
A FUNCTIONAL LINK NETWORK USING ORDERED BASIS FUNCTIONS

by

SAURABH SUREKA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2007

 ii

ACKNOWLEDGEMENTS

I express my heartfelt gratitude to Dr. Michael Manry for his guidance and

support during the thesis work. He saw the work from inception to fruition and provided

all the help to make this work possible. I admire his subject expertise, contribution and

devotion to the field of Neural Networks, and incessant help to his students in various

forms viz. teaching, regular laboratory visits, immediate feedback and motivation to

better understand the field of Neural Networks.

The EE coursework at UTA and my undergraduate institute SSGMCE in India

provided the fillip and toolkit to weave the pieces of this work together. Hence a sincere

thanks to all the teachers who selflessly strive to spread education to whom I dedicate

this work. Thanks to Dr. Johnathan Bredow and Dr. Stephen Gibbs and for a patient

review of the thesis work and thanks also to Dr. Gibbs for giving me a small

opportunity to learn and teach at UTA.

A special mention of my various colleagues and supporters at GTL, Infosys,

IPNNL, Qualcomm and online research community, who have either directly or

indirectly but certainly contributed to this experience. A big thanks to my family and

friends for being there.

Finally given the time-dependent boundary conditions this appears an eloquent

pit stop of the unbounded learning journey.

March 15, 2007

 iii

ABSTRACT

A FUNCTIONAL LINK NETWORK USING ORDERED BASIS FUNCTIONS

Publication No. ______

Saurabh Sureka, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Michael T. Manry

A new function approximation and classification network based on Functional

Link Network (FLN) with orthonormal Polynomial Basis Functions (PBF) is presented.

By using an iterative Gram-Schmidt procedure, the PBF’s are orthonormalized, ordered

and selected based on their contribution to minimize the Mean Square Error (MSE).

Linearly dependent and less useful PBF are detected and eliminated at an early stage

thereby improving the approximation capabilities and reducing the possibility of

combinatorial explosion. The number of passes through the data during network

training is minimized through the use of correlations. A one-pass method is used for

validation and network sizing. Equivalent function approximation and classification

networks are designed and simulation examples are presented. Results for the Ordered

 iv

FLN are compared with those for the FLN, Group Method of Data Handling (GMDH),

and Multi-Layer Perceptron (MLP), Nearest Neighbor Classifier (NNC) and Piecewise

Linear Classifier (PLNC).

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

ABSTRACT.. iii

LIST OF ILLUSTRATIONS... viii

LIST OF TABLES .. x

Chapter

 1. INTRODUCTION …………………………………………………………… 1

 1.1 History and Research Trends in Polynomial Networks 2

 1.2 OFLN Scope ………... 3

 1.3 Thesis Organization .. 3

 2. REVIEW OF POLYNOMIAL NETWORKS .. 5

 2.1 Structure of Function Approximators .. 5

 2.2 Mean Square Error (MSE) Criterion .. 8

 2.3 Overspecialization .. 10

 2.4 Polynomial Networks Types .. 10

 2.4.1 Functional Link Network ... 10

 2.4.2 GMDH Network .. 12

 2.4.3 Pi-Sigma Network.. 14

2.5 Properties of Polynomial Networks .. 15

 2.5.1 Advantages of Polynomial Networks....................................... 15

 vi

 2.5.2 Disadvantages of Polynomial Networks 16

 3. THE ORDERED FUNCTIONAL LINK NETWORK 18

 3.1 The Gram-Schmidt Orthonormalization Procedure 18

 3.1.1 An Iterative Gram-Schmidt Procedure..................................... 20

 3.1.2 Solving for the Orthonormal System Weights 22

 3.1.3 Re-mapping System Weights from Orthonormal System........ 23

 3.2 Implementation of the Ordered Functional Link Network (OFLN)... 25

 3.2.1 Notation and Representation.. 26

 3.2.2 Training the OFLN... 27

 3.2.2.1 Degree D up to One... 28

 3.2.2.2 Degree D Greater Than One and Stopping Criterion . 31

 3.2.3 Fast Validation and Network Sizing .. 31

 4. OFLN CLASSIFIER ………………………………………………………… 33

 4.1 Regression Based Classifiers.. 34

 4.1.1 Classifier Notation and Overview.. 34

 4.2 The Output Reset Algorithm ... 35

 4.3 OFLN Classifier Implementation ... 37

 4.3.1. Algorithm for Implementation of the OFLN classifier 37

 5. SIMULATION EXAMPLES.. 40

 5.1 Function Approximation .. 40

 5.2 Supervised Learning... 42

 5.2.1 California Housing... 42

 vii

 5.2.2 Inversion Technique for Radar Scattering 43

 5.2.3 Noisy FM Demodulator ... 46

 5.2.4 Matrix Inversion... 47

 5.3 Financial Market Forecasting... 48

 5.4 OFLN Classifier Simulation... 52

 5.4.1 Geometric Shape Recognition.. 52

 5.4.2 Hand-Printed Numeral Dataset Recognition............................ 54

 5.4.3 Image Segmentation... 56

 6. CONCLUSIONS AND FUTURE WORK ... 59

APPENDIX

A. REGRESSION-BASED NETWORK APPROXIMATION TO BAYESIAN

DISCRIMINANT FUNCTION .. 61

REFERENCES.. 65

BIOGRAPHICAL INFORMATION.. 71

 viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 MIMO function approximation representation.. 6

2.2 Structural representation of function approximator... 7

2.3 A 2 input, 1 output degree 2 FLN.. 11

2.4 Structural representation of GMDH network .. 12

2.5 Number of unknown weights comparison for D=2, GMDH and FLN............ 13

2.6 Structural representation of a Pi-Sigma network... 14

3.1 Structural representation of OFLN for single output....................................... 27

4.1 Representation of OFLN Classifier ... 37

5.1 sin(x) function approximation by OFLN for D=2 and D=4 41

5.2 (a) Modified Rastrigin function and (b) approximation by OFLN, D=4......... 41

5.3 MSE vs. No. of Basis Functions and percentage change in MSE for appx.

Rastrigin function approximation .. 41

5.4 Training and Validation MSE vs. No. of Basis Functions for California

 Housing approximation ... 43

5.5 Training and Validation MSE vs. No. of Basis Functions for Radar

 Scatter dataset .. 44

5.6 Training and Validation MSE vs. No. of Basis Functions comparison of

 OFLN, MLP and GMDH for FM Demodulator .. 47

5.7 Training and Validation MSE vs. No. of Basis Functions of FLN

 comparison of OFLN and MLP for 2x2 Matrix inversion 48

 ix

5.8 Training and Validation MSE vs. No. of Basis Functions for OFLN,

 D=4 for KOSPI index .. 49

5.9 Actual vs. Predicted open value for KOSPI index as non-linear function

 of indices of global markets... 50

5.10 MAPE CDF for OFLN, MLP and GMDH for predicting KOSPI index 51

5.11 Training and Validation Pe comparison for OFLN and MLP for shape

recognition ... 54

5.12 Training and Validation Pe comparison for OFLN and MLP for numeral

recognition ... 55

5.13 Training and Validation Pe for OFLN, D=3 for image segmentation 57

5.14 Training and Validation Pe for MLP for image segmentation 57

 x

LIST OF TABLES

Table Page

 2.1 Number of Weights Comparison for FLN and Pi-sigma Networks 15

 5.1 No. of PBF’s Comparison for OFLN vs. FLN .. 45

 5.2 Training and Validation MSE Comparison For OFLN vs. MLP 45

 5.3 MAPE Comparison for OFLN, MLP and GMDH Networks.......................... 50

 5.4 Training and Validation Classification Error for OFLN 53

 5.5 Comparison of Classification Error for Arabic numeral recognition for

OFLN, MLP, PLNC, NNC... 56

 1

CHAPTER 1

INTRODUCTION

The field of Neurocomputing and Polynomial Networks has developed rapidly

in the last few decades. Pioneering work for Neurocomputing dates back to Warren

McCulloch and Walter Pitts work on modeling neuron activity with electrical circuits in

1943[1]. One approach for learning is the supervised learning technique in which the

training data comprises both the input and desired output patterns. The Group Method

of Data Handling (GMDH) is a self-organized, supervised learning type Polynomial

Network developed by cyberneticist Dr A.G. Ivakhnenko in 1966[2][3]. Concurrent

research primarily in US, Europe and Japan along with advances in semiconductor

engineering has effectively widened the spectrum of end-applications for the

Polynomial Networks and GMDH.

Polynomial Networks (PN) and GMDH are also sometimes referred as

Polynomial Neural Networks (PNN) in the research community. Together they provide

novel solutions to a set of problems including function learning, optimization,

interpolation, structure identification, classification and associative learning. These

problems are commonly encountered in the fields of Adaptive Control, Optimization

and Scheduling, Signal Processing, Pattern Recognition, Data Mining, Artificial

Intelligence and Computer Vision. Successful implementations of a few end-

applications include face and handwriting recognition, natural language processing,

 2

image compression using auto-associativeness, remote sensing, servo control

mechanisms used in interplanetary probes and expeditions and short and long-term

forecasting of financial market, weather, earthquakes and temperature[4-8].

1.1 History and Research Trends in Polynomial Networks

Polynomial Networks as well as most other networks like the Multi-Layer

Perceptron (MLP), Radial Basis Function (RBF) network, Piecewise Linear Network

(PLN) derive their universal approximation capabilities from the Weierstrass

approximation theorem (1885), expanded upon by Stone (1948)[9]. The growth in

Neural Networks after the initial excitement from 1944 to 1969 met a sudden death due

to lack of funding, computational limitations and the often cited work of Minsky and

Papert[10]. But some work by the likes of Werbos[11], Fukushima[12], Hopfield[13],

Kohonen[14], Grossberg[15] and many others provided a motivation for a new direction

in the field. The evolution of Polynomial Networks however has a steady but slow

growth from the times of Ivakhnenkho who developed the GMDH network in 1966[2-

3]. Variations of GMDH-type networks and learning algorithms have been proposed

since then. Pao in his pioneering work introduced a Functional Link Network

(FLN)[16] which like the GMDH tries to approximate a function with a Kolmogorov-

Gabor polynomial[17]. Polynomial networks have been shown to have universal

approximation capabilities using few basis functions like Trigonometric functions,

algebraic polynomials, orthogonal polynomials, Chebyshev polynomials, Hermite

polynomials, Legendre polynomials, splines, ridged polynomials. The practical

 3

implementations of these are limited by an exponential increase in the required number

of basis functions with an increase in the network inputs and / or degree of

approximation. To address this problem of combinatorial explosion researchers have

used Sigma-Pi Networks, Genetic Algorithms and other evolutionary approaches[18-

19]. However, faster learning algorithms, methods to generate and handle higher order

polynomials, achieving optimal network design and size are topics of great interests and

open research.

