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ABSTRACT

REINFORCEMENT LEARNING BASED STRATEGIES

FOR ADAPTIVE WIRELESS SENSOR

NETWORK MANAGEMENT

KUNALBHAI SHAH, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Mohan Kumar

In wireless sensor networks (WSN), resource-constrained nodes are expected

to operate in highly dynamic and often unattended environments. WSN applications

need to cope with such dynamicity and uncertainty intrinsic in sensor networks, while

simultaneously trying to achieve efficient resource utilization. A middleware frame-

work with support for autonomous, adaptive and distributed sensor management, can

simplify development of such WSN applications. We present a reinforcement learning

based WSN middleware framework to enable autonomous and adaptive applications

with support for efficient resource management. The uniqueness of our framework

lies in using a bottom-up approach where each sensor node is responsible for its

resource allocation/task selection while ensuring optimization of system-wide param-

eters like total energy usage, network lifetime etc. The framework allows creation of

a distributed and scalable system while meeting applications’ goals.

In this dissertation, a Q-learning based scheme called DIRL (Distributed Inde-

pendent Reinforcement Learning) is presented first. DIRL learns the utility of per-
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forming various tasks over time with mostly local information at nodes. DIRL uses

these utility values along with application constraints for task management subject

to optimal energy usage. DIRL scheme is extended to create a two-tier reinforcement

learning based framework consisting of micro-learning and macro-learning. Micro-

learning enables individual sensor nodes to self-schedule their tasks using local infor-

mation allowing for a real-time adaptation as in DIRL. Macro-learning governs the

micro-learners by setting their utility functions in order to steer the system towards

applications’ optimization goal (e.g. maximize network lifetime etc). The effective-

ness of our framework is exemplified by designing a tracking/surveillance application

on top of it. Finally, results of simulation studies are presented that compare perfor-

mance of our scheme against other existing approaches. In general for applications

requiring autonomous adaptation, our two-tier reinforcement learning based scheme

on average is about 50% more efficient than micro-learning alone and many-fold more

efficient than traditional resource management schemes like static scheduling, while

maintaining necessary accuracy/performance.

Efficient data collection in sparse WSNs by special nodes called Mobile Data

Collectors (MDCs) that visit sensor nodes is investigated. As contact times are not

known a priori and in order to minimize energy consumption, the discovery of an

incoming MDC by the static sensor node is a critical task. Discovery is challeng-

ing as MDCs participating in various applications exhibit different mobility patterns

and hence require unique design of a discovery strategy for each application. In this

context, an adaptive discovery strategy is proposed that exploits the DIRL frame-

work and can be effectively applied to various applications while minimizing energy

consumption. The principal idea is to learn the MDC’s arrival pattern and tune

the sensor node’s duty cycle accordingly. Through extensive simulation analysis, the

energy efficiency and effectiveness of the proposed framework is demonstrated.
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Finally, design and evaluation of a complete and generalized middleware frame-

work called DReL is presented with focus on distributed sensor management on top of

our multi-layer reinforcement learning scheme. DReL incorporates mechanisms and

communication paradigms for task, data and reward distributions. DReL provides

an easy-to-use interface to application developers for creating customized applications

with specific QoS and optimization requirements. Adequacy and efficiency of DReL

is shown by developing few sample applications on top of it and evaluating those

applications’ performance.
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CHAPTER 1

INTRODUCTION

In recent years, wireless sensor networks (WSNs) have become increasingly pop-

ular for observing many real world phenomena. A WSN consists of a large number of

tiny sensor nodes capable of interfacing with the real world, communicating wirelessly

and computing on-board. Low cost, low power sensor nodes are easily deployable and

can be readily networked for a wide range of applications. Most popular areas for

WSN applications are health, military, environment and security.

As sensor network applications become pervasive, monolithic and ad hoc ap-

proaches used to date may not be feasible and a systematic application design method

based on standards and higher level abstractions is required [1, 2]. To simplify sensor

network application development, the need for programming abstractions such as a

middleware framework is well acknowledged [1, 3]. WSN middleware can be consid-

ered as a software that resides above the operating system and below the application

abstracting low-level functionalities through a high-level API. A complete middleware

solution should provide a holistic view of the network, services for data collection,

aggregation and control while efficiently and adaptively managing system resources

as per the application’s requirements.

The objective of this dissertation is to design aWSNmiddleware framework that

provides adaptive resource management for highly dynamic and large scale WSNs.

Our unique bottom-up and distributed approach involves resource management by

individual sensor nodes providing real-time adaptation, while ensuring acquisition of

1
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global, system-wide goal. The scope of the work addressed in this dissertation and

challenges associated with them are described next.

1.1 Scope and Challenges

WSN nodes are remarkably constrained in terms of their resources such as en-

ergy, computational power and radio bandwidth. WSNs normally operate in uncer-

tain and dynamic environments where the state of the system changes considerably

over time. For example, in data collection applications, uncertainty exists due to

intermittent links or traffic conditions. Moreover, the network itself is dynamic due

to such events as node mobility and depleted battery [4]. WSN applications need to

cope with such dynamics and uncertainty inherent in sensor networks, while simulta-

neously trying to achieve each application’s requirements for QoS and optimization

goal. Consequently, adaptive resource management is a key to any successful middle-

ware solution enabling such applications [1, 5, 6].

Resource management includes initial sensor-selection and task allocation as well as

runtime adaptation of allocated task/resources. There are many proposed middle-

ware solutions that have advocated strong need for proactive adaptation of resources

[1, 5, 7]. However, there are only few solutions that have actually tried to resolve the

issue of enabling adaptive resource management for WSN applications. This problem

of resource management/adaptation (see Figure 1.1) can be described as follows:

Given application structure, QoS requirements and current system state, what is the

best way of task/resource allocation so that system-wide, application-driven, global

parameters can be optimized?

In the above, the application structure is in the form of underlying tasks and their

interactions. QoS requirements include such constraints as latency, reliability, cover-

age etc. while the current state of the system is defined by parameters like mobility,
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Figure 1.1. Resource management problem in WSNs.

energy availability, and neighboring nodes. The parameters to be optimized include

energy, bandwidth, and network lifetime. Without loss of generality, we illustrate the

resource management problem using a simplified object/entity tracking application

(see Figure 1.2). An object tracking application can be considered to consist of the

following tasks: 1) sample- sense the environment (e.g. signal strength of a moving

object). 2) transmit (Tx)- transmit a message to next hop towards the base-stations.

3) receive (Rx)- turn radio to receive mode to listen for incoming messages. 4) ag-

gregate- aggregate two or more local and remote same target readings into a single

reading (e.g. data triangulation for better position estimation or mapping to a known

track or simply last value aggregation function). 5) sleep- put CPU and radio in sleep

mode to minimize battery consumption. State representation may consist of the fol-

lowing variables: have one or more neighbors, successful in recent sampling, successful

in recent receive, signal strength (or quality of reading). QoS requirements here may

include quality of signal, tracking coverage area as well as maximum allowed latency.

Our goal in this case is to optimize energy usage among all sensor nodes. Thus the
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Figure 1.2. Resource management for object tracking application.

goal of our resource management framework is to schedule and allocate tasks on each

sensor node in the system, so that energy usage among all sensor nodes is minimized

while fulfilling the coverage and latency requirements of the application.

Most sensor network applications studied today consist of a large number of sensor

nodes deployed over a geographical area. Sensors use multi-hop communication to

send data acquired from the external environment to a sink node or to an Access Point

(AP) in the infrastructure. However, several applications do not require fine-grained

sensing. Examples of such applications include monitoring of weather conditions in

large areas, air quality in urban scenarios, terrain conditions for agriculture, and so

on. In such cases, sparse wireless sensor networks are likely to be used. In sparse

WSNs, the density of nodes is so low that they cannot communicate with each other

directly through multi-hop paths. In order to make communication feasible, data

collection in sparse WSNs can be accomplished by means of mobile data collectors

(MDCs). MDCs are special mobile nodes responsible for data gathering and/or dis-
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semination. They are assumed to be powerful in terms of data storage and processing

capabilities, and are not energy constrained. However, the data collection paradigm

in sparse WSNs with MDCs is different, and introduces significant challenges includ-

ing contact detection and energy conservation.

Communication between an MDC and each sensor node takes place in two phases.

First, sensor node discovers the presence of the MDC in its communication range.

Then, it transfers collected data to the MDC while satisfying any required reliability

constraints. Unlike MDCs, sensor nodes have a limited energy budget, so that the

data-collection process has to be energy efficient in order to prolong their network

lifetime. In addition, such energy-conserving mechanisms should not compromise

the timeliness of communication. This is critical especially when the MDC has only

a short contact time with sensors, and also in the case when such contacts cannot

be predicted accurately. In fact, a major problem in data collection is that sensor

nodes usually do not have a priori knowledge of the MDC mobility pattern. Fur-

thermore, even in cases where the arrivals can be predicted, there is a chance that

the MDC contacts can be affected by delays or can change their rate. Hence robust

and flexible mechanisms have to be defined in order to adapt to operating conditions

autonomously.

WSN applications are becoming increasingly pervasive, requiring support for multiple

heterogeneous applications executing simultaneously on the sensor network infrastruc-

ture. Thus, rather than building a WSN infrastructure for each application, a single

WSN infrastructure may be utilized by a wide range of applications. The CitySense

[8] project is an example of such a sensing network infrastructure deployed all over

a city to allow development of a variety of WSN applications such as traffic statis-

tics/monitoring, accident alerting, public safety and crime watch, driver advisory

applications, noise and air pollution monitoring etc. In recent years, utility based
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computing has played a significant role in proliferation of cloud computing allowing

ease of development of applications using shared computing infrastructure. Similarly,

one can envision use of utility theory to enable rapid development of pervasive ap-

plications on top of shared sensing infrastructure. The novel concept of developing

a middleware that presents WSN infrastructure as a utility which can be shared by

many applications, has not yet been explored.

Support for a scalable and robust communication paradigm is another important

characteristic of a middleware solution. As all sensor network applications are data-

driven, middleware should ideally support a data-centric model for task and data

dissemination. Middleware should allow application specific in-network processing

and data filtering to enable application assisted routing, aggregation, data fusion and

collaborative information processing.

1.2 Major Contributions

Contributions in this dissertation include development of a dynamic, adaptive

and autonomous middleware for WSN management. Application of reinforcement

learning techniques in the development of a generalized sensor management frame-

work is a unique contribution of this dissertation. The bottom-up design approach

used in this dissertation allows usage of the developed middleware in a wide-scale

distributed sensor systems with inherent support for uncertainty and dynamicity pre-

vailing in WSNs.
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1.2.1 Adaptive Resource Management Using Distributed Independent Reinforce-
ment Learning (DIRL)

The main idea of DIRL is to allow each individual sensor node to self-schedule

its tasks and allocate local resources by learning their usefulness (utility) in any

given state while honouring application defined constraints and maximizing total

amount of reward over time. DIRL is based on Q-learning [9], a form of model-

free reinforcement learning. Q-learning is simple to implement, demands minimal

computational resources and doesn’t require a model (e.g. state transitions) of the

environment in order to operate. Hence it is ideal for implementation on resource-

constrained sensor nodes. DIRL uses a classic exploration and exploitation strategy as

used in most RL based approaches to learn utilities of various tasks. DIRL addresses

structural credit assignment (propagation of reward spatially across states in order

to define the notion of similar states) by using weighted hamming distance between

two states. Here, the application state is represented in the form of system and

application variables each carrying an associated weight. DIRL employs independent

learning where each agent applies the learning algorithm in a classic sense (like in

single agent systems) ignoring the presence of other agents. The main advantage

of using independent learning in DIRL is that no communication is required for co-

ordination among sensor nodes and each node selfishly tries to maximize its own

rewards. Our analysis shows that DIRL is not only feasible but also provides higher

efficiency for task/resource management compared to other related approaches.

1.2.2 Ensuring Global Optimization With Multi-Tier Reinforcement Learning

DIRL works well when each node in a WSN application is acting on its own and

doesn’t need to co-operate or compete with other nodes. In other words, if all nodes

are acting independently and their actions do not affect others, then any increase in
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a node’s utility cannot decrease anyone else’s utility and hence will always increase

world (system-wide) utility which is merely the sum of all node’s utilities over all time.

But most of the real-world WSN applications need some sort of co-operation among

sensor nodes and hence nodes cannot work independently. In this case, increase in

utility of an individual node may result in the reduction of other nodes’ utility and

hence may not increase World utility. It is also possible that such a system can lead

to phenomena like Tragedy of the Commons (TOC) or Braes’ Paradox, wherein an

individual’s selfishness leads to significantly lower world utility [10]. Such phenomena

can be avoided by carefully designing the agents’ utility functions as well as con-

straints under which an agent performs task selection. In other words, it is required

to make sure that an individual’s utility is ’aligned’ with the World utility, i.e. any

increase in an agent’s private utility due to its action will also result in increase of

World utility. COllective INtelligence (COIN) theory [10, 11] provides principles on

designing such private (individual node) as well as global utility functions such that

they are aligned. These principles are utilized to design a multi-tier reinforcement

learning based framework for WSN resource management.

The design goal is to create a system using a bottom-up approach where each sensor

node is responsible for task selection, rather than a top-down approach (where some

central entity dictates nodes what task to execute) used by many other middleware so-

lutions [1, 5]. Main advantages of a bottom-up approach are pro-active and real-time

adaptation, no centralized processing requirement for task allocation and minimal

communication overhead. But the principal challenge of a bottom-up approach is

how to make sure that the system is actually meeting the global application goals

and is not just acting randomly or creating chaos. This issue is resolved by using

two-layer learning: micro-learning is used by individual nodes to self-schedule their
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tasks and macro-learning is used by each set of closely connected nodes to steer the

system towards the application goal by setting/updating rewards for micro-learners.

1.2.3 Resource-aware Data Accumulation in Sparse Wireless Sensor Networks

The next contribution addresses the issue of energy-aware resource allocation

in sparse WSNs with Mobile Data Collectors (MDCs). Discovery and data transfer

protocols are defined for energy-efficient data collection in sparse WSNs with MDCs

and an adaptive strategy that exploits the DIRL scheme is proposed. We design a

generic resource-aware data accumulation (RADA) framework that can be applied to

a wide range of applications while minimizing energy consumption. The principal idea

is to learn the underlying pattern of MDCs’ arrival and tune the sensor node’s duty

cycle accordingly. Through extensive simulations it is shown that RADA is highly

energy efficient for adaptively managing a sensor node’s duty cycle while maintaining

high discovery rate and data transfer efficiency.

1.2.4 Design of DReL Middleware Using Multi-Tier Reinforcement Learning and
Directed Diffusion

After devising strategies and frameworks for resource management, next a com-

plete middleware solution called DReL (Distributed Reinforcement Learning) is de-

signed. DReL is specifically designed to enable utility computing based application

development and incorporates other important aspects of a WSN middleware such

as task and data dissemination. DReL addresses the issue of defining structure for

tasks/data and acts as a generic middleware that provides an easy-to-use interface for

development of WSN applications with different QoS and optimization requirements.

We provide detailed mechanisms for publication of tasks, collection of data and com-
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putation and distribution of rewards to achieve a global optimization goal using our

multi-tier learning scheme and directed diffusion [12, 13].

1.3 Organization of Dissertation

Chapter 2 reviews existing literature and provides some necessary background

on topics that are related to this dissertation. Chapter 3 describes our preliminary

DIRL scheme for resource management in WSN. An extended multi-tier reinforcement

learning based framework using COIN and DIRL is presented in Chapter 4. Chapter

5 explores application of DIRL to sparse WSN for energy-aware MDC discovery.

Chapter 6 provides a detail design of a complete adaptive and autonomous middleware

DReL.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, some of the associated topics pertinent to the research per-

formed in this dissertation are reviewed. Accordingly, background and related work

in the areas of wireless sensor networks (WSN) middleware, resource management

in WSN and sparse WSN are presented. The chapter also includes a brief introduc-

tion to reinforcement learning (RL), multi-agent systems and collective intelligence

(COIN) theory which play a significant role in our work. A brief background on

directed diffusion which is utilized as communication paradigm for task, data and

reward distribution in our middleware is also provided.

2.1 Wireless Sensor Networks Middleware

Complexity of sensor network applications is continuously increasing with the

proliferation of distributed computing and wireless connectivity in sensor networks.

Heterogeneity of sensor networks in terms of hardware characteristics and applica-

tion requirements further adds to application complexity. As a result, developing

sensor network applications has become very difficult. A middleware infrastructure

is required which can ease up such application development. Next challenges for de-

velopment of WSN middleware are discussed. Requirement and design principles of

a middleware emerging out from these challenges are also described later.

11
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2.1.1 WSN Middleware Challenges

Development and implementation of a sensor network middleware is not a trivial

task and the main reasons for this are some inherent characteristics of wireless sensor

networks. We have tried to capture some of these characteristics here.

• Sensor nodes are limited in the amount of energy they can store or achieve

from the environment. This size and energy limit implies extremely resource

constrained devices in terms of CPU power, memory and wireless bandwidth

and range which in turn limits processing and interactions normally required

by distributed systems.

• Sensor nodes are subject to frequent failures, either due to depletion of battery

or environmental influences. Also nodes can be highly mobile. This brings in

a high degree of dynamics and uncertainty in WSNs and can result in frequent

topology changes and network partitions.

• Wireless links used by low power sensor nodes are also error prone. Hence

communication failure is also a problem to be addressed.

• WSNs are often heterogeneous, e.g. a network often consists of nodes/devices

with various capabilities in terms of sensors, computing power and memory.

This further complicates WSN management.

• A WSN application consisting of hundreds or even thousands of sensor nodes

is normal and hence scalability is a major issue here.

• Large numbers of sensor nodes and the possibility of their deployment in hostile

or in-accessible areas mandates that such a system provides exception-free unat-

tended operation [14]. This suggests the necessity of autonomous adaptation in

terms of reconfiguration and task dynamics.

• Concern for security and privacy is more aggravated for WSN applications be-

cause of sensitiveness of data collected and lack of resources.
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• With the pervasiveness of sensor network applications, it will become necessary

to support multiple heterogeneous applications with different requirements on

top of a single network.

2.1.2 WSN Middleware Requirements

Challenges described in the previous section can be interpreted to frame a list

of requirements for WSN middleware. This list is as follows:

• Middleware systems should support high level abstraction, hiding complexity

of dealing with individual nodes and provide a holistic view of the network.

Middleware should also support multiple programming paradigms like publish-

subscribe, pull-push models, event based etc.

• It is necessary for WSN middleware to be very efficient in terms of energy,

bandwidth and computational resources consumption.

• Middleware should be proactive and support adaptive fidelity algorithms to

improve performance.

• Middleware should be able to provide support for deployment, configuration

and reconfiguration. It should also provide mechanisms for application policy

creation and distribution.

• WSN middleware needs to provide scalability in terms of the number of sensor

nodes, applications running on top of it and associated users.

• Middleware needs to support execution of multiple applications simultaneously

on a single sensor network. It should be able to support QoS requirements of

individual applications in terms of availability, timeliness, fault-tolerance etc.

• WSN middleware should be able to provide optimal network configurations in

order to support a high degree of dynamics of WSN.
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• WSN middleware should provide security in the context of data processing, data

communications, device tampering etc.

• Finally, middleware itself should be lightweight in terms of computation and

communciation requirements in order to be successful in resource constrained

WSNs.

2.1.3 WSN Middleware Design Principles

Based on some previous work [14, 1] and driven by the above requirements, we

hereby list design principles for WSN middleware.

• A WSN middleware framework should support a data-centric or data-driven

model for data processing and querying.

• A WSN middleware should allow incorporation of application knowledge and

hence allow overall software to be tailored to the executing application. This

conflicts with the desire to support and optimize for a wide class of applications.

This issue can be resolved by allowing an application to put its unique features

as code or specification which can be interpreted by middleware.

• Cluster-based localized algorithms should be used for efficiently coordinating

local interactions between sensor nodes in order to achieve global goals. This

can help in creating more scalable applications and can improve robustness and

efficiency in resource utilization.

• Middleware should support various data reduction techniques required for col-

lection and processing of sensory data. Complex sensing tasks often require

that data collected at many nodes be fused to obtain a high-level sensing result.

For reducing communication and energy overhead, it is necessary to process

sensory data at the source to extract relevant features. Middleware will require
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Figure 2.1. WSN Middleware Classification.

means to specify application knowledge and ways to inject this knowledge into

the nodes of the network.

• Sensor networks are mostly connected to external background infrastructures

mainly for tasking the sensor network, as well as for evaluation and storage

of sensing results and also may provide computing and storage resources not

available to sensor networks. Hence, middleware should allow the integration

with such background infrastructures, providing a homogeneous view of the

entire system.

2.2 WSN Middleware Classification

A high level classification of the WSN middleware frameworks is given in Figure

2.1. As shown in the figure, WSN middleware can be broadly classified into pro-

active middleware and middleware enabling pro-active applications [5]. Pro-active

middleware refers to middleware that pro-actively changes WSN functionality based

on current environment and state of the system. Middleware enabling pro-active

applications allows applications to guide the system on how to adapt to changes
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in the environment and state of the system. Pro-active middleware can be further

classified into the following:

2.2.1 Data-centric

Middleware in this category provides the abstraction of the whole sensor net-

work as a virtual distributed database. The idea is to enable utilization of a higher

level declarative programming language/interface upon the distributed nodes without

having to deal with the network issues. A user dispatches queries using some easy-to-

use interface to extract data of interest. The main focus of this type of middleware is

on efficient evaluation of query plans using in-network query processing. Such middle-

ware normally only uses predefined static task schedules and normally doesn’t handle

adaptive task/resource management. Also the approach provides only approximate

values and lacks support for real-time applications that need spatio-temporal rela-

tionships between events [2].This type of middleware are not expressive enough to

implement arbitrary distributed algorithms. Cougar [15] is the first work considering

WSN as a database. TinyDB [16] hides the complexity of TinyOS by building a

query-processing system on top of it. TinyDB allows users to extract data of interest

from the sensor nodes using a SQL-like interface. SINA [17] and DsWare[18] are two

other approaches falling into this category of middleware using database abstraction.

2.2.2 Virtual machine

These middleware abstract a WSN as a collection of code interpreters that

take care of running programs and scripts. Examples include Mate [19], MagnetOS

[20] etc. Mate is a tiny, efficient virtual machine designed and implemented on top

of TinyOS [21]. Mate devices code into small capsules of instructions. It defines

and implements several frequently used functionalities and provides a single instruc-



17

tion API for implementing them. Thus Mate allows application developers to write

efficient programs with a minimal number of instructions. It provides a (viral) broad-

cast solution for propagation of programs broken into small capsules. MagnetOS is

a power-aware operating system that provides a single system image of ad hoc net-

works so that the whole network appears as a single, unified Java VM. To achieve

performance efficiency, MagnetOS supports object migration to move objects closer

to data sources and hence does support code management.

2.2.3 Code Management

This category includes middleware solutions concentrating on providing services

for code deployment including allocation and migration of code to sensor nodes. Code

allocation includes initial sensor selection for code execution. Code migration involves

transferring of code from one node to another effectively allowing to re-program the

network. The middleware’s efficiency relies on strategies for migrating code to sensor

nodes in the vicinity of the phenomenon of interest. Generally, this type of mid-

dleware is built on top of a virtual machine that allows remote code execution and

migration. Middleware normally handle a trade-off between complexity of the in-

terpreter running on the nodes and complexity of mobile node [22]. Task migration

mainly uses mobile code (or mobile agents) moving the code to data sources to al-

low local data processing. Agilla [23] is an example of mobile-agent based middleware

concentrating mainly on code management aspects. Sensorware [24] uses TCL scripts

as mobile code that gets transfered through the system to facilitate migration. Mid-

dleware of this type suffers from the following issues: 1) Complexity of specification

and application development, 2) High resource consumption in terms of computation

and communication costs for code migration.

