

A FRAMEWORK FOR MODEL CHECKING OBJECT

ORIENTED SECURITY PROTOCOL

IMPLEMENTATIONS

by

PARIKSHIT A SINGH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2005

Copyright © by Parikshit A Singh 2005

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. David Kung for providing guidance,

support and motivation through the course of this research effort.

I am grateful to Dr. Che and Dr. Lei for serving on my committee. Finally, I

would like to thank all friends and members of family for their support during my

Masters education.

June 7, 2005

 iii

ABSTRACT

A FRAMEWORK FOR MODEL CHECKING OBJECT

ORIENTED SECURITY PROTOCOL

IMPLEMENTATIONS

Publication No. ______

Parikshit A Singh, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Dr. David Kung

With the rapid growth of the Internet, more and more vendors see the Internet as

a viable marketplace. Since the Internet is public, providing security in the presence of

malicious intruders has become paramount. Security protocols have been proposed to

protect systems. These protocols work by exchanging messages, many of which are

encrypted. Though it may take a long time for an intruder to break the underlying

encryption employed by the protocol, it is possible for the intruder to intervene in the

authentication process. It may take years before a crucial loophole is discovered in a

security protocol. Until then, its implementation may remain in use. There are several
 iv

methods for verifying security protocols from their specifications. A specification that is

successfully verified for some properties does not imply that the implementation created

from it will also satisfy those properties. In this paper, we show a framework for model

checking object oriented implementations of security protocols. According to this

framework, we reverse engineer security protocol implementations to UML sequence

diagrams for a particular use case. The sequence diagrams are then converted to state

machines for each principal participating in the use case. The state machine of each

principal is used to generate its Promela model. Promela is the language used by the

SPIN model checker. Once we have a Promela model for each principal involved in the

use case, we can use the SPIN model checker to check if a particular property is

satisfied. As a case study, we use an implementation of the NSPK protocol and check if

the implementation satisfies the property of authenticity. We conclude by showing that

the implementation is prone to an attack from an intruder and that the property of

authenticity is violated.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS... viii

Chapter

 1. INTRODUCTION……….. ... 1

 2. BACKGROUND……………... 3

 2.1 SPIN, Promela and Model Checking... 3

 2.2 Security Protocols…………….. 5

 2.3 UML……………………….. .. 6

 3. RELATED WORK………….. 7

 4. APPROACH……………….. 11

 4.1 Overview…………….. 11

 5. SEMANTICS…………… .. 15

 5.1 Sequence Diagram……………... 15

 5.1.1 Sequence Diagram of a Principal ... 16

 5.1.2 Scopes in a Sequence Diagram…... 18

 5.1.3 Precedence among Events in a Sequence Diagram 19

 5.2 Control-Flow State Machine……………….. 21

 5.2.1 Control-Flow State Machine of a Principal….......................... 22

 vi

 6. RULES……….…………… ... 23

 6.1 Rules to Generate Control-Flow State Machine of a Principal
 from its Sequence Diagram.. 23

 6.1.1 Directions to create Control-Flow State Machine
 from Sequence Diagram... 28

 6.2 Promela………………….. 34

 6.2.1 Introduction…………….….. 34

 6.2.2 Directions for writing Promela code from
 Control-Flow State Machine .. 36

 7. CASE STUDY – NSPK PROTOCOL……………. 38

 8. CONCLUSION AND FUTURE WORK…………….................................. 45

Appendix

 A. SEQUENCE DIAGRAM OF INITIATOR….….….. 48

 B. SEQUENCE DIAGRAM OF RESPONDER…. .. 50

 C. PROMELA CODE….. ... 52

REFERENCES .. 55

BIOGRAPHICAL INFORMATION... 58

 vii

LIST OF ILLUSTRATIONS

Figure Page

 4.1 Block diagram of the framework .. 12

 5.1 Sequence diagram, ,),,,(21 nmooqk = =m doSomething():void
 and =n 3.. 16

 5.2 Total sequence diagram showing principals p and r 17

 5.3 Sequence diagram of principal p... 18

 5.4 Sequence diagram ... 19

 5.5 Sequence diagram - and ... 20 ji qq *p ki qq p

 5.6 Sequence diagram - and ... 21 ji qq *p lj qq *p

 6.1 kXj qqq ** pp , k

r
XXj qqqq *** ppp and qXσ .. 24

 6.2 Sequence diagram and the corresponding precedence relations 26

 6.3 Rule I applied to case 1 ... 26

 6.4 Sequence diagram and the corresponding precedence relations 27

 6.5 Rule I applied to case 2 ... 27

 6.6 Algorithm to create the Start state of control-flow state machine 29

 6.7 Algorithm to complete the control-flow state machine
 initiated in figure 6.6 ... 30

 6.8 Parts of the sequence diagram and control-flow state machine
 of the initiator of the NSPK protocol .. 33

 7.1 A = Initiator, B = Responder, S = Trusted Third Party................................... 38

 viii

 7.2 Initiator sequence diagram (NSPK protocol) for the
 authentication use case .. 39

 7.3 Control-Flow state machine of initiator generated from
 the sequence diagram in figure 7.2.. 43

 ix

CHAPTER 1

INTRODUCTION

With the increased usage of distributed systems (like the Internet), where

resources and data are shared among several users located anywhere in the world, the

need for secure communication is paramount. Therefore various security protocols were

developed. Security protocols have three primary properties viz. authenticity, secrecy

and integrity.

In this work we show a framework for model checking OO implementation of

security protocols. We achieve this by reverse engineering the implementation to

sequence diagrams and control-flow state machines. Control-flow state machines are

defined in section 5.2. Then we generate Promela code from control-flow state machine

to verify a given property. To illustrate the framework, we use our Java implementation

of the NSPK protocol and reverse engineer it to Promela code. As a first step, we select

a use case and generate a sequence diagram for each principal participating in the use

case. Next, we translate the sequence diagrams to control-flow state machines through

well-defined rules. Finally, we generate Promela code for each principal from its

control-flow state machine and prove that the Promela model is prone to attack by an

Intruder. The main contributions of this paper are:

• Formal transformational semantics for UML sequence diagram and control-flow

state machine

 1

• A method for translating sequence diagrams to control-flow state machines

• A procedure to generate Promela code from the control-flow state machine

The structure of the paper is as follows: Section 2 gives a brief overview of

concepts like Model Checking, security protocol, UML sequence diagram, state

machine, Promela and the SPIN model checker. These are helpful to understand the

concept outlined in this paper. Section 3 gives a brief account of work that has already

been done in areas related to our work. Sections 4, 5 and 6 explain the detailed design

of our framework with definitions, lemmas, assumptions, rules and figures of the

initiator sequence diagram and control-flow state machine. Section 7 is a case study of

the NSPK protocol to demonstrate the framework. Section 8 summarizes the paper and

also highlights the future work. Appendices A and B provide complete sequence

diagrams for the implementation of the initiator and responder of NSPK [Clarke, E. M.

and Jacob, J., 1997] protocol. Appendix C provides the Promela code for the

authentication process employed by the initiator and responder in the NSPK protocol.

 2

 3

CHAPTER 2

BACKGROUND

2.1 SPIN, Promela and Model Checking

The term model checking designates a collection of techniques for the automatic

analysis of reactive systems. Subtle errors in the design of safety-critical systems that

often elude conventional simulation and testing techniques can be (and have been)

found in this way. Because it has been proven cost-effective and integrates well with

conventional design methods, model checking is being adopted as a standard procedure

for the quality assurance of reactive systems. The inputs to a model checker are a

(usually finite-state) description of the system to be analyzed and a number of

properties, often expressed as formulas of temporal logic, that are expected to hold of

the system. The model checker either confirms that the properties hold or reports that

they are violated. In the latter case, it provides a counterexample: a run that violates the

property. Such a run can provide valuable feedback and points to design errors. In

practice, this view turns out to be somewhat idealized: quite frequently, available

resources only permit to analyze a rather coarse model of the system. A positive verdict

from the model checker is then of limited value because bugs may well be hidden by the

simplifications that had to be applied to the model. On the other hand, counter-examples

may be due to modeling artifacts and no longer correspond to actual system runs. In any

case, one should keep in mind that the object of analysis is always an abstract model of

 4

the system. Standard procedures such as code reviews are necessary to ensure that the

abstract model adequately reflects the behavior of the concrete system in order for the

properties of interest to be established or falsified. Model checkers can be of some help

in this validation task because it is possible to perform “sanity checks”, for example to

ensure that certain runs are indeed possible or that the model is free of deadlocks [Merz,

S., 2001].

