
 

 

A FRAMEWORK FOR MODEL CHECKING OBJECT 

ORIENTED SECURITY PROTOCOL 

IMPLEMENTATIONS 

 

 

by 

 

PARIKSHIT A SINGH

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

August 2005 
 



 

 

 

 

 

 

 

 

Copyright © by Parikshit A Singh 2005 

All Rights Reserved 

 

 

 



 

 

ACKNOWLEDGEMENTS 
 

I would like to thank my advisor, Dr. David Kung for providing guidance, 

support and motivation through the course of this research effort.  

I am grateful to Dr. Che and Dr. Lei for serving on my committee. Finally, I 

would like to thank all friends and members of family for their support during my 

Masters education. 

 

June 7, 2005 

 

 iii



 

 

ABSTRACT 

 

A FRAMEWORK FOR MODEL CHECKING OBJECT 

ORIENTED SECURITY PROTOCOL 

IMPLEMENTATIONS 

 

 

Publication No. ______ 

 

Parikshit A Singh, M.S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Dr. David Kung  

With the rapid growth of the Internet, more and more vendors see the Internet as 

a viable marketplace. Since the Internet is public, providing security in the presence of 

malicious intruders has become paramount. Security protocols have been proposed to 

protect systems. These protocols work by exchanging messages, many of which are 

encrypted. Though it may take a long time for an intruder to break the underlying 

encryption employed by the protocol, it is possible for the intruder to intervene in the 

authentication process. It may take years before a crucial loophole is discovered in a 

security protocol. Until then, its implementation may remain in use. There are several 
 iv



methods for verifying security protocols from their specifications. A specification that is 

successfully verified for some properties does not imply that the implementation created 

from it will also satisfy those properties. In this paper, we show a framework for model 

checking object oriented implementations of security protocols. According to this 

framework, we reverse engineer security protocol implementations to UML sequence 

diagrams for a particular use case. The sequence diagrams are then converted to state 

machines for each principal participating in the use case. The state machine of each 

principal is used to generate its Promela model. Promela is the language used by the 

SPIN model checker. Once we have a Promela model for each principal involved in the 

use case, we can use the SPIN model checker to check if a particular property is 

satisfied. As a case study, we use an implementation of the NSPK protocol and check if 

the implementation satisfies the property of authenticity. We conclude by showing that 

the implementation is prone to an attack from an intruder and that the property of 

authenticity is violated.   
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CHAPTER 1 

INTRODUCTION 

With the increased usage of distributed systems (like the Internet), where 

resources and data are shared among several users located anywhere in the world, the 

need for secure communication is paramount. Therefore various security protocols were 

developed. Security protocols have three primary properties viz. authenticity, secrecy 

and integrity. 

In this work we show a framework for model checking OO implementation of 

security protocols. We achieve this by reverse engineering the implementation to 

sequence diagrams and control-flow state machines. Control-flow state machines are 

defined in section 5.2. Then we generate Promela code from control-flow state machine 

to verify a given property. To illustrate the framework, we use our Java implementation 

of the NSPK protocol and reverse engineer it to Promela code. As a first step, we select 

a use case and generate a sequence diagram for each principal participating in the use 

case. Next, we translate the sequence diagrams to control-flow state machines through 

well-defined rules. Finally, we generate Promela code for each principal from its 

control-flow state machine and prove that the Promela model is prone to attack by an 

Intruder. The main contributions of this paper are: 

 
• Formal transformational semantics for UML sequence diagram and control-flow 

state machine  
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• A method for translating sequence diagrams to control-flow state machines 

• A procedure to generate Promela code from the control-flow state machine 

 
The structure of the paper is as follows: Section 2 gives a brief overview of 

concepts like Model Checking, security protocol, UML sequence diagram, state 

machine, Promela and the SPIN model checker. These are helpful to understand the 

concept outlined in this paper. Section 3 gives a brief account of work that has already 

been done in areas related to our work. Sections 4, 5 and 6 explain the detailed design 

of our framework with definitions, lemmas, assumptions, rules and figures of the 

initiator sequence diagram and control-flow state machine. Section 7 is a case study of 

the NSPK protocol to demonstrate the framework. Section 8 summarizes the paper and 

also highlights the future work. Appendices A and B provide complete sequence 

diagrams for the implementation of the initiator and responder of NSPK [Clarke, E. M. 

and Jacob, J., 1997] protocol. Appendix C provides the Promela code for the 

authentication process employed by the initiator and responder in the NSPK protocol.   
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CHAPTER 2 

BACKGROUND 

2.1 SPIN, Promela and Model Checking 

The term model checking designates a collection of techniques for the automatic 

analysis of reactive systems. Subtle errors in the design of safety-critical systems that 

often elude conventional simulation and testing techniques can be (and have been) 

found in this way. Because it has been proven cost-effective and integrates well with 

conventional design methods, model checking is being adopted as a standard procedure 

for the quality assurance of reactive systems. The inputs to a model checker are a 

(usually finite-state) description of the system to be analyzed and a number of 

properties, often expressed as formulas of temporal logic, that are expected to hold of 

the system. The model checker either confirms that the properties hold or reports that 

they are violated. In the latter case, it provides a counterexample: a run that violates the 

property. Such a run can provide valuable feedback and points to design errors. In 

practice, this view turns out to be somewhat idealized: quite frequently, available 

resources only permit to analyze a rather coarse model of the system. A positive verdict 

from the model checker is then of limited value because bugs may well be hidden by the 

simplifications that had to be applied to the model. On the other hand, counter-examples 

may be due to modeling artifacts and no longer correspond to actual system runs. In any 

case, one should keep in mind that the object of analysis is always an abstract model of 
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the system. Standard procedures such as code reviews are necessary to ensure that the 

abstract model adequately reflects the behavior of the concrete system in order for the 

properties of interest to be established or falsified. Model checkers can be of some help 

in this validation task because it is possible to perform “sanity checks”, for example to 

ensure that certain runs are indeed possible or that the model is free of deadlocks [Merz, 

S., 2001]. 

SPIN [Holzmann, G. J., 1997] is the most widely used formal verification tool 

today. SPIN can be used to trace logical design errors in distributed systems design, 

such as operating systems, data communications protocols, etc. The tool checks the 

logical consistency of a specification. To verify a design, a formal model is built using 

Promela, SPIN's input language. SPIN can be used in three basic modes: 

 
• As a protocol simulator, allowing for rapid prototyping with a random, guided, or 

interactive simulations 

• As an exhaustive state space analyzer, capable of rigorously proving the validity of 

user specified correctness requirements 

• As a bit-state space analyzer that can validate even very large protocol systems with 

maximal coverage of the state space (a proof approximation technique). 

 
Promela (Protocol Meta Language) is a non-deterministic language, loosely 

based on Dijkstra's guarded command language notation and C.A.R. Hoare's language 

CSP, extended with some powerful new constructs. It contains the primitives for 

specifying asynchronous (buffered) message passing via channels, with arbitrary 
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numbers of message parameters. It also allows for the specification of synchronous 

message passing systems. Mixed systems, using both synchronous and asynchronous 

communications, are also supported.  