Even though most of the above middleware approaches have some support for chang-
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ing WSN functionality based on system state, they do not allow the application to

change system behavior directly. Next we classify middleware that allow applications

to adapt to current system state and environment.

2.2.4 Macro-programming

Macro-programming involves programming the sensor network as a whole rather

then implementing low-level software for individual nodes. The nodal behavior is au-

tomatically generated from a high-level global program. This relieves developers from

dealing with low-level concerns like distributed code generation, remote data access

and management and inter-node program flow coordination at each network node

[25, 26]. Middleware in this category normally utilize a concept of neighborhood to

allow development of localized algorithms. As nodal behaviors are automatically gen-

erated, such middleware providing system level abstraction is easier to use. But they

do suffer from high communication and computational overhead with less flexibility

in implementation of energy efficient algorithms as compared to programming indi-

vidual nodes. Kairos[25] focuses on providing the necessary notions and concepts to

design, develop, and implement a macroprogramming model on WSN. Kairos enables

programmers to choose either tight or loose synchronization based on their needs.

Abstract Regions[26] provide a suite of general purpose communication primitives for

WSN that handles addressing, in-network data aggregation and data sharing among

network’s local regions. It aims at achieving energy efficiency by reducing radio com-

munication with use of higher localized computation. Hood[27] also uses a local

neighborhood concept similar to Abstract Regions. Hood shows that local behaviors

can be implemented adequately by using the neighborhood abstraction.
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2.2.5 Code Management/Application Scheduling

Impala [6] is an example of a middleware enabling pro-active applications with

focus on code management and application scheduling. The principal goal of Im-

pala is to allow reliable and adaptive code management and code upgrades for long-

running WSN applications with infrequent code updates. Impala is designed for the

Zebranet project providing wildlife tracking technology. Impala is built on top of

an event-based programming model. As for adaptation, it provides a mechanism for

dynamically querying operating parameters and checking them against a set of appli-

cation specified rules to determine if an application switch is required. Application

switching is based on a finite state machine model, where transitions are defined in

the form of heuristics, and can cope with device failures. However, Impala has been

specifically targeted to scenarios where all nodes are mobile and act as peers. Also

Impala is being destined to run on linux based hand-held pocket PCs and hence has

limited applications.

2.2.6 Data/Resource Management

Middleware solutions in this category advocate need for pro-active adaptation

of resources. They handle trade-off between applications QoS requirements and WSN

resources. They allow applications to affect WSN resources by varying settings over

time to meet applications’ goals.

MiLAN [5] (Middleware Linking Applications and Networks) focuses on a cross-layer

architecture that extends into the network protocol stack and allows applications to

change the network. MiLAN obtains QoS requirements and sensor configurations from

the application in the form of specialized graphs, monitors network conditions and

based on requirements varies sensor and network configurations to optimize resource

utilization and maximize network lifetime. From the specialized graphs, MiLAN de-
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termines an application feasible set (FA), each element of which is a set of sensors

that can satisfy QoS requirements of each application specified variable. MiLAN’s

network plugin next chooses a network feasible set (FN) that can be supported by the

network based on network properties and current state. FA and FN is next combined

to derive an overall feasible set F , i.e. F = FA ∩ FN .

A cluster-based architecture is described in [1] using virtual-machine abstraction to

separate application semantics from underlying physical infrastructure. In this frame-

work, each cluster consisting of a set of spatially adjacent sensor nodes around target

phenomena forms a basic functional unit. The framework consisted of two layers:

1) resource management layer-residing only at the cluster head and 2) cluster layer

distributed among sensor nodes. The cluster layer is responsible for forming a clus-

ter from a group of sensor nodes and then distributing commands issued from cluster

head into the cluster. The resource management layer is responsible for allocation and

adaptation of resources so that an application’s QoS requirements can be satisfied.

Thus all nodes in a cluster cooperate together to create an adaptive resource man-

agement layer. TinyCubus [7] is also an adaptive cross-layer framework for TinyOS

based sensor networks. TinyCubus consists of a configuration engine that distributes

components to sensor nodes based on their role and installs components dynamically,

and a data management framework that aims at providing adaptation of system and

data management components at runtime based on application requirements and sys-

tem parameters.

Even though the issue of enabling adaptive resource management for WSN applica-

tions is addressed by some mentioned middleware solutions, they require complete

knowledge of the system. Adaptation at runtime, for most of them, is very expensive

in terms of resource requirements. Most of the approaches required a centralized con-

trol to make adaptation decisions and effect global system behavior. Adaptation by
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code management on individual sensor nodes is very resource intensive and fragile.

Hence, such a centralized system for resource management will not scale with network

size. Task scheduling over individual sensor nodes is also not addressed by most of the

above work. We have focused on the adaptive data/resource management problem

for design of our WSN middleware solution and hence our work (DReL- Distributed

Reinforcement Learning based middleware) falls in the category of Data/Resource

Management as shown in Figure 2.1. We have used a reinforcement learning based

bottom-up approach which is inherently distributed, autonomous and adaptive to

dynamic changes prevailing in WSN. The rest of the chapters in this dissertation

provide detailed description of our middleware framework.

2.3 Resource Management in Wireless Sensor Networks

In this section we provide related work focusing on the resource management

problem in WSN. This work can be divided into the following categories:

2.3.1 Rule/Predicate logic based

Here a set of rules are pre-programmed on individual nodes. A rule is fired if

all conditions/parameters included in the rule predicate evaluates true and this may

result in task adaptation. Work in this category includes [28, 6, 29]. This is a simple

technique but requires that all state conditions be known in advance, when adaptation

might be necessary. Also it can get very complex with a large number of nodes and

high dynamics, when the system state is changing at a high rate. Also the effect

of rule based adaptation at local sensor nodes on global WSN system/application

is not considered. Generic Role Assignment (GRA) scheme [28] considers sensor

nodes in the WSN system taking on certain roles in the network based on their

properties such that requirements of a given role are satisfied. GRA uses rules to
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encode node behavior and implements an algorithm to specify a set of roles that a

node can assign to itself depending on its local and neighboring nodes’ state. GRA

provides abstraction to allow specification of roles and rules for their assignment using

a configuration language. Impala [6] uses rules to implement its application adaptor

component. Application adaptor in Impala follows a finite state machine where each

state represents an application and transition between states is governed by rules

represented as parametric expressions. A transition is made from one application to

another if that rule is satisfied. Adaptor also maintains a set of application system

parameters to check for transition rules. FACTS [29] uses abstraction of facts, rules

and functions for their middleware architecture where all information ranging from

sensor readings to state variables is represented as facts. These facts are stored in a

fact repository and processed by rules. Facts, rules and functions are local to each

node of the sensor network and each node runs its own rule engine. Facts are also

been used as medium of information transmission across nodes.

2.3.2 Constraint-satisfaction based

Here, the problem is defined in terms of constraint-satisfaction and sometimes it

is reduced to linear programming with the objective function consisting of optimiza-

tion parameters under given constraints (application requirements). Research work

in [30, 31, 32] are examples of using such a constraint-satisfaction based approach.

Due to the complexity of the system, it is not always possible to reduce our resource

adaptation problem into a linear programming problem without making unreasonable

assumptions. Also it doesn not always allow the distribution, making it impractical

in large scale WSNs. A constraint-guided software reconfiguration approach is pro-

posed in [30] where adaptation is performed by updating software components on

TinyOS motes based on constraints. Here system parameters are expressed as formal
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constraints on QoS parameters that are measured at runtime. Each mote monitors

its local QoS parameters and transmits them to the base station. Base station com-

ponents utilize these parameters to decide whether an adaptation is necessary or

not. If adaptation is required, QoS parameters along with associated constraints are

fed to their model generator to finally output a new software configuration for af-

fected motes, which is then pushed down to those motes. Krishnamachari et el. [31]

modeled various configuration tasks of multi-hop wireless networks as distributed

constraint specification problems. These configuration tasks include partitioning the

network into coordinating cliques, hamiltonian cycle formation and conflict-free chan-

nel scheduling. Authors mapped out the connection between critical power thresholds

in wireless networks and the work on constraint satisfaction and show that the average

problem complexity can be reduced by tuning the transmission power of individual

nodes. A distributed constraint optimization algorithm called Adopt [32] is proposed

for general multi-agent systems. Modi et el. propose a systematic formalization

of the distributed resource allocation problem and a general solution strategy that

maps a formal model of resource allocation into a problem solving paradigm called

distributed constraint-based reasoning. Adopt uses localized asynchronous commu-

nication and makes local decisions based on conservative cost estimates rather than

global certainty which results in a polynomial-space algorithm.

2.3.3 Agent negotiation/Auction based

Research in this category ([33, 34, 35]) mainly includes multi-agent systems with

agents being able to negotiate with each other in order to determine the best alloca-

tion. The system consists of one or more mediators responsible for negotiations. Al-

though this approach can lead to efficient resource management, communication and

computational resources required for these negotiations may be sometimes prohibitive
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for their implementation on a resource constrained WSN system. A center-based algo-

rithm called Mediation is proposed in [34] to address the task assignment problem in

distributed sensor networks. Mediation implements an iterative hill-climbing search

in a subset of the solution space by making and sending successive proposals to the

agents of a group. Group members provide responses to the mediator based on the

context of the proposal and the mediator uses these responses to find a satisfactory

solution to the task assignment problem. The mediation algorithm is further ex-

tended to address a) changes during the decision-making process, b) negotiation over

tasks whose utilities are not necessarily additive and c) monitoring and adapting a

solution in a non-stationary environment. A distributed resource allocation based on

dynamic coalition formation and coalition strategy learning is presented in [35]. In

this scheme, agents attempt to operate autonomously with incomplete information

about their potential collaborators. Synchronization of actions across multiple agents

is achieved by forming coalitions via multiple 1-to-1 negotiations. However, because

of uncertain properties of WSN, coaltions formed will be suboptimal and satisficing.

To allow adaptation to environment dynamics, each agent is capable of multiple levels

of learning. This includes case-based learning to learn how-to negotiate better and

reinforcement learning to learn how-to form a better coalition. In our work, we also

utilize multiple-level of learning but it is mainly based on reinforcements as a result

of local actions and global outcome. Forming an explicit coalition warrants excessive

communication and computation overhead and is not feasible on resource constrained

sensor nodes and hence we do not require any explicit coalition formation.

2.3.4 Utility/Market based

Here the purpose is to define a utility function mapping optimization parame-

ters over a number of participating nodes to a real value and maximize these functions
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under given constraints. The problem of solving this utility function can further take

the form of a linear programming problem which can then be addressed by distributed

or centralized approach.

Byers et el. [36] were the first to introduce utility functions to define global objectives

of WSN applications along with a cost model for energy consumption. Rather than

adopting a best-effort model, authors used a model where a node makes heuristic as-

sessments based on mostly locally available information. The model is further driven

by objective functions that maximize the utility of sensor networks over their lifetime.

Although the simplistic model presented by Byers et el. was significant, routing algo-

rithms and heuristics presented by them were very primitive and cannot be applied to

real-world WSN applications. Our approach of allowing individual nodes to maximize

their utility functions and representation of cost model is inspired by their work.

A utility based sensor network design using techniques from mechanism design and

game theory is presented in [37]. Sadagopan et el. focused on continuous data gath-

ering applications that construct a spanning-tree rooted at the data sink, with two

global objectives, namely load balance and energy balance. They have attempted

to address the same problem that we are interested in, i.e. designing local util-

ity functions for sensor nodes so that each node selfishly optimizing its local utility

function leads to optimization of a desired global objective function. But they have

concentrated on theoretical aspects of developing a game-theory based algorithm for

constructing a load-balanced spanning tree in the network and their work does not

address issues in development of a generic framework for sensor network management

which is our focus in this dissertation. Mainland et al. [38] proposed a market based

approach called Self-Organizing Resource Allocation (SORA) for resource allocation

in sensor networks. Each sensor node in SORA acts as an agent that tries to maximize

it’s payment by undertaking a set of actions. Each action can result in some energy
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consumption and can also produce some goods with an associated price. Agents re-

ceive feedback on their actions in the form of payment which drives their behavior.

Their work is closest to our approach as they also use reinforcement learning by in-

dividual nodes for the task scheduling problem. But they employ a simple heuristic

model for learning utilities and do not consider any state based learning, resulting

in a reactive system with only one state. We claim that exploiting learned utility

values along with the state knowledge can result in a more efficient and responsive

system. Also they don’t provide any mechanisms to ensure desired global behavior

of the WSN application. Our results in Chapter 3 and 4 show comparison of DIRL

with SORA and validate our claim.

Even though each of the approaches mentioned above can provide efficient re-

source management, they suffer from some pitfalls as described. Most of them require

a centralized mechanism which is not scalable and robust for many real world WSN

applications. None of the techniques described in previous sub-sections try to address

uncertainty which is inherent in dynamic networks. Furthermore, most of them re-

quire a careful implementation of algorithms on a case-by-case basis which may be

quite difficult in sensor networks. Therefore, a generic framework that can enable a

large set of applications with autonomous adaptation and minimum communication

overhead is required. We address the issue of designing such a resource management

framework in this dissertation.

2.4 Sparse WSNs

Solutions for adaptive resource management and energy-efficient data collection

for sparse WSNs have already been considered in the literature. However, in most

cases these issues have been considered separately.
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In the context of opportunistic networks, the well known message ferrying ap-

proach was proposed in [39]. Power management has been addressed by [40], where

a general framework for energy conservation is introduced. The proposed solution,

which can also exploit knowledge about the mobility pattern of the MDC, is evaluated

in terms of energy efficiency and delivery performance. However, as the proposed solu-

tion is devised for opportunistic networks, it cannot be used without being redesigned

in the sparse WSN scenario considered in this work.

Many solutions have also been conceived specifically for WSNs. While many

papers focus on the mobility of the MDC [41, 42], some works actually address the

problem of energy efficient data collection from the sensor nodes’ standpoint. For

example, [43] considers a periodic wakeup scheme for discovery and a stop-and-wait

protocol for data transfer. A stop-and-wait protocol for data transfer is also used in

[44], where the MDC is assumed to be controllable. A different solution is investigated

in [45], under the assumption that the MDC has a completely predictable mobility.

A performance evaluation of data collection jointly considering both discovery

and data transfer is presented in [46, 47, 48]. The authors consider a periodic wakeup

scheme for discovery and a selective retransmission scheme for reliable data transfer.

In addition, they provide a very simple characterization of the energy efficiency on

the basis of how predictable the mobility pattern of the MDC is.

Approaches such as [41, 42, 44] are not applicable when the MDCs are part of

the environment – e.g., when they are buses or cabs. On the other hand, research

works focusing on the performance analysis of the data-collection process [45, 43, 49,

46, 47, 48] rely on the assumption that the operating parameters are chosen prior to

deployment, and do not change with time. Clearly, these approaches lack flexibility, as

they require an a priori characterization of some network parameters, e.g. the mobility
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pattern of the MDC, the duration of the contacts and the message generation rate.

In addition, the chosen parameters cannot adapt to changing operating conditions.

An adaptive data collection protocol has been considered in [50]. However, the

corresponding analysis is limited only to the scenario where the sensor can transfer

all buffered data in a single contact. In addition, the impact of MDC mobility is not

considered at all. In this work, instead, we provide an adaptive strategy suitable to

data collection in WSNs, even when there is only a little knowledge on the mobility

pattern of the MDC.

Knowledge-based approaches to data collection for WSNs with mobile elements

have been proposed in [51, 52]. In [51] the WSN is assumed to be rather dense, so

that nodes can organize into clusters. Within each cluster, a specific node operates

as a proxy, i.e., it collects data from the other nodes in the cluster and relays them to

the MDC. After detecting the presence of the MDC in their proximity, proxies initiate

a reinforcement-based routing process so that messages are relayed to the destination

while it traverses the network. In contrast, [52] exploits reinforcement learning for

discovery purposes, in the different context of sparse WSNs where nodes operate as

peers. Specifically, nodes scan for neighbors and use the number of encounters as a

reward. The reward is mapped to a time-based domain using context of time of the

day. Then, sensor nodes perform discovery according to the likelyhood of the other

peers to be in contact, according to their energy budget. Although both [51] and [52]

use reinforcement learning for data collection, they do not specifically address the

problem of sparse WSNs with MDCs. In fact, the approach in [51] is more focused on

routing, and assumes that the network is dense enough to form clusters of nodes. On

the other hand, the solution in [52] is suitable to sparse WSNs. However, it considers

sensor nodes as mobile peers. Instead, we are considering here WSNs where nodes

are static, except for a number of MDCs.
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The TinyLime [53] middleware has been proposed for the specific scenario of

sparse WSNs. TinyLime is based on a tuple space model, an implementation of the

distributed shared memory paradigm for distributed computing. The original tuple

space model is extended to the scenario where multiple MDCs collect data from sensor

nodes which are not densely deployed in the network. To this end, no assumption

is made on network connectivity since nodes can even be isolated from each other.

TinyLime provides mechanisms to perform data aggregation and tune the activity of

nodes in order to save energy. However, the focus of TinyLime is on their proposed

programming abstraction rather than on adaptation and resource management.

2.5 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine-learning and is concerned

with determining an optimum policy that maps states of the world to the actions that

an agent should take in those states so as to maximize a numerical reward signal [54].

The agent receives a numerical reward as a consequence of it’s action which provides

a reinforcement signal. The agent tries out different actions in order to learn what

actions yield the most reward. An action is selected either based on past experiences

(exploitation) or using exploration. RL is very useful for interactive/online learning

in dynamic uncertain environments.

In this work, we use Q-learning [9] which is a form of model-free reinforcement

learning. Q-learning uses a single data structure, a utility look-up table Q(s, t) across

states s and tasks t. The utility of performing task t in a state s is defined as

the expected value of the sum of the immediate reward r and discounted utility of

resulting state s′ after executing task t, i.e.

Q(s, t) = E[r + γe(s′)|s, t]
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where e(s′) = Maximum Q(s′, t) over all tasks t. Note that the expected value above

is conditional upon being in state s and performing task t. As ’Q-learning’ is done

online, the above equation cannot be applied directly as stored utility values may

not have converged yet to final values. Hence, in practice, Q-learning is used with

incremental step updates as given by the following:

Q(s, t) = (1− α)Q(s, t) + α(r + γe(s′))

Here α is a learning-rate parameter between 0 and 1. It controls the rate at which

an agent tries to learn by giving more (α close to 1) or less (α close to 0) weight to

the previously learned utility value. This means setting α equal to 1 will make the

agent ignore all previously learned utilities resulting in single-shot learning. γ is a

discount-factor and also varies from 0 to 1. The higher the value, the greater the

agent relies on future reward instead of merely immediate reward.

An important aspect an RL system is the trade-off between exploration and

exploitation. Exploration deals with trying out some random actions which may not

have higher utility in search of better rewarding actions, while exploitation tries to

use the learned utility to maximize the agent’s reward. Most of the RL systems

use exploration with a certain probability ε, which can be a constant value (mostly

around 0.1 to 0.5) or can be derived using some other heuristics like starting with a

high value and gradually decreasing, for example using the Boltzmann equation [54].

A COIN [11, 10, 55] is a large multi-agent system with a well-defined ’world

utility’ function which rates the behavior of the entire system and there is little or

no centralized control. Each agent in the MAS is selfish and runs a RL algorithm.

The system’s global behavior hence is the collective effect of individual agents each

modifying their behavior using an RL algorithm. COIN theory addresses the following
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design problem:

Given the individual agents are maximizing their own (local) utility functions (e.g. Q-

learning), how to design these local utility functions to ensure optimum world utility?

Or how to ensure that agents do not frustrate other agents resulting in lower world-

utility?

The RL algorithms at each agent that aim to optimize their local utilities are

called microlearners. The learning algorithms that update the agents’ utility functions

are called macrolearners. COIN uses game-theory concepts to devise a methodology

for designing/updating local utility functions at each agent so that system will ap-

proach near-optimal values of the world utility. COIN theory proves that a collective

system which is factored and has higher learnability, eventually reaches a Nash Equi-

librium point when all nodes are fully rational in optimizing their utility functions.

This Nash Equilibrium point is also the Pareto optimal point of the system. We will

address concepts used by COIN as well as its application to WSN in Chapter 4.

2.6 Directed Diffusion

Directed diffusion [12, 13] has been popular among researchers in wireless sensor

networks (WSNs). The data-centric nature as well as the ability to perform effective

task and data dissemination in WSNs using only localized interactions among neigh-

boring nodes, as facilitated by directed diffusion, has been widely accepted [4, 56].

Directed diffusion is mainly a network-layer communication paradigm for data

dissemination from source to sink using interest (task description) gradients setup

during interest propagation. It is a data-centric approach where a sink broadcasts

its interest to all other sensors as shown in Figure 2.2(a). Task description consists

of a list of attribute-value pairs specifying applications variables of interest. Each

sensor node stores the interest entry in its cache. Each entry contains gradient fields,
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Figure 2.2. Directed Diffusion (a) publishing of interest, (b) exploratory data broad-
cast to sink and (c) Data dissemination across reinforced path.

one per each neighbor from which the interest was received. As interest propagates

throughout the sensor network, a gradient is setup from a source to a sink sensor node

as shown in Figure 2.2(b). A node capable of providing the data acts as a source and

begins to send exploratory data towards sinks using multiple gradient paths. The

lowest delay gradient path is then reinforced by the sink. Data dissemination from

source to destination then uses this reinforced path as shown in Figure 2.2(c).

This original form of directed diffusion is found to suffer from large resource

overheads [57] because of interest as well as exploratory data flooding throughout

the network. Two other types of routing protocols were proposed in [57]: (a) Push

diffusion where the sinks become passive, with interest information kept local while

sources become active and exploratory data is sent throughout the network (without

interest gradients). (b) One-phase pull diffusion where interests are diffused similar
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to the original (also called two-phase pull diffusion) protocol, but instead of sending

exploratory data towards all gradients, each sensor node directly sends data over the

preferred gradient. Both the above protocols are designed to improve performance of

different classes of applications, i.e. push diffusion in the presence of many sources

and sinks (nodes cross-subscribed to each other) with occasional data publication

while one-phase pull in case of many sources publishing large amount of data with

fewer sinks. One-phase pull however assumes symmetric communication links be-

tween source and sink, which is not true for most WSNs. Chapter 6 describes our

DReL framework to generalize benefits offered by all these protocols (without their

disadvantages) in the form of single unified interface to application developers and

can be applied to a variety of application classes.

2.7 Summary

In this chapter, we provided background and literature review on various topics

associated with the work in this dissertation. We have discussed challenges, require-

ments and design principles for middleware frameworks for wireless sensor networks.

We have provided detailed classification of middleware frameworks available to date

and how our work compares with them. We have next concentrated on resource

management aspects for WSN and provided a classification of work in this area. We

have also given a brief background on reinforcement learning and Q-learning as well as

multi-agent systems. We briefly mentioned COIN theory and its applicability to learn-

ing in co-operative multi-agent systems. We have also described directed-diffusion

which we use as a communication paradigm for task, data and reward distribution.

These techniques provide the basis for our framework and are further discussed in the

remaining chapters.



CHAPTER 3

ADAPTIVE RESOURCE MANAGEMENT USING DISTRIBUTED

INDEPENDENT REINFORCEMENT LEARNING

In this chapter, we present a simple reinforcement learning based framework to

address the issue of dynamic resource adaptation in wireless sensor networks (WSNs).