SPIN [Holzmann, G. J., 1997] is the most widely used formal verification tool

today. SPIN can be used to trace logical design errors in distributed systems design,

such as operating systems, data communications protocols, etc. The tool checks the

logical consistency of a specification. To verify a design, a formal model is built using

Promela, SPIN's input language. SPIN can be used in three basic modes:

• As a protocol simulator, allowing for rapid prototyping with a random, guided, or

interactive simulations

• As an exhaustive state space analyzer, capable of rigorously proving the validity of

user specified correctness requirements

• As a bit-state space analyzer that can validate even very large protocol systems with

maximal coverage of the state space (a proof approximation technique).

Promela (Protocol Meta Language) is a non-deterministic language, loosely

based on Dijkstra's guarded command language notation and C.A.R. Hoare's language

CSP, extended with some powerful new constructs. It contains the primitives for

specifying asynchronous (buffered) message passing via channels, with arbitrary

 5

numbers of message parameters. It also allows for the specification of synchronous

message passing systems. Mixed systems, using both synchronous and asynchronous

communications, are also supported.

The language can model dynamically expanding and shrinking systems: new

processes and message channels can be created and deleted on the fly. Message channel

identifiers can be passed from one process to another in messages. Correctness

properties can be specified as standard system or process invariants (using assertions),

or as general linear temporal logic requirements (LTL), either directly in the syntax of

next-time free LTL, or indirectly as Buchi Automata (expressed in Promela syntax as

Never Claims).

2.2 Security Protocols

Security protocols ensure that information gets exchanged in a secure manner.

Because security protocols are so important, it becomes essential to ensure that they are

indeed correct. Important kinds of correctness criteria are:

• Authenticity - a principal is actually whoever he/she claims to be.

• Secrecy - the contents of a secure communication must not be leaked to outsiders.

• Integrity - no outsider must be able to interfere with the communication.

These criteria can be verified by employing formal techniques like model

checking. To ensure a secure communication, security protocols employ the mechanism

of authenticating each entity involved in communication. The primary aim is to ensure

that none of the above three correctness properties are compromised. There are several

 6

security protocols being used in applications in various areas of computing. They are

thoroughly verified for any flaws before being implemented. Our approach provides a

way to model check such implementations (if they are object oriented). We view the

authentication process employed by each principal in different states, which allows us

to model check the process.

2.3 UML

Unified Modeling Language (UML) is a standardized notation for object-

oriented analysis and design. It is a graphical language for visualizing, specifying,

constructing, and documenting the artifacts of a system. A UML model is an abstraction

and does not contain every detail of the system. A model is represented as a set of

diagrams in UML; each of these diagrams has its own set of elements. Some UML

diagrams pertinent to our work are:

• Class diagrams: They describe the static structure of the system, class abstraction

and relationships between classes.

• Sequence Diagrams: Sequence diagrams describe interactions among classes in

terms of an exchange of messages over time.

• State Chart Diagrams: State chart diagrams describe the dynamic behavior of a

system in response to external event. State chart diagrams are especially useful in

modeling reactive objects whose states are triggered by specific events. There are other

diagrams too, but we do not use them in our work.

 7

CHAPTER 3

RELATED WORK

There has been a lot of work in the areas of protocol verification using the SPIN

model checker, formalizing UML state machines and reverse engineering, all of which

is related to our framework. UML is used to model all kinds of systems. Modeling tools

are available that make creation of UML models easy and can also generate code from

some of the UML diagrams. But a UML model must still be verified as it can have

behaviors not expected by the designers. This requires formalization of UML state

machines. Some work has already been done in this direction [Latella, D., Majzik, I.

and Massink, M., 1999]. This formalization is needed for code generation, simulation

and verification of UML state charts. Lacey and DeLoach [Lacey, T. and DeLoach, S.,

2000] transform state transition diagrams to formal modeling language Promela to

verify multiagent conversations.

UML state charts have become a successful specification method for describing

dynamic aspects of object behaviors. Model checking techniques have been applied to

state charts and to variants of state charts [Tenzer, J., Stevens, P., 2003]. Usually, the

encoding is based on a static precomputation of the possible transitions between state

configurations. Lilius and Paltor [Paltor, I., Lilius, J., 1999] have defined an operational

semantics of UML state machines in Promela as a basis for vUML, based on the SPIN

model checker. In the vUML system, the UML model is translated to Promela, input

 8

language for SPIN. If SPIN finds an error in the system it produces error trace of the

counter-example. This counter-example is translated to UML sequence diagram and

displayed to the user. The user does not need to know PROMELA or SPIN to use

vUML. vUML is targeted towards the designer of object oriented systems to verify

UML designs. Our framework targets the tester of object oriented code. We reverse

engineer object oriented code to interaction diagram and control-flow state machine.

Then we verify if some desirable properties are satisfied by the implementation.

HUGO[Schafer, T., Knapp, A. and Merz, S., 2001], proposed by Schafer, Knapp, Merz,

is a prototype tool designed to automatically verify whether the interactions expressed

by a collaboration diagram can indeed be realized by a set of state machines. It compiles

the state machines into a Promela model, and collaborations into sets of Buchi automata

(“never claims”). The model checker SPIN is then called upon to verify the model

against the automata. Model checking has proven to be a very useful technique for

verifying security protocols. By modeling protocols as finite state machines and

examining all possible execution traces, model checking can be used to find errors in

system design. Security protocols are very subtle and can have bugs that are difficult to

find. By examining all execution traces of a security protocol in the presence of a

malicious user with well-defined capabilities, it can determine if a protocol does indeed

enforce its security guarantees. If not a sample trace of an attack on a protocol can be

provided. However, model checking based approaches are applicable to finite state

systems and suffer from the state explosion problem.

 9

One of the earliest attempts at formalizing security protocols involved the

development of a new logic that could express and deduce security properties. The

earliest such logic is referred to as the BAN Logic proposed by Burrows, Abadi and

Needham [Burrows, M., Abadi, M. and Needham, R., 1989]. BAN logic syntax

provides constructs for expressing intuitive properties and creating rules, which can be

used to deduce security properties based on assumptions made about the protocol. A

number of extensions to BAN logic have been proposed since its introduction and it

remains popular because of its simplicity and high level of abstraction. Dolev and Yao

[Dolev, D., Yao, A., 1989] took a different approach to achieve this formalism. Their

approach was to model a protocol by defining a set of states and a set of transitions

taking into account the intruder, exchange of messages between principals and

knowledge of principals. The state space could then be checked to see if a particular

state could be reached. This approached was adapted and extended by Meadows in her

PROLOG based protocol analyzer [Meadows, C., 1994], which later evolved to become

the NRL protocol analyzer [Meadows, C., 1994]. In her system, the user can model the

protocol as set of rules, which describe how intruder can generate knowledge by

encryption and decryption of messages and by receiving responses from other

principals. To perform verification user has to provide description of the insecure state.