The language can model dynamically expanding and shrinking systems: new 

processes and message channels can be created and deleted on the fly. Message channel 

identifiers can be passed from one process to another in messages. Correctness 

properties can be specified as standard system or process invariants (using assertions), 

or as general linear temporal logic requirements (LTL), either directly in the syntax of 

next-time free LTL, or indirectly as Buchi Automata (expressed in Promela syntax as 

Never Claims).  

2.2 Security Protocols 

Security protocols ensure that information gets exchanged in a secure manner. 

Because security protocols are so important, it becomes essential to ensure that they are 

indeed correct. Important kinds of correctness criteria are: 

 
• Authenticity - a principal is actually whoever he/she claims to be. 

• Secrecy - the contents of a secure communication must not be leaked to outsiders. 

• Integrity - no outsider must be able to interfere with the communication. 

 
These criteria can be verified by employing formal techniques like model 

checking. To ensure a secure communication, security protocols employ the mechanism 

of authenticating each entity involved in communication. The primary aim is to ensure 

that none of the above three correctness properties are compromised. There are several 
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security protocols being used in applications in various areas of computing. They are 

thoroughly verified for any flaws before being implemented. Our approach provides a 

way to model check such implementations (if they are object oriented). We view the 

authentication process employed by each principal in different states, which allows us 

to model check the process.  

2.3 UML 

Unified Modeling Language (UML) is a standardized notation for object-

oriented analysis and design. It is a graphical language for visualizing, specifying, 

constructing, and documenting the artifacts of a system. A UML model is an abstraction 

and does not contain every detail of the system. A model is represented as a set of 

diagrams in UML; each of these diagrams has its own set of elements. Some UML 

diagrams pertinent to our work are: 

 
• Class diagrams: They describe the static structure of the system, class abstraction 

and relationships between classes.  

• Sequence Diagrams: Sequence diagrams describe interactions among classes in 

terms of an exchange of messages over time.  

• State Chart Diagrams: State chart diagrams describe the dynamic behavior of a 

system in response to external event. State chart diagrams are especially useful in 

modeling reactive objects whose states are triggered by specific events. There are other 

diagrams too, but we do not use them in our work. 
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CHAPTER 3 

RELATED WORK 

There has been a lot of work in the areas of protocol verification using the SPIN 

model checker, formalizing UML state machines and reverse engineering, all of which 

is related to our framework. UML is used to model all kinds of systems. Modeling tools 

are available that make creation of UML models easy and can also generate code from 

some of the UML diagrams. But a UML model must still be verified as it can have 

behaviors not expected by the designers. This requires formalization of UML state 

machines. Some work has already been done in this direction [Latella, D., Majzik, I. 

and Massink, M., 1999]. This formalization is needed for code generation, simulation 

and verification of UML state charts. Lacey and DeLoach [Lacey, T. and DeLoach, S., 

2000] transform state transition diagrams to formal modeling language Promela to 

verify multiagent conversations. 

UML state charts have become a successful specification method for describing 

dynamic aspects of object behaviors.  Model checking techniques have been applied to 

state charts and to variants of state charts [Tenzer, J., Stevens, P., 2003]. Usually, the 

encoding is based on a static precomputation of the possible transitions between state 

configurations. Lilius and Paltor [Paltor, I., Lilius, J., 1999] have defined an operational 

semantics of UML state machines in Promela as a basis for vUML, based on the SPIN 

model checker. In the vUML system, the UML model is translated to Promela, input 
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language for SPIN. If SPIN finds an error in the system it produces error trace of the 

counter-example. This counter-example is translated to UML sequence diagram and 

displayed to the user. The user does not need to know PROMELA or SPIN to use 

vUML. vUML is targeted towards the designer of object oriented systems to verify 

UML designs. Our framework targets the tester of object oriented code. We reverse 

engineer object oriented code to interaction diagram and control-flow state machine. 

Then we verify if some desirable properties are satisfied by the implementation. 

HUGO[Schafer, T., Knapp, A. and Merz, S., 2001], proposed by Schafer, Knapp, Merz, 

is a prototype tool designed to automatically verify whether the interactions expressed 

by a collaboration diagram can indeed be realized by a set of state machines. It compiles 

the state machines into a Promela model, and collaborations into sets of Buchi automata 

(“never claims”). The model checker SPIN is then called upon to verify the model 

against the automata. Model checking has proven to be a very useful technique for 

verifying security protocols. By modeling protocols as finite state machines and 

examining all possible execution traces, model checking can be used to find errors in 

system design. Security protocols are very subtle and can have bugs that are difficult to 

find. By examining all execution traces of a security protocol in the presence of a 

malicious user with well-defined capabilities, it can determine if a protocol does indeed 

enforce its security guarantees. If not a sample trace of an attack on a protocol can be 

provided. However, model checking based approaches are applicable to finite state 

systems and suffer from the state explosion problem. 
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One of the earliest attempts at formalizing security protocols involved the 

development of a new logic that could express and deduce security properties. The 

earliest such logic is referred to as the BAN Logic proposed by Burrows, Abadi and 

Needham [Burrows, M., Abadi, M. and Needham, R., 1989]. BAN logic syntax 

provides constructs for expressing intuitive properties and creating rules, which can be 

used to deduce security properties based on assumptions made about the protocol. A 

number of extensions to BAN logic have been proposed since its introduction and it 

remains popular because of its simplicity and high level of abstraction. Dolev and Yao 

[Dolev, D., Yao, A., 1989] took a different approach to achieve this formalism. Their 

approach was to model a protocol by defining a set of states and a set of transitions 

taking into account the intruder, exchange of messages between principals and 

knowledge of principals. The state space could then be checked to see if a particular 

state could be reached. This approached was adapted and extended by Meadows in her 

PROLOG based protocol analyzer [Meadows, C., 1994], which later evolved to become 

the NRL protocol analyzer [Meadows, C., 1994]. In her system, the user can model the 

protocol as set of rules, which describe how intruder can generate knowledge by 

encryption and decryption of messages and by receiving responses from other 

principals. To perform verification user has to provide description of the insecure state. 

The model checker searches backwards to find an initial state. If initial state is found 

then the system is said to be insecure else it is considered an unreachable state. Woo 

and Lam [Woo, T. Y. C. and Lam, S. S., 1993] proposed an intuitive model for 

authentication protocols. Their model resembles sequential programming where 
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principals are modeled independently. Other work in this area has involved trying to use 

generic verification tools to verify security protocols. Lowe [Lowe, G., 1996] uses the 

FDR model checker for CSP [Hoare, C. A. R., 1985] to verify security protocols. In his 

approach, principals and intruders are modeled as CSP processes. The intruder process 

can deduce new knowledge by using some inference rules on a set of existing facts. All 

communication is assumed to go through the intruder. Security properties are specified 

in trace semantics. FDR verifies a security protocol by enumerating all the behaviors of 

the protocol and checking whether they are allowed by the trace semantics of desirable 

security properties. Brutus developed by Clarke et al. is a special-purpose model 

checker for verifying security protocols [Marrero, W., Clarke, E. M. and Jha, S., 1997]. 

