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ABSTRACT 

 

A FUNCTIONAL LINK NETWORK USING ORDERED BASIS FUNCTIONS 

 

 

Publication No. ______ 

 

Saurabh Sureka, M.S. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Michael T. Manry  

A new function approximation and classification network based on Functional 

Link Network (FLN) with orthonormal Polynomial Basis Functions (PBF) is presented. 

By using an iterative Gram-Schmidt procedure, the PBF’s are orthonormalized, ordered 

and selected based on their contribution to minimize the Mean Square Error (MSE). 

Linearly dependent and less useful PBF are detected and eliminated at an early stage 

thereby improving the approximation capabilities and reducing the possibility of 

combinatorial explosion. The number of passes through the data during network 

training is minimized through the use of correlations. A one-pass method is used for 

validation and network sizing. Equivalent function approximation and classification 

networks are designed and simulation examples are presented. Results for the Ordered 
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FLN are compared with those for the FLN, Group Method of Data Handling (GMDH), 

and Multi-Layer Perceptron (MLP), Nearest Neighbor Classifier (NNC) and Piecewise 

Linear Classifier (PLNC).  
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CHAPTER 1 

INTRODUCTION 

The field of Neurocomputing and Polynomial Networks has developed rapidly 

in the last few decades. Pioneering work for Neurocomputing dates back to Warren 

McCulloch and Walter Pitts work on modeling neuron activity with electrical circuits in 

1943[1]. One approach for learning is the supervised learning technique in which the 

training data comprises both the input and desired output patterns. The Group Method 

of Data Handling (GMDH) is a self-organized, supervised learning type Polynomial 

Network developed by cyberneticist Dr A.G. Ivakhnenko in 1966[2][3].  Concurrent 

research primarily in US, Europe and Japan along with advances in semiconductor 

engineering has effectively widened the spectrum of end-applications for the 

Polynomial Networks and GMDH.  

Polynomial Networks (PN) and GMDH are also sometimes referred as 

Polynomial Neural Networks (PNN) in the research community. Together they provide 

novel solutions to a set of problems including function learning, optimization, 

interpolation, structure identification, classification and associative learning. These 

problems are commonly encountered in the fields of Adaptive Control, Optimization 

and Scheduling, Signal Processing, Pattern Recognition, Data Mining, Artificial 

Intelligence and Computer Vision. Successful implementations of a few end-

applications include face and handwriting recognition, natural language processing, 
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image compression using auto-associativeness, remote sensing, servo control 

mechanisms used in interplanetary probes and expeditions and short and long-term 

forecasting of financial market, weather, earthquakes and temperature[4-8].  

 

1.1 History and Research Trends in Polynomial Networks 

Polynomial Networks as well as most other networks like the Multi-Layer 

Perceptron (MLP), Radial Basis Function (RBF) network, Piecewise Linear Network 

(PLN) derive their universal approximation capabilities from the Weierstrass 

approximation theorem (1885), expanded upon by Stone (1948)[9]. The growth in 

Neural Networks after the initial excitement from 1944 to 1969 met a sudden death due 

to lack of funding, computational limitations and the often cited work of Minsky and 

Papert[10]. But some work by the likes of Werbos[11], Fukushima[12], Hopfield[13], 

Kohonen[14], Grossberg[15] and many others provided a motivation for a new direction 

in the field. The evolution of Polynomial Networks however has a steady but slow 

growth from the times of Ivakhnenkho who developed the GMDH network in 1966[2-

3]. Variations of GMDH-type networks and learning algorithms have been proposed 

since then. Pao in his pioneering work introduced a Functional Link Network 

(FLN)[16] which like the GMDH tries to approximate a function with a Kolmogorov-

Gabor polynomial[17]. Polynomial networks have been shown to have universal 

approximation capabilities using few basis functions like Trigonometric functions, 

algebraic polynomials, orthogonal polynomials, Chebyshev polynomials, Hermite 

polynomials, Legendre polynomials, splines, ridged polynomials. The practical 
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implementations of these are limited by an exponential increase in the required number 

of basis functions with an increase in the network inputs and / or degree of 

approximation. To address this problem of combinatorial explosion researchers have 

used Sigma-Pi Networks, Genetic Algorithms and other evolutionary approaches[18-

19].  However, faster learning algorithms, methods to generate and handle higher order 

polynomials, achieving optimal network design and size are topics of great interests and 

open research. 

 

1.2 OFLN Scope  

This thesis introduces an application of a fast iterative Gram-Schmidt 

Orthonormalization procedure to a Functional Link Network (FLN) and the resultant 

network obtained is called the Ordered Functional Link Network (OFLN). The 

functional approximation capabilities of OFLN are theoretically justified by the 

Weierstrass approximation theorem that states that polynomial approximation gets 

arbitrarily close to any continuous function as the polynomial order is increased[9].  

 

1.3 Thesis Organization 

A brief introduction to the structure of function approximation and review of a few 

polynomial networks is presented in Chapter II. An Iterative Gram-Schmidt 

Orthonormalization procedure, structural representation and implementation of the 

OFLN are presented in Chapter III. The approximation capabilities of OFLN and 

iterative Output-Reset (OR) algorithm that decreases the classification error form a 

good combination of OFLN as a regression-type classifier and are discussed in Chapter 
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IV. Results from comparison of few benchmark examples of function approximation 

and classification are compared with other networks in Chapter V. Conclusions and 

Future Work constitute Chapter VI. 
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CHAPTER 2 

REVIEW OF POLYNOMIAL NETWORKS 

2.1 Structure of Function Approximators 

The problem of function approximation can be stated as determination of the 

closest functional relationship that maps the N-dimensional input vector space to M-

dimensional output vector space.  Consider a system with an input x (x∈ℜN
) with 

probability density function fx(x) and the desired output y (y∈ℜ
M
) which is based on 

the aposteriori conditional density fy(y|x). Then, the joint density of independent and 

identically distributed observations fxy(x,y) is given as fxy(x,y) = fy(y|x) · fx(x). From a 

finite set of Nv observations {xp,yp} for 1 ≤ p ≤ Nv it is required to find a mapping 

 = ( , )gy x ω  as close as possible to the desired mapping y. With a physical constraint 

of no apriori knowledge of the distribution functions, presence of uncharacterized 

observation noise morphing the desired output, and requirement of generalizing the 

mapping function to unseen data, a generalization error measure (Er) can be written as: 

 f ( , )Er d dθ= ∫ xy x y x y        (1) 

where θ, a measure of loss estimate in the mapping, is a function of the difference 

between the desired output y and its estimate y  such as the squared error 2θ = ( ) .−y y  
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Fig. 2.1: MIMO function approximation representation. 

 

The k
th
 element of y , y k

can be written as some unknown function of input x 

y k
=  ( , )kg x ω        (2) 

for 1 ≤ k ≤ M.  The corresponding Multiple Input Multiple Output (MIMO) mapping  

{ x ∈ ℜN
 � y  ∈  ℜM

 } is shown in figure 2.1. A classical parameterized form for the 

mapping is given by  

1

0

y ( )
L

k ki i

i

fω
−

=

= ⋅∑ x         (3) 

for 1 ≤ k ≤ M, where fi(x) are set of L basis functions and kiω is the corresponding 

unknown coefficient for i
th
 basis function fi(x) and k

th
 output y k

. Thus the problem of 

function approximation is two-fold: (1) determination of an appropriate and minimal set 

of L basis functions and (2) determination of their corresponding coefficients. 

Parametric learning with known basis functions but unknown coefficients can be 

considered as a special case of the generalized non-parameterized representation. An 

equivalent representation of equation (3) is shown in figure 2.2 for output 
1y , and a 

similar representation can be found for all other outputs. 

 

x1 
 
 

 

( , )g x ω  
x2 

x3 

xN 

 

1y  

2y  

 

My  
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Fig. 2.2: Structural representation of function approximator. 

For the k
th
 output, the matrix representation of system in figure (2.2) for a dataset with 

Nv patterns can be written as 

0 1 1 1 ( 1) 1 10

0 2 1 2 ( 1) 2 21

0 3 1 3 ( 1) 3 32

0 1 ( 1) ( 1)

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
v v v v

L kk

L kk

L kk

N N L N kNk L

f f f y

f f f y

f f f y

f f f y

ω
ω
ω

ω

−

−

−

− −

    
    
    
     =
    
    
        

x x x

x x x

x x x

x x x

i

i

i

i i i i ii

i

  (4) 

where the i
th
 basis function fi(x) takes values fi(xp) and output ky  takes values kpy  (1 ≤ p 

≤ Nv, 0 ≤ i ≤ L-1, 1 ≤ k ≤ M). The set of basis functions can be pre-determined or 

developed during the training. Multi-layer Perceptrons (MLP)[4,5,20] uses non-linear 

squashing functions, like the sigmoidal function, as basis functions and have shown 

universal approximation capabilities. The Radial Basis Function (RBF) Network[4] use 

radial basis functions as basis functions for which the non-linear transformation occurs 

 ω01      ω11          …    …   …                ω(L-1)1    

x1 x2 …    …   …                              xN    

f0(x) f1(x) … fL-1(x) 

∑ 

1y
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at chosen center points for given dataset. Like the MLP, they too show similar 

approximation and interpolation properties. Genetic Algorithms, like the previous two 

networks develop the basis functions during training. Several pre-determined basis 

functions like the trigonometric, Legendre polynomials, algebraic polynomials, 

Chebyshev polynomials and Hermite polynomials have been shown to have universal 

approximation capabilities.  

