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ABSTRACT 

 

CONSTRAINT OPTIMAL SELECTION TECHNIQUES (COSTs) 

FOR A CLASS OF LINEAR PROGRAMMING PROBLEMS 

 

Publication No. ______ 

 

Tai-Kuan Sung, PhD. 

 

The University of Texas at Arlington, 2006 

 

Co-Supervising Professor:   H.W. Corley 

Co-Supervising Professor:   J. M. Rosenberger 

This dissertation describes two classes of Constraint Optimal Selection 

Techniques (COSTs). An algorithm of each type is developed for solving nonnegative 

linear programming problems. In addition, geometric interpretations of these new 

algorithms are given, computational results for some large-scale problems are provided, 

and directions for future research are discussed. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Description of the Problem

Linear programming (LP) represents a mathematical model for solving 

numerous practical industrial problems such as the optimal allocation of resources. The 

standard linear programming model is formulated as 

 (P) maximize z = c1x1 + … + cnxn (1.1) 

 subject to 

 ai1x1 + … + ainxn ≤ bi , i = 1, …, m (1.2) 

 xj ≥ 0, j = 1, …, n, (1.3) 

where the variable xj, j = 1, … , n may be interpreted as the amount of product j (or 

activity j) requiring aij units of resource i to be produced (or allocated) when there are 

only bi , i = 1, …, m units of resource i available. The objective is to maximize the gain 

(or profit) c1x1 + … + cnxn, where cj, j = 1, … , n represents the profit per unit of product 

j. In any given problem (P), the cj, aij, and bi are known constants and the variables xj

must be determined to maximize the total gain z. In many practical problems, the known 

constants bi and cj are positive numbers, while the given constants aij are nonnegative 

numbers, in which the problem (P) is called a nonnegative linear programming (NNLP) 

problem. 
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LP has been studied for over fifty years, and the applications are pervasive 

throughout industry. Indeed, a major proportion of all scientific computation is devoted 

to linear programming. The simplex algorithm, developed in the 1947 by Dantzig [12], 

provided the first effective solution procedure and remains the underlying algorithm 

utilized by most commercial linear programming packages. Unfortunately its 

computational complexity is not polynomial in the worst case, even though it exhibits 

polynomial complexity on average. Khachian’s ellipsoid algorithm [23] solves linear 

programming problems in polynomial time, but it performs poorly in practice. More 

recently, Dikin [16], [17], Karmarkar [22], and others, developed a polynomial 

projection approach that evolved into various polynomial interior-point barrier-function 

methods [13], [40], [41] used in some large-scale applications. However, in contrast to 

pivoting algorithms, such interior-point methods do not allow efficient post optimality 

analysis for solving the binary and integer models common in industrial applications. 

Unfortunately, the simplex and other LP algorithms are not always adequate for 

many applications. In particular, emerging technologies require computer solutions in 

real time and algorithms with efficient memory usage for problems involving millions 

of constraints or variables. Examples include instantly updating airline schedules as 

weather conditions and passenger loads change [36], finding an optimal driving route 

using real-time traffic data from global positioning satellites [15], and detecting 

problematic repeats in DNA sequences [27]. Many such applications of linear 

programming are nonnegative linear programs (NNLPs), so only NNLPs are considered 

in this dissertation. Efficient new algorithms are developed for their solutions. 
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1.2 Objectives of the Work

According to Bixby [7] and Todd [40] recently, as well as Koopmans [25] 

earlier, there is no single best algorithm for LP. For any existing approach developed so 

far, one can always devise a problem for which the approach performs very poorly. We 

attempt to rectify this situation with this research. The major objective of the work is to 

develop new algorithms that outperform current algorithms, especially in solving an 

NNLP. 

 Each new algorithm here for solving an NNLP is termed a Constraint Optimal 

Selection Technique (COST). Indeed, COST represents a unifying framework for a new 

class of algorithms. Two classes of COSTs, Prior and Posterior, are defined. Prior 

COSTs use global information of relaxed LP problems with only a subset of constraints 

(1.2) of (P). Posterior COSTs utilize local information at current optimal solutions of 

relaxed problems in addition, as well as information about the above subset of 

constraints. Two new algorithms, one for each class of COST, are implemented and 

tested. Both of these algorithms outperform existing methods in the large-scale 

computational experiments performed in this research.  

1.3 Related Work

Numerous approaches for solving LP have been developed since the simplex 

method was first introduced. An overview of approaches for solving LP is given in 

Todd [40]. An overview of computational aspects in solving LP is given in Bixby [7]. 

Corley et al. [11] proposed a COST using a criterion named the cosine criterion to solve 

(P). This algorithm is a prior COST and sequentially adds a constraint in (1.2) most 
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parallel to the objective function (1.1) to a relaxed version of (P) not including the 

constraint.  

Recent work in Vieira et al. [43], Trigos et al. [42], and Stojkovic et al. [39] 

have also used the cosine criterion for (P) when the nonnegativity restrictions (1.3) are 

included in constraint set (1.2) to get an initial basis for the simplex algorithm. As a 

consequence, they reduce the number of required simplex iterations, each of which 

involves all constraints. However, these approaches must initially eliminate any 

redundant constraints. 

1.4 Overview of the Dissertation

Chapter 2 is a literature survey. It begins with the simplex method, then the 

ellipsoid method and interior-point methods. Large Scale LP problems with special 

structure and methods to optimize them are also discussed. The types of testing 

problems used in this research are next described. Finally, the cosine cutting plane 

algorithm of (4.1) is presented since it is generalized here to COSTs and represents the 

prototype of these methods. 

Chapter 3 describes COSTs and gives details about the specific prior and 

posterior algorithms developed here. Chapter 4 summarizes results of the computational 

experiments, and finally conclusions are presented Chapter 5. 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 Introduction

The major aspects of linear programming relevant to this research are 

summarized in this chapter. All are not used here, but all have influenced this work, 

which may improve them. In Section 2, the necessary definitions and notation are 

introduced. In Section 3, the standard Simplex Algorithm is presented, while the 

Ellipsoid and Interior-Point Methods are discussed. Then Section 5 covers some 

topics in Large-Scale Linear Programming since these are the types of problems for 

which the results here were developed. In Sections 6, 7, 8 cutting-plane methods, 

active-set methods, and integer programming are described, respectively. Finally 

Section 9 focuses on the cosine approach to selecting LP constraints since it was the 

motivation for this work.  
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2.2 Preliminary Definitions and Notation

2.2.1 Notation 

The notation described below will be followed in general with minor 

deviations where appropriate. Standard definitions and notation are used, much as in 

Bazaraa [2] and Dantzig[13] 

� Bold uppercase letters will be used to represent matrices. 

� Bold lowercase letters will be used to represent vectors. 

All vectors will be column vectors unless otherwise noted, with xi being the 

ith component of x, for example.  

� Lowercase letters represent scalars, including Greek letters. 

� The following specific symbols are used.  

nR — n-dimensional space of real numbers. 

nR+ — n-dimensional space of nonnegative real numbers. 

c — n × 1 coefficient vector [c1, …, cn]T of the objective function. 

A — m × n coefficient matrix [aij] of the linear program.  

B — m × m basis nonsingular matrix with the basic columns of A.

N — m × (n – m) nonbasic columns of A.

x — n × 1 vector [x1, …, xn]T usually representing the vector of 

 unknown variables in problem (P).  
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IB — IB = {k1, …, km}, the index set of the basic variables, where ki

is the original index of the variable that belongs to the ith column 

of the basis B if we number the columns in B consecutively 

starting from 1. 

pj — For j ∈ IB, pj ∈ {1, 2, 3, …, m} denotes the position number of 

 variable j in the basis. Here j is the original column index in the   

 list of columns of A. Thus if kj ∈ IB is the variable in the  

 position of the basis, then pj = i for i = 1, …,m.

xB — Basic solution. The vector of basic variables in the same order as 

 in B.

xN — Nonbasic solution. 

x* — An optimal basic feasible solution of the linear program. 

zB — zB = cBB-1b, the objective function value given the basis B, where 

 cB is the row vector of the objective function coefficients of the 

 basic variables. 

b'   — b' = B-1b, the transformed right hand side for the basis matrix B.

cN — cN = c – cBB-1A = [c1,…, cn ]T, the reduced cost vector. 

yj — yj = B-1aj = [yj
1,…, yj

m]T, the jth the transformed column of A. 

I — Identity square matrix.  
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er — The rth column of I where an element of one is in row r and zeros 

 elsewhere. 

2.2.2 Preliminaries 

Consider the problem (P) of Chapter 1. A single constraint of a linear 

programming model ai1x1 + … + ainxn ≤ bi in (1.2) can be written as ai
Tx < bi, where 

ai
T = [ai1, ai2, …, ain ] and x = [x1 , x2, …, xn ]T. The set of points x in Rn that satisfy this 

constraint is called a closed half-space. A point that satisfies all the constraints is 

called a feasible solution or a feasible point. The set of all feasible points constitutes 

the feasible region or the feasible space.

