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ABSTRACT 

 
ANALYSIS AND IMPROVEMENT OF MULTIPLE OPTIMAL LEARNING FACTORS FOR FEED 

FORWARD NETWORKS 

 

Praveen Jesudhas, M.S 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Michael T. Manry 

 The effects of transforming the net function vector in the Multilayer Perceptron (MLP) 

are analyzed. The use of optimal diagonal transformation matrices on the net function vector is 

proved to be equivalent to training the MLP using multiple optimal learning factors (MOLF). A 

method for linearly compressing large ill-conditioned MOLF Hessian matrices into smaller well-

conditioned ones is developed. This compression approach is shown to be equivalent to using 

several hidden units per learning factor. The technique is extended to large networks. In 

simulations, the proposed algorithm performs almost as well as the Levenberg Marquardt (LM) 

algorithm with the computational complexity of a first order training algorithm.     
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CHAPTER 1 

INTRODUCTION 

1.1 Neural Networks and research 

 

 Neural networks have found wide acceptance in a variety of applications ranging from 

parameter estimation [1][2], document analysis and recognition [3], finance, manufacturing [4] 

and datamining [5]. One of the oldest and most useful types of neural network is the multilayer 

perceptron (MLP)[37]. The basis functions of the MLP are dynamically tuned through training. 

The MLP’s approximation capabilities [6,7] make it an effective tool for classification and 

approximation. The relatively short evaluation time make it a better choice than many other 

classification and approximation methods such as support vector machines (SVM) [35]. The 

universal approximation [9] property of the MLP along with its ability to mimic Bayes 

discriminant[10], optimal L2 norm estimates[8] and maximum a-posteriori(MAP)[11] estimates 

give it a strong  theoretical foundation. 

             Though neural networks have a variety of applications and solid theoretical validity, they 

also have limitations due to a lack of scalable and effective training algorithms .The error 

functions used with neural net training are not quadratic. Hence many iterations are required for 

training [24]. MLP training algorithms can get trapped in local minima [34]. The presence of 

dependent inputs [33] can adversely affect neural net training. In certain applications online 

training of neural network is employed [30, 31]. The convergence proofs for online training 

algorithms [32] are not as strong as those for batch training algorithms where a fixed set of 

training data is used. In this thesis we exclusively investigate batch training algorithms.     

              Batch training algorithms for the MLP can be briefly classified as first and second order 

algorithms. First order algorithms like back-propagation (BP) [12], conjugate gradient (CG) [13] 
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and output weight optimization-backpropagation (OWO-BP) require fewer multiplies and data 

passes and hence take less time per iteration. However, they are sensitive to input means and 

gains [14]. Second order methods on the other hand, are not quite as sensitive to input means 

and gains, but they do have their own inherent limitations. Second order algorithms related to 

Newton’s method often have non-positive definite or singular Hessian matrices [15][16] which 

result in unstable training. Hence the Levenberg-Marquardt (LM) algorithm [17][18] is used 

normally. The LM algorithm is very computationally intensive due to the large size of the 

Hessian matrix so its use in training large networks is often limited. 

              When an optimal learning factor (OLF) calculated using the Gauss-Newton 

approximation [19] is used with OWO-BP, the resulting training algorithm is observed to work 

better than BP. The process of using a separate OLF for each of the hidden unit net function 

and combining them with OWO-BP, denoted as MOLF-BP [20] has produced better results than 

OWO-BP. However, the MOLF-BP approach still has certain limitations. The MOLF Hessian 

can be ill-conditioned. The size of the MOLF Hessian matrix Hmolf can also become prohibitively 

large for larger networks, resulting in scalability problems. 

               This thesis gives a strong theoretical foundation to the basic MOLF algorithm by 

relating to optimally transforming the net function of MLP. The scalability issues of the basic 

MOLF algorithm for large networks are dealt with by collapsing the MOLF Hessian matrix to 

reduce the number of optimal learning factors so that the Hessian size is reduced. This process 

will also decrease the chances of the Hessian matrix to be singular. 

 

1.2 Thesis organization 

                This thesis is organized as follows. Chapter 2 provides a review of the existing batch 

training algorithms. A review of the basic MOLF training algorithm is provided in chapter 3 along 

with an analysis of the problems present in it. The effects of optimally transforming the net 
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function vector of an MLP are analyzed for the MOLF algorithm in chapter 4. Chapter 5 includes 

a detailed description of the collapsing procedure for the MOLF Hessian matrix and its use in 

rectifying the problems of the basic MOLF algorithm. Experimental results comparing the 

improved MOLF algorithm with LM and other algorithms are made in Chapter 6.  

 

 

 

 

 

 

 

                                                                   

                                                                   

 

 



 

4 

 

                                                                   

CHAPTER 2 

REVIEW OF BATCH TRAINING ALGORITHMS 

2.1 MLP Notation 

 In the fully connected MLP of Figure 1, input weights w(k,n) connect the n
th
 input to the 

k
th
 hidden unit. Output weights woh(m,k) connect the k

th
 hidden unit’s activation op(k) to the m

th
 

output yp(m), which has a linear activation. The bypass weight woi(m,n) connects the n
th
 input to 

the m
th
 output. The training data, described by the set (xp,tp) consists of N-dimensional input 

vectors xp and M-dimensional desired output vectors, tp. The pattern number p varies from 1 to 

Nv where Nv denotes the number of training vectors present in the data set. 

