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ABSTRACT 

 

ERROR CONCEALMENT AND LOW BIT RATE CODING 

OF FACE SEQUENCES 

 

 

Publication No. ______ 

 

Xuejun Hu, PhD. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  K.R. Rao  

The emerging multimedia applications address the increasing demand for novel 

video coding systems to provide higher compression ratio while maintaining the high 

quality of the reconstruction. This research makes an effort under such context to 

investigate the application of principal component analysis (PCA) in the video coding 

area, especially for error concealment and very low bit rate face coding. 

PCA is a well known optimal linear scheme for dimension reduction in data 

analysis. The central idea of PCA is to reduce the dimensionality of a data set while 

retaining as much as possible the variation in the data set. Since PCA captures the 

statistical variations and global information efficiently, it is used in the proposed 



 v

research to build the model of the target object or range of interest (ROI), and thereby a 

new model based framework is constructed for very low bit rate face coding and error 

concealment.  

The research focuses on building an efficient and accurate PCA model for very 

low bit rate coding and effective error concealment. The main limitation of PCA is that 

it cannot model the data set with large variations efficiently. An adaptive update scheme 

is investigated in this research to enhance the accuracy and efficiency of the eigenspace 

model. Computational complexity reduction is another important consideration for real 

time operation. An incremental mode PCA with missing data for eigenspace updating is 

proposed. Its effect on the model based error concealment scheme over different 

quantization levels, loss patterns and loss rates is analyzed. A novel model based and 

waveform based hybrid coding system aimed at very low bit rate face coding is also 

presented. Model based coding provides great potential for bit rate savings while model 

failures and unknown objects can be handled by waveform based coding. The two 

coding modes are combined under a rate-distortion framework, where Lagrangian cost 

function is used to determine the most efficient prediction for each block. Simulations 

show that the system can achieve high compression ratios while maintaining the 

robustness and generality, which indicate its potential use for videophone application. 
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CHAPTER 1 

INTRODUCTION 

 

Video coding is one of the most important topics in multimedia processing and 

telecommunications [9]. Technology advances and application demands lead to the 

inevitable merging of telecommunications and computing areas. Under such 

circumstances, video engineering has become a digital discipline. Representing video 

material in digital formats requires huge amount of bits, which is very demanding for 

bandwidth and memory storage, and hence forms a huge challenge for most existing 

storage and transmission systems. Video compression allows making the most efficient 

use of available transmission or storage capacity and therefore is the absolute 

requirement for the growth and success of the low bandwidth transmission and storage 

of digital video signals. 

Besides achieving efficient compression, maintaining as high quality of the 

reconstructed video as possible is another goal of video coding. In the practical 

transmission of compressed video, bit errors may occur, which lead to objectionable 

visual distortion in the decoded video. In order to minimize the visual degradation at the 

decoder end, many error control techniques [64] have been developed. Some are 

exercised at the source encoder where redundancy is introduced into the bit stream to 

make the bit stream more resilient to potential errors, so that an error will not adversely 
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affect the decoder operation leading to unacceptable distortions in the reconstructed 

video. There are many ways to introduce redundancy into the bit stream.  Examples 

include inserting resynchronization markers and partitioning data into independent 

segments to isolate the errors, applying modified binary encoding methods such as 

reversible variable length coding (RVLC) and error resilient entropy coding (EREC) to 

make the bit stream more robust to transmission errors. Some error control mechanisms 

are exploited at the transport level. These methods are applied to coded video streams to 

detect, correct and if necessary, retransmit the damaged data. Examples include 

applying forward error correction (FEC) for bit errors dominated channel and automatic 

repeat request (ARQ) for non-real-time data transmission. There are other error control 

mechanisms [67] which are invoked at the decoder upon detection of errors to conceal 

the effect of errors. 

During the last a few decades, tremendous progress in the visual coding and 

communication field has been made. However, the emerging new multimedia 

applications continuously demand higher compression than those provided by the state 

of the art technologies. For example, wireless cellular video telephony must operate at 

very low bit rates which can only be achieved through large compression of data. 

Furthermore strong error control and concealment function must be included to retain 

the good quality of the reconstruction after the transmission of compressed video 

content  over the error prone  wireless channel. To extend multimedia content usage 

from high bandwidth networks to all types of networks, including those with low 

bandwidth and high error rates such as internet and wireless channel,  there is a need to 
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develop novel compression schemes and novel error control tools so as to  provide high 

compression ratios while maintaining the high quality of the reconstruction. 

Principal component analysis (PCA) is a well known optimal linear scheme for 

dimension reduction in data analysis.[1] The central idea of PCA is to reduce the 

dimensionality of a data set while retaining as much as possible of the variation in the 

data set. It has been proven to be an effective approach for pattern recognition, 

regression and time series prediction.[4][5][6] The focus of this thesis is the application 

of PCA in the video coding area, especially in low bit rate coding of face sequences and 

error concealment. The goal of video coding technology is to achieve efficient 

compression while maintain high quality reconstruction. Besides, real time operation is 

another requirement for video coding scheme. Hence, the application of PCA in video 

coding system is investigated to achieve high compression ratios, high quality and 

expected real time operation. 

1.1 Model based error concealment 

Various channel and network errors can cause damage or loss of video 

information during transmission or storage. The consequent distortion can be short time 

degradation or can completely ruin an image or video signal. Therefore it is necessary 

to apply error control to minimize the distortion so as to guarantee the reconstruction 

quality at the decoder end. There are many ways to perform error control. [64] The 

video encoder can play an important role by embedding a controlled amount of 

redundancy in the compressed bit stream to make the stream more resilient to errors. Or 

the channel coder can insert forward error correcting (FEC) or employ automatic 
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retransmission request (ARQ) to apply error control at transport level. This dissertation 

focuses on error concealment which is another error control mechanism performed at 

the decoding end. 

Error concealment is based on estimation and interpolation procedures that do 

not require additional information by the encoder. Compared with other error correcting 

techniques, such as FEC or ARQ, error concealment has the advantage of not requiring 

extra bandwidth and not introducing additional latency. This property makes it more 

suitable for real time applications with strict time constraint, such as video telephony 

and video conferencing. 

Error concealment belongs to the general problem of image recovery or 

restoration. However due to the characteristics of video coding, the resulting error 

patterns are very particular, and special measures are usually needed to handle such 

errors. Some prior knowledge about the video content must be used for rebuilding the 

lost information in all error concealment methods. Conventionally such a prior 

condition is built in a heuristic manner by assuming smoothness or continuity of the 

pixel values. In this dissertation, content-based models are investigated. These models 

are used as prior condition to perform model based error concealment. A content based 

model can capture the statistical variations of the content more effectively because it is 

created specifically for video content. A new adaptive model based algorithm is 

presented for error concealment application. In the proposed algorithm, a modified 

incremental PCA with missing data is investigated to update the eigenspace model 

during the video process leading to a more accurate and efficient eigenspace model. 
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Experimental results demonstrate that the proposed algorithm outperforms conventional 

intra frame error concealment and this improved performance is stable across different 

quantization levels, loss patterns and loss rates. 

1.2 Model based very low bit rate coding 

Future user requirements are anticipated to be dominated by video-driven 

applications, with demands for a very high degree of flexibility and extensibility.[9] 

Such demands will require robust and efficient very low bit-rate video coding 

approaches to support very high quality video. Current video processing technologies 

and international standards will not be able to cope with such requirements. They either 

require high bandwidth for high quality transmission, or perform transmission at low bit 

rates but with low image quality. The development and evolution of alternative video 

coding techniques and video processing systems are necessary. Model based coding 

[15] is one promising class of candidate methods. In these methods, a predefined model 

is known in advance at both encoding and decoding ends. Instead of transmitting the 

information of pixel values, only a few parameters of the model which are configured to 

resemble the object effectively are to be encoded and transmitted. Therefore high 

compression ratio can be achieved. In this thesis, a novel model based and waveform 

based hybrid coding system aimed at very low bit rate coding of face images in video 

sequences is presented. The PCA concept is adopted for model based coding, with 

modifications to cope with video compression. Model failures and unknown objects are 

handled by waveform based coding employing conventional prediction/transform 

block-based coding scheme.[9] The two coding modes are combined under rate-



 

 6

distortion framework, where a Lagrangian cost function is used to determine the most 

efficient prediction for each block. Simulations show that the system can achieve high 

compression ratios while maintaining the robustness and generality, which indicate its 

potential use for videophone application. 

1.3 Organization 

This dissertation will demonstrate how to apply PCA in the video coding area, 

especially in error concealment and very low bit rate coding. The dissertation is 

organized as follows. Chapter 2 provides the fundamental knowledge about PCA, video 

coding and error resilience. Adaptive model based error concealment is discussed in 

chapter 3. Chapter 4 illustrates the novel hybrid coding system which applies PCA 

combined with waveform coding to achieve very high compression while maintain 

robustness and generality. Finally chapter 5 concludes the thesis and gives suggestions 

for future research. 
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CHAPTER 2 

FUNDAMENTAL KNOWLEDGE 

 

2.1 Principle, computation and applications of PCA  

2.1.1 General information 

PCA [1] is an important statistical technique to identify patterns in data. 

Essentially PCA is a linear transformation that determines a new coordinate system for 

the data set such that the largest variance by any projection of the data set comes to lie 

along the first axis, the second largest variance lies along the second axis and so on. 

PCA has the property of being the optimal linear transformation which optimally 

minimizes reconstruction error under L2 norm. 

2.1.2 Description of PCA using the covariance method 

PCA is a well known optimal linear scheme for dimension reduction in data 

analysis. If an image is represented as a long vector, i.e., image is column concatenated 

into a vector, all images can be viewed as points in the entire high dimensional image 

space. In this image space, special objects such as face images occupy only a certain 

small region from other images. (Figure 2.1) Through PCA analysis, a set of directions 

in the image space along which the variance of the object cluster is largest can be found. 

These directions define a lower dimensional object space; therefore an object image can 

be described by a much shorter vector. 



 

 8

 

 

 

 

 

 

 

 

 

Figure 2.1 The image space and face space coordinate system 

 

The PCA process can be summarized as follows: Let XTr = [ 1x , 2x ,…, Mx ] be a 

training data set (of size N2xM), where ix  ( ),2,1 Mi L=  are vector representations of 

images (of size NxN) obtained by concatenating all the columns of the image†.  
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The empirical mean vector µx (of size N2x1) can be found as (2.1):  

 ∑
=

=
M

i
ix

M
x

1

1
µ  (2.1) 

†This is lexicographic column ordering of an image of size (NxN) 
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The covariance matrix XC  (of size N2xN2) can be expressed as (2.2): 

 XC  =E [ T
ii xxxx ))(( µµ −− ]  (2.2) 

Non-zero vectors iu  (of size N2x1) such that  

XC iu = iλ iu   i=1,…,M 

are the eigenvectors of the covariance matrix while iλ  are the corresponding 

eigenvalues. These eigenvectors can be considered as a set of features which together 

characterize the variation among object images such as face images. Each image 

location contributes more or less to each eigenvector and therefore these eigenvectors 

are object-like in appearance. In the computer vision problem of human face 

recognition, these face-like eigenvectors are called as “eigenfaces”.  Figure 2.2 shows a 

small sample of training faces [47] and some of the eigenfaces. 

Let U= [ 1u , 2u , … , ku ] be a matrix (of size N2xk) built with the eigenvectors 

(each of size  N2x1) that correspond to the k largest eigenvalues. The subspace spanned 

by the eigenvectors of U is called the principal subspace. Using the principal subspace, 

an image vector x (of size N2x1) can be linearly transformed into a k-dimensional 

vector (usually k is much smaller than the number of pixels of x , i.e., k<< N2) by (2.3): 

 )( µxxUy T −=   , where y = [ 1y , 2y , … , ky ]T (2.3) 

Conversely, the original vector x  can be approximated from its transformed vector y  

as : 

 += ∑
=

k

i
iiuyx

1

~
µx  (2.4) 
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(a) 

 

 

(b) 

Figure 2.2 (a) A small sample of training faces (b) Corresponding eigenfaces 

 

2.1.3 Computation of PCA 

Eigen analysis of a covariance matrix is the straightforward method to calculate 

PCA. By introducing the vector µφ xxii −=  (of size N2x1), and matrix 

Φ ={ 1φ , 2φ ,…, Mφ } (of size N2xM), the covariance matrix XC  can be estimated as 

(2.5): 

 XC = T
i

M

i
i xxxx

M
))((1

1
µµ −−∑

=

  =
M
1

Φ Φ T (2.5) 
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XC  is the square symmetric matrix (of size N2x N2). The eigenvector of XC  

associated with the largest eigenvalue has the same direction as the first principal 

component. The eigenvector associated with the second largest eigenvalue determines 

the direction of the second principal component. The sum of the eigenvalues equals to 

the trace of the square matrix and the maximum number of eigenvectors equals to the 

number of rows (or columns) of this matrix. To solve for the eigenvalues and 

eigenvectors of covariance matrix, Householder reduction is first performed leading to a 

tridiagonal form, followed by the QL algorithm with implicit shifts[2][3].  

However there is a computational difficulty with this method in many occasions. 

The covariance matrix XC   is a two-dimensional 2N x 2N array, and determining 2N  

eigenvectors and eigenvalues is a very computationally demanding task for typical 

image size of (NxN) in many applications. Hence a computationally feasible method is 

needed to determine these eigenvectors. Since only a limited number of principal 

components are of interest, the relationship between principal component analysis and 

singular value decomposition (SVD) [2] can be exploited to calculate some of the 

eigenvectors without the need to compute the covariance matrix. 

There is a connection between PCA and SVD. Let X denote an mxn matrix of 

real value data with rank r, where without loss of generality nm ≥  and therefore nr ≤ . 

Singular value decomposition of X is defined as : 

 TUDVX =  (2.6) 

where U is mxn matrix where e columns are orthogonal to one another. V is an 

orthogonal matrix of size nxn. D is nxn diagonal matrix with elements nσσ ,...,1 . The 
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existence of the SVD of a matrix can be derived from the eigenvalue decomposition. 

Consider the matrix XXA T=  (of size nxn). Since A is symmetric, it has real 

eigenvalues and its eigenvalue decomposition has the form as TVVA Λ= , where Λ is 

diagonal matrix with elements nλλ ,...,1 . Based on the assumption that A is full rank, a 

matrix U is constructed as: 

 2/1−Λ= XVU  (2.7) 

It is easy to show that orthogonal columns of U are eigenvectors of the matrix TXX  and 

SVD of X is: 

 TT UDVVUX =Λ= 2/1  (2.8) 

where D is diagonal matrix with elements nσσ ,...,1   

From the derivation above, it can be seen that there is a direct relation between PCA 

and SVD in the case where principal components are calculated form the covariance 

matrix. Each column vector iu  (of size 1×m ) of matrix U is the eigenvector of product 

matrix ( TXX ), which in fact is the covariance matrix (Here mi ,,2,1 L= ); while each 

column vector kv  of matrix V is the eigenvector of product matrix ( XX T ), 

and ),,2,1(, nii L=λ , the eigenvalues of XX T , are equivalent to ).,,2,1(,2 nii L=σ   

Based on this connection, an alternative method to compute PCA exists. Instead 

of computing the matrix ( TXX ) to estimate the covariance matrix, symmetric matrix 

( XX T ) is first calculated and TV and Λ  are obtained by diagonalizing ( XX T ). Based 

on the relationship between SVD and PCA, U is derived as : 

 2/1−Λ= XVU  (2.9) 
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Because the size of matrix ( XX T ) is much smaller than that of ( TXX ), the 

computational complexity of calculating eigenvectors of ( XX T ), which leads to the 

construction of V, is quite acceptable. Therefore a feasible way to calculate the 

incomplete set of eigenvectors of covariance matrix is done by calculating smaller size 

matrix V. The fact that the basis vectors are ordered according to descending variance is 

useful, since only a limited number of eigenvectors are used to perform good quality 

reconstruction of a large number of different faces. 