In Brutus, principals and the intruder are modeled as named processes, and a protocol is 

modeled as an asynchronous composition of a set of named processes. Security 

properties are specified using a variant of linear-time temporal logic. The model-

checking algorithm employed in Brutus is based on state exploration. We take a 

different approach, since we start from the implementation (object oriented) of the 

protocol. This allows us to find problems in the implementation that cannot be found in 

specification testing. We get the sequence diagram from the implementation for a 

specific use case and generate the control-flow state machine from it. This allows us to 

model check the implementation for specific properties. The next section provides an 

overview of the framework.   



 

 

 

CHAPTER 4 

APPROACH 

4.1 Overview 

In this section we provide an overview of our approach. We assume that the 

Java programming language is used but the result is not limited to Java. The framework 

consists of the following steps: 

 
• Reverse engineer the Java implementation to sequence diagram using an appropriate 

tool like Together Control Center. 

• Convert the sequence diagram of each participating principal to its control-flow 

state machine. 

• Write Promela code for each principal from its control-flow state machine. 

• Verify if a desired property is satisfied for the specific use case using the SPIN 

model checker. 

 
We propose the use of a tool like OOTWorks or Together Control Center to 

generate sequence diagrams from Java source code. In order to generate a sequence 

diagram using Together Control Center, we do not need to map the diagram to a use 

case. We key into a method that triggers a sequence of events of the object. These 

events define the phase or aspect of the object during which, we can conclusively 

determine if a desired property is violated.  
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implementation 
of security 
protocol 

Control-Flow State 
Machine 

Sequence Diagram to Control-
Flow State Machine Translator 

Control-Flow State 
Machine to Promela Promela

Sequence 
Diagram Reverse 

Engineering 

Figure 4.1 Block diagram of the framework 
 

We provide an outline of the framework in the steps 1 through 5 below. The 

first component in figure 4.1 is Reverse Engineering to generate sequence diagram. This 

component is broken up into steps 1 and 2 below. Steps 3 and 4 explain the flow of the 

remaining block diagram. 

Step 1: Identify the use case and generate sequence diagram for the use case 

Identify the use case to generate the sequence diagram. The use case depends on 

the property to be verified. In order to generate a sequence diagram using Together 

Control Center, we need not map the sequence diagram to a use case. 

Step 2: Generate sequence diagram for each principal and exclude objects from the 

sequence diagram that are not directly related to the pertinent use case. 

      First, select the method of the principal that triggers a sequence of interactions 

which form the use case. Then generate the sequence diagram using the utility provided 

by Together Control Center. This process will generate a sequence of interactions or 

events of the specific object or principal. In other words, it will generate a sequence 
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diagram of a selected principal. Together also allows the user to exclude selected 

classes before generating sequence diagrams for any use case. APIs like 

java.lang.System, java.lang.String, java.net.*, java.math.*, which are not directly 

related to the use case can be safely excluded. For example, appendix A shows the 

sequence diagram of the initiator of the NSPK protocol for the authentication use case. 

We removed objects not directly related to the use case and generated the sequence 

diagram shown in figure 7.2. This diagram, although less detailed, is fully informative 

and easy to understand. 

Step 3: Create control-flow state machine for each participating principal from its 

sequence diagram 

Control-flow state machine is a control flow graph of the principal that has state 

nodes and transition arcs interconnecting the nodes. It is different from the attribute-

value based state machine mentioned in the UML specification. We provide more 

details on differences between the two in section 5.2 

Step 4: Write Promela code for each principal from its control-flow state machine and 

use the SPIN model checker to verify properties of the selected use case. 

Use the control-flow state machine of a principal to write its corresponding 

Promela model. We outline directions to generate a Promela model from a control-flow 

state machine in sections 6.2.1 and 6.2.2. Specifiy the property chosen for verification 

in linear temporal logic (LTL), so that it can be verified using the SPIN [Holzmann, G. 

J., 1997] model checker. 
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From the next section we explain in detail how to follow the above steps. We 

provide a set of formal rules to generate control-flow state machine from a sequence 

diagram. To provide sufficient background for the rules, we detail formal 

transformational semantics of the UML sequence diagram. Then we give an explanation 

of control-flow state machine and present its semantics in context of our work. The 

semantics of sequence diagram and control-flow state machine are explained in section 

5. Section 6 explains rules to convert sequence diagram to control-flow state machine 

and generate Promela model from the control-flow state machine respectively.  

 14



 

 

 
CHAPTER 5 

SEMANTICS 

5.1 Sequence Diagram 

We provide transformational semantics for a sequence diagram that enable us to 

transform it to a control-flow state machine for a principal. Our definition of sequence 

diagram has two dimensions, viz. the vertical dimension and the horizontal dimension. 

The former represents time, and the latter represents different objects. This also forms 

the basis for the definition of the UML sequence diagram. We define a sequence 

diagram as a tuple with two elements, viz. the set of objects (horizontal dimension) and 

the set of events in time (vertical dimension). 

Definition 1 – Total Sequence Diagram: A total sequence diagram for use case ‘u’ is 

the tuple , where O  is the set of objects participating in the use case 

and  is the set of events or interactions among objects inO . 

>=< QOuD ,)(

Q

The set of events Q  in definition 1 is the relation NMOOQ ×××⊆  where, 

 
•  is the set of all objects O

• M  is the set of all method calls in the sequence diagram 

•  is the set of non-zero natural numbers N

For example, let the sequence diagram in the figure 5.1, shown below be 

. The events , ,  and  >=< QOuD ,)( iq jq kq lq Q∈ . 
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doSomething():void 

lq  

kq  

jq  

iq  

o1:Class1 o2:Class2 

 
Figure 5.1 Sequence diagram, ),,,( 21 nmooqk = , =m doSomething():void and =n 3 

 

For an event q ,  is a value that indicates the relative order of its appearance 

in the sequence diagram. For the first event (the event that triggers the use case), this 

value is ‘1’. For the second event, this value is ‘2’ and so on. For example, in figure 5.1, 

 and . Therefore, if an event  appears before another event , as 

in the case of figure 5.1, then 

Nq |

1| =Niq 3| =Nkq iq jq

NjNi qq || < .  

5.1.1 Sequence Diagram of a Principal 

A total sequence diagram of a security protocol implementation contains all 

principals and objects participating in the use case. We can, however focus on a 

particular principal and generate a sequence diagram, which shows the principal’s 

interactions only. 

Definition 2 – Sequence Diagram of a principal: Given the total sequence diagram 

for a use case ‘u’ as , the sequence diagram of a principal ‘>=< QOuD ,)( p ’ is the 
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tuple , where  is the set of objects excluding all principals 

except p and  is the set of events or interactions among objects in . 

>=< ppp QOuD ,|)( pO

pQ pO

 

p:Principal r:Principal O1:Object1 O2:Object2 

 

Figure 5.2 Total sequence diagram showing principals p and r 
 

In definition 2, we have the following. 
 
• , where }{)( pPOOp ∪−= P  is the set of principals and O is the set of all objects 

in the total sequence diagram >=< QOuD ,)( . 

• , where  represents all time-ordered outgoing and 

incoming events of the principal 

NMOOQ pppp ×××⊆ pQ

p .  