Consider the following problem  

maximize z =  3x1 + 5x2

subject to    x1 + 2x2 ≤ 3

x1 ≤ 4

x2 ≤ 6

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0

The feasible region is shaded region in Figure 2.1



9

x1

x2

(0, 0)

Max    z = 3 x1 + 5 x2

s.t.          x1 < 4
x2 < 6

3 x1 + 2 x2 < 18
x1, x2 > 0

(4, 0)

(0, 6) (2, 6)

(4, 3)

(6, 0)

x2 = 6

x1 = 4
3 x1 + 2 x2 = 18

feasible region

 
Figure 2.1 A Graphical LP Example 

 

A polyhedron is the intersection of a finite set of closed half-spaces. It is a set 

that can be described in the form {x |Ax > b, x nR∈ }, where A is a m × n matrix, b∈

mR , and Ax > b means that constraints are inequality. The set {x |A x = b, x nR∈ } is 

call a hyperplane. A polytope is a bounded polyhedron. 

A convex combination of the points x1, …, x k
nR∈ is a linear combination 

λ1x1 + … + λkx k such that 1
1

=∑ i

kλ , and λi > 0 for all i = 1, …, k. A set S is a 

convex set if for any x, y S∈ and all ]1,0[∈λ , then λx + (1 – λ) y S∈ . That is, any 

convex combination x and y is a member of S. A set C nR⊆ is a cone if and only if 

for all x C∈ , λx C∈ for all nonnegative λ nR∈ .

Let the polyhedron P = {x nR∈ | Ax > b}. The point r is a ray of P if and only 

if for any x P∈ , the set {y nR∈ | y = x + λr} P⊆ . A ray r is an extreme ray if there 
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do not exist rays r1 and r2 such that r is a convex combination of r1 and r2. A point 

x P∈ is an extreme point if and only if it can not be written as a convex 

combination of other points in P distinct from x.

Consider a polyhedron P defined by linear equality and inequality constraints. 

Let x* be an element of nR . If the vector x* satisfies ai1x1 + … + ainxn = bi , for some i in 

the constraint set, the corresponding constraint is said to be active, tight, or binding 

at x*.

The vector x is a basic solution if x is obtained by setting n – m variables 

equal to zero and solving for the remaining variables [14]. If x is a basic solution with 

all nonnegative components, then it is a basic feasible solution [2].

The following are equivalent: 

a. x is a vertex of { Ax = b, x> 0 }; 

b. x is an extreme point of { Ax = b, x> 0 }; 

c. x is a basic feasible solution of { Ax = b, x> 0 }. 

In Figure 2.1, the point (2, 6) is an extreme point.  

 An algorithm is polynomial if: 

1). The number of arithmetic operations is bounded by a polynomial function 

of the number of inputs and the size of the inputs. 

2). The space required is a polynomial function of the size of the inputs [28]. 
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2.3 The Simplex Method

2.3.1 Discussion 

The extreme points of (P) have the following properties: 

1). The set of extreme points is a convex set. 

2). If (P) has an optimal solution, then there is at least one extreme point is an 

optimal solution. 

3). There are a finite number of extreme points in (P). 

4). An extreme point can be represented algebraically as a basic feasible 

solution to the set of constraints rewritten as equations with nonnegative 

slack variables added to give equality. 

The simplex method introduced in this section solves (P) as follows. The 

algorithm moves geometrically from one extreme point to an adjacent extreme point 

by algebraically changing only one basic variable per iteration until no improvement 

can be found. 

2.3.2 Primal and Dual Linear Programming Problems  

Consider the linear programming problem in standard matrix form 

 (P) maximize z = cTx

subject to Ax < b

x > 0, 
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where x is a n × 1 vector in nR , A is a m × n matrix with m < n, b is a vector in mR+ ,

and c is a vector in nR .

Associated with problem (P), called the primal problem, is a second 

minimization LP problem called the dual problem (D).  

 (D) minimize w = bTy

subject to ATy > c

y > 0, 

where y is a m × 1 vector in mR , AT is a n × m matrix with m < n, b is a vector in 

mR+ , and c is a vector in nR .

The relationships between (P) and (D) were first exploited by Lemke [26]. 

The main results are stated as follows. 

Weak Duality Theorem: If x is a primal feasible solution, and is y is dual 

feasible, then cTx < bTy.

Strong Duality Theorem: 

1. If either the primal or the dual linear programming problem has a finite 

optimal solution, then so does the other. Both achieve the same optimal 

objective function value. 

2. If either the primal or the dual linear programming problem has an 

unbounded objective value, then the other has no feasible solution. 
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The Strong Duality Theorem has several implications. First, there is no duality 

gap between the primal and dual linear programs; that is, no difference between their 

optimal objective function value z* and w*. Second, the Lagrange multipliers become 

the vector y of dual variables.  

Complementary Slackness: Let x be a primal feasible solution and y be a 

dual feasible solution. Then x and y become an optimal solution pair if and only if the 

complementary slackness conditions  

either si = (Ax – b) i = 0, or yi = 0, for all i = 1, 2,…, m

and 

either ri = (c –ATy) i = 0, or xi = 0, for all i = 1, 2,…, n

are satisfied. Complementary slackness is an important relationship between the 

primal and dual problems. It states that if a variable in one problem is positive, then 

the corresponding constraint in the other problem must be binding. If a constraint in 

one problem is not binding, then the corresponding variable in the other problem must 

be zero. 

2.3.3 The Primal Simplex Algorithm  

Consider the following linear programming problem for a minimization 

problem with equality constraints where nonnegative slack and surplus variables have 

been added as necessary to give equations for the constraints. 
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 (P') minimize z = cTx

subject to Ax = b

x > 0, 

where c ∈ nR , A is a m × n matrix with m < n, and b ∈ mR+ . A submatrix B of A is 

called a basis if the rank of B is m. Given a basis B we partition A and write 

 Ax = BxB + Nxn,

where N is the “rest” of A, i.e., the columns of A not in the basis B. If a basis B is 

feasible, then it defines a basic feasible solution to Ax = b, x > 0 by xB = B-1b, xn= 0. 

The classic primal simplex method of Dantzig [12, 32] is given as follows. 

___________________________________________________ 
Primal Simplex Algorithm (m, n, A, b, c)

_____________________________________________________________________ 

Step 0: Initialization

Find a feasible basis B for (P'), its index set IB, 

and initialize pk for all k∈IB.

if none exist then 

stop, (P') has no feasible solution. 

else  

 compute B-1, b'← B-1b and initialize cB.

end.
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Step 1: Optimality Test

Compute the reduced cost vector cN← c – cB B-1A.

if cN > 0 then 

 set  xB ←b'; xN ← 0,  

 stop, xB is an optimal basic feasible solution. 

end. 

Step 2: Choice of Pivot Column

Choose :{ Nkj ∈∈ ck }0< .

Compute yj ← B-1aj.

if yj ≤ 0, then 

 stop, (P') is unbounded. 

 end 

 Step 3: Choice of Pivot Row

Compute the least ratio θ← min 




≤≤≥






miy
y
b

iji
j

i 1,0|' , and 

 choose a row l ∈ IB such that the least ratio θ = l

l
p
j

p

y
b '

.

set r← pl.

Step 4: Pivot Step

Set B←B + (aj – al) er
T, cB← cB + (cj – cl) er

T,
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IB ← IB – {l} ∪ {j }

r← pj. 

Compute B-1, b' ← B-1b and go to Step 1 

_________________________________________________________________ 

The primal simplex algorithm is first developed by Dantzig [12] in 1947, and 

its algorithmic behavior is well understood. E. M. L. Beale [3] showed that 

degeneracy (i.e., some basic variable being zeros) might cause the simplex algorithm 

to cycle infinitely. The simplex algorithm’s average and worst behavior have been 

studied and explained by Borgwardt [8] and Klee and Minty [24], respectively. Even 

though in the worst case the optimal simplex method is not polynomial, it typically 

requires at most 2m to 3m pivots to attain optimality [29]. 

The primal simplex method has undergone substantial improvement since its 

inception. The improvements are mainly computational to make the simplex solution 

method efficient and robust for a wide range of problems. For example, standard 

simplex codes of today almost invariably use a steepest-edge rule [18] [40] for 

determining the entering basic variable as opposed to Dantzig’s rule. 

2.3.4 The Dual Simplex Algorithm 

The dual simplex method was introduced in 1954 by Lemke [26]. In effect, it 

solves the dual problem on the primal tableau by maintaining dual feasibility and 
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complementary slackness conditions, while seeking primal feasibility to achieve an 

optimum. At each iteration, the dual simplex method moves from a basic feasible 

solution of the dual problem to another improved adjacent basic feasible solution until 

optimality is reached, or it concludes that the dual problem is unbounded and the 

primal is infeasible.   

Consider the linear programs problem in standard form 

 (P1) minimize z = cTx

subject to  Ax = b

x > 0, 

and the rank of (P1) equals m. The dual problem is 

 (D1) maximize w = bTy

subject to ATy < c

y free. 

The dual simplex method [26, 32] is now described. 

___________________________________________________ 
Dual Simplex Algorithm (m, n, A, b, c)

_____________________________________________________________________ 

Step 0: 

Find a dual feasible basis B for (P1), its index set IB, 

and initialize pk for all k∈IB.
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if none exist then 

stop, (P1) is either infeasible or unbounded. 

else  

 compute cN← c – cB B-1A

end.

Step 1:  

 Compute b'← B-1b.

if b'> 0 then 

 set  xB ← B-1b; xN ← 0,  

 stop, xB is an optimal feasible solution to (P1). 

 else  

 choose l ∈ IB such that b'pl < 0, and set r ← pl

end. 