2.1.4 Applications of PCA 

PCA has been widely used in many fields such as face recognition and image 

compression, and is the common technique for finding patterns in data of high 

dimension [1]. 

2.1.4.1 PCA for face recognition [4] 

The problem of facial recognition is formulated as the identification of the new 

face image from the original set. PCA solves this problem by measuring the difference 

between the new image and the original images, not along the original axes, but along 

the new axes derived form the PCA analysis. It turns out that these axes work much 

better for recognizing faces, because the PCA analysis has identified the underlying 

statistical patterns in the data set. In practice, some of the less significant eigenvectors 

can be left out and the recognition still performs well. 

2.1.4.2 PCA for image compression [5] [6] 
 

PCA for image compression is also known as the Karhunen Loeve transform 

(KLT). Transform coding is one of the most popular techniques for image compression. 
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Image data is highly correlated in spatial domain. Transform coding converts the image 

from the spatial domain into transform domain in order to make them more amenable to 

compression. Basically, transformed data are nearly or fully decorrelated and energy is 

packed into a small number of significant coefficients. Therefore if only the elements 

with high energy are kept, the image can still be restored by an inverse transform with 

acceptable quality, thus compression is achieved. From practical implementation point 

of view, the general requirement for the transform basis is that the basis should be 

signal independent. When compressing a clearly defined class of objects such as images 

of human faces, the optimal linear transform in a statistical sense such as PCA can still 

be investigated.  

PCA is such a kind of optimal linear transform which aims to find orthonomal 

basis to compress the images. It involves a mathematical procedure that transforms a 

number of correlated variables into a smaller number of uncorrelated variables called 

principal components. The first principal component accounts for as much of the 

variability in the data as possible, and each succeeding component accounts for as much 

of the remaining variability as possible. By ignoring the less important principal 

components, good approximation can still be obtained by a linear combination of a 

small number of components, thereby compression is achieved. However, when the 

original data is reproduced, the images have lost some of the information. This 

compression technique is said to be lossy. 
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2.2 Fundamentals of video coding 

2.2.1 The importance of video compression 

Digital representation of video information has many advantages over 

traditional analog video. However representing video material in digital form generates 

huge volume of data which is too large to be handled for most storage and transmission 

systems. Consider  a color video sequence generated using the CCIR 601 [7] format. 

Each image frame is made up of 720x480 pixels. At the rate of 30 frames per second 

and 8 bits/pixel per color, this corresponds to a data rate of about 248M bits per second 

whereas the available ADSL channel bandwidth is only 2Mb/s. Meanwhile we can see 

that a 4.7 Gbyte DVD can store just 19 seconds of such uncompressed video at this rate. 

There is obvious capacity shortage of current transmission channel and storage media to 

meet the bit rate requirement of raw data. 

2.2.2 The possibility of video compression 

An obvious gap exists between the bit rate demand from raw data and current 

transmission and storage capacity. The purpose of video compression is to fill this gap. 

Video compression can be viewed as image compression with a temporal component 

and is achieved by reducing the redundancies in video sequence. These redundancies 

can be classified into three types: inter pixel redundancy, coding redundancy and 

psycho-visual redundancy. [65] 

Inter pixel redundancy emerges from the fact that the pixels of an image frame 

and pixels of successive frames in a video sequence are correlated  and therefore value 

of any given pixel can be predicted from the value of its neighbors. Consequently 
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information carried by individual pixels is relatively small. Much of the visual 

contribution of a single pixel to an image is redundant. Inter-pixel redundancy can be 

further divided into two categories: spatial and temporal redundancy. 

Spatial redundancy is also called intra frame redundancy. Pixels within one 

frame are often correlated. Decorrelation of these data can lead to compact 

representation instead of representing pixels in a frame individually and independently. 

Predictive or differential coding is based on this observation. By reducing this large 

amount of redundancy in an image frame a lot of data can be saved in representing the 

frame.  

Temporal Redundancy is also called inter frame redundancy. There are 

similarities between the successive pictures in the video sequence. As a result the 

correlation can be removed by predicting a frame from its neighboring frames and 

coding the differences. Motion compensated predictive coding is the well known 

temporal prediction scheme for inter frame predictive coding and is used in all the video 

compression standards. 

Coding redundancy is present when the codes assigned to a set of events have 

not been selected to take full advantage of the probabilities of the events. If an image is 

coded in a way that uses more code symbols than absolutely necessary, the resulting 

image is said to contain coding redundancy. It is almost always present when an image 

is represented with natural binary coding.  It is possible to achieve compression by 

assigning fewer bits to the more probable events than to the less probable ones. This 
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process is commonly referred to variable length coding. Huffman coding and arithmetic 

coding [65] are the popular examples of variable length coding techniques.  

Psycho-visual redundancy originates from the characteristics of the human 

visual system (HVS ) that the HVS does not respond with equal sensitivity to all visual 

information. Certain information is less important than others based on visual 

perception. This information is said to be psychovisually redundant and can be 

eliminated without significantly impairing the quality of image perception. For 

example, the HVS is much more sensitive to low frequencies than to high ones and so it 

is possible to compress an image by eliminating certain high frequency components.  

2.2.3 Video compression techniques 

There are many redundancy reduction techniques which are employed in video 

codec to remove redundancy and achieve compression [66]. A detailed description is 

given as follows: 

DPCM (Differential Pulse Code Modulation)  

This method reduces the redundancy by predicting the value of pixels based on 

the one or more previously transmitted samples and coding the prediction error. The 

prediction can be simply formed from the previous pixel or more accurately obtained 

using a weighted average of neighboring pixels. Due to spatial correlation, the 

prediction error is typically small and compression can be achieved by assigning shorter 

code to frequent small prediction errors and longer code to infrequent,larger prediction 

errors. Following that the quantizer is often included to quantize the prediction error and 

reduce its precision. Thereby further compression may be achieved  
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Transform Coding  

The aim of transform coding is to reduce the spatial redundancy by mapping the 

pixels into a transform domain. In transform domain, the image energy is mainly 

concentrated into a few transform coefficients; hence removing a number of visually 

insignificant coefficients cannot affect the reconstructed image quality. The transform 

process itself does not achieve compression. The compression is realized through a 

lossy quantization process in which the insignificant coefficients are removed, leaving 

behind a small number of significant coefficients. Transform coding forms the basis of 

most of the popular image and video compression system. 

Motion Compensation and Estimation 

Motion compensated prediction is similar to DPCM. The prediction is formed 

by translating or warping the samples of the previously transmitted reference frame. 

The resulting motion compensated prediction frame is subtracted from the current frame 

to produce a residual error frame. Transform coding, quantization and entropy coding 

usually follow the motion compensated prediction. 

Before the motion compensation, motion estimation is carried out to estimate the 

motion of the moving object. The commonly used motion estimation technique is the 

block matching algorithm (BMA) [8]. In typical BMA, a frame is divided into 

predefined blocks of NxN pixels. It assumes that all the pixels within the block have a 

uniform motion. The process of block matching is to find a candidate block, within a 

search area in the previous frame, which is the most similar to the current block in the 
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present frame based on certain matching criterion such as cross correlation function 

(CCF), mean squared error (MSE) and mean absolute error (MAE)  

Entropy Coding  

Entropy coding is statistically compression method. There are two types of 

entropy coding which are employed in the standard video codecs: Huffman coding and 

arithmetic Coding.  

Huffman coding [66] assigns variable number of bits to each symbol based on 

the statistical distribution of the symbols. Short code words are allocated to common 

symbols and longer code words are allocated to infrequent symbols. Each code word is 

chosen to be uniquely decodable. So the decoder can extract the series of variable 

length codes without ambiguity.  

Arithmetic coding [66] maps a series of symbols to a fractional number that is 

then converted into a binary number and transmitted. Since each symbol is represented 

by a fractional number of bits and this means that the bits allocated per symbol must be 

more accurately matched to the statistical distribution of the coed data, arithmetic 

coding has the potential for higher compression than Huffman coding and plays an 

important role in the advanced video coding systems. 

2.2.4 Generic inter-frame predictive coder [9] 

Figure 2.3 shows a generic inter frame encoder which is used in all the standard 

coding systems. 
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(a) 

 

(b) 

(I)DCT = (inverse) discrete cosine transform VLC=variable length coder  
(I)Q     = (inverse) quantization    VLD=variable length decoder 

 
Figure 2.3 Generic inter-frame predictive coding (a) encoder (b) decoder [9] 

• Interframe prediction: In this process instead of coding the value of the pixel 

itself, the difference between pixels in the current frame and their prediction is 

coded and transmitted. When there is motion, a pixel for prediction in the 

previous frame has to be displaced by a motion vector. In all the standard 
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codecs, motion compensation is performed for blocks of 16x16 pixels, known as 

macro block (MB).The motion estimation is carried out only for the luminance 

part of the picture and a scaled version of the same motion vector is used for 

compensation of chrominance blocks depending on the picture format.  

• Intra/Inter switch: Each MB is either inter frame coded or intra frame coded 

depending on many conditions such as image type, scene activities and error 

resilience consideration etc. 

• Discrete cosine transform (DCT): all MBs are divided into 8x8 luminance and 

chrominance pixel blocks, and a 2D DCT is taken. 

• Quantizer: The quantizer exploits the human eye characteristics by coarsely 

quantizing the less sensitive higher frequency DCT coefficients. There are two 

types of quantizers used in video coding standard. For the AC coefficients and 

DC coefficient, the quantizer with a dead zone is used. For the DC coefficient of 

intra MB, the other one without dad zone is applied. 

• VLC: The quantized DCT values, the MB motion vector values and the 

corresponding MB addressed are all variable length coded. 

• Inverse Q and IDCT: Through inverse quantization and inverse DCT, the 

quantized DCT coefficients are converted to difference values and added to their 

previous picture values to generate a reconstruction of decoded picture. This 

picture is then used as a prediction for coding the next picture in the sequence. 

• Buffer: The variability of picture activity leads to the variable bit rate. Therefore 

some regulation must be included to achieve constant bit rate for transmitting 
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the coded video onto fixed rate channels. The buffer is used to accomplish this 

task by storing and releasing the coded data according to the channel rate. 

2.2.5 Current video coding standards 

Two standards bodies, the International Standards Organization (ISO) and the 

International Telecommunications Union (ITU), have developed a series of standards 

that have shaped the development of the visual communications industry. The aim of 

the coding standards is to support a particular class of application and to encourage 

interoperability between equipment and systems from different manufactures.[9] 

The ITU has developed H.261 [10], H.262 and H.263 [11] for audiovisual services 

such as video conferencing. H.261 designed for two-way communication over ISDN 

lines and supports data rates which are multiples of 64Kbit/s. The algorithm is based on 

the DCT and uses intraframe and interframe compression. The H.263 was developed for 

low bit rate communication, with emphasis on bit rates below 64Kb/s. It is based on 

H.261 with enhancements that improve video quality over modems.  

MPEG stands for the Moving Picture Experts Group which is the working group 

established in 1988 to develop standards for digital audio and video formats. The 

standards being used or under development include: 

MPEG-1 

MPEG-1 [12], the first lossy compression scheme developed by the MPEG 

committee, is still in use today for CD-ROM video compression and is part of early 

windows media players. The MPEG-1 algorithm uses a combination of techniques to 

achieve compression, including use of the DCT algorithm to first convert each image 
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into the frequency domain and then process the frequency coefficients to optimally 

reduce a video stream to the required bandwidth. In addition, level 3 of MPEG-1 is the 

most popular standard for digital compression of audio-known as MP3, provides about 

10:1 compression of audio files at reasonable quality. 

MPEG-2 

MPEG-2 [13] is the standard designed for the compression and transmission of 

digital broadcast television. It uses bit rates typically ranging from 1.5 to 15 

Mbits/second. MPEG-2 is based on MPEG-1.The most significant enhancement from 

MPEG-1 is its ability to efficiently compress interlaced video and the new scalability 

function to offer interoperation among different services. With some enhancements, 

MPEG-2 is the current standard for high definition television (HDTV) transmission.  

MPEG-4 

MPEG-4 [14] [15] is the standard for multimedia and web compression. MPEG-

4 is based on object-based compression, similar in nature to the virtual reality modeling 

language. Individual objects within a scene are tracked separately and compressed 

together to create an MPEG-4 file. This results in efficient compression which is very 

scalable from very low bit rate to very high. It also allows developers to control objects 

independently in a scene, and therefore introduce interactivity. 

MPEG-7  

MPEG-7 [16] [17] is also called the multimedia content description interface. It 

provides a framework for multimedia content that will include information on content 

manipulation, filtering and personalization, as well as the integrity and security of the 



 

 24

content. Contrary to the previous MPEG standards, which described actual content, 

MPEG-7 represents information about the content. 

MPEG-21 

MPEG-21 [21] attempts to provide the multimedia framework which describes 

the elements needed to build an infrastructure for the delivery and consumption of 

multimedia content, and how they will relate to each other. 

MPEG-4/AVC 

This is also called H.264/MPEG-4-AVC [18] [19] [20]. It is a jointly developed 

standard by video coding experts group (VCEG) and MPEG and has been standardized 

by the ITU under the H.264 name. H.264 contains a number of features that allow it to 

provide significantly enhanced compression performance and “network-friendly” 

packet-based video representation addressing “conversational” (video telephony) and 

“non-conversational” (storage, broadcast or streaming) applications. It incorporates a 

video coding layer (VCL), which provides the core high compression of the video 

content, and a network abstraction layer (NAL), which packages that compressed 

content for delivery over networks. The VCL design has achieved a significant 

improvement in rate-distortion efficiency—providing nearly a factor of two in bit-rate 

savings against existing standards. The NAL designs are being developed to transport 

the coded video data over existing and future networks such as circuit-switched wired 

networks, MPEG-2/H.222.0 transport streams, IP networks and 3G wireless systems 

[64]. 
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2.3 Error resilience  

2.3.1 Problem formulation and approaches 

A video communication system is typically constructed as shown in Figure 2.4. 

The video is first compressed by source encoder to reduce the data rate, and then several 

operations such as packetizing, multiplexing, and channel encoding are performed in 

the transport coder to convert the  compressed bit stream  into data packets suitable for 

transmission. At the receiver end, the inverse process is executed to obtain the 

reconstructed video signal for display.  

 

 

 

 

 

 

 

 

Figure 2.4 Typical video communication system [22] 

Data packets may be lost or corrupted during transmission due to imperfection of the 

channel. The transmission errors can be roughly classified into random bit errors and 

erasure errors. Different transmission media has different error characteristics which 
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can be described by the combination of network and protocol features [24-30]. The 

characteristics of current popular networks are summarized as Table 2.1. 