             In order to handle thresholds in the hidden and output layers, the input vectors are 

augmented by an extra element xp(N+1) where, xp(N+1) = 1 , so xp = [xp(1), xp(2),…., xp(N+1)]
T
 . 

Let Nh denote the number of hidden units. The dimensions of the weight matrices W, Woh and 

Woi are respectively Nh by (N+1), M by Nh and M by (N+1) .The vector of hidden layer net 

functions, np  and the actual output of the network, yp can be written as  

 
 
                                                                np(1)           op(1)                                                                
              xp (1)                                                                                                            yp (1) 
 

 xp (2)                                                                                                            yp (2)   
 
  

                                      
                                              W                                                     
          xp (N+1)                                                                                                           yp (M) 
                                                               np(Nh)          op(Nh)                 Woi 
 
             Input Layer                                  Hidden Layer                       Output Layer 
 
 

Figure 2.1 A fully connected Multilayer Perceptron 

 
 

Woh 
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                np = W    · xp                                                               (1) 

                         y
p 

= WWWWoi ·    xp + WWWWoh · op             
 

where the k
th
 element of the hidden unit activation vector op is calculated as op(k) = f(np(k)) and 

f(.) denotes the hidden layer activation function. Training an MLP typically involves minimizing 

the mean squared error between the desired and the actual network outputs, defined as  

E =  
1

Nv

 � � [ tp�i� - y
p

�i� ] 
2

M

i=1

Nv

p=1

  =     
1

Nv

 � Ep,Nv

p=1

                                       (2) 

Ep =  � [ tp�i� - y
p

�i� ] 
2

M

i=1

                                                          
where Ep is the cumulative squared error for pattern p. 

                         

2.2 Discussion of Back-Propagation 

               BP training [12, 22, 23, 24] is a gradient based learning algorithm which involves 

changing system parameters so that the output error is reduced. For a MLP, the expression for 

actual output found from input is provided in (1). The weights of the MLP are changed by BP so 

that the error E of equation (2), which computes the sum of the squared errors between the 

actual and desired outputs, decreases. The weights are updated using gradients of the error 

with respect to the corresponding weights. 

               The required error gradients are calculated using the chain rule utilizing delta 

functions, which are negative gradients of Ep with respect to net functions. For the p
th
 pattern, 

output and hidden layer delta functions [24] are respectively found as, 

δpo�i�= 2 �tp�i�- y
p

�i��                                                               (3) 

            δp �k�= f
' 	np�k�
 � δpo

M

i=1

(i)woh(i,k)                   
 Now, the negative gradient of E with respect to w(k,n) is,  
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g�k,n�= 
-∂E

∂w(k,n)
= 

1

Nv

 � δp

Nv

p=1

�k�xp�n�                                             (4) 

 
The matrix of negative partial derivatives can therefore be written as, 
 

G    =   
1

Nv

 ����  δp

Nv

p=1

····    xp
T                                                     (5) 

 

where δδδδp = [δp(1) , δ p(2)… , δ p(Nh) ]
T
 [12]. If steepest descent is used to modify the hidden 

weights, W is updated in a given iteration as, 

                                                                                                WWWW ← W + z·G                                                                          (6) 

                    ∆ W    = z·G               
where z is the learning factor. 
 

2.3 Discussion of Output-Weight-Optimization-Back Propagation                

              Here, we describe OWO-BP, a first order algorithm which trains two subsets of network 

weights [25] separately. In a given iteration of OWO-BP, we alternately (i) find the output weight 

matrices, Woh and Woi connected to the network outputs and (ii) separately train the input 

weights, W using BP. 

             Output weight optimization (OWO) is a technique finding weights connected to the 

actual outputs of the network. Since the outputs have linear activations, finding the weights 

connected to the outputs is equivalent to solving a system of linear equations. The expression 

for the actual outputs given in (1) can be re-written as  

y
p
= Wo· x�p              

where x�p=[ xp, op]
T
 is the augmented input vector of size Nu  where Nu equals N + Nh  + 1, Wo  

is formed as [Woi : Woh] and has a size of M by Nu . The output weights can be solved for by 

setting ∂E ∂Wo⁄ =0 which leads to a set of linear equations given by, 
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Ca= Raaaa·Wo
T                                                                (7) 

 
 
where, 
 

Ca= 1

Nv

 � x�p

Nv

p=1

· tp
T
  

 

Ra= 1

Nv

 � x�p·

Nv

p=1

 x�p 
T  

 
Equation (7) is most easily solved using orthogonal least squares (OLS) [21].  

                

            In the second half of an OWO-BP iteration, the input weight matrix W is updated as in 

(6), where G is the generic representation of a direction matrix that contains information about 

the direction of learning and z, the learning factor that contains information about the step length 

to be taken in the direction G. The learning factor z could be specified heuristically or found 

optimally. The optimal learning factor (OLF)[19] used in this thesis is derived as,  

z = -∂E/ ∂z 
∂

2
E/ ∂z2

                                                                           �8�  
The weight update z⋅G in equation (6) can also be denoted as,  

z ·G    = ∆ W                                                    (9) 

 
                For backpropagation, the direction matrix is nothing but the Nh by (N+1) negative 

input weight Jacobian matrix G computed as in equation (5).  