Step2:  

 Compute yr ← eT
r B-1N, and J← {1, …, n} – IB.

if yr > 0, then 

 stop, (P1) has no feasible solution. 

else  
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 compute the least ratio γ← min 




∈<




Jky
y

r
kr

k

,0|ck , and 

 choose j ∈ J such that the least ratio γ =
rky
jc

and yr < 0. 

 end 

 Step3:  

 Set  B ← B + (aj – al) eT
r,

cB← cB + (cj – cl) eT
r ,

IB ← IB – {l} ∪ {j} and pj← r

Step 4:  

r← pj. 

Compute B-1, cN← c – cB B-1A and go to Step 1. 

_________________________________________________________________ 

The dual simplex method is especially useful if a dual feasible solution but not 

a primal feasible solution is available. This event occurs, for example, when an 

optimal solution to a linear programming problem is solved, but later the problem 

becomes infeasible when additional constraints are added. The dual simplex algorithm 

is used in the COSTs of the dissertation, because they are active-set methods that add 

constraints sequentially as discussed in Chapter 3. 
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2.4 The Ellipsoid Method and Interior-Point Methods

Dantzig’s simplex method has been constantly improved and is generalized to 

a robust efficient method for solving linear programming problems. It remains the 

underlying algorithm used by most commercial linear programming packages. 

However, two other important proposals, very different from the simplex method, 

have been developed for linear programming. These new approaches are the ellipsoid 

method and interior-point methods. 

2.4.1 Ellipsoid Method 

As previously noted, the simplex method is not a polynomial algorithm in the 

worst case for solving linear programming. The first polynomial algorithm for linear 

programming is the ellipsoid method. The ellipsoid method was first developed by 

Yudin and Nemirovski [44] and Shor [38] for convex nonlinear programming. It 

received much publicity when Khachiyan [23] used it in a polynomial algorithm for 

linear programming.  

The basic idea of the ellipsoid method is that at each iteration, an ellipsoid is 

given which contains all optimal solutions. By considering the center of the ellipsoid, 

a hyperplane is constructed so that all optimal solutions lie on one side of the 

hyperplane and the center either lies strictly on the other side (a deep cut) or on the 

hyperplane itself (a central cut). Then a new ellipsoid is found that contains all points 
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in the old ellipsoid and on the correct side of the hyperplane. Though the ellipsoid 

method was a major theoretical advance in showing a linear programming problem is 

polynomial, it performs poorly in practice. It is thus never used to solve applied 

problems. 

2.4.2 Interior-Point Methods 

The simplex method moves along an edge of a polyhedron from one extreme 

point to an adjacent one changing only one basic variable at each iteration. There are a 

finite number of extreme points, so the simplex method is a combinatorial algorithm. 

The philosophy of interior-point methods is different. Interior-point methods move in 

the feasible direction which gives maximum improvement per unit distance in the 

objective function value after projection into a linear subspace. The feasible direction 

will generally be through the interior of the polyhedron. 

In 1984 Narendra Karmarkar developed an interior-point method with 

polynomial time complexity. His algorithm uses certain projective transformations. 

His implementation used an affine-scaling method first introduced in 1967 by Dikin  

[16] and further analyzed in 1976 by Dikin [17]. After Karmarkar’s work, numerous 

other interior-point methods have been created. Today barrier methods, not 

Karmarkar’s projective transformations, are used in most implementations of interior- 

point methods [40]. 
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If the optimal solution is unique, the interior-point methods will terminate 

with the unique extreme point optimal solution. However, if the optimal solution is 

not unique, the interior-point methods will typically terminate at a point somewhere 

on the optimal face other than at an extreme point. In some applications an extreme 

point is preferred. For example, when attempting to obtain integer solutions by using 

relaxed linear programming problems, it is desirable to have a basic feasible solution 

because it will have fewer nonzeros. 

The subsequent variants of Karmarkar’s method often outperform the simplex 

method in very large, sparse problems [35]. However, the simplex method allows 

efficient post-optimality analysis and thus readily adapts to branch-and-bound 

algorithms for the binary and integer models common in industrial applications. In 

contrast, interior-point methods are not suitable for such uses. 

 2.5 Large-Scale Linear Programming

2.5.1 Discussion 

Linear programming has been increasingly applied to industrial and scientific 

fields. Many such applied linear programming problems have special structure. They 

are sparse, with the nonzero items exhibiting block angular structure. Some 

techniques utilizing the decomposition principle are often applied to convert these 

large problems into one or more problems of manageable size to solve them more 

efficiently. Even in a manageable size a linear programming problem with some of its 
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constraints possessing a special structure, the decomposition principle can also be 

applied to solve the problem more efficiently.   

 

Figure 2.2 Block Angular Structure 
 

The decomposition principle is a systematic procedure for solving large scale 

linear programs with special structured constraints. The decomposition strategy first 

partitions problems into two problems based on the constraints, one problem with 

general constraints named the master problem and the other with special structured 

constraint named the subproblem. The strategy then operates on both the master 

problem and the subproblem. The information is passed back and forth between these 

two new problems until an optimal solution to the original problem is reached. 

Dantzig-Wolfe and Benders decomposition are two of these techniques. 

Martin [28] uses two unifying ideas, projection and inverse projection, to describe 

these techniques. Through projection, a system of linear inequalities is solved by 

replacing some of the variables with additional inequalities. Inverse projection is the 

dual process of projection, and it involves replacing some of the inequalities with 

additional variables. 

� Separable subproblems

Separable subproblems �
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The main idea of decomposition techniques for solving large-scale problems 

can be summarized as: 

1. In a problem with an excessive number of columns, a column is 

generated only if its reduced cost is negative and then enters the basis. 

2. In a problem with an excessive number of constraints, a constraint is 

generated only if it is violated by the current solution. The constraint is 

then added. COSTs are techniques for identifying the constraints added. 

Several large scale decomposition algorithms are briefly described as follows.  

2.5.2 Delayed Column Generation 

Delayed column generation utilizes the idea that generating a column 

(variable) of the matrix A only after it has been determined that it can profitably enter 

the basis. The dual of delayed column generation’s idea leads to cutting plane, or 

delayed constraint generation methods. 

In an LP maximization problem with an excessive number of columns, a 

column is generated only if its reduced cost is positive, and delayed column 

generation then selects the column to enter the basis. It requires an efficient 

subroutine for identifying a variable with positive reduced cost. Delayed column 

generation is an inverse projection approach. It is used in Dantzig-Wolfe 

decomposition.  
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2.5.3 Dantzig-Wolfe Decomposition 

Dantzig-Wolfe decomposition is a method to decompose the linear program 

into two sets of constraints. Delayed column generation plays as the centerpiece of 

Dantzig-Wolfe decomposition. Dantzig-Wolfe decomposition is very successful in 

applications when their subproblems have special structures and are easily optimized. 

The problem 

maximize z = cTx
subject to  A′x ≤ b′

A″x ≤ b″

can be rewritten as  

maximize z = cTx
subject to  A′x ≤ b′

x ∈ P = {x| A″x ≤ b″}. 
If we let 

x = ,0µ,λ1,λ,rµxλ j
Kk

kk
Jj

j
j

Kk

k
k ≥=+ ∑∑∑

∈∈∈

where J is the set of extreme points, and K is the set of extreme rays of the problem. 

The problem becomes  

maximize  ∑∑
∈∈

+
Jj

j
j

Kk

k
k crµcxλ

subject to  ∑
∈Kk

kλ A′ kx 'µ
Jj

j∑
∈

+ A′ jr < b

∑
∈

=
Kk

k 1λ

0. µ,λ jk ≥
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___________________________________________________ 
Dantzig-Wolfe decomposition 

_____________________________________________________________________ 
1. Consider a subset of extreme points K ⊂ K, and extreme rays J ⊂ J. 
2. Solve master problem ( K , J )

maximize  ∑∑
∈∈

+
Jj

j
j

Kk

k
k crµcxλ

subject to   ∑
∈Kk

kλ A′ kx 'µ
Jj

j∑
∈

+ A′ jr < b

∑
∈

=
Kk

k 1λ

.0µ,λ jk ≥

3. Solve subproblem: maximize {x| A″x ≤ b″} to find additional extreme points 
and rays: 

4. If no more extreme points and rays are found, we are done; otherwise add new 
points and rays to K and J , and go to 2. 

_____________________________________________________________________ 

2.5.4 Benders Decomposition 

 

Figure 2.3 Block Angular Structure for Benders Decomposition 
 

Benders decomposition is equivalent to Dantzig-Wolfe decomposition applied 

to the dual problem. Benders decomposition reduces the number of the variables at 
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the expense of usually adding many new constraints. The new constraints are 

generated only when needed, so this approach is also called delayed row generation. 

The key feature of Benders decomposition is that the subproblems must be solved 

efficiently. Benders decomposition is also used in techniques for solving integer 

programming [5]. 

Suppose the problem has the formulation: 
minimize  z = cTx + fTy
subject to  Ax + Dy > b

y ∈ Y
x > 0,

where the decision variables have been partitioned into two sets of variables x ∈ Rn1

and y ∈ Rn2. In particular, assume the A matrix has a special structure so that the 

problem finding an x is relatively easy, given a vector y. For example, if the y

variables are fixed at y = y′, the constraint set is Ax > b – Dy′ might be the constraint 

set for a transportation problem. The constraint set y ∈ Y might be a polyhedron, a 

set with discrete variables (integer programming), or a set with nonlinearities.  