1.2 OFLN Scope

This thesis introduces an application of a fast iterative Gram-Schmidt

Orthonormalization procedure to a Functional Link Network (FLN) and the resultant

network obtained is called the Ordered Functional Link Network (OFLN). The

functional approximation capabilities of OFLN are theoretically justified by the

Weierstrass approximation theorem that states that polynomial approximation gets

arbitrarily close to any continuous function as the polynomial order is increased[9].

1.3 Thesis Organization

A brief introduction to the structure of function approximation and review of a few

polynomial networks is presented in Chapter II. An Iterative Gram-Schmidt

Orthonormalization procedure, structural representation and implementation of the

OFLN are presented in Chapter III. The approximation capabilities of OFLN and

iterative Output-Reset (OR) algorithm that decreases the classification error form a

good combination of OFLN as a regression-type classifier and are discussed in Chapter

 4

IV. Results from comparison of few benchmark examples of function approximation

and classification are compared with other networks in Chapter V. Conclusions and

Future Work constitute Chapter VI.

 5

CHAPTER 2

REVIEW OF POLYNOMIAL NETWORKS

2.1 Structure of Function Approximators

The problem of function approximation can be stated as determination of the

closest functional relationship that maps the N-dimensional input vector space to M-

dimensional output vector space. Consider a system with an input x (x∈ℜN
) with

probability density function fx(x) and the desired output y (y∈ℜ
M
) which is based on

the aposteriori conditional density fy(y|x). Then, the joint density of independent and

identically distributed observations fxy(x,y) is given as fxy(x,y) = fy(y|x) · fx(x). From a

finite set of Nv observations {xp,yp} for 1 ≤ p ≤ Nv it is required to find a mapping

 = (,)gy x ω as close as possible to the desired mapping y. With a physical constraint

of no apriori knowledge of the distribution functions, presence of uncharacterized

observation noise morphing the desired output, and requirement of generalizing the

mapping function to unseen data, a generalization error measure (Er) can be written as:

 f (,)Er d dθ= ∫ xy x y x y (1)

where θ, a measure of loss estimate in the mapping, is a function of the difference

between the desired output y and its estimate y such as the squared error 2θ = () .−y y

 6

Fig. 2.1: MIMO function approximation representation.

The k
th
 element of y , y k

can be written as some unknown function of input x

y k
= (,)kg x ω (2)

for 1 ≤ k ≤ M. The corresponding Multiple Input Multiple Output (MIMO) mapping

{ x ∈ ℜN
 � y ∈ ℜM

 } is shown in figure 2.1. A classical parameterized form for the

mapping is given by

1

0

y ()
L

k ki i

i

fω
−

=

= ⋅∑ x (3)

for 1 ≤ k ≤ M, where fi(x) are set of L basis functions and kiω is the corresponding

unknown coefficient for i
th
 basis function fi(x) and k

th
 output y k

. Thus the problem of

function approximation is two-fold: (1) determination of an appropriate and minimal set

of L basis functions and (2) determination of their corresponding coefficients.

Parametric learning with known basis functions but unknown coefficients can be

considered as a special case of the generalized non-parameterized representation. An

equivalent representation of equation (3) is shown in figure 2.2 for output
1y , and a

similar representation can be found for all other outputs.

x1

(,)g x ω
x2

x3

xN

1y

2y

My

 7

Fig. 2.2: Structural representation of function approximator.

For the k
th
 output, the matrix representation of system in figure (2.2) for a dataset with

Nv patterns can be written as

0 1 1 1 (1) 1 10

0 2 1 2 (1) 2 21

0 3 1 3 (1) 3 32

0 1 (1) (1)

() () ()

() () ()

() () ()

() () ()
v v v v

L kk

L kk

L kk

N N L N kNk L

f f f y

f f f y

f f f y

f f f y

ω
ω
ω

ω

−

−

−

− −

 =

x x x

x x x

x x x

x x x

i

i

i

i i i i ii

i

 (4)

where the i
th
 basis function fi(x) takes values fi(xp) and output ky takes values kpy (1 ≤ p

≤ Nv, 0 ≤ i ≤ L-1, 1 ≤ k ≤ M). The set of basis functions can be pre-determined or

developed during the training. Multi-layer Perceptrons (MLP)[4,5,20] uses non-linear

squashing functions, like the sigmoidal function, as basis functions and have shown

universal approximation capabilities. The Radial Basis Function (RBF) Network[4] use

radial basis functions as basis functions for which the non-linear transformation occurs

 ω01 ω11 … … … ω(L-1)1

x1 x2 … … … xN

f0(x) f1(x) … fL-1(x)

∑

1y

 8

at chosen center points for given dataset. Like the MLP, they too show similar

approximation and interpolation properties. Genetic Algorithms, like the previous two

networks develop the basis functions during training. Several pre-determined basis

functions like the trigonometric, Legendre polynomials, algebraic polynomials,

Chebyshev polynomials and Hermite polynomials have been shown to have universal

approximation capabilities.

2.2 Mean Square Error (MSE) Criterion

A well-defined loss function for a given training dataset with Nv patterns is the

optimal Minimum Mean Square Error (MMSE). For the system under consideration,

equation (2-4), the MMSE estimate yMMSE that minimizes the mean square error EMS

EMS = E[(y – yMMSE)
T
 (y – yMMSE)] (5)

is given as

yMMSE = E[y|x] (6)

where E is the expectation operator and the yMMSE is the posteriori expected value of y

for given x. Equation (6) requires knowledge of apriori and likelihood densities which is

not practically feasible in most approximation problems. However, it can be shown that

an approximation network based on PBF’s with certain assumptions can yield the

MMSE criterion[21-23]. Consider the system with N inputs x, M desired outputs y and

g(x,ωωωω) as network outputs where w is the weight coefficient matrix of the polynomial

network which statistically span the range of the outputs to be estimated. Then the

Mean Square Error (MSE) for the network under consideration is defined as:

 9

2

1

1
|| (,) ||

vN

t p p

pv

E g
N =

= −∑ x ω y (7)

where (xp,yp) i=1,2,…,Nv is the training set representative of the true statistic from the

population of x and y. The usage of MSE as the loss function is justifiable by the

following lemma.

Lemma 1[21]: In the limit as Nv approaches ∞, the Mean Square Error (MSE) can be

represented as an integral of the loss function over the joint density fxy(x,y).

Proof: For Nv tending to ∞, by the Strong Law of Large Numbers[21,23], equation (7)

tends to

2lim || (,) || f (,)
v

tL t
N

E E g d d
→∞

= = −∫∫ xyx ω y x y x y (8)

where as defined before fxy(x,y) is the joint probability density function of x and y.

Q.E.D.

From Bayes theorem, fxy(x,y) = fy(y|x)⋅⋅⋅⋅fx(x) and equation (8) is written as:

2f () || (,) || f (|)tLE g d d = − ∫ ∫x yx x ω y y x y x (9)

To minimize (9) is equivalent to minimizing the quantity in the inner brackets, which is

2' || (,) || f (|)tLE g d= −∫ yx ω y y x y (10)

which will be minimized when g(x,ωωωω) = E[y|x] and E[y|x] = yMMSE from (6). Thus a

sufficiently complex g(x, ωωωω) polynomial network that successfully minimizes E′tL

approximates the Minimum Mean Square Estimator [23].

 10

Networks like the MLP and RBF often employ an iterative approach to get close

to a global minimum solution[24-27]. Polynomial Networks like the FLN that employ a

flat-architecture are known to not suffer from problems of local minima[28] as their

error landscape has only a global minimum.

2.3 Overspecialization

The property of the network to perform well on unseen data is called

generalization. As the network is trained to minimize (7), it might run into over-

specialization or memorization due to inadequate dataset size and distribution. In such

cases even though the MSE for training data decreases there exists a good possibility

that the network does not perform well on unseen data. Techniques like early stopping,

cross-validation [29-30] have been employed to ensure a good level of generalization.

2.4 Polynomial Network Types

2.4.1. Functional Link Network

A FLN often has a fixed number of polynomial or trigonometric basis functions. For

simplicity, a single-layer feed-forward 2
nd
 order FLN for 2 inputs x1 and x2, 1 output 1y

and unknown weights wk is shown in figure 2.3. The network can be extended similarly

to show a ℜN
 � ℜM

 mapping.

 11

w1

w3

w4

w5

w2

w0

x1

x2

Σ
1y

()2

x

()2

Fig. 2.3: A 2 input, 1 output degree 2 FLN.

As the non-linear learning for the FLN comes form the linear combinations of the pi

elements, it is also called as a neural network with no hidden unit. FLN thus achieves

function approximation in terms of the Kolmogorov-Gabor or Ivakhnenko polynomial

0

1 1 1 1 1 1

...
N N N N N N

k k ki i kij i j k ijl i j l

i i j i j l

y x x x x x xα α α α
= = = = = =

= + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ +∑ ∑ ∑ ∑ ∑ ∑ (11)

for 1 ≤ k ≤ M, where ky is the k
th
 estimated output and αk’s are the corresponding

weights. Let X be the column basis vector. Then the i
th
 polynomial basis function (PBF)

element Xi is an element of the set {1,xi,xi·xj,xi·xj·xk,… } for 1 ≤ i ≤ j ≤ k…≤ N. Using

polynomial basis functions as fi(x) in (3) and restricting (11) to L monomials, equation

(11) is conveniently written as

1

0

L

k ki i

i

y w X
−

=

= ⋅∑ 1 ≤ k ≤ M (12)

where wki is the weight coefficient to i
th
 PBF Xi and k

th
 output ky and the total number

of basis functions L for D
th
 degree of approximation is given by

.
N D

L
D

+
=

 (13)

 12

2.4.2. GMDH Network

A GMDH network generates combinations of degree 2 FLN network for each input

pair. The useful basis functions inputs are then sorted and the network grows

iteratively. This approach gives it a self-organized inductive learning property that helps

in modeling higher order functions. A structural representation of multi-layered GMDH

network is shown in figure 2.4.

ψ

 inputs 1st generation 2nd generation nth generation

 Fig. 2.4: Structural representation of GMDH network.

Output ψ of the basic processing block F2 is given by the operation:

ψ = w0 + w1·xi + w2·xj + w3·xi.xj + w4·xi
2
+w5·xj

2
 (14)

for 1 ≤ i,j ≤ N .Starting with N·(N-1)/2 combinations starting at first generation for a

given training dataset, important basis functions are identified and sorted based on a

regularity criterion (often root mean square) that best estimate the desired output and

forms the inputs for second generation. This process is repeated for subsequent

generations till the network begins to over-specialize or resultant estimation error for a

F2

F2

F2

F2

F2

F2

F2

F2

F2

x1

x2

x3

xN

 13

subsequent generation is higher then the previous one. Thus an n
th
 generation network

approximates a function of 2
n
 order. The advantage of this network comes from its

ability to model the higher order complexity. There are advanced versions of learning

and growing networks using techniques like the genetic evolution that have shown some

promising results for certain kind of problems[3]. For full-sized network to approximate

the polynomial given in equation (11) the number of unknown weights to find for

GMDH for 2
nd
 degree approximation is of order six times more than corresponding

FLN for 2
nd
 degree. Figure 2.5 shows the corresponding plot for number or weights vs.

number of inputs for 2
nd
 degree approximation comparison of GMDH and FLN. Also,

implementation of GMDH for a MIMO mapping is a non-trivial task.