 

2.2 Mean Square Error (MSE) Criterion 

A well-defined loss function for a given training dataset with Nv patterns is the 

optimal Minimum Mean Square Error (MMSE). For the system under consideration, 

equation (2-4), the MMSE estimate yMMSE that minimizes the mean square error EMS 

EMS = E[(y – yMMSE)
T
 (y – yMMSE)]        (5) 

is given as 

yMMSE = E[y|x]         (6) 

where E is the expectation operator and the yMMSE is the posteriori expected value of y 

for given x. Equation (6) requires knowledge of apriori and likelihood densities which is 

not practically feasible in most approximation problems. However, it can be shown that 

an approximation network based on PBF’s with certain assumptions can yield the 

MMSE criterion[21-23]. Consider the system with N inputs x, M desired outputs y and 

g(x,ωωωω) as network outputs where w is the weight coefficient matrix of the polynomial 

network which statistically span the range of the outputs to be estimated. Then the 

Mean Square Error (MSE) for the network under consideration is defined as: 
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2

1

1
|| ( , ) ||

vN

t p p

pv

E g
N =

= −∑ x ω y        (7) 

where (xp,yp) i=1,2,…,Nv is the training set  representative of the true statistic from the 

population of x and y. The usage of MSE as the loss function is justifiable by the 

following lemma. 

 

Lemma 1[21]: In the limit as Nv approaches ∞, the Mean Square Error (MSE) can be 

represented as an integral of the loss function over the joint density fxy(x,y).  

Proof: For Nv tending to ∞, by the Strong Law of Large Numbers[21,23], equation (7) 

tends to 

2lim || ( , ) || f ( , )
v

tL t
N

E E g d d
→∞

= = −∫∫ xyx ω y x y x y    (8) 

where as defined before fxy(x,y) is the joint probability density function of x and y. 

Q.E.D. 

From Bayes theorem, fxy(x,y) = fy(y|x)⋅⋅⋅⋅fx(x) and equation (8) is written as: 

2f ( ) || ( , ) || f ( | )tLE g d d = − ∫ ∫x yx x ω y y x y x    (9) 

To minimize (9) is equivalent to minimizing the quantity in the inner brackets, which is 

 
2' || ( , ) || f ( | )tLE g d= −∫ yx ω y y x y     (10) 

which will be minimized when g(x,ωωωω) = E[y|x] and E[y|x]  = yMMSE  from (6).  Thus a 

sufficiently complex g(x, ωωωω) polynomial network that successfully minimizes E′tL 

approximates the Minimum Mean Square Estimator [23].  
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Networks like the MLP and RBF often employ an iterative approach to get close 

to a global minimum solution[24-27]. Polynomial Networks like the FLN that employ a 

flat-architecture are known to not suffer from problems of local minima[28] as their 

error landscape has only a global minimum.  

 

2.3 Overspecialization 

The property of the network to perform well on unseen data is called 

generalization. As the network is trained to minimize (7), it might run into over-

specialization or memorization due to inadequate dataset size and distribution. In such 

cases even though the MSE for training data decreases there exists a good possibility 

that the network does not perform well on unseen data. Techniques like early stopping, 

cross-validation [29-30] have been employed to ensure a good level of generalization. 

 

2.4 Polynomial Network Types 

2.4.1. Functional Link Network  

A FLN often has a fixed number of polynomial or trigonometric basis functions. For 

simplicity, a single-layer feed-forward 2
nd
 order FLN for 2 inputs x1 and x2, 1 output 1y  

and unknown weights wk is shown in figure 2.3. The network can be extended similarly 

to show a ℜN
 � ℜM

 mapping. 
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w2 

w0 

x1 

x2 

 
 
 

Σ 
1y  

()2 

x 

()2 

 

 

 

 

 

Fig. 2.3: A 2 input, 1 output degree 2 FLN. 

As the non-linear learning for the FLN comes form the linear combinations of the pi 

elements, it is also called as a neural network with no hidden unit. FLN thus achieves 

function approximation in terms of the Kolmogorov-Gabor or Ivakhnenko polynomial  

0

1 1 1 1 1 1

...
N N N N N N

k k ki i kij i j k ijl i j l

i i j i j l

y x x x x x xα α α α
= = = = = =

= + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ +∑ ∑ ∑ ∑ ∑ ∑   (11) 

for 1 ≤ k ≤ M, where ky is the k
th
 estimated output and αk’s are the corresponding 

weights. Let X be the column basis vector. Then the i
th
 polynomial basis function (PBF) 

element Xi is an element of the set {1,xi,xi·xj,xi·xj·xk,… } for 1 ≤ i ≤ j ≤ k…≤ N.  Using 

polynomial basis functions as fi(x) in (3) and restricting (11) to L monomials, equation 

(11) is conveniently written as   

1

0

L

k ki i

i

y w X
−

=

= ⋅∑       1 ≤ k ≤ M  (12) 

where wki is the weight coefficient to i
th
 PBF Xi and k

th
 output ky and  the total number 

of basis functions L for D
th
 degree of approximation is given by  

.
N D

L
D

+ 
= 
 

          (13) 
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2.4.2. GMDH Network 

 

A GMDH network generates combinations of degree 2 FLN network for each input 

pair.  The useful basis functions inputs are then sorted and the network grows 

iteratively. This approach gives it a self-organized inductive learning property that helps 

in modeling higher order functions. A structural representation of multi-layered GMDH 

network is shown in figure 2.4. 

ψ 

 

 

 

 

 

 

       inputs  1st generation 2nd generation    nth generation 

   Fig. 2.4: Structural representation of GMDH network. 

Output  ψ of the basic processing block F2 is given by the operation: 

ψ = w0 + w1·xi + w2·xj + w3·xi.xj + w4·xi
2
+w5·xj

2   
  (14) 

for 1 ≤ i,j ≤ N .Starting with N·(N-1)/2 combinations starting at first generation for a 

given training dataset, important basis functions are identified and sorted based on a 

regularity criterion (often root mean square) that best estimate the desired output and 

forms the inputs for second generation. This process is repeated for subsequent 

generations till the network begins to over-specialize or resultant estimation error for a 

 

F2 

 

F2 

 

F2 

 

F2 

 

F2 

 

F2 

 

F2 

 

F2 

 

F2 

x1 

x2 

x3 

xN 
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subsequent generation is higher then the previous one. Thus an n
th
 generation network 

approximates a function of 2
n
 order. The advantage of this network comes from its 

ability to model the higher order complexity. There are advanced versions of learning 

and growing networks using techniques like the genetic evolution that have shown some 

promising results for certain kind of problems[3]. For full-sized network to approximate 

the polynomial given in equation (11) the number of unknown weights to find for 

GMDH for 2
nd
 degree approximation is of order six times more than corresponding 

FLN for 2
nd
 degree. Figure 2.5 shows the corresponding plot for number or weights vs. 

number of inputs for 2
nd
 degree approximation comparison of GMDH and FLN. Also, 

implementation of GMDH for a MIMO mapping is a non-trivial task. 

 

 

 

 

 

 

 

 

 

Fig. 2.5: Number of unknown weights comparison for D=2, GMDH and FLN            
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2.4.3. Pi-Sigma Network 

A pi-sigma network is a two-layered network that achieves higher order learning 

as sums of higher order input correlations components[31] for a ℜN
 � ℜM

 mapping. 

The structural representation of the pi-sigma network is shown in figure 2.6. 

 

 

 

 

 

 

 

 

                        Fig. 2.6: Structural representation of a Pi-Sigma network 

 

For D
th
 degree of approximation, the first-layer comprises of D summing units, the 

output of d
th
 unit of first-layer for k

th
 output hdk is given by 

1

N

dk dki i dk

i

h w x w
=

= ⋅ +∑         (14) 

for 1 ≤ d ≤ D, 1 ≤ i ≤ N, 1 ≤ k ≤ M, where wdki is adjustable weight and wdk is weight 

corresponding to threshold for d
th
 unit.  The k

th
 estimated output is given by  

1

D

k dk

d

y hσ
=

 
=  

 
∏         (15) 
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where σ() is any suitable non-linear squashing function.  Clearly an important 

advantage of this network is for higher degree approximation the number of unknown 

weights is only M·D· (N+1). Table 2.1 shows the comparison for number of unknowns 

for a Sigma-pi and FLN network. However, pi-sigma networks are not universal 

approximators and they trade-off approximation capabilities to network size. Ridged-

Polynomial Networks[32] which are incremental networks obtained from varying 

degrees of pi-sigma networks have shown better approximation accuracy. 

