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ABSTRACT 

 
INVERSE DESIGN OF AIRFOIL USING 

A FLEXIBLE MEMBRANE METHOD 

 

KAMON THINSURAT, M.S. 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Brian Dennis 

 The Modified Garabedian Mc-Fadden (MGM) method is used to inversely design 

airfoils. The Finite Difference Method (FDM) for Non-Uniform Grids was developed to discretize 

the MGM equation for numerical solving. The Finite Difference Method (FDM) for Non-Uniform 

Grids has the advantage of being used flexibly with an unstructured grids airfoil. 

 The commercial software FLUENT is being used as the flow solver. Several conditions 

are set in FLUENT such as subsonic inviscid flow, subsonic viscous flow, transonic inviscid 

flow, and transonic viscous flow to test the inverse design code for each condition. A moving 

grid program is used to create a mesh for new airfoils prior to importing meshes into FLUENT 

for the analysis of flows. 

 For validation, an iterative process is used so the Cp distribution of the initial airfoil, the 

NACA0011, achieves the Cp distribution of the target airfoil, the NACA2315, for the subsonic 

inviscid case at M=0.2. Three other cases were carried out to validate the code. After the code 

validations, the inverse design method was used to design a shock free airfoil in the transonic 

condition and to design a separation free airfoil at a high angle of attack in the subsonic 

condition.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

 Inverse design method has become an effective tool for airfoil design after 

Computational Fluid Dynamics field had been developed. Before the inverse approach, direct 

method has to be used in order to design airfoils by evaluating the performance of an actual 

geometry and modify it with either empirical rules or their own experience to obtain the target 

shape. Doing direct approach is time consuming and inefficient [1]. Inverse approach is a more 

powerful method where the airfoil shape is iteratively modified to achieve a certain objective 

pressure distribution. The inverse method needs much lesser cost and time to design a desired 

airfoil corresponding to the target Cp distribution [2]. There are two main types of inverse airfoil 

design: decoupled and coupled techniques [2, 3].  

 The coupled technique is the technique  that simultaneously finds the solution of the 

flow-field and the unknown part of the boundary [2, 5]. The examples of the coupled technique 

are the indirect transpiration technique [18, 19] ,which obtains the target shape from exchanging 

no-slip wall boundary conditions, stream-function-as-coordinate approaches, characteristic 

boundary condition approaches, and adjoint operator/control theory approaches. Ashrafizadeh 

et al. [6] demonstrated the successful case of using coupled technique to design a 2-D ducts 

using flexible string algorithm. On the other hand, decoupled technique does not require the 

modification to a flow-field with the physical boundaries and iteration is needed instead [2]. Flow 

analysis is separated from the inverse function; therefore, any commercial flow solver software 

or data from wind tunnel can be easily used to design airfoils. Flexible Membrane Technique is 

one of decoupled technique, airfoil surface is considered as a membrane which will change the 

shape when the pressure distribution applied on the surface.  
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 Flexible Membrane technique has an MGM equation as an inverse function to calculate 

the shape update of the airfoil. MGM equation [7, 8, 9] was developed by Garabedian and 

McFadden. The MGM equation is an ordinary differential equation; therefore, it is easy to 

implement. The input of the equation is Cp distribution and the output is the updated shape of 

an airfoil. Flexible Membrane technique can be widely applied to any design perspectives. For 

example, Wu et al. [13] used this method to design multipoint inverse shape which can 

effectively use in various flight conditions.  

 Not only in airfoil design field but any other fields also use the Inverse design 

effectively. For example, Bonaiuti et al. [17] applied inverse design method for determining the 

effect of designed pump parameters to pump efficiency so they can reduce head loss in pump 

machine. Henriques et al. [12] applied inverse design method for designing a new turbine blade 

section which has increased maximum lift and reduced the adverse pressure gradient on the 

suction side.  

1.2 Objective 

 This thesis is to inversely design airfoils using flexible membrane technique and 

choosing FLUENT as a flow solver. The flexible membrane technique is modified in order to 

apply to the moving grid program which required a non-uniform grid airfoil; therefore, Finite 

Difference Method for non-uniform grid need to be developed to discretize to flexible membrane 

equation. The techniques can be applied in both subsonic and transonic cases.  

1.3 Thesis Overview 

 The theories which are needed will be presented in Chapter 2, including Flexible 

Membrane Technique, Finite Difference Method for Non-Uniform Grid, NACA 4-digit series, 

Thomas‟s Algorithm and mesh generating program which is moving grid program. After that, the 

methodology will be presented in Chapter 3. Chapter 3 shows how to apply the theories to get 

the result. Then the result will be presented in Chapter 4. Then the conclusion will be discussed 

in Chapter 5.  
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CHAPTER 2 

THEOREM 

 Aerodynamic airfoil shape design can basically categorize into two groups which are 

shape optimization and inverse shape design. The shape optimization method retrieves the best 

properties of the designed airfoil experimentally; consequently, it is very time consuming and 

expensive to operate the wind tunnel repeatedly. On the contrary, the inverse shape design 

does not require any experiment. Instead, a computer program will be used in place of the 

experiment which benefits by reducing time and cost. An aerodynamic airfoil shape will be 

iteratively obtained when the desired pressure distribution is given. In this paper, inverse airfoil 

design method will be used. 

 There are two main categories of inverse airfoil design which are methods with coupled 

analysis and shape modification, and methods with uncoupled analysis and shape modification.  

The coupled analysis methods are more complicated in writing a program than the uncoupled 

analysis. Some examples of this type are indirect transpiration technique, stream-function-as-

coordinate approaches, characteristic boundary condition approaches, and adjoint 

operator/control theory approaches. On the other hand, the uncoupled analysis methods are 

simpler than the coupled method and easier in writing a program. Some examples of this type 

are elastic membrane techniques (Modified Garabedian-McFadden Method or MGM Method), 

and the DISC technique [2]. In this paper, the MGM method will be used. 

2.1 Modified Garabedian-McFadden (MGM) Method 

 Modified Garabedian-McFadden Method is the elastic membrane technique which is 

based on the linearized small disturbance potential flow solution of the 2D wavy-wall problem on 

the basis of the difference between an actual pressure coefficient distribution ( ) and a 
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target pressure coefficient distribution ( ) [4,10,11,14,16]. The equation can be expressed 

as  

                                                            (2.1) 

 
where  

- x  is the coordinate which runs along the airfoil chord 

-  represents the airfoil contour changes in Cartesian coordinate 

- , , and  are the coefficients which are arbitrary constants. They are chosen 

to get stable cycles and to accelerate convergence [4] 

2.1.1. Central Difference Discretization 

 Now, the derivative terms in equation (1) need to be discretized in order to solve it 

numerically. Taylor expansions are the most standard way to obtain the substitution of 

derivative terms with finite difference. For the one dimensional case, the expansion of function 

u(x) about point (i) can be expressed as  

                                                 (2.2) 

 
and 
 

                                                 (2.3) 

 
A first-order derivative finite-difference form of second-order accuracy can be obtained by 

subtracting equation (3) from equation (2); then, we get 

                                                                         (2.4) 

 
If only the first three terms of equation (2) and (3) are considered and leave others as truncation 

error (O , we can rearrange equation (4) as 
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                                                                                                           (2.5) 

 
Similarly, we can get a second-order derivative finite-difference form of second-order accuracy 

by adding equation (2) and equation (3); then, we get 

 

                                                                                            (2.6) 

 

  
By considering function  in the MGM equation (equation (1)) as function u(x) in equation 

(5) and (6) then substituting eqn. (5) and eqn. (6) into the MGM equation, we get 

 

                     (2.7) 

 

 
Rearranging equation (7), we obtain  

 

        

                                                                                                                    (2.8) 
 

  

Note that by using equation (8),  has to be constant. Therefore, it is inconvenient to use 

equation (8) when we get the non-uniform coordinates of the initial airfoil. The other method of 

discretization is presented next in order to avoid the mentioned difficulty. 

2.1.2. Finite Difference for Non-Uniform Grid 

       Considering figure 2.1 , Taylor‟s series can be used to expand the solution ( ) 

about a=  from point “i" to point “i-1” and “i+1” as 

 

                    (2.9.1) 
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                  (2.10.1) 

 

 i+1 i i-1 

𝑑𝑥𝑖−1 𝑑𝑥𝑖  
 

Figure 2.1 Non-Uniform 1D grids where  and  

 
 

Rewriting equation (2.9) and (2.10), we obtain 

 

                             (2.9.2) 

 

 

           (2.10.2)  

 
 

Multiplying equation (2.9.2) by  and equation (2.10.2) by  where and  can be any 

number, we get  

                 (2.9.3) 

 

     (2.10.3)  

 

Subtracting equation (2.10.3) from equation (2.9.3), we have  

               

                                                    

                                                                  (2.11) 
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Adding equation (2.9.3) and (2.10.3), we get 

               

                                                                              

                                                                  (2.12) 
 

By choosing =  and = , then neglecting the third order derivative in 

equation (2.11), we get 

 

 

                                   

                                            (2.11.1) 
 

Therefore, the second order derivative term is canceled out then we obtain  
 

                    (2.13) 
                                                               where  
 
By choosing =  and = , then neglecting the third order derivative in equation 

(2.12), we get 

 

                              

                                                          (2.12.1) 

 

 



8 

 

Therefore, the first derivative term is canceled out then we obtain 

 

                          

                         (2.14) 

                                                              where    

 
 
Substituting equation (2.13) and (2.14) into equation (2.1), we obtain 

 

 

                 
                                                                                                     (2.15) 
                                                                                                                                                                       

Rearranging equation (2.15), we get 

 

                                                          (2.16) 

where,  

                                   

 

                                  

when  

                   and   
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         By using the discretization for a non-uniform grid,  does not need to be constant. 