Fig. 2.5: Number of unknown weights comparison for D=2, GMDH and FLN

 14

2.4.3. Pi-Sigma Network

A pi-sigma network is a two-layered network that achieves higher order learning

as sums of higher order input correlations components[31] for a ℜN
 � ℜM

 mapping.

The structural representation of the pi-sigma network is shown in figure 2.6.

 Fig. 2.6: Structural representation of a Pi-Sigma network

For D
th
 degree of approximation, the first-layer comprises of D summing units, the

output of d
th
 unit of first-layer for k

th
 output hdk is given by

1

N

dk dki i dk

i

h w x w
=

= ⋅ +∑ (14)

for 1 ≤ d ≤ D, 1 ≤ i ≤ N, 1 ≤ k ≤ M, where wdki is adjustable weight and wdk is weight

corresponding to threshold for d
th
 unit. The k

th
 estimated output is given by

1

D

k dk

d

y hσ
=

=

∏ (15)

wdik

1

1

1

1

 _

yk

 Product

unit
Fixed

weights

Σ

Σ

Σ

x1

x2

x3

xN

 Π

inputs adjustable

weights
D summing

units

hdk

σσσσ()

 Non-linear

transformation

 15

where σ() is any suitable non-linear squashing function. Clearly an important

advantage of this network is for higher degree approximation the number of unknown

weights is only M·D· (N+1). Table 2.1 shows the comparison for number of unknowns

for a Sigma-pi and FLN network. However, pi-sigma networks are not universal

approximators and they trade-off approximation capabilities to network size. Ridged-

Polynomial Networks[32] which are incremental networks obtained from varying

degrees of pi-sigma networks have shown better approximation accuracy.

Table 2.1 Number of Weights Comparison for FLN and Pi-sigma Networks

Number of Weights (free parameters)

FLN Pi- sigma

 Degree

 of

approximation N=10 N=15 N=10 N=15

1 11 16 11 16

2 55 120 22 32

3 286 816 33 48

4 1001 3876 44 64

2.5 Properties of Polynomial Networks

2.5.1. Advantages of Polynomial Networks

Few advantages of the Polynomial Networks over other networks are:

1. Polynomial Networks (PN) use PBF’s which unlike sigmoidal functions are

unbounded and hence provide faster learning.

2. PN compared to other networks are easily tractable and extremely informative

as they provide an understanding of representation of PBF’s and hence exhibit

open-box model behavior.

 16

3. PN’s are fast and computationally efficient as compared to other networks like

MLP as they can be realized using multiplication and addition operators and

have smaller storage capacity.

4. Due to the flat-architecture PN’s like the FLN do not suffer from local-minima

problems.

2.5.2. Disadvantages of Polynomial Networks

Polynomial Networks suffer from a few disadvantages when compared to other

networks like the MLP:

1. The computational complexity of PN’s increases exponentially with increases in

degree of approximation. This problem is often referred as the curse of

dimensionality. For a D
th
 degree approximation of N inputs, the number of

required basis function (L) as in equation (13) which leads to combinatorial

explosion with increase in either number of inputs and degree of approximation

D. For example, for N = 25 and D = 2 the number of basis functions L required

is 351 but for D = 4, L = 23751 and for D = 8, L = 13,884,156. For a MLP, the

network grows in size and complexity by adding more hidden units and since

non-linear transforms occur at the sigmoid a relatively few hidden units may be

possible to achieve desired degree of complexity.

2. Highly non-linear functions may require very high degree polynomials and may

not be well approximated, for these MLP might perform better.

 17

GMDH network and GMDH-like networks incrementally grow the network for

higher order learning to overcome the combinatorial explosion, but the approach is

heuristic based and often results in presence of unwanted functions or extremely

large sized networks. Work based on GMDH and FLN employing Genetic

Algorithms have shown some good results[3,33], but they lose the properties of

polynomial networks.

 18

CHAPTER 3

THE ORDERED FUNCTIONAL LINK NETWORK

It is desired to retain the MIMO universal approximation capabilities of the FLN

and avoid any disadvantages. Applying an Iterative Gram-Schmidt procedure to a FLN

a multi-layered, regularized incremental growth, and well-structured network is

achieved. The FLN has ordered basis functions and hence is called the Ordered

Functional Link Network (OFLN). The OFLN reduces the possibility of combinatorial

explosion and achieves better approximation capabilities. In this chapter the standard

Gram-Schmidt procedure and its numerically stable version is reviewed and an

implementation algorithm for the OFLN is presented.

3.1 The Gram-Schmidt Orthonormalization Procedure

The Gram-Schmidt procedure maps a set of linearly dependent vectors to an

orthonormal basis vector set in Euclidian or any inner product space. It is a well-known

standard numerical method [34] and has been used to find optimum choice of Radial

centers for RBF [35], fast computation of weights of RBF network [36], pruning of

MLP [37], feature selection in piecewise classifier [38]. What few authors did not

realize is that using the Gram-Schmidt procedure allows ordering the basis function in

order of their contribution to minimize the MSE. Using this the network can be

represented as a monotonically non-increasing function of addition of basis functions

 19

and achieve a faster rate of convergence. Also, orthonormalizing linearly dependent

vectors results in a zero vector and is an important step in pruning useless basis

functions. These desirable properties along with the effective representation, system re-

transformation and a fast and distributed iterative solution make it a better candidate

over other learning algorithms.

Consider a vector X (X0,X1,X2,… …,XL-1) whose elements are basis functions

and its corresponding orthonormal mapping is X
o
 (X

o
0,X

o
1,X

o
2,… …,X

o
L-1) where both

X and X
o∈ ℜL

. By the definition of orthonormality:

<X
o
i X

o
j> = 0 for i≠j (16)

 = 1 for i=j i,j ∈ (0,L-1) (17)

where, < X
o
i X

o
j > is defined as the correlation for Nv patterns.

1

1 vN
o o o o

i j ip jp

pv

X X X X
N =

< >= ⋅∑ (18)

Here X
o
ip corresponds to the p

th
 value of i

th
 orthonormal function X

o
i. Similarly,

<XiX
o
j> and the mode of || ||iX is defined as

1

1 vN
o o

i j ip jp

pv

X X X X
N =

< >= ⋅∑ and 2

1

1
|| ||

vN

i ip

pv

X X
N =

= ∑ (19)

Then by the standard Gram-Schmidt procedure, X
o
k are calculated as

0
0

0|| ||

o X
X

X
= (20)

1 1 0 0

1

1 1 0 0|| ||

o o

o

o o

X X X X
X

X X X X

− < >
=

− < >
 (21)

…

 20

1

0

1

0

|| ||

k
o o

k k i i
o i

k k
o o

k k i i

i

X X X X

X

X X X X

−

=
−

=

− < >
=

− < >

∑

∑
 (22)

for 1 ≤ k ≤ L-1.

3.1.1. An Iterative Gram-Schmidt Procedure

Inherently the Gram-Schmidt procedure is not numerically stable due to

introduction of rounding errors when implemented on a computer. An iterative solution

to is given here. A represents a lower triangular L x L orthonormal transformation

matrix such that:

X
o
 = A • X (23)

00

10 11

(1)0 (1)1 (1)(1)

0 0 0

0 0

. . . .

.L L L L

a

a a
A

a a a− − − −

 =

 (24)

Thus the m
th
 orthonormal function can be obtained from X and A by

0

m
o

m mi i

i

X a X
=

= ⋅∑ (25)

for 0 ≤ m ≤ L-1. Let the auto-correlation function rij be defined as:

1

1 vN

ij ip jp

pv

r X X
N =

= ⋅∑ (26)

for 0 ≤ i,j ≤ L-1. Then from (23-26),

 21

()
00 1

0 2
00

1 1

|| ||
a

X
r

= = (27)

X
o
0 = a00·X0 (27)

1

1 1 10 1 11 1

0

o

i i

i

X a X a X a X
=

= ⋅ = ⋅ + ⋅∑ (28)

Let X
0
1 be equal to

1
1

1|| ||

oX
φ
φ

= (29)

Then 1φ = X1 - 0β ·X
o
o = X1 - 0β ·a00·Xo (30)

where 0β = <X
o
o·X1> = a00·r01 (31)

Writing 1φ as

1

1 0 0 1 1

0

k k

k

X X Xφ γ γ γ
=

= = +∑ (32)

Here, 0 0 00aγ β= − ⋅ (31)

1γ = 1 (32)

Also,
1 1 0 0 1 0 0|| || || , ||o oX X X Xφ β β= < − ⋅ − ⋅ > (33)

1
2 2

1 11 0|| || rφ β ∴ = − (34)

Equating (28) and (32)

0 0 1 1
1 10 1 11 1 1

2 2
11 0

o X X
X a X a X

r

γ γ

β

+
= ⋅ + ⋅ =

 −

 (35)

 22

0 00
10 1

2 2
11 0

a
a

r

β

β

−
=
 −

 (36)

11 1
2 2

11 0

1
a

r β
=
 −

 (37)

An iterative approach for finding the aij coefficients can be extended as follows:

For 1 ≤ m ≤ L-1, perform the following operations

0

i

i iq JqJm

q

a rβ
=

= ⋅∑ for 0 ≤ i ≤ m-1 (38)

1mγ = (39)

1m

k i ik

i k

aγ β
−

=

= − ⋅∑ for 0 ≤ k ≤ m-1 (40)

1
1 2

2

0
m m

k
mk

m

J J i

i

a

r

γ

β
−

=

=

−

∑
 for 0 ≤ k ≤ m (41)

3.1.2. Solving for the Orthonormal System Weights

When the basis functions X are transformed to X
o
, the system is mapped into

new weights w
o
ki for the k

th
 estimated output kpy and i

th
 orthonormal basis function X

o
i

for given training dataset with Nv patterns.