 

Table 2.1 Number of Weights Comparison for FLN and Pi-sigma Networks 

 

Number of Weights (free parameters) 

FLN Pi- sigma 

     Degree  

        of   

approximation           N=10           N=15 N=10 N=15 

1 11 16 11 16 

2 55 120 22 32 

3 286 816 33 48 

4 1001 3876 44 64 

 

 

2.5 Properties of Polynomial Networks 

2.5.1.  Advantages of Polynomial Networks 

Few advantages of the Polynomial Networks over other networks are: 

1. Polynomial Networks (PN) use PBF’s which unlike sigmoidal functions are 

unbounded and hence provide faster learning.  

2. PN compared to other networks are easily tractable and extremely informative 

as they provide an understanding of representation of PBF’s and hence exhibit 

open-box model behavior.  
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3. PN’s are fast and computationally efficient as compared to other networks like 

MLP as they can be realized using multiplication and addition operators and 

have smaller storage capacity.  

4. Due to the flat-architecture PN’s like the FLN do not suffer from local-minima 

problems.  

 

2.5.2. Disadvantages of Polynomial Networks 

Polynomial Networks suffer from a few disadvantages when compared to other 

networks like the MLP: 

1. The computational complexity of PN’s increases exponentially with increases in 

degree of approximation. This problem is often referred as the curse of 

dimensionality. For a D
th
 degree approximation of N inputs, the number of 

required basis function (L) as in equation (13) which leads to combinatorial 

explosion with increase in either number of inputs and degree of approximation 

D. For example, for N = 25 and D = 2 the number of basis functions L required 

is 351 but for D = 4, L = 23751 and for D = 8, L = 13,884,156. For a MLP, the 

network grows in size and complexity by adding more hidden units and since 

non-linear transforms occur at the sigmoid a relatively few hidden units may be 

possible to achieve desired degree of complexity.  

2. Highly non-linear functions may require very high degree polynomials and may 

not be well approximated, for these MLP might perform better.  



 

 17

GMDH network and GMDH-like networks incrementally grow the network for 

higher order learning to overcome the combinatorial explosion, but the approach is 

heuristic based and often results in presence of unwanted functions or extremely 

large sized networks. Work based on GMDH and FLN employing Genetic 

Algorithms have shown some good results[3,33], but they lose the properties of 

polynomial networks. 
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CHAPTER 3 

THE ORDERED FUNCTIONAL LINK NETWORK 

It is desired to retain the MIMO universal approximation capabilities of the FLN 

and avoid any disadvantages. Applying an Iterative Gram-Schmidt procedure to a FLN 

a multi-layered, regularized incremental growth, and well-structured network is 

achieved. The FLN has ordered basis functions and hence is called the Ordered 

Functional Link Network (OFLN). The OFLN reduces the possibility of combinatorial 

explosion and achieves better approximation capabilities. In this chapter the standard 

Gram-Schmidt procedure and its numerically stable version is reviewed and an 

implementation algorithm for the OFLN is presented.  

 

3.1 The Gram-Schmidt Orthonormalization Procedure 

The Gram-Schmidt procedure maps a set of linearly dependent vectors to an 

orthonormal basis vector set in Euclidian or any inner product space. It is a well-known 

standard numerical method [34] and has been used to find optimum choice of Radial 

centers for RBF [35], fast computation of weights of RBF network [36], pruning of 

MLP [37], feature selection in piecewise classifier [38]. What few authors did not 

realize is that using the Gram-Schmidt procedure allows ordering the basis function in 

order of their contribution to minimize the MSE. Using this the network can be 

represented as a monotonically non-increasing function of addition of basis functions 
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and achieve a faster rate of convergence. Also, orthonormalizing linearly dependent 

vectors results in a zero vector and is an important step in pruning useless basis 

functions. These desirable properties along with the effective representation, system re-

transformation and a fast and distributed iterative solution make it a better candidate 

over other learning algorithms.  

Consider a vector X (X0,X1,X2,… …,XL-1) whose elements are basis functions 

and its corresponding orthonormal mapping is X
o
 (X

o
0,X

o
1,X

o
2,… …,X

o
L-1) where both 

X and  X
o∈ ℜL

. By the definition of orthonormality: 

<X
o
i X

o
j>  = 0     for  i≠j     (16) 

       = 1   for  i=j i,j ∈ (0,L-1)   (17) 

where, < X
o
i X

o
j > is defined as the correlation for Nv patterns. 

1

1 vN
o o o o

i j ip jp

pv

X X X X
N =

< >= ⋅∑       (18) 

Here X
o
ip corresponds to the p

th
 value of i

th
 orthonormal function X

o
i. Similarly, 

<XiX
o
j> and the mode of || ||iX  is defined as 

1

1 vN
o o

i j ip jp

pv

X X X X
N =

< >= ⋅∑  and 2

1

1
|| ||

vN

i ip

pv

X X
N =

= ∑   (19) 

Then by the standard Gram-Schmidt procedure, X
o
k are calculated as  

0
0

0|| ||

o X
X

X
=         (20) 

1 1 0 0

1

1 1 0 0|| ||

o o

o

o o

X X X X
X

X X X X

− < >
=

− < >
      (21) 

… 
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1

0

1

0

|| ||

k
o o

k k i i
o i

k k
o o

k k i i

i

X X X X

X

X X X X

−

=
−

=

− < >
=

− < >

∑

∑
      (22)    

for 1 ≤ k ≤ L-1. 

 

3.1.1. An Iterative Gram-Schmidt Procedure 

Inherently the Gram-Schmidt procedure is not numerically stable due to 

introduction of rounding errors when implemented on a computer. An iterative solution 

to is given here. A represents a lower triangular L x L orthonormal transformation 

matrix such that: 

X
o
 = A • X         (23) 

00

10 11

( 1)0 ( 1)1 ( 1)( 1)

0 0 0

0 0

. . . .

.L L L L

a

a a
A

a a a− − − −

 
 
 =
 
 
  

     (24) 

Thus the m
th
 orthonormal function can be obtained from X and A by 

0

m
o

m mi i

i

X a X
=

= ⋅∑         (25) 

for 0 ≤ m ≤ L-1. Let the auto-correlation function rij be defined as: 

1

1 vN

ij ip jp

pv

r X X
N =

= ⋅∑         (26) 

for 0 ≤ i,j ≤ L-1. Then from (23-26), 
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( )
00 1

0 2
00

1 1

|| ||
a

X
r

= =         (27) 

X
o
0 = a00·X0         (27) 

1

1 1 10 1 11 1

0

o

i i

i

X a X a X a X
=

= ⋅ = ⋅ + ⋅∑      (28) 

Let X
0
1 be equal to 

1
1

1|| ||

oX
φ
φ

=          (29) 

Then  1φ  = X1 - 0β ·X
o
o = X1 - 0β ·a00·Xo      (30) 

where 0β  = <X
o
o·X1> = a00·r01       (31) 

Writing 1φ  as 

1

1 0 0 1 1

0

k k

k

X X Xφ γ γ γ
=

= = +∑         (32) 

Here,  0 0 00aγ β= − ⋅           (31) 

1γ  = 1          (32) 

Also, 
1 1 0 0 1 0 0|| || || , ||o oX X X Xφ β β= < − ⋅ − ⋅ >      (33) 

1
2 2

1 11 0|| || rφ β ∴ = −         (34) 

Equating (28) and (32) 

0 0 1 1
1 10 1 11 1 1

2 2
11 0

o X X
X a X a X

r

γ γ

β

+
= ⋅ + ⋅ =

 − 

     (35) 
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0 00
10 1

2 2
11 0

a
a

r

β

β

−
=
 − 

        (36) 

11 1
2 2

11 0

1
a

r β
=
 − 

        (37) 

An iterative approach for finding the aij coefficients can be extended as follows: 

For 1 ≤ m ≤ L-1, perform the following operations 

0

i

i iq JqJm

q

a rβ
=

= ⋅∑     for  0 ≤ i ≤ m-1   (38) 

1mγ =          (39) 

1m

k i ik

i k

aγ β
−

=

= − ⋅∑    for  0 ≤ k ≤ m-1   (40) 

 

1
1 2

2

0
m m

k
mk

m

J J i

i

a

r

γ

β
−

=

=
 

− 
 

∑
  for  0 ≤ k ≤ m   (41) 

 

 

3.1.2. Solving for the Orthonormal System Weights 

When the basis functions X are transformed to X
o
, the system is mapped into 

new weights w
o
ki for the k

th
 estimated output kpy and i

th
 orthonormal basis function X

o
i 

for given training dataset with Nv patterns. 

