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ABSTRACT

MATHEMATICAL MODELING FOR PHAGOCYTE TRANSMIGRATION AND

REVERSE ENGINEERING

MIN GON KANG, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Jean Gao

Computational modeling and simulation have been used as an important tool

to analyze the behavior of a complex biology system. Typically, the biology system is

a complex non-linear system where a large number of components are involved. One

of the major obstacles in computational modeling and simulation is to determine a

large number of parameters in the mathematical equations representing biological

properties of the system.

To tackle this problem, we have developed a global optimization method, called

Discrete Selection Levenberg-Marquardt (DSLM), for parameter estimation. The

method uses a non-linear least square approach to approximate the solution of over-

determined systems. For fast computational convergence, DSLM suggests a new

approach for the selection of optimal parameters in the discrete spaces, while other

global optimization methods such as genetic algorithm and simulated annealing use

heuristic approaches that do not guarantee the convergence.

As a specific application example, we have targeted understanding phagocyte

transmigration which is involved in the fibrosis process for biomedical device implan-
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tation. The goal of computational modeling is to construct an analyzer to under-

stand the nature of the system. Also, the simulation by computational modeling for

phagocyte transmigration provides critical clues to recognize current knowledge of

the system and to predict yet-to-be observed biological phenomenon.
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CHAPTER 1

INTRODUCTION

Computational modeling and simulation have been highlighted in biomedical

research for decades due to biologic systems’ complexity and intractability by human.

Computational modeling and quantitative simulation have played an important role

in not only discovering biologic components’ nature but also providing quantitative

prediction. Generally, mathematical modeling is built based upon biologic experi-

ments and background knowledge in biologic systems. The biological model is com-

puted by several steps including hypothesis, computational estimation for the fittest

model, and verification from experiment data. It is also called Reverse Engineering

in biological area.

In this thesis, the mathematical modeling of phagocyte transmigration, which

is one of the processes involved in fibrosis formed around an implanted biomedical

device, is conducted, and a new solution for parameter estimation of the dynamic

system is proposed for the accurate simulation of the biologic system.

Deep understanding of the phagocyte transmigration will disclose the contribut-

ing components and predict the evolution of foreign body responses, which will even-

tually lead to reducing the failure rate of implantation. The goal of this thesis is to

provide mathematical modeling for phagocyte transmigration and to suggest a new

optimization method, Discrete Selection Levenberg-Marquardt Algorithm (DSLM),

to estimate optimal parameters of the mathematical equations for the fittest model

to the data. It was assumed that the new method should be satisfied with global

non-linear optimization solution and computational convergence in feasible time.
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The background of phagocyte transmigration is introduced in Chapter 2. The

modeling technique and the final mathematic modeling equations for phagocyte trans-

migration are presented in Chapter 3. For the estimation of parameters of the math-

ematical model, in Chapter 4 we introduce several methods currently used to solve

non-linear least square problems and propose the new DSLM algorithm. In Chapter

5, the simulated results in a variety of biological environments are shown. The thesis

closes with discussion and future work in Chapter 6.



CHAPTER 2

BIOMATERIAL-MEDIATED FIBROTIC RESPONSES

2.1 Preliminaries of Biomaterial-Mediated Fibrotic Responses

Due to remarkable development and increasing demand of medical implants

such as breast implants, encapsulated tissues/cells, neural electrodes, and eye im-

plants, medical implants are becoming more common. However, the increasing num-

ber of medical implants failure also has been reported. Medical implants provoke

unpredicted responses and reactions of the immune system, which is fibrotic cap-

sule formation surrounding the medical device. In earlier studies [1], [2], it is well

documented that excessive fibrotic responses are responsible for the failure of many

medical implants. In-depth understanding of the mechanism governing the reactions

can play an important role in successful implantation and development of the bioma-

terial while reducing its side effects and simultaneously improving the functionality

of the implants.

In 1998, Tang et al had conducted experiments [3] to recognize components

involved in foreign body reactions and to discover their responses and reactions. To

summarize the current understanding from the research, the evolution of biomaterial-

mediate inflammatory responses may be divided into following six consecutive events

(Figure 2.1):

1. Phagocyte transmigration through the endothelial barrier,

2. Chemotaxis toward the implants,

3. Adherence to the biomaterial,

4. Phagocyte activation,

3
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Figure 2.1: Hypothetical Sequence of Events Important in Fibrotic Responses to
Implanted Biomaterials.

5. Fibrin deposition, and

6. Fibroblast proliferation and collagen production.

Briefly speaking, (1) after implantation, components involved in phagocyte

transmigration such as mast cells, histamine, histamine receptors, and P/E selectins

are activated to prompt phagocytes recruitment from capillary into peritoneum; (2)

phagocytic cells transmigrated from capillary are mediated by certain chemokines

which attract phagocytic cells toward implant surfaces; (3) receptors on cell surfaces

interact with absorbed fibrinogen to bind between phagocytes and implant devices;

(4) surface Fg triggers the activation of adherent phagocytes; (5) phagocyte-mediated

fibrin is deposited on implants for localized formation of fibrin clot; (6) finally, fibrotic

tissue forms surrounding biomaterial implants.
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Among these six procedures, this thesis focuses on comprehensive modeling of

phagocyte transmigration. It is assumed that certain components such as mast cells,

histamine, histamine receptors, and P/E selectins, are involved in the event. The

event was observed by evaluating the concentration’ changing of polymorphonuclear

neutrophils (PMN) and monocytesy/macrophages (MΦ) which are the most abundant

type of phagocytes.

2.2 Hypothesis for Phagocyte Transmigration

Phagocyte transmigration is known as one of the major reactions of the immune

system. After implantation, it prompts to recruit phagocytes from capillary to the

peritoneal space where implants is located.

The previous study hypothesized that histamine might play an important role

in the recruitment of inflammatory cells to implants. To verify the idea, histamine

receptors, antagonist pyrilamine (an H1 receptor antagonist) and famotidine (an H2

receptor antagonist), were injected to implanted bio-materials in the mice. While

neither receptor antagonists significantly reduced the accumulation of inflammatory

cells on implant surfaces when given separately, combined treatment of H1 and H2

receptor antagonists dramatically decreased the number of phagocytes on implant

surfaces as well as the number of PMN and MΦ recruited de novo to the peritoneal

cavity. Therefore, it is legitimate to assume that histamine enhances phagocyte trans-

migration via both H1 and H2 receptors.

Mast cells are known for the majority source of histamine, although MΦ is

also reported to produce and release histamine. There are a large amount of mast

cells in the peritoneal space, and mast cells have the largest amount of histamine.

Figure 2.2 [4] describes the degranulation in mast cells, which is the cellular process

that mast cells release histamine. This hypothesis that mast cells influence histamine
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Figure 2.2: The Degranulation Process in A Mast Cell. 1 = Antigen; 2 = LgE; 3
= Fcε; 4 = Preformed Mediators (Histamine, Proteases, Chemokines, Heparin); 5 =
Granules; 6 - Mast Cell; 7 - Newly Formed Mediators [4]

releasing, was clarified by the experiment using mast cell-deficient mice [3]. For the

experiment, PET Disks were implanted into two groups of mice - normal mice and

mast cell-deficient mice. Residual histamine is granules in mast cells to be about to be

released as histamine. Residual histamine was measured to approximately estimate

the degree of histamine from the two groups of mice, because the half-life of histamine

is very short. In conclusion, the number of totally recruited phagocytes surrounding

implants was significantly decreased for mast cells deficient mice comparing to normal

mice.

It is reported that histamine augments the expression of P and E selectins [3],

which are important cause of phagocytes’ rolling and adhesion on endothelial cells.