1

0

L
o o

kp ki ip

i

y w X
−

=

= ⋅∑ (42)

 23

for 1 ≤p ≤ Nv. The MSE in terms of the new weights for Nv desired values of yk can be

written as

2
1 1 1

1 0 0 0

1
,

vN L L L
o o o o o o

k kp ki ip k ki i k ki i

p i i iv

E y w X y w X y w X
N

− − −

= = = =

= − ⋅ = − ⋅ − ⋅

∑ ∑ ∑ ∑ (43)

for 1 ≤k ≤ M. Using the definition of orthonormal functions (16-17) and expanding (43)

1
2

0

, ()
L

o

k k k ki

i

E y y w
−

=

= −∑ (44)

Taking partial derivative w.r.t. the variable w
o
km, L equations in L unknowns are

obtained, thus there would be a unique solution with only a global minimum. Using (25)

the orthonormal weights are given by

0

m
o

km mi ki

i

w a c
=

= ⋅∑ (45)

for 1 ≤ k ≤ M, 0 ≤ m ≤ L-1, where cki is the cross-correlation function defined as

1

1
,

vN

ki k i kp ip

pv

c y X y X
N =

= = ⋅∑ (46)

for 1 ≤ k ≤ M, 0 ≤ i ≤ L-1, where ykp corresponds to the p
th
 pattern of output yk.

3.1.3. Re-mapping System Weights from Orthonormal System

To understand the mapping relationship in terms of the original system and to

avoid additional computation of orthonormalizing the basis functions for validation and

real-time processing, it is important to represent the system in terms of the original

weights. An efficient mapping orthonormal weights to the original system weights is

achieved by equating (12) and (43) and then substituting for X
o
from (25)

 24

1

0

L
o

ki kj ij

j

w w a
−

=

= ⋅∑ (47)

Lemma 2: If Gram-Schmidt procedure is applied to a linearly dependent vector

sequence, Xm, then the m
th
 vector is a zero vector.

Proof: Consider Xm that is linearly dependent on other vectors up to m-1, then by

definition of linearity there exists at least one non-zero λi such that

1

1

m

m i i

i

X Xλ
−

=

= ⋅∑ (48)

Then X
o
m from (22) is given as

1

0

1

0

|| ||

m
o o

m m i i
o i

m m
o o

m m i i

i

X X X X

X

X X X X

−

=
−

=

− < >
=

− < >

∑

∑
 (49)

Substituting (48) in (49), the numerator is then

1 1

0 0

m m
o o

m j j i i

i j

X X X Xλ
− −

= =

− < >∑∑ (50)

1 1

0 0 0

m m i
o

m j j i ik k

i j k

X X X a Xλ
− −

= = =

= − < > ⋅∑∑ ∑ (51)

1 1

0 0 0

m m i
o

m j ik j i k

i j k

X a X X Xλ
− −

= = =

= − < >∑∑ ∑

Apply change of variable,

1 1

0 0 0

jm m
o

m j jk j i j

i j k

X a X X Xλ
− −

= = =

= − < ⋅ >∑∑ ∑ (52)

 25

1 1

0 0

m m
o o

m j j i j

i j

X X X Xλ
− −

= =

= − < >∑∑ (53)

where (25) is substituted in (51) and again used in (52). Using the definition of

orthonormal vectors as in (16-17), the inner product will be 1 only for i = j and

otherwise. Then equation (53) reduces to

1

0

m

m j j

j

X Xλ
−

=

= −∑ (54)

which by definition of Xm as in (48) equals zero. Q.E.D.

3.2 Implementation of the Ordered Functional Link Network (OFLN)

Consider the FLN discussed in section 2.3.1 with N inputs and M outputs and Nv

training patterns, 1,{ , }
vp p p N=x y . Assume that the N-dimensional input vector x has

mean vector m and a vector σσσσ of standard deviations. In order to increase the likelihood

that the PBF’s in X are well behaved, normalize the elements of x as

xnp ← (xnp – mn) / σn (55)

for 1 ≤ n ≤ N, 1 ≤ p ≤ Nv. The bias term, xo is defined to be 1. A loss measure of

approximation for the OFLN, the MSE, from (12) is written as

2
1

1 1 1 0

1
.

vNM M L

t k kp ki ip

k k p iv

E E y w X
N

−

= = = =

= = − ⋅

∑ ∑ ∑ ∑ (56)

where, as in equation (26) ykp is the p
th
 desired value for k

th
 output yk, Xip is the p

th
 value

of i
th
 PBF Xi, and wki denotes the unknown weight from i

th
 PBF Xi to k

th
 output yk.

 26

3.2.1. Notation and Representation

Limiting the degree of approximation D for the FLN can contain the problem of

combinatorial explosion but this also limits its ability to model complex functions. A

better approach is to grow the network with most useful basis functions forming the

higher degree terms. If the elements of X are to be in descending order of their

usefulness a method is needed for generating these efficiently, in any possible order.

Consider an L by (D+1) position matrix K, where D is the desired degree of

approximation, whose i
th
 row specifies how to generate the PBF Xi. For element K(i,j),

the ranges of i and j are 0 ≤ i ≤ L-1 and 0 ≤ j ≤ D. The i
th
 PBF Xi, with K(i,D) denoting

its degree, is defined as

(,)

(, 1)

1

K i D

i K i j

j

X x −
=

= ∏ (57)

The first basis function denotes the bias term and is fixed as Xo = 1. Thus X is generated

from K and the normalized input vector x. Using the iterative Gram-Schmidt procedure

X is orthonormalized to X
o
. A structural representation of FLN with orthonormal

transformation for single output is shown in figure 3.1.

 27

Fig 3.1: Structural representation of OFLN for single output.

The output
ky as shown in fig. 3.1 for k=1 and its transformed weight w

o
ki

corresponding to i
th
 orthonormal vector X

o
i is given by

1

0

L
o o

kp ki ip

i

y w X
−

=

= ⋅∑ (58)

for 1 ≤ k ≤ M. Let the elements of array J index basis functions according to their

usefulness, i.e. if J0 = 3 and J3 = 8, then the 1
st
 and 4

th
 most useful basis functions that

contribute the most to reduce the MSE are respectively X3 and X8. Thus J points to

ordered PBF’s that effectively contribute to reduce the MSE.

3.2.2. Training the OFLN

The general approach for training the OFLN is to iteratively generate K and J

for higher and higher degrees, D, finding the basis function coefficients each time using

w
o
10

w
o
11

w

o
1L-1

a00

a01

a10

 a0L-1

 a1L-1

aL-1L-1

 _

yk

Estimated

output
Linear

adder

x0

x1

x2

xN

 Σ

Inputs K matrix PBF’s X

 K

X0

X1

XL-1

X
o
0

X
o
1

Orthonormal

PBF’s

X
o
L-1

 28

Gram-Schmidt procedure. In each iteration, redundant and useless basis functions are

eliminated, in order to prevent combinatorial explosion in the subsequent iterations.

3.2.2.1 Degree D up to One

In the first OFLN training iteration, the inputs are ordered according to their

usefulness. In this case, L = N+1 and K and J are initialized as

K(i,0) = i K(i,1) = 1

Ji = i (59)

for 0 ≤ i ≤ N. Following the basis function definition in (57), (59) indicates that the

maximum degree is D=1, the first basis function referred by J0 and K(0,0) is the

constant 1 corresponding to D=0, and the remaining basis functions are inputs. Starting

with initial values in (59) it is desired that J point to linearly independent inputs in order

of their contribution to reduce the MSE. The m
th
 orthonormal basis function X

o
m using

index vector J from (59) and (25) is now re-written as

0

i

m
o

m m i J

i

X a X
=

= ⋅∑ . (60)

Iterative Gram-Schmidt procedure is applied to find the unknown coefficients for the

OFLN, a modification equations (38-45) using J:

for m=0

00 00

o

JX a X= ⋅ (61)

0 0 0

00

1 1

|| ||
J J J

a
X r

= = (62)

 29

for 1 ≤ m ≤ L-1, repeat the following operations

0

i

i iq JqJm

q

a rβ
=

= ⋅∑ 0 ≤ i ≤ m-1 (63)

1mγ = (64)

1m

k i ik

i k

aγ β
−

=

= − ⋅∑ 0 ≤ k ≤ m-1 (65)

1
1 2

2

0
m m

k
mk

m

J J i

i

a

r

γ

β
−

=

=

−

∑
 0 ≤ k ≤ m (66)

0
i

m
o

km mi kJ

i

w a c
=

= ⋅∑ 1 ≤ k ≤ M (67)

Lemma 3: If any input xm is linearly dependent on other inputs then higher order basis

functions that include xm can be expressed using basis functions of the same degree that

do not include xm.

Proof: For any input xm that is linearly dependent on other inputs there exists at least

one non-zero λi such that

1,

N

m i i

i i m

x xλ
= ≠

= ⋅∑ (68)

Consider a degree D basis function with dependent input xm raised to the d
th
 power. We

have

() ()

1,1, () 1, ()

d
D d D dN

d

m k n i i k n

i i mn k n m n k n m

x x x xλ
− −

= ≠= ≠ = ≠

= ⋅

∑∏ ∏ . (69)

In (69), the right hand side has no xm and degree D is also unchanged. Q.E.D.

 30

Using lemmas 2 and 3, for 1/amn → 0, the m
th
 linearly dependent function can be

eliminated as below

Ji= Ji+1 for m ≤ i < L-1 (70)

L ← L-1 (71)

Denote the 2
nd
 term in the MSE for the orthonormal system in (44) as Pi associated with

i
th
 orthonormal basis function X

o
i

2

1

M
o

i ki

k

P w
=

 = ∑ . (72)

Equation (72) gives us an important order relationship that defines the usefulness of a

basis function to reduce the MSE. The MSE will be minimized when () is maximized. A

physical interpretation of (44) simply means that the basis function with maximum

value of absolute weight contributes the most to reduce the MSE and this interpretation

is possible because the basis functions are orthonormalized. Thus, the desired new order

of basis functions J that reduce the MSE is obtained by maximum value of Pi and is

given by

0 1 2 1
.....

L LJ J J JP P P P
− −

≥ ≥ ≥ . (73)

Using (47), the orthonormal weights can be transformed back to original weights. For

D=1, J gives the ordered basis functions for a linear network. If a first order

approximation is required, then a reordered K based on J and weights from (73) could

be saved and it represents the OFLN of degree 1. Zero order function approximation is a

special case with L = 1 and can be solved for as above.

 31

3.2.2.2 Degree D Greater Than One and Stopping Criterion

The network grows iteratively for each degree up to desired D. K from the

previous case is reordered based on J such that it corresponds to only essential PBF’s.

Indices of candidate basis functions of degree under consideration are generated from

combinations of K and appended to it. One approach to ensure only unique higher

degree functions are added is to sort the component inputs, as specified in a given new

row of K. The row is kept only if it does not duplicate one of the rows above. Higher

order basis functions X are then generated from (6). Equations (14)-(19), (22)-(24),

(26)-(27) are repeated with the value of L being the row count of K for each degree.

Higher order linearly dependent functions can be eliminated by extending the Lemma 3

for higher degree PBF’s. As a control or stopping criterion, number of PBF’s degree

under consideration can be limited by stopping at a given maximum number of PBF’s

Lmax. Alternately, another criterion can be when the relative percentage change in error

for adding a PBF is less than a user-chosen value ∆ε.