The original problem is equivalent to:  

Minimize  z0

subject to  z0 – cTx > fTy
Ax > b – Dy 
y ∈ Y
x > 0.

In the Benders decomposition framework two different problems are solved. 

The Benders master problem is defined as: 
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Minimize  z0

subject to  z0 > fTy + µi
T(b – Dy),  i = 1, …, q

0 > µi
T(b – Dy),    i = q + 1, …, r

y ∈ Y,
where µ1, …, µq are extreme points of the polyhedron {µ| ATµ < c, µ > 0 } and µq+1, …, 

µr are the extreme rays. 

If (z0′, y′) is a feasible solution to the relaxed Benders master problem, then a 

constraint that violates the master problem can be derived by solving the Benders 

subproblem: 

maximize  fTy′ + (b – Dy) µ
subject to  AT µ < c

µ > 0.

Benders decomposition uses delayed constraint generation and has practical 

applications in stochastic programming [34] and in integer-programming problems. 

___________________________________________________ 
Benders decomposition 

_____________________________________________________________________ 
1. Find an initial y ∈ Y.

Set the upper bound UB ←∞, and lower bound LB ← – ∞.
2. while (UB – LB) >ε

Solve the subproblem: 
maximize  fTy′ + (b – Dy) µ
subject to   AT µ < c

µ > 0.
if the subproblem is unbounded  

 Get a ray u' 
Add a cut/constraint (b – Dy) µ' < 0 to the master problem 

else 
Get an extreme point u' 
Add a cut/constraint z0 > fTy + (b – Dy) u' to the master problem 
UB ← mim { UB, fTy + (b – Dy) u' } 



29 

end 
Solve the mater problem: 
minimize  z0

subject to  z0 > fTy + µi
T(b – Dy),  i = 1, …, q

0 > µi
T(b – Dy) , i = q + 1, …, r

y ∈ Y.
if the mater problem is infeasible  

 Stop, the problem is infeasible.
end 
LB ←z0

end 
3. if (UB – LB) <ε , stop.

_____________________________________________________________________ 
 

2.6 Cutting-Plane Methods

Cutting plane methods are applied to solve convex optimization problem of the form: 

maximize cTx

subject to x∈S, 

where S∈{x∈ nR : Ax < b} is a closed convex set. 

They add hyperplanes (constraints) that separate the current point from 

optimal points and eliminate a half-space from the feasible region. Cutting plane 

algorithms are sometimes used to solve integer programs. 

___________________________________________________ 
Cutting-Plane Algorithm 

_____________________________________________________________________ 

Given a polyhedron Pk, such that S⊂ Pk.

Step 1: minimize cTx over Pk to obtain a point in Pk.
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if xk∈ S then   

stop, xk is optimal. 

end.

Step 2: Find a hyperplane Hk separating the point xk from S,

that is, find ak ∈ nR , bk∈ 1R .

such that S ⊂ {x|ak
Tx < bk}, xk ∈ {x| ak

Tx > bk}. 

 update Pk+1 ← Pk I {x| ak
Tx < bk}. 

 go to Step 1.  

_________________________________________________________________ 

Branch-and-bound algorithms represent a logical approach for solving integer 

linear programming problems. These branch-and-bound algorithms involve cutting 

planes of the form xi > k + 1 and xi < k for integers encompassing a noninteger value 

of the integer variable xi with a noninteger value between k and k+1. Theoretically, a 

branch-and-bound algorithm will always find an optimal solution if one exists. 

However, some cutting-plane algorithms may not converge to an optimal solution in 

some problems. 

An improvement of the branch-and-bound approach is the branch-and-cut 

method. Adding cuts before applying enumeration in the branch-and-bound algorithm 

could be very effective in reducing the amount of enumeration required. A 

branch-and-cut algorithm combines both, and it is used in many commercial codes. 
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Delayed column generation methods, when viewed in terms of the dual 

variables, can be described as cutting plane methods, or delayed constraint generation 

methods. That is, applying delayed column generation methods to the primal problem 

coincides with applying cutting plane methods to the dual problem.  In a problem 

with an enormous number of constraints, a constraint (cut) is added only if it is 

violated by the current solution. Therefore, cutting plane methods require an efficient 

subroutine for identifying violated constraint. 

COSTs are cutting plane methods using only the original constraints of (P) as 

possible cutting planes. However, general cutting plane methods may add constraints 

that are not in the original constraint set.  

2.7 Active-Set Methods

An active-set method solves a system of inequalities by partitioning inequality 

constraints into two sets: active and inactive. The inactive constraints are ignored for 

an iteration. Gill and Murray [19], and Santos-Palomo et al recently [37] used a 

non-simplex active-set method for solving for linear programs. The COSTs in this 

dissertation are active-set methods. 
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2.8 Integer Programming

2.8.1 Definition  

Often the solution of an optimization problem makes sense only if some 

unknowns are integers. Integer-programming problems have the general form  

(IP) maximize z = cTx

subject to Ax < b

xj = integer, if j ⊂ I,

where I is a subset of {1, …, n}.  If I = {1, …, n}, then the problem is called a pure 

integer programming problem. If I is a proper subset of {1, …, n}, then the 

problem is called a mixed integer programming problem.

2.8.2 0-1 Integer-Programming Problems 

A 0-1 integer programming problem is an integer programming problem with 

x in the set of n-dimensional 0-1 (binary) vectors. Many combinatorial optimization 

problems, such as airline crew scheduling problems, which are examples of set 

partitioning problems [21], can be modeled and solved in this form. 

Let m be the number of flights to cover and n the number of tours generated. 

The pure IP formulation of the crew scheduling problems is: 

 minimize z = ∑
=

n

j
jjxc

1
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 subject to ∑
=

n

j
jijxa

1

= 1,   for all i = 1, …, m

}1,0{∈jx , for all j = 1, …, n.

The xj are 0-1 decision variables that indicate if the tour j is used. The coefficient aij 

equals 1 if tour j includes flight i, and 0 otherwise. The predetermined constant cj is 

the cost of tour j. The number of coverings can be enormous even for medium-sized 

problems, and efficient algorithms are required for these problems. 

2.8.3 Set-Covering Problems and Set-Partitioning Problems 

The set-covering problem is given by:  

(SCP) minimize cx 

Ax > 1

xj = 0 or 1 for j = 1,… , n. 

When the inequalities are replaced by equations the problem is called the 

set-partitioning problem, or when all of the inequalities are replaced by <

constraints, the problem is called the set-packing problem. 

Many real world problems are modeled and solved by set-covering, set- 

partitioning, or set-packing problems. For example, disruptions in airline 

transportation systems can prevent airlines from executing their schedules as planned. 

Rosenberger et al. [36] present an optimization model for aircraft recovery (ARO) 
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that reschedules flight legs and reroutes aircraft by minimizing an objective function 

involving both rerouting and cancellation costs.  

The aircraft recovery problem is modeled as a set packing problem in which 

each leg is either in a route or cancelled. Consider a set of aircraft Φ, a set of 

disrupted aircraft Φ⊆Φ* , and a time horizon (t0, T). For each Φ∈φ , let F(φ ) be 

the initial route of aircraft φ , and let F = )(φφ FΦ∈∪ be the set of all legs in any 

initial route, for each Ff ∈ , let bf be the cost of canceling leg f, and let fK be 1 if 

leg l is cancelled, or be 0 otherwise. For each aircraft Φ∈φ , let R( F,φ ) be the set of 

maintenance feasible routes of aircraft φ that can be constructed from legs in F. For 

each route ),( FRr φ∈ , let the cr be the cost of assigning route r to aircraftφ , and let 

rX be 1 if route r is assigned to aircraft φ or 0 otherwise. 

Let A be the set of allocated arrival slots. For each slot Aa∈ , the number of 

landings at a station is restricted within a time period to capacity aα , and let R(a) be 

the set of routes that include legs that land in arrival slot a. For each route ),( FRr φ∈ ,

let H(r,a) be the set of legs r that use slot a.

Then aircraft recovery problem is a set partitioning problems: 

(ARO) minimize f
Ff

f
R

rr KbXc ∑∑∑
∈Φ∈ ∈

+
φ

1
),(

=∑
Φ∈ FRr

rX , Φ∈∀φ
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 1=+∑
∈

f
rf

r KX , Ff ∈∀

a
rf

rXarH α≤∑
∈

|),( , Aa∈∀

Xr ∈ {0, 1},     Φ∈∈∀ φφ ),,( FRr

Kf ∈ {0, 1},     Ff ∈∀ .

2.9 The Cosine Approach

2.9.1 Discussion 

Corley et al. [11] develop a cosine criterion and present an elementary 

cosine-based algorithm (to be called COS in Chapter 3) to extend the simplex method 

when (P) is assumed to have an optimal solution. Several small examples indicated 

the potential of COS, as well as some limitations. COS is an example of an algorithm 

that chooses a single violated constraint to add to a solved relaxed version of LP. This 

single constraint is chosen as the one most likely to be binding in an optimal solution 

to LP from certain considerations. 