Therefore, it can be applied to a more sophisticated mesh than using regular central different 

discretization, which can only be applied to the uniform grid.  

 2.2 Tri-Diagonal Matrix Algorithms 

After applying one of the discretization methods, it usually comes out with a system of 

linear equations  

 

where   and   which can be rewritten in a metric form as 

 

 

 

Modifying the coefficients  and  in order to eliminate the coefficients , we get  

 

 

and 
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Therefore, we get 

 

 

By doing backward sweep, we get 

 

 

 

2.3 NACA Four-Digit Series Airfoils 

The National Advisory Committee for Aeronautics (NACA) developed the NACA airfoil 

series. There are many types of airfoils which are used with different methods to generate airfoil 

coordinates. For example, the 4-digit airfoil and 5-digit airfoil are generated based on analytical 

equations where one is for expressing the camber of the mean-line of the airfoil section and the 

other one is for describing the section‟s thickness distribution along the chord of the airfoil. For 

newer airfoil series like the 6-digit airfoil, more sophisticated shapes are introduced which 

require theoretical methods rather than geometrical methods.  For convenience, the NACA 4-

digit series will be used in this thesis. 

 The NACA Four-digit Series has 4 numbers in its name. The first digit indicates the 

maximum camber (m) in percentage of the chord, the second digit designates the position of the 

maximum camber (p) in tenths of chord, and the other two digits specify the maximum thickness 

(t) of the airfoil in percentage of chord. For illustration, NACA 4315 airfoil is a 4% camber airfoil 

which the maximum camber is situated 30% back from the leading edge with a maximum 
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thickness of 15%. The coordinate of the 4-digit airfoils are generated from the following 

procedure. 

 First, the values of x from 0 to the maximum chord c are chosen; the number of x 

depends on how smooth of the airfoil one requires. Second, substituting the values of m and p 

into the following equations at every x coordinates; the mean camber line coordinates are 

presented 

                                                      from  

                                       from  

 

Third, substituting the maximum thickness (t) into the following equation, the thickness 

distribution is obtained  

 

 

 

Last, the final airfoil coordinates are calculated from  

 

 

 

 

 

where              ( ) are the coordinates of the upper airfoil  

( ) are the coordinates of the lower airfoil   
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 2.4 Flow Analysis 

2.4.1. Mesh Generating  

The moving grid program developed by Dennis [15], called “mvg”, is the program for 

generating 2-D meshes both structured and unstructured mesh which is based on the grid 

deformation technique. The grid deformation technique bases on the spring analogy which 

treats mesh as linear springs as shown in Figure 2.2. 

 

 

 

 

 

 

 

 

Figure 2.2 Mesh when treated as linear springs 

 

New mesh is obtained when static equilibrium is achieved by minimizing the energy in spring 

system. The program is effective when using with small deformations of boundary.  

The program required a base mesh and a modified boundary where the base mesh 

should be in qgrid, fgrid, or ugrid (2D) format and the airfoil boundary maker should be 1. In 

order to use the “mvg” program in LINUX, simply type “./mvg  airfoil.dat  inputgrid  outputgrid”. 

The airfoil.dat file is the modified boundary, the base mesh is inputgrid, and the outputgrid is the 

output file which can be in fgrid, tec (Tecplot), or neu (Gambit neutral file) format.  The program 

is very fast in generating grids of the desired airfoil because only airfoil coordinates are needed 

as the modified boundary, then the mesh is generated. Compared to Gambit, we have to take 

so much more time to make all edges, then mesh, and specify the boundary conditions before 

i

j

i

j

m km
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we can export the mesh to FLUEN. However, the user must be aware of the number of points in 

the airfoil.dat file. It must have the same number of points as the airfoil in the base grid and the 

ordering (clockwise, counterclockwise, starting point, etc.) of the points should be the same as 

well.  

2.4.2. Flow Solver (FLUENT)  

 FLUENT is software for simulating fluid flows in complicated geometries [20]. A mesh of 

any geometry needs to be generated outside of FLUENT then import to the solver. In order to 

properly solve a problem using FLUENT, there are three important points to be considered; 

definition of the modeling goals, choice of the computational model, choice of physical models, 

and determination of the solution procedure. For the definition of the modeling goals, proper 

specific results and degree of accuracy are considered. For the choice of the computational 

model, computational domain, and boundary conditions should be set properly. For the choice 

of physical models, user should know the fundamental physical behavior of flows. For example, 

is the flow inviscid, laminar, or turbulent?, is the flow unsteady or steady?, is heat transfer 

important?, or will you treat the flow as incompressible or compressible? For the determination 

of the solution procedure, the formulation and solution parameters should be set in order to be 

suitable to a problem so convergence will be obtained or accelerated.  

 To solve a problem using FLUENT, there are fourteen steps to follow. First of all,  

create the model geometry and mesh by using mesh generating software or program outside 

FLUENT, then start the appropriate solver for 2D or 3D modeling, then import the mesh, then 

check the mesh, then select the solver formulation.  After that, choose the basic equations to be 

solved such as laminar or turbulent, then specify material properties, then specify the boundary 

conditions. Next, adjust the solution control parameters, then initialize the flow field, then 

calculate the solution, then examine the results, then save the results, and then, if necessary, 

refine the grid or revise the numerical or physical model. 
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 In FLUENT there are three solver formulations to use; segregated, coupled implicit, and 

coupled explicit. All three solver formulations give accurate solutions for a wide range of flows. 

However, in some case, one formulation may be better than others when consider the rate of 

convergence. The segregated solver sequentially solves the continuity, momentum, and energy 

equations. On the other hand, the coupled solver will solve the continuity, momentum, and 

energy equations equations simultaneously. The segregated solver is suitable for solving low-

speed incompressible flow and the coupled implicit solver is appropriate when solving high-

speed compressible flow. When coupled implicit is desirable but memory  of a machine is not 

enough, the coupled explicit solver may be used instead.  
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CHAPTER 3 

 
METHODOLOGY 

 According to the MGM equation, 

 

one can see that the pressure coefficient is the input to the equation in order to get , which 

changes the y-coordinates of the initial airfoil. There are two  distributions to input into the 

equation. First, is the target  distribution which is the  distribution that we want for the 

desired airfoil. The target  distribution is set to be constant all over the process. Second, is 

the actual  distributions that will change every iteration. One can choose the  distributions 

of any airfoil at the first iteration and the MGM will yield  at each x-coordinate; then, the new 

airfoil coordinates are obtained. We will use GAMBIT to generate the mesh of the new airfoil, 

then import the mesh to FLUENT to analyze the flow. Finally, the actual  distribution is sent 

out from FLUENT and it serves as the new input of MGM equation for the next iteration. Once 

the actual  distribution approaches the target  distribution, the  distributions of the 

target airfoil is what we want. Therefore, the airfoil coordinates of the last iteration is the target 

airfoil. For illustration, the process is shown in Figure (3.1). 

 

3.1 Initial and Target Airfoil data collecting 

3.1.1. Airfoil Coordinate Generating 

 In order to validate the programming of MGM equation, the target  distribution is 

chosen from the known coordinate airfoil. In this thesis, the NACA 2315 airfoil is used. For the 

initial airfoil, we can arbitrarily choose one; however, symmetrical airfoils are recommended in 
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order to prevent the divergence in some cases. Therefore, the symmetrical airfoil NACA0011 is 

selected to be the initial airfoil. From section 2.3, we can write a program in MATLAB to 

generate the desired 4-digit airfoil coordinates, with the input being the 4 numbers from the 

name of the airfoils. The output has 3 columns in [X Y Z] form. Copy the output from MATLAB, 

then save it as a text data file. The program is presented in Appendix A.  Once we get the 

coordinates of NACA0011 and NACA2315, GAMBIT is used to generate the mesh grid of both 

airfoils. 

3.1.2. Mesh Generating 

Now, we have airfoil coordinates of NACA0011 and NACA2315 in a “.txt” file. The text 

file are imported to GAMBIT as vertex data by clicking “File”, then choose “import”, then “Vertex 

Data”, then browse the text file you already have. The vertex data of the airfoil will be presented 

in the screen of GAMBIT with some additional needed vertexes for creating the outer boundary, 

which produced from the NACA 4-digit generator program shown in Appendix A. Figure 3.1 

shows the vertexes data in GAMBIT. Now the needed vertexes are imported to GAMBIT, then 

edges will be created. For the airfoil vertices, the surfaces will be created base on an 

interpolation method. First, in operating the process is to choose the Geometry command 

button, then choose the edge command button, and then choose the create edge from vertices. 