The model checker searches backwards to find an initial state. If initial state is found

then the system is said to be insecure else it is considered an unreachable state. Woo

and Lam [Woo, T. Y. C. and Lam, S. S., 1993] proposed an intuitive model for

authentication protocols. Their model resembles sequential programming where

 10

principals are modeled independently. Other work in this area has involved trying to use

generic verification tools to verify security protocols. Lowe [Lowe, G., 1996] uses the

FDR model checker for CSP [Hoare, C. A. R., 1985] to verify security protocols. In his

approach, principals and intruders are modeled as CSP processes. The intruder process

can deduce new knowledge by using some inference rules on a set of existing facts. All

communication is assumed to go through the intruder. Security properties are specified

in trace semantics. FDR verifies a security protocol by enumerating all the behaviors of

the protocol and checking whether they are allowed by the trace semantics of desirable

security properties. Brutus developed by Clarke et al. is a special-purpose model

checker for verifying security protocols [Marrero, W., Clarke, E. M. and Jha, S., 1997].

In Brutus, principals and the intruder are modeled as named processes, and a protocol is

modeled as an asynchronous composition of a set of named processes. Security

properties are specified using a variant of linear-time temporal logic. The model-

checking algorithm employed in Brutus is based on state exploration. We take a

different approach, since we start from the implementation (object oriented) of the

protocol. This allows us to find problems in the implementation that cannot be found in

specification testing. We get the sequence diagram from the implementation for a

specific use case and generate the control-flow state machine from it. This allows us to

model check the implementation for specific properties. The next section provides an

overview of the framework.

CHAPTER 4

APPROACH

4.1 Overview

In this section we provide an overview of our approach. We assume that the

Java programming language is used but the result is not limited to Java. The framework

consists of the following steps:

• Reverse engineer the Java implementation to sequence diagram using an appropriate

tool like Together Control Center.

• Convert the sequence diagram of each participating principal to its control-flow

state machine.

• Write Promela code for each principal from its control-flow state machine.

• Verify if a desired property is satisfied for the specific use case using the SPIN

model checker.

We propose the use of a tool like OOTWorks or Together Control Center to

generate sequence diagrams from Java source code. In order to generate a sequence

diagram using Together Control Center, we do not need to map the diagram to a use

case. We key into a method that triggers a sequence of events of the object. These

events define the phase or aspect of the object during which, we can conclusively

determine if a desired property is violated.

 11

OO
implementation
of security
protocol

Control-Flow State
Machine

Sequence Diagram to Control-
Flow State Machine Translator

Control-Flow State
Machine to Promela Promela

Sequence
Diagram Reverse

Engineering

Figure 4.1 Block diagram of the framework

We provide an outline of the framework in the steps 1 through 5 below. The

first component in figure 4.1 is Reverse Engineering to generate sequence diagram. This

component is broken up into steps 1 and 2 below. Steps 3 and 4 explain the flow of the

remaining block diagram.

Step 1: Identify the use case and generate sequence diagram for the use case

Identify the use case to generate the sequence diagram. The use case depends on

the property to be verified. In order to generate a sequence diagram using Together

Control Center, we need not map the sequence diagram to a use case.

Step 2: Generate sequence diagram for each principal and exclude objects from the

sequence diagram that are not directly related to the pertinent use case.

 First, select the method of the principal that triggers a sequence of interactions

which form the use case. Then generate the sequence diagram using the utility provided

by Together Control Center. This process will generate a sequence of interactions or

events of the specific object or principal. In other words, it will generate a sequence

 12

diagram of a selected principal. Together also allows the user to exclude selected

classes before generating sequence diagrams for any use case. APIs like

java.lang.System, java.lang.String, java.net.*, java.math.*, which are not directly

related to the use case can be safely excluded. For example, appendix A shows the

sequence diagram of the initiator of the NSPK protocol for the authentication use case.

We removed objects not directly related to the use case and generated the sequence

diagram shown in figure 7.2. This diagram, although less detailed, is fully informative

and easy to understand.

Step 3: Create control-flow state machine for each participating principal from its

sequence diagram

Control-flow state machine is a control flow graph of the principal that has state

nodes and transition arcs interconnecting the nodes. It is different from the attribute-

value based state machine mentioned in the UML specification. We provide more

details on differences between the two in section 5.2

Step 4: Write Promela code for each principal from its control-flow state machine and

use the SPIN model checker to verify properties of the selected use case.

Use the control-flow state machine of a principal to write its corresponding

Promela model. We outline directions to generate a Promela model from a control-flow

state machine in sections 6.2.1 and 6.2.2. Specifiy the property chosen for verification

in linear temporal logic (LTL), so that it can be verified using the SPIN [Holzmann, G.

J., 1997] model checker.

 13

From the next section we explain in detail how to follow the above steps. We

provide a set of formal rules to generate control-flow state machine from a sequence

diagram. To provide sufficient background for the rules, we detail formal

transformational semantics of the UML sequence diagram. Then we give an explanation

of control-flow state machine and present its semantics in context of our work. The

semantics of sequence diagram and control-flow state machine are explained in section

5. Section 6 explains rules to convert sequence diagram to control-flow state machine

and generate Promela model from the control-flow state machine respectively.

 14

CHAPTER 5

SEMANTICS

5.1 Sequence Diagram

We provide transformational semantics for a sequence diagram that enable us to

transform it to a control-flow state machine for a principal. Our definition of sequence

diagram has two dimensions, viz. the vertical dimension and the horizontal dimension.

The former represents time, and the latter represents different objects. This also forms

the basis for the definition of the UML sequence diagram. We define a sequence

diagram as a tuple with two elements, viz. the set of objects (horizontal dimension) and

the set of events in time (vertical dimension).

Definition 1 – Total Sequence Diagram: A total sequence diagram for use case ‘u’ is

the tuple , where O is the set of objects participating in the use case

and is the set of events or interactions among objects inO .

>=< QOuD ,)(

Q

The set of events Q in definition 1 is the relation NMOOQ ×××⊆ where,

• is the set of all objects O

• M is the set of all method calls in the sequence diagram

• is the set of non-zero natural numbers N

For example, let the sequence diagram in the figure 5.1, shown below be

. The events , , and >=< QOuD ,)(iq jq kq lq Q∈ .

 15

doSomething():void

lq

kq

jq

iq

o1:Class1 o2:Class2

Figure 5.1 Sequence diagram,),,,(21 nmooqk = , =m doSomething():void and =n 3

For an event q , is a value that indicates the relative order of its appearance

in the sequence diagram. For the first event (the event that triggers the use case), this

value is ‘1’. For the second event, this value is ‘2’ and so on. For example, in figure 5.1,

 and . Therefore, if an event appears before another event , as

in the case of figure 5.1, then

Nq |

1| =Niq 3| =Nkq iq jq

NjNi qq || < .

5.1.1 Sequence Diagram of a Principal

A total sequence diagram of a security protocol implementation contains all

principals and objects participating in the use case. We can, however focus on a

particular principal and generate a sequence diagram, which shows the principal’s

interactions only.

Definition 2 – Sequence Diagram of a principal: Given the total sequence diagram

for a use case ‘u’ as , the sequence diagram of a principal ‘>=< QOuD ,)(p ’ is the

 16

tuple , where is the set of objects excluding all principals

except p and is the set of events or interactions among objects in .

>=< ppp QOuD ,|)(pO

pQ pO

p:Principal r:Principal O1:Object1 O2:Object2

Figure 5.2 Total sequence diagram showing principals p and r

In definition 2, we have the following.

• , where }{)(pPOOp ∪−= P is the set of principals and O is the set of all objects

in the total sequence diagram >=< QOuD ,)(.

• , where represents all time-ordered outgoing and

incoming events of the principal

NMOOQ pppp ×××⊆ pQ

p .