2.9.2 Related Research 

Several researchers also propose methods similar to COS. Murshed et al. [30] 

incorrectly states that the n nonredundant constraints with maximum cosine criterion 

determine an optimal extreme point. However, a counterexample is given in Corley et 

al. [11]. 
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Recent work in Vieira et al. [43], Trigos et al. [42], and Stojkovic et al. [39] 

have used the cosine criterion for (P) when the nonnegativity restrictions (1.3) are 

included in constraint set (1.2) to get an initial basis for the simplex algorithm. As a 

consequence, they reduce the number of required simplex iterations, each of which 

involves all constraints. However, these approaches must initially eliminate any 

redundant constraints. COS solves (P) by keeping constraints (1.2) and (1.3) separate 

and then applying the cosine criterion only to the constraints of set (1.2). The result is 

a series of relaxed problems involving only a fraction of the original constraints (1.2). 

Redundancy difficulties are automatically eliminated in the process. 

The literature relevant to LP and COS has been given in this chapter. In the 

next chapter the notion of a COST will be formally defined, and efficient new COSTs 

will be developed. 
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CHAPTER 3 

CONSTRAINT OPTIMAL SELECTION TECHNIQUES (COSTs) 

3.1 Introduction

In this chapter Constraint Optimal Selection Techniques (COSTs) are 

described. The rationale for a COST is that the solution to LP is determined by 

relatively few constraints satisfied as equalities: n such constraints for the n variables 

in the constraints (1.2). The difficulty lies in determining the correct ones active at 

optimality. From empirical evidence, two factors appear to influence the likelihood of 

a constraint ai
Tx ≤ bi being among these n:

Factor I - the angle of its normal vector ai with c of the objective function in a 

manner similar to a class of problems solved by the Schwarz inequality in 

abstract Hilbert spaces [31],

Factor II - its efficiency as a cutting plane for at solution x* to a relaxed version of 

(P) without some of the constraints in (1.2), including ai
Tx ≤ bi itself. 

We first consider Factor I. The angle that the normal vector ai of a constraint 

ai
Tx ≤ bi in (1.2) forms with the normal vector c of the objective function is measured 

by the cosine of the angle between ai and c. Denote this cosine as cos(ai, c) = (ai
Tc) /
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(||ai|| ||c||). Geometrical considerations, including that of Naylor and Sell [31], suggest 

that a constraint ai
Tx ≤ bi with a larger cosine value is more likely to be binding at an 

optimal extreme point of (P) than one with a smaller value. At a given solution x* the 

selection of a single violated constraint with a largest cosine is called the cosine 

criterion, as previously stated in Section 2.9.1. In Figure 3.1 below in two dimensions, 

the two constraints with normal vectors a1 and a2 determine the optimal extreme point 

(2, 6) since a1 and a2 most parallel to c.

Figure 3.1 Factor I 
 

Previous work involving the cosine criterion includes Murshed et al. [30], 

who incorrectly state that the n nonredundant constraints with maximum cos(ai, c)
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from either (1.2) or (1.3) determine an optimal extreme point. However, the 

three-dimensional counterexample  

 maximize z = −x1 − x2 + 20x3

subject to 
x1 + x2 − 20 x3 < 120  

 −x1 + x2 + x3 < 4
x1 − x2 + x3 < 5
x1, x2, x3 > 0

with solution z= 179/2, x1 = 1/2, x2 = 0, x3 = 9/2 is given in Corley et al. [11]. 

Corley et al. [11] provides the motivation for this work. The COS algorithm 

for (P) was first developed and called the Cosine Simplex Algorithm there. COS is 

summarized as follows.  

Let Pr denote a relaxed version of (P) without some subset of constraint set 

(1.2), where r denotes the number of constraint from the set (1.2) in Pr. The 

constraints of Pr are called the operative constraints for Pr, while the remainder of 

(1.2) are called its inoperative constraints. Define the sequence of relaxed problems 

< Pr > such that Pr+1 has a single additional operative constraint chosen from the 

violated inoperative constraints of Pr according to the cosine criterion, where the 

constraint of P1 has a constraint from (1.2) with the minimum cos(ai, c). In Corley et 

al. [11], we start with P1. Each problem Pr yields either an optimal solution xr* or a 

direction dr* proving Pr has an unbounded objective function. An inoperative ai
Tx≤ bi
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said to be violated at xr* (or at the direction dr* in the unbounded case) if ai
Txr*- bi

>0 (or ai
Tdr*> 0 when unbounded). The relaxed problem Pr+1 adds a single additional 

operative constraint chosen from the violated inoperative constraints of Pr in the xr*

and dr* cases. In COS, then Pr+1 is solved via the dual simplex algorithm from LP 

sensitivity analysis [35]. Eventually, a solution xr* or direction dr* is obtained that 

satisfies all inoperative constraints for the current Pr yielding a solution to (P) or 

establishing that (P) has an unbounded objective function. 

COS automatically eliminates the redundancy difficulties of Stojkovic et al. 

[39], Trigos et al. [42], Vieira et al. [43] and has the objective of solving (P) using 

only a fraction of the original constraints. It is an active-set [19], cutting-plane 

algorithm that differs substantially from non-simplex, basis-deficient active-set 

methods such as Gill et al. [19], Pan [33], Palomo et al. [37]. Several small examples 

indicate the potential of COS, as well as some limitations. For small examples COS 

solves (P) more efficiently than the simplex method, handles Klee-Minty problems 

easily, and prevents cycling [3]. 

COS is the prototypical geometric-based algorithm that invokes Factor I but 

not Factor II to select a single violated constraint ai
Tx ≤ bi from (1.2) to add to a 

relaxed version Pr of (P) not involving ai
Tx ≤ bi. This constraint is chosen from the 
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inoperative constraints of Pr violated by its solution x*
r and deemed most likely to be 

binding at a solution x* to (P) according to the cosine criterion.  

We next consider Factor II. The prototype of a geometric-based algorithm that 

invokes only Factor II but not Factor I in selecting a single violated inactive constraint 

to Pr is the well-known algorithm [1] termed VIOL here, which is also a standard 

pricing method for delayed column generation [10] in terms of the dual problem to 

(P). In VIOL, a single inactive constraint ai
Tx ≤ bi with the largest violation ai

Tx - bi >

0 at the solution xr
* of Pr is added to the constraints of Pr to give Pr+1.

3.2 Prior and Posterior COSTs

We now generalize such algorithms as COS and VIOL to a class termed 

Constraint Optimal Selection Techniques (COSTs). We consider only NNLP 

versions of (P) and develop efficient new COSTs that invoke both Factors I and II. 

We partition COSTs into two mutually exclusive classes: Prior COSTs and  

Posterior COSTs. 

All Prior COSTs add a constraint to Pr according to a selection criterion based 

on the Factor I or II (or both) of the inoperative constraints. In particular, Prior 

COSTs use a numerical measure for each constraint such as the cosine criterion that is 

calculated only once, while the constraints (1.2) are being initially read by the 

computer program. A Prior COST is termed Prior because this selection metric for 
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each constraint of (1.2) is independent of the solution x*
r to the current Pr and 

available before x*
r is obtained. Of course, for Pr the added constraint is chosen from 

those inoperative constraints violated by the solution x*
r to Pr. In some sense, then, a 

Prior COST uses only global information of the constraints. 

COS is the prototypical Prior COST that considers only Factor I. On the other 

hand, a Prior COST that does not technically involve either factor is SUB, so termed 

because the violated inoperative constraint of Pr with the least subscript i from the set 

(1.2) is chosen to be added to Pr for Pr+1.

By comparison, Posterior COSTs compute the constraint selection metric for  

each violated inoperative constraint of ai
Tx ≤ bi at the solution x*

r to the current Pr.

Thus a Posterior COST is termed Posterior because it uses local information for all 

violated inoperative constraints after x*
r. In effect, Posterior COSTs use both global 

and local information about the constraints. Again, Posterior COSTs can invoke both 

Factors I and II. VIOL is the prototypical Posterior COST considering only Factor I. 

For problems with many constraints, a Prior COST appears to takes less CPU 

time to solve (P) on the average than a Posterior COST (such as the Prior COST RAD 

and the Posterior COST VRAD defined below), because the prior constraint selection 

metric for each constraint of set (1.2) is determined before the solutions to the 

sequence Pr. In contrast, a Posterior COST calculates its constraint selection metric 
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for all violated inoperative constraints at x*
r. These computations for each Pr take up 

more CPU time on the average than would a Prior COST. 

On the other hand, a Posterior COST appears to take fewer constraints on the 

average to solve (P) than a Prior COST to achieve a solution by using specific local 

information at x*
r in a constraint selection metric computed for each violated 

inoperative constraint in a given Pr. In the next section we present two efficient 

algorithms, one in each class, that illustrate this point. 

3.3 The Prior COST RAD

The radial algorithm (Prior COST RAD) is presented in Section 3.3.1, and 

then its geometric interpretation is given in Section 3.3.2. 

3.3.1 Statement of RAD 

We now state the Prior COST RAD, which involves both Factors I and II. 

RAD's constraint selection criterion obtains Pr+1 by adding an inoperative constraint 

of Pr that is violated by a solution x*
r of Pr and that maximizes (ai

Tx / bi) among all 

inoperative constraints of Pr for NNLP's. Recall that bi > 0 for NNLP's.