3.2.3. Fast Validation and Network Sizing

For the OFLN a one-pass measurement of validation error for network size up to

L is possible. The validation dataset is normalized with known values of m and σ. X, X
o

are generated using (6) and (13) respectively. For a network of size k with Nvt validation

patterns, the total validation MSE (Evk) is given by

2
1

1 1 0

1 vtN M k
o o

vk ip ij jp

p i jvt

E y w X
N

−

= = =

 = − ⋅

∑ ∑ ∑ (74)

 32

for 1 ≤ k ≤ L. For the pattern number p, the quantity in the inner brackets of (74) can be

evaluated for all values of k. Hence Evk can be updated for all additive sets of basis

functions (1 ≤ k ≤ L) in a single pass through the data thereby providing fast validation

and network sizing.

 33

 CHAPTER 4

OFLN CLASSIFIER

A Classifier maps an input feature vector x to discrete label or class i. Alike the

function approximation, classification problem can be supervised and unsupervised,

thus a classifier will learn generalized mapping rules from a given training dataset.

Classification has immense applications in receiver design (communication

engineering), econometrics, computer vision, bioinformatics, speaker dependent and

speaker independent speech recognition, industrial engineering, etc [39-41].

An input feature in a classifier is mapped to finite discriminant functions that

form an enclosed hypersurface of disjoint sets, each set representative of the class label.

The classification error, the number of patterns not classified correctly, is minimum for

an optimal Bayes classifier that tends to determine the aposteriori class probability for a

given feature vector [39]. The Bayes discriminant functions require apriori knowledge

of the class probabilities and likelihood density functions that in most practical

classification problems are not available or difficult to analyze. Hence other types of

classifiers that perform as well as the Bayes classifier have been researched and studied.

The Bayes-Gaussian Classifier, Nearest Neighbor Classifier, Feed-forward Network,

Piecewise Linear Network and MLP as Classifier [39,41-43] perform well under certain

scenarios and are often employed in practice.

 34

4.1 Regression Based Classifiers

A regression-based network, which successfully minimizes MSE, under certain

conditions has been shown to approximate the optimal Bayesian discriminant

function[44]. A proof of the MSE approaching the Bayesian discriminant for a feature

set with multiple classes is referred to in Appendix A. Thus a regression network with

some modifications performs as a very useful classifier, few examples of such

classifiers are the Feed-forward networks like MLP and PLN.

4.1.1. Classifier Notations and Overview

For a classification problem under consideration let x (x ∈ ℜN
) be the input

feature vector, Nc be total number of classes, Nv the total number of training patterns.

Let the desired output discriminant functions be represented as yip, the i
th
 desired output

for p
th
 pattern. It is required that yip approximate the optimal Bayesian discriminant

function di(x) given by

di(x) = P(i|x) (75)

where P(i|x), i.e. the posteriori probability that given a feature vector x it belongs to

class i. To maximize the separation distance between 2 classes, yip for a given input

feature x belonging to class j is initially defined as

 yip = 2·c·δ(i-j) - c (76)

where c is a positive real number. Let ipy be the estimated output discriminant function

corresponding to desired output yip, then the MSE for the regression network given

training patterns Nv is then given by

 35

()2
1 1

1 v cN N

t ip ip

p iv

E y y
N = =

= −∑∑ (77)

The training classification error (Pet) is ratio of patterns of the given dataset that are not

classified properly. Given the proof in Appendix A and for training patterns Nv → ∞, it

is sufficient enough to minimize (77) and achieve reasonably small classification error.

The output discriminant functions on adequate training represents the aposterior

probabilities P(i|x). However, the output functions can have values less than 0 and

greater than 1 and thus the interpretations of the above statement are limited as the

classification error is unaffected by the stochastic constraints 0 ≤ P(i|x) ≤ 1 and

1

(|) 1
cN

i

P i x
=

=∑ which might not hold true. The standard error criterion can be relaxed so

as to primarily improve the classification error if theoretical links to Bayes decision rule

are not broken. This can be achieved by using an Output Reset (OR) algorithm [45] as

described briefly here.

4.2 The Output Reset Algorithm

Et in equation (77) can be thought of as a residual error which is accumulated for

each of Nc discriminant function for Nv patterns. A class decision i is made for

()2max ip ip
i

y y− . The MSE is redundantly higher because of 1) patterns belonging to

the correct and incorrect class with discriminant functions of similar sign of desired

output but of greater magnitude 2) patterns for incorrect class with discriminant

functions having magnitude less than the desired output. Thus the residual error

 36

contains at least two types of biases removal of which would not immediately affect the

classification error. The biases can be removed by introducing a new desired output y’ip

such that

y’ip = yip + ap + dip (78)

where ap is the additive bias common to each pattern and dip is the bias for each

discriminant function and pattern. The corresponding MSE E’t is given by

()2
1 1

1
' '

v cN N

t ip ip

p iv

E y y
N = =

= −∑∑ (79)

It is required to find optimum values of ap and dip under the following conditions:

1. The difference
ci p

d –
di p

d must be greater than or equal to zero, where ic

denotes the correct class and id denotes an incorrect class, otherwise dip could

cancel yip thus persuading learning algorithms to drive weights toward zero in an

effort to minimize E’t.

2. Each change made to ap, dip and y’ip through changes in network weights must

reduce E’ or at least keep it unchanged.

Equating the gradient of E’t to 0 and solving for ap yields

1

1 cN

p ip ip ip

ic

a y y d
N =

 = − − ∑ (80)

When ap is added to each desired output yip, the distances between correct class

residual and incorrect class residual remains unchanged and hence classification

error is unchanged. Also, ap would minimize E’t, both condition 1 and 2 are

satisfied.

 37

1y

2y

My

y

Similarly dip can be found by minimizing square error term [dip + ap + yip - ipy]
2
 to

give dip = [yip – ipy – ap]. To satisfy condition 1 dip is constrained such that for a

correct class,
ci p

d ≥ 0, and for an incorrect class,
di p

d ≤ 0. An iterative solution to

the problem of finding ap and tip along with a closed form representation is discussed

in [45].

4.3 OFLN Classifier Implementation

The OFLN minimizes the MSE for a given training dataset by mapping the Nc

classes to fixed points in ℜNc
 Euclidian space and forms a regression-type classifier. A

representation of the OFLN classifier is shown in figure (4.1), here the number of

estimated outputs for the network equals the number of classes Nc.

 inputs output discriminant functions

 Fig. 4.1: Representation of OFLN Classifier.

4.3.1. Algorithm for Implementation of the OFLN classifier

1. The OFLN is trained to minimize the MSE by setting the desired output ykp as

defined in (76) for the given Nv training patterns. The iterative Gram-Schmidt

x1

OFLN
x2

x3

xN

 x M = Nc

 38

learning algorithm, as in section 3.2, is used to obtain the orthonormal PBF's X
o
,

the A matrix and the weights w
o
ki.

2. For a training pattern under consideration, calculate the discriminant functions

kpy (1 ≤ k ≤ M) from X
o
 and w

o
ki using equation (58).

3. Use OR to find the new desired outputs yk for the training pattern using

information of the correct class label ic and discriminant function ky .

4. Update the new cross correlation function for the desired outputs yk and X
o

using equation (46)

5. Repeat steps 2-4 for each training pattern.

6. Find the new orthonormal system weights w
o
ki using equation (45), elements of

A are fixed for OR algorithm and obtained from the step 1.

7. Find new discriminant functions ky for each pattern using X
o
 PBF’s and

corresponding weights w
o
ki and determine the estimated correct class i'c for the

incremental basis functions:

0

' argmax () argmax
m

o o

c kp kj jp
k k j

i y m w X
=

= = ⋅∑ (81)

for 1 ≤ k ≤ M

8. Increment the classification error count Pe (m) if i'c ≠ic for 0 ≤ m ≤ L-1

9. Repeat steps 7-8 for each training pattern.

10. Repeat steps 2-9 for the desired Nit iterations. Save the values of Pe(m) and

corresponding weight matrix which is used to measure the validation error for

unseen data.

 39

As in the case of function approximation, early stopping and validation criterion are

used to determine a stopping criterion. Training and validation classification error

performance for incremental degree of OFLN, incremental network size and

incremental OR iterations can be studied to determine the most appropriate

classification network for a particular problem.

 40

CHAPTER 5

SIMULATION EXAMPLES

Simulation examples for OFLN function approximation and classification are

presented where performance is compared with that of other networks. Algorithms for

training, validation and processing datasets were implemented in MS C++ 6.0 for

Win32 upward systems.

5.1 Function Approximation

Graphs for learning non-polynomial sine function and single-mode modified

rastrigin function show the function approximation capabilities of the OFLN. As in

[31] 10 data values in the interval [0:1] are used for learning sine function (fig. 5.1).

The approximated rastrigin function (given by 20+x1
2
+ x2

2
 –10(cos(0.1πx1) +

cos(0.1πx2)) in fig. 5.2 shows an important advantage of the OFLN over FLN, pi-sigma

and GMDH, i.e. as percentage change in MSE is zero (fig. 5.2) then minimal number of

4 basis functions of up to degree 4 are sufficient for approximation for MSE = 0.08.

Also, from (3), for N=2, D=4, L would be 15 but 6 of them are linearly dependent and

eliminated during training. Hence, unlike GMDH and pi-sigma networks there are no

repeated and redundant terms for higher degree representation. Results show that this

property scales extremely well for systems with large numbers of inputs and outputs.

 41

 Fig. 5.1. sin(x) function approximation by OFLN for D=2 and D=4

 Fig. 5.2. (a) Modified Rastrigin function and (b) approximated by OFLN, D=4

 Fig. 5.3. MSE vs. No. of Basis Functions and percentage change in

 MSE for appx. Rastrigin function

 42

5.2 Supervised Learning

Some examples for supervised learning are demonstrated for the OFLN. For

comparison, a GMDH network [46][47] is designed using the Forward Prediction Error

(FPE) criterion. In examples 5.2.1 and 5.2.2, an MLP is trained with back-propagation

and the Levenberg-Marquardt algorithm. In examples 5.2.3 and 5.2.4 the MLP is

trained using Output-Weight-Optimization Hidden-Weight-Optimization (OWO-

HWO)[48]. The validation error is the MSE on some unseen patterns and is averaged

for 3 sets of random data with ratio of 7:3 for training and validation.

5.2.1. California Housing

The first example for supervised learning is a benchmark function

approximation problem “California Housing” from Statlib[49]. It has observations for

predicting the price of houses in California. Information on the variables was collected

using all the block groups in California from the 1990 Census. In this sample a block

group on average includes 1425.5 individuals living in a geographically compact area.