 

Table 2.1 Features of video transmission standards [22] 

Application 
and Standard 

Multiplex Protocol Video 
Coding 

Typical Bit 
Rate for 
Video 

Packet 
Size 

Error 
Characteris

tics 
ISDN 

videophone 
(H.320) 

H.221 H.261 
and 
H.263 

64-384kb/s N/A Error Free 

PSTN 
Video Phone 

(H.324) 

H.223 H.263 20kb/s 100bytes Very few 
bit errors 
and packet 
losses 

Mobile 
Videophone 

(H.324 
wireless) 

H.223 with mobile 
extensions 

H.263 10-300kb/s 100 
bytes 

BER==10E
-3 to 10E-
5, losses of 
H.223 
packets  

Videophone 
over Packet 

Network 
(H.323) 

H.225/RTP/UDP/IP H.261, 
H.263, 
MPEG-2 

10-1000kb/s <=1500 
bytes 

BER==0 
0-30% 
packet 
losses 

Cable/Satelli
te TV 

H.222 MPEG-2 6-12Mb/s N/A Almost 
error free 

Video 
conferencing 

over 
“Native” 

ATM 
(H.310, 
H.321) 

H.222 MPEG-2 1-12Mb/s 53 bytes 
(ATM 
cell) 

Almost 
error free 

 
In general, to make the compressed bit stream resilient to transmission errors 

and to help error prediction and concealment at the decoder, a certain amount of 

redundancy needs to be added in either the source or transport coder. The classical 

Shannon information theory [64] states that the source and channel coding can be 

designed separately, to achieve error free transmission, as long as the source entropy is 
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less than the channel capacity. However, this might be achieved only with a complex 

code design which is not necessarily implementable in practice. Therefore, a more 

practical question is formulated as given a fixed capacity channel, and a fixed amount 

of power, how to allocate them between the source and the channel to get the best 

result, i.e, the smallest distortion. Various approaches under the name of joint 

source/channel coding [67] have been developed to solve this problem. All the error 

resilient encoding methods essentially work under this premise and intentionally make 

the source coder less efficient than it can be, to prevent transmission errors causing 

disastrous effect in the reconstructed video quality. For example, in real video codec, 

the encoder restarts the prediction process periodically. The efficiency of the encoder is 

thus intentionally sacrificed for limiting the transmission error to small part of a frame, 

and thereby the missing information can be estimated by spatial and temporal 

interpolation. 

When delivered information is missing due to transmission errors, the decoder 

can try to estimate it through correctly received samples based on certain inherent 

correlation. Such techniques are known as error concealment techniques [67]. Error 

concealment has the advantage of not employing any additional bit rate, but adds 

computational complexity to the decoder. 

Finally the codec and the network transmission protocol must cooperate with 

each other to take advantage of the added redundancy in the source coder and to 

facilitate error concealment. For example, there are some bits in the bit streams which 

are more important than the others, and then a more stringent set of Quality of Service 
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(QoS) parameters should be assigned to the important part for delivery over a network. 

To suppress error propagation, the network may also provide a feedback channel to 

allow the encoder know which part of the reconstructed signal at the decoder is 

damaged, and not use this part for prediction of future samples. 

To summarize, mechanisms devised for combating transmission errors can be 

categorized into three groups:  

1) Those introduced at the source and channel encoder to make the bit stream more 

resilient to potential errors. Examples include robust entropy coding, multiple 

description coding, and transport level control etc.[67] 

2) Those invoked at the decoder upon detection of errors to conceal the effect of 

errors. Examples include motion compensated temporal prediction, spatial 

interpolation, and maximally smooth recovery etc.[31-38] 

3) Those which require interactions between the source encoder and decoder so 

that the encoder can adapt its operations based on the loss conditions detected at 

the decoder. Examples include reference picture selection based on feedback 

information, retransmission etc.[67] 

2.3.2 Error resilience tools in the state of art coding standard 

Error resilience tools widely expand the application range of current video coding 

standard. In this section,  analysis show how the error resilience design in the newest 

standard H.264/AVC [19] make it possible to  achieve acceptable video quality even in 

highly error prone environments such as wireless communication channel. 



 

 29

The main goal of H.264/AVC standardization effort has been enhanced compression 

performance and provision of “network-friendly” video representation. To achieve this 

goal, H.264/AVC has adopted a two-layer structure design, the video coding layer 

(VCL), which is designed for highly compressed video data, and the network 

abstraction layer (NAL), which formats the VCL data and adds header information in a 

manner appropriate for various transportation protocols or storage media. H.264/AVC 

makes available error resilience mechanisms which are mainly contained in VCL. A 

brief introduction is presented as follows: 

(a) Semantics syntax and error detection 

The H.264/AVC video coding standard explicitly defines all the syntax 

elements, such as motion vectors, block coefficients, picture numbers, and the order 

they appear in the video bit stream. The main purpose of syntax is to ensure the 

compliance. Furthermore, it is also an important tool for error detection. 

(b) Data partition 

Since some syntax elements in the bit stream are more important than others, 

data partitioning separates the data into different partitions and enables unequal error 

protection according to their significance in the bit stream. Data partition (DP) A, B and 

C are defined. Among them, DP A which contains the header information such as MB 

types, quantization parameters and motion vectors, is the most important one. 

(c) Slice structure 

The use of slices is another commonly applied method to improve robustness by 

stopping spatial error-propagation. The MB belonging to a slice can be decoded 
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independently from other slices since no inter-slice dependencies are allowed in H.264. 

Users can choose different slice structure according to their need. This is called flexible 

macro-block ordering (FMO) technology. It has been found that the video error 

concealment schemes perform very well when the lost blocks are arranged in the 

checker board/scattered blocks fashion or as interleaving of rows. 

(d) Parameter set 

The parameters, which are used for a group of frames or for a series of slices, 

usually do not change frequently. Hence various possible combinations of these 

parameters are classified as parameter sets. The intelligent use of the parameter set 

greatly enhances error resilience. To signal the parameter configuration to decoder, the 

encoder just need to transmit the index of the parameter set, instead of the values of 

parameters themselves. Since only the indices are transmitted, redundant information or 

extra protection can be added to ensure the reliable transmission of the index. This is the 

key to using parameter sets to improve error resilience.  

(e) Intra block refreshing by R-D Control 

Intra block refreshing and I frame insertion are commonly used to stop temporal 

error propagation when no feedback channel is available. H.264/AVC uses intelligent 

intra-block refreshing by R-D control. I frame insertion has a generally high bandwidth 

cost and severe bit rate variations.  Consequently it is not advisable to use it for real 

time and conversational video services. So intra block refreshing is very important for 

removing artifacts caused by error and inter prediction drift. 

(f) SP/SI Synchronization switching frame 
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SP/SI mechanism is designed for the purpose of video bit stream switching, but 

it can also be regarded as an important error resiliency feature in network environments 

with feedback. SP slices make use of motion compensated predictive coding to exploit 

temporal redundancy in the sequences, like P slices do. Unlike P slices, however, SP 

slice coding allows identical reconstruction of a slice even when different reference 

pictures are being used. They aim essentially at bit stream switching, splicing, random 

access, VCR functionalities and error resilience issues. 

(g) Error concealment 

The specific schemes suggested for the H.264/AVC standard involve intra and 

inter picture interpolation. The intra frame concealment scheme uses interpolation based 

on weighted average of boundary pixels. For inter frame interpolation based 

concealment, the recovery of lost motion vector is predicted from its neighboring 

blocks. 

(h) Feed back channel 

Feed back channel can be efficiently used with long term memory motion 

compensated prediction for error resilience and can also be used for packet 

retransmission.  The sender can be informed whether the real time transport protocol 

(RTP) packets have been received or not by the feedback message sent by the receiver. 

Then the encoder can either select the corrected received frames as the reference frames 

in the conversational applications or retransmit the lost packets in the stream 

applications. 
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CHAPTER 3 

EIGENSPACE MODEL BASED ERROR CONCEALMENT 

 

Transmission errors due to channel noise and failures present a big challenge for 

video communication because these errors can damage the decoded picture leading to 

unacceptable degradation in video quality.[67] Therefore great emphasis is put on error 

control and error concealment research which is of special importance in the increasing 

cases of video transmission over error prone channels such as mobile and internet 

channels. 

The proposed research assumes that the error region is detected and located in 

advance. Hence the focus is on the error concealment by decoder post-processing, the 

replenishment of the lost video content at the decoder end. In comparison with other 

error correcting techniques, such as forward error correction (FEC) or automatic 

retransmission request (ARQ), error concealment has the advantage of not requiring 

extra bandwidth and not introducing additional latency, which make it more suitable for 

real time applications, such as video telephony and video conferencing. 

All the error concealment schemes reconstruct the lost video data based on a 

certain prior knowledge. The proposed error concealment method employs PCA to 

model the statistical structure of video content in the range of interest (ROI) and uses 

this model as prior knowledge to replenish the lost data. Using a trained model as prior 
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knowledge reflects the statistical variation and captures the global information more 

effectively. Therefore better error concealment effect can be expected compared with 

conventional error concealment methods which are performed based on general prior 

knowledge. The accuracy and efficiency of the statistical model are the key parts of this 

method. Fixed PCA cannot model the data set with large variations efficiently; hence a 

novel adaptive PCA scheme is proposed to enhance the accuracy of the eigenspace 

model on line. The proposed method updates the eigenspace using previous frame if it 

is received correctly and current damaged frame where the damaged parts of the frame 

are treated as missing data. The updating is carried out in incremental mode which is 

suitable for real time applications due to its computational efficiency and low 

requirement for storage memory. This research proposes the incremental updating with 

missing data method and its application in the novel adaptive PCA scheme to build an 

accurate and efficient eigenspace model for error concealment. 

This chapter is organized as follows. Section 3.1 introduces existing error 

concealment technology. Section 3.2 shows the fixed eigenspace approach for error 

concealment and analyzes its limitations. An adaptive eigenspace scheme for error 

concealment is presented in section 3.3. Section 3.4 describes the incremental updating 

with and without the missing data. Simulation results are shown in section 3.5. 

Conclusions and discussion of further research are presented in section 3.6. 

 

 

 



 

 34

3.1 Existing error concealment techniques 

We have introduced error control and error resilience in Chapter 2 and described 

the overall picture of combating the transmission error and improving the image quality. 

The proposed research focuses on the error concealment. All the error concealment 

schemes reconstruct the lost video data based on a certain prior knowledge. Most 

existing error concealment techniques build such a prior condition by assuming 

smoothness or continuity of the video data in different domains thereby the exiting error 

concealment methods can be mainly sorted into two categories: spatial error 

concealment and temporal concealment. 

3.1.1 Spatial error concealment 

Spatial error concealment methods [64] recover the lost image content by 

assuming that images are smooth spatially in nature. Based on this smoothness 

assumption, different constraints and criteria are designed leading to different 

algorithms such as spatial domain interpolation, interpolation with edge detection, 

projection onto convex sets and maximally smooth recovery etc. All the methods under 

this category only make use of the spatial smoothness property and are mainly targeted 

for still images or for intra coded blocks in video. 

Spatial Domain Interpolation [31] [32] 

Spatial domain interpolation is a kind of intuitive approach. It interpolates the 

lost block from surrounding blocks by assuming the correlation among these blocks. In 

[31], Hemami and Meng proposed an algorithm which performs error concealment on 

each 8x8 block. The lost coefficients/pixels are estimated by linear combination of the 
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same coefficients/pixels in adjacent blocks. Assuming that the reconstructed block 

connects smoothly to its neighbors, weights used for interpolation are set to minimize 

the squared difference between pixels across block boundaries. If surrounding blocks 

are damaged too, recovered surrounding blocks are used and iterative recovery is 

executed until there are no further changes to any damaged blocks. Aign and Fazel [32] 

proposed another method which estimates the lost pixel value within one macroblock 

from its four 1-pixel-wide boundaries. Two schemes of this method are proposed for 

interpolation. In the first block based scheme, a pixel is interpolated with the two pixels 

from its two nearest boundaries, as shown in Figure 3.1(a). The interpolation formula is 

described as:  
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 where i, k=1, 2, …, N 

The second macroblock based scheme, shown in Figure 3.1(b), interpolates each 

pixel of the lost macroblock with the adjacent pixels in all four boundaries as : 
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Figure 3.1 Pixel domain interpolation (a) block-based scheme (b) macroblock-based 
scheme [32] 

 
 

Interpolation with Edge Detection [33] 

Interpolation by surrounding pixels will blur edges running through the 

damaged blocks. Since edge integrity plays an important role in human visual 

perception, algorithms are developed to improve the performance of interpolation in 
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edge areas by detecting the edges first and then applying directional interpolation or 

filtering along the edge directions. Edge directions are estimated based on gradient, and 

classified into eight directions. For each of these classified directions, a series of one-

dimensional interpolations are carried out along that direction. Multiple edges may run 

through the damaged block. Hence, multiple interpolation blocks are reconstructed 

using different edge directions. These multiple interpolations are subsequently 

combined together in such a way that all the strong features of each reconstruction are 

extracted to get the final error concealed block (Figure 3.2). 

 

Figure 3.2 Illustration of multiple directional interpolation algorithm [33] 
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Maximally Smooth Recovery (MSR) [34] 

MSR uses the correctly received DCT coefficients and surrounding blocks to 

reconstruct the damaged block based on the smoothness property of images through 

energy minimization. The formulated problem is to find the lost coefficients through 

received ones. Since it is an ill-posed problem, additional constraints have to be 

imposed to confine the possible solution set. In general, image blocks are smoothly 

connected with one another and with samples in the surrounding blocks. Therefore 

MSE selects the solution that maximizes the smoothness criteria. Two kinds of 

smoothness measures are used. Type 1 smoothing constraint is imposed between every 

two adjacent samples across the boundary, as shown in Figure 3.3(a). Type 2 smoothing 

constraint is imposed on each pixel in the direction toward its nearest boundary which is 

shown in Figure 3.3(b). The resulting image is the maximally smooth image among all 

those reconstructions with the same coefficients and boundary conditions.  

 

 

Figure 3.3 Illustration of two smoothing constraints [34] 
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Projection onto Convex Sets (POCS) [35] 

Error concealment methods under POCS [41] framework iteratively use the 

smoothness constraints and other constraints of pixel values and frequency values to 

arrive at an optimal rebuilding of lost data. The priori properties of typical video images 

that are often used are: 

1) Smoothness - requires reconstructed samples to be smoothly connected with 

adjacent image samples 

2) Edge continuity -  requires that edges be continuous  

3) Consistency with known values - requires that correctly receive pixel values not 

be altered by restoration process, and that restored values lie in a known range 

(e.g. [0-255]) 

POCS is realized as shown in Figure 3.4 [35]. Missing blocks, together with 8 

surrounding blocks are transformed into frequency domain using FFT [1]. The block 

is classified as either a monotone block or an edge block. This classification 

procedure is similar to multi-directional interpolation approach. Based on the block 

classification results, adaptive filtering is applied: low-pass filter for smooth regions 

and band-pass filter for regions with edge. Adaptive filtering is the first projection 

operator which realizes smoothness and edge continuity constrains. After inverse 

FFT, pixels in the reconstructed missing block are truncated to the integer range 0-

255. For the blocks that are correctly received, the pixel values are maintained. This 

procedure is the second projection operation which realizes constraints of 
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consistency with known values. These two projection operations are applied 

iteratively until convergence is arrived. 