•
)},,,(),,,(),,,(

))()(,(|,,,{

QnmppQnmpoQnmop

NnMmOponmooQ ppjip

>∈<∧>∈<∧>∈<

∈∃∈∃∈∃><=

 As an example for definition 2, compare figures 5.2 and 5.3. Figure 5.2 shows

the total sequence diagram assuming there are two principals p and r in the set P . On

 17

the other hand, figure 5.3 shows the sequence diagram of principal p. From this point

forward, we shall refer to events for a particular principal, i.e. . This allows us to

separate roles of each principal in and construct its control-flow state machine.

pQ

P

p:Principal O1:Object1 O2:Object2

Figure 5.3 Sequence diagram of principal p

5.1.2 Scopes in a Sequence Diagram

A scope is a block of code between an opening curly brace, i.e. ‘{‘, and a

closing curly brace, i.e. ‘}’. Together Control Center specifically highlights1 scopes due

to looping constructs and conditional statements. We make use of only those scopes that

result due to the occurrences of looping constructs and conditional statements.

Figure 5.4 shows a sequence diagram with various events for a principal p.

Events and are in the outermost scope and event is in a scope nested within

the outermost scope. For a principal p, we denote the outermost scope as and

iq jq kq

)0(pS

 18

1 Scopes due to looping constructs and conditional statements are highlighted dark in the sequence
diagrams generated by Together Control Center. This highlighting is visible in the sequence diagram
shown in figure 10.

inner scopes as i = 1,2,… based on the level of nesting. For example, event in

figure 5.4 is in scope and event is in scope . In order to distinguish

scopes at the same level of nesting within a conditional construct (“if-else” or “switch”

like constructs), we assign a superscript number starting from ‘0’ to every scope within

such a construct. As an example, scopes and in figure 5.4.are

distinguished by their superscript numbers 0 and 1 respectively.

),(iS p iq

)0(pS kq)1(pS

)1(0
pS)1(1

pS

lq

Loop(condition)

 jq

kq

 iq

)0(pS

)1(pS

p:Principal

)1(1
pS mq

If(ω)

else
)1(0

pS

Figure 5.4 Sequence diagram

5.1.3 Precedence among Events in a Sequence Diagram

Definition 3 – Precedence and Precedence Relation: For any two events

 precedes implies that the procedural control reaches before it reaches .

This is denoted as (read as precedes). The relation between and is

the Precedence relation.

pji Qqq ∈, ,

iq jq iq jq

ji qq p iq jq iq jq

 19

For example, in the sequence diagram shown in figure 5.5, procedural control

reaches before , hence . A related and more significant term – immediate

precedence is defined below.

iq jq ji qq p

Definition 4 – Immediate Precedence: For any two events such that

, if there is no event

pji Qqq ∈,

ji qq p pX Qq ∈ such that and then

immediately precedes . We write this relation as .

Xi qq p jX qq p iq

jq ji qq *p

As an example, consider the sequence diagram in figure 5.5. The relation

between events and is (immediately precedes) but the relation

between events and is (precedes).

iq jq ji qq *p iq jq

iq kq ki qq p iq kq

 kq

iq

 jq

a: Class A

Figure 5.5 Sequence diagram - and ji qq *p ki qq p

Corollary 1:) . The reverse is not necessarily true.)(,(*
jijipji qqqqQqq pp →∈∀

Lemma 1: The presence of an unconditional jump (like ‘break’) affects precedence

relations.

 20

Procedural control changes due to presence of unconditional jumps. As per

definition 3, precedence relies on procedural control, and therefore it changes due to the

presence of unconditional jumps. The figure 5.6 below illustrates this assertion. In

figure 5.6, procedural control will never reach , therefore there will be only two

precedence relations viz. and .

kq

ji qq *p lj qq *p

lq
kq

Breakjq

iq
Loop(condition)

p:Principal

Figure 5.6 Sequence diagram - and ji qq *p lj qq *p

5.2 Control-Flow State Machine

Definition 5 - State: A state in a Control-flow State Machine is a condition during the

life of the principal or an interaction during which it performs some action. To some

extent, this definition is similar to the definition of a state specified in the Unified

Modeling Language Specification, version 1.5 (formal/03-03-01), March 2003.

The OMG UML specification depicts the state machine as a specification that

describes all possible behaviors of some dynamic model element. Behavior is modeled

as a traversal of a graph of state nodes interconnected by one or more joined transition

arcs that are triggered by dispatching a series of event instances [Object Management

 21

Group. OMG Unified Modeling Language Specification, version 1.5 (formal/03-03-01).

March 2003].

In our case, the model element is a principal of a security protocol and its

control-flow state machine describes its behavior for a specific aspect of its lifetime. We

also state that the control-flow state machine is not a complete state machine in itself. It

is a control flow graph of the principal that has state nodes and transition arcs

interconnecting the nodes. It is different from the attribute-value based state machine in

the UML specification. The control-flow state machine is like a control flow graph,

whereas the state machine in UML has attributes and other features that we can safely

exclude to check control flow intensive properties.

5.2.1 Control-Flow State Machine of a Principal

Definition 6 – Control-Flow State Machine of a principal: The Control-Flow State

Machine of a principal ‘ p ’ is the tuple >Σ=< pppSM γ, , which consists of a set of

states and a transition relation pΣ pγ .

The transition relation is ppp Σ×Λ×Σ⊆γ , where

• is the set of all states in . pΣ pSM

} principal of machine state in the state a is |{ pp σσ=Σ

• is the set of all transitions taken by principal p between states in the set Λ pΣ .

}place it takesh under whiccondition theis andn transitio theis |][{ φλφλ=Λ

superscript numbers 0 and 1 respectively.

 22

CHAPTER 6

RULES

6.1 Rules to Generate Control-Flow State Machine of a Principal from its
Sequence Diagram

In this part, we describe rules to generate control-flow state machine of a

principal from its sequence diagram. In other words, given a sequence diagram

, we explain how to generate the control-flow state machine >=< ppp QOD ,|

>Σ=< pppSM γ, of principal p. Rule I below, is our fundamental rule for creating

states of a principal’s control-flow state machine from its sequence diagram

. >=< ppp QOD ,|

Rule I: For all events , jq Xq and within the same scope, where kq Xq is between the

two incoming events and , such that , where jq kq k
r
XXj qqqq *** ppp Xq is an

outgoing event and its return event is r
Xq

Do the following.

• Create the state - Create a state corresponding to event Xq and denote it .

Represent the state according to UML specifications as a “rounded rectangle” with

two compartments, viz. the name compartment and the internal transitions

compartment.

qXσ

• Create transitions to and from the state -
 23

o Create transition (corresponding to event) leading into state .][j
qj φλ jq qXσ

o Create transition (corresponding to event) leading out of state .][k
qk φλ kq qXσ

o For the transitions and ,][j
qj φλ][k

qk φλ jφ and kφ are the respective

conditions under which the events and are fired. jq kq jφ = kφ = NULL if both

 and are not within scopes of conditional constructs (like “if-else”) jq kq

• Name the state - Enter the name in the name compartment of the “rounded

rectangle” that diagrammatically represents . qXσ

• Provide an action expression for the state: Enter the action expression as

“ Xm / Xa ” in the internal transitions compartment, where

o MXX qm |= is the method name of event Xq

o Xa is the action performed by the principal when it is in the state . qXσ

Example 1: Consider the sequence diagrams shown in figure 6.1.

kq

Xq

qXσ

r
Xq

qkλ qjλ

<State Name> jq

p:Principal

Xm / Xa

Figure 6.1 kXj qqq ** pp , k
r
XXj qqqq *** ppp and qXσ

 24

The precedence relations among events in figure 6.1 are and

. We apply rule I to these precedence relations to get the state

 with transitions and shown on the right hand side of figure 6.1.

kXj qqq ** pp

k
r
XXj qqqq *** ppp

qXσ qjλ qkλ

The example provided to support rule I above demonstrates the case where there

is a single transition to exactly one state and a single transition leading out of it. Rule I

can be applied to cases where there are multiple states and transitions. Below, we

discuss two such cases and explain how rule I may be applied to them. The rule,

however, is not limited to the two cases. All references made hereinafter to the return

event of an outgoing event, say will be denoted as q rq

Case 1 – Transitions to/from multiple states: In the sequence diagram illustrated in

figure 6.2, if condition is true then procedural control will transfer from to and

then to . Then by definition of precedence we will have .

