = 10 and d = 6 when k = 1, leading to 29218 (22.6%) and 32717 (24.7%) dummy

tuples for Bool-0.3 and Bool-mixed, respectively. Figure 6.11 depicts the number of

queries required by HYBRID-SAMPLER to obtain 1 to 100 samples before and after

COUNTER-SAMPLER is used. One can see from the figure that HYBRID-SAMPLER is

also significantly delayed by COUNTER-SAMPLER. For example, to draw 100 samples

from the Bool-mixed dataset, HIDDEN-DB-RANDOM requires only 851 queries before

COUNTER-SAMPLER is applied, but 12878 queries afterwards.

PREPROCESSING EFFICIENCY: COUNTER-SAMPLER is essentially a preprocess-

ing step; hence its runtime efficiency is usually not a concern. Nevertheless, we observed

that it is quite efficient for real-world categorical hidden databases that usually have a

smaller number of attributes. For example, for the Census dataset, the deterministic ver-

sion of COUNTER-SAMPLER only requires 91.18 seconds to complete when cb = 500 and

cd = 50. We also performed experiments on Boolean dataset with many attributes, which

represents an extremely inefficient scenario for the deterministic version. We tested the

execution time of COUNTER-SAMPLER as well as RANDOM-COUNTER-SAMPLER

on the Bool-mixed dataset (which has 30 attributes) when b = 10 and d = 5. Unsurpris-

ingly, while the deterministic version took days to complete, the randomized version was
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much more efficient. Figure 6.14 shows the relationship between the percentage of dummy

tuples inserted and the execution time. One can see that when h = 40, with 4585 seconds,

RANDOM-COUNTER-SAMPLER inserts more than 92.84% of all dummy tuples inserted

by the deterministic version.

 

Figure 6.10. Percentage of Dummy Tuples vs. k.

 

Figure 6.11. HYBRID-SAMPLER.

6.4.3 Individual Effects of Neighbor Insertion and High-level Packing

We also studied the individual effects of neighbor insertion and high-level pack-

ing. As an example, we considered the HIDDEN-DB-FIXED sampling algorithm and the
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Census dataset. First, we applied only high-level packing, and then executed HIDDEN-

DB-FIXED to collect 100 samples. Figure 6.13 depicts the number of queries required

by HIDDEN-DB-FIXED and the percentage of dummy tuples when cd ranges from 0 to

300. One can observe that high-level packing alone only inserts a very small amount of

dummy tuples, but is already quite effective against HIDDEN-DB-FIXED. For example,

when only 3.55% tuples of the final database are dummies, high-level packing can delay

HIDDEN-DB-FIXED by a factor of 2.50 (from 2.77 to 6.92 queries per sample).

Second, we applied only neighbor insertion to the Census dataset, and then executed HIDDEN-

DB-FIXED to collect 100 samples. Figure 6.14 depicts the number of queries required by

HIDDEN-DB-FIXED and the number of inserted dummy tuples when cb ranges from 0 to

1500. One can see from the figure that neighbor insertion alone imposes significant delays

to HIDDEN-DB-FIXED. For example, HIDDEN-DB-FIXED requires 13.64 times more

queries (37.10 vs. 2.77 queries per sample) after applying COUNTER-SAMPLER with cb

= 1500. Meanwhile, 53.01% tuples in the final database are dummies.

To get a rough estimate on the effect of including the dummy tuples on usability, we sam-

pled 1,000 queries with replacement from each level of the query tree on the Census dataset,

and found very few queries returning only dummies: When k=10 and 24.7% (resp. 54.3%)

tuples are dummies, only 1.1% (resp. 4%) queries return only dummy tuples.

6.5 Related Work

There has been recent work on crawling as well as sampling from hidden databases.

However, here we restrict our discussion to prior works on sampling. In [18,36] the authors

have developed techniques for sampling from structured hidden databases leading to the

HIDDEN-DB-SAMPLER and HYBRID-SAMPLER algorithms respectively. A closely

related area of sampling from a search engines index using a public interface has been ad-
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Figure 6.12. RANDOM-COUNTER-SAMPLER.

 

Figure 6.13. High-Level Packing Only.

  Figure 6.14. Neighbor Insertion Only.
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dressed in [8] and more recently [9,39]. [27] and [28] use query based sampling methods to

generate content summaries with relative and absolute frequencies while [29, 30] uses two

phase sampling method on text based interfaces. On a related front [32, 64] discuss top-k

processing which considers sampling or distribution estimation over hidden sources. [65]

discusses keyword search over a corpus of structured web databases in the form of HTML

tables. [66] considers the surfacing of hidden web databases by efficiently navigating the

space of possible search queries.

Much research on privacy/security issues in databases and data mining focused on the pro-

tection of individual tuples which is complementary to our proposed research. Traditional

studies on access control and data sanitization are designed to limit the access to private data

in relational databases [67,68]. Researchers have proposed various privacy-preserving (ag-

gregate) query processing techniques, which can be classified as query auditing [59,60] and

value encryption/perturbation [53, 56–58, 69]. The perturbation of (output) query answers

has also been studied [70]. More closely related to the problem addressed in this paper is

the existing work on protecting sensitive aggregation information [71–73]. Nonetheless, to

our best knowledge, all existing work in this category focuses on the protection of sensitive

association rules in frequent pattern mining.

6.6 Conclusion

In this paper, we have initiated an investigation of the protection of sensitive aggre-

gates over hidden databases. We proposed Algorithm COUNTER-SAMPLER that inserts

a number of carefully constructed dummies tuples into the hidden database to prevent the

aggregates from being compromised by the sampling attacks. We derived the privacy guar-

antees achieved by COUNTER-SAMPLER against any sampler that aims to draw uniform

random samples of the hidden database. We demonstrated the effectiveness of COUNTER-
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SAMPLER against the state-of-the-art sampling algorithms [18,36][DDM07, DZD09]. We

performed a comprehensive set of experiments to illustrate the effectiveness of or algo-

rithm.

Our investigation is preliminary and many extensions are possible. For example, we fo-

cused on the dummy tuple insertion paradigm in this paper. In the future work, we shall in-

vestigate other defensive paradigms, such as the integration of dummy insertion and query

auditing, for protecting sensitive aggregates. We shall also investigate the techniques for the

protection of sensitive aggregates against adversaries holding external knowledge about the

underlying data distribution. Scenarios where hidden database interfaces return COUNT

results [36] also need to be explored. Another interesting future direction is the investiga-

tion of dynamic hidden databases and their impact on aggregates protection.
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