The geographical area included varies inversely with the population density. Distances

among the centroids of each block group were computed as measured in latitude and

longitude. All the block groups reporting zero entries for the independent and dependent

variables were excluded. The final data contained 20,640 observations on 9 variables,

which consists of 8 continuous inputs (median income, housing median age, total

rooms, total bedrooms, population, households, latitude, and longitude) and one

continuous output (median house value). The output is normalized by subtracting the

mean and dividing by standard deviation for simplicity. The MSE obtained is 0.30, 0.38

 43

and 0.35 for the OFLN, GMDH and MLP respectively. OFLN used 27 basis functions

with D=4, GMDH is implemented with 4
th
 degree approximation, 27 PBF’s over 20

iterations. An 8-18-1 MLP used a validation set for early stopping and converged at 31

epochs. Fig. 5.4 shows the training MSE (MSEt) and validation MSE (MSEv) vs. the

number of basis function for OFLN with D=4. There is a need for applying the early

stopping criterion here as the network tries to over fit the data by adding PBF’s after 27

thereby resulting in the training MSE to further decrease but the validation error to

increase. The 2 datasets are independent and it is required to obtain a generalized

network, hence OFLN with 27 PBF is the desired network. Table 5.2 shows the MSE

for various degree OFLN.

F

 Fig. 5.4. Training and Validation MSE vs. No. of Basis Functions for

 California Housing approximation.

5.2.2. Inversion Technique for Radar Scattering

The second example comprises an empirical MIMO geophysical system for

surface analysis from polarimetric radar measurements[50]. There are 20 inputs

 44

corresponding to VV and HH polarization at L 30, 40 deg, C 10, 30, 40, 50, 60 deg, and

X 30, 40, 50 deg and 3 outputs corresponding to rms surface height, surface correlation

length, and volumetric soil moisture content in g/cubic cm. Fig. 5.5 shows the training

and validation MSE vs. no. of basis function graph for ordered PBF’s 1 to 60 for D=4.

Results show good generalization capabilities for the OFLN.

 Fig. 5.5. Training and Validation MSE vs. No. of Basis Functions

 for Radar scatter dataset.

Table 5.1 gives the comparison for number of terms L used for system

representation for FLN vs. OFLN, with Lmax for higher degree set to 500 for the OFLN.

Although LOFLN for California housing example for D=4 is 377 for effective

generalization only 27 basis functions are sufficient. Table 5.2 gives the corresponding

training and validation MSE at each degree, compared with a Multi-layer Perceptron (20-

6-3 for Radar over 100 epochs, 8-18-1 for Housing over 31 epochs). As can be seen for

increase in D, MSE for OFLN decreases. The OFLN has the significant advantage that

 45

as the network degree D increases, the training MSE decreases or at worst remains

constant. This result follows from use of the Gram-Schmidt procedure, equation (44)

where the training MSE is represented as non-increasing function with respect to the

basis functions. Also for D
th
 degree learning, the training pattern file need be read only

(D+1) times, the first time for normalizing the data set. These attributes make the OFLN

computationally efficient over GMDH and similar PNN networks.

Table 5.1 No. of PBF’s Comparison for OFLN vs. FLN

Degree L FLN

Housing

L OFLN

Housing

L FLN

Radar

L OFLN

Radar

D=1 9 9 21 21

D=2 55 45 231 231

D=3 220 144 1771 284

D=4 715 337 10626 294

Table 5.2 Training and Validation MSE Comparison for OFLN vs. MLP

MSE D=1 D=2 D=3 D=4 MLP

Training

(Housing)

0.36 0.33 0.31 0.30 0.35

Validation

(Housing)

0.37 0.33 0.32 0.31 0.35

Training

(Radar)

3.69 1.52 1.38 1.36 1.43

Validation

(Radar)

3.94 1.81 1.65 1.6 1.55

 46

5.2.3. Noisy FM Demodulator

The third example is a parallel implementation of frequency discriminator-type

Frequency Modulation (FM) demodulator that recovers a band-limited modulating

signal from a frequency modulated signal distorted by additive colored noise of

measured variance. If x[n] is the modulating signal, z[n] is the output of FM modulator

with additive noise e[n], then for modulation index kf, carrier amplitude Ac, carrier

frequency fc, modulating signal frequency fm

[] cos 2 [] []
n

c c f

i o

z n A f n k x i e nπ
=

= ⋅ ⋅ + +

∑ (82)

max

2

| [] |

c

f

f
k

x n

π
= (83)

1024 patterns are generated with z[i], 0 ≤ i ≤ 4 as inputs and desired x[n] as output with

values of Ac, fc, fm as 0.5, 0.1 and 0.1 respectively. Comparison of OFLN, MLP and

GMDH based on training MSE (MSEt) and validation MSE (MSEv) vs. the number of

basis functions is shown in fig. 5.6. OFLN gives a lower MSE for training and

validation compared to MLP and GMDH. The number of basis functions for MLP

under consideration is given by (Number of hidden units + N + 1). The GMDH network

uses 5
th
 degree approximation for 50 iterations. Performance results for OFLN are

comparatively better. Also, a system modeler can select a smaller size OFLN network

with a trade-off in MSE, e.g. OFLN of size 40 compared to OFLN of size 60 has 2%

additional training MSE at cost of 20 more PBF’s.

 47

 Fig. 5.6. Training and Validation MSE vs. vs. No. of Basis Functions

comparison of OFLN, MLP and GMDH for FM Demodulator.

5.2.4. Matrix Inversion

Results for non-linear 2 by 2 matrix inversion problem are shown in fig. 5.7.

The training file has 2000 patterns, each pattern consists of 4 input features and 4 output

features. The input features, which are uniformly distributed between 0 and 1, represent

a matrix and the four output features are elements of the corresponding inverse matrix.

The determinants of the input matrices are constrained to be between .3 and 2. FLN,

OFLN and MLP networks are compared in fig. 8. Note that as compared to the OFLN,

FLN points are widely separated, giving the user few options as to network size. Also,

from the figure we see that all three networks perform similarly when the number of

basis functions is 23 or less. However, for this dataset, the MLP has an advantage for 24

or more basis functions.

 48

Fig. 5.7. Training and Validation MSE vs. No. of Basis Functions

 comparison of FLN, OFLN and MLP for 2x2 Matrix inversion.

5.3 Financial Market Forecasting

Success of Neural Networks in financial forecasting models is well-established

[51-54] and use of OFLN for similar task is proposed here. Due to globalization, the

global markets of pan America, Europe and the far-East are increasingly

interdependent. It is often believed there exists a linear relationship between them [55].

Using OFLN a more appropriate relationship can be evaluated. OFLN is trained for

Open Value data of 8 key indices, viz. NASDAQ (US), DJIA (US), Bovespa (Brazil),

FTSE (UK), BSE (India), Hang-Seng (Hong Kong), KOSPI (South Korea) and NIKKEI

(Japan). For demonstration non-linear relationships between KOSPI and other indices is

presented below. The data collected ranges from January 2001 to January 2007.

Samples are pre-processed for adequate representation and randomly distributed in sets

for training, validation and processing sets. The training and validation curve in figure

(5.8) show that an adequate selection of 80 basis function would give an optimal

 49

network under given criterion. Using this network the open-value of KOSPI are

predicted for a period of more than a year as shown in figure (5.9)

A normalized version of the MSE can be represented as Mean Absolute Percentage

Error (MAPE) given by

1 1

| |1
100

| |

vNM
ip ip

i pv ip

y y
MAPE

M N y= =

 −
= × ⋅

∑∑ (84)

Fig. 5.8. Training and Validation MSE vs. No. of Basis Functions

 for OFLN, D=4 for KOSPI index.

 50

 Fig. 5.9. Actual vs. Predicted open value for KOSPI index as

 non-linear function of indices of global markets.

Fig. 5.9. Actual vs. Predicted open value for KOSPI index

 as non-linear function of indices of global markets

Table (5.3) shows the comparison statistics for MAPE for OFLN (4
th
 order, 80 basis

functions), MLP (7-90-1 using OWO – HWO algorithm) and GMDH (4
th
 order, 50

terms).

 Table 5.3 MAPE Comparison for OFLN, MLP and GMDH Networks

Network Type MAPE (%) MAPE (σ)

OFLN 1.53 0.0144

MLP 1.57 0.0183

GMDH 4.19 0.12

The cumulative distribution function (CDF) of the MAPE presents a better insight into

interpretation of MSE / MAPE for different networks. In figure (5.10) the CDF for

MAPE is plotted, where the y-axis denotes the probability that the MAPE will be less

 51

than a particular value for the network under consideration. Clearly, the more the

probability for lesser MAPE the better is the estimator.

 Fig. 5.10. MAPE CDF for OFLN, MLP and GMDH for

 predicting KOSPI index.

Using OFLN an equation form interpretation of the relationship between of the

approximated function is possible. Let (x1 – x7 denote DJIA, NASDAQ, Bovespa,

FTSE, BSE, Hang-Seng, NIKKEI) then the relationship defined for first few PBF is

given by

971.78 + 230.32·x5 - 731.84·x5
3
 + 194.08·x5·x2 + 586·x6·x1 + 133.34x1·x5·x6 –

461.69·x1·x4·x5 + 78.166·x6·x6 + 667·x4
2
·x5 + 35.852·x4·x5·x6 - 134.06·x4·x5·x6

2
 –

48.72·x1·x4·x5
2
 - 197.34·x2·x4·x5

2
+ 188.96·x7 + 631.67x4·x5·x5 + 149.61·x4 + 172.46·

x2·x2·x5
2
 + 48.827·x1·x2·x5 - 153.33· x2·x2·x5

2
 - 104.96·x6 (85)

 52

which is an important finding as it suggests high dependency of the KOSPI’s index on

the BSE index, interestingly the correlation coefficient between the 2 is highest at 0.95.

5.4 OFLN Classifier Simulation

Performance of OFLN as classifier is compared with other classifiers like the

MLP classifier, PLN classifier (PLNC) and Nearest Neighbor classifier (NNC). As in

approximation, the network is trained by incrementing the degree D and OR iterations

(Nit) and the network size selection is based on generalization rule, i.e. when the

validation classification error for network starts increasing from a low. The MLP uses

100 iterations of OWO – HWO algorithm for learning and then OR for reducing the

classification error (Pe). To increase the likelihood of good generalization cross-

validation is performed where training and validation datasets are exchanged and the

resulting values of Pe are then averaged.

5.4.1. Geometric Shape Recognition

The geometric shape recognition problem is to classify four geometric shapes:

ellipse, triangle, quadrilateral, and pentagon [56]. Each shape consists of a matrix of

size 64 x 64. For each shape, 200 training patterns are generated using different degrees

of deformation. The deformations included rotation, scaling, translation, and oblique

distortions. The feature set is ring-wedge energy (RNG), and has 16 features and form

the input set x.