To verify the hypothesis that expression of P and E selectins might facilitate the

transmigration of phagocyte through the endothelial barrier, experiments using P

selectin-deficient mice, E selectin-deficient mice, and both P and E selectins-deficient
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Figure 2.3: Flowchart of Phagocyte Transmigration [6]

mice were carried out [5]. As a result, significant reduction of phagocyte recruitment

and adhesion were observed on P/E double knock out mice.

For these hypotheses and experiments, it is believed that components of the

system - mast cells, histamine, histamine receptors, and P/E selectins - are involved

in the process of phagocyte transmigration with their actions, as shown in Figure 2.3.

Under the current knowledge, computational modeling was attempted for Phago-

cyte Transmigration by Xue et al [6], [7]. Xue approached modeling of the system

with the concept of a dynamic system and control theory. However, although the

computational modeling represents the quantitative evolution of the system’s compo-

nents appropriately and predicts the future degrees, some biological background for

residual histamine part were overlooked and the method of parameter estimation for

exact simulation was not shown. Therefore, this thesis focuses on modeling the system

with mathematical interpretation of biological behaviors under deeper-understanding

of the biologic phenomenon and suggests a new algorithm to estimate parameters of

the modeling equations for the fittest modeling to real experiment data.



CHAPTER 3

COMPUTATIONAL MODELING

3.1 Computational Modeling

In the previous Chapter, biologic hypotheses of phagocyte transmigration were

built. In summery, the consecutive events are taken place in phagocyte transmi-

gration in the order as: (1) mast cells somehow get stimulated and become active

immediately after implantation; (2) activated mast cells release histamine; (3) his-

tamine behavior is stimulated by combining with histamine receptors; (4) histamine

receptors exert capillary vessel to increase its permeability for phagocyte to transmi-

grate into peritoneal space; (5) P and E selectins prompted by histamine stimulate

rolling and adhesion of phagocyte on endothelial cells of capillary; (6) when reaching

a certain level of capillary permeability, phagocytes start transmigration into peri-

toneal space, as shown as Figure 3.1. In this section, the mathematical equations are

derived from the biologic hypotheses in order to simulate the system and to predict

the degree of the components involved in phagocyte transmigration.

3.1.1 Phagocyte Transmigration as a Dynamic System

In control theory, systems consist of a finite number of variables, x1, . . . , xn,

called the “state”. The mathematical form for a non-linear system is given by a

differential equation system of the type:

ẋ = f(t,x,u), (3.1)

y = h(t,x,u), (3.2)

8
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Figure 3.1: System Organization for Phagocyte Transmigration

where x is the state vector of dimension n, f and h are the functions of the state

and control variables, u is the input variable of dimension m, y is the output vector

of dimension p. The system requires the assumption - the initial condition is known

so that differential equations propagate the evolution of the system with the initial

variables.

3.1.1.1 Residual Histamine

As mentioned in the previous chapter, residual histamine measured to approx-

imately estimate histamine due to the difficulty of direct measurement of histamine.

However, residual histamine is immature granules in mast cells, and residual his-

tamine might strongly affect histamine releasing. Therefore, residual histamine was

considered as a major component instead of mast cells.
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Figure 3.2: Experiment Data for Residual Histamine

According to the experiment data shown in Figure 3.2, it is shown that releasing

of residual histamine may have a regular pattern. Xue [6] designed a model using

damped harmonic oscillator:

C̈hmr(t) + qĊhmr(t) + ω2(t)Chmr(t) = 0, (3.3)

where Chmr is released histamine, ω(t) indicates the oscillator frequency, and q is the

damped parameter.

However, the approach to this modeling does not seem to be based on biologic

knowledge. In biological sense, the phenomenon that residual histamine decreases up

to the first two hours can be described as residual histamine’s degranulation from

mast cells for histamine releasing. In addition, another legitimate assumption that

the number of new mast cells is dramatically increased by some unknown external



11

source after two hours may be persuasive. In the reason, the external source was

modeled by a damped harmonic oscillator,

Üxrmc(t) + 2βU̇xrmc(t) + ω2
0(t)Uxrmc(t) = 0, (3.4)

where Uxrmc is the function of the external input source to release new mast cells, β

is a non-negative constant for resistance of friction and mass. When β < w0, it is

called under damped oscillation. The solution is [8]

Uxrmc(t) = exp(−βt)(x0 cos w1t + βw0+v0

w1
sin w1t), (3.5)

w1 =
√

w2
0 − β2,

Here, we assume x0 = 0, βw0+v0

w1
= A (a constant for simple), and shift the sine

function as much as π
2

to match with the experimental result. In addition, because

the function must be positive, it is lifted up as much as A to make itself always

positive.

Uxrmc(t) = A + A exp(−βt) cos(
√

1− β2ω0t) (3.6)

Moreover, in order to fit with the graph shape of residual histamine more exactly,

constant A and w0 were transformed to negative exponential function and variables

t was changed to (t− t1). The final form is

Uxrmc(t) = A(t) + A(t) exp(−β(t− t1)) cos(
√

1− β2ω0(t)(t− t1)), (3.7)

A(t) = ke0 exp(−kk1(t− t1)), (3.8)

ω0(t) = kw0 exp(−kk2(t− t1)), (3.9)
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where ke0 is the initial concentration of the eternal source, kk1 is the self contraction

of the external source, kw0 is the initial value of oscillation frequency, kk2 is the

contraction rate of oscillation frequency, t1 is the starting point that the external

source is released.

Basically, most biological components have a half-life cycle. In other words,

it can model the system considering propagation and self regulation as conflicting

contexts. In this sense, residual histamine can be modeled by the following equation.

Ċrh(t) = −krhchCrh(t) + Uxrmc(t) (3.10)

where Crh(t) is the concentration function of residual histamine, krhch is the rate

that residual histamine decayed, Uxrmc(t) is the input function defined above. The

reason why propagation for residual histamine is not considered is only new mast cells

determine the concentration of residual histamine. Uxrmc(t) represents the external

source that prompts mast cells’ releasing.

3.1.1.2 Histamine

The concentration of histamine is increased as much as residual histamine’s

decreasing.

Ċh(t) = krhchCrh(t)Imc(t)− khsCh(t) (3.11)

where Ch(t) is the concentration function of histamine, krhch is the rate that histamine

released from residual histamine given from residual histamine equation (3.10), khs

is the rate that histamine regulates itself, Imc(t) is an input parameter indicating

block/non-block mast cells. The first term on the right hand side of Equation (3.11)

represents the increasing of histamine released from mast cells. Imc(t) indicates the
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concentration level of mast cells for knock-out experiment using mast cell deficient

mice, where 0 ≤ Imc(t) ≤ 1. The second term on the right hand side of Equation

(3.11) represents the decay of histamine itself.

3.1.1.3 Histamine Receptor

Histamine receptors enhance the permeability of the endothelial cell barrier of

capillary for phagocyte to transmigrate into the peritoneal space. Histamine exerts

its action only if combined with histamine receptors. The action is determined by

histamine receptors - H1 histamine receptor or H2 histamine receptor. Therefore, the

concentration of meaningful histamine receptors can be determined by the degree of

histamine.

Ċhr(t) =
khchrtCh(t)

khchrb + Ch(t)
− khrsChr(t) (3.12)

where Chr(t) is the concentration function of histamine receptors, khchrt and khchrb are

the rate bounds that histamine receptors are combined by histamine, khrs is the rate

that histamine receptors regulate themselves. In the same way as histamine model-

ing, the first term on the right hand side represents increasing histamine receptors

combined with histamine while the second term shows the decay rate of histamine

receptors. However, it adopted a hyperbolic form for the first term unlike Equa-

tion 3.11. It sets a maximally increasable bound on change of histamine receptors

because it would not increase unlimitedly.