Create upper surface and lower surface separately then the airfoil surfaces are created as 

shown in figure 3.3.  
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Figure 3.1 Inverse Airfoil Design Methodology 
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Figure 3.2 Vertex data after import into GAMBIT 
 
 

 
 

Figure 3.3 NACA0011 Airfoil after edges creating 
 
 

Use four vertices around airfoil and one vertex inside the airfoil to create elliptic boundary 

around the airfoil and then use six other vertices to create the outer boundary. Then create 

straight lines to half cut the domain into two sections, upper and lower one, which is easier to 

mesh grids in the entire domain. The result is shown in figure 3.4. Note that the six outer 

vertices have to be created far enough from the airfoil in order to get the correct solution from 
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FLUENT.  According to this thesis, only subsonic and transonic will be considered. Therefore, it 

is alright to set the outer domain in front of the airfoil ten times of airfoil‟s chord and also for the 

upper and lower parts. However, behind the airfoil, turbulence usually occurs; therefore, the 

outer domain behind the airfoil should be further. In this case, twenty times the chord length is 

used. 

 

Figure 3.4 Edges of entire domain 
 

Next, all edges are meshed in such a way that small grids will be created in the area near the 

airfoil, and bigger grids will be created for the region far away from the airfoil. Then create four 

faces, which are the upper and lower face between airfoil surface and elliptic edges, the upper 

and lower face of outer edges and elliptic edges. Then link the two horizontal outer edges to be 

periodic. After that, mesh two faces which are close to the airfoil as quadrilateral structured 

grids and the other outer faces as triangular unstructured grids.  The result is presented in figure 

3.5 and figure 3.6. Now, all edges need to be specified for boundary conditions. Velocity inlet is 

set for the outer domain edges, in front of the airfoil. Periodic is set for the outer domain edges, 

upper and lower of the airfoil. Pressure outlet is set for the outer domain edges behind the 

airfoil. Wall is set for the airfoil surfaces. The others are set to be Interior. Then the mesh is 

exported for FLUENT.  
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Figure 3.5 Mesh for NACA0011 of entire domain 
 
 

 
 

Figure 3.6 Mesh for NACA0011 close to the airfoil surface  
 

3.1.3 Flow Solver     

 After a mesh of an airfoil is created, now FLUENT is the software for analyzing the flow 

over the airfoil. All information of the flow, such as Pressure, Velocity, Density, etc., will be 

stored at each node which is meshed from GAMBIT. In this thesis, the only information needed 

is Pressure Coefficient (Cp) Distribution along the airfoil surfaces. In order to get the Cp 

Distribution, start from “read case”, then open the “.msh” file which is exported from GAMBIT. 
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Then check the grid and if there is no error found, it can be analyzed. Then define model to be 

inviscid or laminar as desired. After that the boundary conditions which are previously defined 

from GAMBIT are rechecked again. Actually, there is nothing to do with the boundary conditions 

except the velocity inlet boundary, which has to be set the magnitude of the inlet air velocity and 

direction. The referent value of velocity is needed to be changed to the same magnitude as it is 

set in the boundary condition in order to get the real value of any output parameters. After that, 

a solution is needed to be initialized. Normally, the X-velocity is initialized to be the same 

amount as the velocity inlet.  Then we can choose what method would we like FLUENT to use 

for solving the solution. Generally, the SIMPLE method is used for Pressure-Velocity Coupling. 

For Discretization, the standard method is used for Pressure and First Order Upwind is used for 

Momentum. The under-Relaxation Factors may be reduced in order to get the faster 

conversion. However, if the solution still seems to converge slowly, changing the method may 

be a good way to do it. Now the solution is ready to be solved, the only thing to do is monitor it. 

The first one is Residual Monitors where the absolute criteria should set to 1e-06 to ensure that 

the solution does converge. However, it is difficult that the continuity residual is going to be less 

than 1e-06 because the real flow might not flow smoothly. Vertex or turbulent may happen 

behind the airfoil which make the solution not unique and it causes the continuity residual stay 

higher than the criteria. Therefore, Force Monitors may be needed to monitor the convergence 

of the solution. In this thesis, the Lift Coefficient is used because by monitoring CL of the airfoil, 

CP at every node are all considered. Therefore, when CL converges, it means that the solution 

is obtained. For illustration, the Residual and Lift Coefficient Monitors of NACA0011 are 

presented on figure 3.7 and figure 3.8. 
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Figure 3.7 Residual from solving the flow of NACA0011 
 
 
 

 
 

Figure 3.8 CL monitor of NACA0011 
 

 

3.2 Flexible Membrane Method 

 From the MGM equation,  
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using the central difference method to discretize the MGM equation, we got equation (2.8)  
 

        

                                                                                                                    (2.8) 
 

Equation (2.8) can be rewritten with neglecting the truncation error as  

                

     (3.1) 

 

By using the central difference discretization,  has to be constant for all grids along the airfoil. 

However, the  distribution of NACA0011 and NACA2315 which were exported from FLUENT 

do not give the values at the coordinates that we need. The  values are at the grid points 

which were automatically discreted from GAMBIT using interval count. Although it is meshed 

with constant distant between two grid points, the surfaces of the airfoil are not along the X-axis; 

therefore, the coordinates, when projected onto X-axis, do not give a constant values of .  In 

order to use equation (3.1), all data has to be done curve fittings then get a new set of data 

which is at the coordinates giving constant . In this thesis, „polyfit‟ function in MATLAB is used 

to fit the  data then „polyval‟ function is used to get a new set of data at the desired points. 

is used then the chord of the unit chord length airfoil is cut into 206 

elements with constant . After fitting the data of NACA0011 and NACA2315, the  data 

is used to produce the system of equations. From equation (3.1), we can first arbitrarily 

choose , , and  for the equation then after solving the system of equations, , , and 

 can be adapted in order that the new  distribution ( ) result is obtained closest to 

the target . Nevertheless, there is no theoretical method to analyze whether it is closest to 

the target  or not. The only way to do is approximately observing. After obtaining the suitable 
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constants , , and , those values will be used for other iteration steps. From equation 

(8.1), because ,  , , and  are constant, we can rewrite equation (3.1) as  

                                                       (3.2) 

 where   , B= , and C=  are constants 

 

 

 

 

 

 

Figure 3.9 Grids along airfoil surfaces 
 

 

To construct the system of equations, there are 3 boundary conditions to be considered: 

1. No displacement at the trailing edge of the upper airfoil ( ). 

2. No displacement at the trailing edge of the lower airfoil ( ). 

3.   at the leading edges of the upper airfoil and the lower airfoil ( ) are 

equal.  

The airfoil is divided into two parts, upper airfoil and lower airfoil. The grids of the upper airfoil 

are from i=1 to i=207, which are 206 elements. In the same manner, there are 50 elements as 

well for the lower airfoil starting from i=208 to i=414. The coordinate of each grid point is 

automatically produced by GAMBIT, so the coordinates change every time when the shape of 

airfoil changes.  Getting distribution of airfoils at desired coordinates is stated before. By 

starting from i=2 to i=101, the system of equations are presented below 

i=208 

i=207 

i=209 

i=206 

i=1 
i=2 

i=413 

i=414 
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so on and so forth until  

 

 

Applying the boundary conditions and rewriting the system of equations into matrix form, we 

obtain 

 

where 

 

 

 

 

and  
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Applying the boundary conditions 1 and 2, we get 

 

 

 

Then, matrix [M] will be reduced into two columns and matrices and  are also 

reduced to the first and the last row to make the programming easier. Therefore, we obtain 

 

 

 

By using the Thomas Algorithm to solve the system of equations, we first compute the new 

coefficient “C” in [M] in order to remove coefficients “A” then computes the values of . 

After that, the solution  is obtained by backward sweep the matrix as presented in section 

2.2.  The new airfoil Y-coordinates can then be obtained from  

 

Finally, the coordinates of the new airfoil [X Y] are obtained and the first iteration finishes.  

 The new airfoil coordinates which have been obtained from the first iteration are going 

to be meshed by GAMBIT then analyzed by FLUENT again in order to get the distribution. 

Then the distribution of the new airfoil is used as initial information for the next iteration. The 
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process is repeated until the solution converges; that is, when the error of the different between 

the target  distribution and new  distribution is less than 5 percent.  

 However, according to the results from FLUENT which will be provided in the next 

chapter, one can see that residuals are not less than the criteria. Although the number of 

iteration is enormous especially when the airfoil shapes are not symmetrical. Therefore, the 

process of making grids and setting parameters in FLUENT should be enhanced. Moreover, 

making grids in GAMBIT and setting parameters in FLUENT for every new airfoil is time 

consuming; therefore, using an adaptive grid program instead of GAMBIT is very useful. The 

improved methodology is presented in the next section. 

 

3.3 Improved Methodology 

3.3.1 Mesh Generating Improvement 

In this section, the moving grid program is used instead of making grids of every new 

airfoil. However, in order to use the moving grid program, x-coordinates have to be fixed at the 

position of the x-coordinates of the base grid from the moving grid program. Therefore, 

coordinates of the initial airfoil, NACA0011, and target airfoil, NACA2315, have to be 

regenerated from the specific program called “naca” that will produce the compatible airfoil 

coordinates to the moving grid program called “mvg”. GAMBIT is not needed for the new 

methodology.  The new methodology is shown in Figure 3.10. It is pretty much the same as the 

old one, just only moving grid program is used instead of GAMBIT and MGM equation is 

modified for a non-uniform grid.  