WSNs can be modeled as a multi-agent system (MAS) with each sensor represented

as a goal-oriented agent. Standard reinforcement learning (RL) techniques (e.g. Q-

learning) can be applied directly to MAS. In MAS reinforcement learning can take

any of the following two forms [58]: a) Independent Learners- where the learning algo-

rithm is applied in a classic sense ignoring the presence of other agents; and b) Joint

Action Learners (JAL) - where agents try to learn in conjunction with other agents by

coordination through game-theoretic approaches and considering their joint actions.

Claus and Boutilier [58] have shown that ’even though JAL have much more informa-

tion at their disposal, they do not perform much differently from independent learners

in straightforward application of Q-learning to MAS’. Use of JAL involves much more

communication and processing overhead and may be an over-kill for WSNs. Hence our

focus in this chapter is limited to independent learners where each sensor node acts

as an individual interacting with the rest of the environment without consideration

of other nodes. All other nodes are considered part of the environment.

The main idea of DIRL is to allow each individual sensor node to self-schedule

its tasks and allocate its resources by learning their usefulness (utility) in any given

state while honoring application defined constraints and maximizing total amount of

reward over time. The advantage of using independent learning is that no commu-

34
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nication is required for co-ordination between sensor nodes and each node selfishly

tries to maximize its own rewards. Global optimization parameter that application

is interested in can be specified in terms of individual task rewards at a sensor node.

Thus, if an application needs to optimize energy usage, each task’s reward function

can be a combination of task outputs as well as energy consumed for performing that

task.

3.1 Assumptions

We make the following assumptions in designing our model:

1. Each node is independent and as such actions of one node doesn’t affect other

nodes in the system.

2. Each node is capable of performing only one task at a time.

3. A node is only allocated with a set of tasks it’s capable of executing, i.e. ini-

tial task allocation depending on sensor node type (in case of heterogeneous

network) is done apriori.

Assumption 1 above is quite restrictive as many WSN applications may have sensor

nodes tightly coupled and may directly affect each other. We use this constraint to

lay out the initial DIRL framework requiring no communication overhead and then

remove this constraint in next chapter where we address global optimization and

effect of node’s action on system wide utility. Assumption 2 means that sensor node

is single threaded as is true with many real-world sensor modules available today.

This is not a restriction as our approach can be utilized in environments supporting

multi-threaded nodes. We address and remove the constraint noted by Assumption

3 in Chapter 6 where we design a complete middleware framework with support for

task distribution and task allocation.
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Figure 3.1. Elements of RL applied to WSN.

3.2 Mapping RL elements to resource management problem

In order to apply RL to our resource adaptation problem, we will need to define

our problem in terms of the elements of RL. The elements of RL system and their

mapping to our problem are as follows:

• Agent : As mentioned earlier each sensor node corresponds to an agent in multi-

agent reinforcement learning (MARL).

• Environment : The world surrounding the sensor node, with which it interacts

with.

• Action: An agent’s action in this context is the application task to schedule.

Application is deployed on a sensor node in the form of a set of tasks that a

node can perform and each node schedules one task during each time cycle.

For example an agent may have the following set of actions: transmit, receive,

sample, alarm, actuate, aggregate etc.

• State: A set of application defined variables and system variables constitute

a node’s state. For example, one can include system variables like number of

neighboring nodes, residual energy, mobility, capability for outbound/inbound

communications etc. Application specific variables such as sensor readings,

signal strength etc., may also be part of the state. Number of states in a
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system can grow exponentially with increase in state variables and most of the

time it is not practical to enumerate all possible states in advance. DIRL uses

weighted hamming distance as a method to classify group of similar states and

thus reducing number of system states that it needs to keep track of.

• Policy : An agent’s policy determines what action it will take in a particular

state. In our case, this policy determines which task to execute in the perceived

sensor state. We have defined policy that consists of predicates as well as

exploitation/exploration strategy, as will be discussed later in this section.

• Reward function: It provides a mapping of agent state and corresponding action

to a reward (typically, a real number) that contributes to the utility. This is how

an agent guided through its learning process with an objective to contribute

to the goal. Each agent’s goal is then to maximize total reward over time.

In DIRL, this reward function needs to map application defined optimization

parameter (e.g. energy usage, bandwidth utilization, network lifetime etc.) into

a numerical reward, as this is the goal that each agent tries to achieve. Each

task in DIRL implements a simple reward function which gives the amount of

reward (positive or negative) obtained during each execution of that task. For

example, if the task is receive, then its reward will be a function of number of

messages actually received during its execution as well as amount of resources

consumed that it is trying to optimize. This reward function can be as simple

as returning a pair of constant values or may be complex considering various

optimization constraints.

• Value function: This is an important aspect of any RL system. It defines what

is good for an agent over long run including current as well as possible future

states and not just immediately as described by reward function. But essentially,

it is built upon reward function values over time and hence its quality totally
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depends on reward function. We use Q-learning, a form of RL that has intrinsic

value function defined.

Figure 3.1 illustrates the above elements along with interactions among them.

3.3 DIRL Framework

DIRL is based on Q-learning [9], a form of model-free reinforcement learning.

Q-learning is quite simple, demands minimal computational resources and doesn’t

require a model of the environment in order to operate. Hence it is ideal for im-

plementation on resource-constrained sensor nodes. Along with the simplicity, it

also supports state-based learning allowing sensor node to quickly adapt when node

moves from one state to other. Each sensor node in DIRL performs task and resource

management by executing a Q-learning based algorithm.

As outlined in Section 2.5 Q-learning uses a single data structure, an utility

look-up table Q(s, t) across states s and tasks t, which stores knowledge acquired by

the agent over time in the form of numerical utilities. For online Q-learning, utility

table is updated incrementally using the following:

Q(s, t) = (1− α)Q(s, t) + α(r + γe(s′)) (3.1)

where, α ∈ 0, 1 is a learning-rate parameter that control’s agent’s learning rate.

γ ∈ 0, 1 is a discount-factor.

In DIRL, we have used a simple heuristic where exploration probability at any point

of time is given by

ε = minimum(εmax, εmin + (Smax − S)/Smax)− (iii)
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Figure 3.2. Task Scheduling in DIRL.

where εmax and εmin define upper and lower boundary for exploration factor respec-

tively, while Smax represents maximum number of states (as obtained from applica-

tion) that DIRL will try to map and S represents current number of states already

known. Thus the above heuristic allows initial exploration with a higher rate and

gradually decreasing over time as DIRL is able to map/discover more states. Note

that some minimum exploration is required at all times to allow a node to dynamically

reconfigure in case of environmental changes.

In DIRL, each node chooses a task to execute at each time cycle either by

exploitation or exploration. But, all tasks may not be executable at all times. For
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example, aggregate task may not be able to execute if there are no readings available

to aggregate. Also DIRL needs to honor certain application constraints like latency,

quality of readings etc., while scheduling tasks. In order to achieve this, DIRL allows

each task to be associated with an applicability predicate that needs to be evaluated

true in order for that task to be executed. Thus a task is chosen for execution only if

its applicability predicate returns true. Again with aggregate task, if application has

constraints on maximum latency of a reading, then one can include this constraint in

applicability predicate for aggregate task. Figure 3.2 shows the flow diagram of task

scheduling using our exploration/exploitation policy along with task’s applicability

predicate at a particular time-step τ .

Another important characteristic of a RL system is how it handles temporal

and structural credit assignment problem [59, 60]. Temporal credit assignment is the

problem of propagating reward backwards in time while structural reward is related

to propagating reward spatially across states in order to define notion of similar

states. Q-learning and its extensions provide support for temporal credit assignment

problem dealing with delayed reward [61]. It is important to resolve structural credit

assignment problem as otherwise each node will end up with enormous state-space

to work with, which is not practical for wireless sensor networks. DIRL uses simple

weighted hamming distance between two states in order to resolve structural credit

assignment problem. While defining a state representation in the form of system

and application variables, application also specifies how much weight each variable

carries. This weight specifies to DIRL, how much change in that variable is important

for defining state difference. Thus if an application’s state representation consists of

variables V1, V2, .., Vn with corresponding weights W1,W2, ..,Wn, then DIRL uses this
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Figure 3.3. DIRL Algorihtm performed by each node.

information to determine if two given states s1 and s2 are similar or not, by calculating

hamming distance between them as follows:

H(s1 − s2) = W1 ∗ |(V1(s1)− V 1(s2))|+W2 ∗ |(V2(s1)− V2(s2))|+ ··

+Wn ∗ |(Vn(s1)− Vn(s2))|

If this hamming distance is less then a threshold value then two states s1 and

s2 are considered to be similar and has only one entry in Q data-structure.

DIRL needs the following as inputs from the application:

• Set of tasks that application needs to perform in some priority order. Note here

that priority will be important only until Q-values are not established or if the

two tasks have similar Q-values.
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• Associated with each task, an applicability predicate incorporating any appli-

cation specific constraints and reward functions guiding towards optimization

goal.

• A state representation consisting of a combination of system and application

variables, along with their weight that will be used in determining weighted

hamming distance to aggregate similar states.

• Maximum number of states that DIRL should try to explore. This gives an

upper bound on number of states in the system and DIRL will not try to

identify any more states beyond this number. If the need arises, one can tune

hamming distance threshold to accommodate new states into existing set of

similar states.

Once the above information is available, DIRL performs the algorithm given in Figure

3.3.

3.3.1 DIRL Framework using WoLF algorithm (DIRLWoLF)

In previous section, DIRL framework was presented based on Q-learning as

underlying learning algorithm. We claim that our approach of applying reinforcement

learning to resource management in WSNs is generic and can utilize any learning

algorithm. To validate this claim, we also implement DIRL on top of Win Or Learn

Fast (WoLF) [62] algorithm. WoLF uses game-theoretic concepts to properly apply

reinforcement learning to multi-agent systems. In Q-learning, each agent is acting

independently ignoring the presence of other agents. But in most WSN applications,

agents (sensor nodes) require to interact with other agents and hence they need

to adapt to other agents’ behavior. Since other agents also learn and adapt their

behavior, the optimal set of actions for each agent are changing with other agents’

adaptation. Bowling and Veloso in [62] show that even though agents employing
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Q-learning are rational, they may not converge to an equilibrium policy in multi-

agent settings. They proposed WoLF principle which utilizes a variable learning rate

approach to achieve both rationality and convergence in multi-agent environment.

The principle idea of WoLF is to learn quickly when losing (when doing worser

than expected) and cautiously when winning. This helps in convergence by giving

more time for other agents to adapt to changes in any agent i’s policy which may

appear beneficial. At the same time agent i is allowed to adapt quickly when other

agents’ policy changes that is harmful. WoLF PHC (Policy Hill Climbing) uses two

learning rates δl > δw. The agent uses one of these parameter based on whether

it is currently winning (δw) or losing (δl). Along with current expected utilities (Q

table) as in Q-learning, WoLF also maintains current average policy and updates the

average policy based on above learning rate δ ∈ (0, 1]. With δ = 1, WoLF becomes

equivalent to Q-learning. Thus at the end of each time-step after executing action t,

average policy π(s, t) is updated as follows:

π(s, t) = π(s, t) + δst (3.2)

Losing or winning of an agent is determined by comparing current expected utility

(Q value) of taking an action with an expected utility of average policy. For further

details about WoLF algorithm, please refer to [62].

3.4 Application using DIRL: Object Tracking

The DIRL design has been motivated by the need for generalization so that

various classes of WSN applications can be built on top of it. Applications which

require autonomous adaptation in dynamic environments benefit the most from DIRL.

We will next show how an object tracking application can be implemented using DIRL
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framework described in the previous section. We have chosen this application as it is

widely used in WSN literature concerned with middleware developments [33, 38, 26]

and can help with comparative analysis.

Tasks involved in object tracking application along with the corresponding re-

ward function and applicability predicate are defined below:

• sample- Take a sensor reading which in this case is signal strength of any target

object.

Reward Function: (noOfSensedEvents ∗ expectedPrice)− energySpent

Applicability Predicate: remainingEnergy > threshold

• transmit (Tx)- Transmit a message to next hop towards the base-stations.

Reward Function: (noOfMsgsTransmitted ∗ expectedPrice)− energySpent

Applicability Predicate: noOfOutboundMessages > 0

• receive (Rx)- Turn radio to receive mode to listen for incoming messages.

Reward Function: (noOfMsgsReceived ∗ expectedPrice)− energySpent

Applicability Predicate: always

• aggregate- Aggregate two or more local and remote same target readings into

single reading (we used simple last value as our aggregation function).

Reward Function: (noOfSamplesAggregated ∗ expectedPrice)− energySpent

Applicability Predicate: noOfSamples > 1 and timeFromLastReporting <

ncycles

• sleep- Put CPU and radio in sleep mode to minimize battery consumption.

Reward Function: expectedPrice− energySpent

Applicability Predicate: always

Table 3.1 shows expected price set for these tasks. Here we want to optimize en-

ergy usage among all sensor nodes as can be seen from the reward function which

penalizes each task with the amount of energy consumed. The separation of expected
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Table 3.1. Expected price for tasks in object tracking application

Name Expected Price

Aggregate 0.2
Tx 0.1
Rx 0.2
Sample 0.05
Sleep 0.001

price from reward function allows dynamic external tuning of reward function and

hence the overall system behavior by changing the expected price part (only) of the

reward function over-the-air [38]. But changing reward function may also invalidate

learned utilities (Q-values) and hence Q-values may not converge to correct equilib-

rium. Refer [9] for more details on convergence of Q-values. But it is possible to

discard learned utilities and start over again whenever reward function is updated.

Also note that expected price and reward functions are designed in order to reward

node only if task execution results in success. Thus if a node schedules task receive,

then node will get positive reward only if one or more messages are received in that

time step, otherwise it will receive penalty proportional to energy consumed during

the time step. Applicability predicates are quite simple and self-explanatory. Here,

we don’t want a node to perform sampling if its energy is below a certain threshold,

to ensure the node’s availability for routing messages when required. This can be

easily implemented in applicability predicate for the sample task as shown above.

Our state representation consisted of the following variables and their weights:

have one or more neighbors (1.0), successful in recent sampling (1.0), successful in

recent receive (1.0), signal strength (or quality of reading) (0.1). We used threshold

hamming distance of 1.0 and maximum number of states was set to 5.
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We would like to point out here that it is also possible to apply Q-learning

technique hierarchically in order to schedule sub-tasks for any given task. For an

example for the sample task above, consider a sensor node with radar having three

heads [33] and at any time it can activate only one of them to detect target. These

three heads can be considered as three sub-tasks for sample task. Thus DIRL can be

used to learn utilities of activating each head in different state and thus determining

which one will be the best in a given state. Similarly transmit task may need to

choose one neighbor out of n next hop neighbors towards base-station. DIRL by

applying Q-learning to sub-tasks can learn which neighbor provides highest utility

for successful transmission of message to base-station.

3.5 Simulation and Analysis

To demonstrate feasibility of the proposed DIRL scheme as well as the working

of our object tracking application, we use J-Sim [63] as our simulation software. J-Sim

has support for simulation of wireless sensor networks [64].

3.5.1 Simulation Setup

Figure 3.4 demonstrates a simple simulation scenario consisting of a total of

5 nodes: one base station, three sensor nodes and one object (target) node. Target

object is initially closer to node 2 and then as time progresses it moves away from

node 2 and finally towards node 3.

We assume here that the network topology is known (is determined outside of

DIRL) and that node 1 is acting as an intermittent node that connects both nodes 2

and 3 to the base-station. Note here that each node has no information of what tasks

are better for them and they try to learn over time utility of their tasks. Thus node 2

doesn’t know that it needs to sample (as object is nearby) and node 1 doesn’t know
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Figure 3.4. Simulation scenario for object tracking.

that it needs to act as a router in this scenario. Figure 3.5 shows task executions

for 3 sensor nodes. Node 2 immediately learns that it is getting paid to sample (as

target is nearby), while node 1 after some time learns that it is getting paid to listen

and route messages. In the middle of simulation time, as target is out of reach of all

sensor nodes, they all are sleeping as none of the tasks are getting rewarded. Again

towards the end, node 3 starts sampling while node 1 acting as router once again.

This shows that nodes effectively learn what task they are supposed to perform in

order to achieve their goal. DIRL can help resolve many task scheduling and task

synchronization related problems prevalent in WSN.
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Figure 3.5. Task Executions for 3 sensor nodes.
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Figure 3.6. Convergence of Q-learning (DIRL).

Figure 3.7. Convergence of WoLF (DIRLWoLF).

3.5.2 Convergence of Reinforcement Learning Algorithms

Convergence is a very important property for reinforcement learning algorithms

as ability to converge ensures that an algorithm will stabilize to an equilibrium policy

and hence provides demarcation of learning phase. In our framework, as we are

interested in mainly real-time adaptiveness of sensor nodes and not much of the

equilibrium policy, convergence is not much of concern. Though, it is important to

analyze system’s behavior in terms of convergence as some applications may require

some sort of equilibrium guarantees.
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Figures 3.6 and 3.7 show convergence behavior of Q-learning (DIRL) andWoLF-

Policy Hill Climbing (DIRLWoLF) respectively. For DIRLWoLF, the plot is depicting

δ which is the value used to update average policy using equation 3.2. For DIRL,

δ is the difference between Q-value after and before the update, thus at the end of

time-step τ , δ can be given as

δst = Q(s, t)τ −Q(s, t)τ−1 (3.3)

For convergence, δ value for each state/action pair should converge. But as can be

seen in Figure 3.6 Q-learners always oscillate whenever node has any activity even

if same state has been explored and learned earlier. In case of DIRLWoLF (Figure

3.7, it does some initial oscillation but quickly builds up average policy and converges

for each new state. Hence WoLF has better convergence compared to Q-learning.

This means in steady-state, WoLF can potentially provide more predictable results

compared to Q-learning.

3.5.3 Performance Analysis

In this section we present comparative performance analysis of DIRL and DIRL-

WoLF against three other schemes as follows:

1. SIMPLE : Each node performs a simple scheduling algorithm without trying to

adapt or conserve energy by sleeping. Each node is always active and available

to perform Sample or Rx or Tx tasks. As nodes are always active, this scheme

should provide the best tracking of the target object but at the cost of worst

energy efficiency and provides an upper bound to energy usage.

2. RANDOM : Each node executes an available task at any given state which is

randomly choosen from uniform distribution. This scheme provides a base line
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Table 3.2. Parameters used for simulation

Parameter Value
Minimum exploration (εmin) 0.05
Maximum exploration (εmax) 0.3
Discount Factor:Q-learning(γ) 0.5
Learning Rate:Q-learning (α) 0.5
Delta Winning:WoLF (δw) 0.4
Delta Lossing:WoLF (δl) 0.8
Time-step (τ) sec 10
Energy Sample (J) 8.41 x 10−5

Energy Route/RX+TX (J) 8.42 x 10−3

Energy Sleep (J) 8.0 x 10−6

to compare reinforcement learning based algorithms which should be always

better than random task execution.

3. SORA: This scheme uses a simple heuristic based reinforcement learning as

described in [38].

We present results for a scenario with 10 sensor nodes each of which is up to two hops

away from base-station and random target movement over a grid of size 500 x 500m.

Parameters used for simulation are given in Table 3.2. All results are average of 10

runs and are shown with confidence interval of 95%.

As the goal of our framework is defined in terms of rewards, one way to measure

its performance is using metric of total reward over time. Figure 3.8 shows total

reward over time for all the five algorithms studied. Note here that total reward is

captured by adding individual rewards of all nodes at each time-step. We can see

here that DIRL outperforms all other algorithms in terms of maximizing individual

node reward immediately followed by SORA. DIRLWoLF has little lower individual

reward compared to DIRL and SORA. DIRL and SORA have higher learnability and

are faster to respond/adapt to changes, while DIRLWoLF uses average policy which is
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Figure 3.8. Total of rewards over time for random target movement.

Figure 3.9. Total of rewards over time for stationary target.

cautiously updated and hence slower to adapt. SIMPLE and RANDOM as expected

earn the lowest rewards. Figure 3.9 gives total reward for a different scenario where

target is stationary and hence global system state is not changing that often. In

this case, DIRLWoLF does perform better compared to DIRL and SORA. This can

be mainly attributed to better applicability of DIRLWoLF in multi-agent settings

where policy learned by each node is dependent on adaptation done over time by

other nodes and are not independent as assumed by DIRL. If given enough learning

time, DIRLWoLF helps improve total reward by utilizing variable learning rate and

allowing more time for each agent to adapt to other agents’ change in policy.
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Figure 3.10. Global system-wide reward over time.

In WSN applications, goal is to maximize a system-wide optimization metric.

Thus, if we measure performance in terms global reward achieved by entire system,

this will give better picture of how system as a whole is performing while individual

nodes are attempting to selfishly improve their rewards. Global reward is measured as

a function of number of distinct tracking events received by sink and quality (signal-

strength) of tracked objects. If there are redundant events for same target for same

time-step, only one will contribute towards global reward. Figure 3.10 presents such

global reward with respect to time for all five schemes. As we can see, in this case

DIRL and DIRLWoLF outperforms all other schemes. Global reward achieved by

SORA settles at a lower value (after initial spike) compared to that of DIRL and

DIRLWoLF as later ones can exploit state-based learning and quickly adapt to current

state for which the utilities are already available. Again as expected SIMPLE has the

lowest global reward.

Figure 3.11 compares the five schemes in terms of activity ratio. Activity ratio is

defined as a ratio of number of time-steps sensor nodes were active (e.g. executing

Sample, Rx or Tx tasks) to total number of time-steps. Thus an activity ratio of

1 denotes that all nodes in system are always active, using maximum energy and
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Figure 3.11. Activity ratio of all nodes.

Figure 3.12. Energy consumption per track per node.

don’t try to conserve energy by sleeping. DIRL and DIRLWoLF have lowest activity

ratio as they manage to conserve energy by adaptively scheduling Sleep task when

execution of other tasks are not useful and do not generate any reward. SORA on

the other hand has a very high activity ratio and is not able to conserve energy as

it is more greedy and is short-sighted as it looks at only the current state. Under

SIMPLE scheme, all nodes are always active and hence has activity ratio of 1.

Energy consumption per tracking event per node is plotted in Figure 3.12.

Energy per tracking event with respect to object tracking application provides a bet-

ter metric to allow comparison of energy efficiency of DIRL against other existing

schemes. Lower energy consumption denotes higher energy efficiency. DIRLWoLF
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Figure 3.13. Average tracking error.

uses only 0.005 Joule per event per node and hence has highest energy efficiency com-

pared to all schemes studied, followed by DIRL. In this case also DIRL outperforms

SORA. SIMPLE provides worst case value for energy efficiency with highest energy

usage as all nodes are always active.

Finally, average tracking error is given in Figure 3.13 calculated over all target

readings obtained at base-station for one simulation run. Both DIRL and DIRLWoLF

has low tracking error and compares to that of SIMPLE scheme which provides lowest

possible value for tracking error but using three times more energy1. Thus, even

though DIRL provides highest energy efficiency, it doesn’t compromise functionality

i.e. accuracy in tracking the target. SORA has the worst tracking error as tracking

events are missing many times and then received in burst resulting in poor object

tracking.