 53

Table 5.4 gives a comparison of training Pe (Pet) and validation Pe (Pev) for

OFLN of various degrees D and various OR iterations Nit. It is seen that as the network

degree increases Pet goes on decreasing as increase in D results in training MSE

decrease and OR works effectively to decrease the error. However from D=2 to D=3,4

and for increase in Nit the corresponding validation error Pev increases which indicates

that the network tends to become over-specialized and a good stopping criterion is thus

for D=2 and Nit = 5. The 16-136-1 MLP gives a Pet = 0.34 and Pev = 4.94.

 Table 5.4 Training and Validation Classification Error for OFLN

Nit = 5 Nit = 10 OFLN

Network Pet Pev Pet Pev

L

D=1 12.84 13.76 11.93 13.77 17

 D=2 1.44 4.85 0.36 6.47 153

 D=3 0 12.55 0 15.38 499

 D=4 0 9.31 0 10.93 499

Figure 5.11 shows the graph for training and validation classification error for OFLN

and MLP vs. number of basis functions. A fully-connected 16-170-4 MLP using OWO

– HWO for 100 iterations is trained. The number of basis functions for a fully-

connected feed-forward MLP is as defined before (Number of inputs + Number of

hidden units + 1). OFLN selected is of degree 2 starting with L=171, but 18 of them are

linearly dependent and eliminated and that gives a 2
nd
 degree OFLN with 153 PBF’s. Pet

 54

for MLP is a decreasing function for the dataset under consideration. All the basis

functions are required for the OFLN to achieve near similar performance to MLP, this is

because after the OR algorithm the PBF’s are not re-ordered again for the OFLN

whereas they are for the MLP. The computation time for OFLN is less than for the

MLP.

 Fig. 5.11 Training and Validation Pe comparison for

 OFLN and MLP for shape recognition.

5.4.2. Hand-Printed Numeral Dataset Recognition

The raw data for hand-printed numeral recognition consists of images from hand

printed numerals collected from 3,000 people by the Internal Revenue Service

(IRS)[57]. 300 characters are randomly chosen from each class to generate 3000

character dataset. Images are 32 by 24 binary matrices. An image-scaling algorithm is

 55

used to remove size variation in characters. The feature set contains 16 elements. The

10 classes in this problem correspond to the 10 Arabic numerals.

Fig 5.12 shows a comparison of OFLN of degree 2 with 153 PBF’s and Nit = 3

and 16–136 –10 fully-connected MLP using OWO – HWO for 60 iterations is trained.

Both the networks show near similar error performance for number of basis functions

greater than 137. The OFLN for D=4 gives a better Pet over MLP but is not shown in

figure as the Pev is higher than for D=2 case. In this case from the figure Pev is 8.94 and

8.52 for OFLN and MLP respectively. Table 5.5 compares the error for OFLN, MLP,

PLNC and NNC. PLNC used a maximum of 153 clusters and NNC used 115 clusters.

OFLN gives better performance over the PLNC[38][58] and NNC[56] in this case.

Fig. 5.12 Training and Validation Pe comparison for OFLN and MLP

 for numeral recognition.

 56

Table 5.5 Comparison of Classification Error for Arabic numeral recognition

 for OFLN, MLP, PLNC, NNC

Network Type Pet Pev

OFLN 4.04 8.94

MLP 2.64 8.52

PLNC 4.18 10.14

NNC 5.42 9.16

5.4.3 Image Segmentation

In this example the training and validation datasets are generated from

segmented images of land-types. Each segmented region is a separate histogram

equalized to 20 levels. The joint probability density of pairs of pixels separated by a

given distance and a given direction is estimated using 0, 90, 180, 270 degrees for the

directions and 1, 3, and 5 pixels for the separations. The density estimates are computed

for each classification window. For each separation, the co-occurrences for for the four

directions are folded together to form a triangular matrix. From each of the resulting

three matrices, six features are computed: angular second moment, contrast, entropy,

correlation, and the sums of the main diagonal and the first off diagonal. This results in

18 features for each classification window. Four regions of land use/cover types are

identified in the images per Level I of the US Geological Survey Land Use/Land Cover

Classification System: urban areas, fields or open grassy land, trees (forested land), and

water (lakes or rivers) [59]. Thus for this problem N = 18, Nc = 4.

 57

A D=3 OFLN is trained with Nit = 4. The training and validation classification

error graph is shown in figure 5.13. A 18-101-4 fully-connected feed-forward MLP

using OWO-HWO is trained and pruned and the corresponding error plot it shown in

figure 5.14.

 Fig. 5.13 Training and Validation Pe for OFLN, D=3 for image segmentation.

 Fig. 5.14 Training and Validation Pe for MLP for image segmentation.

 58

As can be seen, Pet and Pev corresponding to OFLN and MLP for 236 and 120

basis functions are 12.1% and 15.1% for OFLN with 236 basis functions and 13.4% and

15.5% for MLP with 120 basis functions. For the segmentation problem, the OFLN

provides a better classification error compared to the MLP.

 59

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis the OFLN is proposed as a valuable network for approximation and

classsification. It is seen that the OFLN gives a concise, structured, easily interpretable,

methodically ordered and computationally efficient network for supervised, non-

parametric MIMO systems. It improves on the FLN and a few other PNN networks.

An efficient method for generating, orthonormalizing, pruning and ordering

higher order polynomial basis functions funcions together constitute the OFLN. The

elimination of the linearly dependent functions and other less useful basis functions is

important in containing the combinatorial explosion which in turn allows better

approximation capabilities. The number of passes through the training data is reduced

using higher order correlations. A set of different order and size complexity polynomial

networks based on incremental size of polynomial basis functions which explicilty

explain the trade-off between performance and network size is presented to the modeler

using the OFLN. As demonstrated the OFLN can certainly be applied to many nonlinear

function approximation, structure identification and optimization and classificaiton

problems. It is a however a known fact that there is a “no one-network-fit-all” solution

in Neural Networks.

 60

There is enough scope with suitable rewards for future work in the OFLN.

1. The OFLN algorithm can be extended for a cluster or distributed computing

architecture to suit more complex number crunching problems like the

weather forecasting, space exploration and natural disaster forewarning

systems.

2. With a few modificaitons in algorithmic implementation, the OFLN can be

extended to time-series modeling problems. For time-series problems a

highly useful and complex OFLN can grow in multiple dimensions of order,

lag-window size and estimate output-window.

3. Depending on the application, the stopping criterion for OFLN

approximation and classification can be automated by keeping a check on

the training and validaiton error during the incremental growth of network,

however it would increase computational complexity.

4. The performane complexity of Gram-Schmidt orthonormalization procedure

and few other techniques like the Householder transformation, Givens

method, Singular Value Decompostion can be compared.

 61

APPENDIX A

REGRESSION-BASED NETWORK APPROXIMATION TO BAYESIAN

DISCRIMINANT FUNCTION

62

Consider a classification network with the input feature x and output

discriminant function yi(x) for Nv for i between 1 and Nv. Let Nv(i) the number of

patterns belonging to class i, S(i) the set of patterns that correspond to class i, fx(x)

denote the probability density of feature vector x, f(x|i) the conditional density of

feature vector x given it belongs to class i and P(i) the probability that feature vector

comes from class i.

The optimal Bayesian discriminant di(x) is given as

di(x) = P(i|x) (A1)

where P(i|x) is the aposteriori probability that given a vector x it belongs to class i. Let

the desired output yip for correct class j defined as

yip = δ(i-j) (A2)

and the estimated output for p
th
 pattern by the regression based classifier be denoted by

ipy . Then the MSE for the network given Nv training patterns is given by

()2
1 1

1
() ()

v cN N

t ip ip

p iv

E y y
N = =

= −∑∑ x x (A3)

The expected squared error between network output i
y and optimal Bayes discriminant

is given by

()2
1

() ()
cN

B i i

i

E E d y
=

 = − ∑ x x (A4)

Theorem[44]: As the training patterns Nv increase, Et approaches the (EB + K), where

K is a constant.

63

Proof: Given the definition of tip, equation (A3) is rewritten as

()2 2

1 () 1,

1
1 () ()

c cN N

t i j

i p S i j j iv

E y y
N= ∈ = ≠

= − +

∑ ∑ ∑x x (A5)

()2 2

1 () 1,

() 1
1 () ()

()

c cN N

v
t i j

i p S i j j iv v

N i
E y y

N N i= ∈ = ≠

= − +

∑ ∑ ∑x x (A6)

As Nv → ∞, Nv(i) / Nv → P(i) and (A6) is written as

()2 2

1 1,

() 1 () () f (|)
c cN N

t i j

i j j i

E P i y y i d
= = ≠

= − +

∑ ∑∫ x x x x (A7)

()2 2

1 1,

1 () f (|) () ()f (|) ()
c cN N

i j

i j j i

y i P i d y i P i d
= = ≠

= − +

∑ ∑∫ ∫x x x x x x (A8)

()2 2

1 1,

1 () f (|) () ()f (|) ()
c cN N

i i

i j j i

y i P i d y j P j d
= = ≠

= − +

∑ ∑∫ ∫x x x x x x (A9)

() 2

1 1

1 2 () f (|) () () f (|) ()
c cN N

i i

i j

y i P i d y j P j d
= =

= − ⋅ +

∑ ∑∫ ∫x x x x x x (A10)

() 2

1

1 2 () (|)f () ()f ()
cN

i i

i

y P i d y d
=

 = − ⋅ + ∑ ∫ ∫x x x x x x x (A11)

where the following substitutions are from Bayesian theory

1. f (|) () f (,) (|)f ()i P i i P i= =x x x x and (A12)

2.
1

f (|) () f ()
cN

j

j P j
=

=∑ x x (A13)

Then (85) is,

64

() 2

1

1 2 () () () f ()
cN

t i i i

i

E y d y d
=

 = − ⋅ + ∑ ∫ x x x x x (A14)

() ()2

1

() () f () 1 () ()f ()
cN

t i i i i

i

E y d d d d d
=

 = − + − ∑ ∫ ∫x x x x x x x x (A15)

() ()2

1 1

() () 1 () ()f ()
c cN N

t i i i i

i i

E E y d d d d
= =

 = − + − ∑ ∑ ∫x x x x x x (A16)

The second term in (A16) is independent of any network parameters and is thus a

constant K. Thus Et = EB + K, it implies that network with estimated output y , which

minimizes the MSE yields the optimal Bayes discriminant function in the minimum

mean squared error sense. Q.E.D.

65

REFERENCES

[1] Warren McCulloch and Walter Pitts, “A Logical Calculus of Ideas Immanent in

Nervous Activity”, Bulletin of Mathematical Biophysics,1943, 5:115-133.

[2] A. G. Ivakhnenko, “Heuristic self-organization in problems of engineering

cybernetics”, Automatica, Vo1.6, No.2, 1970, pp.207-219.