 

 

Figure 3.4 Adaptive POCS iterative restoration process [35] 

 

3.1.2 Temporal error concealment [67] 

The temporal error concealment methods exploit the temporal continuity 

property and conceal the damaged block in current frame using blocks from the 

previous frame. The simplest approach is to replace the damaged block with the 

spatially corresponding block in the previous frame. For the video sequence with large 

motions, adverse visual artifacts will be produced. Significant improvements can be 

achieved by replacing the damaged block with the motion compensated block in the 

previous frame. A problem with temporal interpolation is that it requires knowledge of 

the motion information, which can be lost as well. Therefore techniques to estimate the 

lost coding mode and motion vectors are widely investigated. 

The boundary matching algorithm (BMA) is the basic algorithm [36] to estimate the 

lost motion vector. A set of candidate motion vectors are first built up by the following 

method: 
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1) Set the motion vectors to zeros, this works well for video sequences with 

relatively small motion. 

2) Use motion vectors of the corresponding block in the previous frame 

3) Use the average of the motion vectors from spatially adjacent blocks 

4) Use the median of motion vectors from the spatially adjacent blocks 

The estimated motion vector is then chosen from the set of candidate vectors 

depending on which one produces the smallest boundary variation. 

Many other algorithms are extensions to the BMA. Decoder motion vector 

estimation (DMVE) [37] treats the loss of motion vectors as a motion estimation 

problem. Motion field interpolation (MFI) [38] estimates the motion vectors from 

neighbors with single or multiple reference frames. Furthermore, Lee et al. [68] 

extended translational block motion to an affine transform for motion compensated 

error concealment. 

3.2 Fixed eigenspace error concealment 

The proposed error concealment is model based error concealment which builds 

a priori by training a context-based model for object or region of interest (ROI) and uses 

this model to recover any missing information. The model for error concealment is 

constructed on line by using training images from the video sequence which is being 

decoded, or can be constructed off line by using a training set from database. Since the 

model is built specifically for certain objects, the statistical variation can be captured 

more efficiently.  Therefore better performance can be expected compared with 

conventional smoothness and continuity constrained error concealment techniques.  
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The accurate model is the first requirement for model based error concealment. 

The question is how to build the model efficiently? We turn to dimensionality reduction 

technology and select principal component analysis (PCA) as the model building 

method. PCA identifies the principal directions along which the original data set has the 

largest variations. These identified directions are eigenvectors of covariance matrix of 

data.  The original data vector can be approximated without large reconstruction error 

by a linear combination of a few “best” eigenvectors, those corresponding to the largest 

eigenvalues. The eigenspace composed of these selected eigenvectors is the model 

which is used for our error concealment scheme. 

The fixed eigenspace based error concealment is first examined. For fixed 

eigenspace based error concealment, once the model is built up, it will not be changed 

and will be used throughout the error concealment process. The algorithm of the fixed 

eigenspace based error concealment can be discribed by Figure 3.5. 

This scheme is based on the following assumptions: 

1) The ROI has been detected and extracted by some segmentation techniques [40]. 

In object oriented coding scheme such as that in the MPEG-4 [14] standard, ROI 

information is contained in the coded stream. Therefore it is easy to build the 

model and implement error concealment. Under such circumstances, model 

based error concealment is especially useful. 

2) A set of training images from an image database or previously decoded frames 

which are received correctly is previously known and PCA is performed on the 

training set to build the eigenspace models off line or on line 
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Figure 3.5 Fixed eigenspace model based error concealment 

Once the eigenspace is built up, POCS framework is adopted to find the best error 

concealed image. The entire error concealing procedure includes two steps: 

Step 1: The damaged image is projected into eigenspace to obtain the 

reconstruction.  The reconstruction is a linear combination of eigenvectors; therefore set 

of reconstructions can be viewed as convex set 1 (C1).  

Step 2: The missing data is replenished using reconstruction. For the pixels that 

are received correctly, their values are maintained. The constraint of consistency with 

known values is known to be a convex set [41], denoted as convex set 2 (C2). C2 

contains all signal vectors xr  in n-dimensional real space Rn with some pixels equal to 

known values. This can be expressed as : 
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r  (3.3) 

where ix  is the ith component of vector xr , and ik  are known constraints in a given 

index set I. The projection P2 onto the convex set C2 is given by : 

 


 ∈

=
otherwisex

Iik
xP

i
i

,
2

,
][ r  (3.4) 

The iteration of step1 and step 2 projects the damaged data into the  convex set 1 

and convex set 2, leading to the convergence to the overlapped parts of C1 and C2, 

which has optimal error concealment effect. (Figure 3.6). 

 

Figure 3.6 Illustration of projection onto convex sets [41] 

 

In order to apply model based error concealment, the employed model should be 

able to capture the statistical variations in the object appearance accurately and 

efficiently. Some experiments have been carried out to evaluate the performance of 

fixed eigenspace based error concealment. Three images with randomly damaged 

blocks are used for testing. Four iterations are executed under POCS framework for 

each image. The simulation results are shown in Figures 3.7-3.9. 
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Original Image     Damaged image 

     
 
 
 
 
                                  Iteration 1            Iteration 2            Iteration 3           Iteration 4 

 Projection 1:          
 
 

Projection 2:            
 
  

Figure 3.7 Fixed eigenspace error concealment with fair recovery 
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Original image    Damaged image 
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Projection 1:   
 
 

Projection 2:  
 
 
                    Figure 3.8 Fixed eigenspace error concealment with bad recovery 
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Original Image      Damaged image 
 

     
 
 
 
 
                        Iteration 1              Iteration 2            Iteration 3             Iteration 4 

Projection 1   :  
 
 

Projection 2:    
 

Figure 3.9 Fixed eigenspace error concealment with very bad recovery 
 
 

Through subjective evaluation it can be seen that good error concealment cannot 

be guaranteed for each frame and overall performance of fixed eigenspace error 

concealment is not satisfying. The underlying reason is that the fixed eigenspace cannot 

capture the large variations in the video sequence. 
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3.3 Adaptive eigenspace error concealment 

The efficiency and accuracy of the model are critical to ensure the satisfactory 

performance of model based error concealment. Fixed eigenspace is inefficient to model 

the data set with large variations such as the image frames in a video sequence and 

therefore its application is limited. In order to make a model based error concealment 

applicable, accuracy and efficiency of the eigenspace model have to be improved. 

Many linear and nonlinear extensions to PCA for model improvement are 

examined. Nonlinear extensions include principal surface analysis (PSA) [42], multi-

dimensional scaling (MDS) [43] and locally linear embedding (LLE) [44]. PSA tries to 

model the data clusters using parameterized surfaces instead of the hyper-planes that 

PCA uses. MDS attempts to preserve local relationships by conserving pair wise 

distance between data points during the dimensionality reduction. LLE adopts the 

similar approach as MDS. The linear extensions to the PCA are also examined. Among 

these extensions are vector quantization PCA (VQPCA) [45], probabilistic PCA 

(PPCA) [46] and mixture of principal components (MPC) [39]. VQPCA first partitions 

the data set into clusters based on smallest reconstruction error criterion. The 

parameters of each cluster are then updated using local PCAs, and this process is 

iterated until convergence of the parameters. Unlike VQPCA which actually employs 

hard partitioning for clustering, PPCA applies soft partitioning for clustering while 

training the local PCAs at the same time. Then a mixture of such PPCAs is used to 

represent the data. MPC automatically models the data using a mixture of eigenspaces. 

Instead of optimizing the likelihood of observing the data given in the model, which is 
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the method in PPCA, the MPC parameters are chosen to minimize the overall 

reconstruction error. All these extensions can improve the accuracy of the eigenspace 

model, but the improvements are still limited and not stable for all kinds of video 

sequences. Furthermore, the computational intensity is too high.  

Fixed eigenspace model is examined again. A drawback of this method is that it 

did not utilize the history information. Hence a novel error concealment scheme which 

adopts incremental PCA approach to update the eigenspace on line is proposed. The 

updated eigenspace is adapted to the frame variations in video sequence thereby a more 

accurate model for error concealment is obtained. In this section focus is placed on 

adaptive updating scheme. The question of how to design the computationally efficient 

updating algorithm will be discussed in the next section. 

The immediate previous frame and the current frame which is to be repaired 

contain the most relevant information for updating. Temporal correlation exits in a 

video sequence and the immediate previous frame is usually highly correlated with the 

current frame. If it is used for updating, the updated eigenspace could catch the 

variations of next frame in advance. The current frame, although partially corrupted, has 

the correctly received part which contains the most relevant information for error 

concealment. Therefore it is always used to update the eigenspace thereby constructing 

an eigenspace which relates most closely to the current frame that is to be repaired.The 

flowchart proposed adaptive eigenspace based error concealment is shown in Figure 

3.10. 
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Figure 3.10 Adaptive eigenspace model based error concealment 

The decoder receives the bitstream from the channel and reconstructs each 

frame. The decoded frame then goes through error detection. If there is no damaged part 
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in this decoded frame, it will be saved in “last frame buffer” and it could be used to 

update the eigenspace model for replenishing next damaged frame. After error 

detection, the “clean” frame is sent to the display. If the decoded frame is spotted as 

damaged frame, it will be repaired. First, the distance between the frame in the “last 

frame buffer” and the current frame is checked. If the distance is equal to one, then the 

immediate previous frame is clean and eigenspace is updated using this immediate 

previous frame. Otherwise, this updating will be skipped and then we proceed to next 

updating stage which updates the eigenspace with the current corrupted frame.  

In order to reduce the opposite effect of corrupted part as small as possible, the 

damaged parts in current frame are estimated roughly before current frame is used for 

updating. The estimation will be explained in next section. 

After estimation, the eigenspace is updated with refurbished current frame. 

Once the eigenspace is updated, eigenspace based error concealment under POCS frame 

work is performed. This procedure is  the same as the one described in the last section. 

Stages 1 and 2 are performed iteratively until convergence is arrived and the damaged 

part is concealed.  

Computational complexity is an important consideration for real time operation 

at the decoder end where the memory resource and computational power are both 

restricted. Computational economy is the necessary requirement for the eigenspace 

updating algorithm. The incremental PCA with missing data is the efficient updating 

solution adopted in the proposed scheme which will be discussed in section 3.4. 
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3.4 Incremental PCA for eigenspace updating 

Eigenspace is conventionally computed by batch mode PCA. Given a set of 

training vectors, PCA determines the eigenspace spanned by the principal components 

which are calculated as the eigenvectors of the covariance matrix. Linear combination 

of these eigenvectors provides the optimal approximation of the original data vectors in 

the least squares sense. Discarding some eigenvectors corresponding to small 

eigenvalues will not introduce large distortion in reconstruction; therefore a small set of 

eigenvectors with large eigenvalues can model the data space reasonably well.  

In batch mode PCA, all the training vectors are used simultaneously to compute 

the eigenspace model. The requirement for computation power and storage memory is 

demanding. Specially in order to update a subspace of eigenvectors with another image, 

all the images have to be kept in memory, and re-compute the entire decomposition 

from scratch every time. The implementation cost and operation delay rule it out from 

real-time application. Incremental PCA does not need all training vectors at once and 

can update the existing eigenspace model sequentially by adding new vectors. Thus 

incremental PCA is selected as the technique for eigenspace updating. 

3.4.1 Existing incremental PCA methods 

Three methods from the literature [48-51] to incrementally update the dominant 

singular subspaces of a matrix A are to be discussed. These methods are characterized 

by the different updating techniques and the different forms of the results at the end of 

each step. One kind of these methods is characterized by the production of a 

factorization in SVD-like form, consisting of two orthonormal bases and one non-
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negative diagonal matrix. The other kind of  method produce orthnomal bases for the 

singular subspaces along with a small, square matrix. This matrix contains the current 

singular values, along with rotations that transform the two bases to the singular bases. 

“Broken arrowhead” matrix based method 

In [48], Gu and Eisenstat propose a stable and fast algorithm to update the SVD 

when appending a single column or row to a matrix with a known SVD. The kernel step 

in this algorithm is the efficient tridiagonalization of a rank i+1 “broken arrowhead” 

matrix, having the form as : 
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In this algorithm the SVD of the structured matrix is related to a function of a 

special form, that allows efficient evaluation using the fast multipole method, thereby 

the SVD of B is computed stably and efficiently in )( 2iO  computations instead of the 

)( 3iO computations required for a dense SVD. Although the object of their algorithm is 

to find an updated complete SVD, and does not concern the tracking of the dominant 

space, their work is still considered as the foundation for other algorithms that  track 

only the dominant space. 

Chandrasekaran et al. [49] propose an algorithm for tracking the dominant 

singular subspace and singular values, called the eigenspace update algorithm (EUA). 

The EUA was the first algorithm to adaptively track the dominant subspace, the 

algorithm can be stated formally as follows: 
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------------------------------------------------------------------------ 

111 ,1,/ AVAAU =Σ==  

For i = 2 to N 

T
i

T VUAVU ˆˆˆ][ Σ=Σ  

Find k such that 1ˆˆ +≥> kk σσσ  

Let U equal the first k columns of Û  

Let V equal the first k columns of V̂  

Let Σ equal the leading kxk principal sub matrix of Σ̂  

End 

------------------------------------------------------------------------ 

All vectors corresponding to the singular values lower than some user-specified 

threshold are truncated. The SVD of ][ i
T AVUΣ  can be obtained either via a standard 

dense SVD algorithm or by utilizing the arrowhead matrix based method. Note that the 

arrowhead-based method is only possible if a single row or column is used to update the 

SVD. Levy and Lindenbaum’s algorithm [50] allows more efficient inclusion of 

multiple rows or columns. 

Sequential Karhunen-Loeve algorithm 

Levy and Lindenbaum [50] proposed an algorithm for incrementally computing 

the basis for the dominant left singular subspace. The algorithm, named sequential 

Karhunen-Loeve (SKL), essentially executes a sequence of SVD updating steps, leading 

to a low dimensional KL-basis of an image sequence.  For each step a block of columns 
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is allowed to be brought in and the block size is optimized to minimize the overall 

complexity of the algorithm, assuming the number of columns per block is controllable. 

While this work concerns finding the KL basis (the dominant left singular basis), the 

technique can be modified to compute a low-rank factorization of the matrix without 

dramatically affecting the performance. 

The core of the SKL algorithm is based on partitioning the SVD of a large 

matrix into two steps. It starts by calculating the SVD of the first block of image data. 

Then at every step, another block of columns is added and SVD is calculated using 

“portioned R-SVD” algorithm. Consider the following identity: 
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The incoming block of vectors P (of size mxl) is separated into components PU T  and 

PP T~ , which are projections of P onto the current dominant subspace U   and the 

subspace P~  which is orthogonal to the current dominant space. Next calculate the SVD 

of D̂  as 

TVDUD ~~~ˆ =  

where U~ is the matrix composed of the orthogonal left singular vectors, D~  is diagonal 

matrix whose diagonal elements are the singular values of D̂  and V~ is an orthonormal 

matrix whose columns are the right singular vectors. Clearly the SVD of B̂ is 

)ˆ~(~)~ˆ(ˆ)~~~(ˆˆ TTTT VVDUUVVDUUB ==  
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Finally, the rank of the dominant space is determined, based on a user specified 

threshold and the noise space is truncated. 