 

A brief description of OWO-BP is given below. For every training iteration,  

i. Find the negative Jacobian matrix G described in equation (5) 

ii. Find the OLF and update the input weights, W, using equation (6)  
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iii. Solve the system of linear equations in (7) using OLS and update the output weights, 

Wo. 

 

             This method is attractive for several reasons. First, the training is faster, since BP is not 

being used to find Wo. Second, it helps avoid some local minima. Third, the method exhibits 

improved training performance compared to using only BP to update all the weights in the 

network. 

 

 

2.4 Second Order Methods 

             Second order training methods for the MLP, related to Newton’s method [26, 27, 28, 

29], involve quadratic modeling of the error function. The subsequent update of the weights is 

derived by minimizing this model error function.    

              Let wf be the vector containing all elements of the known weight matrices Woi, Woh and 

W. Let e = wf’ – wf be the unknown weight change vector, where wf’ is the desired or improved 

version of wf that is to be found. H and g respectively denote the Hessian matrix and negative 

gradient vector of the error E with respect to weight vector wf. For the Hessian matrix H, the m
th
 

row, n
th
 column element is given by,  

                  h�m,n� =  ∂
2
E

∂wf�m�∂wf(n)
                                                (10) 

 
Similarly the m

th
 element of the negative gradient vector g is, 

 

g�m� = 
‐∂E

∂wf(m)
                                                         (11) 

 
           The multivariate Taylor’s theorem says that E’, which is E as a function of e = wf’ – wf, 

can be approximated as, 

E’ ≈  E – e
T
g + ½  e

T
⋅H⋅e                   (12) 
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Setting ∂E’/∂e = 0, we get 
 
 

                                                                 H⋅e = g        (13)
    

 

so e = H
-1
⋅g . The weight vector is then updated as, 

 
                                                               wf’ = wf + e                                                          (14) 
 
                The vector e can be found using OLS or other methods. However, for the MLP, the 

Hessian matrix H can be singular or ill-conditioned, so Newton’s algorithm is not normally used 

for neural network training. A popular method which effectively rectifies this limitation is the 

Levenberg-Marquardt (LM) algorithm. LM [17,18] effectively interpolates between the Gauss-

Newton form of Newton’s algorithm and steepest descent according to the nature of the Newton 

Hessian matrix H. In LM the weights are updated as, 

                                        
wf = wf + HLM

-1
g                                                          (15) 

 
HLM e = g 

 

HLM = [H + λ⋅diag(H)] 
 
where diag(H) is H with off-diagonal elements set to 0 and HLM is the Hessian matrix of the LM 

algorithm. In (15) if E increases, λ is increased. The weight vector is then updated as in (15), 

making the algorithm closer to steepest descent. Otherwise, λ is decreased. The LM algorithm 

gives good results, but unfortunately doesn’t scale well due to large size of its Hessian matrix 

HLM. 

 

2.5 Optimal Learning Factor 

                Calculation of the optimal learning factor (OLF) [19] z used with BP or OWO-BP is a 

second order algorithm. It also forms the basis for the MOLF algorithm [20]. 
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                The choice of learning factor z in the input-hidden weight update equation (6) has a 

direct effect on the convergence rate of OWO-BP. Using Taylor’s series for the error E in (2), a 

non-heuristic optimal learning factor (OLF) for OWO-BP can be derived[19] as in (8), where the 

numerator and denominator derivatives are evaluated at z=0. The expression for the second 

derivative of the error with respect to the OLF is found using (2) as,  

∂
2
E

∂z2
= � � � g�k,n�N+1

n=1

Nh

j=1

Nh

k=1

� ∂
2
E

∂w�k,n�∂w�j,i�
N+1

i=1

g�j,i�= � � g
k
T

Nh

j=1

Nh

k=1

HR
kj
g

j
                     (16) 

where column vector gk contains elements g(k,n) of G, for all values of n. HR is the input weight 

Hessian with Niw rows and columns, where Niw = (N + 1)⋅Nh is the number of input weights. 

Clearly, HR  is reduced in size compared to H,  the Hessian for all weights in the entire network. 

HR
k,j

 contains elements of HR for all input weights connected to the jth and kth hidden units and 

has size (N+1) by (N+1). When Gauss-Newton [15] updates are used, elements of HR are 

computed as  

∂
2
E

∂w�j,i�∂w�k,n� = 
2

Nv

u�j,k� � xp

Nv

p=1

�i�xp�n�o'
p�j�o'

p�k�                                   �17� 

u�j,k�= � woh(m,j)woh(m,k)

M

m=1

                                                                     
                       

 
where o’p(k) indicates the first partial derivative of op(k) with respect to its net function. Because 

(17) represents the Gauss-Newton approximation to the Hessian, it is positive semi-definite. 

Equation (16) shows that  

(i) The OLF can be obtained from elements of the Hessian HR  

(ii) HR contains useful information even when it is singular 

(iii) A smaller non-singular Hessian ∂ 
2
E/∂ z

2
 can be constructed using HR.  
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Therefore, it may be profitable to construct Hessian matrices of intermediate size between 1 by 

1 and Nw by Nw for use in Newton’s algorithm [20]. 
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CHAPTER 3 
 

THE MOLF ALGORITHM 

3.1 Review of basic MOLF algorithm 

               In this section, the basic MLP-MOLF algorithm [20] is reviewed, where a vector z of 

optimal learning factors is computed. The MLP notation provided in Chapter 2 is followed in the 

equations.  