3.1.1.4 Selectins

P and E selectins play an important role in phagocyte’s rolling and adhesion on

endothelial cells of capillary while histamine receptors prompt to increase permeability

of capillary. As same as histamine receptors, P and E selectins are stimulated by
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histamine. In other words, the concentration of histamine determines the quantity of

P and E selections.

Ċs(t) =
khcstCh(t)

khcsb + Ch(t)
− kssCs(t), (3.13)

where Cs(t) is the concentration function of Selectins, khcsb and khcst are the rate

bounds that Selectins are released by histamine for hyperbolic form, kss is the rate

that Selectins regulate themselves

3.1.1.5 Phagocytes

PMN and MΦ are the most common phagocytes. The total recruited PMN and

MΦ represent the concentration of transmigrated phagocyte into peritoneal space

and surrounding implants. For modeling of PMN and MΦ, we consider capillary

permeability for PMN and MΦ that represent the transmigration rate of phagocyte.

Ċpmnp(t) =
kpmniptChr(t)Cs(t)Ipmns(t)Ipmnhr(t)

kpmnipb + Chr(t)Cs(t)Ipmns(t)Ipmnhr(t)
− kpmnpsCpmnp(t) (3.14)

where Cpmnp(t) is the capillary permeability function for PMN to move into peri-

tonea, kpmnipb and kpmnipt are the rate bounds for histamine receptors and Selectins

to increase permeability for PMN, Chr(t) is the concentration function of histamine re-

ceptors, Cs(t) is the concentration function of Selectins, kpmnps is the contraction rate

of capillary permeability, Ipmnhr(t) is the input indicating block/non-block histamine

receptors, Ipmns(t) is the input indicating block/non-block Selectins. Similarly, the

permeability function for MΦ can be modeled as,

Ċmpp(t) =
kmpiptChr(t)CsImps(t)Imphr(t)

kmpipb + Chr(t)CsImps(t)Imphr(t)
− kmppsCmpp(t), (3.15)
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where Cmpp(t) is the capillary permeability function for MΦ to move into peritonea,

kmpipb and kmpipt are the rate for histamine receptors and Selectins to increase per-

meability for MΦ, kmpps is the contraction rate of capillary permeability. Now we can

model the recruited PMN as,

Ċpmn(t) = Cpmnp(t)− kpmnsCpmn(t), (3.16)

where Cpmn(t) is the concentration function of PMN, Cpmnp is the concentration of

permeability for PMN, kpmns is the rate that PMN self contraction. Now we can

model the recruited MΦ as,

Ċmp(t) = Cmpp(t)− kmpsCmp(t), (3.17)

where Cmp(t) is the concentration function of MΦ, Cmpp is the concentration of per-

meability for MΦ, kmps is the rate that MΦ self contraction.

3.1.2 Discrete Equations

Differential equations are commonly used as mathematical modeling method to

represent dynamic evolution of biological propagation. However, differential equations

is difficult to compute accurate simulation and apply algorithms. Therefore, the most

popular way is to convert differential equations to discrete equations of the type:

xn+1 = f(xn, xn−1, . . .), x0 = a0 (3.18)

A discrete equation needs an initial value for the first state, and it iterates computing

next states recursively depending on previous state. Basically, the differential equa-
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tion form can be represented in discrete-time with constant sampling interval 4t by

[9]

ẏ = ay + bu(t), (3.19)

yk+1 = Φyk + Γuk, (3.20)

where the integer constant k is the sample index, and

Φ = ea4t, (3.21)

Γ =

∫ 4t

0

beatdt =
b

a
(ea4t − 1). (3.22)

In this way, mathematical differential equations for the consecutive events dur-

ing transmigration can be transformed to the following equations. For residual his-

tamine,

Crh(k+1) = e−krhch4tCrh(k) −
1

krhch

(e−krhch4t − 1)Uxrmc(k). (3.23)

For histamine,

Ch(k+1) = e−khs4tCh(k) −
1

khs

(e−khs4t − 1)krhchCrh(k)Imc(t). (3.24)

For histamine receptors,

Chr(k+1) = e−krhs4tChr(k) −
1

krhs

(e−krhs4t − 1)
khchrtCh(k)

khchrb + Ch(k)

. (3.25)

For P/E selectins,

Cs(k+1) = e−kss4tCs(k) −
1

kss

(e−kss4t − 1)
khcstCh(k)

khcsb + Ch(k)

. (3.26)
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For permeability of PMN,

Cpmnp(k+1) = e−kpmnps4tCpmnp(k)−
1

kpmnps

(e−kpmnps4t−1)
kpmniptCh(k)Cs(k)Ipmns(t)Ipmnhr(t)

kpmnipb + Ch(k)Cs(k)Ipmns(t)Ipmnhr(t)
.

(3.27)

For PMN

Cpmn(k+1) = e−kpmns4tCpmn(k) −
1

kpmns

(e−kpmns4t − 1)Cpmnp(k). (3.28)

For permeability of MΦ

Cmpp(k+1) = e−kmpps4tCmpp(k)−
1

kmpps

(e−kmpps4t−1)
kmpiptCh(k)Cs(k)Imps(t)Imphr(t)

kmpipb + Ch(k)Cs(k)Imps(t)Imphr(t)
.

(3.29)

For MΦ

Cmp(k+1) = e−kmps4tCmp(k) −
1

kmps

(e−kmps4t − 1)Cmpp(k). (3.30)

The initial value of Equation (3.23) was set by the mean of the variables of

observation data set at time 0, and initial values for other Equations (3.24), (3.25),

(3.26), (3.27), (3.28), (3.29), (3.30) were set as 0 for simplification.



CHAPTER 4

PARAMETER ESTIMATION

4.1 Parameter Estimation for The Reverse Problems

In the previous chapter, we introduced computational modeling of biological

components involved in phagocyte transmigration. As can be seen, a dynamic sys-

tem often contain numerous parameters whose values indicate characteristics of the

system. Thus, it has been believed that estimating parameters of the system is essen-

tial to discover component’s behavior in the system and a successful computational

modeling. However, they are often very difficult to determine.

Generally, parameter estimation is conducted by approximately minimizing the

sum of errors between observation data set and predicted values by mathematical

modeling equations under the assumption that the modeling represents the system

appropriately. The parameters calculated by minimizing of the errors may represent

the nature properties of the system’s components best. It is called as Reverse Problem

since it extracts the true model from the observation data set.

A least squares method is the standard approximate solution for reverse prob-

lems using minimizing the sum of squares of the errors between the observation data

set and estimated variables of the model function. A data set consists of n points (ti,

ỹi), i = 1, . . . , n, where n is the number of data, ti is an ith variable and ỹi is the

observation. The unconstrained problems can be defined by the notation of fitting

18
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a model to n pieces of observation using p parameters, given R:<p → <n, if R(x) is

continuously differentiable. [10]

min F (x) = R(x)>R(x) =
n∑

i=1

ri
2 (4.1)

R(x) is a residual function between model function’s variables and the data set by

observation, and

R(x) = ỹ − f(t,p), (4.2)

ri = ỹi − f(ti,p) (4.3)

where ỹi is the observation, f(ti, p) is the model function that has m number of

parameters (i.e. p) corresponding to ti. Here, the goal is to find optimal p, subject to

minimization of F(x) function. Notice the first differential function of R(x) is defined

as J(x) = R′(x) = (∂jri(x)), the gradient of F (x) is

∇F (x) = J(x)>R(x), (4.4)

4.2 Non-Linear Least Squares Algorithms

In this section, some popular algorithms for non-linear least squares and their

definitions will be introduced before proposing a new algorithm, Discrete Selection

Levenberg-Marquardt algorithm.