3.6 Conclusion

In this chapter, we advocate the use of reinforcement learning for task adap-

tation and scheduling in wireless sensor networks. We have presented distributed

1As all nodes are active, they are always able to track target whenever in range.
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independent reinforcement learning (DIRL) framework based on simple but effective

and proven Q-learning technique to enable development of autonomous and adap-

tive WSN applications. Our framework has intrinsic support to handle dynamics

and uncertainty prevailing in WSNs. Dynamism is handled by intelligent exploration

throughout system lifetime while uncertainty is tackled by probabilistic actions based

on learned utility values. We have also exemplified our generic framework with an

object tracking application and shown how such application can be implemented on

top of DIRL. We present performance analysis of DIRL and results of simulation

studies demonstrate its superiority over other approaches.



CHAPTER 4

ENSURING GLOBAL OPTIMIZATION WITH MULTI-TIER

REINFORCEMENT LEARNING

The main advantage of using independent learning in DIRL, as presented in

last chapter, is that no communication is required for co-ordination between sensor

nodes and each node selfishly tries to maximize its own rewards. This works fine when

each node in WSN application is acting on its own and does not need to co-operate

or compete with other nodes. In other words, if all nodes are acting independently

and their actions do not affect others, then any increase in a node’s utility cannot

decrease any other node’s utility and hence will always increase world (system-wide)

utility which is merely sum of all nodes utilities over all times. As we will see in

the next section, such a system is sub-world factored and will eventually attain a

Pareto-optimal point and hence leads towards our system-wide optimization goal.

Most of the real-world WSN applications need some sort of co-operation among

sensor nodes and hence nodes cannot work independently. In this case, increase in

utility of an individual node may result in reduction of other nodes’ utilities and

hence may not increase world utility. It is also possible that such system can lead to

the Tragedy of the Commons (TOC) phenomenon or Braes’ Paradox [10], wherein

individual’s selfishness leads to significantly lower global utility. Such phenomena

can be avoided by carefully designing agent’s utility functions as well as constraints

under which agent performs task selection. In other words, we need to make sure that

individual’s utility is aligned’ with the global (or world) utility, i.e. any increase in

agent’s private utility because of its action will also result in increase of world utility.

57



58

A real-world example of this would be human economy [11], wherein each individual

tries to maximize his private utility in the form of income, career advancement etc.

If there are no constraints over how individuals can operate and maximize their

utility, he can operate at cross purposes to other human beings and thereby leading

to the downfall of the global utility (say GDP). Here government regulations act as

necessary constraints and modifications to human utility function in order to ensure

its alignment to global utility. Regulations are designed such that any increase in

human utility will also cause increase in global growth of the economy.

In our framework, we do not have to deal with virtues of trust and honesty

among sensor nodes as the design of utility functions of all nodes in the system is

in our hand and hence they can be coded’ to be honest. Nevertheless, the problem

of attaining sub-optimal system wide utility is still required to be addressed, even if

nodes are honest. This is mainly because of imperfect/partial knowledge that each

node has for the rest of the system. This partial knowledge of one node can cause

it to perform an action which may not benefit the overall system. Hence, key to

achieving higher global utility lies in the design of private (individual node) as well

as global utility functions such that they are aligned. In this chapter, we investigate

the adaptation of COIN theory to address this critical problem in sensor systems.

Another drawback of using DIRL in real-world application is determining re-

ward functions/price settings. It is difficult to investigate different aspects of system

dynamics and choose reward settings for each resource/task. Also these settings need

to be changed on the fly whenever overall system state and/or application require-

ments change. Hence, hand-tuning of reward-settings is not acceptable. COIN based

macro-learning can help learn the right settings for these rewards (private utilities)

for individual nodes and no domain expertise is required to set them. Macro-learning
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can update micro-learners utility function as and when application state/requirement

changes and always steer them toward global optimization goal.

In the next section, we present further details about COIN theory and how we

have adapted it to the problem of resource management in sensor systems in order

to steer system towards higher global utility and to provide some type of guarantee

towards achievement of system goal.

4.1 Concepts of COIN theory in WSN Resource Management Context

The problem of resource management in WSN is setup in terms of COIN in

order to apply its concepts. Consider a WSN consisting of N nodes, evolving across

a set of discrete, consecutive time steps τ ∈ {1, 2, 3, ..}. Let ξnτ be an element of

a vector space Znτ , representing state of a node n in our WSN at a particular time

step τ . Here state of a node consists of not only its application and system variables,

but also node’s actions that are directly visible to the outside world (including other

nodes in the system). Following this convention, ξτ ∈ Zτ denotes a global state of our

system, combining actions/variables from all nodes, at a particular time step τ , while

ξ ∈ Z is the vector of global state at all times. ξ can also be referred as world-line

[11] in space Z over all time steps. The goal of our framework is then to determine an

optimal world-line ξ by maximizing some system-wide global utility function of ξ i.e.,

G(ξ) and then steering system along that world-line. Each node n in our framework is

trying to maximize its private utility function say qn(ξ). Thus, we need to show here

how and under what conditions, the framework can determine optimal ξ, given each

node trying to maximize its private utility function qn(ξ) (Q-learning value function).

The salient features of COIN theory [11, 55] along with their applicability to

the resource management problem in WSN are described below:
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• A collective is defined as a multi-agent system wherein each agent is adaptively

trying to maximize its own private utility function, while at the same time there

is system-wide performance criteria defined to rate the behavior of the entire

system. Thus, our system of wireless sensor networks comprising individual

sensor nodes adaptively trying to maximize their utility function, in order to

achieve system-wide goal is a collective.

• Most of the collective system focuses on forward problem of how the localized at-

tributes induce a global behavior and thereby determining system performance.

COIN on other hand addresses the inverse problem of designing a system to

induce behavior that maximizes world utility. This is done by designing either

private utility functions or incentives to private utility functions. Likewise, our

objective is to design reward/utility functions used by individual sensor nodes

in the WSN so that system-wide utility can be maximized.

• Subworlds are sets making up an exhaustive partition of agents. For each sub-

world, w, all agents in that subworld share the same subworld utility function

gw(ξ) as their local utility functions. Accordingly, consider each subworld to

be a set of agents that collectively have the most effect on each other. In this

situation, by and large, agents cannot work at cross-purposes, since all agents

that affect each other substantially share the same local utility. WSN appli-

cations mainly being data-centric, a chosen subworld is a set of sensor nodes

involved in a data stream i.e. from data-source to data-sink. For example, all

nodes involved in a particular data stream from data sensors, to aggregators

and collectors will be part of single sub-world as they all have immediate and

considerably high effect on each-other and hence share single utility function.

This sub-world definition suggests that sub-world formation is dynamic and

can change along with the state of the system. Figure 4.1 marks three such
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Figure 4.1. Data-stream subworlds in WSN for object tracking application.

data-stream subworlds in a sensor network comprising of 10 nodes in an object

tracking application.

• Associated with sub-worlds is the concept of a (perfectly) constraint-aligned

system. That is a system in which any change to the state of the agents in sub-

world wi at time τ will have no effect on the states of agents of sub-world wj

(i 6= j) at times greater than τ . Intuitively, a system is constraint-aligned if no

two agents in separate sub-worlds affect each other, so that the rationale behind

the use of sub-worlds holds. Most of the real-world systems are not perfectly

constraint-aligned and same is the case with WSN. A change of state in a node

involved in one data-stream (and hence one sub-world) may affect state of other

node in near-by data stream. But the effect here will be probably much less

compared to the effect on a node in the same data-stream. Nevertheless, this is

an assumption that needs to be experimentally validated.
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• A subworld-factored system is one where for each sub-world w considered by

itself, a change at time τ to the states of the agents in that sub-world, when

propagated across time, results in an increased value for gw(ξ) if and only if it

results in an increase for G(ξ). Mathematically, a system is subworld-factored if

the following holds true for all pair of states ξ and ξ́ that differ only for subworld

w:

gw(ξ) ≥ gw(ξ́) ⇐⇒ G(ξ) ≥ G(ξ́)

For a subworld-factored system, the side effects on the rest of the system of w’s

increasing its own utility do not end up decreasing world utility. In our problem,

if we model a system where each sensor node, as a subworld, selfishly tries to

maximize its private utility, then system will not be subworld-factored (assum-

ing sensor nodes are not totally independent). This is because action of one

node may be harmful to other more critical nodes and hence may reduce world

utility. However if we model a system where each data-stream is a subworld

trying to maximize its utility using appropriate subworld utility function (e.g.

Wonderful Life Utility Function [11]) gw(ξ) will not reduce world utility because

of relative independence with other data-streams for the period of sub-world’s

existence. Hence such a system can be considered as subworld factored.

Another requirement of application of COIN theory is to have private utility functions

with higher learnability. Learnability is a measure of how well an RL-algorithm can

learn to optimize the utility function. For example, learnability of utility functions

for team game (where reward of each node is same as that for all nodes in the system

at any time step), is much less than those of self-only utility functions. Thus, learn-

ability of a utility function will be high if it is easy to interpret effect of node’s action

in the reward obtained. In DIRL, each node uses self-only utility functions where it

gets immediate feed-back on the action taken and hence enjoys higher learnability.
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On the other hand in COIN, all the nodes in a data-stream subworld share the same

utility and hence learnability of each node is lower than that of self-only utility func-

tions, but considerably larger than those in a team game. This is because number of

nodes in single data-stream is just a fraction of total number of nodes in WSN. Won-

derful Life utility function plays an important role in designing a subworld-factored

system because of the fact that a constraint-aligned system with wonderful life (WL)

subworld-utilities is subworld-factored. If CLw(ξ) is defined as vector ξ modified by

clamping the states of all agents in subworld w across all time to a null vector (or say

0), then WL utility of w is:

gw(ξ) = G(ξ)− CLw(ξ) (4.1)

This definition of WL utility is same as setting WL utility to world utility when

considering that subworld w had never existed. Thus a subworld’s utility will be high

only if that subworld contribution has also increased world utility. We are using WL

utility for macro-learning among sensor nodes which in turn is used to set DIRL’s

private utility functions i.e. qn(ξ).

COIN theory proves that a collective system which is subworld-factored and has

higher learnability, eventually reaches a Nash Equilibrium point where all nodes are

fully rational in optimizing their utility functions [11, 55]. COIN theory shows that

this Nash Equilibrium point is also the Pareto optimal point of the system. From

the above description, we can see that a resource management framework using a

model of data-stream subworlds with Wonderful Life (WL) subworld utility function

is subworld-factored and also has high learnability. Hence such a system will also

eventually reach Nash Equilibrium which is also the Pareto optimal point and hence

will avoid upsets like Tragedy of Commons (TOC).
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We will next describe how such a data-stream subworld scheme including macro-

learning and settings of private utilities can be introduced to DIRL based resource

management framework.

4.2 Resource Management Framework using Two-Tier Learning

Our design goal is to create a system using a bottom-up approach where each

sensor node is responsible for task selection, rather than top-down approach (where

some central entity dictates nodes what task to execute) used by many other middle-

ware solutions [1, 5, 7]. The main advantages of bottom-up approach are pro-active

and real-time adaptation, no centralized processing requirement for task allocation

and minimal communication overhead. But principal challenge of bottom-up ap-

proach is how to make sure that system is actually meeting the global application

goals and is not just acting randomly or creating chaos. We resolve this issue by using

two-layer learning: micro-learning as used by individual nodes to self-schedule their

tasks and macro-learning as used by each data-stream subworld to steer the system

towards application goal by setting/updating rewards for micro-learners.

As mentioned earlier, the goal of resource management framework is to deter-

mine best allocation of task to sensors/resources so that application defined optimiza-

tion goals, such as energy savings, network lifetime longevity, bandwidth preservation

etc., can be achieved while simultaneously honoring application’s QoS metrics. QoS

may be defined in terms of quality of measured variables (sensed and processed data)

or other application constraints like latency, reliability etc. Hence, the system’s global

utility function G(ξ) should be a function of success towards achieving optimization

goal as well as application’s QoS metrics which in-turn are based on variables of in-

terest to the application. Also G(ξ), which represents global utility over all time, can
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be expressed here as a sum of rewards
∑

τ Rτ (ξτ ), where Rτ is global reward and ξτ

is global state at time-step τ . Thus, Rτ are temporal translations of one another, i.e.

G(ξ) =
∑

τ

Rτ (ξτ ) (4.2)

As global utility function may take many forms and is application specific, we allow

application to define Rτ (ξτ ) given the current state of the system as represented by

measured variables (data) and optimization parameters. All optimization parameters

are represented in the form of running-sum of numerical rewards attached to each

data packet. It is also possible to provide generic implementation of Rτ (ξτ ) based

on QoS requirements specification and total of rewards from all data-streams. Each

micro-learner uses Q-learning as in DIRL and hence their private utility function

qn(ξ) is a Q-learning value function as given by equation 3.1. Macro-learners on the

other hand use COIN based wonderful life utility function. All sensor nodes that are

part of one data-stream create a subworld and hence will share same utility (reward-

for single time unit). From 4.1 and 4.2, wonderful life reward of each agent (node)

part of subworld w at time-step τ is given by:

gwτ (ξτ ) = Rτ (ξτ )− CLw(ξτ ) (4.3)

In this case, CLw(ξτ ) is the world reward Rτ (ξτ ) after removing all data values that

have been reported by data-stream (subworld) w. This nulls out the effect of data-

stream w on the world reward, but considers the actual contribution towards improv-

ing world reward Rτ (ξτ ). Suppose data-stream w is providing values of a data variable

which by itself is not significant, but has higher effect on overall global application

goal, w gets higher reward as required. On the other hand if w is contributing to
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redundant information provided by data-stream ẃ with higher reward, the wonderful

life reward of w will be lower as desired, hence discouraging its use. This reward

value is used to update reward function of micro-learners for the task they executed

for data-stream w. In order to manage resources using this COIN based framework,

we made following extensions to the application input for DIRL described in Section

3.3:

• Instead of hand-tuning expected prices associated with reward function of each

task (which we found very difficult to do given various system dynamics), in this

scheme, expected price is set by macro-learner using WL utility of its sub-world.

Again we have used numerical price here to allow macro-learner to update node’s

private utility functions without incorporating new code.

• Application also provides a global reward function Rτ(ξτ) which returns global

reward for a time-step τ , given the current state of the system as represented

by measured variables (data) and optimization parameters.

Each sensor node in the system has two agents: 1) micro-learner which is self-

contained, trying to maximize its private utility using local information only and

2) macro-learner which is part of a subworld containing other sensor nodes linked in

a data-stream and sharing same utilities. Once application input is available, system

enters into Initialization phase. Note here that initially there are no learned utilities

available with either micro-learners or with macro-learners and hence system needs

to go through some sort of initialization. Initialization is possible using any of the

following three options:

• Self-exploration and system learning : Reinforcement learning based system al-

ways uses some balance of exploration (trying out some random actions in search

of better rewarding actions) and exploitation (choosing actions based on build

utilities) to build up its knowledge base. During initialization phase, the rate
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of exploration will need to be higher compared to that of exploitation. Hence

decisions made by the system during this phase will be more random and may

not lead towards a system goal. A given WSN system and the application using

it may be flexible enough to allow such initial self-learning phase and thereby

building utilities over time. In this type of system, self-learning will be the

viable choice.

• Using domain knowledge: It is possible to incorporate domain expertise to

provide effective and faster initialization phase. This can be done in combination

with self-learning for micro-learners. Domain knowledge can be provided to the

system in the form of initial expected price (utility values set by macro-learners)

for each task. This is similar to providing initial estimate of task’s worth for

given sensor node. These values can also be determined using application model

simulation using self-exploration as described in first option above and then fed

to the deployed system. As mentioned earlier, micro-learners have very high

learnability and hence can build their utilities quickly.

• Employing an available sensor-selection scheme: We can also utilize any of the

various sensor-selection techniques as published in related work e.g., MidFusion

[65], MiLAN [5] etc. Results from these techniques can be used to initialize

macro-learners with expected price for individual sensor nodes.

After initialization, micro-learners and macro-learners have a knowledge base to start

decision making and the system is then considered to be in Normal operating phase.

During normal phase, micro-learner tries to maximize its private utility function by a

modified version of DIRL algorithm as given in Figure 4.2. Micro-learner uses either

exploration or exploitation for task selection at each time step τ based on exploration

factor and uses hamming distance between two states as a criterion to distinguish

separate states allowing reducing state space of the sensor node as done in DIRL.
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Figure 4.2. Algorithm performed by Micro-learner of each node.

Micro-learner gets an immediate reward after task execution at each time-step which

it uses to update its Q-learning value function as well as to update a running sum

of reward (rwτ ) on the data-packet that it acted on. As the reward obtained is a

function of application’s optimization goal (e.g. minimizing energy usage), rwτ will

be a measure of how well each data-stream is performing towards application’s goal.

Micro-learner also updates a running sum of cost (cwτ ) as obtained from task’s cost

function. A tuple consisting of chosen task ID and data-packet ID at time step τ

is recorded with macro-learner so that macro-learner can provide future feedback on

this task execution.

Data-sink (base-station/controller) is responsible for determining wonderful-life

reward gwτ (ξτ ) (given by 4.3) for time-step τ for each data-stream. Here global reward

Rτ (ξτ ) is calculated using application specific or generic global reward function given

data streams output (measured variables) and total of running-sum of rewards as
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Figure 4.3. Sequence Diagram for Macro-learning process.

well as cost from all data-streams (acting as a measure of optimization parameters).

CLw(ξτ ) is also calculated using same global reward function but using all data-

streams other then w and discarding reward obtained from w. The difference between

WL reward and running sum of local utility based reward of data-stream given by

δw, is next determined for each data-stream w using equation 4.4.

δw = gwτ (ξτ )− rwτ (4.4)

This value δw is then passed down to participating nodes in w along the reverse path

of the data-stream. As each macro-learner gets its reward from data-sink, it may

arrive after few time-steps. Hence macro-learner maintains a recent history of tuples

recorded by micro-learner (a tuple for each time-step), until it receives reward for

that time-step. Received reward is matched with recent history using packet id and

is used to update utility value (expected price of micro-learner) for the associated
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task. Update to expected price ep for a task is done using the learning rate α as used

for Q-learning in chapter 3. Following equation is used for the update.

ep = (1− α)ep + αδw (4.5)

This process and associated interactions are illustrated in Figure 4.3.

The value of δw may need to be transmitted to each node participating in the

data-stream w and may be a costly operation. To minimize this, we introduced the

optimization to publish WL reward only if it’s significant as described below:

Negative Reinforcement if δ < −m < 0 (4.6)

Positive Reinforcement if δ > m > 0

No Reinforcement if m < δ < m

Here, m is determined empirically based on application’s reward and cost functions to

adjust the rate of WL reward updates. Value of m can be varied to tune the effect of

macro-learning on the system and as such, a very high value of m may turn off macro-

learning all-together. If both qn(ξ) and gw(ξ) are correlated (i.e. generate reward value

using same scale/metrics), it is possible to design our global reward function (using

reward and cost values of data-stream) so that δw → 0, as our system approaches

a steady state. For example, if the value of gwτ (ξτ) is high for a data stream w,

this will result in high utility for participating node qn(ξ). This will further increase

for data-stream reward rwτ for subsequent data collection and thereby reducing the

value of δw. When δw < m, no reinforcements are sent out and system converges for

current global state. These ensures that WL updates to entire data-stream will be

required only when there is a global state change resulting in a need for adaptation
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Figure 4.4. Overview of activities between application and WSN using two-tier rein-
forcement learning.

and learning the new optimum task scheduling strategy. Updates will decrease and

eventually diminish as system approaches a steady state.

Computation and transmission of reinforcements for macro-learners by sink can

be deferred to a reinforcement window of N time-steps instead of doing at every time-

step τ . Thus sink collects data for a window of N time-steps and computes stream

reward based on all accumulated data in that window. This allows not only efficient

communication but also prevents reward fluctuation by computing global reward over

larger time interval.

Figure 4.4 gives a high-level overview of our framework and interactions with the ap-

plication. As part of application deployment, task graph and associated application

constraints as well as reward and cost functions are dispersed onto the nodes of the

sensor network. Application also provides global reward function to applicable data

sinks. Figure 4.4 also shows optional initialization of sensor node’s local utilities. Ap-

plication can provide variables of interest with their required QoS at any state change.
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From this point onwards, each node takes on the responsibility of self-scheduling their

tasks and allocating resources based on learned local utilities. All data-streams are

evaluated for WL reward at the end of each time-step. WL reward is next distributed

to all the nodes in respective data-stream (if significant as determined by equation

4.6). Sensor nodes participating in data-stream updates their local-utility functions

based on the global WL reward.

The simple set of micro-learner and macro-learner provides each sensor node

the capability to self-schedule tasks, while making sure that the overall system is

being steered towards its optimization goal. This scheme allows a sensor node to

self-adapt to system dynamics and uncertainty inherent in the WSN. Micro-learner

adapts to local state changes (e.g. low battery, neighbor change, nearby target etc)

immediately while on the other hand macro-learner provides adaptation at the global

level with change in global state or application requirement (e.g. change in QoS of

data variables, addition/removal of sensor nodes, etc.). Any such global change ensues

a change in wonderful-life utility of macro-learner which changes utilities learned by

micro-learner in that direction. The changing reward function of micro-learners may

invalidate learned utilities (Q-values) and hence Q-values may not converge faster to

equilibrium [9]. But it is possible to discard learned utilities and start over again

whenever reward function is updated. Also we are more interested in adaptation as

well as convergence of the system as a whole rather than convergence of individual

micro-learners.

4.3 Implementing Real-world Applications

Our design of resource management framework has been motivated by the need

for generalization so that various classes of WSN applications can be built on top

of it. Applications which require autonomous adaptation in dynamic environments
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Table 4.1. Implementation of WSN Applications

Object Tracking Intrusion
Detection

Health
Monitoring

Variables signal strength (SS),
area coverage,
target(s)
position/track

Security threat
confidence level,
area coverage

Heart rate,
respiratory rate,
blood pressure

QoS Re-
quirements

SS greater than
threshold and
coverage and delay
less than threshold

Confidence level
greater than
threshold and
k-coverage

Quality of
measured variables
greater than
threshold

Types of
Sensors

Acoustic, seismic,
video

Motion detectors,
Biometric-reader,
RFID, video

ECG, blood
pressure, blood
flow, EMG etc.

Global
Reward
Function
(Rτ (ξτ ))

f(SS, coverage,
tracking delay)-total
cost of data
acquisition

f(threat confidence
level, coverage)-total
cost of data
acquisition

f(quality of
measured
variables)-total cost
of data acquisition

benefit the most from our framework. We will next show how some of the real-world

WSN applications can be easily implemented over our two-tier RL based resource

management framework. Variables of interest, QoS requirements, involved sensor

types and global reward function for studied applications are given in table 4.1.

4.3.1 Object Tracking

Object tracking application can be deployed on top of heterogeneous WSN

to track one or more objects of interest. This may be to provide surveillance for

environmental monitoring or for a battlefield. Depending on the usage, application

may have minimum sensor coverage area and lifetime requirements. Application

may not need redundant information provided by overlapping sensors. Also tasks

performed by each sensor node (e.g. sampling, routing etc) can be tuned based on

current state of the system, e.g. presence of objects of interest. Hence, by means
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of efficient and continuous adaptive resource management over time, it’s possible

to allow sensors to preserve energy while still meeting application’s requirements.

Tasks involved in an object tracking application have already been described earlier

in section 3.4 along with their reward function. These tasks include transmit, recieve,

sample and sleep. We want to optimize energy usage among all sensor nodes as

can be seen from the reward function which penalizes each task with the amount of

energy consumed. The cost function is ratio of amount of energy utilized for the task

execution to node’s available energy. This cost function allows quoting low cost for

task execution by higher energy node compare to that of a low-energy node. Note

that expected price and reward functions are designed in order to reward a node only

if task execution results in success. Thus if a node schedules task receive, then node

will get positive reward only if one or more messages are received in that time step,

otherwise it will receive penalty proportional to energy consumed during the time

step.