               A MLP is assumed to be trained using OWO-BP. Let z be the vector containing the 

optimal learning factors. Let zk represent the OLF used to update each of the hidden unit input 

weights, w(k,n).The error function to be minimized is given by (2). The predicted output yp(m) is 

given by, 

y
p

�m� = � woi

N+1

n=1

�m,n�xp�n� + � woh�m,k�f( 

Nh

k=1

� (w�k,i�+zkg(k,i)xp�i� )N+1

i=1

          (18) 

where, g(k,i) is again an element of the negative Jacobian matrix G and f() denotes the hidden 

layer activation function. The negative first partial of E with respect to an OLF zj
 
is,  

g
molf

�j� = -∂E

∂zj

 = 2

Nv

� � �t �p�m� - � woh

Nh

k=1

(m,k)op(zk)�M

m=1

Nv

p=1

woh(m,j)o'
p(j)∆np(j)           (19) 

where, 
 

t �p�m� = tp�m� - � woi

N+1

n=1

(m,n)xp(n) 

 

∆np(j) = � xp

N+1

n=1

(n)g(j,n) 

 

op(zk) = f( � (w�k,n�+ zk

N+1

n=1

g(k,n))xp(n)) 
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              Using Gauss-Newton updates, the second partial derivative elements of the Hessian 

Hmolf  are derived as, 

 

hmolf�k,j� ≈ ∂
2
E

∂zk∂zj

= 2

Nv

 � woh

M

m=1

(m,k)woh(m,j) � o'
p

Nv

p=1

(k)o'
p(j)∆np(k)∆np(j)                        (20) 

 

           = � � � 2N� u(k,j) � xp

Nv

p=1

(i)xp(n)o'p(k)o'p(j)�N+1

n=1

N+1

i=1

g(k,i)·g(j,n) 

 
where u(k,j) is as defined in equation (17). 
              

               The Gauss-Newton update guarantees that Hmolf is non-negative definite [15]. Given 

the negative gradient vector, g
molf    = [ -∂E ∂z1� , -∂E ∂z2� …, -∂E ∂zNh

� ] 
T
 and the Hessian Hmolf, 

the error E is minimized with respect to the vector z using Newton’s method. For every iteration 

in the training algorithm, the steps are as follows:  

i. Calculate the negative input weight Jacobian G using BP.  

ii. Calculate z using Newton’s method and update the input weights as  

             w�k,n�← w�k,n� + zk·g�k,n�                                                 (21) 

 

iii.  Solve linear equations for all output weights. 

  
            Thus the MOLF procedure has been successfully applied to OWO-BP, and the resulting 

algorithm is denoted as MOLF-BP. Similarly the MOLF procedure can also be used to improve 

other training algorithms. 

 
3.2 The MOLF Hessian 

 
            In this sub section the MOLF Hessian is analyzed and compared to the Hessian matrix 

used in Newton’s algorithm [20]. The effects of the dependent input and hidden units on the 

MOLF Hessian during training are also explored in this section [20].  
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            The vector z can be computed by solving,  

                                                              Hmolf·z = g
molf

                                                           (22) 

  
The MOLF Hessian Hmolf of (20) can be expressed in terms of the Newton Hessian as,  

hmolf�k,j� =  ∂
2
E

∂zk∂zj

 =  � � � ∂
2
E

∂w�k,i�∂w(j,n)
�N+1

n=1

N+1

i=1

g�k,i�·g�j,n�                                  (23) 

              The elements within the square brackets of equation (23) represent the Hessian HR of 

the error E with respect to the input weights of the MLP. The size of HR, Niw by Niw with Niw = (N 

+ 1)⋅Nh ,is reduced compared to the size of H which is Nw by Nw, where Nw = (M(Nh+N+1) + 

Nh(N+1)). It can also be observed from (23) that the Nh by Nh MOLF Hessian Hmolf leads to 

better scalability as compared to Newton’s algorithms that use Hessians HR or H. 

3.3 Effects of linearly dependent signals 

                 An analysis of the effect of linearly dependent input and hidden layers on the Hessian 

Hmolf is presented here [20]. A linearly dependent input can be modeled as 

xp�N+2�= � b�n�N+1

n=1

xp�n�                                                  (24) 

During OWO, the weights from the dependent input, feeding the outputs will be set to zero and 

the output weight adaptation will not be affected. During the input weight adaptation, the 

expression for gradient given by (19) can be re-written as,  

g
molf

�j�≡ 
-∂E

∂zj

= 
2

Nv

 � � ( t
'
p(m)

M

m=1

N

p=1

- � woh�m,k�op(zk)

Nh

k=1

 )·woh(m,j)o'
p(j) 

    �∆np�j�+ g(k ,N + 2) � b�n�xp

N+1

n=1

(n)�   (25) 

and the expression for an element of the Hessian in (20) can be re-written as, 
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        ∂
2
E

∂zk∂zj

 =  
2

Nv

� woh�m,k�M

m=1

woh(m,j) � o'
p

N

p=1

(k)o'
j(j) [ ∆np�k�∆np�j� + ∆np�k�g�j,N+2� � b�n�xp�n�+

N+1

n=1

  
∆np(j)g(k,N+2) � b�i�xp�i�+g�j,N+2�g�k,N+2� � � b�i�xp

N+1

i=1

N+1

n=1

�i�b�n�xp(n) ] N+1

i=1

          (26) 