For each step, the SVD of  D̂  is computed in negligible complexity )( 3kO , 

where k is the maximal number of columns for the U matrix, but the formation of the 

dominant part of UU ~ˆ  requires computation of 2m(k+l)k. Combined with the formation 

of Û  from U and P in klkm )(4 + , this yields a total complexity of 

lllkkmn /)23(2 22 ++  to process the entire matrix. It is also shown that, assuming a 

fixed size for k, a block size l that yields a minimal operation count can be determined. 

The running time is optimized by a block size 2/kl = . The authors made qualitative 

claims about the convergence of the approximation under certain assumptions, but they 

give neither quantitative explanation nor rigorous analysis. 

Incremental PCA for classification (IPCA for classification) 

Hall, Marshall and Martin [51] devised a method for incrementally computing 

eigenspace model in the context of using them for classification. Assume an eigenspace 

model is constructed over N observations Ni Rx ∈ . By calculating the mean vector ux , a 

set of eigenvectors, associated eigenvalues from the covariance matrix, and the number 

of observation N. Typically only p of the eigenvectors and eigenvalues are kept, 

therefore the constructed eigenspace model is denoted as ),,,( NUx ppnpu Λ=Ω ,where 

ux  is the mean vector, npU  is the dominant eigenspace with p left eigenvectors, ppΛ  is 

diagonal matrix with p diagonal singular values and N is the number of observations. 
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When the (N+1)th new sample is added, the mean vector ux  is easily updated to the 

new one  as (3.7): 

 )(
1

1ˆ 1++
+

= Nuu xxN
N

x  (3.7) 

The new left eigenspace Û  is obtained by adding a new vector ĥ  into the 

exiting left eigenspace  U and applying a rotational transform R as : 

 RhUU ]ˆ[ˆ =  (3.8) 

ĥ  is defined as (3.9): 
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where 

 gUxxh uN −−= + )( 1  (3.10) 

 )( 1 uN
T xxUg −= +  (3.11) 

The eigenproblem, after adding 1+Nx  is: 

 Λ= ˆˆˆˆ UUC  (3.12) 

where Ĉ  is the new covariance matrix which can be proven to be: 
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Here y is set to un xx −+1 . 

Substitution of Ĉ  into eigenproblem equation gives (3.14). 
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Left multiply of (3.23) by ThU ]ˆ[ leads to : 
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From (3.15), R is derived as the solution to the eigenproblem of the following 

form: 

 Λ= ˆRDR  (3.16) 

where  
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and  

 yh Tˆ=γ  (3.18) 

This algorithm explicitly accounts for a change in origin as well as a change in 

the number of eigenvectors in the basis set. This character makes it especially useful for 

classification applications  

None of algorithms described above deal with the missing data. Two commonly 

used methods dealing with the missing data problem are to replace the missing elements 

with the mean or an extreme value. However such approaches are no longer valid when 

a significant portion of data vector is missing. The SVDimpute algorithm [52] employs 

expectation-maximization (EM) method to obtain the estimations of the missing values 

as follows: 
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E-step: Applying singular value decomposition to obtain the eigenvectors. 

Since the SVD can only be performed on complete matrices, all missing values in 

matrix is substituted by row average in the initial stage.  

M-step: A missing value j in vector i is estimated by first regressing the vector 

against the k most significant eigenvectors and then use the coefficients of the 

regression to reconstruct j from a linear combination of the k eigenvectors. The jth 

value of the vector i and the jth values of the k eigenvectors are not used in determining 

these regression coefficients.  

The two steps are iterated until the total change in the matrix falls below the 

empirically determined threshold of 0.01.The iterative nature of this algorithm makes it 

very time consuming, furthermore it works effectively only for a matrix with a small 

parts of missing data. 

Wiberg [53] proposed a Gauss-Newton method to solve the missing data 

problem. It is a batch mode algorithm which requires solving large pseudo-inverse 

matrices.  

3.4.2 Proposed algorithm for eigensapce updating with missing data 

An updating scheme with incomplete data for model based error concealment is 

proposed. It can be shown that this scheme is computationally stable and efficient. The 

algorithm shares the same updating principle with the algorithm in [50], but it is 

modified to compute the left eigenspace which is spanned with the principal 

components. The missing data is estimated with the fewest standard deviations from the 

origin with respect to the data observed so far. Suppose an eigenspace is already built 
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from a set of training images. The existing eigenspace will be updated with newly 

incoming vector which is the current damaged frame to be repaired, where the damaged 

part will be estimated before updating.  The entire procedure formulates two problems: 

updating scheme and missing data estimation. 

The underlying principle of the adopted updating scheme can be explained as 

follows. Let iX  denote the matrix ],,,[ 21 ixxx L  (of size iN ×2 ), where ixxx ,,, 21 L  are 

vector representations of training images (each of size 12 ×N ) obtained by 

concatenating all the columns of the image and ε  be a given tolerance. The iX  can be 

reconstructed to ε  accuracy by T
iii VDU . That is ε≤− T

iiii VDUX , where  denotes 

standard Euclidean 2 –norm. For the matrix iX , 

xXX ixi 1max ==  

iU  and iV  are matrices whose columns are the left and right eigenvectors of covariance 

matrix respectively. iD  is the diagonal matrix whose diagonal elements are the 

eigenvalues of the covariance matrix.  The initial { }iii VDU ,,  can be computed by 

computing the eigen composition of i
T

i XX  (of size ii × ).  When the new image vector 

1+ix  is acquired, the eigenspace is updated and the updating is based on the following 

identity: 
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[ ]uUU i |ˆ =  is columns orthonomal matrix. 

The incoming vector 1+ix  is decomposed into components 1+i
T

i xU  and 1+i
T

i xu . 

1+i
T

i xU  is the projection of 1+ix  onto the orthogonal basis iU  and 1+i
T

i xu  is the 

projection of 1+ix onto the subspace iu which is orthogonal to iU . The decomposition is 

shown in Figure 3.11. 

D̂  is a broken arrowheaed matrix, whose SVD can be computed quickly using 

the techniques suggested by Gu and Eisenstat [48]. After calculating the SVD of 

TVDUD ~~~ˆ = , the SVD of  1+iX  can be represented as 

).ˆ~(~)~ˆ(ˆ)~~~(ˆ
1

TTTT
i VVDUUVVDUUX ==+ Then the updated left eigenspace is obtained by 

UU ~ˆ . This procedure is equal to the rotation of the subspace, which is illustrated in 

Figure 3.12. The rank of the dominant eigenspace is determined by user specified 

threshold.  

 

 

Figure 3.11 A vector is decomposed into components within and orthogonal to 
the existing dominant eigenspace 

 

1+i
T

i xU  1+i
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i xu  
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Figure 3.12 Visualization of updating procedure. The broken arrowheaded matrix D̂  is 
diagonalized and the subspaces are counter rotated to preserve equality 

 

Based on the above principle, the computation of the proposed algorithm is 

summarized as follows: 

Input: current eigenspace iU , current diagonal matrix iD , new input image 

vector 1+ia  

Output: new eigenspace 1+iU ,  new diagonal matrix 1+iD  

Algorithm: 

This algorithm increases the dimension of the subspace by one each time. After 

the updating, we can discard the least significant principal vector to preserve the 

dimension of the subspace. The initial value of the eigenvectors and the coefficients can 

be obtained by applying batch PCA on a small set of images. The current eigenspace 
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iU , current diagonal matrix iD  can be initial values calculated by batch mode PCA, or 

the updated values based on the previous eigenspace  1−iU  and previous diagonal 

matrix 1−iD . 

• 1)( +⊥ −= i
T

ii xUUIx  

• 
2

/ ⊥⊥= xxu  

• Conduct matrix 
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xUDD , compute the SVD of D̂  as the product 

TVDUD ~~~ˆ =  

• Set a threshold ε . All eigenvalues in D~  which are below the threshold ε  

are removed. The diagonal matrix composed of the remaining eigenvalues is 

denoted as 1+iD  

• Delete from U~  all the columns that correspond to eigenvalues that were 

removed above, the matrix composed of the remaining columns in  U~  is 

denoted as U
(

 

• The updated left eigenspace is calculated as [ ]UuUU ii

(
|1 =+  

 

There are two primary sources of errors in this algorithm: the round off errors 

incurred in computing the SVD of D̂ and the error from truncating the SVD. Standard 

dense SVD algorithm or fast algorithm suggested by Gu and Eisenstat [48] can be 

employed to compute the SVD of D̂ . Both of them are backward stable. The potential 
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instability comes from ⊥x . If ⊥x .is very small, then the computed u may no longer be 

numerically perpendicular to iU , leading to serious numerical instability. Hence it is 

necessary to set a certain threshold to monitor the value of ⊥x . From practice point of 

view, if ⊥x is smaller than ε , updating is usually not necessary and can be safely 

skipped. Applying modified Gram-Schmidt [2] or QR type orthogonalization [2] would 

be another option to solve this problem thereby making the algorithm numerically 

robust. 

Rounding error is another important error due to truncating the SVD.  It can be 

noticed that 1+iU  approximates 1+iX  within an accuracy of δ . Similarly iU  

approximates iX  within an accuracy of δ . Therefore it can be concluded that 1+iU  

approximates iX  within an accuracy of δ2 . In general, for ij ≤ , iU approximates jX  

within an accuracy of δ)1( +− ji . If δ  is chosen as N/ε , the approximation of all the 

images  can be secured to an accuracy of ε . 

Consider the time complexity of the algorithm, for the data matrix with the size 

of (mxN), the full fledged SVD from scratch every time would cost )( 3mNO . For the 

proposed algorithm, the computation is spent mostly on computing the SVD of a broken 

arrowheaded matrix D̂ . If the fast algorithm of Gu and Eisenstat [48] is used, the 

computation cost at ith updating will be )(miO . Therefore the total computation cost 

will be )( 2mNO . Therefore this algorithm is more computationally efficient, although 
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this will be useful only if N is large enough, which is the common case in the image and 

video  error concealment application.  

Before the eigenspace is updated by the current damaged image, the damaged 

part is considered as missing data and roughly estimated as follows: 

Considering adding a vector 1+ix  containing  missing elements, partition the 

incoming vector 1+ix  into yx and nx , vectors composed of known and unknown 

elements respectively and corresponding rows of iU  formed matrices yU  and nU . The 

missing values are estimated via the normal equation yynn xUUx += ; thereby the 

complete vector bears the fewest standard deviations from the origin with respect to the 

observations seen so far. ( +x denotes pseudo-inverse). The nx  is derived as follows: 

The identity 
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can be written as: 

 ][]|[ 111 +++ += i
T

i
T

ii
T

iiiii xuuxUUVDUxX  (3.20) 

Partition incoming vector 1+ix  into yx  and nx , vectors composed of known and 

unknown elements respectively and corresponding rows of iU  form matrix yU  and nU . 

If the projection onto residue subspace 1+i
T xuu , which is small, is omitted and 

substitute 1+i
T

i xU  as L, we can obtain: 
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Substituting the missing elements in incoming vector with estimated ones 

followed by the updating scheme will produce the eigenspace which is much closer to 

the truly one. Missing data estimation definitely will increase the computation 

complexity. In the worst case, for each updating the complexity will be raised to 

)( 3miO , but in practice with missing data the pseudo-inverse problem tends to be small, 

the run time for each updating stay close to )( 3miO  which is dominated by the problem 

of re-diagonalizing D̂ . 

3.4.3 Performance comparison 

Experiments are conducted to illustrate the accuracy and efficiency of the 

proposed eigenspace updating algorithm. The Oracle research laboratory database [47] 

was used in these experiments. There are different images of each of 40 distinct subjects 

with varying lighting, facial expressions, and facial details. 

First of all we would like measure the accuracy of proposed incremental 

algorithm compared with traditional batch mode algorithm. The batch mode algorithm 

is operated on the matrix containing all images in the training set and performs best in 

some senses; therefore it serves as the baseline for comparison. The accuracy is 

measured in terms of the differences between eigenvalues, eigenvectors and 



 

 67

reconstruction errors under same remaining energy. The comparison of eigenvalues is 

shown in Figure 3.13. 

 

Figure 3.13 Comparison of eigenvalues 

 

Output eigenspaces are visually compared in Figure 3.14. It is observed that 

eigenfaces produced by batch mode PCA and proposed incremental PCA are visually 

very similar. 
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Figure 3.14 The first five eigenvectors of the eigenspace produced by the batch mode 
PCA (top row) and the corresponding eigenvectors produced by the proposed 

incremental PCA (bottom row). 
 

Table 3.1 shows the average reconstruction error as a function of the basis 

dimension, where the basis dimensions are from 10% to 90% of the training set. The 

average reconstruction error was obtained by transforming images onto the eigenspace 

represented by the eigenimages and then computing the average reconstruction error per 

pixel.  

Table 3.1 Comparison of reconstruction error 
 

Basis 
dimension 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Reconstruction 
error of batch  

0.2036   0.2030 0.1704  0.1332  0.1192 0.1040 0.0947   0.0853   0.0841 

Reconstruction 
error of 
incremental 

0.2167 0.2140 0.1892 0.1488 0.1205 0.1178 0.0997 0.0903 0.0853 

 

It can be seen from Table 3.1, the reconstruction error decreases when the size 

of the eigen basis increases. The performance of the incremental algorithm is very close 

to that of the batch algorithm and difference between the average reconstruction error is 

quite small. The comparison of reconstruction effect is also illustrated in Figure 3.15 
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and Figure 3.16. The visual reconstruction quality for the incremental algorithm is 

comparable with that of the batch algorithm, as the experiment show. 

 

            

                   (a)                                                        (b) 

Figure 3.15 Reconstruction comparisons 1. (a)  Batch algorithm with 40% eigen basis, 
reconstruction error = 0.1442 (b) Incremental algorithm with 40% eigen basis, MSE of 

reconstruction = 0.1673 
 
 

           

                   (a)                                                        (b) 

Figure 3.16 Reconstruction comparisons 2. (a)  Batch algorithm with 60% eigen basis, 
reconstruction error= 0.1302 (b) incremental algorithm with 60% eigen basis, MSE of 

reconstruction = 0.1441 
 



 

 70

In addition, we also would like to compare the proposed incremental algorithm 

with the other incremental algorithm. IPCA for classification [51] is chosen as another 

bench mark. From the angle difference comparison which is shown in table 3.2, we can 

see the average angular deviation of proposed eigenvectors and batch eigenvectors is 

much lower than average angular deviation of IPCA-classification eigenvectors and 

batch eigenvectors. Same trend can be found in comparison of eigenvalues. So the 

proposed algorithm was also more accurate than the IPCA for classification in terms of 

eigenvalue and eigenvectors measurements. The latter is more suitable for classification 

applications. 