• 
)},,,(  ),,,( ),,,(                                   

 ))()(,(|,,,{

QnmppQnmpoQnmop

NnMmOponmooQ ppjip

>∈<∧>∈<∧>∈<

∈∃∈∃∈∃><=

  As an example for definition 2, compare figures 5.2 and 5.3. Figure 5.2 shows 

the total sequence diagram assuming there are two principals p and r in the set P . On 
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the other hand, figure 5.3 shows the sequence diagram of principal p. From this point 

forward, we shall refer to events for a particular principal, i.e. . This allows us to 

separate roles of each principal in  and construct its control-flow state machine. 

pQ

P

 

p:Principal O1:Object1 O2:Object2 

 
Figure 5.3 Sequence diagram of principal p 

5.1.2 Scopes in a Sequence Diagram 

A scope is a block of code between an opening curly brace, i.e. ‘{‘, and a 

closing curly brace, i.e. ‘}’. Together Control Center specifically highlights1 scopes due 

to looping constructs and conditional statements. We make use of only those scopes that 

result due to the occurrences of looping constructs and conditional statements. 

Figure 5.4 shows a sequence diagram with various events for a principal p.  

Events  and  are in the outermost scope and event  is in a scope nested within 

the outermost scope. For a principal p, we denote the outermost scope as  and 

iq jq kq

)0(pS
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1 Scopes due to looping constructs and conditional statements are highlighted dark in the sequence 
diagrams generated by Together Control Center. This highlighting is visible in the sequence diagram 
shown in figure 10. 



 

inner scopes as i = 1,2,… based on the level of nesting. For example, event  in 

figure 5.4 is in scope  and event  is in scope . In order to distinguish 

scopes at the same level of nesting within a conditional construct (“if-else” or “switch” 

like constructs), we assign a superscript number starting from ‘0’ to every scope within 

such a construct. As an example, scopes  and  in figure 5.4.are 

distinguished by their superscript numbers 0 and 1 respectively. 

),(iS p iq

)0(pS kq )1(pS

)1(0
pS )1(1

pS

 

lq

Loop(condition)

 jq  

kq  

 iq  

)0(pS  

)1(pS

p:Principal 

)1(1
pS mq

If(ω )

else
)1(0

pS

Figure 5.4 Sequence diagram 

5.1.3 Precedence among Events in a Sequence Diagram 

Definition 3 – Precedence and Precedence Relation: For any two events  

 precedes  implies that the procedural control reaches  before it reaches . 

This is denoted as  (read as  precedes ). The relation between  and  is 

the Precedence relation. 

pji Qqq ∈, ,

iq jq iq jq

ji qq p iq jq iq jq
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For example, in the sequence diagram shown in figure 5.5, procedural control 

reaches   before , hence . A related and more significant term – immediate 

precedence is defined below. 

iq jq ji qq p

Definition 4 – Immediate Precedence: For any two events  such that 

, if there is no event 

pji Qqq ∈,

ji qq p pX Qq ∈  such that  and  then  

immediately precedes . We write this relation as . 

Xi qq p jX qq p iq

jq ji qq *p

As an example, consider the sequence diagram in figure 5.5. The relation 

between events  and  is (  immediately precedes  ) but the relation 

between events  and  is  (  precedes  ). 

iq jq ji qq *p iq jq

iq kq ki qq p iq kq

 kq  

iq

 jq

a: Class A 

 

Figure 5.5 Sequence diagram -  and  ji qq *p ki qq p

 

Corollary 1: ) . The reverse is not necessarily true.   )(,( *
jijipji qqqqQqq pp →∈∀

Lemma 1: The presence of an unconditional jump (like ‘break’) affects precedence 

relations. 
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Procedural control changes due to presence of unconditional jumps. As per 

definition 3, precedence relies on procedural control, and therefore it changes due to the 

presence of unconditional jumps. The figure 5.6 below illustrates this assertion. In 

figure 5.6, procedural control will never reach , therefore there will be only two 

precedence relations viz.  and . 

kq

ji qq *p lj qq *p

lq
kq

Breakjq

iq
Loop(condition)

p:Principal 

 

Figure 5.6 Sequence diagram -  and  ji qq *p lj qq *p

   

5.2 Control-Flow State Machine 

Definition 5 - State: A state in a Control-flow State Machine is a condition during the 

life of the principal or an interaction during which it performs some action. To some 

extent, this definition is similar to the definition of a state specified in the Unified 

Modeling Language Specification, version 1.5 (formal/03-03-01), March 2003. 

The OMG UML specification depicts the state machine as a specification that 

describes all possible behaviors of some dynamic model element. Behavior is modeled 

as a traversal of a graph of state nodes interconnected by one or more joined transition 

arcs that are triggered by dispatching a series of event instances [Object Management 
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Group. OMG Unified Modeling Language Specification, version 1.5 (formal/03-03-01). 

March 2003]. 

In our case, the model element is a principal of a security protocol and its 

control-flow state machine describes its behavior for a specific aspect of its lifetime. We 

also state that the control-flow state machine is not a complete state machine in itself. It 

is a control flow graph of the principal that has state nodes and transition arcs 

interconnecting the nodes. It is different from the attribute-value based state machine in 

the UML specification. The control-flow state machine is like a control flow graph, 

whereas the state machine in UML has attributes and other features that we can safely 

exclude to check control flow intensive properties. 

5.2.1 Control-Flow State Machine of a Principal 

Definition 6 – Control-Flow State Machine of a principal: The Control-Flow State 

Machine of a principal ‘ p ’ is the tuple >Σ=< pppSM γ, , which consists of a set of 

states and a transition relation pΣ pγ . 

The transition relation is ppp Σ×Λ×Σ⊆γ , where  

 
•  is the set of all states in . pΣ pSM

} principal of machine state in the state a is |{ pp σσ=Σ  

•  is the set of all transitions taken by principal p between states in the set Λ pΣ . 

}place it takesh under whiccondition   theis  andn  transitio theis |][{ φλφλ=Λ  

superscript numbers 0 and 1 respectively. 
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CHAPTER 6 

RULES 

6.1 Rules to Generate Control-Flow State Machine of a Principal from its 
Sequence Diagram 

 
In this part, we describe rules to generate control-flow state machine of a 

principal from its sequence diagram. In other words, given a sequence diagram 

, we explain how to generate the control-flow state machine >=< ppp QOD ,|

>Σ=< pppSM γ,  of principal p. Rule I below, is our fundamental rule for creating 

states of a principal’s control-flow state machine from its sequence diagram 

.  >=< ppp QOD ,|

Rule I: For all events , jq Xq  and  within the same scope, where kq Xq  is between the 

two incoming events  and , such that , where jq kq k
r
XXj qqqq *** ppp Xq  is an 

outgoing event and its return event is r
Xq  

Do the following. 

• Create the state - Create a state corresponding to event Xq  and denote it . 

Represent the state according to UML specifications as a “rounded rectangle” with 

two compartments, viz. the name compartment and the internal transitions 

compartment. 

qXσ

• Create transitions to and from the state -  
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o Create transition  (corresponding to event )  leading into state . ][ j
qj φλ jq qXσ

o Create transition  (corresponding to event )  leading out of state . ][ k
qk φλ kq qXσ

o For the transitions  and , ][ j
qj φλ ][ k

qk φλ jφ  and kφ  are the respective 

conditions under which the events  and  are fired. jq kq jφ  = kφ  = NULL if both 

 and  are not within scopes of conditional constructs (like “if-else”) jq kq

• Name the state - Enter the name in the name compartment of the “rounded 

rectangle” that diagrammatically represents . qXσ

• Provide an action expression for the state: Enter the action expression as 

“ Xm / Xa ” in the internal transitions compartment, where  

o MXX qm |=  is the method name of event Xq   

o Xa is the action performed by the principal when it is in the state . qXσ

Example 1: Consider the sequence diagrams shown in figure 6.1.  