However, if condition is false then we will have . The precedence

relationships are shown diagrammatically on the right hand side of figure 6.2.

lq iq

nq n
r
iil qqqq *** ppp

n
r
jjm qqqq *** ppp

Apply rule 1 to the precedence relations in figure 6.2 to get states and transitions

leading into and leading out of the states as shown in the figure below.

 25

precedes precedes

qm

nq

)1(1
pS

jq

iq)1(0
pS

)0(pSp:Principal

else
precedes precedes

precedesprecedes

qi qj

qn

n
r
iil qqqq *** ppp AND n

r
jjm qqqq *** ppp

If(condition)

ql

lq

mq
r
iq r

jq

Figure 6.2 Sequence diagram and the corresponding precedence relations

qmλ [else]

qnλqnλ

qlλ [condition]

jm / ja im / ia

qiσ qjσ

Figure 6.3 Rule I applied to case 1

Case 2 – Multiple transitions to/from one and only one state: In the sequence

diagram illustrated in figure 6.4, if condition is true then procedural control will transfer

from to and then to . Then by definition of precedence we will have

. Similarly, if condition is false then we will have

lq iq mq

m
r
iil qqqq *** ppp

 26

n
r
iil qqqq *** ppp . The precedence relationships are shown diagrammatically on the

right hand side of figure 6.4.

precedes

precedes

lq

lq

mq

)1(1
pS

If(condition)

iq

)1(0
pS

)0(pS

p:Principal

else
n

q

precedesprecedes

r
iq

qm
qn

n
r
iil qqqq *** ppp AND n

r
iil qqqq *** ppp

qi

Figure 6.4 Sequence diagram and the corresponding precedence relations

Apply rule 1 to the precedence relations in figure 6.4 to get states and transitions

leading into and leading out of the states as shown in the figure below.

qlλ

im / ia

qiσ

qnλ [else] qmλ [condition]

Figure 6.5 Rule I applied to case 2

 27

Rule II: Do not create more than one state with the same name in the control-flow state

machine.

This rule is adopted for clarity and to avoid unnecessary confusion. If a state

 is created using rule 1, then we explicitly prohibit creating another state that is

same as . The OMG Unified Modeling Language Specification, version 1.5, March

2003 states, “It is undesirable to show the same named state more than once in the same

diagram, as confusion may ensue”. If there is a circumstance in which, application of

rule I is resulting in the creation of a new state that is the same as an already created

state, then do not create the new duplicate state. Instead direct the transition to the

already created state.

qXσ

qXσ

6.1.1 Directions to create Control-Flow State Machine from Sequence Diagram

The directions mentioned below outline steps to generate a control-flow state

machine of a principal from its sequence diagram. They are based on the following

assumptions.

• The sequence diagram of the principal (p in this case) is defined. >=< ppp QOD ,|

• Rules I and II described in section 6.1 (herein referred to as rule I and rule II) are

defined

• Unconditional jumps (like break) within looping constructs are visible in the

sequence diagram

 28

We use the following conventions for algorithms in figures 6.6 and 6.7. The last

two points are inspired from the conventions adopted by Cormen et al. in [Cormen, T.

H., Leiserson, C. E., Rivest and R. L., Stein, C., 2001].

• The event represents the return event of an outgoing event . rq q

• References made to any transition imply , where qλ][φλq φ is the condition.

• “NULL” is used to represent an empty set.

• Multiple assignment like eji ←← assigns to variables i and j the value of e .

• The symbol “ ” indicates that the remainder of the line is a comment. >

Now, follow the directions given below to create a control-flow state machine

>Σ=< pppSM γ, for principal p.

(i) The Start state: Create the first state as the Start state. Create the transition leading

to this state as , where is the event that triggers the use case. qiλ iq

Input: Sequence diagram >=< ppp QOD ,|

Let be the event that triggers the use case iq

Let be an incoming event such that jq ji qq *p

Initially, let NULLpp ←←Λ←Σ γ

Do }{ START
pp σUΣ←Σ

},{ qjqi λλUΛ←Λ

At this point the relation pγ is NULL

Figure 6.6 Algorithm to create the Start state of control-flow state machine

 29

 Proceed with event from the algorithm in figure 6.6. jq

 Let Let and be empty. NULLQQ out ←←,σ > outQ ,σ Q

 Initially, let Initialize and }{, jin qQQ ←← σσ > inQ ,σ σQ

 CreateSM (,) inQ ,σ σQ

 1. ina Qq ,σ∈∀

 2. Do Let ain qq ←,σ

 3. such that () and is incoming pb Qqq ∈∀ , b
r

in qqqq ***
, pppσ bq

 4. Do Let bout qq ←,σ

 5. Apply rule I to , q and Represent in UML. inq ,σ outq ,σ > qσ

 6. Add the state to the set of states. }{ q
pp σUΣ←Σ >

 7. will have events forming }{qQQ U← > σQ

> the most recently created state.

 8. such that or σQqc ∈∀ inc qq ,
*

σp in
r
c qq ,

*
σp

 9. Do Transitions into and out of . },{ ,, outqinq σσ λλUΛ←Λ > qσ

 10. Add ordered-pair to relation)},,{(, qinqqc
pp σλσγγ σU← > pγ

 11. }{ ,,, outoutout qQQ σσσ U←

 12. outin QQ ,, σσ ←

 13. QQ ←σ

 14. Reinitialize and . NULLQQ out ←←,σ > outQ ,σ σQ

 15. If Then If is non-empty, 0|| , >inQσ > inQ ,σ

 16. Do CreateSM (,) Recursively call CreateSM. inQ ,σ σQ >

 17. Else

 18. Do return >Σ=< pppSM γ, Output: > pSM

Figure 6.7 Algorithm to complete the control-flow state machine initiated in figure 6.6

(ii) Apply rule I subsequently, beginning with the event(s) that form transition(s)

leading out of the most recently created state.

 30

(iii) At each stage of applying rule I, verify that rule II is never violated. In other words,

ensure that more than one state with the same name is never created.

(iv) The End state: Label the state that indicates a successful completion of the use case

as the End state.

(v) The Invalid End state: Optionally, label the state that indicates an unsuccessful

completion of the use case as the Invalid End state.

Example 2: This example is an exercise to demonstrate the application of rules

explained in section 6.1 on a specific use case of the NSPK protocol. Consider a part of

the sequence diagram of the Initiator (left hand side of the figure 6.8) for the

authentication use case. The full sequence diagram is given in figure 7.2.

We apply rules and directions provided in section 6.1 and generate states and

transitions in the following manner.

• The Start state: The event that triggers the use case has label

processInputAndSend(String[]):void. The events and (labeled

createMessage) satisfy the relation . Therefore, proceeding as directed in

point (i) of section 6.1.1, we create the Start state with the transition labeled

processInputAndSend(String[]):void leading to this state. At this stage, we have

 = { } and = { , }.

iq

iq jq

ji qq *p

pΣ STARTσ Λ qiλ qjλ

• Continuing forward, we work as directed in the algorithm shown in figure 6.7 to

support points (ii) and (iii) of section 6.1.1. We begin with the “outer” loop at line 1

 31

with , where has the label createMessage. The “inner” loop begins

at line 3, for all events , in such that , where is .