 

Let H�molf be the Hessian, when the extra dependent input xp (N+2) is included. Then,  
 

h�molf�k,j�= hmolf�k,j�+ 2

Nv

u�k,j� � xp

Nv

p=1

�N+2�o'
p�k�o'

p�j� [ g(k,N+2) � xp�n�g(j,n)

N+1

n=1

 

g(j,N+2) � xp

N+1

i=1

(i)g(k,i) + xp(N+2)g(k,N+2)g(j,N+2) ]                                        (27) 

 
On comparing equations (19) with (25) and (20) with (26) and (27), some additional terms are 

observed within the square brackets in the expressions for gradient and Hessian in the 

presence of linearly dependent input. Clearly, these extra terms will cause the training using 

MOLF to be different for the case of linearly dependent inputs. This leads to lemma 1. 

 

Lemma 1: Linearly dependent inputs, when added to the network, do not force H�molf to be 

singular [20]. As seen in (26) and (27), each element h�molf(m,j) simply gains some first and 

second degree terms in the variables b(n). 

Assume that some hidden unit activations are linearly dependent upon others, as 

op�Nh+1�= � c�k�op

Nh

k=1

�k�                                                     (28) 

 
Further assume that OLS is used to solve for output weights. The weights in the network are 

updated on each training iteration and it is quite possible that this could cause some hidden 

units to be linearly dependent upon each other. The dependence could manifest in hidden units 

being identical or a linear combination of other hidden unit outputs.  
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                Consider one of the hidden units to be dependent. The autocorrelation matrix Ra in 

(7), will be singular and since we are using OLS to solve for output weights, all the weights 

connecting the dependent hidden unit to the outputs will be forced to zero. This will ensure that 

the dependent hidden unit does not contribute to the output [20]. To see if this has any impact 

on learning in MOLF we can look at the expression for the gradient and Hessian, given by (19) 

and (20) respectively. Both equations have a sum of product terms containing output weights. 

Since OWO sets the output weights for the dependent hidden unit to be zero, this will also set 

the corresponding gradient and Hessian elements to be zero. In general, any dependence in the 

hidden layer will cause the corresponding learning factor to be zero and will not affect the 

performance of MOLF. The above discussion on dependent hidden units leads to lemma 2. 

Lemma 2: When OLS is used to solve (22), each hidden unit, dependent upon those already 

orthonormalized, results in zero-valued weights changes for that hidden unit [20]. 

 
3.4 Problems in MOLF 

 
               Lemmas 1 and 2 in the previous section show clearly that MOLF applied to OWO-BP 

still works reasonably even in the presence of dependent input and hidden units. The 

computational complexity is also quite small compared to that of Newton’s algorithm due to the 

much smaller size of MOLF Hessian Hmolf.   

               The MOLF Hessian, though small compared to HR and H, can still be large for more 

complex networks having a lot of hidden units. Hence for large networks the MOLF algorithm 

may become unsuitable for training. According to lemma 2 for each dependent hidden unit, the 

corresponding row and column of Hmolf is zero-valued. These zero valued elements do not 

contribute to effective training of the network, but they still influence the computational 

requirements of the MOLF algorithm. 
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               In this thesis the MOLF algorithm is explored and analyzed in a more detailed manner 

using equivalent networks. Changes are also suggested to the MOLF algorithm for large 

networks and also when there are dependent units in the hidden layer.  
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CHAPTER 4 

 
DETAILED ANALYSIS OF THE MOLF ALGORITHM 

            In this chapter a detailed analysis is made on the structure of the MLP using equivalent 

networks. The relationship between MOLF applied to OWO-BP and linear transformations is 

investigated of the net function vector. 

4.1 Discussion of equivalent networks 

            Let MLP 1, have a net function vector np and output vector yp after backpropagation 

training as discussed previously in section 2.2. In a second network called MLP 2 trained similarly, 

the net function vector and the output vector are respectively denoted by n’p and y’p. The bypass 

and output weight matrix along with the hidden unit activation functions are considered to be equal 

for both the MLP 1 and MLP 2. Based on this information the output vectors for MLP 1 and MLP 2 

are respectively, 

y
p

�i�= � woi

N+1

n=1

�i,n�xp�n� +  � woh

Nh

k=1

�i,k�f 	np�k�
                                  (29) 

y'p�i�= � woi

N+1

n=1

�i,n�xp�n� +  � woh

Nh

k=1

�i,k�f 	n'p�k�
                                  (30) 

            In order to make MLP 2 strongly equivalent to MLP 1 their respective output vectors yp 

and y’p have to be equal. Based on equations (29) and (30) this can be achieved only when 

their respective net function vectors are equal [37]. 

            MLP 2 can be made strongly equivalent to MLP 1 by linearly transforming its net 

function vector n’p before passing it as an argument to the activation function f(). This process is 

equivalent to directly using the net function np in MLP 2, denoted as, 

 np = C · n'p                                                             (31) 
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The linear transformation matrix C used to transform n’p in equation (31) is of size Nh by Nh. 

This process of transforming the net function vector of MLP 2 is represented in Figure 4.1. 