 

kq  

Xq  

qXσ  

r
Xq  

 
qkλ  qjλ

<State Name>  jq  

p:Principal 

Xm / Xa  

 

Figure 6.1 kXj qqq ** pp , k
r
XXj qqqq *** ppp  and qXσ  
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The precedence relations among events in figure 6.1 are  and 

. We apply rule I to these precedence relations to get the state 

 with transitions  and  shown on the right hand side of figure 6.1. 

kXj qqq ** pp

k
r
XXj qqqq *** ppp

qXσ qjλ qkλ

The example provided to support rule I above demonstrates the case where there 

is a single transition to exactly one state and a single transition leading out of it. Rule I 

can be applied to cases where there are multiple states and transitions. Below, we 

discuss two such cases and explain how rule I may be applied to them. The rule, 

however, is not limited to the two cases. All references made hereinafter to the return 

event of an outgoing event, say  will be denoted as  q rq

Case 1 – Transitions to/from multiple states: In the sequence diagram illustrated in 

figure 6.2, if condition is true then procedural control will transfer from  to  and 

then to . Then by definition of precedence we will have . 

However, if condition is false then we will have . The precedence 

relationships are shown diagrammatically on the right hand side of figure 6.2.  

lq iq

nq n
r
iil qqqq *** ppp

n
r
jjm qqqq *** ppp

Apply rule 1 to the precedence relations in figure 6.2 to get states and transitions 

leading into and leading out of the states as shown in the figure below. 
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precedes precedes 

qm 

nq

)1(1
pS  

jq

iq)1(0
pS  

)0(pSp:Principal 

else
precedes precedes 

precedesprecedes 

qi qj 

qn 

n
r
iil qqqq *** ppp   AND  n

r
jjm qqqq *** ppp  

If(condition)

ql 

lq

mq
r
iq r

jq  

 

Figure 6.2 Sequence diagram and the corresponding precedence relations  
 

 

qmλ [else]

qnλqnλ

qlλ [condition] 

jm / ja  im / ia  

qiσ qjσ

 

Figure 6.3 Rule I applied to case 1 
 
Case 2 – Multiple transitions to/from one and only one state: In the sequence 

diagram illustrated in figure 6.4, if condition is true then procedural control will transfer 

from  to  and then to . Then by definition of precedence we will have 

. Similarly, if condition is false then we will have 

lq iq mq

m
r
iil qqqq *** ppp
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n
r
iil qqqq *** ppp . The precedence relationships are shown diagrammatically on the 

right hand side of figure 6.4. 

 

precedes

precedes

lq

lq

mq

)1(1
pS  

If(condition)

iq

)1(0
pS  

)0(pS  

p:Principal 

else
n

q

precedesprecedes

r
iq

qm
qn 

n
r
iil qqqq *** ppp    AND   n

r
iil qqqq *** ppp

qi 

 

Figure 6.4 Sequence diagram and the corresponding precedence relations  
 

Apply rule 1 to the precedence relations in figure 6.4 to get states and transitions 

leading into and leading out of the states as shown in the figure below. 

 

qlλ

im / ia  

qiσ

qnλ [else] qmλ [condition] 
 

Figure 6.5 Rule I applied to case 2 
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Rule II: Do not create more than one state with the same name in the control-flow state 

machine.  

This rule is adopted for clarity and to avoid unnecessary confusion. If a state 

 is created using rule 1, then we explicitly prohibit creating another state that is 

same as . The OMG Unified Modeling Language Specification, version 1.5, March 

2003 states, “It is undesirable to show the same named state more than once in the same 

diagram, as confusion may ensue”. If there is a circumstance in which, application of 

rule I is resulting in the creation of a new state that is the same as an already created 

state, then do not create the new duplicate state. Instead direct the transition to the 

already created state. 

qXσ

qXσ

6.1.1 Directions to create Control-Flow State Machine from Sequence Diagram 

The directions mentioned below outline steps to generate a control-flow state 

machine of a principal from its sequence diagram. They are based on the following 

assumptions.  

• The sequence diagram  of the principal (p in this case) is defined. >=< ppp QOD ,|

• Rules I and II described in section 6.1 (herein referred to as rule I and rule II) are 

defined 

• Unconditional jumps (like break) within looping constructs are visible in the 

sequence diagram 
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We use the following conventions for algorithms in figures 6.6 and 6.7. The last 

two points are inspired from the conventions adopted by Cormen et al. in [Cormen, T. 

H., Leiserson, C. E., Rivest and R. L., Stein, C., 2001].  

• The event  represents the return event of an outgoing event . rq q

• References made to any transition  imply , where qλ ][φλq φ  is the condition. 

• “NULL” is used to represent an empty set. 

• Multiple assignment like eji ←←  assigns to variables i  and j  the value of e . 

• The symbol “ ” indicates that the remainder of the line is a comment. >

Now, follow the directions given below to create a control-flow state machine 

>Σ=< pppSM γ,  for principal p. 

(i) The Start state: Create the first state as the Start state. Create the transition leading 

to this state as , where  is the event that triggers the use case. qiλ iq

 

Input: Sequence diagram >=< ppp QOD ,|  

Let  be the event that triggers the use case iq

Let  be an incoming event such that  jq ji qq *p

Initially, let   NULLpp ←←Λ←Σ γ  

Do  }{ START
pp σUΣ←Σ

},{ qjqi λλUΛ←Λ  

At this point the relation pγ  is NULL 

Figure 6.6 Algorithm to create the Start state of control-flow state machine 
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      Proceed with event  from the algorithm in figure 6.6.  jq

      Let        Let  and  be empty. NULLQQ out ←←,σ > outQ ,σ Q

      Initially, let       Initialize  and   }{, jin qQQ ←← σσ > inQ ,σ σQ

      CreateSM ( ,   ) inQ ,σ σQ

      1.  ina Qq ,σ∈∀

      2.          Do Let   ain qq ←,σ

      3.   such that  ( )  and  is incoming pb Qqq ∈∀ , b
r

in qqqq ***
, pppσ bq

      4.           Do Let   bout qq ←,σ

      5.   Apply rule I to  , q  and    Represent  in UML. inq ,σ outq ,σ > qσ

      6.       Add the state to the set of states. }{ q
pp σUΣ←Σ >

      7.         will have events forming }{qQQ U← > σQ

>  the most recently created state. 