1

0

L
o o

kp ki ip

i

y w X
−

=

= ⋅∑        (42) 
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for   1 ≤p ≤ Nv. The MSE in terms of the new weights for Nv desired values of yk can be 

written as  

2
1 1 1

1 0 0 0

1
,

vN L L L
o o o o o o

k kp ki ip k ki i k ki i

p i i iv

E y w X y w X y w X
N

− − −

= = = =

 
= − ⋅ = − ⋅ − ⋅ 

 
∑ ∑ ∑ ∑    (43) 

for 1 ≤k ≤ M. Using the definition of orthonormal functions (16-17) and expanding (43) 

1
2

0

, ( )
L

o

k k k ki

i

E y y w
−

=

= −∑        (44) 

Taking partial derivative w.r.t. the variable w
o
km, L equations in L unknowns are 

obtained, thus there would be a unique solution with only a global minimum. Using (25) 

the orthonormal weights are given by 

0

m
o

km mi ki

i

w a c
=

= ⋅∑         (45) 

for 1 ≤ k ≤ M, 0 ≤ m ≤ L-1, where cki is the cross-correlation function defined as 

1

1
,

vN

ki k i kp ip

pv

c y X y X
N =

= = ⋅∑       (46) 

for 1 ≤ k ≤ M, 0 ≤ i ≤ L-1, where ykp corresponds to the p
th
 pattern of output yk. 

 

3.1.3. Re-mapping System Weights from Orthonormal System 

To understand the mapping relationship in terms of the original system and to 

avoid additional computation of orthonormalizing the basis functions for validation and 

real-time processing, it is important to represent the system in terms of the original 

weights. An efficient mapping orthonormal weights to the original system weights is 

achieved by equating (12) and (43) and then substituting for X
o 
from (25)  
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1

0

L
o

ki kj ij

j

w w a
−

=

= ⋅∑         (47) 

Lemma 2: If Gram-Schmidt procedure is applied to a linearly dependent vector 

sequence, Xm, then the m
th
 vector is a zero vector.  

Proof: Consider Xm that is linearly dependent on other vectors up to m-1, then by 

definition of linearity there exists at least one non-zero λi such that   

1

1

m

m i i

i

X Xλ
−

=

= ⋅∑          (48) 

Then X
o
m from (22) is given as 

1

0

1

0

|| ||

m
o o

m m i i
o i

m m
o o

m m i i

i

X X X X

X

X X X X

−

=
−

=

− < >
=

− < >

∑

∑
       (49) 

Substituting (48) in (49), the numerator is then 

1 1

0 0

m m
o o

m j j i i

i j

X X X Xλ
− −

= =

− < >∑∑       (50) 

1 1

0 0 0

m m i
o

m j j i ik k

i j k

X X X a Xλ
− −

= = =

= − < > ⋅∑∑ ∑      (51) 

1 1

0 0 0

m m i
o

m j ik j i k

i j k

X a X X Xλ
− −

= = =

= − < >∑∑ ∑    

Apply change of variable, 

1 1

0 0 0

jm m
o

m j jk j i j

i j k

X a X X Xλ
− −

= = =

= − < ⋅ >∑∑ ∑      (52)
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1 1

0 0

m m
o o

m j j i j

i j

X X X Xλ
− −

= =

= − < >∑∑      (53) 

where (25) is substituted in (51) and again used in (52). Using the definition of 

orthonormal vectors as in (16-17), the inner product will be 1 only for i = j and 

otherwise. Then equation (53) reduces to  

1

0

m

m j j

j

X Xλ
−

=

= −∑          (54) 

which by definition of Xm as in (48) equals zero. Q.E.D. 

 

3.2 Implementation of the Ordered Functional Link Network (OFLN) 

Consider the FLN discussed in section 2.3.1 with N inputs and M outputs and Nv 

training patterns, 1,{ , }
vp p p N=x y . Assume that the N-dimensional input vector x has 

mean vector m and a vector σσσσ of standard deviations. In order to increase the likelihood 

that the PBF’s in X are well behaved, normalize the elements of x as 

xnp  ← (xnp – mn) / σn         (55) 

for 1 ≤ n ≤ N, 1 ≤ p ≤ Nv.  The bias term, xo is defined to be 1. A loss measure of 

approximation for the OFLN, the MSE, from (12) is written as 

2
1

1 1 1 0

1
.

vNM M L

t k kp ki ip

k k p iv

E E y w X
N

−

= = = =

 
= = − ⋅ 

 
∑ ∑ ∑ ∑     (56) 

where, as in equation (26) ykp is the p
th
 desired value for k

th
 output yk, Xip is the p

th
 value 

of i
th
 PBF Xi, and wki denotes the unknown weight from i

th
 PBF Xi to k

th
 output yk. 

 



 

 26

3.2.1.  Notation and Representation 

Limiting the degree of approximation D for the FLN can contain the problem of 

combinatorial explosion but this also limits its ability to model complex functions. A 

better approach is to grow the network with most useful basis functions forming the 

higher degree terms. If the elements of X are to be in descending order of their 

usefulness a method is needed for generating these efficiently, in any possible order. 

Consider an L by (D+1) position matrix K, where D is the desired degree of 

approximation, whose i
th
 row specifies how to generate the PBF Xi.  For element K(i,j), 

the ranges of i and j are 0 ≤ i ≤ L-1 and  0 ≤ j ≤ D. The i
th
 PBF Xi, with  K(i,D) denoting 

its degree, is defined as 

( , )

( , 1)

1

K i D

i K i j

j

X x −
=

= ∏        (57) 

The first basis function denotes the bias term and is fixed as Xo = 1. Thus X is generated 

from K and the normalized input vector x. Using the iterative Gram-Schmidt procedure 

X is orthonormalized to X
o
. A structural representation of FLN with orthonormal 

transformation for single output is shown in figure 3.1. 
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Fig 3.1: Structural representation of OFLN for single output. 

 

The output 
ky as shown in fig. 3.1 for k=1 and its transformed weight w

o
ki 

corresponding to i
th
 orthonormal vector X

o
i  is given by 

1

0

L
o o

kp ki ip

i

y w X
−

=

= ⋅∑           (58) 

for 1 ≤ k ≤ M. Let the elements of array J index basis functions according to their 

usefulness, i.e. if J0 = 3 and J3 = 8, then the 1
st
 and 4

th
 most useful basis functions that 

contribute the most to reduce the MSE are respectively X3 and X8. Thus J points to 

ordered PBF’s that effectively contribute to reduce the MSE.  

 

3.2.2. Training the OFLN  

The general approach for training the OFLN is to iteratively generate K and J 

for higher and higher degrees, D, finding the basis function coefficients each time using 
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Gram-Schmidt procedure. In each iteration, redundant and useless basis functions are 

eliminated, in order to prevent combinatorial explosion in the subsequent iterations. 

 

3.2.2.1 Degree D up to One  

In the first OFLN training iteration, the inputs are ordered according to their 

usefulness. In this case, L = N+1 and K and J are initialized as 

K(i,0) = i   K(i,1) = 1        

Ji = i              (59) 

for 0 ≤ i ≤ N. Following the basis function definition in (57), (59) indicates that the 

maximum degree is D=1, the first basis function referred by J0 and K(0,0) is the 

constant 1 corresponding to D=0, and the remaining basis functions are inputs. Starting 

with initial values in (59) it is desired that J point to linearly independent inputs in order 

of their contribution to reduce the MSE. The m
th
 orthonormal basis function X

o
m using 

index vector J from (59) and (25) is now re-written as 

 
0

i

m
o

m m i J

i

X a X
=

= ⋅∑  .      (60) 

Iterative Gram-Schmidt procedure is applied to find the unknown coefficients for the 

OFLN, a modification equations (38-45) using J:  

for m=0  

00 00

o

JX a X= ⋅          (61) 

0 0 0

00

1 1

|| ||
J J J

a
X r

= =        (62) 
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for 1 ≤ m ≤ L-1, repeat the following operations  

0

i

i iq JqJm

q

a rβ
=

= ⋅∑      0 ≤ i ≤ m-1  (63)  

1mγ =          (64) 

1m

k i ik

i k

aγ β
−

=

= − ⋅∑      0 ≤ k ≤ m-1  (65) 

1
1 2

2

0
m m

k
mk

m

J J i

i

a

r

γ

β
−

=

=
 

− 
 

∑
    0 ≤ k ≤ m  (66) 

0
i

m
o

km mi kJ

i

w a c
=

= ⋅∑      1 ≤ k ≤ M   (67) 

Lemma 3: If any input xm is linearly dependent on other inputs then higher order basis 

functions that include xm can be expressed using basis functions of the same degree that 

do not include xm. 