Solutions to least squares problems fall into two types - linear least squares

solutions and non-linear least squares solutions. Unlike linear least square problems,

most of non-linear least squares solutions used to refine processing iteratively with
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the initial parameter as Equation (4.5) because there is no closed-form expression for

the best-fitting parameters for non-linear least squares problems.

xk+1 = xk + ∆x (4.5)

where k is an iteration number and ∆x is the increment of x for each iteration.

Equation (4.5) describes how to update its optimal approximation of parameters for

each iteration. Algorithm 1 shows a general framework of non-linear least squares

solutions [11].

Algorithm 1 General Framework of Non-Linear Least Squares Solutions

1: k ← 0
2: repeat
3: Find a descent direction h
4: xk+1 ← xk + αh
5: k ← k + 1
6: until Stop

Most iterative non-linear least squares solutions follow the framework shown in

Algorithm 1. Only the difference of the approaches is the definition of α and h, which

are the step size and the increment of x respectively, for line 4.

In 1669, Isaac Newton proposed Newton’s Method [12] to find a minimum or

maximum of function, f(x), using the concept that the derivative of the function is

zero at its minimum or maximum.

xk+1 = xk − f ′(xk)

f ′′(xk)
(4.6)
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where f(x) is a twice-differentiable function and it begins with initial guess x0 which

should be close enough to x∗. The form of Equation (4.6) is derived from the first

derivative of the second order Taylor expansion of f(x),

f(x + ∆x) ≈ f(x) + f ′(x)∆x +
1

2
f ′′(x)∆x2, (4.7)

∂f(x + ∆x)

∂∆x
= f ′(x) + f ′′(x)∆x = 0 (4.8)

For the matrix space, it can be rewritten by

xk+1 = xk − [Hf(xk)]
−1∆f(xk) (4.9)

where H is Hessian matrix which is the square matrix of second-order partial deriva-

tives of the function. As a result, Newton’s method can converge quickly if the initial

guess x0 is close to x∗. However, it can, unfortunately, easily go to the wrong direction

if initial guess x0 is far from x∗. Another problem is that it is sometimes difficult to

calculate Hessian matrix.

The steepest gradient method is a first-order optimization algorithm using gra-

dient descent to find a local minimum or maximum. In Equation (4.5), the steepest

gradient method defines

xk+1 = xk − αF ′(xk), (4.10)

where α is fixed constant computed by line search. It finds an optimum quickly even

though the initial guess is far from the optimum and the system size is very large.

However, as it goes close to optimum, it can be infeasible since the step size α is fixed

once.
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Gauss-Newton algorithm remedies the shortcomings of both Newton method

and the steepest gradient method. While Newton Method requires the second deriva-

tives, Gauss-Newton algorithm doesn’t. The second derivatives is defined by

∇2f(x) = J(x)>J(x) +
n∑

i=1

ri(x)∇2ri(x). (4.11)

Gauss-Newton algorithm approximates the second derivatives as substituting it with

square of the first derivative - J(x)>J(x) which is the first term of (4.11) and ignor-

ing the residual part of (4.11), since the residuals do not strengthen the nonlinearity.

Therefore, J(x)>J(x) can be a good Hessian approximation. For this reason, Equa-

tion (4.6) can be re-written by substituting the second derivatives,

(JR(x)>JR(x))4x = −JR(x)>R(x) (4.12)

where J(x)>J(x) is symmetric and positive semi-definite. According to (4.2), (4.12)

can be transformed as

(Jf (x)>Jf (x))4x = Jf (x)>R(x) (4.13)

As a result, Gauss-Newton algorithm seeks to find an optimal minimum updating

the gradient of x with the form of (4.13) for each iteration. Gauss-Newton method

has an advantage that it does not need the second derivatives, and it has quadratic

final convergence if x close to x∗. Generally, if f has small curve, it is expected to

be super convergence. However, it may not have a good performance if curve of f ′′

varies slowly. That is because the second term of (4.11), which is ignored, strongly

affects the function’s non-linearity.
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To improve limitations of of the steepest gradient method, Newton method,

and Gauss-Newton method, Levenberg-Marquardt algorithm, which is currently the

most popular method, is proposed by Levenberg [13] and Marquardt [14]. Levenberg-

Marquardt algorithm[11] defines (4.13) of Gauss-Newton method as

(Jf (x)>Jf (x) + µI)4x = Jf (x)>R(x) (4.14)

where I is an identity matrix, µ is a positive scalar called Marquardt damping parameter.

µI represents the second term of (4.11). Interestingly, the algorithm becomes Gauss-

Newton method if µ is small, while it behaves like a steepest descent method when

µ is large. In other words, if x is close to the solution, µ becomes small; and µ will

be large when x is far from the solution. If µ is zero, it will be exactly the Gauss-

Newton method. Hence, Levenberg-Marquardt algorithm is an adaptive algorithm to

retain strength of the steepest gradient method, Newton method, and Gauss-Newton

Method.

However, although Levenberg-Marquardt algorithm is robust to find an optimal

minimum, it has a limitation of local optimization. In other words, it may fail to find

the global minimum if it starts with initial x belongs to other local curves. In reality,

local optimization is often not suitable to solve the non-linear problems in many cases

due to non-convexity.

4.3 Discrete Selection Levenberg-Marqurdt

4.3.1 Introduction

Discrete Selection Levenberg-Marqurdt (DSLM) is motivated by the following

considerations. Levenberg-Marquardt method converges quickly to the optimum so-

lution. However, it tends to fall into the local optimum space that is the closest to
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the initial guess, x0, not the global optimum. Figure 4.1 describes how Levenberg-

Marquardt algorithm converges with each different initial x0. Hence, if it is possible

to discretize the space to cover possibly every local curves with number N, Levenberg-

Marquardt algorithm can be extended to a global algorithm searching local curves

belong to the discrete space.

Typically, naive global optimizations are NP-hard problems because of dimen-

sion curse. Commonly, computational models may have scores of parameters. Hence,

most of global optimizations such as Genetic algorithm adopt heuristic approach in-

stead of a naive approach. DSLM seeks to search the global optima for each x dimen-

sion iteratively instead of comprehensive x dimensions which may lead unforeseeable

computational cost. Its concept reduces the searching spaces to the linear.
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Figure 4.2: Flow of Discrete Selection Levenberg-Marquardt Algorithm

4.3.2 Selection

Like other non-linear least squares algorithms, DSLM starts with initial x0 for

iterative computing. Instead of seeking to converging to the local optima, DSLM at-

tempts to vary the initial guesses within the dimension of each parameter fixing other

parameters. Denote Pi is a finite vector to represent the space of the ith parameter.

While the global optimizations search the comprehensive spaces whose complexity is

P1×P2×· · ·×Pn, the complexity of searching space in DSLM becomes P1+P2+· · ·+Pn

because it searches iteratively each parameter space. Then, it checks the scores of

the function calculated with updated x by conducting Levenberg-Marquardt method

with them as the initial guesses. In Figure 4.2, the arrows show that it checks the

scores of the function varying y dimension variables under the condition x dimension

fixed for the 2-dimension space. The score of the function is calculated by the result

that Levenberg-Marquardt algorithm converges to. Once it selects the optimal pa-
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ual Histamine Modeling

rameter that has the best function score in the dimension, the parameter is updated

to the new parameter that Levenberg-Marquardt method converges. Then, it seeks

to the next optimal parameters with fixed parameters previously chosen as the opti-

mum. It iterates the selection process until parameters are converges. For example,

Figure 4.3 depicts a score table of the discrete spaces(discretization will be explained

next section) while computing DSLM algorithm for residual histamine modeling. It

is computing the first parameter of x. The given initial parameter variable was

0.387468e-001. With 30 number of discrete spaces, it conducts Levenberg-Marquardt

method for each discrete point to find its each local optimum. The x points of Fig-

ure 4.3 show the scores of the function for each discrete space. In this example, the

parameter was updated to 3.975940e+000, which has the lowest score, while other

parameters were updated to new values subject to moving toward to local optimum.