                               Figure 4.1 Graphical representation of net function vectors 

                 

             On applying the linear transformation to the net function vector n’p in equation (30), 

MLP 2 is made strongly equivalent to MLP1. We then get, 

y'
p

�i� = y
p
(i) = � woi

N+1

n=1

�i,n�xp�n� +  � woh(i,k)

Nh

k=1

f �� c(m,k)

Nh

m=1

·n'p�k��                   (32) 

              After making MLP 2 strongly equivalent to MLP 1, the net function vector np can be 

related to its input weights W and the net function vector n’p as, 

np(k) = � w(k,m)xp

N+1

n=1

(m) = � c(k,m)

Nh

m=1

n'p(m)                                     (33) 

similarly the MLP 2 net function vector n’p could be related to its weights W’ as, 
 

n''p�k�= � w'�k,m�N+1

n=1

xp�m�                                              (34) 

  xp (1)

xp (2)

xp (3)

xp (N+1)

n(1) 
 
n(2) 

     
n(3) 

n(Nh) 

 

   n’(1) 

   n’(Nh)

 
W’ C 

Input Vector    

Xp 

Net function 
vector  np 

 

Net function 

vector n’p 
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On substituting (34) into (33) we get, 

 

np�k�= � w�k,m�N+1

n=1

xp�m�= � � c�k,m�Nh

m=1

N+1

n=1

w'�m,n�xp�n�                              (35) 

 
                                                                    
            It is observed above that the net function of MLP 1 is found by linear transformation of 

the input weight matrix W’ of MLP 2 given by, 

      W = C • W’                                                         (36) 
 

If the elements of the C matrix are found through an optimality criterion, then optimal input 

weights W’ can be computed with the input weight matrix W of MLP 1 by inverting the C matrix 

in (36).  

 
4.2 Optimal transformation of net function 

                   
                 The discussion of equivalent networks in section 4.1 suggests that, an optimal set of 

net functions can be obtained by linear transformation of the input weights. In this section, the 

input weight update equations are derived for OWO-BP training, using the linear transformation 

matrix C from MLP 2.  

                 MLP 1 and MLP 2 are strongly equivalent as before. Then output of the two networks 

after transformation is given as in equation (32). The elements of the Jacobian matrix G’ of MLP 

2 found from equation (2) and (32) is defined as, 

g'�u,v� = 
-∂E

∂w'(u,v)
=

2

Nv

� � [ tp

M

i=1

Nv

p=1

�i� - y
p

�i�]· 
∂y

p
(i)

∂w'(u,v)
,                              (37) 

 
∂y

p
(i)

∂w'(u,v)
 = � woh

Nh

k=1

(i,k)o'p(k)c(k,u)xp(v) 

 
Rearranging terms in (37) results in, 
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g'�u,v� = � c�k,u�Nh

k=1

2

Nv

� � [ tpM

i=1

Nv

p=1

�i�- y
p

�i�]woh�i,k�o'
p�k�xp�v�                    (38) 

                          

= � c(k,u)
‐∂E

∂w(k,v)

Nh

k=1

 

 

which is abbreviated as  

                                                                     G’ = C
T
G                                                            (39) 

The input weight update equation for MLP 2 based on its Jacobian vector G’ is given by, 

W’ = W’ + z•G’ 
 
On pre-multiplying this equation by C and using equations (36) and (39) we obtain  

                                                                W = W + z•G’’                                                          (40) 
 
where, 

 
     G’’ = R • G                                                              (41) 

 
 R = C C

T 

 

Equation (40) is nothing but the weight update equation of MLP 1, which would result in the 

network being strongly equivalent to MLP 2. Thus using equation (40), the input weights of MLP 

1 can be updated so that its net function is optimal as is MLP 2. 

 

Lemma 3: For a given R matrix as defined in equation (41), there are an uncountably infinite 

number of C matrices. 

              The transformed Jacobian G’’ of MLP 1 is given in terms of the original Jacobian G as, 

g''�u,v� = � r (u,k) g(k,v)

Nh

k=1

                                                  (42) 

g�k,v� = -∂E

∂w(k,v)
=

2

Nv

� � [ tpM

i=1

Nv

p=1

�i�- y
p

�i�]woh�i,k�o'
p�k�xp�v� 
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Equations (41) and (42) suggest that MLP 1 could be trained with optimal net functions using 

only the knowledge of the linear transformation matrix R. 

 
 

4.3 Multiple Optimal Learning Factors for Input Weights 
 
             Equations (41) and (42) give a method for optimally transforming the net functions of an 

MLP by using the transformation matrix R. In this sub section, the MOLF approach is derived 

from equations (41) and (42). Let the R matrix in equation (41) be diagonal. Under this case 

equation (40) becomes, 

w(k,n) = w(k,n) + z•r(k)g(k,n)                                          (43) 

On comparing equations (21) and (43), the expression for the different optimal learning factors 

zk could be given as, 

                                                               zk = z•r(k)                                                       (44) 

Equation (44) suggests that using the MOLF for training a MLP is equivalent to optimally 

transforming the net function using a diagonal transformation matrix. 

               It is proved that using MOLF algorithm is equivalent to optimally transforming the net 

function of the MLP with a diagonal transformation matrix.   
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CHAPTER 5 

 
EFFECTS OF COLLAPSING THE MOLF HESSIAN 

              This chapter deals with the computational analysis of the existing MOLF algorithm 

followed by suggesting a method to collapse the MOLF Hessian matrix to create lesser number 

of optimal learning factors.  