In order to get the coordinates of an airfoil from “naca” program, type “./naca  XXXX  

airfoil.dat”  in the terminal window of LINUX operation which “naca” program is installed,  where 

XXXX are the number of airfoil 4-digit and airfoil.dat is the name of the output file. It can be 

changed to any prefered name but has to be .dat file in order to be used in moving grid 

program. After obtaining the coordinates of an airfoil, the mesh is obtained by using “mvg” 
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program by type “./mvg  airfoil.dat  inputgrid  outputgrid”.  In this thesis, inputgrid is already 

provided, named base.qgrid, and the outputgrid is in neutral file, file.neu, in order to be used in 

FLUENT. For more information about moving grid program, section 2.4.2 should be reviewed.   

FLUENT is used for analyzing the flow in order to get pressure distribution on the airfoil 

surface. Journal file is written to save the procedure of setting all condition and parameters in 

FLUENT so that we can just only open this file to run for analyzing a new airfoil with the same 

conditions. In this thesis, inviscid subsonic, viscous subsonic, inviscid transonic and viscous 

transonic flows are considered in order to validate the inverse airfoil design program. In this 

section, viscous subsonic flow is considered to demonstrate the use of FLUENT. First, import 

the gambit mesh format (.neu file) which is from the output of “mvg” program. Check the grid 

and if there is no error, the mesh is good to use. In Define-Materials, the density is changed 

from constant to ideal-gas to make it more realistic. Other properties are reasonable so we do 

not need to change. In Define-Boundary Conditions, set airfoil boundary to be wall and the outer 

domain to be pressure far field then change Mach number to 0.2 since we are considering the 

flow in subsonic. In Define-Model-Energy, click the energy equation if it is not chosen yet. Then 

choose Laminar flow in Define-Model-Viscous for viscous flow analysis. Then initialize the 

solution with an x-velocity of 69.41754, as it is the velocity of Mach number 0.2 at standard 

condition. In Solve-Monitors-Residual, set all absolute Criteria to  in order to obtain a finer 

solution. Now the flow is ready to be solved. In Solve-Iterate, set the number of Iterations to 

1500 as it is usually converged before so that the iteration will stop automatically when the 

errors go below the criteria. When the solution converges, export a data explorer file of pressure 

coefficient of the airfoil surface as the text file (.dx).The file is read by inverse airfoil design 

program written in MATLAB to calculate the new airfoil coordinates from the difference of 

pressure distribution. The analysis is demonstrated in the next section. 
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Figure 3.10 Improved Methodology; moving grid program is used instead of GAMBIT 
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3.3.2 Finite Difference Method for Non-Uniform Grid     

Repeating equation (2.16) from section 2.1.2, we have 

                                                          (2.16) 

where,  

                                   

 

                                  

when  

                   and   

 

Consider the upper airfoil from figure 3.9 which has 207 points where the leading edge 

is at point “i=207” and the trailing edge is at point “i=1”. We are trying to get the solution  

from point i=2 to i=206 and then extrapolate the solution at point i=207 from the 2 previous 

consecutive points which are i=206 and i=205. The solution at i=1 is fixed to be   as a 

boundary condition. , , and  are computed from point i=2 to i=206 using  and  

where  and . Then, the matrix of a system of linear 

equations is presented below 

 

 

 



31 

 

Canceling out the first column since  and modifying the last row by extrapolating 

 

, we get 

 

 

 

where     

and     

 

Using Thomas‟s Algorithm, we obtain the solution  to  then extrapolating to  

from . Therefore, we have the solution 

 for all points of the top airfoil.   

 Now, consider the bottom airfoil from point i=208 to i=414. There are two boundary 

conditions. First, the leading edge has to be continuous so we have to set . 

Second, the trailing edge is fixed as the top airfoil so . Applying the boundary 

conditions to the first and last equation of the bottom airfoil, we get 
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Using Thomas‟s Algorithm, we obtain the solution  to . Now, we know the solution 

 for all points of the airfoil. are added to the y-coordinates of initial airfoil which is 

NACA0011, then we get the new airfoil coordinates. The new airfoil is used as an initial airfoil in 

the next iteration until the new airfoil produces the same  distribution as the target airfoil. 

 For all other cases which are subsonic inviscid flow, transonic inviscid flow, and 

transonic viscous flow, the methodology is the same. The only two things that need to be 

changed are the Mach number and the flow solver in FLUENT part.  
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CHAPTER 4 

RESULT 

 There are two parts which are going to be presented. First, the different results between 

using regular finite difference method and finite difference method for non-uniform grid are 

compared. The effect from the constants of MGM equations is also showed in this part.  The 

other part is the validation of the program using finite difference method for non-uniform grid. 

There are three cases to be demonstrated. The first two cases are subsonic inviscid and 

subsonic viscous flow at Mach number 0.2 by using the pressure coefficient of NACA0011 as 

an initial input and the pressure coefficient of NACA2315 as a target. The other case is 

subsonic viscous flow at Mach number 0.6 by using the pressure coefficient of NACA0012 as 

an initial input and the pressure coefficient of NACA4415 as a target. After all the results, the 

transonic viscous flow at Mach number 0.8 is presented. 

4.1 The comparison results between two methodologies 

By using the regular finite difference method, grids must be divided equally. Therefore, 

at the leading edge, the shape is not smooth if there is not enough number of grid points along 

airfoil surface. In order to make the shape of the leading edge smooth, many more grids need to 

be added for entire airfoil surface, grids cannot be added only on the leading edge zone 

because  needs to be constant. This results in the unnecessary fine grids at the other zone 

of airfoil surface, which increase the computational time in FLUENT.  Figure 4.1 shows the 

unnecessary fine grids in order to make leading edge smooth. On the other hand, by using the 

finite difference method for a non-uniform grid, the grids added at the leading edge zone only to 

make the smooth leading edge. Therefore, there are fewer grid points in the entire airfoil surface 

such that less computational time is consumed. Figure 4.2 shows the mesh using un-uniform 

grids along the airfoil surface.  
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Figure 4.1 Unnecessary fine mesh in order to make leading edge smooth 
 

 

Figure 4.2 A mesh using non-uniform grids along the airfoil surface 
 

Generally, airfoil coordinates are not uniform when using an airfoil coordinate generator. 

To use the regular finite difference method, fitting curve for uniform coordinates is required. By 

fitting curve, we are definitely adding some error to the calculation. It is possible to make the 

method diverge if the error is big enough, especially when the pressure distribution has a 

sophisticated feature. On the contrary, there is no any problem using finite difference method for 

a non-uniform grid.  Figure 103 illustrates the divergence when the error from fitting curve is too 

much.  The divergence occurs with the upper airfoil because the Cp distribution of the upper 

airfoil is a sharp curve; therefore, it is difficult to fit the curve perfectly. However, the lower airfoil 
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has a smooth Cp distribution so the error from fitting the curve is not too much to make the 

iteration diverge. 

 

Figure 4.3 Illustration of divergence occurring when the error from fitting curve is too big  
 

4.2 The Validation 

In this section, the Inverse Design of Airfoils Using a Flexible Membrane Method is 

tested in three cases. The first two cases are subsonic inviscid and subsonic viscous flow at 

Mach number 0.2 by using the pressure coefficient of NACA0011 as an initial input and the 

pressure coefficient of NACA2315 as a target. The other case is subsonic viscous flow at Mach 

number 0.6 by using the pressure coefficient of NACA0012 as an initial input and the pressure 

coefficient of NACA4412 as a target. 

 4.2.1 The inviscid Subsonic Case at Mach 0.2     

In this case, NACA0011 is chosen as an initial airfoil to use its Cp distribution as an 

input to the program, and Cp distribution of NACA2315 is used as a target to validate the 

program. The Cp distributions of both airfoils are presented in Figure 4.4. 
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Figure 4.4 Cp Distributions of NACA0011 and NACA2315 for inviscid flow at M=0.2 

 
  
Figure 4.5 shows the grid generated from the moving grid program which has 4795 nodes, 4826 

cells, 9621 faces. The number of node, cell, and faces of grids for any airfoil will be the same 

when using “mvg” program.  By using FLUENT as a flow solver, choosing pressure base solver 

and ideal gas, setting inviscid flow with Mach number equals 0.2, setting pressure-velocity 

coupling to SIMPLE, using first order upwind to discretize the flow equations with Courant 

Number equals 5,  and using the coefficients   in MGM equation, 45 

iterations are used to get the good target airfoil with error at all grid points are less than 5 

percent. The absolute criteria of residuals in FLUENT are set to be 10e-6. When residuals reach 

the absolute criteria, a solution of the flow is obtained. Figure 4.6 shows the monitor of residuals 

in FLUENT for the inviscid at M=0.2 case. The Cp distribution at the first, tenth, twentieth, 

thirtieth, and forty fifth iteration are presented in Figure 4.7. Then the airfoil shapes at those 

iterations are also shown in Figure 4.8. Noticeably, after 15 iterations, the Cp distribution 

changes much slower than the beginning of the iterations. At this state, most of the points have 

already converged to the target values except at the sharp turning parts of Cp distribution as 

shown in Figure 4.9 at the fifteenth iteration. Therefore, in order to get a faster rate of 

convergence, multiplier should be applied to the force vector ([ ]). In this case, ten is 
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applied. After multiplying the force vector once, the multiplier should be removed to let the 

solution stabilize again. Then if Cp distribution seems to converge slowly, multiplier may be 

needed occasionally. If the multiplier is not removed after applied, divergence will occur. Figure 

4.10 shows the comparison of Cp distribution at the fifteenth iteration between applying 

multiplier and not. 