The events

}{, jin qQ =σ iq

q bq pQ bin qqq **
, ppσ inq ,σ iq

Xq , in and kq pQ Xq , in pass the condition to enter the “inner”

loop. Thus, we make two passes through the “inner” loop, one each for

 and , before the “inner” loop

terminates. The “outer” loop also terminates since we started with just one element

 in . At this stage, we have

lq pQ

k
r
XXj qqqq *** ppp l

r
XXj qqqq *** ppp

iq inQ ,σ },{, lkout qqQ =σ , which is assigned to at

line 12. Also, the set of states

inQ ,σ

pΣ has a newly added state viz. the Encrypt state or

, and the set of transitions qXσ Λ , populated with newly added transitions and

 becomes { , , , }. At line 16, we make a recursive call to

CreateSM(,), with

qkλ

qlλ qiλ qjλ qkλ qlλ

inQ ,σ σQ },{, lkin qqQ =σ and }{ XqQ =σ as arguments.

• Now starting with the “outer” loop at line 1, we have },{, lkin qqQ =σ ,

and the empty sets and Q . First, let us iterate with = . This allows

only one pass through the “inner” loop, i.e. for . As a result, we

add the Sending state to along with the transition to

}{ XqQ =σ

outQ ,σ inq ,σ kq

m
r
YYk qqqq *** ppp

pΣ qmλ Λ . Next, we iterate

through the “outer” loop with = . This also allows us exactly one pass

through the “inner” loop, i.e. for . The “inner” and “outer”

loops terminate with

inqσ , lq

n
r
ZZl qqqq *** ppp

},{, nmin qqQ =σ at line 12 and },{ ZY qqQ =σ at line 13. At

 32

this stage, the set of states pΣ has the Start, Encrypt and Sending states, added in

that order. The set of transitions Λ has elements { , , , , , }.

The right hand side of figure 6.8 shows the states and transitions created during the

iterations described above. See the complete control-flow state machine of the

initiator in figure 7.2.

qiλ qjλ qkλ qlλ qmλ qnλ

qi

receive() close authentication()

Create
Message

 [messageNo==1]
 send()

qk

 r
Zq

 r
Yq

 r
Xq

out.print()

out.print()

qn

Break

receive()

send()

send()

encrypt()

createMessage

 qZ

 qY

 qX

qm

else

qj

ql

If(messageNo ==1)

While()

close authentication()

[else]send() [messageNo==1]
send()

[else]send()

SENDING

END

m
r
YYk qqqq *** ppp AND n

r
ZZl qqqq *** ppp

ENCRYPT

START

ProcessInputAndSend(String[])

k
r
XXj qqqq *** ppp AND l

r
XXj qqqq *** ppp

ProcessInputAndSend(String[])

 33

Figure 6.8 Parts of sequence diagram and control-flow state machine of the initiator of
the NSPK protocol

Now starting with the “outer” loop at line 1, we have ,

 and the empty sets and Q . First, let us iterate with = . This

allows only one pass through the “inner” loop, i.e. for . As a

result, we add the Sending state to

},{, lkin qqQ =σ

}{ XqQ =σ outQ ,σ inq ,σ kq

m
r
YYk qqqq *** ppp

pΣ along with the transition to . Next, we

iterate through the “outer” loop with = . This also allows us exactly one pass

through the “inner” loop, i.e. for . The “inner” and “outer” loops

terminate with at line 12 and

qmλ Λ

inq ,σ lq

n
r
ZZl qqqq **p* pp

},{, nmin qqQ =σ },{ ZY qqQ =σ at line 13. At this stage,

the set of states has the Start, Encrypt and Sending states, added in that order. The

set of transitions Λ has elements { , , , , , }. The right hand side

of figure 6.8 shows the states and transitions created during the iterations described

above. See the complete control-flow state machine of the initiator in figure 7.2.

pΣ

qiλ qjλ qkλ qlλ qmλ qnλ

6.2 Promela

6.2.1 Introduction

In this section we introduce the basics of constructing a Promela model.

Promela has a construct called proctype that models a principal. The proctype of each

principal will contain its part of the conversation. The idea is to begin the proctype in

the START state and end in the END state, while moving from one state to another only

if there is a transition from that state to the other state.

The initial steps to write the Promela code are to declare and define messages

for communication between the principals and define a channel for the communication.
 34

 35

Messages must be declared using an mtype declaration. This declaration would typically

contain keys, nonces and identities of all principals, e.g.

mtype = {<principal1>, <principal2>, …,

 <nonce1>, <nonce2>, …,

 <key1>, <key2>, …,

 <msg1>, <msg2>, …};

The next step is to define the general form of message shared by all principals

and the channel to send messages. The message can consist of an encrypted part and

unencrypted part, where each part is composed of ‘mtype’ enumeration types.

typedef message = {<key>, <mtype>, <mtype>, …};

Once the message is declared, the channel for communication may be declared.

This is made possible with the keyword chan as shown below.

chan network = [0] of {…};

An index ‘[0]’ indicates a synchronous channel, i.e. there is no buffer for the

messages. This indicates that there can be at most one message in the channel at any

given time. A state can be expressed in Promela by using a label as “STATE-1:”, which

is similar to a label in the C programming language.

Promela allows switching to a specific label within procedural code by using the

goto keyword. The following statement shows how to use goto to move a label (STATE-

2 in this case).

 36

goto STATE-2;

The symbols ‘!’ and ‘?’ are used for sending and receiving messages

respectively. For example, the following Promela code is for receiving a message

(“data”) from the network channel

network ? data;

The following Promela code is for sending a message (“data”) through the

network channel

network ! data;

6.2.2 Directions for writing Promela code from Control-Flow State Machine

Follow the directions below to write Promela code for a principal from its control-flow

state machine.

• Start writing Promela code by declaring an mtype, defining the message and

declaring the channel of communication.

• Represent each state within a separate label. For example, use the label “START:”

to represent the start state.

• Begin with the “START:” state label and use the goto keyword to move control

from one state to another, until the final or end state is reached. Use goto to transfer

control from one state label, say A to another, say B only if there is a transition from

state A to state B in the control-flow state machine.

• If a transition in the control-flow state machine from state A to state B is guarded by

a condition then enclose the goto within an if-else Promela construct.

 37

• Within each state label, write the action that is performed when the principal is in

that state. If the action is guarded by a condition then enclose it within an if-else

Promela construct.

Following the above steps, it is straightforward to write Promela code of a

principal from its control-flow state machine. Given a Promela model it is possible to

verify whether or not a property holds for the model. This can be accomplished with the

model checker SPIN [Holzmann, G. J., 1997]. The property may be specified in linear

temporal logic (LTL). If the property does not hold true for the Promela model then

SPIN provides a counter example.

CHAPTER 7

CASE STUDY – THE NSPK PROTOCOL

We use a Java implementation of the Needham Schroeder Public Key [Clarke,

E.M. and Jacob, J., 1997] protocol as a case study to demonstrate our framework.

Section 4.1 describes the steps that need be followed in order to apply the framework.

We step through all of those steps and explain how to apply them for the NSPK

protocol.

Step 1: Identify the use case and generate sequence diagram for the use case

We choose the authentication use case of the NSPK protocol. This

authentication process has seven steps, which are outlined below. In these steps, A and

B represent initiator and responder roles respectively. S is the server or the trusted third

party. Na and Nb are nonces of A and B respectively. Ka and Kb are public keys of A

and B respectively.

(i) A S : A, B

(ii) S A : {Kb, B}Ks
(iii) A B : {Na, A}Kb
(iv) B S : B,A
(v) S B : {Ka, A}Ks

(vi) B A : {Na, Nb}Ka
(vii) A B : {Nb}Kb

• A B : {Na, A}Kb
• B A : {Na, Nb}Ka
• A B : {Nb}Kb

Figure 7.1 A = Initiator, B = Responder, S = Trusted Third Party

 38

 39

Figure 7.2 Initiator sequence diagram (NSPK protocol) for the authentication use case

break

 40

with the server or trusted third party is secure. Therefore, we omit all steps that involve

the server. This reduces the number of steps to three, as shown on the right hand side of

figure 7.1.