Preciously, it may not optimal solution at the first iteration. However, it will be close

to the optimal solution after iteratively updating the optimums of each parameter.
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4.3.3 Discretization

Discretization of each parameter space is the key part to affect the performance

and computational cost for DSLM algorithm. Given N numbers of discrete spaces of

a parameter, the discrete space can be denoted as a vector, D = (D1, . . . , DN). It

is not necessary to seek to calculate the function score from all discrete spaces with,

because Levenberg-Marquardt method updates the initial x0
k to the new parameter,

xnew
k subject to converge toward to its local optimum. DSLM algorithm marks the

spaces between Dk and Dk
′

where x0
k and xnew

k belong to, respectively. It makes

reduction of the spaces to check. The dot lines of Figure 4.1 illustrate the discrete

spaces. For example, if Levenberg-Marquardt method converges to -2.2 starting from

initial guess parameter, -2.7, it would affect marking two spaces, D4 and D5 not to

visit them again at Figure 4.1. Unlike other similar algorithms using discretization,

DSLM’s discretization doesn’t affect accuracy of the solution but only for preventing

rechecking the space.

4.3.4 Algorithm

The following pseudo-codes, Algorithm 2, 3, and 4 briefly illustrate DSLM al-

gorithm. DSLM starts with randomly chosen initial parameters x0, which is a vector

consists of {x1, . . . ,xn} where n is the number of parameters. It iterates updating

x until x falls into converge or the number of iteration is bigger than a maximum

constant. DSLM ensures F (x
′
) ≤ F (x), where F (x) is the function score with x.

DSLM function, shown at Algorithm 3, is the key of the algorithm. It checks

the function scores of discrete spaces updating xi. N is a pre-defined constant which

may cover local curves of the function. 5 − 12 lines of Algorithm 3 illustrate the

optimum selection for each parameter and marking the discrete spaces. The reason

to check between F (x
′
i) and Fmin is to ensure if x

′
i is a selection as a better candidate.
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Algorithm 2 Main Iteration

Require: ε > 0
1: x ← rand()
2: while iteration ≤ maxIteration do
3: x

′
= DSLM(x)

4: if ‖(x′ − x)‖ < ε then
5: Break
6: end if
7: x ← x

′

8: iteration = iteration + 1
9: end while

It is to avoid falling wrong local minima. After selection of all parameters, it conducts

LM method to get its comprehensive local optimum.

Algorithm 3 DSLM Function

Require: N > 0
1: N ← Number of discretizing the space
2: for all i each of x do
3: Fmin = F (xi)
4: M ← Array(N)
5: while Not IsAllMarked(M) do
6: xi ← uniformly random variable among unmarked space of M
7: x

′
= LM(x)

8: Mark M between(xi, x
′
i)

9: if F (x
′
i) < Fmin then

10: x ← x
′

11: end if
12: end while
13: end for
14: x = LM(x)
15: return x

LM method is implemented as George, Sam and Ting proposed [15]. λ is a

damping parameter decided by τ and max(diag(H)) [16]. If λ À 0, it behaves like

the steepest descent direction method, and performs like Gauss-Newton method if
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Algorithm 4 LM Function

1: while iteration ≤ maxIteration do
2: H ← J(x)>J(x)
3: λ ← τ max(diag(H))
4: Solve (H + λdiag(H))4x = J(x)>F (x)
5: if F (x +4x) < F (x) then
6: x ← x +4x
7: τ ← τ/c1

8: iteration ← iteration + 1
9: else

10: τ ← τ × c2

11: end if
12: end while
13: return x

λ is zero. In 5-11 lines of Algorithm 4, it adjusts λ depends on the function score,

F (x +4x). If the result of the new parameter is better, it decreases λ to converge

quickly to the optimum. Otherwise, it adjusts λ to move slowly to the optimum for

smooth curves.

Another issue of the non-linear least squares problem is how to solve inverse as

shown at the line 4 of Algorithm 4 because it may cause a problem if it is singular

matrix or rank deficient.

4x = (H + λdiag(H))−1J(x)>F (x) (4.15)

In this thesis, Singular value decomposition(SVD) is used to solve inverse. Briefly,

the pseudo-inverse of a vector M (4.16) is calculated by (4.17).

M = UΣV ∗ (4.16)
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where U is a unitary matrix, Σ is diagonal matrix with non-negative real numbers,

V ∗ is a conjugate transpose of V , which is a unitary matrix.

M+ = V Σ+U∗ (4.17)

where Σ+ is the pseudo-inverse of Σ, U∗ is a conjugate transpose of U . SVD had

better performance compare to QR decomposition and Cholesky decomposition in

the experiment.

4.3.5 Derivative of Selection

In this section, we would suggest another approach for selection. In DSLM,

selection is computed by choosing the best among scores of the discrete spaces in

the selected parameter dimension. Denote Fxi
(x) is the score function of selected

parameter xi. If Fxi
in the selected parameter’s space is convex as following equation,

the algorithm can be more simple.

Fxi
(tx + (1− t)y) ≤ tFxi

(x) + (1− t)Fxi
(y) (4.18)

In this case, it doesn’t need to check all of discrete space. As shown following

Algorithm 5, the algorithm, first of all, seeks to check the function score for middle of

unmarked space. Then, with the comparison between xi and x
′
i, it marks a half side

of the entire unmarked space. It is supposed that F (x
′
i) is smaller than F (xi) by the

property of LM algorithm.
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Algorithm 5 Another Approach of DSLM Function

Require: N > 0
1: N ← Number of discretizing the space
2: for all i each of x do
3: Fmin = F (xi)
4: M ← Array(N)
5: while Not IsAllMarked(M) do
6: xi ← middle of unmarked M space.
7: x

′
= LM(x)

8: if xi > x
′
i then

9: Mark M between(begin of M, x
′
i)

10: else
11: Mark M between(x

′
i, end of M)

12: end if
13: if F (x

′
i) < Fmin then

14: x ← x
′

15: end if
16: end while
17: end for
18: x = LM(x)
19: return x



CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Preprocessing

Unfortunately, the experiment data of Tang et al [3] is sparse. Sparse obser-

vation data may cause inaccurate result of parameter estimation. Also it may have

measurement error. Therefore, it needs approaches to deal with a situation. In this

section, we provide a method to generate synthetic data to compensate the limitation

of available experiment data. The experiment data for this thesis is restricted to

estimate parameters of the system without bias. In addition, the data has numerous

outliers which cause inconsistent observation, due to small sample size. By generating

synthetic data, we can have not only supplementary data to provide more reasonable

result, but also consistent data with naturally removed outliers. To generate the syn-

thetic data, Iterative Weighted Mean algorithm is used to remove outliers and to get

more accurate mean.

5.1.1 Iterative Wighted Mean Algorithm

While arithmetic mean assumes same weight for each variable, Iterative Weighted

Mean method calculates the mean using adaptive weight:

µi =

∑n
i=1 wixi∑n
i=1 wi

, (5.1)

where wi is,

wi = e
− (yi−µi−1)2

ς2 (5.2)

32
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Here, normal distribution with previous mean, µi and variance, σ2, is used to deter-

mine the weight. It iterates until wi - wi−1 goes under a sufficiently small constant

ε because the mean will be changed due to the weight’s update. It is described in

Algorithm 6. The initial mean starts with arithmetic mean, but it updates to a

more precise mean considering weight. After getting the mean matrix, the synthetic

data is generated by normal distribution with the mean finally calculated by iterative

weighted mean and the variance of original data to mimic as much as possible the

original dispersion. Then, it linearly interpolates for every discrete time. As a result,

the synthetic data is generated naturally combining with the original data as shown

at Figure 5.1. As more synthetic data is generated, the condensability of the data,

which is close to the weighted mean calculated by iterative weighted mean method,

will be increasing. It causes naturally reducing outlier’s weight.