Table 3.2. Comparison of angular deviation 
 

Image set 1 2 3 4 5 6 Avg 
Angular deviation 
(IPCA 
classification 
~batch ) 

1.0357 1.5083 1.4987 1.4283 1.4604 1.3484 1.4159 

Angular deviation 
(proposed~batch) 

6.8293e-
015 

7.0692e-
015 

5.2138e-
015 

7.2006e-
015 

7.1537e-
015 

7.4560e-
015 

6.8204e- 
15 

 

The proposed algorithm easily updates eigenspace with one new image in an 

incremental manner without recomputing the basis set from scratch, hence it reduced 

computation and memory requirements. The performance of the proposed algorithm is 

comparable to the batch mode algorithm in terms of accuracy and superior to the other 

incremental algorithm such as IPCA for classification. It is suitable for computing an 

optimal low dimensional basis in a dynamic environment in which a single new image 

in continuously included into the image. Therefore it is utilized for the adaptive 

eigenspace based error concealment. 
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3.5 Experimental results 

The performance of the proposed adaptive eigenspace based error concealment 

is first tested on decoded video sequence Peter [54] with 150 frames and compared with 

the other two error concealment schemes: fixed eigenspace based error concealment 

which is described in section 3.2 and interpolation based error concealment. Video 

sequence Peter is mainly composed of a male talking face with multiple appearance 

variations due to pose changes. The size of each frame is 224x144. Both height and 

width are multiples of 16 that is the size of one macro block. 

Fixed and adaptive eigenspace based error concealment are both learning based 

error concealment methods. Twenty clean frames from the sequences are trained off 

line or on line to build the eigenspace model. Fixed eigensapce based error concealment 

will use this eigenspace model consistently in the remaining 130 frames to repair the 

error content. Adaptive eigenspace based error concealment will use this eigenspace as 

initial model and adaptively updates it during the decoding process. How to choose new 

frames to update eigenspace is described in section 3.3.  The incremental PCA updating 

algorithm with missing data is presented in section 3.4. Both fixed eigenspace based 

and adaptive eigenspace based error concealment methods are under POCS framework. 

Two or three iterations of POCS are executed to achieve better convergence results. The 

interpolation method which is called spatial error concealment in MPEG-2 [32] is used 

as another bench mark. Its algorithm is shown in Figure 3.17. 
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Figure 3.17 MPEG-2 intra frame error concealment scheme [32] 
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Each algorithm across different loss rates ranging from 0.02~0.2 is tested. Each 

algorithm is implemented on 20 damaged frames with the same loss probability under 

the same quantization level. The average PSNR versus probability is shown in Fig 3.18. 

 

Figure 3.18 Error concealment across different loss rates 

 

It can be seen that the model based  error concealement outperforms 

interpolation based error  concealment by up to 25 dB and adaptive eigenspace based 

error concealment always performs the best. As loss rate increases, the average PSNR 

of all algorithms decreases. This decrease is more obvious for interpolation based error 

concealment. 
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Without errors             Damaged              Interpolation                Fixed                      Adaptive 
                                            concealed             eigenspace                 eigenspace 

 

 

 

 

Figure 3.19 Frames 32 (above), 45 (middle) and 50 (bottom) under QP=3, loss rate=5% 
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Without errors             Damaged              Interpolation                Fixed                      Adaptive 
                                            concealed             eigenspace                eigenspace 

 

 

 

Figure 3.20 Frames 32 (above), 45 (middle) and 50 (bottom) under QP=13, loss 
rate=5% 

 

The three frames (frames 32, 45 and 50) from the decoded video sequence Peter 

presented in Figures 3.19 and 3.20 visually compare the performances of the three 

algorithms. Interpolation based error concealment can work well for smooth areas but 

its performance is poor for burst loss pattern. Fixed eigenspace cannot capture large 
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variations in the sequence; its performance cannot be guaranteed over the entire 

sequence. When the distance between the damaged image and training set is less than 5 

frames, the performance of fixed eigenspace model is quite comparable to adaptive 

eigenspace model. After that its performance degraded and became worse than the 

adaptive eigenspace model. When the distance went beyond 10 frames, this degradation 

trended to slow down. Adaptive eigenspace adapts to the changing appearances. 

Therefore stable good performances are observed under different loss rates and different 

loss patterns. Although quantization levels do not affect the objective measurement of 

performance such as PSNR, the concealed frame has less obvious error concealment 

artifacts because block artifacts due to coarse quantization overwhelm the imperfection 

of the error concealment. 

The proposed method is also applied to QCIF sequence Miss America. A 

sample frame from the sequence corresponding to a loss probability of 0.1 is presented. 

Figures 3.21 and 3.22 illustrate the concealed frame for quantization step QP=1 and 

QP=13 respectively. Again since the damaged part is not smooth, the interpolation 

concealed method does not perform well. Adaptive eigenspace based error concealment 

performs superior to the other two methods.  Similar experiments are also conducted  on 

QCIF sequence Carphone and the simulation results are displayed  on Figures 3.23 and 

3.24. 
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(a) 

 

(b) 

 

(c) 

Figure 3.21 Concealed frames from Miss America (loss rate=0.1, QP=1) 
(a) Intepolation concealed 

(b) Fixed eigenspace concealed 
(c) Adaptive eigenspace concealed 
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                                                        (a) 

 

(b) 

 

(c) 

Figure 3.22 Concealed frames from Miss America (loss rate=0.1, QP=13) 
(a) Intepolation concealed 

(b) Fixed eigenspace concealed 
(c) Adaptive eigenspace concealed 
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(a) 

 

(b) 

 

(c) 

Figure 3.23 Concealed frames from Car Phone (loss rate=0.1, QP=1)  
(a) Intepolation concealed 

(b) Fixed eigenspace concealed 
(c) Adaptive eigenspace concealed 
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(a) 

 

(b) 

 

(c) 

Figure 3.25 Concealed frames from Car Phone (loss rate=0.1, QP=13) 
(a) Intepolation concealed 

(b) Fixed eigenspace concealed 
(c) Adaptive eigenspace concealed 
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3.6 Conclusions 

A new model based algorithm is presented in this chapter for error concealment 

application. The focus is placed on the model based error concealment which can be 

viewed as second generation error concealment scheme, which is more suitable for the 

object oriented coding standard such as MPEG-4 [15], where the object has already 

been extracted and informed in the transmission stream. Since the specifically trained 

and built eigenspace model captures the video sequence variations more efficiently, 

better error concealment results are expected compared with heuristic based error 

concealment.  The accuracy of the eigenspace model is the key element to guarantee the 

satisfactory performance. Therefore a novel adaptive scheme is proposed to build 

accurate and computationally simple models for this purpose. Current and immediate 

previous frames are most relevant to eigenspace building, so they are adaptively 

selected for the eigenspace updating. In this scheme, an incremental PCA with missing 

data is investigated to update the eigensapce with the received new image vector. Its 

computational complexity and accuracy are analyzed and evaluated through comparison 

with batch mode PCA and other incremental PCA. The results of error concealment 

experiments have shown that the adaptive eigenspace based error concealment has 

better performance than fixed eigenspace based error concealment and interpolation 

based error concealment. Also this good performance is stable across different 

quantization levels, loss patterns and loss rates. 
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CHAPTER 4 

PCA/WAVEFORM HYBRID CODING FOR LOW BIT RATE 

TRANSMISSION OF FACE SEQUENCES  

 

Video coding is the process of compressing and decompressing a digital video 

signal. Modern video coding techniques provide the ability to store or transmit the vast 

amount of data necessary to represent digital images and video in an efficient and robust 

way.  The international standards such as H.261, H.263, and MPEG-2 [10-13] use the 

state-of-the-art video coding technologies and achieve high compression ratios. The 

newest coding standard H.264/AVC [19] offers significant improvement in rate-

distortion efficiency. Although the dramatic improvements in terms of bit rate reduction 

have been made, the emerging multimedia applications in which video signals are to be 

transmitted over internet or mobile networks, where the channel capacity is very 

limited, address the increasing demand for higher coding efficiency of video coding 

system. Therefore much research has been carried out on development of very low bit 

rate video coding technology, such as object-oriented coding and model based coding. 

[14][15].Due to the important role that face to face video communication plays in near 

future customer service applications, development of efficient coding methods to 

represent human faces also become an important problem in the area of image 

compression for video telephony.  
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In this chapter a novel video coding system aimed at very low bit rate coding of 

facial images in video sequences is presented. The very high compression ratio mainly 

comes from model based coding and more specifically the PCA [1] based approach. 

Unlike the synthetic 3D model used in MPEG-4 face animation standard, the PCA 

based model is derived statistically instead of empirically. Conventional waveform 

based coding is also integrated into the system to enhance the performance of the 

proposed system by adding generality and robustness. The potential application 

scenerio of this system is videophone telephony, where a talking head covers the main 

portion of the image.  

The following sections are arranged as follows: Section 4.1 presents the 

previous work which is related to the proposed research.  The concept of model based 

coding is introduced first, followed by a brief description of MPEG-4 face animation 

standard [15]. The existing hybrid system [57] which combines model based coding 

with waveform based coding is also included. In Section 4.2 application of PCA for still 

image compression and introducing how to make modifications to cater to a video 

coding system are summarized. The proposed face coding system is introduced in 

Section 4.3, which includes a detailed discussion of system architecture and technical 

issues such as compression method, mode selection etc.  Simulation results are 

presented after that. Possibilities for further research in this area are outlined.  
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4.1 Related works 

In this section, related works of model based coding and existing system which 

investigate the way to combine model based coding with traditional waveform based 

coding are introduced. 

4.1.1 Model based coding 

In model based coding [15], a predefined model is known in advance at both 

encoding and decoding ends. A few parameters of the model can be configured to 

resemble the object effectively. Therefore instead of transmitting the information of 

pixel values, only a few parameters of the model need to be encoded and transmitted. If 

the number of parameters required to fully describe the image is smaller than the raw 

image size, compression is achieved. Ideally, the model should be developed such that 

with as few parameters as possible the space of objects to be encoded is covered. In face 

coding, a model of a face is to be built such that the model covers the possible facial 

expressions of people. 

There are various kinds of model based coding systems. [56][57] Many of them 

are based on three dimensional model of the object to be encoded. Parameters called 

“action units” are used to describe how to move the vertices of the three dimensional 

model to resemble the object to be encoded. The MPEG-4 face animation standard [15] 

can be classified as belonging to this class. MPEG-4 face animation standard specifies a 

face in its neutral state as the face model and a number of feature points on this neutral 

face are used as reference points. A total of 84 feature points, as illustrated in Figure 
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4.1, are defined. The facial animation parameters are defined by motion of some of 

these feature points. 

 

Figure 4.1 MPEG-4 face animation standard feature points [15] 

 

The MPEG-4 standard also defines the facial definition parameter (FDP) which 

includes an initial shape and texture for the face. Finally, a set of facial animation 

parameters (FAP) corresponding to a particular facial action are defined. FAP deform a 

neutral face model according to some specified FAP values. The FAP value for a 
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particular FAP indicates the magnitude of the corresponding action, e.g., a big versus a 

small smile or deformation of a mouth corner. For an MPEG-4 terminal to interpret the 

FAP values using its face model, it has to have a predefined model specific animation 

rules to produce the facial action corresponding to each FAP.  

The face model used in the MPEG-4 face animation is built empirically. It is 

difficult to make the synthesized face model look natural and match the input. 

Furthermore finding an approach to automatically construct the realistic 3D face model 

for animation and estimate the parameters of facial motion still remains an open 

problem today. In this proposed system statistical analysis is used to build a face model 

from a training set of face images. 

4.1.2 Existing model based/waveform based hybrid coding systems 

The desire to exploit the advantages of model based coding while maintaining 

the fidelity of the image by using a reliable fallback coding mode led to the introduction 

of the switched 3D model based hybrid H.261 coder which was proposed by 

Chowdhury et al. in 1994. [58] (see Figure 4.2).This type of scheme sets up a switching 

metric based on the product of the bit-rate and a simple measure of picture quality e.g. 

PSNR. If the coder is operating in model-based mode and model-based cost is observed 

to be higher than H.261, then switching occurs at a high level i.e. the entire model-

based image is replaced by the H.261 image and vice verse. The mode decision is only 

made for a complete frame; therefore this scheme can be looked at as a high level 

switched system where the information from the 3-D model cannot be exploited.  

During the coding process, the two coding paths, model based coding and H.261 
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coding, run in parallel, producing two coding streams for each frame. However, only 

one stream is selected to be transmitted. This is a waste of computational and storage 

resources. 

 

Figure 4.2 System diagram of high level switching [58] 

 

4.2 Principal component analysis for face coding 

Although principal component analysis is most widely used for face recognition, 

substantial work has been done for applying it for image coding. Moghaddam and 

Pentland [4] presented the eigenface concept for still image coding in a face recognition 

framework. The same concept can be found in [6] for applications in image coding. In 

all these papers, simulations have already shown that through the projection of the face 

to an eigenspace which is previously defined, the still face image can be well 

represented by very few coefficients; therefore high compression ratio is achieved.  All 
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of these coding schemes build the eigenspace by using the complete set of images to be 

encoded, thus each frame image can be described as a point in the eigenspace. A system 

with such architecture is suitable for offline use where the image sequence to be 

compressed is available in advance and can be used to build the eigenspace. The quality 

of reconstructed image is high, and the performance of coding system is efficient and 

robust. 

 In the case of coding moving faces of a video sequence in real time, changes of 

expression are frequent, and it is impossible to get all the face images to be encoded in 

the training stage, so  the validity of  using the eigenspace approach for compressing a 

face video sequence need to be checked. In this section, some experimental results of 

applying PCA based face coding for video sequences will be shown. The following 

assumptions are made: 

(1) The camera is static and there is only one talking face, which is the focus 

of attention in each frame.  

(2) Training images coming from database or from video sequences are 

previously known 

(3) The size of the coded image has been previously normalized for 

principal component analysis purpose.  

(4) Prior to coding, the face portion is detected and separated from the 

background by using some segmentation techniques. From the system 

point of view, the background can be encoded and transmitted only once 

at the beginning. 
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The principle of our face coding technique is similar to that of face recognition, but the 

approach is modified to cater to video coding application. Basically, it contains two 

stages: training stage and coding stage. Both of them are described as follows: 

Training Stage:  

During this stage, first, a set of training images for each person must be 

obtained. This training set can come from database or directly from video sequence to 

be coded. The face images in the beginning segment of the video sequences are selected 

to form the training set. Principal component analysis is performed on the 

corresponding training set of each person to construct the eigenspace. The eigenspace is 

known both at the encoder and decoder. 

Coding Stage: 

Encoding and decoding are included in this stage. At the encoder, the face image 

to be encoded is transformed into eigenspace. Only M out of  30 significant coefficients 

corresponding to the M largest eigenvalues are retained, quantized and fixed-length 

coded. In this experiment, M is set to 5. 8 bit uniform quantizer with quantization step 

of 200 is applied for coefficient 1, 7 bit uniform quantizer with quantization step of 50 

is applied for coefficient 2 and 3, 6 bit uniform quantizer with quantization step of 20 is 

applied for coefficients 4 and 5. At the decoder, the received coefficients are used to 

perform linear combination of eigenfaces to get reconstruction.  

Experiments have been carried on video sequence Peter [54] which is mainly 

composed of a male talking head. Each frame in this sequence contains 224x144 8 bit-

pixels. Both height and width are multiples of 16 that is the size of macroblock for 
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block-based hybrid coding scheme.  Frame rate of test sequence is 12.5 frames/s, which 

implied bit rate of 3.2M bits/s )5.128144224( ××× . 30 frames are selected from the 

sequence to form the training set, 5 coefficients per frame are retained and transmitted 

during coding stage. The encoded stream has an average bit-rate of 0.4 kbits/s.  