The initiator encrypts its nonce, Na and identity, A with the public key of B and

sends it to the responder. Once the responder receives the message, it decrypts this

message and creates its own nonce, Nb. Then it sends the concatenation of Na with Nb

encrypted with the public key of the initiator. After the initiator receives this message

from the responder, it decrypts the message and verifies its nonce Na. The initiator is

now sure that it is communicating with the correct principal. It sends back nonce Nb

encrypted with the public key of the responder. This ends the initiator’s part of the

authentication process. The responder decrypts the second message from the initiator

and verifies the nonce Nb to ensure that it is communicating with the correct principal.

This ends the responder’s part of the authentication process. We employ Together

Control Center 5.0.1 (herein referred to as Together) to generate sequence diagrams of

the initiator and responder. Together enables us to reverse engineer source code into

sequence diagram for a given use case. The sequence diagram of the initiator for the

authentication use case is shown in figure 7.2.

Step 2: Generate sequence diagram for each principal and exclude objects from the

sequence diagram that are not directly related to the pertinent use case.

As in similar publications, we assume that the communication of all principals

 41

Appendix A shows the sequence diagram of the initiator of the NSPK protocol

for the authentication use case. We excluded objects not directly related to the pertinent

use case and obtained the sequence diagram shown in figure 7.2.

Step 3: Create control-flow state machine for each participating principal from its

sequence diagram

We use rules I and II in section 6.1 and the directions outlined in section 6.1.1 to

create the control-flow state machine for each principal. In the case of the NSPK

protocol, it is necessary to create the control-flow state machines of the initiator and

responder. Example 2 in section 6.1.1 demonstrates how to generate the initiator’s

control-flow state machine from its sequence diagram. Proceeding in a similar fashion

we construct the control-flow state machine of the responder.

Step 4: Write Promela code for each principal from its control-flow state machine

Sections 6.2.1 and 6.2.2 provide an introduction to Promela and outline steps to

write Promela code from a control-flow state machine. Following the steps, we make an

mtype declaration to declare components of messages transferred between principals.

The NSPK case study involves two principals, therefore,

mtype = {A, B, /* principals */

 na, nb, /* nonces */

 keyA, keyB, /* keys */

 msg1, msg2, msg3 /* keys */

 ok, nok /* flags */};

 42

Next, we define the general form of message shared by all principals and the

channel to send messages. For NSPK, we declare the encrypted part of the message and

the channel of communication as below.

typedef Crypt { mtype key, d1, d2; }

chan network = [0] of {mtype, mtype, Crypt};

Proceeding further with the steps outlined in section 6.2.2, we begin writing

Promela code with the start state and continue to the end state. The complete code for

the initiator and responder is shown in appendix C.

Initially, our Promela model consists of exactly two communicating principals

viz. the initiator and the responder. This enables us to verify the authenticity property in

the absence of any form of intruder. Any property to be verified with the SPIN model

checker should be specified in LTL (Linear temporal logic). SPIN produces a counter

example if the LTL property does not hold true. A trail file is generated to show the

counter example. If the property holds true, no such trail is generated. In the absence of

any intruder the LTL property holds true, i.e., SPIN produces no counter example. Now,

we introduce an intruder (written in Promela) that does some actions in a loop to

successfully masquerade as an honest principal. Non-determinism is introduced in the

initiator code to allow the initiator to choose between all principals (including the

intruder). Similarly, we introduce non-determinism in the responder so that it can also

select its partner among all principals. The authenticity property fails to hold true in

such a situation. SPIN generates a counter example indicating that the property of

END

[MessageNo == 1],receive()

[MessageNo == 1], send(AB1.toString())[Else], send(AB1.toString())

[performNonceCheck],
createMessage(recdMessage,
messageNo)

createMessage(messageAB1, messageNo)

START

ProcessInputAndSend(String[])

ENCRYPT

SENDING

[Else],close_authentication()

RECEIVING

VALIDATION

END_INVALID

[!performNonceCheck], close()

Decrypt(privateKeyA[0], privateKeyA[1], …

encrypt(publicKeyB[0], publicKeyB[0],
messageAB1)/encrypt message

out.println(message)/send message

in.readLine()/receive message

performNonceCheck(recdMessage)/validate message

 43

Figure 7.3 Control-flow state machine of initiator generated from the sequence diagram
in figure 7.2

 44

authenticity no longer holds true in the presence of an intruder. In this case, we chose

the NSPK protocol, where we were aware that an attack undermining the authenticity

property is possible. However, the same method can be used to check other properties.

This process may also be useful to test the robustness of the implementation.

 45

CHAPTER 8

CONCLUSION AND FUTURE WORK

Our work aims at model checking object oriented security protocol

implementations. We reverse engineer the implementation to sequence diagrams, then

to control-flow state machines and finally to a verifiable Promela model. This enables

us to check properties that should be satisfied by the implementation.

Prior to our work, there has been related research with the aim of applying

model checking to check UML diagrams and procedural code. For example, Lilius and

Paltor [Paltor, I., Lilius, J., 1999] have defined operational semantics of UML state

machines in Promela as a basis for vUML, a tool based on the SPIN model checker.

However, vUML is designed to verify UML designs and is targeted towards the

designer of object oriented systems. Our framework aims at detecting flaws in

implementation by a reverse engineering process that follows a series of well defined

steps. While it is essential to verify a design before its implementation is undertaken, we

believe it is important to check if the implementation satisfies properties that it was

intended to satisfy. This is especially critical for security protocols, where a seemingly

benign defect in implementation may result in destructive effects compromising secrecy

and other vital properties. Another interesting work that relates to our research is aimed

at model checking properties that refer to the control flow of programs. H. Chen et al.

 46

[H. Chen, D. Dean and D. Wagner 2004] have developed a tool (MOPS) for software

model checking security-critical applications. However, MOPS is a static or compile-

time analysis tool that searches the control flow graph of a program to check if any path

may violate a safety property[H. Chen, D. Dean and D. Wagner 2004]. Performing a

compile-time analysis of each participating principal without taking into perspective

other principals and objects in the system may not yield useful enough information.

Therefore it may not be entirely suitable for checking properties of security protocol

implementations (or other such applications) wherein different principals (or entities)

may run as distinct interacting programs. This requires an analysis of the system

comprising of all participating principals and other pertinent objects in a way that

resembles their mutual interaction at run-time. We achieve this in the following manner.

Initially, we separate individual principals to generate their control-flow state machines,

but finally we produce a single Promela model that allows proctypes of all principals to

run concurrently. Then, we leverage features of the model checker SPIN[Holzmann, G.

J., 1997] to check properties of this model.

We have identified major areas where we foresee scope for future research.

However, we do not state that future investigation may be limited to those areas. The

present framework may be enhanced to model check object oriented implementations

other than those of security protocols. For example, distributed applications with object

oriented implementations may be reverse engineered to generate control-flow state

machines of participating entities. These control-flow state machines can be

subsequently converted to Promela for final verification. This process may yield useful

 47

information to identify bugs associated with the implementation. We also see potential

for improvement in the final step of the framework. In the final step, we generate a

Promela model from control-flow state machines of participating principals. However,

we do not work towards efficiency or optimization of the Promela model. An

intermediate step to optimize the Promela model before feeding it to the SPIN model

checker could be introduced. Any step towards such optimization would be a

challenging task, since the optimized Promela model should be generated without loss

of information. In other words, the optimized model should be as representative of the

control-flow state machines as the original model.