4.3.2 Intrusion Detection

In intrusion detection application, variety of sensors e.g. motion detectors,

RFID, video etc., may be utilized for detecting an intruder; each providing different

level of confidence and can have different cost of data acquisition. Large number and

types of these sensors may be deployed in a given WSN for redundancy as well as

flexibility of choosing the required sensory information. Sensory information required

by the application depends on the state, for an example, on detecting high probability

of intrusion; application may want to utilize video cameras for highest quality of

information. Hence again by properly managing sensor resources, it is possible to

optimize their usage while meeting the requirements of application. High level tasks
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and reward functions for intrusion detection application are similar to that of object

tracking application and are detailed below:

• sense- Sense the environment for present of any intruder (either using motion,

RFID or video sensor)

Reward Function: f(confidenceLevel) ∗ expectedPrice)− energySpent

• transmit (Tx)- Transmit a message to next hop towards the sink

Reward Function: (noOfMsgsTransmitted ∗ expectedPrice)− energySpent

• receive (Rx)- Turn radio to receive mode to listen for incoming messages.

Reward Function: (noOfMsgsReceived ∗ expectedPrice)− energySpent

• sleep- Put CPU and radio in sleep mode to minimize battery consumption.

Reward Function: expectedPrice− energySpent

4.3.3 Health Monitoring

For health monitoring application also a large variety of sensors can be used

each providing one or more health-related variables with different quality as well as

cost. For an example, heart rate can be measure by ECG, blood pressure monitor

or blood flow monitor [5]. But accuracy and quality of each of them is different and

so does the cost of obtaining heart rate. Intelligent resource management can help

in choosing less costly sensors in say normal health state while triggering expensive

but highly accurate sensor in abnormal state. Input from such health monitoring

application as required by our resource management framework is described in Table

4.1. Tasks for health monitoring application are similar to that of intrusion detection

with sense task responsible for measuring related sensed variable (e.g. blood pressure,

heart rate etc) and it’s reward function given as f(qualityOfMeasuredV ariable) ∗

expectedPrice)− energySpent.
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4.4 Simulation Setup

We have again chosen object/entity tracking application for the analysis of our

framework. All simulations are done using J-Sim [63]. Performance of our two tier

learning approach (marked as COIN) is compared against four other schemes:

• DIRL- where there is no macro-learning involved and system consists only of

individual micro-learners as described in chapter 3.

• RANDOM - where each node performs a task randomly chosen from uniform

distribution each time,

• SORA- which uses simple heuristic based reinforcement learning (micro-learning

only)

• SIMPLE - where each node performs a simple scheduling algorithm without

trying to adapt or conserve energy by sleeping. As nodes are always active, this

scheme provides the best tracking of the target object but at the cost of worst

energy efficiency and provides an upper bound on energy usage. This scheme

will always have activity ratio of 1.

• ORACLE - which is an idealistic scheme that assumes each node (magically)

knows exactly what task to perform and there is no overhead involved of any

kind for managing the system. Thus, this idealistic scheme provides us with

a lower bound on energy usage and again best tracking efficiency and accu-

racy. Again this scheme is hypothetical and is used only for comparison of our

performance metrics.

The following performance metrics are considered for our analysis:

• Activity Ratio: Activity ratio is defined as number of active tasks (Sample, TX

and RX) to total number of tasks executed in a WSN system (including Sleep).

A scheme with better resource management should have lower activity ratio as

it should allow system to conserve energy by executing Sleep tasks whenever
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Table 4.2. Parameters used for simulation

Component Parameter Value

Micro-learner Minimum exploration (εmin) 0.05
Maximum exploration (εmax) 0.3
Discount Factor(γ) 0.5
Learning Rate (α) 0.5
Time-step (τ) sec 10

Macro-learner Minimum WL reward (m) 0.25
Reinforcement Window (N) time-steps 10

Radio Energy Sample J 8.41 x 10−5

Energy Route/RX+TX J 8.42 x 10−3

Energy Sleep J 8.0 x 10−6

possible. A system where all nodes are always active will have activity ratio of

1.

• Energy usage per track per node: This metric is heavily used in literature [33, 12]

for measurement of energy efficiency for object tracking application. Hence it is

useful in comparison of energy efficiency of our approach against other existing

schemes. Lower energy usage per tracking event dictates better energy efficiency.

• Average Track Error : This metric captures how well the actual tracking is done.

It is important for any scheme to achieve acceptable performance in terms of

average track error irrespective of the system optimization. This is an average

of difference between a target’s tracked (perceived) position and the actual

position.

• Global Reward : As optimization goal of our framework is defined in the form of

global reward function G(ξ), one way to measure its performance is using metric

of average global reward over time. Global reward function is defined based on

target events that are reported to sink and amount of energy consumed (i.e.

cost of acquisition) as given in Table 4.1.
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Figure 4.5. Convergence of COIN based two-tier learning scheme.

4.5 Simulation Results

Simulation is performed under variey of network and target scenarios. All

results are averaged over 10 simulation runs with different target speed and movement

over the grid. Table 4.2 summarizes other important simulation parameters.

4.5.1 Analysis of reinforcement learning

This section evaluates our scheme in terms of convergence to an equilibrium

state and global reward. Results are shown for a 10 node scenario with a single

target and a grid of 300x300m. Figure 4.5 shows the convergence behavior of our

two-tier COIN based learning scheme based on one simulation run 1. The target

in this test was stationary and within range of multiple sensing nodes. Y-axis in

the figure represents δw (Delta) for different data-streams as given by Equation 4.4.

Some streams in this 10 node scenario have been identified in Figure 4.1. At the

beginning, multiple streams (stream 4,5,7 and 8) report target’s tracking events to

sink. The value of δw for each stream osciallates into positive and negative territory.

This roughly corresponds to the initialization phase described in section 4.2. After

1This behavior is verified to be similar for multiple runs
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Figure 4.6. Global reward over time for a 10 node scenario.

about 2000 sec, δw value stabilizes and in this particular case, system has effectively

chosen stream 4 and other streams reporting redundant target data were turned off to

preserve energy using reinforcement. At this stage, as δw ∈ (−m,m) for all streams,

no more global reinforcement needs to be sent out and corresponds to an equilibrium

state. When the state of system/application changes, we may see some variations

in δw again until system reaches a new equilirium. This behavior shows that our

scheme of two-tier learning is effective in selecting best stream and quickly attains an

equilibrium state.

Global reward metric as defined in previous sub-section is plotted for all five schemes

in Figure 4.6 over simulation time. Target was moving along with grid with a random

movement and a speed of 3.6 kmph. As shown, COIN is able to achieve highest global

reward among all studied schemes and is closest to ORACLE. This shows that COIN

is able to manage system resources appropriately at all times balancing the cost of

acquisition and reward from received data. DIRL is also able to achieve overall higher

global reward and stands next to COIN. SORA shows bursts in global reward value

initially, but settles down at value lower than DIRL and RANDOM. This is caused by

receiving a burst of data all at-once initially (when nodes are able to schedule the right
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Figure 4.7. Energy consumption per track per node over increasing number of target
nodes.

task) and then not being able to track the object at all time. As DIRL and SORA are

based on micro-learning only, sensor nodes try to just maximize their personal reward

at all times and no consideration is given to system wide performance. Hence system

wastes sizable energy in redundant as well as unnecessary sensing and processing.

As expected SIMPLE has the lowest reward as SIMPLE results in maximum energy

consumption.

4.5.2 Varying number of target nodes

In this scenario, 10 sensor nodes are placed over 250x250m grid with each sensor

upto two hops away and number of target objects is varied from 1 to 3. All target

objects are placed randomly over the grid and have random movement at a speed of

3.6 kmph.

Energy consumption per tracking event per node is displayed in Figure 4.7. COIN

is closest to ORACLE for all cases and uses just about 0.0025 Joule of energy per

track for single target object which is less than half of SORA and DIRL. SIMPLE

scheme doesn’t try to conserve any energy and hence gives upper-bound to energy

consumption which is more than 6 times compared to COIN. As number of target
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(a)

(b)

Figure 4.8. (a) Activity ratio, (b) Average tracking error; over increasing number of
target nodes.

nodes increases, number of tracking events also increases and hence energy consump-

tion per track decreases for all schemes. Though COIN continues to outperform all

other schemes.

Figure 4.8(a) presents activity ratio of all sensor nodes in the system for multiple

target objects. COIN maintains a very low activity ratio of just above 0.2 even when

number of target increases. This shows effectiveness of COIN in resource manage-

ment over all scenarios. Activity ratio for DIRL and SORA increases with number of

targets. RANDOM has activity ratio of about 1/3 (0.66) which is equal to probability

of randomly scheduling SLEEP out of three tasks from a uniform distribution. As all
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nodes are always active, SIMPLE scheme has activity ratio of 1. Figure 4.8(b) shows

average track error. If an object is not successfully tracked by a scheme all the time

(as nearby nodes may be sleeping to conserve energy), that scheme will have higher

tracking error. SIMPLE scheme has the lowest tracking error mainly because it has

activity ratio of 1 and nodes are always active. Despite the lowest activity ratio,

COIN still manages to perform within close limits to DIRL and TEAM. But DIRL

does perform little better than COIN in terms of tracking error in general while con-

suming more energy. This is caused by negative feedbacks received by data-streams

that may be non-optimistic at time-step τ (effectively asking them to conserve en-

ergy), but can be critical at time-step τ + k, if target object moves towards their

direction. This issue can be prevented by using more sophisticated global reward

function which uses object’s track to predict its future direction and provide reward

accordingly. We are currently investigating design of such tracking scheme.

4.5.3 Varying number of sensor nodes

We will present our results for 3 different scenarios consisting of 5, 10 and 15

nodes respectively, with sensors up to two hops away from base-station over a grid size

ranging from 200x200m to 500x500m. There is a single target object moving in the

grid with a random movement and a constant speed of 3.6 kmph over the simulation

run of 12000 seconds.

Figure 4.9 plots the energy consumption per track per node with increasing

number of sensor nodes in the system for all studied algorithms to understand how

they scale. SIMPLE and RANDOM have highest energy usage and that also increases

with increase in number of sensor nodes. Plot shows that difference in energy con-

sumption between COIN, DIRL and SORA is insignificant with 5 sensor nodes, with
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Figure 4.9. Energy consumption per track per node over increasing number of sensor
nodes.

DIRL using minimal energy. This is because with less sensor nodes, most of them

have to be relatively active and hence difficult to conserve energy by keeping activity

ratio low. But as the number of nodes increases, the difference in energy consumption

between these schemes is huge. While energy consumption for all schemes increases,

COIN is able to lower energy usage with increase in sensor nodes. This shows that

COIN is very effective in managing system resources as redundancy and overall size of

WSN increases. This is mainly achieved by providing global feedback to sensor nodes

in associated data-stream and thereby reducing the redundancy in data collection as

well as re-enforcing the more favorable data-streams.

Figure 4.10(a) compares performance of studied algorithms in terms of activity ra-

tio. Our two-tier reinforcement learning scheme (COIN) has the lowest activity ratio

closely followed by DIRL, and hence resulting in the lowest energy consumption. As

mentioned earlier, with increasing number of sensor nodes, COIN’s overall activity

ratio decreases. Figure 4.10(b) shows average tracking error for each scheme. In this

case DIRL outperforms COIN while SORA has the worst performance as it has a

bursty behavior and is not able to track target at all times. Tracking efficiency of

DIRL is better than COIN particularly when system changes are very dynamic (only
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Figure 4.10. (a) Coin activity ratio, (b) Average tracking error; over increasing num-
ber of sensor nodes.

few time-steps), as by the time global knowledge is learned and applied, system may

have moved to a different state, e.g. a very fast and randomly moving target in a

field.

4.6 Conclusion

We presented a scheme for resource-management in WSN using a bottom-up

approach where each sensor node is responsible for task selection instead of top-

down approach conventionally used by other middleware solutions. This bottom-up

approach using reinforcement learning allows development of autonomous WSN appli-
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cations with real-time adaptation, minimal or no centralized processing requirement

for task allocation and minimal communication overhead. In order to ensure that sys-

tem is actually meeting the global application goals and is not just acting randomly,

we used two-tier learning: micro-learning as used by individual nodes to self-schedule

their tasks and macro-learning as used by each data-stream sub-world to steer the

system towards application goal by setting/updating rewards for micro-learners. We

used COIN theory to enable macro-learning that can steer system towards applica-

tion’s global goal. Simulation results show that two-tier learning as used here can

significantly improve overall performance compared to micro-learner alone or other

traditional schemes. Application of COIN theory for setting micro-learners utilities,

guarantees eventual achievement of Pareto optimal point and avoids system getting

trapped in TOC or other related phenomenon.



CHAPTER 5

RESOURCE-AWARE DATA ACCUMULATION IN SPARSE WIRELESS

SENSOR NETWORKS

In previous chapters we have considered resource management only in tradi-

tional dense wireless sensor networks (WSN) where sensors use multi-hop commu-

nication to send collected data to a sink. There are applications that do not have

such a dense network with sensors connected to form a multi-hop path or applications

don’t need such fine-grained sensing. Examples of such application include monitor-

ing applications in farms, battle-fields, urban traffic and the environment. For such

applications, it is possible to consider a sparse wireless sensor network where the

density of nodes is so low that they cannot communicate with each other through

multi-hop paths. Mobile data collectors (MDCs) are utilized in sparse WSN to make

communication possible between source and sink nodes. MDCs are not resource con-

strainted and are responsible for collecting data from individual nodes by visiting

them in some predetermined or dynamic fashion and optionally disseminating col-

lected data. An MDC can serve either as a Mobile Sink (MS), a mobile node which

is also the endpoint of data collection, or as a Mobile Relay (MR), which carries data

from sensors to a sink node or an infra-structured AP. In either role, the MDC moves

throughout the WSN, and in most cases it is autonomous.

Sparse WSNs with MDCs have many advantages when compared to traditional

dense WSNs. First, costs are reduced, since fewer nodes can be deployed, as there

is no need for a connected network. Second, as data is collected directly by the

MDC from sensor nodes, reliability is improved as a result of less congestion and

86
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collisions. Finally, data collection by MDC can extend the WSN lifetime, as the

energy consumption is spread more uniformly in the network with respect to dense

(static) WSN, where the nodes close to the sink are usually more loaded than the

others.

Although MDCs are not power constrainted and can help extending WSN life-

time, individual sensor nodes sensing data are significantly resource constrained and

hence energy efficiency for sensor nodes is critical. To address energy constraints,

sensor nodes normally adopt duty cycling where each sensor node is awake for only

small fraction of time while conserving energy by sleeping at other times. In order

for data collection process to be successful, a sensor node needs to be active when

MDC is in its communication range and needs to detect MDC’s presence. Thus, con-

tact detection and energy conservation are two major challenges for data collection in

sparse WSN. Energy efficiency can be achieved by adaptively tuning the duty cycle

to MDC’s arrival pattern. If a node can execute at a higher duty cycle when prob-

ability of MDC being in communication range is high, contact detection ratio can

be significantly improved. This requires an efficient MDC discovery process that can

learn MDC’s mobility pattern given high level of uncertainty and use that knowledge

to adaptively tune sensornode’s duty cycle.

In this chapter, we address the problem of the MDC discovery by exploiting

DIRL. We propose an resource aware data accumulation (RADA) framework based

on DIRL that learns MDCs mobility pattern over time and utilizes this knowledge

for autonomous tuning of node’s duty cycle. Reinforcement learning is very useful

for interactive/online learning in dynamic uncertain environments as found in sparse

WSNs with MDCs. DIRL is quite simple, demands minimal computational resources

and doesn’t require a model of the environment in order to operate. Hence it is ideal

for implementation on resource-constrained sensor nodes. RADA classifies duty-cycle
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into three tasks viz. very high, low and very low duty cycle and learns the usefulness

of each duty-cycle at any given state. RADA’s state definition allows it to capture

time and associated MDCs mobility pattern. By using a generic state definition

for reinforcement learning, RADA is able to learn a wide-range of MDC mobility

patterns. We show that the proposed solution is adaptive, generic and efficient for

resource-aware data collection in sparse WSNs with MDCs.

5.1 System Overview

Before introducing the resource aware data collection framework, it is neces-

sary to present our reference network scenario and the targetted applications for our

framework. In this section, we first describe a reference scenario with details on dis-

covery and data transfer phases involved in the data collection process along with

the terminology used. Next, we provide brief classification of sparse WSNs applica-

tions for which we are designing a generic solution and corresponding MDC mobility

scenarios.

5.1.1 Reference network scenario

The reference network scenario is depicted in Figure 5.1(a). We assume that

the network is sparse so that, at any time, the MDC can communicate with at most

one sensor node and also a sensor node communicates with only one MDC at any

instance of time, even if multiple MDCs are present.

In the discussion below, we consider data collection process between the MDC

and an arbitrary static node Ni, i ∈ {1, N}, where N is number of nodes in the sparse

WSN. Data collection takes place only during a contact, i.e., when sensor node Ni

and the MDC are within communication range of each other. The area within the

communication range of a sensor node Ni is called contact area, and the overall time
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(a) (b)

Figure 5.1. Reference scenario (a) and an example of contact (b).

spent by the MDC inside the contact area is called contact time. During a contact,

messages exchanged between the MDC and a sensor node experience a certain message

loss, denoted by p(t). We also assume that the MDC mobility is not controllable. We

further define tour (and denote it with T ) as the smallest time duration after which

the mobility pattern repeats [51] and inter-contact time as the actual period of time

elapsed from the beginning of a contact to the beginning of the subsequent one.

The overall data collection process can be split into three main phases [40].

Figure 5.1(b) shows an example of contact. As MDC arrivals are generally unpre-

dictable, a sensor node enters a discovery phase for the timely detection of the MDC.

Successful MDC detection by the sensor node Ni is not immediate, but requires a

certain amount of time, called discovery time, and denoted as dT in Figure 5.1(a).

Upon detecting the MDC, the node Ni switches from the discovery state to the data

transfer state, and starts transmitting data to the MDC. As a result of the discovery

process, the node cannot exploit the whole available contact time for data transfer.

The portion of the contact time that can be actually used for subsequent data transfer

is called residual contact time and is referred to as cT . At the end of the data transfer
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phase, the node may switch to the discovery state again in order to detect the next

MDC passage. However, if the MDC has a (even partially) predictable mobility, the

node can exploit this knowledge to further reduce its energy consumption [40]. In

this case, the node can go to sleep until the next expected arrival of the MDC. In any

case, the node Ni may be awake also when the MDC is out of reach. The amount of

time spent by a node in the discovery state while the MDC has not yet entered the

contact area is called waiting time.

Similar to [48], we will use an asynchronous discovery protocol and an ARQ-

based protocol for data transfer. In detail, the MDC periodically sends special mes-

sages called beacons to advertise its presence in the surrounding area. The duration

of a beacon message is equal to TBD, and subsequent beacons are spaced by a beacon

period, indicated with TB. In order to save energy during the discovery phase, the

node operates with a duty-cycle δ, whose active time TON ≥ TB + TBD so that a

complete beacon can be received during the active time, provided that node wakes

up when the MDC is in the contact area.

The node Ni enters the data transfer phase upon receipt of a beacon from MDC.

While in this phase, the node remains always active to exploit the contact as much

as possible. On the other hand, the MDC enters the data transfer phase as soon as

it receives the first message sent by the sensor node, and stops beacon transmissions.

The communication protocol adopted during the data transfer phase is selective repeat

[66], i.e., a window-based ARQ protocol with selective retransmission, whose window

size is assumed to be equal to W messages. Note that the acknowledgement messages

in the ARQ scheme are used not only for implementing a retransmission strategy, but

also as an indication of the MDC presence in the contact area.

The data transfer phase ends either when the sensor node Ni has no more

messages to transmit during a contact, or the MDC is not reachable any more. Node
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Ni assumes that the MDC has exited the contact area when it misses Nack consecutive

acknowledgments.

5.1.2 Application mobility scenarios

Mobility scenario exhibited by an application depends both on application re-

quirements as well as the choice of MDC. Next we classify various mobility scenarios

based on sparse WSN applications.

• Deterministic: In this scenario, the MDC arrivals are periodic and the inter-

contact time (time between two arrivals) is fixed. A controlled MDC used for

data collection will fall in this category. A battle-field surveillance applica-

tion using controlled airborne or ground vehicles as MDC and an agricultural

farm monitoring application using a mobile robot are examples of applications

exhibiting deterministic mobility.

• Gaussian: Here also MDC arrivals are periodic but the inter-contact time varies

and can be considered to follow a normal distribution. This mobility pattern

corresponds to the case where the MDC arrivals are rather predictable, but

suffer from a certain spread [40]. Example applications include habitat moni-

toring where a forest patrol makes periodic patrols along certain paths in the

forest and battle-field surveillance using a semi-controlled/manual vehicle for

data collection.

• TimeOfDay : This scenario covers MDC whose arrival patterns are not periodic

and depends on time of the day (and/or day of the week). Exact time of

arrival may still not be completely deterministic and suffer from a spread like

Gaussian mobility. Applications requiring data-collection from single MDC like

postal service truck, city tour bus, college/company campus bus etc., can be

modeled using this scenario.
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• TimeOfDay-Multiple: Unlike above mobility scenarios which are constrained

to mobility pattern of single MDC, this scenario includes application involving

large number of MDCs arrivals depending on time of the day. Applications like

city traffic monitoring, national park monitoring etc. can mainly be modeled

with this scenario where a number of MDCs arrive with their patterns dependent

on time of the day.

From the above classification, it is clear that various applications exhibit distinct mo-

bility patterns and hence any approach to learn these mobility patterns may require

unique strategy for efficient discovery and data collection process. We have created a

generic framework based on reinforcement-learning that can be utilized for all above

applications without requiring distinct algorithms/strategies for each application sce-

nario. Next we describe basic elements involved in our framework.

5.2 Resource Aware Data Accumulation (RADA) strategy

In this section, we define an adaptive strategy based on DIRL for resource-

efficient data collection in sparse WSNs. The goal of this strategy is to maximize

the number of contact detections and the percentage of data successfully transferred

during contacts, while minimizing the energy consumption of sensor nodes. Next we

describe the task and state definitions which RADA takes as an input and are the

building blocks of an application.

5.2.1 RADA tasks

In the context of the reference scenario already introduced in Section 5.1.1, we

have identified three major phases involved in data collection process in sparse WSNs,

i.e. discovery, data transfer and sleep. As focus of this work is on the discovery phase,

we have defined the following three tasks, each corresponding to a different duty-cyle
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used for discovering the MDC. In order to make the derivation of tasks more general,

we have defined the actual duty-cycles on the basis of a maximum allowed duty-cycle,

denoted as δmax.

• High Duty-cycle (HD). The sensor is executing at a high duty-cycle, equal to

δmax. Ideally this task should be executed whenever the probability of MDC

being in the contact area is high.

• Low Duty-cycle (LD). The sensor is executing at a low duty-cycle, equal to

0.5·δmax. Ideally this task should be executed whenever the probability of MDC

being in the contact area is low, so that the correspondent energy consumption

is very low as well.

• Very Low Duty-cyle (VLD). The sensor is executing at a very low duty-cycle,

equal to 0.1 · δmax. Ideally this task should be executed whenever the proba-

bility of MDC being in the contact area is very low, so that the correspondent

energy consumption can be considered as almost negligible with respect to the

maximum allowed duty-cycle.

Eventhough our task definition only deals with duty-cycle tuning during discovery

phase, efficiency of data-transfer phase highly depends on success of discovery phase.