 

 5.1 Computational Analysis of the MOLF algorithm 

               In the existing MOLF algorithm a significant amount of the computational burden is 

attributed to inverting the Hessian matrix to find the optimal learning factors, usually through the 

OLS procedure. The size of the Hessian Matrix which is directly based on the number of hidden 

units in the network, influences the computational load of the MOLF algorithm. 

                The gradient and Hessian equations respectively of the MOLF algorithm is provided in 

equation (19) and (20).The computation of the multiple optimal learning factor vector z requires 

that equation (22) be solved. The number of multiplies required for computing z through OLS is, 

Mols-molf ! (N
h
+1)"Nh�Nh+ 2�#                                             (45) 

 
For networks having large values of Nh, this can be time consuming since solving (22) has to be 

done for every iteration of the training algorithm.  

               If some hidden units have linearly dependent outputs, the MOLF Hessian matrix Hmolf 

can be ill conditioned as described by lemmas 1 and 2. This can affect MLP training.                      

               Thus based on the above discussions, it can be inferred that having optimal learning 

factors equal to the number of hidden units result in higher computational load and also could 

lead to an ill-conditioned MOLF Hessian matrix.  
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5.2 Training with several hidden units per OLF 

              In this section, we modify the MOLF approach so that each OLF is assigned to one or 

more hidden units. The Hessian for this new approach is compared to Hmolf. 

              Let NOLF be the number of optimal learning factors used for training in the proposed 

variable optimal learning factors (VOLF) method. NOLF is selected such that it is less than or 

equal to Nh and also such that it divides Nh, with no remainder. Each optimal learning factor zv 

applies to Nh/NOLF hidden units. The MLP output based on these conditions is given by, 

y
p

�m� = � woi

N+1

n=1

�m,n�xp�n� + � woh�m,k�f( 

Nh

k=1

� (w�k,n�+zvg(k,n)xp�n� )

N+1

n=1

          (46) 

                                                              v = ceil ( k • (NOLF/Nh) ) 

where the function ceil() rounds the argument up to the next integer. 

              The negative gradient of the error in equation (2) with respect to each of the optimal 

learning factors zv, denoted as g
volf

 is computed based on equation (46) as, 

g
molf1

�j� = -∂E

∂zj

 = 2

Nv

� � �t �p�m� – � woh(m,k)op(zv,k)

Nh

k=1

�M

m=1

Nv

p=1

·                                                      (47)  

             � $woh(m,k(j,c))o'
p(k(j,c))∆np(k(j,c))%Nh NOLF⁄

c=1

            

where, 

k�j,c� = c + (j-1)·
Nh

NOLF

, 
 

op(zv,k) = f( � (w�k,n�+ zv

N+1

n=1

g(k,n))xp(n)) 

 
The Hessian matrix Hvolf is derived from (2), (46) and (47) as, 

 



 

25 

 

hvolf�i,j�= ∂
2
E

∂zi∂zj

 = 2

Nv

� � � $woh(m,k�i,d�)o'
p(k�i,d�)∆np(k�i,d�% ·Nh NOLF⁄

d=1

M

m=1

Nv

p=1

                                                 
        � $woh(m,k�j,c�)o'

p(k�j,c�)∆np(k�j,c�)%Nh NOLF⁄
c=1

    (48) 

                  The vector z of variable optimal learning factors is found from the Jacobian vector 

and Hessian matrix from the relation, 

Hvolf • z = gvolf                                                                                   (49)  

where Hvolf is NOLF by NOLF and gvolf is of NOLF by 1. Thus by varying the number of optimal 

learning factors required for training, the vector z is found using the method of section 3.1. 

                 The computation required for solving equation (49) can be adjusted by choosing the 

number of optimal learning factors. When NOLF equals one, the current procedure is similar to 

the OLF algorithm described in section 2.5. It requires less computation but the algorithm is also 

not very effective. When NOLF equals Nh, then the algorithm reduces to the MOLF algorithm 

described in section 3.1. Thus by varying the number of optimal learning factors between one 

and Nh, the algorithm interpolates between the MOLF and OLF cases.   

 

5.3 Collapsing the MOLF Hessian 

                  Occasionally the MOLF approach can fail because of distortion in Hmolf due to 

linearly dependent inputs or because it is ill-conditioned because of linearly dependent hidden 

units. In these cases we don’t have to redo the current training iteration. Instead we can 

collapse Hmolf and gmolf down to a smaller size and use the approach of the previous 

subsection. The elements of the original MOLF Hessian matrix Hmolf for a MLP with Nh hidden 

units are denoted as,  
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Hmolf = 
&
''(

hmolf(1,1) hmolf(1,2) hmolf(1,3) ) ) hmolf(1,Nh)

hmolf(2,1) hmolf(2,2) hmolf(2,3) ) ) *
hmolf(3,1) hmolf(3,2) hmolf(3,3) ) ) ** * * + + ** * * + + *

hmolf(Nh,1) ) ) ) ) hmolf(Nh,Nh),
--.             (50) 

On collapsing the Hessian matrix Hmolf to a matrix Hmolf1 of size NOLF by NOLF we get, 