      8.    such that   or   σQqc ∈∀ inc qq ,
*

σp in
r
c qq ,

*
σp

      9.           Do    Transitions into and out of . },{ ,, outqinq σσ λλUΛ←Λ > qσ

      10.      Add ordered-pair to relation )},,{( , qinqqc
pp σλσγγ σU← > pγ  

      11.    }{ ,,, outoutout qQQ σσσ U←   

      12.  outin QQ ,, σσ ←

      13.  QQ ←σ

      14.       Reinitialize  and . NULLQQ out ←←,σ > outQ ,σ σQ

      15. If    Then      If   is non-empty, 0|| , >inQσ > inQ ,σ

      16.            Do  CreateSM ( ,   )     Recursively call CreateSM. inQ ,σ σQ >

      17. Else 

      18.         Do return  >Σ=< pppSM γ,      Output:  > pSM

Figure 6.7 Algorithm to complete the control-flow state machine initiated in figure 6.6 

(ii) Apply rule I subsequently, beginning with the event(s) that form transition(s) 

leading out of the most recently created state.  
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(iii) At each stage of applying rule I, verify that rule II is never violated. In other words, 

ensure that more than one state with the same name is never created. 

(iv) The End state: Label the state that indicates a successful completion of the use case 

as the End state. 

(v) The Invalid End state: Optionally, label the state that indicates an unsuccessful 

completion of the use case as the Invalid End state. 

 
Example 2: This example is an exercise to demonstrate the application of rules 

explained in section 6.1 on a specific use case of the NSPK protocol. Consider a part of 

the sequence diagram of the Initiator (left hand side of the figure 6.8) for the 

authentication use case. The full sequence diagram is given in figure 7.2. 

We apply rules and directions provided in section 6.1 and generate states and 

transitions in the following manner. 

• The Start state: The event  that triggers the use case has label 

processInputAndSend(String[]):void. The events  and  (labeled 

createMessage) satisfy the relation . Therefore, proceeding as directed in 

point (i) of section 6.1.1, we create the Start state with the transition labeled 

processInputAndSend(String[]):void  leading to this state. At this stage, we have 

 = { } and  = { , }. 

iq

iq jq

ji qq *p

pΣ STARTσ Λ qiλ qjλ

• Continuing forward, we work as directed in the algorithm shown in figure 6.7 to 

support points (ii) and (iii) of section 6.1.1. We begin with the “outer” loop at line 1 
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with , where  has the label createMessage. The “inner” loop begins 

at line 3, for all events ,  in  such that , where  is . 

The events 

}{, jin qQ =σ iq

q bq pQ bin qqq **
, ppσ inq ,σ iq

Xq ,  in  and kq pQ Xq ,  in  pass the condition to enter the “inner” 

loop. Thus, we make two passes through the “inner” loop, one each for 

 and , before the “inner” loop 

terminates. The “outer” loop also terminates since we started with just one element 

 in . At this stage, we have 

lq pQ

k
r
XXj qqqq *** ppp l

r
XXj qqqq *** ppp

iq inQ ,σ },{, lkout qqQ =σ , which is assigned to  at 

line 12. Also, the set of states 

inQ ,σ

pΣ  has a newly added state viz. the Encrypt state or 

, and the set of transitions qXσ Λ , populated with newly added transitions  and 

 becomes { , , , }. At line 16, we make a recursive call to 

CreateSM( , ), with 

qkλ

qlλ qiλ qjλ qkλ qlλ

inQ ,σ σQ },{, lkin qqQ =σ  and }{ XqQ =σ as arguments. 

• Now starting with the “outer” loop at line 1, we have },{, lkin qqQ =σ ,  

and the empty sets  and Q . First, let us iterate with  = . This allows 

only one pass through the “inner” loop, i.e. for . As a result, we 

add the Sending state to  along with the transition  to 

}{ XqQ =σ

outQ ,σ inq ,σ kq

m
r
YYk qqqq *** ppp

pΣ qmλ Λ . Next, we iterate 

through the “outer” loop with  = . This also allows us exactly one pass 

through the “inner” loop, i.e. for . The “inner” and “outer” 

loops terminate with 

inqσ , lq

n
r
ZZl qqqq *** ppp

},{, nmin qqQ =σ  at line 12 and },{ ZY qqQ =σ  at line 13. At 
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this stage, the set of states pΣ  has the Start, Encrypt and Sending states, added in 

that order. The set of transitions Λ  has elements { , , , , , }. 

The right hand side of figure 6.8 shows the states and transitions created during the 

iterations described above. See the complete control-flow state machine of the 

initiator in figure 7.2. 

qiλ qjλ qkλ qlλ qmλ qnλ

 

qi 

receive() close authentication()

Create 
Message 

  [messageNo==1]
         send() 

qk 

  r
Zq

  r
Yq

  r
Xq

out.print() 

out.print() 

qn 

Break 

receive() 

send() 

send() 

encrypt() 

createMessage 

 qZ  

 qY

 qX  

qm 

else 

qj 

ql 

If(messageNo ==1) 

While() 

close authentication()

[else]send() [messageNo==1] 
send() 

[else]send() 

SENDING 

END 

m
r
YYk qqqq *** ppp   AND  n

r
ZZl qqqq *** ppp

ENCRYPT 

START 

ProcessInputAndSend(String[]) 

k
r
XXj qqqq *** ppp   AND  l

r
XXj qqqq *** ppp  

ProcessInputAndSend(String[])
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Figure 6.8 Parts of sequence diagram and control-flow state machine of the initiator of 
the NSPK protocol 



 

  
Now starting with the “outer” loop at line 1, we have , 

 and the empty sets  and Q . First, let us iterate with  = . This 

allows only one pass through the “inner” loop, i.e. for . As a 

result, we add the Sending state to 

},{, lkin qqQ =σ

}{ XqQ =σ outQ ,σ inq ,σ kq

m
r
YYk qqqq *** ppp

pΣ  along with the transition  to . Next, we 

iterate through the “outer” loop with  = . This also allows us exactly one pass 

through the “inner” loop, i.e. for . The “inner” and “outer” loops 

terminate with  at line 12 and 

qmλ Λ

inq ,σ lq

n
r
ZZl qqqq **p* pp

},{, nmin qqQ =σ },{ ZY qqQ =σ  at line 13. At this stage, 

the set of states  has the Start, Encrypt and Sending states, added in that order. The 

set of transitions Λ  has elements { , , , , , }. The right hand side 

of figure 6.8 shows the states and transitions created during the iterations described 

above. See the complete control-flow state machine of the initiator in figure 7.2. 

pΣ

qiλ qjλ qkλ qlλ qmλ qnλ

6.2 Promela 

6.2.1 Introduction 

In this section we introduce the basics of constructing a Promela model. 

Promela has a construct called proctype that models a principal. The proctype of each 

principal will contain its part of the conversation. The idea is to begin the proctype in 

the START state and end in the END state, while moving from one state to another only 

if there is a transition from that state to the other state. 

The initial steps to write the Promela code are to declare and define messages 

for communication between the principals and define a channel for the communication. 
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Messages must be declared using an mtype declaration. This declaration would typically 

contain keys, nonces and identities of all principals, e.g.  

mtype = {<principal1>, <principal2>, …,  

               <nonce1>, <nonce2>, …,  

               <key1>, <key2>, …,  

               <msg1>, <msg2>, …}; 

The next step is to define the general form of message shared by all principals 

and the channel to send messages. The message can consist of an encrypted part and 

unencrypted part, where each part is composed of ‘mtype’ enumeration types.  

typedef message = {<key>, <mtype>, <mtype>, …}; 

Once the message is declared, the channel for communication may be declared. 