 

Figure 4.5 A grid generated from the moving grid program 
 

 
 

Figure 4.6 Residual monitor for inviscid at M=0.2 case 
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Figure 4.7 Cp Distributions of airfoils during iteration of inviscid M=0.2 case 

 

Figure 4.8 Airfoil Shapes during iteration of inviscid M=0.2 case 
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Figure 4.9 Cp distributions of target airfoil and airfoil at fifteenth iteration 

 

 

Figure 4.10 Cp distributions of airfoil at fifteenth iteration with and without multiplier 
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After the 45th iteration, the errors of all points are less than 5 percent. Therefore, the 

designed goal is reached. Figure 4.11 shows the errors of all points at the 45
th
 iteration. Figure 

4.12 shows the shape of the designed airfoil compared with the target airfoil NACA2315 and 

Figure 4.13 shows the Cp distributions of the designed airfoil compared with the target Cp 

distribution of NACA2315. Figure 4.14 shows the norm error which indicates that the error 

decreases when the number of iteration increase. It means that the system is converging. Note 

that, sometimes, the error drops immediately from the previous step that is because of the 

multiplier which proved to increase the convergent rate.  Figure 4.15 shows the velocity flow 

field of the initial airfoil and target airfoil.  

 

Figure 4.11 The errors at all points at 45th iteration 
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Figure 4.12 The shape of the designed airfoil compared with the target airfoil(NACA2315) and   
                    initial airfoil (NACA0011) 
 

 

Figure 4.13 The Cp distributions of the designed airfoil compared with the target (NACA2315) 
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Figure 4.14 The norm error for inviscid at M=0.2 case  

 

 

(a)                                                                       (b) 

Figure 4.15 (a) Velocity flow field of the initial airfoil NACA0011 for inviscid @M=0.2 
       (b)  Velocity flow field of the target airfoil NACA2315 for inviscid @M=0.2 
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4.2.2 The viscous Subsonic Case at Mach 0.2     

In this case, an initial airfoil is also NACA0011 and the pressure coefficient of 

NACA2315 is used as a target. The Cp distributions of both initial and target airfoils are 

presented in Figure 4.16. By using FLUENT as a flow solver, choosing pressure base solver 

and ideal gas, setting viscous (laminar) flow with Mach number equals 0.2, setting pressure-

velocity coupling to SIMPLE, using first order upwind to discretize the flow equations with 

Courant Number equals 5, and using the coefficients   in MGM 

equation as the first case. Forty six iterations are used to get the good target airfoil with error at 

all grid points that are less than 5 percent. The Cp distribution at the first, tenth, twentieth, 

thirtieth, and forty sixth iteration are presented in Figure 4.17. Then the airfoil shapes at those 

iterations are also shown in Figure 4.18. In this case, the error is less than the inviscid case. 

The Cp distribution of the designed airfoil is shown in Figure 4.19 and the shape of the designed 

airfoil is shown in Figure 4.20. The errors at each grid points are indicated in Figure 4.21.  

 

 

Figure 4.16 Cp Distributions of NACA0011 and NACA2315 for viscous flow at M=0.2 
 



 44 

 

Figure 4.17 Cp Distributions of airfoils during iteration of viscous M=0.2 case 

 

 

Figure 4.18 Airfoil Shapes during iteration of viscous M=0.2 case 



 45 

 

Figure 4.19 The Cp distributions of the designed airfoil compared with the target (NACA2315)  
                   airfoil for viscous M=0.2 case 

 

 

Figure 4.20 The shape of the designed airfoil compared with the target (NACA2315) 
                           airfoil for viscous M=0.2 case 
 



 46 

 

Figure 4.21 The errors of all grid points of the designed result for viscous M=0.2 case 

 

Figure 4.22 shows the norm error in the viscous at M=0.2 case. The error decreases when the 

number of iteration increase in almost the same rate as inviscid M=0.2 case. According to 

Figure 4.11 and 4.21, there are some points that the error is much higher than the others. The 

reason is at those points, the reference value which is the divider is very close to zero; 

therefore, even the residual is acceptable, error is still high.  

 

Figure 4.22 The norm error for viscous at M=0.2 case 
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4.2.3 The viscous Subsonic Case at Mach 0.6 

In this case, an initial airfoil is changed from NACA0011 to NACA0012 and the pressure 

coefficient of NACA4412 is used as a target. The Cp distributions of both airfoils are presented 

in Figure 4.23. 

 

Figure 4.23 Cp Distributions of NACA0012 and NACA4412 in viscous M=0.6 case 

 

By using FLUENT as a flow solver, setting viscous flow with Mach number equals 0.6 

and using the coefficients   in MGM equation. Twenty one iterations 

are used to get the good target airfoil with error at all grid points are less than 5 percent. The Cp 

distribution at the first, fifth, tenth, fifteenth, and twenty first iteration are presented in Figure 

4.24. Then the airfoil shapes at those iterations are also shown in Figure 4.25. Notice that in this 

case, 21 iterations were used to get the target result. It used less iteration time than the first two 

cases. One of the reasons is that the Cp distribution of NACA4412, which is the target, is 

smoother than the Cp distribution of NACA2315.  The Cp distribution of the designed airfoil is 

shown in Figure 4.26 and the shape of the designed airfoil is shown in Figure 4.27. The errors 

at each grid points are indicated in Figure 4.28. 
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Figure 4.24 Cp Distributions of airfoils during iteration of viscous M=0.6 case 

 

 

Figure 4.25 Shape of airfoils during iteration of viscous M=0.6 case 
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Figure 4.26 The Cp distributions of the designed airfoil compared with the target (NACA4412)  
                   airfoil for viscous M=0.6 case 
 

 

Figure 4.27 The shape of the designed airfoil compared with the target (NACA4412) 
                          airfoil for viscous M=0.6 case 
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Figure 4.28 The errors of all grid points of the designed result for viscous M=0.6 case 

 

Figure 4.29 shows the norm error in the viscous at M=0.6 case. The error decreases 

when the number of iteration increases. Figure 4.30 shows the velocity flow field of the initial 

airfoil NACA0012 and target airfoil NACA4412 for viscous at M=0.6 case. The pressure 

contours of the initial airfoil NACA0012 and NACA4412 are presented as well in Figure 4.31for 

viscous at M=0.6 case. 

 

Figure 4.29 The norm error for viscous at M=0.6 case 
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(a)                                                                     (b) 

Figure 4.30 (a) Velocity flow field of the initial airfoil NACA0012 for viscous @M=0.6 
       (b)  Velocity flow field of the target airfoil NACA4412 for viscous @M=0.6 

 

                             (a)                                                                          (b) 

Figure 4.31 (a) Pressure contour of the initial airfoil NACA0012 for viscous @M=0.6 
       (b)  Pressure contour of the target airfoil NACA4412 for viscous @M=0.6 

 

4.2.4 The viscous Transonic Case at Mach 0.8 

 In this case, NACA0012 is used as an initial airfoil and NACA4412 is used as a target 

airfoil. The Cp distributions of both initial and target airfoils are demonstrated in Figure 4.32. For 

transonic case, local shock waves usually occur along both airfoil surfaces. Shock wave makes 

the Cp distribution has the discontinuity and it affects the convergence of the system. When the 

discontinuity occurs to the Cp distribution, it is more difficult to find MGM parameters that make 

the iterations converge. Sometimes, airfoil shapes when iterating change to those which make 

separations occur behind shocks; therefore, in transonic regime, the Cp distributions are very 

vulnerable usually result in divergence of the iteration.  
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Figure 4.32 Cp Distributions of NACA0012 and NACA4412 of viscous M=0.8 case 

 

By using FLUENT program as a flow solver setting viscous flow with Mach number 

equals 0.8 and using the coefficients   in MGM equation, 33 

iterations are used to get the good target airfoil with error at all grid points are less than 5 

percent. The Cp distribution at the first, fifth, tenth, fifteenth, and thirty-third iteration are 

presented in Figure 4.33. Then the airfoil shapes at those iterations are also shown in Figure 

4.34. The Cp distribution of the designed airfoil is shown in Figure 4.35 and the shape of the 

designed airfoil is shown in Figure 4.36. The errors at each grid points are indicated in Figure 

4.37. In order to show the rate of convergence, the error norm is presented in Figure 4.38. Note 

that, in Figure 4.38, the error norm shows that the iterations seem to diverge at the first four 

iterations but it converged finally. At the first four iterations, the shape of new airfoils affects the 

separations to strongly occur so the Cp distributions are vulnerable when shock waves occur 

and it may make the iterations diverge very easily.  
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Figure 4.33 Cp Distributions of airfoils during iteration of viscous M=0.8 case 

 

Figure 4.34 Shape of airfoils during iteration of viscous M=0.8 case 
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Figure 4.35 The Cp distributions of the designed airfoil compared with the target (NACA4412)  
                   airfoil for viscous M=0.8 case 
 

 

Figure 4.36 The shape of the designed airfoil compared with the target (NACA4412) 
                          airfoil for viscous M=0.8 case 
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Figure 4.37 The errors of all grid points of the designed result for viscous M=0.8 case 

 

Figure 4.38 The norm error for viscous at M=0.8 case 
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Figure 4.39 shows the velocity flow field of the initial airfoil NACA0012 and target airfoil 

NACA4412 for viscous at M=0.8 case. Small shock waves occur on both sides of the initial 

airfoil but for the target airfoil, there is a big shock wave occurs on the upper airfoil only. The 

pressure contours of the initial airfoil NACA0012 and NACA4412 are presented in Figure 4.40 

as well for viscous at M=0.8 case. A big pressure gradient can be obviously seen at the shock 

wave location.  