For data-transfer to be successful, it is eminent to have MDC discovered as early

as possible to maximize the residual contact time. As can be seen from the above-

mentioned task definitions, the MDC discovery and successful data transfer process

can be maximized while minimizing energy usage if we can adaptively schedule above

tasks based on learned probability of MDC being in contact. RADA learns this

probability in the form of utilities built by using local rewards. In order to achieve

task scheduling and resource management, RADA executes discovery tasks according

to the algorithm depicted in Figure 3.3 in Section 3.3.
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Each task above may include one or more phases of the data collection process.

The number of executions of discovery and sleep phase depends on the current duty

cycle. For an example, during high duty cycle (HD) task, number of times discovery

phase is executed will be much higher compared to that of VLD task. The data

transfer phase is executed only when discovery is successful and an MDC is in contact.

In order to manage this, we have introduced a state variable ic which is true when

the MDC is assumed to be in contact with the sensor. In detail, ic is set to one

when the discovery phase ends with success, i.e., a beacon is successfully received by

the sensor. ic is set to zero when the sensor has lost a number Nack of consecutive

acknowledgement messages as a result of the data transfer phase, thus assuming

that the MDC has exited the contact area. Hence, the data transfer phase can be

entered only after the MDC has been detected (i.e., ic = 1), under the constraint that

messages in transmission1 are enough to fill a complete window.

For all tasks scheduled by node, the reward is defined as rt= (nc · ep − 1) · es,

where nc is the number of contacts encountered while executing that task, ep is the

expected price of task for each contact, and es the energy spent. Note that the

expected price is chosen as a multiple of the energy spent for that task, so as to allow

a symmetric evaluation of the reward function. Thus, for each task, the reward is

equal to the expected price ep minus the energy spent es if one MDC is successfully

detected. If no MDC is detected, reward is negative (equal to minus es).

5.2.2 RADA state definition

The state definition is one of the most important characteristics for applica-

tion of reinforcement learning algorithms and provides a context to learned utilities.

1Messages in transmission can be either buffered messages or messages which have been already
transmitted but not yet acknowledged.
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Efficient application of reinforcement learning to any problem depends heavily on

how well the state definition captures the context of what needs to be learnt. As

such, different mobility scenarios as described in Section 5.1.2 may require different

state definition as their requirement of learning context is different. For example,

deterministic and Gaussian mobility scenarios require learning of inter-contact time

between MDC arrivals in order to predict next arrival of MDC, while time-of-day

scenario need to learn MDC’s arrival pattern in terms of hour of the day and is not

dependent on actual inter-contact time. In order to support all mobility scenarios,

we have created a generic state definition involving context parameters for all cases.

This is possible because of usage of weighted hamming distance in RADA for state

distinction. Hence, weights of state parameters can be set at runtime to allow creation

of appropriate learning context required for current application scenario.

In order to learn MDC’s arrival pattern, it is necessary to introduce a temporal

characterization in the state representation of the sensor nodes. On the basis of the

concept of tour, we split the time (as perceived by a sensor) into a number of intervals

called time domains, whose duration is denoted as Td. More specifically, each task

is scheduled for one time domain, at the end of which utilities are updated and the

sensor node evaluates the new state. Following are the state parameters used in our

generic data collection framework.

• icp. Inter-contact period as observed and recorded by the sensor node.

• ir. A boolean denoting whether MDC’s arrival is in time bounded range or not

and is set as below:

ir= true, if (icp− tlc) < Td and false otherwise,

where tlc denotes time elapsed since last MDC contact.

• tod. Time-of-day value of this state (based on time at which node observed this

state).
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More state variables can be added if additional learning context is required. For

example if day of week is also important along with time of the day, one more state

variable representing day of the week can be added to the above set. Note here that

with addition of each variable, state space (based on their weight) and the storage

and computational requirements at sensor node will grow. Hence it is necessary to

evaluate the effectiveness of additional variables in terms of overall performance before

adding them. By default time-of-day variable has zero weight meaning that it will not

have any contribution to the learning context (for deterministic and Gaussian mobility

scenarios). Support for different mobility scenarios based on setting of state parameter

weights allows tackling of change in application mobility scenario at runtime by merely

tuning the weights. Further, setting/tuning of weights can be faciliated by MDC based

on MDC’s mobility configurations.

As all statistics regarding the mobility pattern of the MDC are estimated by

sensor nodes, we added some filtering techniques to avoid misinterpretation of context.

For instance, the sensor might perceive a single actual MDC contact as multiple

observed contacts. To this end, we implemented a simple timeout technique, so that

the sensor considers successful reception of a beacon message as a new contact only

when a certain time has elapsed since the preceding contact detection. Similarly, non-

detection of actual contact would result in incorrect learning of the MDC mobility

pattern. For this reason, we maintained a short history (size 5) of contacts (in terms

of the inter contact time), and used minimum inter-contact time across this history

for state evaluation.

5.2.3 Exploration/Exploitation

DIRL uses the classic exploration and exploitation strategy used in most ap-

proaches based on reinforcement learning to obtain the utilities of the individual
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tasks. In this chapter, the original DIRL exploration 3.3 policy has been improvised

by considering a mobility-aware exploration probability based on number of contacts.

More specifically, exploration factor ε is given by

ε = εmin +max (0, k · (cmax − c)/cmax)

where εmax and εmin define upper and lower boundaries for the exploration factor,

respectively; cmax represents the maximum number of contacts (as obtained from

the application) after which a steady state condition is likely to be reached, while

c represents current number of detected contacts; finally, k is a constant that can

be tuned to control the descending rate to the minimum exploration probability.

Therefore, the heuristic presented above allows initial exploration with a higher rate

and gradually decreases over time as DIRL is able to detect up to cmax contacts. Note

that some minimum exploration is always required, so as to allow a sensor node to

dynamically reconfigure in case of environmental changes.

5.3 Simulation setup

To evaluate the performance of our RADA framework we developed a discrete

event simulator written in Java. In our analysis we considered the following perfor-

mance metrics.

• Discovery ratio is defined as the average of the ratio between the number of

contacts correctly detected by the sensor and the total number of contacts. It

is a measure of the discovery efficiency of considered scheme.

• Residual Contact Ratio is the ratio of residual contact time to total contact

time. This metric captures the effect of discovery phase on data-transfer phase.

If MDC can be detected early enough, the residual contact time will be high
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and hence increases chances of successful data-transfer. Thus, residual contact

ratio is a measure of efficiency of data transfer phase.

• Activity ratio is the ratio between the active time and the total time spent

during discovery2. A low activity ratio indicates low energy consumption as

node tries to save energy by using a low duty cycle.

• Energy efficiency is energy spent by the sensor per each correctly detected MDC

contact. It is computed as ratio of total energy consumed and number of MDC

contacts detected. Energy consumption here includes energy spent in discovery

as well as data transfer phase.

The former two metrics relate to performance in terms of energy whereas the latter

two relate to cost. Thus, an optimal scheme will have highest discovery ratio and

residual contact time while minimizing activity ratio and energy utlization per de-

tected MDC contact. As for the energy expenditure, we implemented a simple model

that characterizes the radio, while we do not address the energy expenditure of the

CPU, since it is almost negligible. Specifically, the energy expenditure of the radio

is calculated as Pstate · Tstate, where Pstate and Tstate denote respectively, the power

consumption of the radio and the amount of time spent in a given state, i.e., receive,

transmit and sleep. We assume that the energy consumption of the radio during idle

periods, i.e., when it is monitoring the channel, is the same as in the receive state. As

for message loss, we used the model considered in [48, 50] and based on experimental

data measured in a real testbed in the same scenario [67].

In order to compare the performance of RADA with other approaches, we also

considered the following schemes.

2In this metric we do not consider the activity due to data transfer. Hence, the activity ratio is a
measure of the average duty-cycle which derives from the executions of the different discovery tasks.
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• FixedHD. Sensor node executes High Duty-cycle (HD) task at all time steps.

This scheme gives an upper bound on performance that other learning based

schemes can achieve but at the cost of higher energy consumption.

• FixedOD. Sensor node executes a duty-cycle equal to average optimal duty-cycle

determined by RADA at all time steps. This allows making a fair comparison

between RADA and fixed duty-cycle approach. Please note here that the av-

erage duty cycle is determined by RADA dynamically, based on the scenario

and, in practice it is not possible to derive it in advance and this approach is

considered only for comparison.

• Simple RL. Sensor nodes use the adaptive node discovery algorithm proposed

in [52].

• Oracle. Sensor nodes have perfect knowledge on MDC contacts, so they do not

perform discovery at all. They start transmitting data as soon as the MDC is

in the contact area and stop transmitting when there are no more data or the

MDC is out of contact.

As for the mobility pattern of the MDC, we considered all the scenarios described in

5.1.2 for our analysis. The first three mobility scenarios i.e. Deterministic, Gaussian

and TimeofDay applies to applications using single MDC while the last scenario

(TimeofDay-Multiple) is for applications involving large number of MDCs. State

parameter weigths are set as per the requirement of application scenarios and are

depicted in Table 5.1.

To derive confidence intervals we used the replication method with a 95% con-

fidence level. In all experiments we performed 10 replicas, each consisting of at least

1000 MDC passages. In the following, we assume a MICA2 series mote [68] as the

static sensor node, and use the related parameters for power consumption. We will

assume that the radio is operating at a link speed of 19.6 kbps bitrate. All other simu-
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Table 5.1. State parameter weights used for simulation

Scenario(s) Parameter Weight

Default values Inter-contact period (icp) 0.005
MDC In Range (ir) 1.0
Time-of-day (tod) 0.0

Deterministic/Gaussian Inter-contact period (icp) 0.005
MDC In Range (ir) 1.0
Time-of-day (tod) 0.0

Time-of-day Inter-contact period (icp) 0.0
MDC In Range (ir) 1.0
Time-of-day (tod) 1.0

Multiple MDCs Time-of-day Inter-contact period (icp) 0.0
MDC In Range (ir) 0.0
Time-of-day (tod) 1.0

lation parameters, chosen according to the methodology used in [48], are summarized

in Table 5.2.

5.4 Simulation results

The performance evaluation of our RADA framework is divided into multiple

parts. For the sake of clarity, in the following we will consider a single MDC (except

in case of Multiple MDCs Time-of-day scenario where multiple MDCs are considered)

which collects data from a single sensor node.

5.4.1 Analysis of reinforcement learning

In this section, we evaluate adaptive task scheduling capabilities of our frame-

work depicting the effectiveness of reinforcement learning in RADA framework. Fig-

ures 5.2(a) and 5.2(b) show number of executions for different tasks for MDC speeds

of 3.6 km/h and 40 km/h respectively over time-steps during initial phase. Overall

simulation was carried on for 18000 time units and was using deterministic mobility
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Table 5.2. Parameters used for simulation

Parameter Value

Maximum Duty-cycle (δmax) 3.0
Minimum exploration (εmin) 0.02
Maximum exploration (εmax) 0.3
Descending rate (k) 0.2
Maximum contacts (cmax) 10
Initial time domain duration (Td) 100 s
Message generation interval 10 s
Expected price (ep) multiplier 10
Beacon period (TB) 100 ms
Spread over mean for Gaussian mobility 30 s
Beacon duration (TBD) 10 ms
Window size (W ) 16
Consecutive lost acks (Nack) 5
Message payload size 24 bytes
Frame size 36 bytes
Radio transmit power (0 dBm) 49.5 mW
Radio receive/idle power 28.8 mW
Radio sleep power 0.6 µW

scenario. Figures also show variation in exploration factor over time in this phase.

Number of executions of VLD (with minimal duty-cycle) is higher almost immediately

after startup compared to other tasks. This is because VLD consumes least energy

and hence will receive maximum reward in absense of MDC. The slope of VLD task

increases further with time as the exploration factor decreases, while the slopes of

HD and LD tasks decrease with exploration. When exploration factor is high, HD

and LD tasks will still get scheduled eventhough their utility in any given state is less

and hence those tasks also have higher initial slope. Number of executions for HD

and LD tasks are significantly less compared to that of VLD task. System reaches a

steady state at around 900 time steps where exploration factor approaches minimum



102

(a)

(b)

Figure 5.2. Number of task executions and exploration factor over time for MDC
speed of 3.5 km/h(a) and 40 km/h(b).

value after which the system mainly uses its learned utilities to choose task at each

time-step.

Reinforcement learning allows node to determine when it is most appropriate

to execute a HD or LD task and when it should preserve energy by executing VLD

based on learned utilities in different node states. This learning is also apparent if

we compare plots for MDC speeds of 3.5 km/h and 40 km/h. At a slow speed of

3.5 km/h, a node can discover MDC even with lower duty-cycle (LD task) and it

is not necessary for node to spend additional energy on HD. On the other hand, at

a high speed of 40 km/h, MDC’s discovery requires HD as use of LD may result
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(a)

(b)

Figure 5.3. Comparison of schemes under different mobility scenarios: (a) Discovery
ratio and (b) Residual contact ratio.

in large number of missed contacts. RADA framework enables a node to learn the

appropriate task in both cases by using reinforcement learning. As can be seen from

5.2(a) and 5.2(b), node uses HD at higher speed and LD at lower speed to preserve

energy. Thus, reinforcement learning enables node to optimize task scheduling based

on current operating environment.
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(a)

(b)

Figure 5.4. Comparison of schemes under different mobility scenarios: (a) Activity
ratio and (b) Energy consumption per contact.

5.4.2 Analysis with varying application mobility scenarios

In this section we evaluate the performance of the RADA framework for all

application mobility scenarios described in 5.1.2. An inter-contact of 1800 s is used

unless specified otherwise. All other parameters are as specified in Table 5.2.

Performance of RADA in terms of activity ratio, discovery ratio, energy effi-

ciency and residual contact, is compared with those of other schemes described in

Section 5.3. The study considers different mobility scenarios of the MDC at a fixed

speed 20 Km/h.
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Discovery ratio is an important criteria as activity ratio does not take into

account missed contacts when nodes are asleep. To this end we considered the dis-

covery ratio (see Figure 5.3(a)). Activity ratio for different mobility scenarios is

given in Figure 5.4(a). RADA consistently shows lowest activity ratio and is able to

conserve maximum energy compared to other schemes under mobility scenarios con-

sidered. This is because RADA is able to learn and adapt to MDC’s mobility pattern

for all scenarios and thereby tuning its duty-cycle efficiently. RADA enables a node

to operate at lower duty-cycle without compromising discovery efficiency. As can be

seen in Figure 5.3(a) dicovery ratio of RADA is very close to that of FixedHD which

operates on average at three times higher duty-cycle than RADA. All other schemes

either use a high activity ratio or do not provide appropriate discovery efficiency.

Even though FixedOD operates on same duty-cycle as RADA, RADA’s discovery

ratio is almost twice that of FixedOD for most scenarios. As expected, performance

of the scheme proposed by Simple RL [52] is closer to that of RADA only in case of

TimeOfDay-Multiple mobility scenario. This is because the scheme proposed by Dyo

et al., addresses applications with TimeOfDay-Mulitple mobility scenario and can-

not be applied efficiently to other application scenarios. RADA on the other hand is

suited to a wide range of applications due to its flexbile state based learning approach.

Activity and discovery ratio for Oracle are not shown as Oracle doesn’t perform dis-

covery and hence its activity ratio will always be zero while discovery ratio will be

100%.

Figure 5.3(b) shows residual contact time which is a measure of efficiency of

message transfer phase. Residual contact time of RADA on average is in the same

vicinity as FixedHD (slightly lower in some cases), but is considerably higher than

FixedOD. This shows that RADA helps node to operate at lower duty-cycle without

compromising message transfer efficiency.



106

Energy efficiency is the most important metric that characterizes the joint effect

of activity and discovery ratios. We measure energy efficiency in terms of energy con-

sumption per successful MDC contact detection. Thus the scheme performing at lower

duty-cycle while maximizing MDC discovery will have lowest energy consumption per

contact or highest energy efficiency. Energy also includes energy spent during data-

transfer phase. Observing Figure 5.4(b), it can be concluded that RADA outperforms

all other schemes for all mobility scenarios with an exception of TimeOfDay-Multiple

scenario. For Deterministic and Gaussian scenarios, RADA’s performance is similar

to Oracle which is the ideal scheme not performing any discovery (hence mainly rep-

resents energy spent for message transfer during contact). This observation proves

that RADA substantially reduces node’s energy consumption in discovery phase for

these scenarios. For TimeOfDay scenario also RADA performs better compared to

other schemes. The scheme proposed by Dyo et al. performs better in terms of en-

ergy efficiency for the TimeOfDay-Multiple scenario. But the difference in energy

consumption for different schemes is not significant in TimeOfDay-Multiple scenario.

This is because the number of contacts in TimeOfDay-Multiple scenario is very high

(due to presence of multiple MDCs) and hence energy consumption in message trans-

fer dominates over energy consumption in discovery process. Hence, there is not

much distinction between different schemes as message transfer phase is same for all

of them.

5.4.3 Performance under varying speeds

The effect of different MDC speeds on peformance of our adaptive framework is

studied next. Performance of all discovery schemes are compared in terms of activity

ratio, discovery ratio and energy efficiency for three MDC speed, 3.5, 20 and 40
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(a) (b)

Figure 5.5. Performance of schemes with varying MDC speeds: (a)Discovery ratio
and (b)Residual contact ratio.

(a) (b)

Figure 5.6. Performance of schemes with varying MDC speeds:(a)Activity ratio and
(b)Energy consumption per contact.

km/h. For this analysis, Gaussian (with 30 s spread over mean) mobility scenario

with varying speeds is used.

Figure 5.5(a) provides discovery ratio for different MDC speeds. As expected,

when mobility is low, almost all contacts are detected, independent of the discovery

scheme 3. The situation is different, however, when the speed is high (i.e., 20 or

40 km/h). In this case the two schemes RADA and FixedHD clearly get better

results than other approaches. RADA provides discovery efficiency equivalent to

3The scheme proposed by Dyo et el.[52] is not considered in this discussion as it works only with
TimeOfDay-Multiple scenario
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FixedHD while operating at no more than one-third of VHD duty-cycle. FixedOD’s

performance degrades significantly with increase in speed compared to RADA even

though both executes same duty cycle. As expected, residual contact ratio (and

thus contact period available for data transfer) decreases significantly with increase

in MDC speed for all schemes. Here also RADA is closest to FixedHD than any other

scheme and hence provides better opportunity for data transfer.

At lower speeds, the MDC is expected to be detected even at lower duty-cycles

due to high contact period. Hence node should be able to conserve energy by operating

at lower duty-cycle when MDC speed is less. Figure 5.6(a) shows RADA executing

this behavior very well. At 3.5 km/h speed, it uses little over 0.5% of duty-cycle but

then adapts when MDC speed increases to higher duty cycle of 1.0% at a speed of 40

km/h. This illustrates the effectiveness of RADA in adapting to its environment to

optimize energy consumption. FixedHD operates at fixed duty-cycle and hence there

is no change in duty-cycle with speed.

The results for energy efficiency (in terms of energy consumption per MDC

contact) are provided in Figure 5.6(b) (results for Oracle scheme are also shown as

a reference). As a general trend, the energy expenditure per contact increases with

MDC speed. However, for Oracle energy consumption decreases with increase in MDC

speed. This is because Oracle’s energy consumption only includes data transfer phase

and with increase in MDC speed, contact period will decrease, resulting in smaller

data transfer phase. For all other schemes, discovery ratio decreases at higher speed

and hence energy utlization per detected contact increases with increase in speed.

Figure 5.5(b) shows residual contact ratio with varying speed.

In conclusion, proposed solution using RADA can be effectively used in a wide

range of application scenarios, even when the contact time is short and the uncertainty
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Table 5.3. Effect of time domain duration on RADA performance

Scenario Time domain Energy consumption
duration Td /contact (mJ)

Deterministic 0.5%icp 1064.52
5.0%icp 655.75
25.0%icp 751.44
Auto-tuning (Initial value=0.5%icp) 647.93
Auto-tuning(Initial value=25.0%icp) 673.30

Gaussian 0.5%icp 1205.61
5.0%icp 643.15
25.0%icp 793.05
Auto-tuning(Initial value=0.5%icp) 630.06
Auto-tuning(Initial value=25.0%icp) 666.13

on MDC arrivals is high. Thus RADA results in effective resource allocation while,

at the same time, exhibiting very good performance.

5.4.4 Automatic tuning of time domain

As our time-step for reinforcement learning is equal to Td and as value of ir is

dependent on time domain, the performance of RADA is dependent on appropriate

value for time domain duration Td. To illustrate this fact, we conducted preliminary

experiments with different time domain durations as shown in Table 5.3 where time

domain duration is set to 0.5%, 5% and 25% of inter-contact period (icp). The

performance of RADA is measured in terms of energy consumption per successful

MDC detection, and hence lower value denotes higher energy efficiency. We can see

from the table that energy consumption is minimal when using time domain duration

equivalent of 5% of icp for both deterministic and gaussian mobility. Performance

degrades if we try to use high Td value at 25% and is worse at very low value of 0.5%.

RADA utilizes this observation to adaptively tune time-domain duration to around

5% of icp value automatically at runtime. As a result of automatic tuning, framework
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becomes somewhat insensitive to initial time domain value set by application and

results in optimum results. To prove the insensitivity to initial time domain value,

we set initial Td to worse case values and apply auto-tuning after observing actual

icp at runtime. The results after automatic tuning are also shown in Table 5.3 where

initial time domain duration is set to 0.5% and 25% of icp respectively. Now as RADA

is tuning time domain duration at runtime automatically based on observed icp, its

performance is not impacted by the initial value of time-domain duration set by the

application and is close to optimal as obtained at 5% of icp.

5.5 Conclusion

In this chapter, a novel Resource Aware Data Accumulation (RADA) framework

for sparse Wireless Sensor Networks (WSNs) with Mobile Data Collectors (MDCs)

is proposed. The problem of energy-efficient MDC discovery has been addressed by

exploiting the Distributed Independent Reinforcement Learning (DIRL) framework.

Our results show that the RADA framework is highly efficient in terms of low duty

cycle, high discovery rate and high energy and data transfer efficiency. Compared

to existing solutions, the proposed approach not only performs better, but also can

adapt to different operating conditions and mobility patterns characterized by high

uncertainty. Automatic tuning of time-domain duration based on MDCs mobility

pattern is introduced for optimum performance. The generality of RADA framework

allows applicability to wide range of application scenarios. As a result, it can be

effectively used in the development of sparse WSN applications.



CHAPTER 6

DESIGN OF DReL MIDDLEWARE

In Chapter 4, we presented a multi-tier reinforcement learning based framework

for efficient distributed resource management in WSNs. A middleware framework

for WSN also requires an appropriate communication paradigm for task and data

dissemination as well as reward distribution. In this chapter, we design and develop a

complete middleware solution called DReL (Distributed Reinforcement Learning) that

provides an easy-to-use interface to application developers for creating customized

applications with specific QoS and optimization requirements.

Additionally, WSN applications are becoming increasingly pervasive, requiring

support for multiple heterogeneous applications executing simultaneously on the sen-

sor network infrastructure. Thus, rather than building a WSN infrastructure for each

application, a single WSN infrastructure may be utilized by a wide range of applica-

tions. In recent years, utility theory has played a significant role in the proliferation

of cloud computing allowing ease of development of applications using shared com-

puting infrastructure. Similarly, one can envision use of utility theory to enable rapid

development of pervasive applications on top of shared sensing infrastructure. City-

Sense [8] project is an example of such sensing network infrastructure deployed all

over a city to allow development of a variety of WSN applications viz. traffic statis-

tics/monitoring, accident alerting, public safety and crime watch, driver advisory

applications, noise and air pollution monitoring etc.