Define RAD(ai, bi, c, x) =
T

Ti
i i

i

b
b

 > 
  

*a x a x . So RAD seeks j ∈ arg 

maxi RAD(ai, bi, c, xr
*) which is equivalent to seeking j ∈ arg maxi
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Ti
i i i

i

| | | | c o s ( ,  >  b
b

  
 

*
r

a a c ) a x for each Pr since c is constant for all elements of 

RAD(ai, bi, c, xr
*). Ties are broken arbitrarily. The term cos(ai, c) in RAD(ai, bi, c, xr

*)

invokes Factor I as in COS, while i

i

|| ||
b
a considers Factor II. 

RAD starts in P1 with a constraint having the smallest value of 
T
i

ib
a c among 

the constraints of (1.2). Described in detail below, RAD initially allows unbounded Pr

as in COS above with a direction d* determined by CPLEX, which is used to solve Pr.

RAD continues adding constraints one at a time until either (P) is solved or else found 

unbounded if matrix A has a zero vector as a column. An NNLP is never infeasible 

since the vector 0 is feasible. Section 3.3.2 gives a geometric interpretation of RAD 

justifying its name from Radial COST. Computational results in Chapter 4 

demonstrate its efficiency on the test problems. 

___________________________________________________ 
RAD Algorithm 

_____________________________________________________________________ 
STOP ← False.  

OPERATIVE ← φ.

j ∈ arg maxi

T
i

ib
 
 
 

a c

while STOP = False do 
 OPERATIVE ← OPERATIVE ∪ { j }. 
 Using the dual simplex method solve  

maximize z = cTx (3.1) 
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subject to  ai
Tx ≤ bi ∀ i ∈ OPERATIVE (3.2) 

x > 0. (3.3) 
if (3.1) - (3.3) has an optimal solution x*, then 

if ai
Tx* ≤ bi ,∀ i ∉ OPERATIVE, then  

 STOP ← True. The point x* is an optimal solution.   
else 
 j ∈arg maxi RAD(ai, bi, c, x*) (3.4) 
end 

 else 
(3.1) - (3.3) is unbounded with direction d* > 0 such that cTd* > 0
if aTd* ≤ 0, ∀ i ∉ OPERATIVE, then 

STOP ← True. The problem is unbounded. 
else 

 j ∈ arg maxi

T
Ti
i

i

0
b

  > 
 

*a c a d  (3.5) 

end 
end 

end 

_____________________________________________________________________ 

3.3.2 Geometric Interpretation of RAD 

The geometric interpretation of RAD is given in two ways. The primal 

interpretation is presented in 3.3.2.1, and the dual interpretation in 3.3.2.2. 

3.3.2.1 Primal Interpretation of RAD 

RAD can be thought of as approximating each constraint ai
Tx ≤ bi by a sphere 

with a radius the length along the vector c from the origin to its intersection with ai
Tx

≤ bi. Hence the answer to the maximization problem (P) with one spherical 
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approximating constraint is obvious. Choose the one with minimum radius, and the 

answer is the point of intersection. This interpretation gives RAD its name. Of course, 

the constraint is linear, not spherical with such a radius, so the solution to the actual 

one-constraint problem is at an extreme point. In Figure 3.2, the constraint selection 

criterion is to minimize the distance v1.

Figure 3.2 Primal Interpretation of RAD 

 

3.3.2.2 Dual Interpretation of RAD     

The geometric interpretation of RAD is also given in terms of the dual 

problem, which can be defined as 

x1

x2

(0, 0)

distance v1 =

a

x*

•

•

•

c

bc

aTc

b||c|| 

aTc

ba

||a||2

distance v2 =
aTx*- b

||a|| •y
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maximize w = bTy (3.6) 

subject to  ATy > c (3.7) 

y > 0. (3.8) 

where y is an m × 1 vector of dual variables; AT is an n × m matrix [aij] with 1 × m

row vectors aT
i, i = 1, ... , n; b is an m × 1 vector; c is an n × 1 vector; and 0 is an m ×

1 vector of zeros. 

 

Figure 3.3 Dual Interpretation of RAD. 

 

Consider the vectors c and ai
T i = 1, ... , n in Figure 3.3. A feasible solution y

to the dual problem is a nonnegative linear combination of the vectors ai
T that is 

greater than or equal to the vector c, that is, any nonnegative combination of ai
T's to 

x1

x2

(0, 0)

Quadrant I 

a1

•
c

ai

a2
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put us in the first quadrant for which the vector c is the origin. The dual problem seeks 

to find the least cost solution in which the cost of using a vector ai
T is vectors bi. Now 

consider the following similar problem. Instead of trying to find a nonnegative 

combination to reach the first quadrant for which vector c is the origin, however, 

attempt to find a nonnegative combination to reach the hyperplane perpendicular to 

the vector c. The length of ai projected onto c is ||ai|| cos(ai, c), so the number of times 

we need to use ai to reach the hyperplane is 
i icos( , )

c
a a c . Substituting for cos(ai,c), 

the cost becomes 
2

i
T

i

b c
c a

. Minimizing 
2

i
T

i

b c
c a

is equivalent to maximizing 
T

i

ib
c a

(i.e. the RAD criterion), since ||c||2 is the same for each constraint i.

Figure 3.4 gives us simplified geometric representations of the violation value 

(ai
Tx* - bi ) and the right hand side value bi of the relaxed problem (3.1) - (3.3) in the 

RAD Algorithm (both values are divided by ||a|| in the figure). Let x*
r be the current 

solution of < Pr >. The violation value = (aTx* - bi ) = v·||a||, and the right-hand side 

value b = v'·||a||. The shaded area is the feasible region of < Pr >, Hax* is the 

hyperplane of the objective function with the current solution x* on it, and Ha is the 

hyperplane of the the constraint aTx* - b.
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Figure 3.4 The Geometrical Representations of the Violation Value and the 
Right-hand-side Value of the Constraint with Normal Vector ar+1. 

From the figure we can easily find how the Factor II efficiency in determined 

by the violated value and the right hand side value of the constraint, or cutting plane, 

added. Suppose the current solution is x*. The hyperplane H*
c denotes the objective 

function 3.1) with x* on it. The hyperplane Ha denotes a constraint violated by the 

current solution x*. The hyperplane Hax* is the hyperplane parallel with Ha and with x*

on it.  

x1

x2

(0, 0)

c

x *
r•

Hax*: aTx = aTx*

v = (aTx*-b)/||a||2

v' = b/||a||
Ha: aTx = b
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The depth of cutting plane in Factor II is proportional to v = 
T( - b)
|| ||

*a x
a

and is 

inversely proportional to v' =
b

| | | |a
. Suppose the constraints in (1.2) all have vector 

norms ||a|| near in value. Then RAD provides a deeper cut by dividing cosine criterion 

by b. Heuristically, the violated constraint with largest ratio 
v'
v =

T( - b)
b

*a x  is 

preferred in RAD and all similar COSTs. We will also use this ratio 
v'
v again in 

Section 3.4.2. 

3.4 The Posterior COST VRAD

The Violation Radial algorithm (VRAD) is presented in Section 3.4.1, and its 

geometric interpretation is given in Section 3.4.2. 

3.4.1 Statement of VRAD 

We next define the Posterior COST termed VRAD that again invokes both 

Factors I and II. Denote VRAD(ai, bi, c, x) =
T T

Ti i i
i i

i i

( -b )  >  b
b || ||

 
 
 

*a c a x a x
a

.

For a solution x*
r of Pr, VRAD seeks j ∈ arg maxi VRAD(ai, bi, c, xr

*) which 

is equivalent to seeking j ∈ arg maxi

T
Ti i

i i i
i

( -b ) cos( , )  > b
b

 
 
 

*a x a c a x  for 

each Pr similarly to RAD. The term cos(ai, c) in this equivalent expression invokes 

Factor I and 
T
i i

i

( -b ) 
b

a x  expresses Factor II. Ties are broken arbitrarily. 
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VRAD begins with the first constraint of (1.2) in P1 and proceeds as in COS 

with the possibility of initially unbounded Pr with a direction d*-given by CPLEX. 

VRAD adds constraints one at a time until either (P) is solved or found unbounded. 

The name VRAD comes from the fact its metric for an inoperative constraint ai
Tx≤ bi

of Pr with solution xr
* involves the product of RAD's with the constraint's violation at 

xr
* normalized by ||ai||. Section 3.4.2 interprets VRAD, and Chapter 4 presents 

computational results. 