APPENDIX A

SEQUENCE DIAGRAM OF INITIATOR

 48

 49

APPENDIX B

SEQUENCE DIAGRAM OF RESPONDER

 50

 51

APPENDIX C

PROMELA CODE

 52

mtype = {A_initiator, B_responder, intruder,
 nonceA, nonceB, nonceI,
 keyA, keyB, keyI,
 msg1, msg2, msg3,
 ok, nok};
typedef Crypt { mtype key, d1, d2; }
chan network = [0] of {mtype, mtype, Crypt};
mtype partnerA, partnerB;
mtype statusA, statusB;

active proctype A()
{
mtype pkey, pnonce;
Crypt data;
int msgNo = 1;
 if
 :: partnerA = B_responder; pkey = keyB;
 fi;
START: goto ENCRYPT;
ENCRYPT:
 if
 :: (msgNo == 1) ->
 atomic{data.key = pkey; data.d1 = A_initiator; data.d2 = nonceA;}
 goto SENDING;
 :: else ->
 atomic{data.key = pkey; data.d1 = pnonce; data.d2 = 0;}
 goto SENDING;
 fi;
SENDING:
 if

 :: (msgNo == 1) ->
 network ! msg1, partnerA, data; goto RECEIVING;
 :: else ->
 network ! msg3, partnerA, data; goto END_A;
 fi;
RECEIVING:
 network ? msg2, A_initiator, data; goto VALIDATION;
VALIDATION:
 if
 :: (data.d1 == nonceA) ->
 pnonce = data.d2; msgNo++; goto ENCRYPT;
 :: else -> goto INVALID_A;
 fi;
END_A: statusA = ok;
INVALID_A: skip;
}

active proctype B()
{
mtype pkey, pnonce;
Crypt data;
int msgNo_B = 1;

START_B: goto RECEIVING_B;
RECEIVING_B:
 if
 :: (msgNo_B == 1) ->
 network ? msg1, B_responder, data; partnerB = data.d1; goto
ENCRYPT_B;

 53

 :: else ->
 network ? msg3, B_responder, data; goto VALIDATION_B;
 fi;
VALIDATION_B:
 if
 :: (data.d1 == nonceB) -> goto END_B;
 :: else -> goto INVALID_B;
 fi;
ENCRYPT_B:
 atomic
 {
 if
 :: (partnerB == A_initiator) -> pkey = keyA;
 fi;
 pnonce = data.d2; data.key = pkey; data.d1 = pnonce; data.d2 =
nonceB;
 } goto SENDING_B;
SENDING_B:
 network ! msg2, partnerB, data; msgNo_B++; goto RECEIVING_B;
END_B: statusB = ok;
INVALID_B: skip;

}

active proctype Intruder()

{
 Crypt intercepted;

 mtype msg;

 do
 :: network ? msg, _, intercepted;

 :: (msg == msg1) -> network ! msg1, B_responder, intercepted;

 :: (msg == msg2) -> network ! msg2, A_initiator, intercepted;
 :: (msg == msg2) -> network ! msg3, B_responder, intercepted;

 od;

}

Note: To introduce the Intruder with the Initiator and Responder communicating
processes, enter non-determinism into the Initiator and Responder code to reflect the
Intruder. This modification being straightforward is not shown in this document. We
derive inspiration from the tutorial provided by Merz [Merz, S., 2001] for some of the
above_code.

 54

REFERENCES

Burrows, M., Abadi, M. & Needham, R., 1989. A logic of authentication.

Technical Report 39. DEC Systems Research Center, February 1989.

Cawsey, A. Databases and Artificial Intelligence. Online. Available from

http://www.cee.hw.ac.uk/~alison/ai3notes/ [accessed 16 January 2004].

Chen H., Dean D. & Wagner D., 2004. Model Checking One Million Lines of C

Code, In Symposium on Network and Distributed Systems Security, 2004.

Clarke, E.M. & Jacob, J., 1997. A Survey of Authentication Protocol Literature:

Version 1.0. 1997.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C., 2001. Introduction to

Algorithms. Second Edition. The MIT Press, 2001, 525-549.

Dolev, D. & Yao, A., 1989. On the security of public key protocols. IEEE

transactions on Information Theory. 29(2):198-208, March 1989.

Hoare, C. A. R., 1985. Communicating Sequential Processes. Prentice Hall,

1985.

Holzmann, G. J., 1997. The model checker Spin. IEEE Transactions on

Software Engineering, Vol. 23, No. 5, May 1997.

Lacey, T. & DeLoach, S., 2000. Automatic verification of multiagent

conversations. Eleventh Annual Midwest Artificial Intelligence and Cognitive Science

Conference, April 15-16, 2000.

Latella, D., Majzik, I. & Massink, M., 1999. Towards a formal operational

semantics of UML state chart diagrams. In 3rd International Conference o f Formal

 55

http://www.cee.hw.ac.uk/%7Ealison/ai3notes/

Methods for Open Object-Oriented Distributed Systems, Kluwer Academic Publishers,

Boston, 1999.

Lowe, G., 1996. Breaking and fixing the Needham-Schroeder public-key

protocol using FDR. In Tools and Algorithms for the Construction and Analysis of

Systems, volume 1055 of Lecture Notes in Computer Science, pages 147-166. Springer-

Verlag, 1996.

 Marrero, W., Clarke, E. M. & Jha, S., 1997. Model checking for security

protocols. Technical Report TR-CMU-CS-97-139, Carnegie Mellon University, 1997.

Meadows, C., 1992. Applying formal methods to the analysis of a key

management protocol. Journal of Computer Security, 1:5-53, 1992.

Meadows, C., 1994. The NRL Protocol Analyzer. An overview. In The

Proceedings of The Second International Conference on the Practical Applications of

Prolog, 1994.

Merz, S., 2001. Model Checking: A Tutorial Overview. Modeling and

Verification of Parallel Processes. LNCS 2067, Springer-Verlag, 2001.

Object Management Group. OMG Unified Modeling Language Specification,

version 1.5 (formal/03-03-01). March 2003.

Paltor, I. & Lilius, J., 1999. vUML: A tool for verifying UML models. In R. J.

Hall and E. Tyugu, editors, Proc. of the 14th IEEE International Conference on

Automated Software Engineering, ASE'99. IEEE, 1999.

Schafer, T., Knapp, A. & Merz, S., 2001. Model Checking UML State Machines

and Collaborations. Electronic Notes in Theoretical Computer Science 47, 2001.

Tenzer, J. & Stevens, P., 2003. Modeling Recursive Calls with UML state

diagrams. Proceedings of FASE 2003. LNCS 2621, Springer-Verlag, 2003.

 56

Woo, T. Y. C. & Lam, S. S., 1993. A semantic model for authentication

protocols. In the Proceedings of the IEEE Symposium on Research in Security and

Privacy, 1993.

 57

BIOGRAPHICAL INFORMATION

Parikshit Singh was born on February 13, 1979 in Valsad, a town in western

India. He received his Bachelor of Engineering in Chemical Engineering in June 2000.

He began his studies for the Masters degree in Computer Science and Engineering in

the Spring of 2001. Since then, he worked on a number of academic and industrial

projects. He did his internship at Sabre Holdings in Southlake, Texas. The internship

lasted for over 10 months. He began working as a Senior Systems Analyst for an Austin

based company in the summer of 2004. Since then, he has been working in Austin.

Parikshit’s research interests include Software Engineering, Formal Methods,

Distributed Systems and UML.

 58

	
	
	2.1 SPIN, Promela and Model Checking
	2.2 Security Protocols
	2.3 UML
	4.1 Overview
	5.1 Sequence Diagram
	5.2 Control-Flow State Machine
	In our case, the model element is a principal of a security protocol and its control-flow state machine describes its behavior for a specific aspect of its lifetime. We also state that the control-flow state machine is not a complete state machine in itself. It is a control flow graph of the principal that has state nodes and transition arcs interconnecting the nodes. It is different from the attribute-value based state machine in the UML specification. The control-flow state machine is like a control flow graph, whereas the state machine in UML has attributes and other features that we can safely exclude to check control flow intensive properties.
	6.1 Rules to Generate Control-Flow State Machine of a Principal from its Sequence Diagram
	6.2 Promela
	
	

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