                                                                    

(a)                                                                     (b) 

Figure 4.39 (a) Velocity flow field of the initial airfoil NACA0012 for viscous @M=0.8 
       (b)  Velocity flow field of the target airfoil NACA4412 for viscous @M=0.8 

 

                             (a)                                                                          (b) 

Figure 4.40 (a) Pressure contour of the initial airfoil NACA0012 for viscous @M=0.8 
       (b)  Pressure contour of the target airfoil NACA4412 for viscous @M=0.8 
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4.3 Shock Free Airfoil Design 

4.3.1 Removing Shock Wave at Mach 0.7 using NACA4412 as an initial airfoil 

 Consider the initial airfoil NACA4412 at Mach number 0.7, a shock wave locally occurs 

on the upper airfoil although the free stream Mach number is still in subsonic regime. Figure 

4.41 shows the velocity flow field with the shock wave on the upper airfoil. The pressure field is 

shown in figure 4.42 to indicate the shock wave on the upper airfoil as well. The shock wave 

influents the discontinuity to the Cp distribution as shown in Figure 4.43. 

 

Figure 4.41 The velocity flow field of NACA4412 airfoil at far field M=0.7 

 

Figure 4.42 The pressure contour of NACA4412 airfoil at far field M=0.7 
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Figure 4.43 The Cp distribution of NACA4412 airfoil M=0.7 

Local shock wave is the main cause of wave drag in transonic flow; therefore, we would like to 

design a new airfoil which does not produce shock wave to the flow field. According to the Cp 

distribution of NACA4412 airfoil at Mach number 0.7, we would like to remove the discontinuity 

of the Cp distribution by using continuous Cp distribution of NACA4412 airfoil at Mach number 

0.4 as a target Cp distribution. Figure 4.44 shows the Cp distribution of NACA4412 at Mach 0.4 

compared to at Mach 0.7.  

 

Figure 4.44 The Cp distribution of NACA4412 airfoil at M=0.4 and M=0.7 
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Set the flow solver, FLUENT, to be pressure base solver, ideal gas, inviscid flow, Mach=0.7 at 

the far field boundary, Second order upwind discretization, Courant Number = 5 at the starting, 

10 after 500 iterations, and 2 after 1000  iterations, absolute criteria for residuals are 10e-5. The 

coefficients for the MGM equations are  . After 29 iterations, the 

the error at almost all points is less than 5 percent except at the leading edge zone of lower 

airfoil. It is because of the smooth and continuous boundary conditions at the leading edge that 

cause coordinates at the front part of the lower airfoil insignificantly change to get the Cp target. 

However, the shock wave on the upper airfoil is removed which is the main purpose in this 

case. Figure 4.45 shows the errors of all points at the 29
th
 iteration. Figure 4.46 shows the 

shape of the designed airfoil compared with the initial airfoil and Figure 4.47 shows the Cp 

distributions of the designed airfoil compared with the target Cp distribution. Figure 4.48 shows 

the norm error which indicates that the error decreases when the number of iteration increase.  

 

 

Figure 4.45 The errors of all points at the 29
th
 iteration using Cp of NACA4412 at M=0.7 as an 

                     initial and at M=0.4 as an target for the shock removal case 
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Figure 4.46 The shape of the designed airfoil compared with the initial airfoil using Cp of 

                         NACA4412 at M=0.7 and at M=0.4 as an target for the shock removal case 
 
 

 

Figure 4.47 The Cp distributions of the designed airfoil(green line) compared with the target Cp   
                   distribution of NACA4412  at M=0.4 (blue line) for the shock  removal case 
 

For illustration, Figure 4.49 shows the comparison of the velocity flow field of the designed 

airfoil, the target airfoil, and the initial airfoil. Figure 4.50 shows the comparison of pressure 

contour of the designed airfoil, the target airfoil, and the initial airfoil. 
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Figure 4.48 The norm errors using Cp of NACA4412 at M=0.7 as an initial and at M=0.4 as  
                        an target for the shock removal case 
 

                                                                     
(a)                                                                     (b) 

 

(c) 

Figure 4.49 (a) Velocity flow field of the initial airfoil NACA4412 for inviscid @M=0.7 
         (b)  Velocity flow field of the target airfoil NACA4412 for inviscid @M=0.4 

                    (c)  Velocity flow field of the designed airfoil for inviscid @M=0.7 
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                             (a)                                                                          (b) 

 

(c) 

Figure 4.50 (a) Pressure contour of the initial airfoil NACA4412 for inviscid @M=0.7 
        (b)  Pressure contour of the target airfoil NACA4412 for inviscid @M=0.4 

                    (c)  Pressure contour of the designed airfoil for inviscid @M=0.7 
 

However, in some case, we cannot completely remove shock waves from the initial airfoil 

because there is no airfoil geometry which does not produce shock wave for the desired Cp 

distribution in some conditions. For example, when we choose the Cp distribution of NACA4412 

at M=0.6 which is the continuous Cp distribution as the target, we cannot get a new airfoil 

geometry which produce a Cp distribution as the target in M=0.7 condition. Figure 4.51 shows 

the designed Cp distribution compared with the target. The designed Cp at almost all points 

already approached the target accept at one zone on the upper airfoil called a high residual 

zone. Although the factor is multiplied to the force vector at that zone to produce a bigger 

change of y-coordinates, the Cp does not get closer to the target. The error norm does not 

decrease as well. It is because at the front part of the high zone, Cp distribution already reached 



 63 

the target Cp distribution; therefore, the shape of the front part does not change although it still 

produce local a Mach number which is greater than one. For that reason, the new airfoil always 

produces a shock wave when there is still a supersonic flow on the upper airfoil. Figure 4.52 

shows the error norm which does not go down anymore after 20 iterations. It means that the 

designed airfoil at that point is the best shape corresponding to the target Cp distribution. 

Although shock wave is not removed completely, the new airfoil can significantly weaken the 

shock from the initial airfoil. Figure 4.53 shows the velocity contour of the designed airfoil which 

still have a small shock wave on the upper airfoil when using NACA4412 @M=0.6 as a target. 

Figure 4.54 shows the velocity contour of the designed airfoil which still have a small shock 

wave on the upper airfoil when using NACA4412 @M=0.5 as a target. It is obvious that, when 

using NACA4412 @M=0.5 as a target, the designed airfoil has a smaller shock wave than when 

using NACA4412 @M=0.6 as a target. 

 From the previous case, it is obvious that the target Cp distribution importantly affects 

the design result of the shock removal cases. Target Cp distribution should be chosen in the 

way that there is enough Cp-difference between the initial airfoil and target airfoil which can 

make enough change to y-coordinate to slow down the local mach number to be lower than one 

before it reaches the target Cp distribution. Figure 4.55 shows that when using Cp distribution of 

NACA4412 at M=0.5, the shock wave is smaller than when we use the Cp distribution of 

NACA4412 at M=0.6. Figure 4.56 shows the error norm of this case which does not go down 

anymore after 20 iterations although there is a high residual zone of the difference between the 

design Cp distribution and the target Cp distribution. Shock wave still cannot be completely 

removed until we use the target Cp distribution of NACA4412 at M=0.4.  
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Figure 4.51 The Cp distributions of the designed airfoil (green line) compared with the target Cp 
                       distribution of NACA4412  at M=0.6 (blue line) for the shock  removal case 

 

Figure 4.52 The errors norm using Cp of NACA4412 at M=0.7 as an initial and at M=0.6 as  
                     an target for the shock removal case 
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Figure 4.53 shows the velocity contour of the designed airfoil which still has a small shock   
    wave on the upper airfoil when using NACA4412 @M=0.6 as a target 

 
 
 

 
 
 

Figure 4.54 shows the velocity contour of the designed airfoil which still has a small shock  
  wave on the upper airfoil when using NACA4412 @M=0.5 as a target 
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Figure 4.55 The Cp distributions of the designed airfoil(green line) compared with the target Cp 
                  distribution of NACA4412  at M=0.5 (blue line) for the shock  removal case 

 
 
 

Figure 4.56 The errors norm using Cp of NACA4412 at M=0.7 as an initial and at M=0.5 as  
                        an target for the shock removal case 
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CHAPTER 5 

CONCLUSION 

 The Finite Difference Method for Non-Uniform Grid was developed to discretize the 

Flexible Membrane Equation. The non-uniform-coordinate airfoils were meshed by using 

moving grid program so that the leading edge was finely mesh and the other zone were meshed 

with bigger grids; therefore, it reduces the computational time when analyze the flow with 

commercial software, FLUENT. FLUENT was set to a segregated solver when solving the 

incompressible flow, M<0.3, and set to coupled solver when solving the compressible flow, 

M>0.3. NACA0011 and NACA0012 are use as initials airfoils and NACA2315 and NACA4412 

are use as a target airfoil to validate the program at both subsonic and transonic regimes. 