[3] S. J. Farlow ed., Self-organizing Methods in Modeling, GMDH-type Algorithms,

Marcel Dekker, Inc., New York, 1984.

[4] Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall

PTR, 1998.

[5] Christopher M. Bishop, Neural Networks for Pattern Recognition, Oxford

University Press, 1995.

[6] Gao, X.M.; Gao, X.Z.; Tanskanen, J.M.A.; Ovaska, S.J., "Power prediction in

mobile communication systems using an optimal neural-network structure", IEEE

Trans. Neural Networks, Vol. 8, Iss. 6, 1997 pp.1446 - 1455.

[7] Fulcher, G.E.; Brown, D.E., "A polynomial network for predicting temperature

distributions", IEEE Trans. Neural Networks, Vol. 5, Iss. 3, 1994, pp.372 - 379.

[8] Lajbcygier, P., "Improving option pricing with the product constrained hybrid

neural network", IEEE Trans. Neural Networks, Vol. 15, Iss. 2, 2004, pp.465 - 476.

[9] M. H. Stone, "The Generalized Weierstrass Approximation Theorem", Mathematics

Magazine 21 (5), 1958, pp.237–254.

[10] Minsky, M. and Papert, S., Perceptrons, MIT Press, Cambridge,1969.

66

[11] P. Werbos, “Beyond regression: New tools for prediction and analysis in the

behavioral sciences,” Ph.D. dissertation, Committee on Appl. Math., Harvard Univ.,

Cambridge, MA, Nov.1974.

[12] K. Fukushima, "Cognitron: A Self-Organizing Multilayered Neural Network",

Biological Cybernetics, Vol. 20, No. 3/4, NOV. 1975, pp. 121-136.

[13] J. J. Hopfield, "Neurons with graded response have collective computational

properties like those of two-state neurons," Proc. N&l. Acud. Sci., vol. 81, pp. 3088-

3092, 1984.

[14] T. Kohonen, Associative Memory: A System-Theoretical Approach, Springer-

Verlag, Berlin, 1977.

[15] S. Grossberg, "Adaptive Pattern Classification and Universal Recoding, I: Parallel

Development and Coding of Neural Feature Detectors", Biological Cybernetics, Vol.

23, 1976, pp.121-134.

[16] Y.H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley

Pub, 1989.

[17] W. Kolmogorov, “Interpolation and extrapolation of stationary series”, Bulletin de

Academie de, U.S.S.R.,2:3, 1942.

[18] J. Macias.A., A. Sierra., F. Corbacho, "Evolving and assembling functional link

networks", IEEE Trans. Evolutionary Computation, Vol. 5, No. 1, 2001, pp. 54-65.

[19] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, MA: Addison-Wesley, 1989.

[20] E.J. Hartman, J.D. Keeler, J.M. Kowalski, "Layered Neural Networks with

Gaussian Hidden Units as Universal Approximations," Neural Computation, vol. 2, No.

2, 1990, pp. 210-215.

67

[21] Michael T. Manry, Steven J. Apollo, and Qiang Yu, "Minimum Mean Square

Estimation and Neural Networks," Neurocomputing, vol. 13, September 1996, pp. 59-

74.

[22] T. M. Jelonek and James P. Reilly, "Maximum Likelihood Estimation for

Direction of Arrival Using a Nonlinear Optimizing Neural Network," IJCNN 1990, vol.

I, pp 253-258.

[23] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-

Hill Book Company, New York, 1965.

[24] R. Battiti, “First- and second-order methods for learning: Between steepest descent

and Newton’s method,” Neural Computation,1992, vol. 4, pp.141-166.

[25] D. G. Luenherger, Linear and Nonlinear Programming, 2nd ed., MA: Addison-

Wesley, 1989.

[26] C. Bishop, “Exact calculation of the Hessian matrix for the multilayer perceptron,”

Neural Computation, vol. 4, 1992, pp. 494-501.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by

back-propagating errors," Nature, 1986, vol. 323, pp. 533-536.

[28] M. Klassen, Y. H. Pao., V. Chen, "Characteristics of the functional link net: a

higher order delta rule net", IEEE Con. Neural Networks, Vol. 1, 1988, pp. 507-513.

[29] Moody, J.E., Hanson, S.J., and Lippmann, R.P.,"The Effective Number of

Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning

Systems", Adv. Neural Inf. Proc. Sys. Vol. 4, pp. 847-854.

[30] Weiss, S.M. & Kulikowski, C.A., Computer Systems That Learn, Morgan

Kaufmann, 1991.

68

[31] Shin, Y.; Ghosh, J., "The pi-sigma network: an efficient higher-order neural

network for pattern classification and function approximation Neural Networks", Proc.

of IJCNN 1991, Vol. 1, pp.13 - 18.

[32] Shin, Y.; Ghosh, J., "Ridge polynomial networks", IEEE Trans. Neural Networks,

Vol. 6, Iss. 3, 1995, pp. 610 - 622.

[33] J. Macias.A., A. Sierra., F. Corbacho, "Evolving and assembling functional link

networks", IEEE Trans. Evolutionary Computation, Vol. 5, No. 1, 2001, pp. 54-65.

[34] Gilbert Strang, Introduction To Linear Algebra, Wesley-Cambridge Press, 1993

[35] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning

algorithm for radial basis function networks,” IEEE Trans. Neural Networks, vol. 2,

1991, pp. 302–309.

[36] W. Kaminski and P. Strumillo, "Kernel Orthonormalization in Radial Basis

Function Neural Networks," IEEE Trans. Neural Networks, Vol. 8, No. 5, 1997, pp.

1177-1183.

[37] F. J. Maldonado, M. T. Manry, T. Kim, "Finding optimal neural network basis

function subsets using the Schmidt procedure", Proc. of IJCNN, Vol. 1, 2003, pp. 444 -

449.

[38] J. Li, M. T. Manry, P. Narasimha, C. Yu, "Feature Selection Using a Piecewise

Linear Network", IEEE Trans. Neural Networks, Vol 17, No. 5, 2006, pp.1101-1115.

[39] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, 2nd Ed,Wiley

Interscience, 2000.

[40] K. Fununaga, Statistical Pattern Recognition, 2nd Ed., Academic Press, NY, 1990.

[41] M.D. Srinath, P.K. Rajasekaran, An Introduction to Statistical Signal Processing

With Applications, John Wiley and Sons, 1979.

[42] V. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.

69

[43] C.K.I. Williams and D. Barber, “Bayesian Classification with Gaussian Processes,”

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 12, 1998, pp.

1342-1351.

[44] D.W. Ruck, S. Rogers, M. Kabrisky, M. Oxley, B. Suter, "The multilayer

perceptron as an approximation to a bayes optimal discriminant function", IEEE Trans.

Neural Networks, 1990, pp. 296-298.

[45] R. G. Gore, J. Li, M. T. Manry, L. M. Liu, C. Yu and J. Wei, "Iterative Design of

Neural Network Classifiers Through Regression", Int. Journal Artificial Intelligence

Tools, Vol 14, Issues 1&2, 2005.

[46] Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P.,

Palyulin, V. A., Radchenko, E. V., Zefirov, N. S., Makarenko, A. S., Tanchuk, V. Y.,

Prokopenko, V. V. Virtual computational chemistry laboratory - design and

description, J. Comput. Aid. Mol., Dec. 2005, 19, pp. 453-63.

[47] VCCLAB, Virtual Computational Chemistry Laboratory, 2005, Available:

http://www.vcclab.org.

[48] Changhua Yu, Manry, M.T., "A modified hidden weight optimization algorithm

for feedforward neural networks", IEEE Asilomar Con. on Signals, Systems and

Computers, 2002. Vol. 2, 2002, pp.1034-1038

[49] R.K. Pace, R. Barry, “Sparse spatial autoregressions”, Statistics & Probability

Letters, Vol. 33, No. 3, May 1997, pp. 291-297.

[50] Y. Oh, K. Sarabandi, and F.T. Ulaby, "An Empirical Model and an Inversion

Technique for Radar Scattering from Bare Soil Surfaces" , IEEE Trans. Geoscience

and Remote Sensing, 1992, pp. 370-381.

[51] Buscema M., & Sacco P. L., "Feedforward networks in financial predictions: the

future that modifies the present", Expert Systems, v. 17, No3, 2000, pp. 149-169.

70

[52] Donaldson G. R. & Kamstra M., (1996). Forecast combining with neural networks,

Journal of Forecasting, v. 15, pp. 49-61.

[53] White H., “Economic prediction using neural networks: the case of IBM daily

stock returns in neural networks”, Finance & Investing Ed., by Trippi R. R. & Turban

E., pp. 315-328.

[54] Yoon Y. & Swales G., “Predicting Stock price performance: A neural networks

approach in neural networks”, Finance & Investing Ed., by Trippi R. R., & Turban E.,

pp. 315-328.

[55] A. N. Burgess, "Modeling Relationships between International Equity Markets

using Computational Intelligence", Knowledge-Based Intelligent Electronic Systems,

Proc. KES 1998, Vol. 3, pp.13 - 22.

[56] H. C. Yau, M. T. Manry, "Iterative Improvement of a Nearest Neighbor Classifier",

Neural Networks, Vol. 4, 1991, pp. 517-524.

[57] W. Gong, H. C. Yau, and M. T. Manry, "Non-Gaussian Feature Analyses Using a

Neural Network," Progress in Neural Networks, vol. 2, 1994, pp. 253-269.

[58] A. A. Abdurrab, M. Manry, J. Li, S. Malalur, R. Gore, "A Piecewise Linear

Network Classifier", IEEE Int. Joint Conference Neural Networks, 2007, (accepted).

[59] R.R. Bailey, E. J. Pettit, R. T. Borochoff, M. T. Manry, and X. Jiang, "Automatic

Recognition of USGS Land Use/Cover Categories Using Statistical and Neural Network

Classifiers," Proc. of SPIE OE/Aerospace and Remote Sensing, 1993.

71

BIOGRAPHICAL INFORMATION

Saurabh Sureka received his BSEE degree from Amravati University, India in

2002 and is currently pursuing MSEE from University of Texas at Arlington, USA. He

was involved in various projects in communication technologies with GTL Limited

(Mumbai, India), Infosys Technologies (Bangalore, India) from 2002 to 2004 and with

Qualcomm (San Diego, USA) in 2006.

He is currently with the Image Processing and Neural Network Laboratory

(IPNNL), Arlington where he is working on developing neural network solutions to

signal processing, communications and econometrics. His current research interests

include the theory and application of Polynomial Neural Networks.

He is the recipient of university outstanding performers scholarships (1999-

2002), Priyadarshani International Scholarship for Engineering (2000), Neural Network

laboratory scholarships (2005-2006) and has served as the Founding Chairman of IEEE

SSGMCE Shegaon Student Chapter (2001-02).