The coding results can be judged by subjective and object evaluations. 

Subjective evaluation:  

 

Figure 4.3 Frames with subjectively good quality 
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Figure 4.4 Frames with subjectively poor quality  

Objective evaluation: 
 

 

Figure 4.5 PSNR over Peter sequence  
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The coded sequence presented acceptable over all quality based on subjective 

and objective evaluation. However the quality of the reconstruction varies over the 

sequence and good quality cannot be granted for every frame. An important change of 

expression in the face that is not included in the training set will lead the system to poor 

quality reconstruction. 

4.3 Proposed hybrid coding system 

Model based compression system can achieve very high compression ratios and 

high quality reconstruction provided the objects to be coded are within the modeled 

region. Otherwise the reconstruction quality will be deteriorated. The simulation has 

already shown that the big face expression change which is not included in training set 

will lead to poor quality reconstruction. Furthermore, model based compression system 

is restricted to work on scenes composed of objects that are known by the decoder. In 

this case, the type of objects to be compressed is limited to talking faces in video 

sequences. 

Compared to model based techniques, conventional waveform based coding 

techniques are fully automatic and robust. The coding takes place purely on a statistical 

basis. Therefore it can code arbitrary scene with satisfying reconstruction at the expense 

of relatively high bandwidth. The transmitted video could be blurred at low bit rates. 

To obtain coding efficiency without losing generality, a novel hybrid coding 

system in which a model based coding and waveform based coding are combined 

together to complement and support each other is proposed. The model based coding 

uses principal component analysis based compression scheme and waveform based 
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coding adopts conventional prediction/transform hybrid coding [9]. The system first 

turns to PCA based coding branch. Once this model works well, high compression ratio 

will be obtained. If the model based coding does not work well, the failed images can be 

handled by block-based coding branch.  Thus the entire system can work robustly. 

Furthermore, reconstructed images coming from PCA based coding branch are 

incorporated into block-based coding to provide secondary reference frames for 

prediction which will lead to enhanced coding performance. The block diagram of 

proposed system is shown in Figure 4.6. 

 

               

               

 

 

 

 

 

 

                                Figure 4.6 The block diagram of proposed coding system 

The architecture of the encoder and decoder in this proposed system and 

technical details such as coding features and rate control scheme will be discussed 

respectively. 
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4.3.1 Architecture of encoder and decoder  

The whole video coding system includes encoder and decoder. Figure.4.7 shows 

the architecture of the proposed encoder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Architecture of proposed encoder 
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The system first turns to PCA based coding branch, the face image to be 

encoded is projected into eigenspace. Only 5 transform coefficients corresponding to 5 

largest eigenvalues are retained, quantized and transmitted. Reconstruction is obtained 

based on previously known eigenfaces with these 5 left coefficients.  According to the 

reconstruction error which is measured by mean square error (MSE), an additional one-

bit flag is sent to indicate what encoder next to do.  If the reconstruction error is below a 

threshold which is set as 24 empirically, “0” is sent and the encoder proceeds to next 

frame. Otherwise “1” is sent and the system switches to block-based coding path. The 

PCA reconstructed frame is employed as a secondary reference frame for block-based 

prediction in addition to the previous reconstructed reference frame. The prediction 

choice is made based on Lagrangian cost function. If some parts of the image are well 

approximated by the eigenfaces model, bit rate required for transmission of residue will 

be reduced.   

Block diagram of decoder is shown is Figure 4.8. Model based reconstruction is 

performed first. Then decoder decides what to do next according to the flag bit. If “0” is 

received, the model based reconstruction frame is outputted as decoded frame. If “1” is 

received, the decoder turns to waveform based reconstruction. Since the mode decision 

and choice of reference frame for prediction are already made at the encoder side, the 

decoder is simpler than the encoder.  
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Figure 4.8 Architecture of proposed decoder 

 

4.3.2 Model based coding branch  

This coding branch adopts eigenfaces coding approach which is described in the 

last section. The coefficients are quantized with 3 different uniform quaintizers which 

are the same as those in the last section. 

4.3.3 Block based coding branch 

This coding branch adopts conventional prediction/transform block-based 

hybrid video coding scheme. The whole frame is divided into blocks. The basic 

processing unit is 16x16 macroblock. After prediction, DCT is applied to the residual 

information, and then the transform coefficients are scaled and quantized.  After that the 

quantized coefficients are arranged in zigzag scanning order and are compressed by 

entropy coding. Some features in H.264/AVC [63] standard are applied in this system,  

including integer 4x4 DCT, multiple frames prediction and CAVLC entropy coding. 
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Prediction 

Prediction is performed at the macroblock level. The first frame of a sequence is 

“Intra” coded. The predicted value is always from the current PCA based 

reconstruction. The remaining frames employ prediction either from a previous DCT 

based reconstruction or from a secondary picture obtained from the current PCA based 

reconstruction.  

Integer DCT and quantization 

After the prediction, a transform is applied to decorrelate the data spatially. Like 

in H.264/AVC [19], the transform in our system is applied to 4x4 blocks, and a 

separable 4x4 integer transform derived from the DCT is used. Since the inverse 

transform is defined by exact integer operations, inverse transform mismatches are 

avoided. The transform is very simple and can be easily implemented using only 

additions / subtractions and binary shifts. Due to its smaller size, it is not as prone to 

high frequency “mosquito” artifacts as its predecessors. 

The original input images are color images in 4:2:0 format (see Figure 4.9), 

therefore the residual data within a macroblock are transmitted in the order shown in 

Figure 4.10. The block labeled “-1” which contains the DC coefficient of each 4x4 luma 

block is transmitted first, Next, the luma residual blocks 0-15 are transmitted in the 

order shown (with the DC coefficient set to zero in a 16x16 Intra macroblock).  Blocks 

16 and 17 contain a 2x2 array of DC coefficients from the Cb and Cr chroma 

components respectively. Finally, chroma residual blocks 18-25 (with zero DC 

coefficients) are sent.  
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Figure 4.9 4:2:0 sampling format 

 

Figure 4.10 Transmission order within one macroblock [18] 

The forward transform is defined as  

: Lumina pixel 
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Where a=1/2, b= )
8

cos(
2
1 π , c= )

8
3cos(

2
1 π , the symbol ⊗ indicates that each element 

of ( TFWF ) is multiplied by the scaling factor in the same position in matrix E . While 

the MB size remains at 16x16, each MB is divided up into 4x4 blocks, and a 4x4 block 

transform matrix F  is applied to every block of pixels. E is a matrix of post scaling 

factor. This necessary post-scaling step is integrated into quantization. 

The inverse transform is given by equation as below: 
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For the inverse transform, Y is prescaled by appropriate weighting factor from 

matrix iE .  

The DC coefficients are transformed using a separable 4x4 Hadamard transform 

with the following matrix: 



















−−
−−

−−
=

1111
1111
1111

1111

4T  

There are 8 chroma blocks per macroblock. A separable 2x2 transform is used: 
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For the quantization of transform coefficients, same scalar quantizers as in 

H.264/AVC are used.  The basic forward quantizer operation is as Zij = round 

(Yij/Qstep), where Yij is a coefficient of the transform. In order to avoid division and/or 

floating point arithmetic and incorporate the post- and pre-scaling, the definition and 

implementation are complicated. Total 52 values of step size are supported, indexed by 

a quantization parameter, QP. Quantization step doubles in size for every increment of 6 

in QP. 

Scanning  

The quantized coefficients are then zigzag read out from the 4x4 coefficient 

matrix into a single 16 element scan as shown in Figure 4.11. This scan is designed to 

order the highest-variance coefficients first and to maximize the number of consecutive 

zero-valued coefficients appearing in the scan.  

 

Figure 4.11 Zigzag scan 

Entropy coding 

CAVLC is used as the entropy coding method. The quantized and zig-zag 

ordered 4x4 transform block has several favorable properties for CAVLC: 
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(1) Blocks are often sparse, with long runs of zeros. These zeros are 

represented compactly by run-length coding in CAVLC. 

(2)  The non-zero coefficients at the end are often +1/-1. CAVLC codes 

these “trailing ones” in a compact way.  

(3)  The number of non-zero coefficients is encoded using a lookup table. 

Because  the number of non-zero coefficients in neighboring blocks is 

correlated, the choice of table depends on neighboring blocks 

(4) The level of nonzero coefficients tends to be larger at the start of the 

reordered array and smaller toward the higher frequencies. CAVLC takes 

advantage of this by choosing the VLC look up table for “Level” 

adaptively according to recently coded level magnitude 

The procedure for CAVLC encoding of a block of transform coefficients can be 

described as below: 

(1) Encode the number of coefficients and trailing ones (coeff_token). 
 

The first VLC, coeff_token, encodes both the total number of non-zero 

coefficients (TotalCoeffs) and the number of trailing +/-1 values (T1). There are 

4 choices of look-up table to use for encoding coeff_token. The choice of table 

depends on a parameter N which can be calculated by the number of non-zero 

coefficients in upper and left-hand previously coded blocks. 

(2) Encode the sign of each T1. 
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For each T1 (trailing +/-1) signaled by coeff_token, a single bit encodes the sign 

(0=+, 1=-). These are encoded in reverse order, starting with the highest-

frequency. 

(3) Encode the levels of the remaining non-zero coefficients. 

The level (sign and magnitude) of each remaining non-zero coefficient in the 

block is encoded in reverse order by looking up 7 VLC tables. The choice of 

VLC table to encode each level is made based on threshold which is obtained 

adaptively depending on the magnitude of each successive coded level (context 

adaptive).  In this way, the choice of level is matched to the magnitude of the 

recently-encoded coefficients.  

(4) Encode the total number of zeros before the last coefficient. 

TotalZeros is the sum of all zeros preceding the highest non-zero coefficient in 

the reordered array. This is coded with a VLC. The reason for sending a separate 

VLC to indicate TotalZeros is that many blocks contain a number of non-zero 

coefficients at the start of the array and this approach means that zero-runs at the 

start of the array need not be encoded. 

(5) Encode each run of zeros. 
 

The number of zeros preceding each non-zero coefficient (run_before) is 

encoded in reverse order through look up table. A run_before parameter is 

encoded for each non-zero coefficient, starting with the highest frequency, with 

two exceptions: 
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(a) If there are no more zeros left to encode (i.e.  [run_before] = 

TotalZeros), it is not necessary to encode any more run_before values. 

(b) It is not necessary to encode run_before for the final (lowest 

frequency) non-zero coefficient. 

The VLC for each run of zeros can be found by jointly search according to  the 

number of zeros that have not yet been encoded (ZerosLeft) and run_before.  

4.3.4 Reference frame selection based on rate-distortion criteria 

The choice of video coding algorithm and encoding parameters affect the coded 

bit rate and the quality of the decoded video sequence. The precise relationship between 

coding parameters, bit rate and visual quality varies depending on the characteristics of 

the video sequence.  

Rate distortion optimization attempts to maximize image quality subject to 

transmission bit rate constrains. The trade-off between coded bit rate and image 

distortion is an example of the general rate-distortion problem in communications 

engineering. In lossy communication system, the challenge is to achieve target data rate 

with minimal distortion of the transmitted sequence of images. This problem may be 

described as follows:  “Minimize distortion (D) while maintaining a bit rate R that does 

not exceed a maximum bit rate Rmax”. 

The aim of rate-distortion optimization is to find a set of coding parameters that 

achieves an operating point as close as possible to the optimum curve. One way to find 

the optimum solution is by using Lagrangian optimization.  

),,(),,( mod cfmvhdRcfmvhdD RECeREC λ+  
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Here distortion after reconstruction RECD  is measured as the sum of absolute difference 

(SAD). 

Given the displacements for each particular mode, we are computing the overall 

rate-distortion costs. The distortion is computed by SAD between the reconstructed and 

original frame, and the rate is computed including the rates of macroblock headers hd, 

motion parameters mv, and DCT quantization coefficients cf. The mode with the 

smallest Lagrangian cost is selected for transmission to the decoder. The parameter 

emodλ is derived from the rate-distortion curve that we computed using H.263 coder. 

This approach is chosen because of its simplicity and its reproducibility. Following 

[60], the Lagrange multiplier for the mode decision is chosen as  

2
mod 85.0 Qe =λ  

where Q is the DCT quantization parameter.  By computing the Lagrangian cost 

function, the encoder in proposed system decides which of the two frames is selected as 

reference frame for prediction for each macroblock. 

4.3.5 Simulation results 

Experimental results are presented to verify the performance of proposed coding 

scheme. Experiments are conducted using video sequences 1 and 2 [54], whose frames 

are mainly occupied by a male talking head. Both sequences contain frames of 

144224×  resolution with 12.5 frames/s frame rate. Rate-distortion plots and 

reconstructed frames are shown for the proposed PCA/waveform hybrid coder and 

compared with pure H.264 feature like waveform coder. Figure 4.12 shows the rate-

distortion curves for sequence 1 and Figure 4.13 shows the rate-distortion for sequence 
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2. Three decoded frames are depicted in Figure 4.14. The original image is frame 46 of 

sequence 1. The upper image Fig (4.14.a) corresponds to decoded frame from H.264 

feature like coder, while the lower ones Figures 4.14.b and 4.14.c are generated from 

PCA/waveform hybrid coder. 

 

Figure 4.12 Rate-distortion plot  Figure 4.13 Rate-distortion plot 
                 for sequence 1               for sequence 2 
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(a) 

    

        (b)                           (c) 
 

Figure 4.14 Comparison of decoded frames  
(a)H.264 feature like code (PSNR=33.86dB, 1720bits) 

(b)PCA/waveform hybrid coding (PSNR=34.01 dB, 1737 bits, thresholdMSE=17) 
(c)PCA/waveform hybrid coding (PSNR=35.4 dB, 102 bits, thresholdMSE=20) 

 

 



 

 107

4.4. Conclusions 

A novel video coding system for face sequence compression which can be used 

for video telephony application is proposed. In the proposed system, model based 

approach is combined with block-based hybrid scheme to code mobile face images 

efficiently and robustly. Principal component analysis has been proven to be effective 

and is a widely used algorithm for face recognition. In the proposed system, PCA 

approach is applied to build facial models composed of eigenfaces and then transform 

the face image to be encoded into low dimensional eigenspace. Since only a few 

significant coefficients are encoded and transmitted, the frames which can be coded 

through the PCA approach can provide large numbers of bit savings for the system. The 

block based coding in proposed system adopts conventional prediction/transform hybrid 

architecture. Coding features such as integer transform and CAVLC which are included 

in the newest H.264/AVC standard [19] are used in the system. Compared to model 

based coding, block-based hybrid coding is not restricted to certain scene content, but 

the coding efficiency is relatively low. The advantages of both approaches are 

combined under rate-distortion optimization control in our system. The reconstructed 

frame coming from PCA coding path is used as secondary reference frame for 

prediction in addition to previous reconstructed frame. For each block, the system 

decides which of the two frames to be selected according to the Lagrangian cost 

function. The simulation results show that bit rate savings of around 30% are achieved 

at equal average PSNR compared to pure block-based coding, especially at the low bit 

rate end. 
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CHAPTER 5 

SUMMARY AND FUTURE WORKS 

 

This research was directed towards applying PCA to build statistical model for 

error concealment and low bit rate face coding. The objective of this research is to build 

a non conventional, model based coding scheme which is more suitable for object 

oriented coding, where the object has already been extracted and indicated in the 

transmission bit stream. This effort can be viewed as investigating second generation 

coding scheme to achieve higher compression ratio with high quality, which is required 

by emerging multimedia applications where more and more bandwidth demanding 

signals are transmitted over error prone channels. The focus of this research is on the 

optimization of eigenspace model development in terms of the complexity, accuracy, 

efficiency and implementation in expected real time applications. 