 In subsonic condition at M=0.2 which is considered to be the incompressible flow, the 

program worked well and can get the target airfoil when 45 iterations were used. The rates of 

convergence are pretty much the same for inviscid case and viscous case. The compressible 

viscous subsonic at M=0.6 case was tested and the program also worked well. Twenty one 

iterations were used to get the target airfoil. The program also gave a good result in transonic 

regime when the discontinuities occur. However, when there is discontinuity, the program has 

slower convergent rate. MGM parameters were chosen appropriately in order to get fast 

convergence when discontinuity occurs.  

 The program is successfully used to design a shock free airfoil when the initial airfoil 

has shock waves. In order to completely remove shock waves from the initial airfoil, appropriate 

target Cp distribution should be chosen otherwise there will be a small shock wave still on the 

designed airfoil. From section 4.3, using Cp distribution from lower Mach number is easier to 

completely remove shock waves when using the same number of iterations. When using the Cp 

distribution at higher Mach number as a target, shock wave cannot be removed completely. For 
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example, we could not completely remove shock wave from the initial airfoil NACA4412 

@M=0.7 when using the Cp distribution of NACA4412 @M=0.6 and @M=0.5 as targets. On the 

other hand, when using the Cp distribution of NACA4412 @M=0.4 as a target, shock wave 

could be removed completely. Although, in some cases, shock waves were not removed 

completely, the program could significantly weaken the shocks to be much smaller than the 

initial airfoil.  
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APPENDIX A 

 
 

THE PROGRAM FOR GENERATING NACA 4-DIGIT AIRFOIL 
(MATLAB CODE) 
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%% This program is for generating NACA 4-digit airfoil 
clc  
clf 
clear all 
format 'long' 

  
%% input the 4 digits  
%m   is the digit which specifies the maximum camber in percentage of 

the 
      %chord (airfoil length) 
%p   is the digit which indicates the position of the maximum camber 

in 
      %tenths of cord 
%t   is the two digit which provide the maximum thickness of the 

airfoil in 
      %percentage of cord 

  
m = 2; 
p = 3; 
t = 15; 

  

  
%% 
c=1; %chord length 
p=p/10; 
m=m/100; 
t=t/100; 

  
dx=0.02; 
x=0:dx:1; 
o=(1/dx)+1; 
if p==0 
    for i=1:o 
    yc(i)=(m/((1-p)^2))*((1-2*p)+2*p*x(i)-x(i)^2); 
    dyc(i)=(m/(1-p)^2)*2*(p-x(i)); 
    end 
else 
    for i=1:((p/dx)+1) 
    yc(i)= (m/p^2)*(2*p*x(i)-x(i)^2); 
    dyc(i)=(m/p^2)*2*(p-x(i)); 
    end 
    for i=((p/dx)+1):o 
    yc(i)=(m/((1-p)^2))*((1-2*p)+2*p*x(i)-x(i)^2); 
    dyc(i)=(m/(1-p)^2)*2*(p-x(i)); 
    end 
end 

  
for i=1:o 
    yt(i)=(t/0.2)*(0.2969*x(i)^0.5-0.1260*x(i)-

0.3516*x(i)^2+0.2843*x(i)^3-0.1015*x(i)^4); 
end 
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for i=1:o 
    teta(i)=atan(dyc(i)); 
    XU(i)=x(i)-yt(i)*sin(teta(i)); 
    YU(i)=yc(i)+yt(i)*cos(teta(i)); 
    XL(i)=x(i)+yt(i)*sin(teta(i)); 
    YL(i)=yc(i)-yt(i)*cos(teta(i)); 
end 
YU(1)=0; YU(51)=0; YL(1)=0; YL(51)=0; XU(51)=1; XL(51)=1; 

  

 
XU=XU'; 
YU=YU'; 
XL=XL'; 
YL=YL'; 

  
for i=1:51 
    j=52-i; 
    XLN(j)=XL(i); 
    YLN(j)=YL(i); 

     
end 

  
XL=XLN'; 
YL=YLN'; 

  
%% we are doing an output matrix for GAMBIT form 
display ('coordinate[X Y Z] for save as ".txt" and then input to 

GAMBIT for generating the mesh') 
coor=[XU YU;XL(2:51) YL(2:51)]; 
s=zeros(1,101)'; 
coor=[coor s]; 
coor=coor(1:100,:); 
g=[0.5 0 0; 1.5 0 0; -0.5 0 0; 0.5 0.3 0; 0.5 -0.3 0; -10 10 0; -10 -

10 0; 20 -10 0; 20 10 0; -10 0 0; 20 0 0]; 
coor=[coor ; g] 
figure(1) 
plot(XU,YU,'*-r',XL,YL,'*-b') 
grid on 
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APPENDIX B 
 
 

THE PROGRAM FOR SOVING MGM EQUATION 
(MATLAB CODE)
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%% This Program is for solving the MGM equation by using Non-Uniform 

%% grid Finite Difference Method 
 

clear all 
clf %clear figure 
clc 
format 'long' 

  
%% If this is the first iteration please put I=1 else put I=2 
I=2;  
%% Catalye for high rate of convergence(one time for more than 10th 

iteration) 
cat=1;  %%% 4(1,10),7(1,20),8(5,1),9(5,1),13(10,1),18(1,20),19(1,20) 
cat2=1; 
%% 
ne=206; 

  
if I==1 
   display('This is the first iteration') 
else 

     

  
%% New airfoil data input 
format 'long' 
fid = fopen('21(Cp_formatlabread).txt', 'r'); 
data_bot = textscan (fid, '%f %f %f ',206, 'headerlines',0); 
fid = fopen('21(Cp_formatlabread).txt', 'r'); 
data_top = textscan (fid, '%f %f %f ',212, 'headerlines',205); 

  
Cp_top = [data_top{3}]; 
Cp_bot = [Cp_top(207); data_bot{3}]; 
X_top=data_top{1}; 
Y_top=data_top{2}; 
X_bot=[X_top(207); data_bot{1}]; 
Y_bot=[Y_top(207); data_bot{2}]; 

  

  
end  

  

  
%% NACA2315 data 

  
fid = fopen('NACA4412(Cp_formatlabread).txt', 'r'); 
data1 = textscan (fid, '%f %f %f ',206, 'headerlines',0); 
fid = fopen('NACA4412(Cp_formatlabread).txt', 'r'); 
data2 = textscan (fid, '%f %f %f ',212, 'headerlines',205); 
format 'long' 
Cp_top2315 = [data2{3}]; 
Cp_bot2315 = [Cp_top2315(207); data1{3}]; 
X_top2315=data2{1}; 
Y_top2315=data2{2}; 
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X_bot2315=[X_top2315(207); data1{1}]; 
Y_bot2315=[Y_top2315(207); data1{2}]; 

  

  
% figure(1) 
% clf %clear figure 
% plot(X_top2315,Y_top2315,'o-r','MarkerSize',7) 
% hold on 
% plot(X_bot2315,Y_bot2315,'o-b','MarkerSize',7) 
% xlabel ('X') 
% ylabel ('Z') 
% legend ('upper airfoil', 'lower airfoil') 
% title('NACA2315') 
% grid on 
%  
% figure(2) 
% plot(X_top2315,Cp_top2315,'.-r','Markersize',12) 
% hold on 
% plot(X_bot2315,Cp_bot2315,'.-b','Markersize',12) 
% xlabel ('X') 
% ylabel ('Cp') 
% legend ('upper airfoil', 'lower airfoil') 
% title('Pressure Coefficient') 
% grid on 

  
%% NACA0011 data 
fid = fopen('NACA0012(Cp_formatlabread).txt', 'r'); 
data3 = textscan (fid, '%f %f %f ',206, 'headerlines',0); 
fid = fopen('NACA0012(Cp_formatlabread).txt', 'r'); 
data4 = textscan (fid, '%f %f %f ',212, 'headerlines',205); 

  
Cp_top0011 = [data4{3}]; 
Cp_bot0011 = [Cp_top0011(207); data3{3}]; 
X_top0011=data4{1}; 
Y_top0011=data4{2}; 
X_bot0011=[X_top0011(207); data3{1}]; 
Y_bot0011=[Y_top0011(207); data3{2}]; 

  
% figure() 
% plot(X_top0011,Y_top0011,'o-r','MarkerSize',7) 
% hold on 
% plot(X_bot0011,Y_bot0011,'o-b','MarkerSize',7) 
% xlabel ('X') 
% ylabel ('Z') 
% legend ('upper airfoil', 'lower airfoil') 
% title('NACA0011') 
% grid on 
% hold off 
%  
% figure() 
% plot(X_top0011,Cp_top0011,'.-r','Markersize',12) 
% hold on 
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% plot(X_bot0011,Cp_bot0011,'.-b','Markersize',12) 
% xlabel ('X') 
% ylabel ('Cp') 
% legend ('upper airfoil', 'lower airfoil') 
% title('Pressure Coefficient') 
% grid on 

  
%% START NUMERICAL CALCULATION FOR DELTA_Y 

  
% Choose the value of constant beta0, beta1, and beta2 
if I==1  
beta0 = 25; 
beta1 = 0.1; 
beta2 = 4; 
else 
beta0 = 30; 
beta1 = 0.1; 
beta2 = 4;  
end 
% 

  

  
%% new constants 
%% for top airfoil 207 points total 
x1=X_top0011; 