This is made possible with the keyword chan as shown below. 

chan network = [0] of {…}; 

An index ‘[0]’ indicates a synchronous channel, i.e. there is no buffer for the 

messages. This indicates that there can be at most one message in the channel at any 

given time. A state can be expressed in Promela by using a label as “STATE-1:”, which 

is similar to a label in the C programming language. 

Promela allows switching to a specific label within procedural code by using the 

goto keyword. The following statement shows how to use goto to move a label (STATE-

2 in this case). 
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goto STATE-2; 

The symbols ‘!’ and ‘?’ are used for sending and receiving messages 

respectively. For example, the following Promela code is for receiving a message 

(“data”) from the network channel 

network ? data; 

The following Promela code is for sending a message (“data”) through the 

network channel 

network ! data; 

6.2.2 Directions for writing Promela code from Control-Flow State Machine 

Follow the directions below to write Promela code for a principal from its control-flow 

state machine. 

• Start writing Promela code by declaring an mtype, defining the message and 

declaring the channel of communication. 

• Represent each state within a separate label. For example, use the label “START:” 

to represent the start state.  

• Begin with the “START:” state label and use the goto keyword to move control 

from one state to another, until the final or end state is reached. Use goto to transfer 

control from one state label, say A to another, say B only if there is a transition from 

state A to state B in the control-flow state machine. 

• If a transition in the control-flow state machine from state A to state B is guarded by 

a condition then enclose the goto within an if-else Promela construct. 
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• Within each state label, write the action that is performed when the principal is in 

that state. If the action is guarded by a condition then enclose it within an if-else 

Promela construct. 

Following the above steps, it is straightforward to write Promela code of a 

principal from its control-flow state machine. Given a Promela model it is possible to 

verify whether or not a property holds for the model. This can be accomplished with the 

model checker SPIN [Holzmann, G. J., 1997]. The property may be specified in linear 

temporal logic (LTL). If the property does not hold true for the Promela model then 

SPIN provides a counter example.  

   



 

 

 
CHAPTER 7 

CASE STUDY – THE NSPK PROTOCOL 

 

We use a Java implementation of the Needham Schroeder Public Key [Clarke, 

E.M. and Jacob, J., 1997] protocol as a case study to demonstrate our framework. 

Section 4.1 describes the steps that need be followed in order to apply the framework. 

We step through all of those steps and explain how to apply them for the NSPK 

protocol. 

Step 1: Identify the use case and generate sequence diagram for the use case 

We choose the authentication use case of the NSPK protocol. This 

authentication process has seven steps, which are outlined below. In these steps, A and 

B represent initiator and responder roles respectively. S is the server or the trusted third 

party. Na and Nb are nonces of A and B respectively. Ka and Kb are public keys of A 

and B respectively. 

 
(i) A  S : A, B 

(ii) S  A : {Kb, B}Ks 
(iii) A  B : {Na, A}Kb 
(iv) B  S : B,A 
(v) S  B : {Ka, A}Ks 

(vi) B  A : {Na, Nb}Ka 
(vii) A  B : {Nb}Kb

• A  B : {Na, A}Kb 
• B  A : {Na, Nb}Ka 
• A  B : {Nb}Kb 

 

Figure 7.1 A = Initiator, B = Responder, S = Trusted Third Party 
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Figure 7.2 Initiator sequence diagram (NSPK protocol) for the authentication use case 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

break
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with the server or trusted third party is secure. Therefore, we omit all steps that involve 

the server. This reduces the number of steps to three, as shown on the right hand side of 

figure 7.1. 

The initiator encrypts its nonce, Na and identity, A with the public key of B and 

sends it to the responder. Once the responder receives the message, it decrypts this 

message and creates its own nonce, Nb. Then it sends the concatenation of Na with Nb 

encrypted with the public key of the initiator. After the initiator receives this message 

from the responder, it decrypts the message and verifies its nonce Na. The initiator is 

now sure that it is communicating with the correct principal. It sends back nonce Nb 

encrypted with the public key of the responder. This ends the initiator’s part of the 

authentication process. The responder decrypts the second message from the initiator 

and verifies the nonce Nb to ensure that it is communicating with the correct principal. 

This ends the responder’s part of the authentication process. We employ Together 

Control Center 5.0.1 (herein referred to as Together) to generate sequence diagrams of 

the initiator and responder. Together enables us to reverse engineer source code into 

sequence diagram for a given use case. The sequence diagram of the initiator for the 

authentication use case is shown in figure 7.2. 

Step 2: Generate sequence diagram for each principal and exclude objects from the 

sequence diagram that are not directly related to the pertinent use case. 

As in similar publications, we assume that the communication of all principals
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Appendix A shows the sequence diagram of the initiator of the NSPK protocol 

for the authentication use case. We excluded objects not directly related to the pertinent 

use case and obtained the sequence diagram shown in figure 7.2. 

Step 3: Create control-flow state machine for each participating principal from its 

sequence diagram 

We use rules I and II in section 6.1 and the directions outlined in section 6.1.1 to 

create the control-flow state machine for each principal. In the case of the NSPK 

protocol, it is necessary to create the control-flow state machines of the initiator and 

responder. Example 2 in section 6.1.1 demonstrates how to generate the initiator’s 

control-flow state machine from its sequence diagram. Proceeding in a similar fashion 

we construct the control-flow state machine of the responder. 

Step 4: Write Promela code for each principal from its control-flow state machine 

Sections 6.2.1 and 6.2.2 provide an introduction to Promela and outline steps to 

write Promela code from a control-flow state machine. Following the steps, we make an 

mtype declaration to declare components of messages transferred between principals. 

The NSPK case study involves two principals, therefore, 

mtype = {A, B, /* principals */ 

         na, nb, /* nonces */ 

         keyA, keyB, /* keys */ 

         msg1, msg2, msg3 /* keys */ 

         ok, nok /* flags */}; 
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Next, we define the general form of message shared by all principals and the 

channel to send messages. For NSPK, we declare the encrypted part of the message and 

the channel of communication as below. 

typedef Crypt { mtype key, d1, d2; } 

chan network = [0] of {mtype, mtype, Crypt}; 

Proceeding further with the steps outlined in section 6.2.2, we begin writing 

Promela code with the start state and continue to the end state. The complete code for 

the initiator and responder is shown in appendix C. 

Initially, our Promela model consists of exactly two communicating principals 

viz. the initiator and the responder. This enables us to verify the authenticity property in 

the absence of any form of intruder. Any property to be verified with the SPIN model 

checker should be specified in LTL (Linear temporal logic). SPIN produces a counter 

example if the LTL property does not hold true. A trail file is generated to show the 

counter example. If the property holds true, no such trail is generated. In the absence of 

any intruder the LTL property holds true, i.e., SPIN produces no counter example. Now, 

we introduce an intruder (written in Promela) that does some actions in a loop to 

successfully masquerade as an honest principal. Non-determinism is introduced in the 

initiator code to allow the initiator to choose between all principals (including the 

intruder). Similarly, we introduce non-determinism in the responder so that it can also 

select its partner among all principals. The authenticity property fails to hold true in 

such a situation. SPIN generates a counter example indicating that the property of  



 

END 

[MessageNo == 1],receive()

[MessageNo == 1], send(AB1.toString())[Else], send(AB1.toString())
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createMessage(recdMessage, 
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ENCRYPT 
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[Else],close_authentication() 

RECEIVING 

VALIDATION 

END_INVALID 

[!performNonceCheck], close() 

Decrypt(privateKeyA[0], privateKeyA[1], … 
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messageAB1 )/encrypt message 
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in.readLine()/receive message

performNonceCheck(recdMessage)/validate message
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Figure 7.3 Control-flow state machine of initiator generated from the sequence diagram 
in figure 7.2 
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authenticity no longer holds true in the presence of an intruder. In this case, we chose 

the NSPK protocol, where we were aware that an attack undermining the authenticity 

property is possible. However, the same method can be used to check other properties. 