Algorithm 6 Pseudocode of Iterative Weighted Mean

1: error ← inf
2: M ←

∑
X

n

3: while error > ε do

4: wnew ← e
(X−M)2

σ2

5: error ← ∑
(wnew − wold)

2

6: wold ← wnew

7: M ←
∑

Xw∑
w

8: end while
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Table 5.1: DSLM Computation Results of Each Iteration for Residual Histamine.

Iteration F(x) with initial β F(x) with finally updated β
#1 637780.095482 130627.383797
#5 130627.383797 78321.652563
#10 78321.652563 66842.784659
#15 66842.784659 53507.824805
...

...
...

#103 39638.055401 35718.505982

5.2 Parameter Estimation for Residual Histamine

The parameter estimation for residual histamine - (3.7), (3.8), (3.9), and (3.10),

is computed by DSLM method implemented by MATLAB R2008a. Totally seven un-

known parameters - β, t1, ke0, kk1, kw0, kk2, krhch, are estimated, given 100 synthetic

data set. Figure 5.2 and Table 5.1 illustrate the processes that DSLM converges to

the optimums for each iteration. For each iteration, DSLM starts its computing with

initial parameters (Red lines), and it finally converges to the final optimums of the

iteration (Blue lines). Observation data set is depicted by its mean and standard de-

viation for convenient comparison between estimation and observation. In conclusion,

DSLM estimation converged quickly in the beginning of the iterations, as shown at

Figure 5.2. Then, it stopped after meeting the convergence criteria. Figure 5.3 shows

final result of the experiment after 103 iterations. Estimation for all parameters are

listed at Table 5.2.

5.3 Parameter Estimation for Phagocyte

For phagocyte simulation, 15 parameters - khs, khchrb, khchrt, khrs, khcsb, khcst,

kss, kpmnipb, kpmnipt, kpmnps, kmpipb, kmpipt, kmpps, kpmns, and kmps of Equation (3.11),

(3.12), (3.13), (3.14), (3.15), (3.16), and (3.17) are estimated by DSLM. The param-

eter krhch of Equation (3.11) is determined by the result of estimation for residual
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Table 5.2: Estimated Parameters for Residual Histamine

Parameter Description Estimation

t1 The starting point that external source is released 3.5000
ke0 The initial concentration of eternal source 11.2464
kk1 Self contraction of external source 0.1017
β The initial concentration of oscillation bound 0.0134
kw0 The initial value of oscillation frequency 1.4037
kk2 The contraction rate of oscillation frequency 0.0937
krhch Rate that Residual histamine decayed 0.3704

histamine. This dynamic system consists of consecutive seven equations mutually

affecting each other, and Figure 5.4 shows the observation data sets of PMN and

MΦ.

The results for each iterations of DSLM method are shown in Figure 5.5 and

Figure 5.6. As starting with random initial variables, it moved quietly fast to the

more optimized space. In conclusion, Figure 5.7 illustrates the final result of DSLM

computing after 60 iterations. However, it seems that the optimal estimated figure

does exactly not match the observation data set. This result of imperfect matching

may be caused by measurement error or undiscovered components that actually affect

the phenomenon.

The result of optimal estimation for parameter on phagocyte transmigration is

listed in Table 5.3. According to the result, we can verify the half life of histamine is

relatively short comparing to others as reported in current biological literature.

5.4 Validation

Although parameter estimation is conducted under the assumption that the

mathematic equations of the system represent a true model to cover all phenomenon

of the system. However, the biology system is too complicate to model precisely.
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Table 5.3: Estimated Optimal Parameters for Phagocyte

Parameter Description Estimation

khs Rate that histamine regulates itself 0.0002
khchrb rate that histamine receptors are released 0.9997
khchrt Upper bound rate that histamine receptors are released 0.0757
khrs Rate that histamine receptors regulate themselves 0.7232
khcsb rate that selectins are released 1.9997
khcst Upper bound rate that selectins are released 0.2668
kss Rate that selectins regulate themselves 0.1024
kpmnipb Increasing rate of permeability for PMN 0.2226
kpmnipt Increasing upper bound rate of permeability for PMN 2.0000
kpmnps Rate that permeability of capillary self contraction 0.1003
kmpipb Increasing rate of permeability for MΦ 0.0001
kmpipt Increasing upper bound rate of permeability for MΦ 1.0108
kmpps Rate that permeability of capillary self contraction 0.1961
kpmns Rate that PMN self contraction 0.0582
kmps Rate that MΦ self contraction 0.0307

Moreover, the exact parameters are not known literately in the biology domain and

there may be other unknown components play an important role in the system due

to its complexity. For these reasons, validation of DSLM algorithm is difficult for the

real system.

For accurate validation of DSLM algorithm, MCMC method is used. The op-

timal parameters are already estimated in the last section. Synthetic data set can be

constructed from the given model, which consists of model equations and estimated

parameters. Then, it can verify DSLM performance by matching between previously

estimated parameters and DSLM’s result with synthetic data.

From Table 5.2 and Table 5.3, optimal parameters are chosen for the true

system. Then, it generates synthetic data with certain errors determined by Normal

distribution. In this experiment, two data sets are generated by normal distribution
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Table 5.4: Result of DSLM Computation for Residual Histamine at The Variance is
0.01 or 0.1.

Parameter σ = 0.01 Error (| (True−Est)
True

|) σ = 0.1 Error (| (True−Est)
True

|)
t1 3.7600 0.0743 4.2115 0.2033
ke0 0.3699 0.0013 0.3693 0.0030
kk1 17.6195 0.5667 15.2499 0.3560
kβ 0.0340 0.6657 0.0555 0.4543
kw0 0.0107 0.2015 0.0199 0.4851
kk2 1.8803 0.3395 2.4857 0.7708
krhch 0.4381 3.6756 0.4979 4.3138

Table 5.5: Result of DSLM Computation for Phagocyte at The Variance is 0.01 or
0.1

Parameter σ = 0.01 Error (| (True−Estimate)
True

|) σ = 0.1 Error (| (True−Estimate)
True

|)
khs 1.9894 9946.0000 1.9984 9991.0000
khchrb 1.4708 0.4712 1.4980 0.4984
khchrt 0.0541 0.2853 0.1891 1.4974
khrs 0.0895 0.8762 0.0816 0.8871
khcsb 1.9685 0.0156 1.9979 0.0000
khcst 0.1608 0.3973 0.3852 0.4437
kss 0.0671 0.3447 0.0042 0.9589
kippmnb 0.0558 0.7493 0.3426 0.5390
kippmnt 0.9999 0.5000 1.0000 0.5000
kpspmn 0.0718 0.2841 0.0519 0.4825
kpmns 0.0627 0.0773 0.1055 0.8127

where means are from model equations and optimal parameters, and variance (σ) is

chosen as 0.01 or 0.1 as shown in Figure 5.8.

By DSLM method, the optimal parameters are calculated as the following re-

sults, shown in Table 5.4, Table 5.5, Figure 5.9, and Figure 5.10.

5.4.1 Rastrigin Function

Rastrigin function is a non-convex function for benchmark problems in testing

global optimization solution, which is a non-linear multi-modal function with several
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local minima. Rastrigin function is used to test DSLM’s performance and to verify

its expansion.