 

___________________________________________________ 
VRAD Algorithm 

_____________________________________________________________________ 
STOP ← False.  

OPERATIVE ← φ.

j = 1. 
while STOP = False do 
 OPERATIVE ← OPERATIVE ∪ { j }. 
 Using the dual simplex method solve  

maximize z = cTx (3.9) 

subject to  ai
Tx ≤ bi ∀ i ∈ OPERATIVE (3.10) 

x > 0. (3.11) 
if (3.9) - (3.11) has an optimal solution x*, then 

if ai
Tx* ≤ bi ,∀ i ∉ OPERATIVE, then  

 STOP ← True. The point x* is an optimal solution.   
else 
 j ∈ arg maxi VRAD(ai, bi, c, x*) (3.12) 
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end 
 else 

(3.9) - (3.11) is unbounded with direction d* > 0 such that cTd* > 0
if aTd* ≤ 0, ∀ i ∉ OPERATIVE, then 

STOP ← True. The problem is unbounded. 
else 

 j ∈ arg maxi

T T
Ti i
i

i i

a 0
b

  > 
 

*
*c a d a d

a
(3.13) 

end 
 
end 

end 

_____________________________________________________________________ 

 

3.4.2 Geometric Interpretation of VRAD 

Figure 3.2 depicts the geometric interpretation of VRAD. In Figure 3.2 we 

have the two distance values v1 and v2 and the constraint aTx ≤ b

violated by the current optimal extreme point x*; that is, aTx* > b, where a is the 

normal. We seek the perpendicular distance from the violated constraint aTx = b

and x*. In particular, we seek  y = x* - αa, α ≥ 0 in Figure 3.2 and the distance  

*- ( *- )αx x a = αa . The scalar α can be found by substituting x*- αa into    

aTx = b. Doing so yields α =
T T

2T

( *- b) ( *- b) .=
a x a x

a a a
Substitution gives a 

perpendicular distance v1 =
T( *- b)a x

a
.
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Next compute the difference in the objective function value at x* and its 

perpendicular projection y on aTx = b that is the normal distance v1 from x*. We get                          

T
T T T T T

2
( *- b)[ *- ( *- )] *- ( *- )   = .   α α α= =
a xc x x a c x c x a c a c a

a

Finally compute the perpendicular distance from the origin to aTx = b. In 

essence, this distance is the depth of the cut if (2) is added as a constraint. This 

distance is easily found to βa from be aTβa = b. Hence the distance is v2
b

=
a

.

1

2

vDividing 
v

T T( *- b)yields , 
b

a x c a
a

which is precisely the VRAD constraint 

selection metric. In other words, this metric gives the decrease in the value of the 

objective function at x* and its perpendicular projection on aTx = b per unit depth of 

aTx = b as a cutting plane.  

In Chapter 4, large-scale LP problems are formulated, computational 

experiments are performed, and their results are presented. 
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CHAPTER 4 

COMPUTATIONAL EXPERIMENTS 

4.1 Problem Instances

For testing, a group of nonnegative LP problems were used. These problems 

come from some Italian railways set-covering problems in OR-library [4] contributed 

by Paolo Nobili [9]. We tested their relaxed LP dual problems. 

Table 4.1 Test Problems 
Number Number Number Number of 

of of of operative constraintsProblems 
Constraints variables non-zero item

Density
at optimality 

RDrail507 63,009 507 409,349 0.0128 274 
RDrail516 47,311 516 314,896 0.0129 267 
RDrail582 55,515 582 401,708 0.0124 278 

RDrail2536 1,081,841 2,536 10,993,311 0.0040 1,066 
RDrail2586 920,683 2,586 8,008,776 0.0034 1,307 
RDrail4284 1,092,610 4,284 11,279,748 0.0024 1,889 
RDrail4872 968,672 4,872 9,244,093 0.0020 2,100 

Because all column costs of the original primal problems are either one's or 

two's, we randomly generated the right hand side values of the dual problems to give 

the bi's more than the values 1 and 2. The right-hand-side values are between 1 and 

102. Those modified dual problems are described in Table 4.1. The number of 

constraints for these problems is between 47,311 and 1,092,610, and the densities of
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these problems are between 0.0040 to 0.0128. We define two computational 

measures of comparison in solving (P) by our algorithms, the CPU time and the 

number of constraints the algorithm added in solving the problems. 

4.2 Results

Seven algorithms are tested. They include the dual simplex method, primal 

simplex method, RAD, COS, and VRAD. Also tested are VIOL and SUB. The RAD, 

COS and SUB are Prior COSTs; the VRAD and VIOL are Posterior COSTs. 

Algorithm comparisons were performed on a Dual 2.8-GHz Intel Xeon 

Workstation using the dual simplex algorithm of the ILOG CPLEX 8.0 software in a 

Linux operating system. The Presolve function in CPLEX is truned off in testing. 

Computational test results are summarized in Table 4.2 - 4.4.  

Table 4.2 Computational Results: Primal Simples and Dual Simplex 
Primal Simplex Dual Simplex 

Numbers Numbers 
of iterations of iterations 

Problems 
CPU time 

Used 
CPU time 

used 
RDrail507 8.08 1,339 7.46 1,347 
RDrail516 2.38 677 11.09 1,479 
RDrail582 0.71 420 3.47 1,180 
RDrail2536 2,188.00 12,368 1,612.81 7,778 
RDrail2586 2,375.00 16,178 1,255.00 8,340 
RDrail4284 3,545.00 21,438 8,503.00 29,231 
RDrail4872 2,278.00 18,951 1,468.31 12,065 

Average 1,485.31 10,195.86 1,837.31 8,774.29 
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Table 4.4 Computational Results: VRAD and VIOL 
Posterior COSTs 

VRAD VIOL 

Number of Time per Number of Time per Problems 
CPU 
time 

constraints 
added 

constraints 
added 

CPU 
Time 

constraints 
added 

constraints 
added 

RDrail507 3.27 369 0.0089 5.39 594 0.0091 

RDrail516 2.15 325 0.0066 3.56 530 0.0067 

RDrail582 3.22 398 0.0081 5.08 624 0.0081 

RDrail2536 313.21 1,690 0.185 470.17 2,560 0.184 

RDrail2586 283.44 1,999 0.142 416.15 2,908 0.143 

RDrail4284 510.82 2,622 0.194 742.46 3,840 0.193 

RDrail4872 492.70 3,075 0.160 742.76 4,542 0.164 

Average 229.40 1,496.86 0.153 340.80 2,228.29 0.153 

The CPU time for an algorithm is shown under its designated column. These 

CPU times are likely to be further improved if our methods were an integrated part of 

CPLEX. 

In our implementations of COS and RAD, we first calculate the COS criterion 

and the RAD criterion of each constraint during the problem input step, then we sort 

all constraints by the COS criterion and the RAD criterion respectively. The SUB 

criterion simply determines the least subscript of a violated inoperative constraint, and 

no extra sorting is required since all constraints are already ordered by their 

subscripts. 

The operative constraints are all satisfied in Pr, so in our implementations we 

do not check if they are violated in Pr+1. However, an inoperative constraint not 
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violated at Pr might be violated later in Pr+1. We always check whether an inoperative 

constraint is satisfied in Pr+1.

4.3 Discussion

Once all constraints are sorted by the criterion, Prior COSTs can easily select 

the first violated constraint to add. During the selection Prior COSTs need not traverse 

all violated constraints. Only the first violated constraint is needed in the selection. In 

each iteration, it takes relatively the same amount of CPU time to select the next 

added constraint in Prior COSTs. 

However, all techniques in Posterior COSTs need local information of the 

current solution to calculate criteria. Unlike Prior COSTs, they need to traverse all

violated constraints to find the constraint to add. Hence, Prior COSTs take less time 

than Posterior COSTs because all constraints of (P) in the set (1.2) are sorted by the 

constraint selection criteria as (P) is read into the computer. Then at each Pr the first 

violated constraints of the sorted constraints is chosen to be added. For each Prior and 

Posterior COST, more CPU time is required in early Pr' s because there are more 

violated constraints than later < Pr' s>. It is likely that, in general, Posterior COST 

reduce the number of the violated constraints more quickly. 

By comparing the test results, we conclude that the Prior COST RAD 

outperforms ILOG’s CPLEX primal and dual simplex algorithms significantly in CPU 
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time. The CPLEX primal and dual simplex algorithms CPU times are on the average 

are at least a factor of 34.78 times those of RAD. Moreover, RAD adds only 0.42% of 

the constraints in DRail 4284, for example. 

 By comparison, the results of the Posterior COST VRAD with the CPLEX 

primal and dual simplex algorithms, the primal and dual simplex CPU times are on 

the average at least a factor of 6.68 times those of VRAD. Moreover, VRAD adds 

only 0.23% of the constraints in DRail 4284. 
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CHAPTER 5 

CONCLUSIONS 

The goal of this dissertation is to find algorithms for nonnegative linear 

programming that use only relatively few constraints in determining an optimal 

solution. This class of linear programming problems was chosen since virtually all 

applied problems involve NNLP’s. To accomplish this objective, we defined the 

general notion of a Constraint Optimal Selection Technique (COST) and considered 

two types of COSTs termed Prior COSTs and Posterior COSTs.  

Prior Costs have a constraint selection criterion that is invoked when the 

constraints of a problem (excluding the nonnegativity restrictions) are read into the 

computer. The constraints are sorted from best to worst according to this prior 

selection metric (i.e., one calculated before any relaxed problem is solved). A 

sequence of relaxed problems is thus solved in which a single inoperative constraint is 

added to a previously solved relaxed problem by choosing the best violated 

inoperative constraint in the sorted list of constraints. This procedure eventually yields 

a solution to the original problem.  
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On the other hand, a Posterior COST uses a constraint selection criterion that 

must be evaluated for all constraints of the problem (excluding the nonnegativity 

restrictions) at the optimal point of the previous relaxed problem. The violated 

inoperative constraint with the best value of this posterior selection metric (i.e., after 

each relaxed problem in the sequence is solved) is added to the previous problem. 