We incorporate concepts from directed diffusion [12, 13] in designing an effective

communication mechanisms for our middleware. Directed diffusion is data-centric in

111
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nature and has the ability to perform effective task and data dissemination in WSNs

using only localized interactions among neighboring nodes. Nevertheless, there are

certain issues in applying directed diffusion for several classes of applications:

• Scheduling : Directed diffusion assumes the use of static scheduling of sensor

nodes where each sensor node may collect and report data at fixed time in-

tervals or based on some pre-defined schedule. This assumption does not hold

good for applications requiring autonomous adaptation, e.g. sensor nodes oper-

ate at a very low-duty cycle most of the time, but should adapt to a high-duty

cycle on occurrence of events of interest (for example, object tracking). Apply-

ing directed diffusion to such applications can be energy inefficient as there is

no mechanism for nodes to adapt to prevailing conditions for better resource

management.

• Optimization:Directed diffusion allows optimization of data-dissemination based

on a single metric, i.e. lowest delay path and doesnt incorporate any application

specific goals to optimize one or more parameters - longest network lifetime,

lowest energy consumption, lowest bandwidth utilization, highest data quality

etc. For the development of a generic framework applicable to development of

varieties of WSN applications, it is necessary to support a range of application

optimization goals.

• Reinforcement : Directed diffusion uses reinforcement to determine favorable

path from source to sink for data-dissemination, but neither a concrete mech-

anism nor rules are provided for reinforcement, thereby increasing the burden

on the application designer. Therefore, there is a need for a generalized rein-

forcement learning framework to allow development of simplified applications

without indulging into reinforcement mechanism/rules.
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The goals of the work are two-fold: to incorporate effective and proven task (interest)

and data dissemination techniques of directed diffusion in a resource management

framework; and to address above issues by improving efficiency and autonomous

adaptation of directed diffusion in sensor selection and scheduling.

6.1 Design Principles

The DReL middleware solution incorporates the following design principles:

1. Bottom-up approach: Each sensor node manages its own resources and schedules

tasks by learning tasks’ utilities over time using mostly local information.

2. Global optimization: Overall system is able to achieve global optimization goal

or at-the-least does not suffer from Tragedy of Commons (TOC) or similar phe-

nomena, even-though each node self-schedules the task using local information.

3. Continuous adaptation: Middleware is able to tackle uncertainty and dynamic

nature of WSN by continuous autonomous adaptation. Middleware manages

change in application’s requirement over time to allow application to adapt to

its global state change.

4. Localized Interactions : All interactions are confined to neighboring nodes.

5. Data-centric: Middleware uses data-centric task and data dissemination us-

ing publish-subscribe mechanism. Middleware supports application specific in-

stream data processing and filtering.

6. Generic: Middleware can support sensor nodes with heterogeneous capabilities

and a wide range of WSN applications, e.g. target tracking, environmental

monitoring, surveillance, health-monitoring etc.

Directed diffusion helps achieve items 4 and 5 above while the two-tier learning ap-

proach discussed in Section 4.2 facilitates realization of items 1, 2, and 3. The goal

is to incorporate all of the above principles.
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Figure 6.1. Task Packet.

6.2 Design Architecture

We utilize data-centric and localized communication paradigm of directed diffu-

sion [12, 13] for implementation of our utility based task, data and reward distribution

mechanisms. In directed diffusion, each node uses data-rate as a means for setting

up gradients for reverse data path. In DReL, a concept of payment (or utility) is

introduced to create gradients as well as guide WSN system towards an application’s

global optimization goal. An application can inject new task on-demand based on its

state and requirements on appropriate sink nodes. Sink initiates the task diffusion

process and broadcasts a task description packet to neighboring nodes as in directed

diffusion. Payment value set on task description packet can be in any arbitrary unit.
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Figure 6.2. Data Packet.

However, use of currency for payment that is related (directly or indirectly) to world

currency, can be useful in determining valuation of collected sensor data as well as

resources available in the sensor network [69]. For a task to be successfully deployed,

initial payment value set by the sink needs to be high enough to cover the cost of all

nodes in the possible data path.

We adopt attribute-based naming scheme of directed diffusion for task as well

as data descriptions. Attribute-based scheme is very flexible and allows usage of sim-

ple but powerful publish-subscribe mechanism and many-to-many communications

(i.e. multiple sources and sinks) that are very important to WSN applications. At-

tributes help associating messages with source, sink and filters (in-network processing

elements) via matching. Please refer [70] for more details on attribute matching sup-
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port in directed diffusion. Like diffusion, task description (interest) consists of a

set of attributes that sink is interested in along with context in the form of (key,

type, operator, value) tuples (see Figure 6.1). Operator allows specification of simple

constraints on data, e.g. (less than, greater than, equality, inequality etc). These

operators can allow sensor selection by matching sources to published interests. Task

description can also contain data rate and task validity period if applicable.

Application publishes task packet (see Figure 6.1) requesting data of interest

along with payment it is willing to make for that data. Here taskid is a fixed attribute

like all other attributes of task description, while payment is a variable attribute that

changes as the interest packet diffuses from one node to another in the network.

Task’s payment attribute is used by all nodes while setting up gradients (instead

of data rate as used by directed diffusion). This is described in greater detail in

later sections. Along with set of data attributes, task packet also consists of a set of

constraints that represent an application’s QoS metrics. For example, these attributes

may dictate such application constraints as ’latency less than x’ or ’coverage higher

than c’ on data dissemination or resource allocation. Unlike interest attributes that

mainly map sources to sinks, these constraints are evaluated by intermediate nodes

in the data-path using in-stream filters. Finally, task packet also consists of a set of

cost optimization parameters with their weight factors used by nodes for determining

the cost of participation in the task. These include parameters that WSN system

supports e.g. energy, network lifetime, number of hops etc. Weight factor allows

application to give relative importance to each parameter while evaluating cost of the

task. The sum of all weight factors needs to be equal to 1.

The cost of participation for each node is determined using costParameters spec-

ified by task description. For example, a task contains costParameters, (lifetime,0.5)

and (numberofHops,0.5), i.e. optimize lifetime and number of hops with equal weight.



117

Table 6.1. Cost Parameter Description

Parameter Description

lti Available lifetime at node i
ltmax Maximum lifetime supported
costlt Cost coefficient for Lifetime factor
weightlt Weight for lifetime in task packet
Ei Available energy at node i
λ Trigger event inter-arrival rate
Kt Time spent on one sensed event
Ke Energy spent on processing of one sensed event
Ps Power spent to monitor the events
costh Cost coefficient for NoOfHops factor
weightnh Weight for no. of hops in task packet

Then node ’i’ uses the following cost function for evaluating cost of participation by

utilizing application specific cost parameters as shown in Equation 6.1 (parameters

described in Table 6.1).

costiT = max(ltmax − lti, 0) ∗ costlt ∗ weightlt + costh ∗ weightnh (6.1)

Lifetime (lti) in above equation is computed using lifetime model presented in [71].

For example, for trigger driven applications, lifetime is approximately given as follows:

lti =
Ei(1 + λKt)

Ps + λKe

(6.2)

Coefficients of different cost parameters in above cost function is determined by using

a high-low method. If we fix ltmax − lti ∗ costlt ∈ [0, 1] and costh ∈ [0, 1], as sum of

weights of all cost parameters is 1, the total value of costiT will be in range [0, 1].

Using high and low values of 1 and 0 respectively for each term, gives costlt = 1/ltmax

while costh = 1. Note here that ltmax can be an approximate value and if a node has
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lifetime higher than this value, cost contribution by lifetime parameter will be 0.

Each node after receiving a task packet, computes node’s expected payment based on

application’s QoS and cost parameters and deducts that value from task’s payment

attribute before publishing task again to its neighboring nodes. Thus at each node in

the system, payment of a task description packet specifies the amount of payment ex-

pected by that node if the sending neighbor is chosen for data dissemination. Node’s

expected payment for each task (for each neighbor) is stored in a gradient table which

is further used by the reinforcement learners for management of tasks and resources

as well as acts as gradients for data path in the reverse direction.

Data packet (see Figure 6.2) travels in reverse direction from source node to sink.

Along with required data attributes, data packet includes a)cost- representing cumu-

lative cost of producing this data packet (actual or estimated); b)reward - expected

reward at the sending node based on set gradients; and c)streamId - identifier of data

stream (e.g. source id). These three fields are used by a two-tier reinforcement learn-

ing scheme to guide WSN system towards the application’s global optimization goal.

Figure 6.3 shows basic components of DReL as present in individual sensor nodes

and their roles and interactions. Macro-learner layer (routing layer) is responsible

for managing macroscopic view and actions of a node by performing task, data and

reward distribution while micro-learner is mainly responsible for scheduling node’s

tasks and other local actions and thereby managing node’s local resources. A macro-

learner component of a node works in conjunction with macro-learner of other sensor

nodes that collectively affect each other (e.g. nodes involved in localized interactions).

Each micro-learner uses Q-learning as their independent reinforcement learning algo-

rithm to increase node’s individual utilities, while on the other hand, macro-learners

use Collective Intelligence (COIN) theory to steer the system towards application’s



119

Figure 6.3. DreL components in a sensor node.

global goal. Next we describe DReL in terms of these two components i.e. micro-

learner and macro-learner.

6.3 Task Scheduling and Management by Micro-learner

In DReL, each node is responsible for self-scheduling tasks based on current

state and utilities using reinforcement learning (RL). This scheduling is performed

by micro-learner and uses Q-learning based RL algorithm as described in Chapter

3. Each node has zero or more application specific active tasks and also has two

implicit system tasks viz. Sleep and Diffuse. As the name suggests, Sleep task puts
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node’s radio as well as CPU in SLEEP mode for energy savings while Diffuse task

is responsible for carrying out task as well as data dissemination process. While

acting as a source (executing application’s task), a node is capable of carrying on

diffusion process as well. Thus in order for successful data and task dissemination

process, intermediate nodes (at-least nodes making a complete path from source to

sink) should not be executing Sleep task. The rest of the nodes in the system should

be mainly executing Sleep to conserve energy. This requires proper co-ordination

among all nodes in the system so that, nodes along the path execute appropriate

tasks while allowing energy conservation in the rest of the system. DReL achieves

this co-ordination using our two-tier reinforcement learning approach.

Micro-learner of a node inspects task packet to decide whether it is a possible

source for the given task or not. A node can be a source if it provides all attributes

requested in the task description while matching application’s QoS constraints. If

node can act as a source, micro learner adds this task to its list of active tasks and

makes it available for execution. If this task already exists in node’s list of active

tasks, micro-learner updates task’s source payment value. The payment amount that

a micro-learner of node ’i’ receives on execution of task T is equal to maximum

gradient for task T among all neighbors N , i.e.

sourcePaymentiT = argmax
n∈N

gradientinT (6.3)

After task execution at each time-step, micro-learner computes cost (costiT ) based on

cost parameters of task T for application specific task (using Equation 6.1) or built-in
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cost function for implicit tasks (Sleep and Diffuse). Micro-learner further computes

reward (rewardiT ) from cost and source payment as below:

rewardiT = (successT ∗ sourcePaymentiT )− costiT (6.4)

From above equation, the reward is positive only if task is successful and otherwise

it will be negative (assuming task execution was associated with non-zero cost). An

application’s source task is considered to be successful if it’s able to produce task’s

attributes with correct match. Similarly, Diffuse task is considered to be successful

if it receives either data or interest packet during execution. Micro-learner then uses

the computed reward values to update its Q-learning value function as well as to set

reward (rewardiT ) on the data-packets collected for task T (either generated as a

source or received from neighbors). Micro-learner also updates a running sum of cost

(costT ) with its own cost (costiT ). Each modified packet is then forwarded to macro-

learner to carry out the data-dissemination phase. State of micro-learner mainly

constitutes the following:

• Success in recent Diffuse task : Whether or not there was any successful Diffuse

task scheduled in the last N time-steps.

• Success in recent Source task T : Whether or not there was any successful Source

task scheduled in the last N time-steps. Here, Source task represents any ap-

plication task T for which this node can act as a source. Note that there will

be one such state variable for each deployed task.

This state definition provides micro-learner a way to determine whether it is currently

dominant as a source or it is merely participating in a diffusion process. The state

definition also allows micro-learner to store all learned utilities for each distinguishable

state and quickly adapt to its state change.
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Figure 6.4. Psuedo-code for gradient setup phase.

Micro-learner uses either εmin or εmax as exploration factor based on the follow-

ing condition: if successful in recent Diffuse or Source task and previous task is not

Sleep, use εmin else use εmax. This exploration policy allows micro-learner to use low

exploration rate when it’s role is already established and allow to explore more when

it is mainly inactive.

6.4 Task and Data Dissemination by Macro-learner

In Chapter 4, we used macro-learning in the context of end-to-end data-stream,

i.e. among all nodes collected in a data-path from source to sink. In this context, sink

node evaluates each received data-stream and provides reward using Wonderful-life

utility function and COIN theory. This scheme may not scale well with increase in

network size as each data packet needs to track all participating nodes and reinforce-

ment packet needs to travel to each of them in reverse direction. In DReL, with a goal
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to keep all interactions local, macro-learning is used in the context of a local neigh-

borhood only, i.e. each node acts as a sink for inbound data-streams and provides

feedback to those neighbors. Thus only nodes involved in a neighborhood will be par-

ticipating in macro-learning process. Macro-learning is applied at all neighborhoods

in a hierarchical fashion along the data-path including the sink and a novel cost and

payment based incentive scheme is employed to combine the effect of all nodes. This

ensures global applicability of optimization goal. Also use of incentive based system

allows easy adaptation to applications state changes by updating payment values.

Macro-learner component of a sensor node maintains a task (interest) cache

as in directed diffusion. Each task entry contains a set of gradient entries, one per

each neighbor. But unlike directed diffusion where gradient is determined by data

rate, each gradient entry consists of expected payment for data dissemination in

that neighbor’s direction for given task. This expected payment (gradient) for an

intermediate node i towards neighbor n for task T is simply equal to payment attribute

of the received task description packet, given by, gradientinT = paymentinT , where

paymentinT is the amount of payment specified in task description packet as received

by node i from neighbor n. Thus each neighbor’s gradient suggests expected payment

if data is disseminated in its direction. Before forwarding any interest packet to its

neighbors, a node deducts its cost of participation from the task’s payment value.

The payment value set by node with interest forwarded to its neighbors (represents

amount payable by this node to neighbor sources) is:

paymentin′T = argmax
n∈N

gradientinT − costiT (6.5)
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Figure 6.5. Psuedo-code for data dissemination phase.

Here costiT is the cost computed for task T using task’s cost function given by Equa-

tion 6.1. Algorithm executed by a node’s macro-learner on receiving a task description

packet is given in Figure 6.4.

Macro-learner receives collected data packets of a task destined towards task’s

sink from the micro-learner and employs algorithm shown in Figure 6.5. Macro-

learner also uses some exploration for data dissemination in case when data packet

has no reward. The exploration allows macro-learner to adjust to dynamic system

changes and to find better alternative paths. With our goal to keep all interactions

localized, we use macro-learning in the context of a local neighborhood only, i.e. each

node acts as a sink for inbound data-streams and provides feedback to neighbors

reporting data. Thus only nodes involved in a neighborhood will be participating

in macro-learning process and forms a subworld. Macro-learning is applied at all
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neighborhoods in a hierarchical fashion along the data-path including the sink using

our utility based scheme. This ensures global applicability of optimization goal.

In DReL, Wonderful life (WL) reward of each node part of subworld (i.e. data-

stream) w at time-step τ involved in task T is given by

giwT (ξT ) = RiT (ξiT )− CLw(ξiT ) (6.6)

Here, RiT (ξiT ) is the reward in the context of neighborhood at any node i while ξiT

is the corresponding state at time-step τ and CLw(ξiT ) is the reward RiT (ξiT ) after

clamping w to null or in our case, removing all data values that have been reported

by data-stream w. If W is the set of all data-streams received at node i at time-step

τ , the following global reward function is used to determine value of RiT for a task

T :

RiT (ξiT ) = qualityiWT ∗ payableiT − min
w∈W

costiwT (6.7)

Here, qualityiWT ∈ [0, 1] is an optional quality factor determined by the macro-learner

of node i using QoS constraints of task T and all received data-streams W . Quality

factor can be useful if application requires to distinguish different data-streams based

on quality of data collected and not just based on satisfaction of QoS constraints.

Next term denotes the amount payable by node i to its neighbor sources, while the

last term on the right hand side of the above equation gives minimum cost of all data-

streams in W . Thus reward RiT is computed based on quality of data and lowest cost

present in all streams W.

Macro-learner receives data packets from neighboring nodes through the lower

MAC layer over wireless channel (Figure 6.3). At the end of N time-steps, macro-

learner calculates the WL reward for each data-stream as given by Equation 6.6.
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Figure 6.6. Psuedo-code for reinforcement phase.

Each node already has some gradients set and hence they do get immediate reward

based on just their local state (equal to reward value in data packet). Reinforcement

from neighbor is only necessary to make sure its utility is aligned with the system as

a whole. Macro-learner of receiving node manages the data streams received from all

its neighbors and tracks the cumulative moving average of reward and cost (specified

in data packets) for each data-stream in the data cache. Data stream entry also

consists of current payable amount which is for that stream. At the end of N time-

steps, for each data-stream from which it has received one or more packets during

last N time-steps, macro-learner sends a reinforcement packet to the neighbor from
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which it received those data-streams. If we denote δw = (payableiT − rewardiwT ),

reinforcements are computed as per the following:

Positive Reinforcement (with payment = payableiT ) if δw > m > 0

Negative Reinforcement (with payment = 0.0) if δw < −m < 0

No Reinforcement if m < δ < m

Here, rewardiwT is the average of data packet reward while payableiT is the amount

payable by node i to its neighbors. Thus, reinforcement packet containing payment

is sent to source neighbor only if its payable value is significantly different from the

average packet reward. This allows us to further reduce the number of reinforcement

packets. Here m is a fractional value of task’s payableiT (e.g. 10%) and can be used

to adjust the rate of WL reward updates. Though a very high value of m may turn

off reinforcements altogether and the system may not be able to cope with dynamics.

If it is required that reinforcements are sent periodically (e.g. they are acting as data

acknowledgements), m should be set to 0.

A reinforcement packet destined to a neighbor n from node i contains a)taskId -

task identifier; b)payment- task’s payment value (similar to task description packet);

and c)streamPayments- consisting of data-streams reinforcements as discussed above

for each data-stream received by i from n. On receiving reinforcement packet, macro-

learner processes it in the same manner as receiving subsequent interest packet during

gradient setup phase. Macro-learner updates sending neighbor’s gradient entry with

received payment value. If changed gradient is the maximum value gradient then this

will also change value of payableiT which is used to reinforce its neighbors. Data-

stream payments are used to update the current payable value associated with each
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data-stream. Figure 6.6 summarizes macro-learner’s algorithm for providing rein-

forcement to neighboring nodes.

If a node receives reinforcement for a data-stream for which it acts as a source,

it uses the data-stream payment (streamPaymentsi) to update value of expected

price for task T i.e. sourcePaymentiT as follows.

sourcePaymentiT = (1− α)sourcePaymentiT + α ∗ streamPaymentsi (6.8)

In above equation, α is the learning-rate parameter. This is similar to micro-learner’s

expected price update (equation 4.5) given in chapter 4.

6.5 Sequence of Interactions

Figure 6.7 gives a high level overview of sequence of interactions taking place

between the application and the sensor nodes including the sink and intermediate

nodes. As shown in figure, data is diffused from a source node towards a sink through

intermediate nodes at each time-step based on data rate and established gradients at

each node. At every N time-step, macro-learner on each intermediate node as well as

sink evaluates reward for data-streams and provides reinforcement to its immediate

neighbors that are actively reporting data. On receiving reinforcement, node updates

its gradient for the sending neighbor. If state of the application changes or if there is

a change in application requirements at any time, an updated interest/task packet is

re-published and all nodes update their task cache and gradients relative to new task

definition.
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Figure 6.7. Overview of sequence of interactions between application, sink and inter-
mediate and source sensor nodes.

6.6 Discussion

This section describes the incorporation of design principles into the architec-

tural framework. Resource management and task scheduling decisions are taken by

micro-learner in each individual node by using only its local information. Macro-

learner ensures that individual node increasing its own utility, results in higher global

utility and doesn’t lead system to Tragedy of Commons or similar undesirable state.

Macro-learner achieves this by tuning micro-learner’s reward function so that it is

always aligned to global utility function. Hence a nodes utility increases only if it
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results in an increase in system-wide utility. Reinforcement required for this tuning is

implemented using only localized interactions among neighboring nodes. Each node

receives reinforcement in the form of payment from immediate neighbor, but the value

is still controlled by sink node and global application’s goal. Continuous exploration

and learning allows system to adapt to uncertainties and dynamic changes in WSN

at micro as well as macro levels. Each node is capable of adapting immediately to

the local or neighborhood changes and hence resulting in real-time adaptation. Task

constraints are verified in-stream near the source and data not matching constraints

can be filtered immediately (rather than at sink) saving energy and bandwidth.

Whenever an application’s requirement changes (for example with transition of

application’s state), it’s just a matter of publishing changed task description packet

(if data or QoS attributes has changed) or changing payment value for a given task.

Proposed framework can also support and take advantage of heterogeneity in the

system as all payments are based on actual cost of data acquisition. Thus if a node has

unlimited energy resource (connected to power supply), its cost of task participation

(as given by equation 6.1) will be very low and hence data paths using this node are

more favorable. The usage of generic cost and utility functions allow DReL to support

heterogeneity in various aspects such as sensing, energy etc. Multiple applications

can be supported, as for a WSN each application is a set of tasks and any number of

tasks can be deployed (as per the capacity) at a time. If two tasks across applications

are identical (same attributes, QoS requirements etc.), all data can be shared across

those tasks. If a source can support two tasks that are different, it will schedule a

task with highest payment.

Even though our approach of task and data dissemination is based on one-

phase pull diffusion [57], it doesn’t suffer from issues arising due to asymmetric links

prevailing in WSN because of following two reasons: i) each node chooses neighbor
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for data dissemination based on cost of acquisition rather than lowest latency path for

interest; ii) gradients are updated using reinforcement which is based on data-path

(and not interest path) and hence takes care of asymmetric nature of links in WSN.

6.7 Performance Analysis

In this section we present results from simulation based performance analysis

of DReL using an object tracking application where the objective is to track a target

object in the sensor grid. The results are presented for different scenarios consisting of

increasing number of sensor nodes ranging from 7 to 25 with a) constant network grid

size (i.e. increasing redundancy and sensor node density) and b) constant node density

(i.e. increasing grid size). Sensors can be many hops away from the base-station. All

results are averaged over 10 simulation runs and are shown with confidence interval

of 95% whenever applicable. Table 6.2 lists values of important parameters used for

this simulation. The following metrics are used for performance analysis of DReL:

• Average dissipated energy is the ratio of total energy consumed per node per

distinct event received by the sink.

• Lifetime is studied in terms of when the first node is depleted of its energy

(lifetime1 ) and when the last event is received (lifetime2 ). Here lifetime2 gives

an indication of how long a system is able to continue functioning even after

some critical nodes running out of energy.

• Average delay is the average time interval between the transmission of an event

at the source to its reception at the sink computed for all events received at

sink.