Proof: For any input xm that is linearly dependent on other inputs there exists at least 

one non-zero λi such that   

1,

N

m i i

i i m

x xλ
= ≠

= ⋅∑         (68) 

Consider a degree D basis function with dependent input xm raised to the d
th
 power. We 

have   

( ) ( )

1,1, ( ) 1, ( )

d
D d D dN

d

m k n i i k n

i i mn k n m n k n m

x x x xλ
− −

= ≠= ≠ = ≠

 
= ⋅ 
 
∑∏ ∏ .     (69) 

In (69), the right hand side has no xm and degree D is also unchanged. Q.E.D. 
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Using lemmas 2 and 3, for 1/amn → 0, the m
th
 linearly dependent function can be 

eliminated as below 

Ji= Ji+1   for m ≤ i < L-1        (70) 

L  ← L-1         (71) 

Denote the 2
nd
 term in the MSE for the orthonormal system in (44) as Pi associated with 

i
th
 orthonormal basis function X

o
i 

2

1

M
o

i ki

k

P w
=

 =  ∑ .        (72) 

Equation (72) gives us an important order relationship that defines the usefulness of a 

basis function to reduce the MSE. The MSE will be minimized when () is maximized. A 

physical interpretation of (44) simply means that the basis function with maximum 

value of absolute weight contributes the most to reduce the MSE and this interpretation 

is possible because the basis functions are orthonormalized. Thus, the desired new order 

of basis functions J that reduce the MSE is obtained by maximum value of Pi and is 

given by 

0 1 2 1
.....

L LJ J J JP P P P
− −

≥ ≥ ≥  .       (73) 

Using (47), the orthonormal weights can be transformed back to original weights. For 

D=1, J gives the ordered basis functions for a linear network. If a first order 

approximation is required, then a reordered K based on J and weights from (73) could 

be saved and it represents the OFLN of degree 1. Zero order function approximation is a 

special case with L = 1 and can be solved for as above. 
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3.2.2.2 Degree D Greater Than One and Stopping Criterion 

The network grows iteratively for each degree up to desired D. K from the 

previous case is reordered based on J such that it corresponds to only essential PBF’s. 

Indices of candidate basis functions of degree under consideration are generated from 

combinations of K and appended to it. One approach to ensure only unique higher 

degree functions are added is to sort the component inputs, as specified in a given new 

row of K. The row is kept only if it does not duplicate one of the rows above. Higher 

order basis functions X are then generated from (6). Equations (14)-(19), (22)-(24), 

(26)-(27) are repeated with the value of L being the row count of K for each degree. 

Higher order linearly dependent functions can be eliminated by extending the Lemma 3 

for higher degree PBF’s. As a control or stopping criterion, number of PBF’s degree 

under consideration can be limited by stopping at a given maximum number of PBF’s 

Lmax. Alternately, another criterion can be when the relative percentage change in error 

for adding a PBF is less than a user-chosen value ∆ε.     

 

3.2.3.  Fast Validation and Network Sizing 

For the OFLN a one-pass measurement of validation error for network size up to 

L is possible. The validation dataset is normalized with known values of m and σ. X, X
o
 

are generated using (6) and (13) respectively. For a network of size k with Nvt validation 

patterns, the total validation MSE (Evk) is given by                    

2
1

1 1 0

1 vtN M k
o o

vk ip ij jp

p i jvt

E y w X
N

−

= = =

  
 = − ⋅ 
   

∑ ∑ ∑       (74) 
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for 1 ≤ k ≤ L. For the pattern number p, the quantity in the inner brackets of (74) can be 

evaluated for all values of k. Hence Evk can be updated for all additive sets of basis 

functions (1 ≤ k ≤ L) in a single pass through the data thereby providing fast validation 

and network sizing. 
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 CHAPTER 4 

OFLN CLASSIFIER 

A Classifier maps an input feature vector x to discrete label or class i. Alike the 

function approximation, classification problem can be supervised and unsupervised, 

thus a classifier will learn generalized mapping rules from a given training dataset. 

Classification has immense applications in receiver design (communication 

engineering), econometrics, computer vision, bioinformatics, speaker dependent and 

speaker independent speech recognition, industrial engineering, etc [39-41].  

An input feature in a classifier is mapped to finite discriminant functions that 

form an enclosed hypersurface of disjoint sets, each set representative of the class label. 

The classification error, the number of patterns not classified correctly, is minimum for 

an optimal Bayes classifier that tends to determine the aposteriori class probability for a 

given feature vector [39]. The Bayes discriminant functions require apriori knowledge 

of the class probabilities and likelihood density functions that in most practical 

classification problems are not available or difficult to analyze. Hence other types of 

classifiers that perform as well as the Bayes classifier have been researched and studied. 

The Bayes-Gaussian Classifier, Nearest Neighbor Classifier, Feed-forward Network, 

Piecewise Linear Network and MLP as Classifier [39,41-43] perform well under certain 

scenarios and are often employed in practice. 

 



 

 34

4.1 Regression Based Classifiers 

A regression-based network, which successfully minimizes MSE, under certain 

conditions has been shown to approximate the optimal Bayesian discriminant 

function[44]. A proof of the MSE approaching the Bayesian discriminant for a feature 

set with multiple classes is referred to in Appendix A. Thus a regression network with 

some modifications performs as a very useful classifier, few examples of such 

classifiers are the Feed-forward networks like MLP and PLN.  

 

4.1.1.  Classifier Notations and Overview 

For a classification problem under consideration let x (x ∈ ℜN
) be the input 

feature vector, Nc be total number of classes, Nv the total number of training patterns. 

Let the desired output discriminant functions be represented as yip, the i
th
 desired output 

for p
th
 pattern. It is required that yip approximate the optimal Bayesian discriminant 

function di(x) given by  

di(x) = P(i|x)           (75) 

where P(i|x), i.e. the posteriori probability that given a feature vector x it belongs to 

class i. To maximize the separation distance between 2 classes, yip for a given input 

feature x belonging to class j is initially defined as 

 yip = 2·c·δ(i-j)  - c         (76) 

where c is a positive real number. Let ipy be the estimated output discriminant function 

corresponding to desired output yip, then the MSE for the regression network given 

training patterns Nv is then given by 
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( )2
1 1

1 v cN N

t ip ip

p iv

E y y
N = =

= −∑∑          (77) 

The training classification error (Pet) is ratio of patterns of the given dataset that are not 

classified properly. Given the proof in Appendix A and for training patterns Nv → ∞, it 

is sufficient enough to minimize (77) and achieve reasonably small classification error.  

The output discriminant functions on adequate training represents the aposterior 

probabilities P(i|x). However, the output functions can have values less than 0 and 

greater than 1 and thus the interpretations of the above statement are limited as the 

classification error is unaffected by the stochastic constraints 0 ≤ P(i|x) ≤ 1 and 

1

( | ) 1
cN

i

P i x
=

=∑  which might not hold true.  The standard error criterion can be relaxed so 

as to primarily improve the classification error if theoretical links to Bayes decision rule 

are not broken. This can be achieved by using an Output Reset (OR) algorithm [45] as 

described briefly here.  

 

4.2 The Output Reset Algorithm 

Et in equation (77) can be thought of as a residual error which is accumulated for 

each of Nc discriminant function for Nv patterns. A class decision i is made for 

( )2max ip ip
i

y y− . The MSE is redundantly higher because of 1) patterns belonging to 

the correct and incorrect class with discriminant functions of similar sign of desired 

output but of greater magnitude 2) patterns for incorrect class with discriminant 

functions having magnitude less than the desired output.  Thus the residual error 
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contains at least two types of biases removal of which would not immediately affect the 

classification error. The biases can be removed by introducing a new desired output y’ip 

such that 

y’ip = yip + ap + dip         (78) 

where ap is the additive bias common to each pattern and dip is the bias for each 

discriminant function and pattern. The corresponding MSE E’t is given by  

( )2
1 1

1
' '

v cN N

t ip ip

p iv

E y y
N = =

= −∑∑         (79) 

It is required to find optimum values of ap and dip under the following conditions: 

1. The difference 
ci p

d  – 
di p

d  must be greater than or equal to zero, where ic 

denotes the correct class and id denotes an incorrect class, otherwise dip could 

cancel yip thus persuading learning algorithms to drive weights toward zero in an 

effort to minimize E’t.  

2. Each change made to ap, dip and y’ip through changes in network weights must 

reduce E’ or at least keep it unchanged.  

Equating the gradient of E’t to 0 and solving for ap yields 

1

1 cN

p ip ip ip

ic

a y y d
N =

 = − − ∑        (80) 

When ap is added to each desired output yip, the distances between correct class 

residual and incorrect class residual remains unchanged and hence classification 

error is unchanged. Also, ap would minimize E’t, both condition 1 and 2 are 

satisfied.  
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Similarly dip can be found by minimizing square error term [dip + ap + yip - ipy ]
2
 to 

give dip = [yip – ipy – ap]. To satisfy condition 1 dip is constrained such that for a 

correct class, 
ci p

d  ≥ 0, and for an incorrect class, 
di p

d  ≤ 0. An iterative solution to 

the problem of finding ap and tip along with a closed form representation is discussed 

in [45]. 