This process may also be useful to test the robustness of the implementation. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 

Our work aims at model checking object oriented security protocol 

implementations. We reverse engineer the implementation to sequence diagrams, then 

to control-flow state machines and finally to a verifiable Promela model. This enables 

us to check properties that should be satisfied by the implementation.  

Prior to our work, there has been related research with the aim of applying 

model checking to check UML diagrams and procedural code. For example, Lilius and 

Paltor [Paltor, I., Lilius, J., 1999] have defined operational semantics of UML state 

machines in Promela as a basis for vUML, a tool based on the SPIN model checker. 

However, vUML is designed to verify UML designs and is targeted towards the 

designer of object oriented systems. Our framework aims at detecting flaws in 

implementation by a reverse engineering process that follows a series of well defined 

steps. While it is essential to verify a design before its implementation is undertaken, we 

believe it is important to check if the implementation satisfies properties that it was 

intended to satisfy. This is especially critical for security protocols, where a seemingly 

benign defect in implementation may result in destructive effects compromising secrecy 

and other vital properties. Another interesting work that relates to our research is aimed 

at model checking properties that refer to the control flow of programs. H. Chen et al. 
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[H. Chen, D. Dean and D. Wagner 2004] have developed a tool (MOPS) for software 

model checking security-critical applications. However, MOPS is a static or compile-

time analysis tool that searches the control flow graph of a program to check if any path 

may violate a safety property[H. Chen, D. Dean and D. Wagner 2004]. Performing a 

compile-time analysis of each participating principal without taking into perspective 

other principals and objects in the system may not yield useful enough information. 

Therefore it may not be entirely suitable for checking properties of security protocol 

implementations (or other such applications) wherein different principals (or entities) 

may run as distinct interacting programs. This requires an analysis of the system 

comprising of all participating principals and other pertinent objects in a way that 

resembles their mutual interaction at run-time. We achieve this in the following manner. 

Initially, we separate individual principals to generate their control-flow state machines, 

but finally we produce a single Promela model that allows proctypes of all principals to 

run concurrently. Then, we leverage features of the model checker SPIN[Holzmann, G. 

J., 1997] to check properties of this model. 

We have identified major areas where we foresee scope for future research. 

However, we do not state that future investigation may be limited to those areas. The 

present framework may be enhanced to model check object oriented implementations 

other than those of security protocols. For example, distributed applications with object 

oriented implementations may be reverse engineered to generate control-flow state 

machines of participating entities. These control-flow state machines can be 

subsequently converted to Promela for final verification. This process may yield useful 
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information to identify bugs associated with the implementation. We also see potential 

for improvement in the final step of the framework. In the final step, we generate a 

Promela model from control-flow state machines of participating principals. However, 

we do not work towards efficiency or optimization of the Promela model. An 

intermediate step to optimize the Promela model before feeding it to the SPIN model 

checker could be introduced. Any step towards such optimization would be a 

challenging task, since the optimized Promela model should be generated without loss 

of information. In other words, the optimized model should be as representative of the 

control-flow state machines as the original model. 

   



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX A 
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APPENDIX B 
 
 

SEQUENCE DIAGRAM OF RESPONDER
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APPENDIX C 
 
 

PROMELA CODE 
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mtype = {A_initiator, B_responder, intruder, 
         nonceA, nonceB, nonceI, 
         keyA, keyB, keyI, 
         msg1, msg2, msg3, 
         ok, nok}; 
typedef Crypt { mtype key, d1, d2; } 
chan network = [0] of {mtype, mtype, Crypt}; 
mtype partnerA, partnerB; 
mtype statusA, statusB; 
 
active proctype A() 
{ 
mtype  pkey, pnonce; 
Crypt  data; 
int msgNo = 1; 
  if 
  :: partnerA = B_responder; pkey = keyB; 
  fi; 
START:  goto ENCRYPT; 
ENCRYPT: 
        if 
        :: (msgNo == 1) -> 
            atomic{data.key = pkey; data.d1 = A_initiator; data.d2 = nonceA;} 
   goto SENDING; 
        :: else -> 
            atomic{data.key = pkey; data.d1 = pnonce; data.d2 = 0;} 
   goto SENDING; 
        fi; 
SENDING: 
        if         

 :: (msgNo == 1) -> 
                network ! msg1, partnerA, data; goto RECEIVING; 
        :: else -> 
                network ! msg3, partnerA, data; goto END_A; 
        fi; 
RECEIVING: 
        network ? msg2, A_initiator, data; goto VALIDATION; 
VALIDATION: 
        if 
        :: (data.d1 == nonceA) -> 
                pnonce = data.d2; msgNo++; goto ENCRYPT; 
        :: else -> goto INVALID_A; 
        fi; 
END_A: statusA = ok; 
INVALID_A: skip; 
} 
 
active proctype B() 
{ 
mtype pkey, pnonce; 
Crypt data; 
int msgNo_B = 1; 
 
START_B: goto RECEIVING_B; 
RECEIVING_B: 
        if 
        :: (msgNo_B == 1) -> 
            network ? msg1, B_responder, data; partnerB = data.d1; goto 
ENCRYPT_B; 
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        :: else -> 
                network ? msg3, B_responder, data; goto VALIDATION_B; 
        fi; 
VALIDATION_B: 
        if 
                :: (data.d1 == nonceB) -> goto END_B; 
                :: else -> goto INVALID_B; 
        fi; 
ENCRYPT_B: 
        atomic 
        { 
                if 
                :: (partnerB == A_initiator) -> pkey = keyA; 
                fi; 
                pnonce = data.d2; data.key = pkey; data.d1 = pnonce; data.d2 = 
nonceB; 
        } goto SENDING_B; 
SENDING_B: 
        network ! msg2, partnerB, data; msgNo_B++; goto RECEIVING_B; 
END_B: statusB = ok; 
INVALID_B: skip; 

}
 

active proctype Intruder() 

{ 
  Crypt intercepted; 

  mtype msg; 

  do 
  :: network ? msg, _, intercepted; 

  :: (msg == msg1) -> network ! msg1, B_responder, intercepted; 

  :: (msg == msg2) -> network ! msg2, A_initiator, intercepted; 
  :: (msg == msg2) -> network ! msg3, B_responder, intercepted; 

  od;  

} 
 
Note: To introduce the Intruder with the Initiator and Responder communicating 
processes, enter non-determinism into the Initiator and Responder code to reflect the 
Intruder. This modification being straightforward is not shown in this document. We 
derive inspiration from the tutorial provided by Merz [Merz, S., 2001] for some of the 
above_code. 
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