Rastrigin function is defined by

f(x) = 10n +
n∑

i=1

x2
i − 10 cos(2πxi), (5.3)

where n is the number of variables, −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n. A variety

of dimensions for the function are used for a more complex function to test DSLM

method. The global minima for Rastrigin function is known as x∗ = (0,. . . , 0), and

minimum score is 0. Rastrigin function with two dimensions is depicted at Figure 5.11.

Global minimal optimization for three numbers of dimensions - 2, 5, and 50 -

for Rastrigin function are computed. Figure 5.12(a) illustrates the paths that DSLM

takes to find the minimum. It found the approximate solution after only the first

iteration. For a five dimensional function, the solution of DSLM approach is very close

to the true solution of the function after only 3th iteration as shown at Figure 5.12(d)

and 5.12(e). For 50 dimensions, the computation time takes much longer than 5

dimension’s, but the performance was still quick and accurate. The true minimum

score for the function is 0 for any number of dimensions, and the result by DSLM

was 0.0000093, 0.00179665, and 0.0531253 for 2, 5, and 50 dimensional function,

respectively. Figure 5.12 shows the transition of parameters and the score for each

iteration at n is 2, 5, or 50.

5.4.2 Michalewics Function

Michalewics function is another multi-modal test function defined by

f(x) = −
n∑

i=1

sin(xi)(sin(
ix2

i

π
))2m (5.4)
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Figure 5.1: Generation of Synthetic Data. Green Dots Illustrate n Number of Data;
The Blue Error Bar Describes Mean and Standard Deviation for Each Discrete
Time.(a)original observation data for residual histamine; (b)add 10 synthetic data
sets; (c)add 100 synthetic data sets; (d)original observation data for PMN; (e)add 10
synthetic data sets; (f)add 100 synthetic data sets; (g)original observation data for
MΦ; (h)add 10 synthetic data sets; (i)add 100 synthetic data sets.

Table 5.6: Result of DSLM Computation for Rastrigin Function

Parameter Estimated(n=2) Estimated(n=5) x∗

x1 0.0000 -0.0003035 0.0000
x2 0.0002 0.0003219 0.0000
x3 - -0.0003534 0.0000
x4 - 0.0005166 0.0000
x5 - -0.0004815 0.0000
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Figure 5.2: Computation Results of Each Iteration for Residual Histamine. (a)the
first iteration; (b)the second iteration; (c)the third iteration; (d)the fourth iteration.

where 0 ≤ xi ≤ π, i = 1, 2, . . . , n. m is the “steepness” of the valleys. If m is very

large, the valley becomes too sharp to find the minimum. Here, m is set by 10.

Michalewics function (m = 10, k = 2, 5, 10) is used to test DSLM method.

As shown as Figure 5.14, the solution of DSLM is reasonably close to the solu-

tion. The true solution of function is known as -1.8013 at k = 2, -4.687658 at k = 5,

and -9.66015 at k = 10. The result by DSLM for 2, 5, 10 dimensional function was
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Figure 5.3: Final Result for Residual Histamine

−2 0 2 4 6 8 10 12 14 16 18
−20

0

20

40

60

80

100

120

140

160

Implantation time (hrs)

P
ol

ym
or

ph
on

uc
le

ar
 N

eu
tr

op
hi

ls

(a)

−2 0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

Implantation time (hrs)

M
on

oc
yt

es
y/

M
ac

ro
ph

ag
es

(b)

Figure 5.4: Observation Data Set for PMN and MΦ. (a)data set for PMN; (b)data
set for MΦ.
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Figure 5.5: DSLM Computation Results of Each Iteration for PMN. (a)the first
iteration; (b)the second iteration; (c)the third iteration; (d)the fourth iteration.

-1.801301, -4.687607, and -9.659933 respectively. Figure 5.14 and Table 5.7 show the

result in detail.

5.5 Mast Cell Deficiency

The experiment to observe the phenomenon of phagocyte transmigration when

mast cells are blocked, was conducted[3]. In this section, we will simulate how much

mast cell deficiency influences the whole mechanism of phagocyte transmigration. All
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Figure 5.6: DSLM Computation Results of Each Iteration for MΦ. (a)the first itera-
tion; (b)the second iteration; (c)the third iteration; (d)the fourth iteration.

Table 5.7: Result of DSLM Computation for Michalewics Function

Parameter Estimated(k = 2) Estimated(k = 5)
x1 2.2026602 -0.0003035
x2 1.5706679 0.0003219
x3 - -0.0003534
x4 - 0.0005166
x5 - -0.0004815
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Figure 5.7: The Final Results for PMN and MΦ. (a)final Result for PMN; (b)final
Result for MΦ.
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Figure 5.8: Synthetic Data Set of PMN and MΦ for Validation. (a)data set, σ = 0.01
for residual histamine; (b)data set, σ = 0.01 for PMN; (c)data set, σ = 0.01 for MΦ;
(d)data set, σ = 0.1 for residual histamine; (e)data set, σ = 0.1 for PMN; (f)data
set, σ = 0.1 for MΦ.
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Figure 5.9: Result of DSLM Method for Residual Histamine. (a)σ = 0.01; (b)σ = 0.1.
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Figure 5.10: Result of DSLM Method for Phagocyte. (a)σ = 0.01; (b)σ = 0.1.

Table 5.8: Total Recruited PMN on Mast Cell Deficiency

#1 #2 #3 #4 #5
Control 2828.171091 2539.085546 2424.041298 3905.60472 6463.864307
Deficient 1289.085546 1693.215339 1433.628319 1865.781711 942.4778761
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Figure 5.11: Rastrigin function. x∗ = (0, . . . , 0), f(x∗) = 0

parameters of the system are known or optimally estimated under the control condi-

tion, i.e, parameters are adopted from Table 5.2 and Table 5.3. Under the assumption

that estimated parameters represent the true system appropriately no matter what

any exceptional conditions, the coefficient constant is computed. Table 5.8 shows to-

tally accumulated PMN of mast cell deficient mice after 16 hours. Here, it is calibrated

to be proportional to the ratio of PMN simulated for the 16 hour by computation.

Mast cell deficiency is represented Imc in Equation (3.11), where Imc is 1 for control,

and 0 ≤ Imc ≤ 1 for Mast cell deficiency.

Imc =





1 Control;

Imc 0 ≤ Imc ≤ 1 for Mast Cell deficiency.
(5.5)

Since (3.11) which is convex for Imc, the parameter estimation is computed by general

Levenberg-Marquardt Algorithm. The results for mast cell deficiency are described

in Figure 5.15 and Figure 5.16, and optimal Imc was computed as 0.0219. Here,
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Figure 5.12: Result for A Variety of Dimensional Rastrigin Function (a)the paths
that DSLM takes to find the minimum for 2 dimensional function; (b)parameters at
k = 2; (c)scores at k = 2, 0.0000093; (d)parameters at k = 5; (e)scores at k = 5,
0.00179665; (f)parameters at k = 50; (g)scores at k = 50, 0.0531253.
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Figure 5.13: Michalewics Function. f(x∗) = −1.8013 at k = 2, f(x∗) = −4.687658 at
k = 5, f(x∗) = −9.66015 at k = 10.

the result for MΦ seems unreasonable matching between prediction and observation

data. That is because the parameters regarding to MΦ are negligibly low to affect

the deficiency of Mast Cells.

5.6 P/E selectins Deficiency

For modeling the system of P/E selectins deficiency used in Equations (3.14)

and (3.15), Ipmns and Imps are considered as follwoing

Ipmns, Imps =





1 Control;

IP 0 ≤ IP ≤ 1 for P selectin deficiency.

IP/E 0 ≤ IP/E ≤ 1 for P/E selectin deficiency.

(5.6)

However, only MΦ experiment data is used in this section because the number of

reliable PMN measurement is very low and is ignored due to a severe inflammation.