 

4.3 OFLN Classifier Implementation 

The OFLN minimizes the MSE for a given training dataset by mapping the Nc 

classes to fixed points in  ℜNc
 Euclidian space and forms a regression-type classifier. A 

representation of the OFLN classifier is shown in figure (4.1), here the number of 

estimated outputs for the network equals the number of classes Nc.  

 

 

 

 

             

                                   inputs        output discriminant functions 

   Fig. 4.1: Representation of OFLN Classifier. 

4.3.1.  Algorithm for Implementation of the OFLN classifier 

1. The OFLN is trained to minimize the MSE by setting the desired output ykp as 

defined in (76) for the given Nv training patterns. The iterative Gram-Schmidt 

x1 
 
 

 

OFLN 
x2 

x3 

xN 

 

 x M = Nc 
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learning algorithm, as in section 3.2, is used to obtain the orthonormal PBF's X
o
, 

the A matrix and the weights w
o
ki.  

2. For a training pattern under consideration, calculate the discriminant functions 

kpy (1 ≤ k ≤ M) from X
o
 and w

o
ki using equation  (58). 

3. Use OR to find the new desired outputs yk for the training pattern using 

information of the correct class label ic and discriminant function ky .  

4. Update the new cross correlation function for the desired outputs yk and X
o
 

using equation (46) 

5. Repeat steps 2-4 for each training pattern.  

6. Find the new orthonormal system weights w
o
ki using equation (45), elements of 

A are fixed for OR algorithm and obtained from the step 1. 

7. Find new discriminant functions ky  for each pattern using X
o
 PBF’s and 

corresponding weights w
o
ki and determine the estimated correct class i'c for the 

incremental basis functions: 

                
0

' argmax ( ) argmax
m

o o

c kp kj jp
k k j

i y m w X
=

= = ⋅∑       (81) 

for 1 ≤ k ≤ M 

8. Increment the classification error count Pe (m) if i'c ≠ic for 0 ≤ m ≤ L-1 

9. Repeat steps 7-8 for each training pattern. 

10. Repeat steps 2-9 for the desired Nit iterations. Save the values of Pe(m) and 

corresponding weight matrix which is used to measure the validation error for 

unseen data.  
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As in the case of function approximation, early stopping and validation criterion are 

used to determine a stopping criterion. Training and validation classification error 

performance for incremental degree of OFLN, incremental network size and 

incremental OR iterations can be studied to determine the most appropriate 

classification network for a particular problem. 
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CHAPTER 5 

SIMULATION EXAMPLES 

Simulation examples for OFLN function approximation and classification are 

presented where performance is compared with that of other networks. Algorithms for 

training, validation and processing datasets were implemented in MS C++ 6.0 for 

Win32 upward systems.  

 

5.1 Function Approximation 

Graphs for learning non-polynomial sine function and single-mode modified 

rastrigin function show the function approximation capabilities of the OFLN.  As in 

[31] 10 data values in the interval [0:1] are used for learning sine function (fig. 5.1). 

The approximated rastrigin function (given by 20+x1
2
+ x2

2
 –10(cos(0.1πx1) + 

cos(0.1πx2)) in fig. 5.2 shows an important advantage of the OFLN over FLN, pi-sigma 

and GMDH, i.e. as percentage change in MSE is zero (fig. 5.2) then minimal number of 

4 basis functions of up to degree 4 are sufficient for approximation for MSE = 0.08. 

Also, from (3), for N=2, D=4, L would be 15 but 6 of them are linearly dependent and 

eliminated during training. Hence, unlike GMDH and pi-sigma networks there are no 

repeated and redundant terms for higher degree representation. Results show that this 

property scales extremely well for systems with large numbers of inputs and outputs. 
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  Fig. 5.1.  sin(x) function approximation by OFLN for D=2 and D=4 

 

 

 

 

 

 

 

    Fig. 5.2.  (a) Modified Rastrigin function and (b) approximated by OFLN, D=4 

 

 

 

 

 

 

   Fig. 5.3.  MSE vs. No. of Basis Functions and percentage change in  

        MSE for appx. Rastrigin function 
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5.2 Supervised Learning  

Some examples for supervised learning are demonstrated for the OFLN. For 

comparison, a GMDH network [46][47] is designed using the Forward Prediction Error 

(FPE) criterion. In examples 5.2.1 and 5.2.2, an MLP is trained with back-propagation 

and the Levenberg-Marquardt algorithm. In examples 5.2.3 and 5.2.4 the MLP is 

trained using Output-Weight-Optimization Hidden-Weight-Optimization (OWO-

HWO)[48]. The validation error is the MSE on some unseen patterns and is averaged 

for 3 sets of random data with ratio of 7:3 for training and validation.  

 

5.2.1. California Housing 

The first example for supervised learning is a benchmark function 

approximation problem “California Housing” from Statlib[49]. It has observations for 

predicting the price of houses in California. Information on the variables was collected 

using all the block groups in California from the 1990 Census. In this sample a block 

group on average includes 1425.5 individuals living in a geographically compact area. 

The geographical area included varies inversely with the population density. Distances 

among the centroids of each block group were computed as measured in latitude and 

longitude. All the block groups reporting zero entries for the independent and dependent 

variables were excluded. The final data contained 20,640 observations on 9 variables, 

which consists of 8 continuous inputs (median income, housing median age, total 

rooms, total bedrooms, population, households, latitude, and longitude) and one 

continuous output (median house value). The output is normalized by subtracting the 

mean and dividing by standard deviation for simplicity. The MSE obtained is 0.30, 0.38 
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and 0.35 for the OFLN, GMDH and MLP respectively. OFLN used 27 basis functions 

with D=4, GMDH is implemented with 4
th
 degree approximation, 27 PBF’s over 20 

iterations. An 8-18-1 MLP used a validation set for early stopping and converged at 31 

epochs.  Fig. 5.4 shows the training MSE (MSEt) and validation MSE (MSEv) vs. the 

number of basis function for OFLN with D=4. There is a need for applying the early 

stopping criterion here as the network tries to over fit the data by adding PBF’s after 27 

thereby resulting in the training MSE to further decrease but the validation error to 

increase. The 2 datasets are independent and it is required to obtain a generalized 

network, hence OFLN with 27 PBF is the desired network. Table 5.2 shows the MSE 

for various degree OFLN.  

 

 

 

 

 

 

 

F 

  Fig. 5.4.  Training and Validation MSE vs. No. of Basis Functions for  

            California Housing approximation. 
 

5.2.2. Inversion Technique for Radar Scattering  

The second example comprises an empirical MIMO geophysical system for 

surface analysis from polarimetric radar measurements[50]. There are 20 inputs 
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corresponding to VV and HH polarization at L 30, 40 deg, C 10, 30, 40, 50, 60 deg, and 

X 30, 40, 50 deg and 3 outputs corresponding to rms surface height, surface correlation 

length, and volumetric soil moisture content in g/cubic cm. Fig. 5.5 shows the training 

and validation MSE vs. no. of basis function graph for ordered PBF’s 1 to 60 for D=4. 

Results show good generalization capabilities for the OFLN. 

 

 

 

 

 

 

 

 

 

         Fig.  5.5.  Training and Validation MSE vs. No. of Basis Functions 

      for Radar scatter dataset. 
 

Table 5.1 gives the comparison for number of terms L used for system 

representation for FLN vs. OFLN, with Lmax for higher degree set to 500 for the OFLN. 

Although LOFLN for California housing example for D=4 is 377 for effective 

generalization only 27 basis functions are sufficient. Table 5.2 gives the corresponding 

training and validation MSE at each degree, compared with a Multi-layer Perceptron (20-

6-3 for Radar over 100 epochs, 8-18-1 for Housing over 31 epochs). As can be seen for 

increase in D, MSE for OFLN decreases. The OFLN has the significant advantage that 
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as the network degree D increases, the training MSE decreases or at worst remains 

constant. This result follows from use of the Gram-Schmidt procedure, equation (44) 

where the training MSE is represented as non-increasing function with respect to the 

basis functions. Also for D
th
 degree learning, the training pattern file need be read only 

(D+1) times, the first time for normalizing the data set. These attributes make the OFLN 

computationally efficient over GMDH and similar PNN networks. 