• Event delivery ratio is a ratio of the number of events received by the sink to

the number of events the system was supposed to generate (based on data-rate

and expected lifetime).
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Table 6.2. Parameters used for simulation

Component Parameter Value

Micro-learner Minimum exploration (εmin) 0.05
Maximum exploration (εmax) 0.25
Time-step (τ) sec 5

Macro-learner Reinforcement threshold (m) 0.0
Reinforcement window (N) time-steps 20
Data exploration factor (dataexp) 0.1

Radio Transmitting Current TX (amp) 0.02
Receiving Current RX (amp) 0.01
Idle Current (amp) 0.0002
Sleep Current (amp) 10−5
Voltage (V) 1.0

Sink Data-rate (sec) 5.0
Interest Refresh Period (sec) 10000

6.7.1 Comparison with Directed Diffusion

We first compare performance of DReL with directed diffusion [13]. Figure 6.8

shows average dissipated energy per node per event (with error bar showing standard

deviation for 95% confidence interval) against increasing number of sensor nodes. In

the plot, DReL-CD and Diffusion-CD are for scenario with constant sensor density,

while plots DReL and Diffusion are for scenario with constant network grid. As can

be seen from the plots, DReL outperforms Diffusion by significant margin for all the

tested scenarios in terms of energy expenditure per node per event. Moreover, with

increase in number of nodes, DReL is able to further reduce average energy expen-

diture by managing resources at all times. Energy dissipation for Diffusion grows

drastically with increase in number of nodes. This is because of large data broadcast-

ing overhead in diffusion where each node is active and trying to participate in data

diffusion process. On the other hand, in DReL only nodes in the data path with the

least cost are participating in a data stream, while the rest of the nodes are in sleep
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Figure 6.8. Average dissipated energy per node per event for different scenarios.

states. For constant density scenario, increase in energy with number of nodes for

diffusion is less compared to that of constant grid scenario as nodes are comparatively

sparse and hence data broadcasting overhead is low. For DReL, performance under

both constant density and constant network grid scenarios is identical and DReL is

able to keep energy dissipation low in all scenarios.

Lifetime1 and Lifetime2 (as defined above) are plotted in Figures 6.9 and 6.10

respectively. As can be seen from the plot, lifetime for DReL increases with addition

of more nodes and hence it’s able to utilize redundancy for improving the lifetime

of the system. On the other hand, lifetime for diffusion reduces significantly with

addition of nodes because of overhead involved in the diffusion process and lack of

any resource management. After a certain point (20 nodes in these figures), addi-

tion of nodes doesn’t improve lifetime for DReL - the effect of overhead with dense

neighborhood equates/dominates over the benefits of adding extra nodes. Value of

liftime2 is comparatively larger than lifetime1 for DReL, i.e. DReL is able to con-

tinue providing useful events even after a heavily utilized (most probably critical node
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Figure 6.9. Lifetime in terms of energy depletion of first node (lifetime1).

across data path) node dies. As can be seen for most scenarios, lifetime2 for DReL

is more than twice as that for original diffusion. Nodes are able to preserve energy

in DReL by learning to tune their duty cycle and task execution based on system’s

state and application’s need. When using DReL, increase in lifetime2 with nodes

for constant grid scenario is higher compared to constant density scenario. This is

because of DReL being able to take advantage of increase in redundant nodes with

dense network available in constant grid scenario.

Figure 6.11 shows average delay for DReL and Diffusion for the scenarios of

constant grid size and constant density. As can be seen, delay is varying across

all scenarios and always increases with number of nodes as expected. On average

Diffusion has lower delay compared to DReL for constant density scenario, but the

difference is not that significant. The cost parameters used in the experiments for

DReL are combination of both lifetime and number of hops and hence increase in

delay is attributed to emphasis on lifetime improvement. As shown in next section,

for applications requiring data with minimal delay, one can use cost parameter of
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Figure 6.10. Lifetime in terms of last event received (lifetime2).

Figure 6.11. Average Delay for constant grid size and constant density scenario.
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Figure 6.12. Event delivery ratio for constant grid size and constant density scenario.

NoOfHops only. In constant grid scenario, average delay for Diffusion is notably

higher compared to DReL. This again shows inability of Diffusion to perform well

in dense networks. On the other side, DReL is able to maintain delay within limits

while allowing to increase system lifetime significantly.

Figure 6.12 shows event delivery ratio wherein DReL outperforms diffusion for

all scenarios. Activity ratio for DReL is plotted in Figure 6.13. Activity ratio is de-

fined as ratio of number of time-steps a node is active to total number of time-steps

computed over all nodes in the system. DReL manages to reduce activity ratio with

increase in number of nodes as only nodes required for data collection at any instance

of time are active while other nodes preserve energy. Note here that activity ratio of

Diffusion is always 1.
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Figure 6.13. Activity ratio for DReL.

6.7.2 Analysis of global optimization

This section presents analysis of effectiveness of cost parameters and cost func-

tion in achieving the global optimization goal of the system. To study the impact

of cost parameters on global optimization, next set of simulations with object track-

ing application are carried out with the following cost parameters: a) Lifetime with

weight 1.0 and b) NoOfHops with weight 1.0. Figure 6.14 shows a snapshot of one of

the simulation runs for the scenario with Lifetime (1.0) as cost parameter. As shown

scenario consisted of 10 nodes including a target and a sink. The size of each sensor

node corresponds to amount of energy it has available at any given time. Target in

this case is stationary and is within sensing range of nodes 5 and 8. To illustrate the

effect of cost function, nodes 4 and 8 are given higher energy (represented by larger

size) compared to that of other sensor nodes. Node 8 is three hops away from sink,

while node 5 is in communication range of node 1 and hence only two hops away from

sink.

As shown in Figure 6.14, DReL quickly converges to desired path of 8 → 4 →
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Figure 6.14. Snapshot of simulation run with Lifetime cost parameter.

Figure 6.15. Number of executions of various tasks by sensor nodes with Lifetime
cost parameter.
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Figure 6.16. Snapshot of simulation run with NoOfHops cost parameter.

Figure 6.17. Number of executions of various tasks by sensor nodes with NoOfHops
cost parameter.
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(1, 2) → 0 when using Lifetime as cost parameter. As nodes 4 and 8 have much

higher energy and hence better lifetime, their cost of participation is negligible com-

pared to other nodes and hence that path is desirable for the global system. This

behavior is further demonstrated in Figure 6.15 where number of executions of var-

ious tasks involved i.e. Sleep, Diffuse and Sense are plotted for each sensor node in

the system. Nodes 4 and 8, with highest lifetime, are the most heavily utilized nodes,

with node 8 performing sensing while node 4 participating in the diffusion process for

most part of system lifetime. Nodes 1 and 2 have almost equal number of executions

of Diffuse task, implying that the DReL is effectively doing energy-balancing between

those nodes to extend overall system lifetime. This energy balancing is made possible

because of DReL’s utility based reinforcement scheme and as lifetime of one node

falls compared to adjacent neighbor, system will choose the neighbor instead. The

size of reinforcement window as well as time interval for updating gradients/payable

determines how often the above switch occurs. Note here that there is no centralized

entity responsible for managing DReL and all interactions are confined to one-hop

neighborhood.

Figures 6.16 and 6.17 demonstrate behavior of system in the scenario of using

NoOfHops as cost parameter. This setting dictates system that application only cares

about latency of data collection and doesn’t care about lifetime. Lowest latency path

in this scenario is 5 → (1, 2) → 0 and as shown, DReL enables all nodes to quickly

learn their role and schedule tasks accordingly. Node 5 is primarily acting as a source

sensor and performing Sense tasks all the time while node 1 is primarily acting as

a router (performing Diffuse task). As cost parameters consist of NoOfHops only,

system lifetime is not considered and hence no energy balancing is possible between

nodes 1 and 2 in this scenario. However, one can use both Lifetime and NoOfHops
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Table 6.3. Performance for different cost parameters

Cost Lifetime1 Lifetime2 Average Event Average
Parameter(s) Delay Delivery Dissipated

Ratio Energy

Lifetime(1.0) 9826.9 13971.71 0.0095 0.822 0.0073
(±170.72) (±189.66) (±0.0008) (±0.012) (±0.0002)

NoOfHops(1.0) 7939.3 7934.20 0.0071 0.498 0.0067
(±16.20) (±15.95) (±0.0009) (±0.0015) (±0.0002)

Lifetime(0.5) 11734.54 11708.81 0.0089 0.633 0.0086
NoOfHops(0.5) (±106.56) (±107.28) (±0.0009) (±0.001) (±0.0001)

as cost parameters with appropriate weights if effect of both should be considered for

system operations (see Table 6.3).

Values for all performance metrics are shown with 95% confidence interval in

Table 6.3. As expected, system lifetime (both lifetime1 and lifetime2) is improved

considerably when Lifetime(1.0) is chosen as cost parameter. Although, cost param-

eter of NoOfHops(1.0) gives better performance in terms of average delay, lifetime2

is just about half compared to first scenario. As event delivery ratio is based on

expected lifetime, its value is higher for the first scenario. Note here that average

dissipated energy is actually higher in first scenario even though system has higher

lifetime. This is because cost of participation is associated with actual lifetime of

system and not the amount of energy spent. Thus energy spent by nodes with large

energy resource doesn’t matter much as far as lifetime is concerned. The last row in

Table 6.3 shows results of compromise between lifetime and average delay.

6.7.3 Analysis of utility function

DReL uses Wonderful Life Utility (WLU) as a payoff (utility) function to deter-

mine reward for each data-stream terminating at each node. Next, WLU is compared
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Figure 6.18. Lifetime comparison of WLU and TEAM utility functions.

with a more common approach in cooperative multi-agent systems of using a payoff

function based on TEAM game. When using TEAM based payoff function, each

data-stream shares the same amount of reward equal to global reward. This ensures

that all nodes act cooperatively to increase their collective utility as they all share the

same reward. Though, learnability of such utility function is very low as it is difficult

for an individual node to determine its contribution towards global reward. In case

of using TEAM utility function, reward for each data-stream as given by equation

6.6 is changed to the following:

giwT (ξT ) = RiT (ξiT ) (6.9)

Thus all streams share the same global reward regardless of their contribution towards

global utility. Figures 6.18 and 6.19 compare performance of WLU and TEAM utility

functions with increasing number of sensor nodes and constant grid size. Figure 6.18

compares two utility functions in terms of lifetime1 and lifetime2. As shown, when
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Figure 6.19. Comparison of average energy dissipation with WLU and TEAM utility
functions.

using TEAM utility, DReL is not able to achieve any increase in lifetime with increase

in number of nodes. Also values of both lifetime1 and lifetime2 are the same with

TEAM utility. WLU on other side has much higher lifetime (particularly lifetime2)

with increase in number of nodes. WLU enables each node to learn effect of its action

towards global goal and hence results in better management of node’s resources. As

TEAM provides same reward to all streams, nodes involved in all data sreams will

be motivated to continue participating and hence not being able to learn effect of

their actions clearly. For example, if data provided by a stream is redundant and

incurs higher cost compared to any other stream, TEAM provides same reward to

both streams and resulting in waste of resources, while WLU provides positive reward

to only one stream with minimum cost, enforcing nodes involved in other streams to

conserve energy. Figure 6.19 shows average energy spent per node per received event

for both schemes. In terms of energy expenditure, performance of both WLU and

TEAM is similar with WLU being only slightly better in terms of energy usage. This

is because along with total amount of energy consumed, number of tracking events
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received in case of TEAM is also higher compared to WLU. Thus when comparing

energy consumed per track, difference is not that significant.

6.7.4 Analysis using Intrusion Detection application

Thus far, we considered an object tracking application for performance analysis,

where goal is to track a moving object. To prove the generality of our approach, we

evaluate DReL for an intrusion detection application. We consider a WSN system

consisting of both motion and video sensors employed for detecting an intruder. This

application can be either in monitoring state or in alarmed state upon detecting

an intruder. While in the monitoring state, requirement of confidence level is low,

but application requires high quality data in the alarmed state. Ideally, to conserve

energy, while in monitoring state, WSN system should employ only motion sensors

and reserve video sensors for high quality data in alarmed state. DReL is able to do

exactly so by managing sensor nodes at different states.

Implementing intrusion detection application on DReL mainly involves defining

task description. Initially when application is in monitoring state, task is defined as

follows.

• attributes : latitude, longitude of sensor node or intruder (if present) and confi-

dence level of intrusion detection.

• qosConstraints : Confidence level greater than 0.2, coverage over all area re-

quired to be monitored

• costParameters : Lifetime with weight 1.0 as system should conserve energy

while just monitoring and no intruder present.

When an intruder is detected, application transitions to alarmed state where its

requirements are different as given below:
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• attributes : latitude, longitude of intruder (if present) and confidence level of

intrusion detection.

• qosConstraints : Confidence level greater than 0.8, coverage nearby intruder

location

• costParameters : NoOfHops with weight 1.0 as system should be able to transmit

high quality intruder data with minimum delay.

Assuming confidence level of detection provided by motion sensor is 0.25 and that

of video sensor is 0.9, it is clear that only video sensors can satisfy application re-

quirements in alarmed state. However, in monitored state, any sensor can satisfy

the requirement. But the cost of data acquisition for a video sensor is much higher

compared to that of a motion sensor. In DReL, each sensor node is able to decide

whether or not it should be active and participate in the application at any state

based on its learned utilities as demonstrated below.

Consider the scenario shown in Figure 6.20, for intrusion detection application

consisting of 12 sensor nodes and a sink. Here three separate regions are being

monitored and each region consists of one video sensor and two motion sensors. Thus

sensors 6, 9 and 12 belong to same region and 12 is a video sensor. Optimally, in

monitoring state, only one sensor out of each region should be active at any instance of

time and others should conserve energy by sleeping. Further this active sensor should

be a motion sensor as its cost of data acquisition is much lower than that of video

sensor and both satisfies application requirement for confidence level. As shown in

Figure 6.20, DReL is able to achieve above optimization using its neighborhood based

multi-tier reinforcement learning scheme. Figure 6.21 shows number of executions of

each task by all nodes in the system while in the monitoring state. All video sensors

(10, 11 and 12) are sleeping most of the time after quickly getting reinforcement

about better alternatives from neighboring nodes. DReL along with using only single
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Figure 6.20. Snapshot of Intrusion Detection application in monitoring state.

Figure 6.21. Number of executions of various tasks by sensor nodes in monitoring
state.
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Figure 6.22. Snapshot of Intrusion Detection application in alarmed state.

motion sensor per region, is also able to energy-balance between available motion

sensors as well as intermediate nodes helping in the diffusion process. Thus nodes 1,

2 and 3 are equally utilized as router effectively doing energy-balance between those

nodes.

At around 1600 time-step (8000 sec), an intruder is introduced as shown in

Figure 6.22 (marked as Target-13). This intruder is quickly detected by an active

node in the region consisting of nodes (5, 8, 11) and event is sent out to the sink.

This event triggers an application state change to alarmed and a modified interest

(task packet) is sent out to reflect new requirements for alarmed state. Figure 6.23

plots task executions of all nodes in alarmed state. As shown, video sensor 11 is

acting as a source in this state and tries to monitor the target, while node 3 is acting

as a router helping to diffuse data towards sink. As we are using NoOfHops as cost
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Figure 6.23. Number of executions of various tasks by sensor nodes in alarmed state.

parameter in alarmed state, there is no energy-balancing involved and system sticks

to chosen path with minimal delay.

6.8 Conclusion

In this chapter, we have proposed DReL- a WSN management middleware

utilizing techniques from multi-layer reinforcement learning and utility theory. Con-

cepts from directed diffusion is incorporated to achieve data-centric communication

paradigm for task, data and reward dissemination. Directed diffusion provides a

robust communication paradigm for localized and distributed sensing, but fails to ad-

dress adaptive sensor management and task scheduling necessary for development of

efficient and flexible WSN applications. In DReL, we have addressed this issue with

WSN management framework developed by extending directed diffusion and COIN

based multi-layer reinforcement learning approach. We have emphasized on generality

in designing the framework to allow development of a wide range of applications with

different requirements in terms of quality of service, data collection, optimization etc.

The framework utilizes an incentive compatible mechanism that provides feedback as

well as incentives to individual nodes based on overall system performance and appli-
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cation goal. The effectiveness of the proposed approach is illustrated through detailed

performance studies for a tracking application. The generality of DReL is shown by

implementing object tracking as well as simple intrusion detection application with

changing application states and requirements.



CHAPTER 7

CONCLUSIONS

Support for autonomous and adaptive management is essential for many wireless

sensor network (WSN) applications expected to be functioning over long periods of

time. Additionally, WSN applications are becoming increasingly pervasive, requiring

support for multiple applications executing simultaneously on heterogeneous sensor

network infrastructure. Thus, rather than building a WSN infrastructure for each

application, a single WSN infrastructure may be designed for use by a wide range of

applications. In recent years, utility based computing has played a significant role

in the proliferation of cloud computing allowing ease of development of applications

using shared computing infrastructure. Similarly, one can envision use of utility

theory to enable rapid development of pervasive applications on top of shared sensing

infrastructure.

There are many proposed approaches for resource management in WSN, but

most of them requires a centralized mechanism which is not scalable and robust for

many real world WSN applications. None of the approaches try to address uncertainty

which is inherent in dynamic networks. Furthermore, most of them require a careful

implementation of algorithms on a case-by-case basis which may be quite difficult

in sensor networks. Therefore, a generic framework that can enable large set of

applications with autonomous adaptation and minimum communication overhead is

required.

This dissertation explores techniques from reinforcement learning and utility

theory to design a generalized distributed middleware solution that allows develop-

150
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ment of a range of applications on top of heterogenous and resource constrained sensor

network infrastructure. To the best of our knowledge, such a middleware framework

that can support continuous autonomous adaptation using utility theory doesn’t exist

today. The work presented is unique in employing a bottom-up approach where each

sensor node is responsible for its resource allocation/task selection while ensuring

optimization of system-wide parameters like total energy usage, network lifetime etc.

7.1 Summary of Contributions

First contribution is in the form of a simple but effective distributed frame-

work called DIRL. DIRL uses Q-learning/WoLF technique to enable development

of adaptive WSN applications. DIRL has intrinsic support to handle dynamics and

uncertainty prevailing in WSNs. Dynamism is handled by intelligent exploration

throughout system lifetime while uncertainty is tackled by probabilistic actions based

on learned utility values. DIRL is exemplified with an object tracking application and

performance analysis of DIRL demonstrates its superiority over other approaches.

DIRL is next extended to a two-tier learning scheme in order to ensure opti-

mization of system-wide application specified parameters. The bottom-up approach

uses: micro-learning as used by individual nodes to self-schedule their tasks and

macro-learning as used by each data-stream sub-world to steer the system towards

application goal by setting/updating rewards for micro-learners. Micro-learner pro-

vides autonomous real-time adaptation with minimal or no centralized processing

requirement for task allocation and minimal communication overhead. Macro-learner

uses COIN theory to make sure that system is actually meeting the global application

objectives and steers system towards those objectives. Simulation results show that

two-tier learning as used here can significantly improve overall performance compared

to micro-learner alone or other traditional schemes. Application of COIN theory for
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setting micro-learners utilities, guarantees eventual achievement of Pareto optimal

point and avoids system getting trapped in TOC or other related phenomenon.

RADA is a framework for data collection in sparse Wireless Sensor Networks

(WSNs) with Mobile Data Collectors (MDCs). RADA exploits DIRL to address the

problem of energy-efficient MDC discovery. RADA allows sensor nodes to operate at

a very low duty-cycle by learning MDC’s arrival pattern and tuning its duty cycle

based on the this pattern. Results show that the RADA framework is highly efficient

in terms of low duty cycle, high discovery rate and high energy and data transfer effi-

ciency. Compared to existing solutions, RADA not only performs better, but also can

adapt to different operating conditions and mobility patterns characterized by high

uncertainty. The generality of RADA framework allows applicability to wide range

of application scenarios. As a result, it can be effectively used in the development of

sparse WSN applications.

Finally, DReL is a complete WSN management middleware that defines an easy

to use interface for development of adaptive WSN application. DReL describes data

structures and mechanisms for task, data and reward management for micro-learner

and macro-learner based two tier learning schemes. DReL allows development of

wide range of applications with different requirements in terms of quality of service,

data collection, optimization etc. The framework utilizes an incentive compatible

mechanism that provides feedback as well as incentive to individual nodes based on

overall system performance and application goal.

7.2 Future Research Directions

The research in this dissertation opens up several research directions related to

resource management in WSN. Foremost among them is implementation of DReL on

real sensor hardware and perform experiments in a WSN testbed. DReL middleware
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can be implemented for a variety of sensor platforms viz. SunSpot, TinyOS etc. and

make publicly available for further research and experimentation.

DReL only addresses on-demand task deployment where a task is published

by application at runtime. Support for tasks available from deployment time should

also be addressed in future research. This will require mechanisms for gradient setup

without broadcast of task description. Design and analysis involving deployment of

multiple applications simultaneously is another challenge that should be undertaken.

Issues that need handling in case of multiple applications include sharing of common

data and tasks among applications, scheduling of application tasks on single node,

handling of conflicting application goals that are competing for common resources etc.

Quality factor is not concretely defined in DReL and proper definition of a measure

of quality to help evaluate reward/payment for a data-stream is left as a future

work. Cost and reward functions can be further refined after trying to apply DReL

to another set of applications with completely different requirements, e.g. schedule

based rather than trigger based, multiple sinks, rapidly changing requirements etc.

Future work should also include study of alternatives to Wonderful-life utility used in

this dissertation. Mechanisms for co-ordination among nodes if a task spans across

multiple nodes can also be placed in future work category.

Future work for RADA can include tuning of state weight parameters auto-

matically based on learned mobility patterns of application rather than requiring

manual configuration. RADA state definition can be further extended based on new

application scenarios for sparse WSNs.
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[19] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor networks,” ACM

SIGPLAN Notices, vol. 37, no. 10, pp. 85–95, Oct. 2002.

[20] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou, and E. G.

Sirer, “On the need for system-level support for ad hoc and sensor networks,”

ACM Operating Systems Review, vol. 36, no. 2, pp. 1–5, 2002.

[21] TinyOS, “Tinyos: An open-source os for the networked sensor regime,”

http://www.tinyos.net. [Online]. Available: http://www.tinyos.net

[22] M. Wang, J. Cao, J. Li, and S. K. Das, “Middleware for wireless sensor

networks: A survey,” J. Comput. Sci. Technol, vol. 23, no. 3, pp. 305–326, 2008.

[Online]. Available: http://dx.doi.org/10.1007/s11390-008-9135-x

[23] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent middleware for

self-adaptive wireless sensor networks,” TAAS, vol. 4, no. 3, 2009.

[24] A. Boulis, C.-C. Han, R. Shea, and M. B. Srivastava, “Sensorware:

Programming sensor networks beyond code update and querying,” Pervasive

and Mobile Computing, vol. 3, no. 4, pp. 386–412, 2007. [Online]. Available:

http://dx.doi.org/10.1016/j.pmcj.2007.04.007

[25] R. Gummadi, N. Kothari, R. Govindan, and T. Millstein, “Kairos: a macro-

programming system for wireless sensor networks,” in SOSP ’05: Proceedings



157

of the twentieth ACM symposium on Operating systems principles. New York,

NY, USA: ACM, 2005, pp. 1–2.

[26] M. Welsh and G. Mainland, “Programming sensor networks using abstract

regions,” in NSDI. USENIX, 2004, pp. 29–42. [Online]. Available:

http://www.usenix.org/events/nsdi04/tech/welsh.html

[27] K. Whitehouse, C. Sharp, D. E. Culler, and E. A. Brewer, “Hood: A neighbor-

hood abstraction for sensor networks,” in MobiSys. USENIX, 2004.
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