A Prior COST termed RAD and Posterior COST VRAD were then developed. 

Geometric interpretations were given, and the algorithms were tested on a set of 

large-scale linear programs. Computational results were compared for RAD and 

VRAD versus the primal simplex, dual simplex, as well as the existing control Prior 

COST COS, an essentially random Prior COST SUB, and the existing Posterior 

control COST VIOL. RAD and VRAD significantly outperformed all other 

algorithms. RAD was faster than VRAD, while VRAD added fewer constraints than 

RAD. This result suggests that RAD would be more likely to solve NNLP’s in 

essentially real time, while VRAD could solve larger problems with its need for less 

memory. 

Future research for COSTS includes extending RAD and VRAD to general 

LP’s and not just NNLP’s. In addition, new Prior and Posterior constraint selection 

criterion will be developed. The idea of applying COSTs to the primal and dual 

simultaneously to add both constraints and columns is also an intriguing possibility. 
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Moreover, the COST approach should prove useful in integer and 0-1 integer 

programming - in branch-and-bound methods, for example. Finally, the method will 

be modified appropriately and applied to an increasingly popular use of linear 

programs, which is to optimize a linear objective function subject to convex-quadratic 

(not linear) constraints. Each of these quadratic constraints will be linearized to yield 

a large number of linear constraints, precisely a situation in which COST’s excel. 

Convex-quadratic programs are used in models to limit variance, or risk, among other 

uses. Such applications are critically important as economies are subject to enormous 

volatility due to such factors as shifts in energy prices, inclement weather, and global 

terrorism. 



63 

REFERENCES 

 

[1] Arsham, H., Artificial-variable free solution algorithms for LP models: 

greater-than-or-equal constraints relaxation method, Preliminaries, Phase 2, 

http://home.ubalt.edu/ntsbarsh/opre640a/PartII.htm. 

[2] Bazaraa, M.S., Jarvis, J.J., Sherali, H.D., Linear Programming and Network Flows,  

third edition, John Wiley, New York, 2005. 

[3] Beale, E.M.L., Cycling in the dual simplex algorithm, Naval Research Logistics 

Quarterly 2(1955), 269-276. 

[4] Beasly, J. E., OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html. 

[5] Bertsimas, D., Tsitsiklis, J.N., Introduction to Linear Optimization, Athena 

Scientific, 1997, 131-159. 

[6] Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R. (2000): MIP: 

theory and practice – closing the gap. In: Powell, M.J.D., Scholtes, S., editors, 

System Modeling and Optimization: Methods, Theory, and Applications, Kluwer 

Academic Publishers, 19–49. 

[7] Bixby, R.E., Solving real-world linear programs: a decade and more of progress, 

Operations Research 50(2002)3-15.



64 

[8] Borgwardt, K.H., The average number of pivot steps required by the 

Simplex-Method is polynomial, Zeitschrift fűr Operations Research 26(1982), 

1:157 – 177. 

[9] Ceria, S., Nobili, P., Sassano, A., A Lagrangian-based heuristic for large-scale set 

covering problems, Mathematical Programming 81(1998), 215 – 228. 

[10] Chvatal, V., Linear Programming, W.H. Freeman and Company, New York, 

1983, 198-200. 

[11] Corley, H.W., Rosenberger, J.M., Yeh, W.C., Sung, T.K.  The cosine simplex 

algorithm, International Journal of Advanced Manufacturing Technology, 

27(2006). 

[12] Dantzig, G.B., Maximization of a linear function of variables subject to linear 

inequalities, in Activity Analysis of Production and Allocation, T.C. 

Koopmans(ed.), John Wiley, New York, 1951, 339-347. 

[13] Dantzig, G.B., Thapa, M.N. Linear Programming 2: Theory and Extensions, 

Springer 2003, Chapter 4. 

[14] Dantzig, G.B., Thapa, M.N., Linear Programming 1: Introduction, Springer, New 

York, 1997. 

[15] Dare, P., Saleh, H., GPS network design: logistics solution using optimal and 

near-optimal methods, Journal of Geodesy, 74(2000), 467 – 478. 



65 

[16] Dikin, I.I., Interactive solution of problems of linear and quadratic programming 

(in Russia), Doklady Akademiia Nauk SSSR, 174(1967), 747-748. English 

Translation, Soviet Mathematics Doklady 8(1967), 674-675. 

[17] Dikin, I.I., On the speed of an interactive process (in Russia), Upravlaemye 

Sistemy 12(1974), 54-60. 

[18] Forrest, J.J., Goldfarb, D., Steepest-edge simplex algorithms for linear 

programming, Mathematical Programming 57(1992), 341-374. 

[19] Gill P.E., Murray, W., A numerically stable form of the simplex algorithm. 

Linear Algebra and Its Applications 7(1973), 99–138. 

[20] Haimovich, M., The simplex algorithm is very good! On the expected number of 

pivot steps and related properties of random linear programs, Technical Report. 

Columbia University, New York, 1983. 

[21] Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., Progress in linear 

programming-based algorithms for integer programming: an exposition, 

INFORMS J. Computing 12 (2000), 2-23. 

[22] Karmarkar, N., A new polynomial-time algorithm for linear programming, 

Combinatorica 4(1984), 373-379. 

[23] Khachiyan, L.G., A polynomial time algorithm for linear programming, Soviet 

Mathematics Doklady 30(1979), 191-94. 



66 

[24] Klee, V., Minty, G.J, How good is the simplex algorithm. In Shisha, O., editor, 

Inequalities III, Academic, New York, 1972, 159-175. 

[25] Koopmans, T.C., editor, Activity Analysis of Production and Allocation, Wiley, 

New York, 1951. 

[26] Lemke, C., The dual method of solving the linear programming problem. Naval 

Research Logistics Quarterly, 1954, 36-47. 

[27] Li, H.L., Fu, C.J., A linear programming approach for identifying a consensus 

sequence on DNA sequences, Bioinformatics 21(2005). 

[28] Martin, R. K., Large Scale Linear and Integer Optimization: A Unified Approach, 

Kluwer Academic Publishers, 1999, 350-392, 657-675. 

[29] McCall, E. H., Performance results of the simplex algorithm for a set of 

real-world linear programming models, Communications of the ACM 25(1982), 

207-212. 

[30] Murshed, M.M., Sarwar, B.M., Sattar, M.A., Kaykobad, M. A new polynomial 

algorithm for linear programming problem, NEC Research Institute, 1993. 

[31] Naylor, A., Sell, G., Linear Operator Theory in Engineering and Science, 

Springer-Verlag, New York, 1982, 273-274. 

[32] Padberg, M., Linear Optimization and Extensions, Springer, 1991, 93-130. 



67 

[33] Pan, P.Q., A basis-deficiency-allowing variation of the simplex method of linear 

programming, Computers and Mathematics with Applications 36(1998), 33-53. 

[34] Punnakitikashem, P., Rosengerber, J.M., Behan, D.B., Stochastic Programming 

for Nurse Assignment, Technical Report, http://ieweb.uta.edu.  

[35] Roos, C., T. Terlaky, J. P. Vial, Interior Point Methods for Linear Optimization, 

Springer, New York, 2006, xix-xx. 

[36] Rosenberger, J.M., Johnson, E.L., Nemhauser, G.L., Rerouting aircraft for airline 

recovery, Transportation Science 37(2003), 408–421. 

[37] Santos-Palomo, A., Guerrero-Garcia, P., A non-simplex active-set method for 

linear programs in standard form, Studies in Informatics and Control 14(2005). 

[38] Shor, N.Z., Cut-off method with space extension in convex programming 

problems (in Russian), Kibernetika 13(1977), 94-95. English translation: 

Cybernetics 13(1977), 94-96. 

[39] Stojkovic, N.V., Stanimirovic, P.S.,  Two direct methods in linear programming, 

European Journal of Operational Research 131(2001), 417-439 

[40] Todd, M.J., The many facets of linear programming. Mathematical Programming 

91(2002), 417-436. 

[41] Todd, M.J., Theory and practice for interior-point methods, ORSA Journal on 

Computing 6(1994), 28-31. 



68 

[42] Trigos, F., Frausto-Solis, J., Rivera-Lopez, R.R., A simplex cosine method for 

solving the Klee-Minty cube, Advances in Simulation, System Theory and 

Systems Engineering 70(2002), 27-32. 

[43] Vieira, H., Estellita-Lins, M.P., An improved initial basis for the simplex 

algorithm, Computers and Operations Research 32(2005) 1983-1993. 

[44] Yudin, D.B., and Nemirovski, A.S., Informational complexity and efficient 

methods for the solution of convex extremal problems (in Russian). Ékonomika i 

Matematicheskie metody 12, 357-369. English translation: Matekon 13(1976), 

3-25. 



69 

BIOGRAPHICAL INFORMATION 

 

Tai-Kuan Sung was born in Taichung City, Taiwan. He received his B.S. 

degree in Psychology from National Taiwan University. He received his M.S. degree 

in Computer Science Engineering and his Ph.D. degree in Industrial Engineering from 

The University of Texas at Arlington. His working experience includes Second 

Lieutenant in Taiwan Marines (mandatory military service), high school teacher, 

computer programmer, and system analyst at two banks in Taiwan. His research 

interests include optimization, software engineering, statistics, and system analysis.  

 