 

Table 5.1 No. of  PBF’s Comparison for OFLN vs. FLN 

Degree L FLN 

Housing 

L OFLN 

Housing 

L FLN 

Radar 

L OFLN 

Radar 

D=1 9 9 21 21 

D=2 55 45 231 231 

D=3 220 144 1771 284 

D=4 715 337 10626 294 

 

 

Table 5.2 Training and Validation MSE Comparison for OFLN vs. MLP 

MSE D=1 D=2 D=3 D=4 MLP 

Training 

(Housing) 

0.36 0.33 0.31 0.30 0.35 

Validation 

(Housing) 

0.37 0.33 0.32 0.31 0.35 

Training 

(Radar) 

3.69 1.52 1.38 1.36 1.43 

Validation 

(Radar) 

3.94 1.81 1.65 1.6 1.55 
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5.2.3.  Noisy FM Demodulator 

The third example is a parallel implementation of frequency discriminator-type 

Frequency Modulation (FM) demodulator that recovers a band-limited modulating 

signal from a frequency modulated signal distorted by additive colored noise of 

measured variance. If x[n] is the modulating signal, z[n] is the output of FM modulator 

with additive noise e[n], then for modulation index kf, carrier amplitude Ac, carrier 

frequency fc, modulating signal frequency fm 

[ ] cos 2 [ ] [ ]
n

c c f

i o

z n A f n k x i e nπ
=

 
= ⋅ ⋅ + + 

 
∑       (82) 

max

2

| [ ] |

c

f

f
k

x n

π
=         (83) 

1024 patterns are generated with z[i], 0 ≤ i ≤ 4 as inputs and desired x[n] as output with 

values of Ac, fc, fm as 0.5, 0.1 and 0.1 respectively. Comparison of OFLN, MLP and 

GMDH based on training MSE (MSEt) and validation MSE (MSEv) vs. the number of 

basis functions is shown in fig. 5.6. OFLN gives a lower MSE for training and 

validation compared to MLP and GMDH. The number of basis functions for MLP 

under consideration is given by (Number of hidden units + N + 1). The GMDH network 

uses 5
th
 degree approximation for 50 iterations. Performance results for OFLN are 

comparatively better. Also, a system modeler can select a smaller size OFLN network 

with a trade-off in MSE, e.g. OFLN of size 40 compared to OFLN of size 60 has 2% 

additional training MSE at cost of 20 more PBF’s. 
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         Fig. 5.6. Training and Validation MSE vs. vs. No. of Basis Functions 

comparison  of OFLN, MLP and GMDH for FM Demodulator. 
 

5.2.4. Matrix Inversion  

Results for non-linear 2 by 2 matrix inversion problem are shown in fig. 5.7. 

The training file has 2000 patterns, each pattern consists of 4 input features and 4 output 

features. The input features, which are uniformly distributed between 0 and 1, represent 

a matrix and the four output features are elements of the corresponding inverse matrix. 

The determinants of the input matrices are constrained to be between .3 and 2. FLN, 

OFLN and MLP networks are compared in fig. 8. Note that as compared to the OFLN, 

FLN points are widely separated, giving the user few options as to network size. Also, 

from the figure we see that all three networks perform similarly when the number of 

basis functions is 23 or less. However, for this dataset, the MLP has an advantage for 24 

or more basis functions.   

 

  



 

 48

 

 

 

 

 

 

 

 

Fig. 5.7.  Training and Validation MSE vs. No. of Basis Functions      

 comparison of FLN, OFLN and MLP for 2x2 Matrix inversion. 

 

5.3 Financial Market Forecasting  

Success of Neural Networks in financial forecasting models is well-established 

[51-54] and use of OFLN for similar task is proposed here. Due to globalization, the 

global markets of pan America, Europe and the far-East are increasingly 

interdependent. It is often believed there exists a linear relationship between them [55]. 

Using OFLN a more appropriate relationship can be evaluated. OFLN is trained for 

Open Value data of 8 key indices, viz. NASDAQ (US), DJIA (US), Bovespa (Brazil), 

FTSE (UK), BSE (India), Hang-Seng (Hong Kong), KOSPI (South Korea) and NIKKEI 

(Japan). For demonstration non-linear relationships between KOSPI and other indices is 

presented below. The data collected ranges from January 2001 to January 2007. 

Samples are pre-processed for adequate representation and randomly distributed in sets 

for training, validation and processing sets. The training and validation curve in figure 

(5.8) show that an adequate selection of 80 basis function would give an optimal 
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network under given criterion. Using this network the open-value of KOSPI are 

predicted for a period of more than a year as shown in figure (5.9)  

A normalized version of the MSE can be represented as Mean Absolute Percentage 

Error (MAPE) given by  

 

1 1

| |1
100

| |

vNM
ip ip

i pv ip

y y
MAPE

M N y= =

 −
= ×  ⋅ 

∑∑     (84) 

 

 

 

 

 

 

 

 

 

 

 

          

Fig. 5.8.  Training and Validation MSE vs. No. of Basis Functions 

   for OFLN, D=4 for KOSPI index. 
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  Fig. 5.9.  Actual vs. Predicted open value for KOSPI index as  

    non-linear function of indices of global markets. 

 

 

Fig. 5.9. Actual vs. Predicted open value for KOSPI index   

  as non-linear function of indices of global markets  
 

Table (5.3) shows the comparison statistics for MAPE for OFLN (4
th
 order, 80 basis 

functions), MLP (7-90-1 using OWO – HWO algorithm) and GMDH (4
th
 order, 50 

terms). 

     Table 5.3 MAPE Comparison for OFLN, MLP and GMDH Networks 

Network Type MAPE (%) MAPE (σ) 

OFLN 1.53 0.0144 

MLP 1.57 0.0183 

GMDH 4.19 0.12 

 

The cumulative distribution function (CDF) of the MAPE presents a better insight into 

interpretation of MSE / MAPE for different networks. In figure (5.10) the CDF for 

MAPE is plotted, where the y-axis denotes the probability that the MAPE will be less 



 

 51

 

than a particular value for the network under consideration. Clearly, the more the 

probability for lesser MAPE the better is the estimator.  

 

 

 

 

 

 

 

 

 

  Fig. 5.10.  MAPE CDF for OFLN, MLP and GMDH for   

     predicting KOSPI index. 

 

Using OFLN an equation form interpretation of the relationship between of the 

approximated function is possible. Let (x1 – x7 denote DJIA, NASDAQ, Bovespa, 

FTSE, BSE, Hang-Seng, NIKKEI) then the relationship defined for first few PBF is 

given by  

971.78 + 230.32·x5  - 731.84·x5
3
  + 194.08·x5·x2 + 586·x6·x1  + 133.34x1·x5·x6 – 

461.69·x1·x4·x5 + 78.166·x6·x6   + 667·x4
2
·x5 + 35.852·x4·x5·x6 - 134.06·x4·x5·x6

2
  –   

48.72·x1·x4·x5
2
 -  197.34·x2·x4·x5

2  
+ 188.96·x7  +  631.67x4·x5·x5  +  149.61·x4  +  172.46· 

x2·x2·x5
2
  +  48.827·x1·x2·x5  - 153.33· x2·x2·x5

2
 - 104.96·x6    (85) 
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which is an important finding as it suggests high dependency of the KOSPI’s index on 

the BSE index, interestingly the correlation coefficient between the 2 is highest at 0.95.  

 

5.4 OFLN Classifier Simulation 

Performance of OFLN as classifier is compared with other classifiers like the 

MLP classifier, PLN classifier (PLNC) and Nearest Neighbor classifier (NNC). As in 

approximation, the network is trained by incrementing the degree D and OR iterations 

(Nit) and the network size selection is based on generalization rule, i.e. when the 

validation classification error for network starts increasing from a low. The MLP uses 

100 iterations of OWO – HWO algorithm for learning and then OR for reducing the 

classification error (Pe). To increase the likelihood of good generalization cross-

validation is performed where training and validation datasets are exchanged and the 

resulting values of Pe are then averaged. 

 

5.4.1. Geometric Shape Recognition 

The geometric shape recognition problem is to classify four geometric shapes: 

ellipse, triangle, quadrilateral, and pentagon [56]. Each shape consists of a matrix of 

size 64 x 64. For each shape, 200 training patterns are generated using different degrees 

of deformation. The deformations included rotation, scaling, translation, and oblique 

distortions. The feature set is ring-wedge energy (RNG), and has 16 features and form 

the input set x.  
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Table 5.4 gives a comparison of training Pe (Pet) and validation Pe (Pev) for 

OFLN of various degrees D and various OR iterations Nit. It is seen that as the network 

degree increases Pet goes on decreasing as increase in D results in training MSE 

decrease and OR works effectively to decrease the error. However from D=2 to D=3,4 

and for increase in Nit the corresponding validation error Pev increases which indicates 

that the network tends to become over-specialized and a good stopping criterion is thus 

for D=2 and Nit = 5. The 16-136-1 MLP gives a Pet = 0.34 and Pev = 4.94.  