The first contribution of this research is in building a model based frame work 

for coding and error concealment. The central idea of PCA is to reduce the 

dimensionality of a data set while retaining as much as possible the variation in the data. 

Due to this property, a eigenspace model can be built statistically on target object or 

range of interest (ROI). The engenspace model can capture statistical variation and 

global information more effectively. Therefore high compression ratio and good error 

concealment can be expected under such model based frame work.  
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The second contribution comes from the proposed error concealment method 

which employs PCA to model the statistical structure of video content in the range of 

interest (ROI) and use this model as prior knowledge to replenish the lost data. Fixed 

PCA cannot model the data set with large variations efficiently; hence a novel adaptive 

PCA scheme is proposed to enhance the accuracy of the eigenspace model on line. The 

updating is carried out in incremental mode which is suitable for real time applications 

due to its computational efficiency and low requirement for storage memory. 

Investigating the incremental updating with the missing data method and its application 

in the novel adaptive PCA scheme to build accurate and efficient eigenspace model for 

error concealment are the main goals of this research. Simulations have shown that 

good error concealment effect can be achieved across different quantization levels, loss 

patterns and loss rates. 

The final contribution lies in the development of a novel video coding system 

aimed at very low bit rate coding of facial images in video sequences. In the proposed 

system, model based approach is combined with block-based hybrid scheme to code 

mobile face images efficiently and robustly. The PCA approach is applied to build a 

facial model composed of eigenfaces and transform the face image to be encoded into a 

low dimensional eigenspace. Since only a few significant coefficients are encoded and 

transmitted, the frames which can be coded through the PCA approach can provide a 

large number of bit savings for the system. The block based coding in this system 

adopts conventional prediction/transform hybrid architecture. Coding features such as 

the integer transform and CAVLC which are included in the newest H.264/AVC 
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standard [19] are used in this system. The advantages of both approaches are combined 

under rate-distortion optimization control in the system. The reconstructed frame 

coming from PCA coding path is used as a secondary reference frame for prediction in 

addition to previous reconstructed frame, which provides further opportunity for 

compression. The simulation results show that bit rate savings of around 30% are 

achieved at equal average PSNR compared to pure block-based coding, especially at the 

low bit rate end. 

The generic eigenspace model proposed here is still a very heuristic one and it is 

difficult to analyze in rigorous fashion without making some assumptions. Adaptive 

scheme and missing data estimation improve the accuracy and efficiency of the model 

for a certain object, but still cannot catch up with the large scene changes. Possibilities 

for improvement include a method for selective echoing of input data, based on perhaps 

on some characteristics of the previously associated update step, or an analysis of 

convergence of this method. The eigenspace model can be built statistically, which 

makes it more flexible to fit the input data and therefore deserves to be further 

investigated in model based framework which is important for development of future 

coding scheme. 



 

 

 

111

 

 

REFERENCES 

 
[1] K. R. Rao and P. C. Yip, “The transform and data compression handbook”, Boca 

Raton, FL, CRC Press LLC, 2001. 

[2] G. Golub and C. Van Loan, “Matrix computation”, Third Edition, Baltimore,  MD, 

The Johns Hopkins University Press, 1996. 

[3] G. W. Stewart, “Matrix algorithms”, vol. I : Basic decomposition, Society for 

Industrial and Applied Mathematics, Philadelphia, 1998.  

[4] M. Turk and A. Pentland, “Eigenfaces for recognition”, Journal of Cognitive 

Neuroscience, vol. 3, pp. 71-86, Jan. 1991. 

[5] B. Moghaddam and A. Pentland, “Probabilistic visual learning for object 

representation”, IEEE Trans. PAMI, vol. 19, pp. 696-710, Jul. 1997. 

[6] L. Sirovich and M. Kirby, “Low dimensional procedure for the characterization of 

human faces”, J. of Opt. Soc. Amer. A., vol. 4, pp.519-524, Mar. 1987. 

[7] CCIR (ITU-R) 601, “Encoding parameters of digital television for studios”, CCIR 

recommendation 601-2, Vol. XI – part 1, Geneva 1990.  

[8] J. R. Jain and A. K. Jain, ‘Displacement measurement and its application in 

interframe image coding”, IEEE Trans. Commun., vol.29, pp. 1799-1808, Dec. 

1981. 

[9] M. Ghanbari, “Standard codecs: image compression to advanced video coding”, 

London, UK, The Institution of Electrical Engineers, 2003.  



 

 

 

112

[10] ITU recommendation H.261, “H.261: video codec for audiovisual services at 

px64 kbits/s”, Geneva, 1990. 

[11] ITU-T Recommendation H.263 Version 2 (H.263+): “H.263+: Video Coding for 

Low Bit-rate Communication" Jan. 1998. 

[12] ISO/IEC 11172-2: video, “MPEG-1: Coding of moving pictures and associated 

audio for digital storage media at up to about 1.5Mbit/s”, Nov. 1991. 

[13] ISO/IEC 13818-2: video, “MPEG-2: Generic coding of moving pictures and 

associated audio information”, Nov. 1994  

[14] ISO/IEC FDIS 14496-2, “MPEG-4: Generic Coding of audio-visual objects: 

(MPEG-4 video)”, Nov. 1999. 

[15] F. Pereira and T. Ebrahimi, “The MPEG-4 Book”, Upper Saddle River, NJ, 

Prentice Hall, 2002. 

[16] B. S. Manjunath, P. Salembier and T. Sikora, “Introduction to MPEG-7”, West 

Sussex, England, Wiley, 2002. 

[17] ISO/IEC JTC1/SC29/WG11/N4301: “Overview of the MPEG-7 standard”. 

Singapore, Mar. 2001. 

[18] I. E. G. Richardson, “H.264 and MPEG-4 video compression”, West Sussex, 

England, Wiley, 2003. 

[19] T. Wiegand et al., “Overview of the H.264/AVC Video Coding Standard”, IEEE 

Trans. CSVT, vol. 13, pp. 560-576, July 2003. 

 

 



 

 

 

113

[20] G. J. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC advanced video 

coding standard: overview and introduction to the fidelity ranged extensions”, SPIE 

Conference on Applications of Digital Image Processing XXVII vol. 5558, pp.454-

474, Aug. 2004. 

[21] ISO/IEC JTC1/SC29/WG11/N5231, “MPEG-21 overview v.5”, Shanghai, Oct., 

2002. 

[22] Y. Wang et al, “Error resilient video coding techniques”, IEEE. Signal 

Processing Magazine, vol.17, pp.61-82, July 2000. 

[23] A. Tamhankar and K. R. Rao, “An overview of H.264/MPEG4 part 10”, 4th  

EURASIP, vol. 1, pp.1-51, July 2003. 

[24] ITU-T Recommendation H.320, “H.320: Narrow band visual telephone systems 

and terminal requirement”, July 1997. 

[25] ITU Recommendation H.221, “H.221: Frame structure for a 64 to 1920 kb/s 

channel in audiovisual teleservices”, July 1997. 

[26] ITU-T recommendation H.323v2, “H.323: Packet based multimedia 

communications systems”, Mar. 1997. 

[27] ITU-T recommendation H.324, “H.324: Terminal for low bit rate multimedia 

communication”, Feb. 1998.  

[28] ITU-T recommendation H. 223, “H.223: Multiplexing protocol for low bit rate 

multimedia communication”, Mar. 1996. 

[29] H. Schulzrinne et al, “RTP: A transport protocol for real time applications”, 

RFC1889, Jan. 1996. 



 

 

 

114

[30] J. C. Bolot, H. Crepin, and A. Vega-Garcia, “Analysis of audio packet loss in 

the internet”, 5th workshop on network and operating system support for digital 

audio and video, pp. 163-174, Durham, Apr. 1995.  

[31] S. Hemami and T. Meng, “Transform coded image reconstruction exploiting 

interblock correlation”, IEEE Trans. IP, vol. 4, pp.1023-1027, July 1995. 

[32] S. Aign and K. Fazel, “Temporal and spatial error concealment techniques for 

hierarchical MPEG-2 video codec”, IEEE Globecom, pp.1778-1783, June 1995. 

[33] W. Kwok and H. Sun, “Multi-directional interpolation for spatial error 

concealment”, IEEE Trans. Consumer Electronics, vol.39, pp.455-460, Aug. 1993. 

[34] Y. Wang, Q. F. Zhu and L. Shaw, “Maximally smooth image recovery in 

transform coding”, IEEE Trans. Commun., vol. 41, pp.1544-1551, Oct.1993. 

[35] H. Sun and W. Kwok, “Concealment of damaged block transform coded images 

using projection onto convex sets”, IEEE Trans. IP, vol. 4, pp.470-477, Apr. 1995. 

[36] W. M. Lam, A. Reibman and B. Liu, “Recovery of lost or erroneously received 

motion vectors”, IEEE ICASSP, vol. 5, pp. 417-420, April 1993. 

[37] J. Zhang, J. F. Arnold and M. R. Frater, ‘A cell-loss concealment technique for 

MPEG-2 coded video”, IEEE Trans. CSVT, vol. 10, pp.659-665, June 2000. 

[38] M. E. Al-Mualla, N. Canagarajah and D. R. Bull, “Error concealment using 

motion field interpolation”, IEEE ICIP, vol. 3, pp.512-516, Oct. 1998. 

[39] D. S. Turaga and T. Chen, “Model-based error concealment for wireless video”, 

IEEE Trans.  CSVT, vol. 12, pp.483-495, June 2002. 



 

 

 

115

[40] J. Huang and T. Chen, “Tracking of multiple faces for human–computer 

interfaces and virtual environments,” IEEE ICME, vol. 3, pp. 1563–1566, Aug. 

2000. 

[41] D. C. Youla and H. webb, “Image restoration by the method of convex 

projection: Part 1 – theory”, IEEE Trans. Medical Imaging, vol. MI-1, pp.81-94, 

Oct. 1982. 

[42] T. Hastie and W. Stuetzle, “Principal curves”, Journal of the American 

Statistical Association, vol. 84, pp.502-516, June 1989. 

[43] T. Cox and M. Cox, “Multidimensional Scaling”, London, Chapman and Hall, 

1994. 

[44] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally 

linear embedding”, Science, vol. 290, pp.2323-2326, Dec. 2000. 

[45] N. Kambhatla and T. K. leen, “Dimension reduction by local principal 

component analysis”, Neural Computation, vol. 9, pp.1493-1516, July 1997. 

[46] M. Tipping and C. M. Bishop, “Mixtures of probabilistic principal component 

analyzers”, Neural Computation, vol. 11, pp.443-482, Feb. 1999. 

[47] Face  databse: ftp://ftp.uk.research.att.com/pub/data/orl_faces.zip 

[48] M. Gu and S.C. Eisenstat, “A stable and fast algorithm for updating the singular 

value decomposition”, Technical Report YALEU/DCS/RR-966, Yale University, 

New Haven, CT, 1994. 

[49] S. Chandrasekaran et al, “An eigenspace update algorithm for image analysis”, 

Graphical Models and Image Processing, vol. 59, pp.321-332, Sept. 1997. 



 

 

 

116

[50] A. Levy and M. Lindenbaum, “Sequential Karhunen-Loeve basis extraction and 

its application to images”, IEEE Trans. IP, Vol. 9, pp.1371-1374, Aug. 2000. 

[51] P. Hall, D. Marshall and R. Martin, “Incremental eigenanalysis for 

classification”, British Machine Vision Conference, Vol.1, pp. 286-295, Sept. 1998. 

[52] O. Troyanskaya et al. “Missing value estimation methods for DNA 

microarrays”, Bioinformatics, Vol.17, pp.520-525, 2001. 

[53] T. Wiberg, “Computation of principal components when data are missing”, 

Second Symp. Computational Statistics, pp.229-236, 1976. 

[54] Face sequence: ftp://ftp.nt.e-technik.uni-erlangen.de/pub/eisert/sequences/ 

[55] K. R. Rao and J.J. Hwang, “Techniques and Standards for Image Video and 

Audio Coding”, Upper Saddle River, NJ, Prentice Hall, 1996. 

[56] M. Kampmann, “Automatic 3-D face model adaptation for model-based coding 

of videophone sequences”, IEEE Trans. CSVT, vol. 12, pp. 172-182, Mar. 2002  

[57] J. A.Provine and L. T. Bruton, “3-D model based coding-a very low bit rate 

coding scheme for video-conferencing”, IEEE ISCAS, vol. 2, pp.798-801, May 

1996. 

[58] M. F. Chowdhury et al., “A switched model-based coder for video signals”, 

IEEE Trans. CSVT, vol. 4, pp. 216-227, June 1994. 

[59] Z. Bian and X. Zhang, “Pattern recognition”, Beijing, The Tsinghua University 

Press, pp. 223-227, 1999. 

[60] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video 

compression”, IEEE Signal Processing Mag. Vol. 15, pp. 74-90, Nov. 1998. 



 

 

 

117

[61] L. Torres and D. Prado, “A proposal for high compression of faces in video 

sequences using adaptive eigenspaces”, IEEE ICIP, pp.I.189-192, Rochester, NY, 

Sept .2002. 

[62]  I. E. G. Richardson, “Video Codec Design”, Wiley, 2002. 

[63] H.264 reference model software : http://iphome.hhi.de/suehring/tml 

[64] Y.Wang, J. Ostemann and Y.Zhang, “ Video processing and communications”, 

Upper Saddle River, NJ, Prentice Hall, 2002. 

[65] R.C. Gonzalez and R.E. Woods, “Digital image processing”, Upper Saddle 

River, NJ, Prentice Hall, 2002. 

[66] K. Sayood, “Introduction to data compression”, San Francisco, CA, Academic 

Press, 2000. 

[67] Y.Wang and Q.Zhu, “Error control and concealment for video communication: a 

review”, Proceedings of the IEEE, vol. 8, pp. 974-997, May 1998. 

[68] H. Lee, D. H. Choi and C. S. Hwang, “Error concealment using affine transform 

for H. 263 coded video transmissions”, Electronics Letters, vol. 37, pp. 218-220, 

Feb 2001. 

[69] S. Kumar et al. “Error resiliency schemes in H.264/AVC standard”, JVCIR, vol. 

17, pp...., 2006. 

 



 

 

 

118

BIOGRAPHICAL INFORMATION 

 

Xuejun Hu was born in Anhui, China, in 1970. She received her B.S. degree in 

Electrical Engineering from Anhui University, China in 1992, her M.S. in Electrical 

Engineering from Shanghai University, China in 1995 and Ph.D degree in Electrical 

Engineering from University of Texas at Arlington in 2005. From 1995-1998, She was 

the R&D engineer at institute of image communication and information processing, 

Shanghai Jiaotong University. Her current research interests focus on image processing, 

advanced video coding, error concealment and communications. 