Overwhelming macrophages dominate the inflamed tissue at the point. Tables 5.9
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Figure 5.14: Result for Michalewics Function. (a)the paths that DSLM takes to find
the minimum for 2 dimensional function; (b)parameters at k = 2; (c)scores at k = 2,
-1.8013; (d)parameters at k = 5; (e)scores at k = 5, -4.6876; (f)parameters at k = 10;
(g)scores at k = 10, -9.6599.
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Figure 5.15: Simulation Result of PMN Totally Recruited to Peritoneum Including
on Intraperitoneal Implant Surface and Peritoneal Cavity in Mast Cell Deficient Mice
after Intraperitoneal Implantation for 16 Hours. Dots at 16 Hour are Real Experiment
Data.
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Figure 5.16: Simulation Result of MΦ Totally Recruited to Peritoneum Including on
Intraperitoneal Implant Surface and Peritoneal Cavity in Mast Cell Deficient Mice
after Intraperitoneal Implantation for 16 Hours. Dots at 16 Hour are Real Experiment
Data.
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Table 5.9: Total Recruited MΦ on P selectin Deficiency

#1 #2 #3 #4 #5
Control 179.2548 170.3769 183.8739 151.4317 182.9275
P Deficient 206.2488 175.9381 273.6207 140.5395 111.6484

Table 5.10: Total Recruited MΦ on P/E selectins Deficiency

#1 #2 #3 #4 #5
Control 204.8366 110.9817 94.8825 195.2455 164.7598
P/E Deficient 67.4796 59.6012 41.1043 40.4192 35.6237

and 5.10 show totally accumulated MΦ of P selectin or P/E selectins deficient mice

after 16 hours. For this reason, PMN experiment data for P/E selectins is ignored.

The computation results of Imps for P and P/E selectins deficiency are 1.1122, 0.0008,

respectively, and the result is illustrated in Figure 5.17.
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Figure 5.17: Simulation Result of MΦ Totally Recruited on Both Intraperitoneal
Implants and Subcutaneous Implants in P and P/E selectins Deficient Mice after
Intraperitoneal Implantation for 16 Hours. Dots at 16 Hour are Real Experiment
Data.

5.7 H1/H2 Histamine Receptors Deficiency

In Equations (3.14) and (3.15), Ipmnhr and Imphr represent inputs of indicating

blocking out H1, H2, and H1/H2 Histamine Receptors.

Ipmnhr, Imphr =





1 Control

Ih1 H1 histamine receptor deficiency

Ih2 H2 histamine receptor deficiency

Ih1h2 H1/H2 histamine receptor deficiency

(5.7)

Table 5.11 and Table 5.12 list the observation data set. Same as the estimation

for other deficiencies, it is also computed by general Levenberg-Marquardth method.

Ipmnhr is computed as 0.5447, 0.3865, 0.2116 for H1 histamine receptor, H2 histamine

receptor, H1/H2 histamine receptors deficiency, respectively, and Imphr is estimated

as 0.0019, 0.0028, and 0.0012, respectively. The results are depicted in Figure 5.18.
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Table 5.11: Total Recruited PMN on H1/H2 Histamine Receptors Deficiency

#1 #2 #3 #4 #5 #6
Control 96.037 111.50 65.34 102.13 127.41 97.56
H1 Deficient 35.18 68.73 47.78 60.50 53.66 53.99
H2 Deficient 32.76 54.60 41.92 11.96 59.69 51.66
H1/H2 Deficient 48.53 25.84 23.53 46.55 66.45 56.46

Table 5.12: Total Recruited MΦ on H1/H2 Histamine Receptors Deficiency

#1 #2 #3 #4 #5 #6
Control 97.84 116.44 72.76 77.92 135.04 99.97
H1 Deficient 57.93 85.22 58.18 63.42 95.79 80.95
H2 Deficient 76.70 61.29 68.53 109.06 51.29 73.25
H1/H2 Deficient 64.16 63.50 70.05 59.81 72.11 50.31
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Figure 5.18: Simulation Result of PMN and MΦ Totally Recruited on Both Intraperi-
toneal Implants and Subcutaneous Implants in Histamine Receptors(H1 and H2) Defi-
cient Mice after Intraperitoneal Implantation for 16 Hours. Dots at 16 Hour are Real
Experiment Data. (a)histamine receptor deficiency Result for PMN; (b)histamine
receptor deficiency Result for MΦ.
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5.8 Simulation and Prediction

Until now, all parameters for the phagocyte transmigration are estimated. Ta-

bles 5.2, 5.3 list the parameter values optimally estimated by DSLM. In this section,

the prediction of the system using the complete system model is conducted. For the

existing data set, there are only data up to 16 hours, and each data sets was carried

out independently from separate experiment such as residual histamine, PMN, MΦ,

mast cell deficiency, H1/H2 histamine receptors deficiency, and P/E selectins defi-

ciency. By using the computational model, the simulation of experiments’ conditions

can be possible, even after 16 hours.

Figures 5.19, 5.20, and 5.21 show the predicted dynamic illustration of recruited

residual histamine, PMN, and MΦ up to 36 hours, respectively.

For deficiency simulation, simulation for blocking of mast cells, H1/H2 his-

tamine receptors, and P/E selectins were conducted. Prediction of recruited PMN

while blocking mast cells between 0 and 25 hours is illustrated in Figure 5.22. In addi-

tion, H1/H2 histamine receptors are blocked after 25 hours, shown as in Figure 5.23.

For P/E selectins deficiency simulation, prediction of recruited MΦ for blocking P/E

selectins between 0 and 20 hours is shown in Figure 5.24.
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Figure 5.19: Prediction of Residual Histamine up to 36 Hours
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Figure 5.20: Prediction of PMN up to 36 Hours
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Figure 5.21: Prediction of MΦ up to 36 Hours
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Figure 5.22: Prediction of Recruited PMN (Mast Cell are Blocked Between 0 and 25
Hours).
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Figure 5.23: Prediction of Recruited PMN (Mast Cells are Blocked Between 0 and
25 Hours, and H1/H2 Histamine Receptors are Blocked after 25 Hours)
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Figure 5.24: Prediction of Recruited MΦ (P/E selectins are Blocked Between 0 and
20 Hours.)



CHAPTER 6

CONCLUSION

Phagocyte transmigration has been studied to tackle the problem of fibrotic

tissue formation surrounding the biomaterial implants, which causes implantation

failure. To reduce the failure, we modeled phagocyte transmigration using mathe-

matical equations, because in-depth understanding of the system and prediction can

control the following events in the implantation phenomenon. To complete the model-

ing, reverse engineering is conducted to estimate the parameters of the mathematical

modeling equations. For parameter estimation, several optimization methods, such as

Levenberg-Marquardt algorithm and Genetic algorithm, have been introduced. We

proposed a global heuristic optimization technique, DSLM which is designed to over-

come the limitations of existing algorithms; LM algorithm is not suitable for global

optimal problems and some heuristic global optimizations doesn’t guarantee conver-

gence. However, LM algorithm is the most popular and the strongest method to find

optimization solution in the local convex space and heuristic searching algorithms

provide solutions for global optimization. DSLM adopts both of strength, which are

optimal convergence of LM algorithm in the local convex spaces and global selection

strategy of Genetic Algorithm. In the experiments of Phagocyte Transmigration,

DSLM is performed to optimally estimate the parameters of the model equations.

With mathematical equations for system modeling and the estimated parameters by

DSLM, Phagocyte Transmigration is simulated. This simulation can be used to pre-

dict the future evolution of Phagocyte Transmigration when implantation, and it can

be applied for successful implant surgical procedures. Also DSLM can be applied as
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global optimization solutions. It is tested with Rastrigin Function and Michalewics

Function, which are popular problems, to verify its performance and generality of

use.
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