 

         Table 5.4 Training and Validation Classification Error for OFLN 

Nit  = 5 Nit  = 10 OFLN 

Network Pet Pev Pet Pev 

L 

D=1       12.84        13.76    11.93    13.77    17 

      D=2         1.44         4.85     0.36     6.47   153 

      D=3            0       12.55        0    15.38   499 

      D=4            0         9.31        0    10.93   499 

 

Figure 5.11 shows the graph for training and validation classification error for OFLN 

and MLP vs. number of basis functions. A fully-connected 16-170-4 MLP using OWO 

– HWO for 100 iterations is trained. The number of basis functions for a fully-

connected feed-forward MLP is as defined before (Number of inputs + Number of 

hidden units + 1). OFLN selected is of degree 2 starting with L=171, but 18 of them are 

linearly dependent and eliminated and that gives a 2
nd
 degree OFLN with 153 PBF’s. Pet 
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for MLP is a decreasing function for the dataset under consideration. All the basis 

functions are required for the OFLN to achieve near similar performance to MLP, this is 

because after the OR algorithm the PBF’s are not re-ordered again for the OFLN 

whereas they are for the MLP. The computation time for OFLN is less than for the 

MLP. 

 

 

 

 

 

 

 

 

 

 

      Fig. 5.11 Training and Validation Pe comparison for   

        OFLN and MLP for shape recognition. 

 

5.4.2. Hand-Printed Numeral Dataset Recognition 

The raw data for hand-printed numeral recognition consists of images from hand 

printed numerals collected from 3,000 people by the Internal Revenue Service 

(IRS)[57]. 300 characters are randomly chosen from each class to generate 3000 

character dataset. Images are 32 by 24 binary matrices. An image-scaling algorithm is 
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used to remove size variation in characters. The feature set contains 16 elements. The 

10 classes in this problem correspond to the 10 Arabic numerals.  

Fig 5.12 shows a comparison of OFLN of degree 2 with 153 PBF’s and Nit = 3 

and 16–136 –10 fully-connected MLP using OWO – HWO for 60 iterations is trained. 

Both the networks show near similar error performance for number of basis functions 

greater than 137. The OFLN for D=4 gives a better Pet over MLP but is not shown in 

figure as the Pev is higher than for D=2 case. In this case from the figure Pev is 8.94 and 

8.52 for OFLN and MLP respectively. Table 5.5 compares the error for OFLN, MLP, 

PLNC and NNC. PLNC used a maximum of 153 clusters and NNC used 115 clusters. 

OFLN gives better performance over the PLNC[38][58] and NNC[56] in this case. 

 

 

 

 

 

 

 

 

 

   

 

Fig. 5.12 Training and Validation Pe comparison for OFLN and MLP  

        for numeral recognition. 
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Table 5.5 Comparison of Classification Error for Arabic numeral recognition 

   for OFLN, MLP, PLNC, NNC 
 

Network Type Pet Pev 

OFLN 4.04 8.94 

MLP 2.64 8.52 

PLNC 4.18 10.14 

NNC 5.42 9.16 

 

5.4.3 Image Segmentation 

In this example the training and validation datasets are generated from 

segmented images of land-types. Each segmented region is a separate histogram 

equalized to 20 levels. The joint probability density of pairs of pixels separated by a 

given distance and a given direction is estimated using 0, 90, 180, 270 degrees for the 

directions and 1, 3, and 5 pixels for the separations. The density estimates are computed 

for each classification window. For each separation, the co-occurrences for for the four 

directions are folded together to form a triangular matrix. From each of the resulting 

three matrices, six features are computed: angular second moment, contrast, entropy, 

correlation, and the sums of the main diagonal and the first off diagonal. This results in 

18 features for each classification window. Four regions of land use/cover types are 

identified in the images per Level I of the US Geological Survey Land Use/Land Cover 

Classification System: urban areas, fields or open grassy land, trees (forested land), and 

water (lakes or rivers) [59]. Thus for this problem N = 18, Nc = 4.  
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A D=3 OFLN is trained with Nit = 4. The training and validation classification 

error graph is shown in figure 5.13. A 18-101-4 fully-connected feed-forward MLP 

using OWO-HWO is trained and pruned and the corresponding error plot it shown in 

figure 5.14.   

 

 

 

 

 

 

  

 

 Fig. 5.13 Training and Validation Pe for OFLN, D=3 for image segmentation. 

 

 

 

 

 

 

 

 

         Fig. 5.14 Training and Validation Pe for MLP for image segmentation. 
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As can be seen, Pet and Pev corresponding to OFLN and MLP for 236 and 120 

basis functions are 12.1% and 15.1% for OFLN with 236 basis functions and 13.4% and 

15.5% for MLP with 120 basis functions. For the segmentation problem, the OFLN 

provides a better classification error compared to the MLP.  

 



 

 59

 

 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

In this thesis the OFLN is proposed as a valuable network for approximation and 

classsification. It is seen that the OFLN gives a concise, structured, easily interpretable, 

methodically ordered  and computationally efficient network for supervised, non-

parametric MIMO systems. It improves on the FLN and a few other PNN networks.  

An efficient method for generating, orthonormalizing, pruning and ordering 

higher order polynomial basis functions funcions together constitute the OFLN. The 

elimination of the linearly dependent functions and other less useful basis functions is 

important in containing the combinatorial explosion which in turn allows better 

approximation capabilities. The number of passes through the training data is reduced 

using higher order correlations. A set of different order and size complexity polynomial 

networks based on incremental size of polynomial basis functions which explicilty 

explain the trade-off between performance and network size is presented to the modeler 

using the OFLN. As demonstrated the OFLN can certainly be applied to many nonlinear 

function approximation, structure identification and optimization and classificaiton 

problems. It is a however a known fact that there is a “no one-network-fit-all” solution 

in Neural Networks.  
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There is enough scope with suitable rewards for future work in the OFLN.  

1. The OFLN algorithm can be extended for a cluster or distributed computing 

architecture to suit more complex number crunching problems like the 

weather forecasting, space exploration and natural disaster forewarning 

systems.  

2. With a few modificaitons in algorithmic implementation, the OFLN can be 

extended to time-series modeling problems. For time-series problems a 

highly useful and complex OFLN can grow in multiple dimensions of order, 

lag-window size and estimate output-window.  

3. Depending on the application, the stopping criterion for OFLN 

approximation and classification can be automated by keeping a check on 

the training and validaiton error during the incremental growth of network, 

however it would increase computational complexity. 

4. The performane complexity of Gram-Schmidt orthonormalization procedure 

and few other techniques like the Householder transformation, Givens 

method, Singular Value Decompostion can be compared. 
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APPENDIX A 

 

 

REGRESSION-BASED NETWORK APPROXIMATION TO BAYESIAN 

DISCRIMINANT FUNCTION 
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Consider a classification network with the input feature x and output 

discriminant function yi(x) for Nv for i between 1 and Nv. Let Nv(i) the number of 

patterns belonging to class i, S(i) the set of patterns that correspond to class i, fx(x) 

denote the probability density of feature vector x, f(x|i) the conditional density of 

feature vector x given it belongs to class i and P(i) the probability that feature vector 

comes from class i.  

The optimal Bayesian discriminant di(x) is given as 

di(x) = P(i|x)          (A1) 

where P(i|x) is the aposteriori probability that given a vector x it belongs to class i. Let 

the desired output yip for correct class j defined as  

yip = δ(i-j)           (A2) 

and the estimated output for p
th
 pattern by the regression based classifier be denoted by 

ipy . Then the MSE for the network given Nv training patterns is given by 

( )2
1 1

1
( ) ( )

v cN N

t ip ip

p iv

E y y
N = =

= −∑∑ x x         (A3) 

The expected squared error between network output i
y  and optimal Bayes discriminant 

is given by 

( )2
1

( ) ( )
cN

B i i

i

E E d y
=

 = − ∑ x x        (A4) 

Theorem[44]: As the training patterns Nv increase, Et approaches the (EB + K), where 

K is a constant.  
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Proof:  Given the definition of tip, equation (A3) is rewritten as    

( )2 2

1 ( ) 1,

1
1 ( ) ( )

c cN N

t i j

i p S i j j iv

E y y
N= ∈ = ≠

 
= − + 

 
∑ ∑ ∑x x      (A5) 
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1 ( ) 1,

( ) 1
1 ( ) ( )
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c cN N

v
t i j

i p S i j j iv v

N i
E y y

N N i= ∈ = ≠

  
= − +  
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As Nv → ∞, Nv(i) / Nv → P(i) and (A6) is written as 
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where the following substitutions are from Bayesian theory 

1. f ( | ) ( ) f ( , ) ( | )f ( )i P i i P i= =x x x x  and     (A12) 

2. 
1

f ( | ) ( ) f ( )
cN

j

j P j
=

=∑ x x       (A13) 

Then (85) is, 
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The second term in (A16) is independent of any network parameters and is thus a 

constant K. Thus Et = EB + K, it implies that network with estimated output y , which 

minimizes the MSE yields the optimal Bayes discriminant function in the minimum 

mean squared error sense. Q.E.D. 
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