  
% Calculating dx. (from element 1 to element 206) x(1) to x(207) will 

be used. 
for i=1:206 

     
    dx1(i)=(x1(i+1)-x1(i)); 

     
end 

     
% Calculating the coefficients A, B, and C (from A(2) to A(206) which 

are 
% 205 data) 

  
for i=2:206 

     
    C11=(dx1(i-1)*dx1(i)^2+dx1(i)*dx1(i-1)^2)/2; 
    C21=dx1(i-1)^2*dx1(i)+dx1(i)^2*dx1(i-1); 

     
    A1(i)=beta2*(dx1(i)/C11)-beta1*(dx1(i)^2/C21);                                 

% A(2) to A(206) exclude at the leading edge and trailing edge 
    B1(i)=beta0-beta2*((dx1(i-1)+dx1(i))/C11)-beta1*((dx1(i-1)^2-

dx1(i)^2)/C21); % B(2) to B(206) exclude at the leading edge and 

trailing edge 
    C1(i)=beta1*(dx1(i-1)^2/C21)+beta2*(dx1(i-1)/C11);                             

%C(2) to C(206) exclude at the leading edge and trailing edge 
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end 

  

  
% Construct Matrix [M] from  [M]{dy}= {C}, where {C}={Cp(target)-

Cp(actual)} 

  
M1(1,1)=B1(2); 
M1(1,2)=C1(2); 
for i=2:204 
    j=i; 
    M1(i,j-1)=A1(i); 
    M1(i,j)=B1(i); 
    M1(i,j+1)=C1(i); 

  
end 
M1(205,204)=A1(206)+C1(206)*(1-(x1(207)-x1(205))/(x1(206)-x1(205))); 
M1(205,205)=B1(206)+C1(206)*((x1(207)-x1(205))/(x1(206)-x1(205))); 

  

  
% Construct Matrix {C} 
if I==1 

     
    for i=1:205 
    d1(i)=Cp_top2315(i+1)-Cp_top0011(i+1); 
    end 

     
else  

     
    for i=1:205 
    d1(i)=Cp_top2315(i+1)-Cp_top(i+1); 
    end 

  
end 

  
d1=cat*d1;  %%%%%%%%%% catalyzing   

 

  
% Use Thomas Algorithm to solve the system of equations 

  
% Compute the new coefficients by forward sweep the matrix in order to 
% obtain a matrix with two diagonals in removing the coefficients "a" 
% A_new(1,1)=A(1,1); 

  
M1_new(1,2)=M1(1,2)/M1(1,1); 
d1_new(1)=d1(1)/M1(1,1); 

                                             
for i=2:204 
    M1_new(i,i+1)=M1(i,i+1)/(M1(i,i)-M1_new(i-1,i)*M1(i,i-1));                      

% new coef "c" 
end 
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for i=2:205 
    d1_new(i)    =(d1(i)-d1_new(i-1)*M1(i,i-1))/(M1(i,i)-M1_new(i-

1,i)*M1(i,i-1));  % new {C} 
end 

  
% Backward sweep the matrix in order to calculate the solution 
% we obtain initially  
dY1(205)=d1_new(205); 

  
% Then, we calculate the solution for all other position 'x' 
for i=204:-1:1 
    dY1(i)=d1_new(i)-M1_new(i,i+1)*dY1(i+1); 
end 

  
dY1=[0 dY1]; 

  
% extrapolate 
dY1(207)=(1-((x1(207)-x1(205))/(x1(206)-x1(205))))*dY1(205)+((x1(207)-

x1(205))/(x1(206)-x1(205)))*dY1(206); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%% for bottom airfoil 207 points 

total%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
x2=X_bot0011; 

  
% Calculating dx. (from element 1 to element 206) x(1) to x(207) will 

be used. 

  
for i=1:206 

     
    dx2(i)=x2(i+1)-x2(i); 

     
end 

     
% Calculating the coefficients A, B, and C (from A(2) to A(206) which 

are 
% 205 data) 

  
for i=2:206 

     
    C12=(dx2(i-1)*dx2(i)^2+dx2(i)*dx2(i-1)^2)/2; 
    C22=dx2(i-1)^2*dx2(i)+dx2(i)^2*dx2(i-1); 

     
    A2(i)=beta2*(dx2(i)/C12)-beta1*(dx2(i)^2/C22);                                 

% A(2) to A(206) exclude at the leading edge and trailing edge 
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    B2(i)=beta0-beta2*((dx2(i-1)+dx2(i))/C12)-beta1*((dx2(i-1)^2-

dx2(i)^2)/C22); % B(2) to B(206) exclude at the leading edge and 

trailing edge 
    C2(i)=beta1*(dx2(i-1)^2/C22)+beta2*(dx2(i-1)/C12);                             

%C(2) to C(206) exclude at the leading edge and trailing edge 

    
end 

  

  
% Construct Matrix [M] from  [M]{dy}= {C}, where {C}={Cp(target)-

Cp(actual)} 

  
M2(1,1)=B2(2); 
M2(1,2)=C2(2); 
for i=2:204 
    j=i; 
    M2(i,j-1)=A2(i); 
    M2(i,j)=B2(i); 
    M2(i,j+1)=C2(i); 

  
end 
M2(205,204)=A2(206); 
M2(205,205)=B2(206); 

  

  
% Construct Matrix {C} 
if I==1 

     
    for i=1:205 
    d2(i)=Cp_bot2315(i+1)-Cp_bot0011(i+1); 
    end 
    d2(1)=d2(1)+dY1(207)*A2(2); 

     
else  
    for i=1:205 
    d2(i)=Cp_bot2315(i+1)-Cp_bot(i+1); 
    end 
    d2(1)=d2(1)+dY1(207)*A2(2); 

     
end 

  
d2=-

1*cat2*d2;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Use Thomas Algorithm to solve the system of equations 

  
% Compute the new coefficients by forward sweep the matrix in order to 
% obtain a matrix with two diagonals in removing the coefficients "a" 
% A_new(1,1)=A(1,1); 

  
M2_new(1,2)=M2(1,2)/M2(1,1); 
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d2_new(1)=d2(1)/M2(1,1); 

                                             
for i=2:204 
    M2_new(i,i+1)=M2(i,i+1)/(M2(i,i)-M2_new(i-1,i)*M2(i,i-1));                      

% new coef "c" 
end 

  
for i=2:205 
    d2_new(i)    =(d2(i)-d2_new(i-1)*M2(i,i-1))/(M2(i,i)-M2_new(i-

1,i)*M2(i,i-1));  % new {C} 
end 

  
% Backward sweep the matrix in order to calculate the solution 
% we obtain initially  
dY2(205)=d2_new(205); 

  
% Then, we calculate the solution for all other position 'x' 
for i=204:-1:1 
    dY2(i)=d2_new(i)-M2_new(i,i+1)*dY2(i+1); 
end 

  
dY2=[dY1(207) dY2 0]; 

  
 %% Then we get a new shape of the airfoil from the first iteration  
if I==1  

     
    for i=1:207 
    Y_top_new(i)=Y_top0011(i)+dY1(i); 

   
    Y_bot_new(i)=Y_bot0011(i)+dY2(i); 
    end 

     
else 

     
    for i=1:207 
    Y_top_new(i)=Y_top(i)+dY1(i); 

   
    Y_bot_new(i)=Y_bot(i)+dY2(i); 
    end 

     
end 
new_coor=[x1 Y_top_new'; x2 Y_bot_new']; 

  
figure(9) 
plot(x1,Y_top_new,'-r',x2,Y_bot_new,'-r','Markersize',7) 
grid on 
hold on 
plot(x1,Y_top0011,'-g',x2,Y_bot0011,'-g','Markersize',7) 
hold on 
plot(x1,Y_top2315,'-b',x2,Y_bot2315,'-b','Markersize',7) 
xlabel ('X') 
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ylabel ('Z') 
legend ('new airfoil', '-','initial airfoil', '-','target airfoil') 
title('new airfoil coordinates') 
grid on 

  
hold off 

  
%% Creat an output text file of new airfoil coordinate 
format 'long' 
fid = fopen('naca0011.dat', 'r'); 
data11 = textscan (fid, '%f %f %f ',412, 'headerlines',1); 
k3=[data11{1}]; 
k1=new_coor(1:207,2:2); 
for i=1:207 
    k11(i)=k1(208-i); 
end 
k2=new_coor(209:413,2:2); 
for i=1:205 
    k21(i)=k2(206-i); 
end 
kk=[k11'; k21']; 

  
newcoor=[k3 kk] 

  
%% Calculate Errer 
xx1=[X_top2315; X_bot2315]; 
ww1=[Cp_top2315; Cp_bot2315]; 
ww2=[Cp_top; Cp_bot]; 

  
ggg=[ww1]-[ww2]; 

  
for i=1:414 
    rr(i)=abs(ggg(i))/abs(ww1(i)); 
end 

  
rrr=rr'; 

  
fff=[xx1 rrr]; 

  
figure(10) 
plot(xx1,rrr) 
xlabel ('X') 
ylabel ('%ERROR') 
axis([0 1.1 0 2]) 
grid on 

  
figure(11) 
plot(xx1,ww1,xx1,ww2) 
axis([0 1.1 -1.5 1]) 
xlabel ('X') 
ylabel ('Cp') 
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legend ('Cp-target (NACA4412)', 'Cp-the designed airfoil')%%,'1st 

iteration', '2nd iteration','3rd iteration','4th iteration','5th 

iteration') 
%title('new airfoil coordinates') 
grid on 
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