Hmolf1 = 
&
''(

hmolf1(1,1) hmolf1(1,2) hmolf1(1,3) ) ) hmolf1(1,NOLF)

hmolf1(2,1) hmolf1(2,2) hmolf1(2,3) ) ) *
hmolf1(3,1) hmolf1(3,2) hmolf1(3,3) ) ) ** * * + + ** * * + + *

hmolf1(NOLF,1) ) ) ) ) hmolf1(NOLF,NOLF),
--.         (51) 

The relationship between the elements of Hmolf1 and Hmolf is described by, 

hmolf1(m,n)= � � hmolf(

Nh NOLF⁄
d=1

Nh NOLF⁄
c=1

k(m,c),k(n,d))                                (52) 

Equations (20 and (48) show that collapsing the MOLF Hessian matrix to size NOLF by NOLF 

results in a VOLF Hessian matrix of that size. Thus the Hmolf1 Hessian matrix of equation (51) is 

the equivalent to the VOLF Hessian matrix Hvolf of equation (48). 

                 On collapsing the Jacobian vector gmolf to a vector gmolf1 having NOLF elements we 

get, 

g
molf1

= $g
molf1

�1�, g
molf1

�2�, g
molf1

�3�…………… g
molf1

(NOLF)%T
                  (53) 

The relationship between gmolf1 and gmolf is described by, 

g
molf1

(m)= � g
molf

(k(m,c) )

Nh NOLF⁄
c=1

                                              (54) 

Equations (19) and (47) show that collapsing the MOLF gradient vector to size NOLF by 1 results 

in the VOLF gradient vector. 

               Therefore collapsing the MOLF Hessian matrix Hmolf and gradient vector gmolf is 

equivalent to training the MLP with the VOLF algorithm. 
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5.4 Advantages of collapsing MOLF Hessian matrix 

               Sections 5.2 and 5.3 suggest that collapsing the MOLF Hessian matrix is a 

theoretically valid algorithm. Hence it can be put to practical use to overcome the limitations of 

the MOLF algorithm.  

               Figure 5.1 shows the number of multiplies required to solve equation (49) using OLS 

when the value of Nh is 40. The number of multiplies is observed to decrease cubically with 

decrease in NOLF. 

 

Figure 5.1 No. of multiplies vs. OLF’s used  

               

                Thus collapsing the MOLF Hessian into a Hessian of smaller size significantly lowers 

the required number of multiplies for MLP training. It is clear from lemma 2 that the presence of 
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dependent hidden units makes the MOLF Hessian matrix ill-conditioned. Hence collapsing the 

MOLF Hessian is a reasonable solution.  
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CHAPTER 6 

EXPERIMENTAL RESULTS 

6.1 Computational Burden of different algorithms 

              In this section the computational burden for the different MLP training algorithms for 

comparison with the MOLF and VOLF algorithm is calculated. All the algorithms were 

implemented in Microsoft visual studio 2005. 

              Let Nu = N + Nh + 1 denote the number of weights connected to each output. The total 

number of weights in the network is denoted as Nw = M(N + Nh + 1) + Nh(N + 1).The number of 

multiplies required to solve for output weights using Orthogonal Least Squares [22] is given by, 

Mols=Nu /M�Nu02� + 3

4
Nu�Nu+ 1�1                                                       (55) 

  

 

The numbers of multiplies required per training iteration using BP, OWO-BP and LM are 

respectively given by, 

Mbp= Nv"MNu + 2Nh�N+1�+ M(N+6Nh+4)#+Nw                                             (56) 

Mowo-bp = Nv /2Nh�N+2�+M�Nu+1�+ Nu(N+1)

2
+ M(N+6Nh+4)1 +Mols+Nh�N+1�                 (57) 

Mlm= Mbp + Nv$MNu2Nu+ 3Nh�N+1�3+ 4Nh
2
(N+1)

2% + Nw
2
 + Nw

3                              (58) 

The multiplies required for computing the optimal learning factors of the MOLF is provided in 

equation (45). Similarly the number of multiplies required for the VOLF algorithm is given as, 

Mols-volf ! (N
OLF

+1)"NOLF�NOLF+ 2�#                                            (59) 

                       
            The total number of multiplies required for the MOLF and VOLF algorithms are 

respectively given as, 

Mmolf = Mowo-bp+ Nv"Nh�N+4�- M(7N-Nh+4)#+ (Nh)
3
 + Mols-molf                                   (60) 

 Mvolf = Mowo-bp+ Nv$Nh�N+4�- M(7N-Nh+4)%+ (Nh)
3
 + Mols-volf                            (61) 
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               Equations (60) and (61), show that the number of multiplies required in the MOLF and 

VOLF algorithms consists of the OWO-BP multiplies, multiplies to compute the Hessian and 

Jacobian, along with the number of multiplies to invert the Hessian matrix. The matrices Hmolf  

and Hvolf are respectively inverted in the MOLF and VOLF algorithms. 

 

6.2 Experimental results and plots 

               Here the performance of VOLF is compared with those of MOLF, OWO-BP, LM and 

CG. In CG and LM, all weights are varied at each iteration. In MOLF, VOLF and OWO-BP we 

first solve linear equations for the output weights and subsequently update the input weights. 

               The data sets used for the simulations are listed below in Table 6.1. A detailed 

description of the different datasets is specified in Appendix A. The training for all the datasets 

are done on inputs normalized to zero mean and unit variance. 

Table 6.1 Data set description 
 

Data Set Name No. of Inputs No. of Outputs No. of Patterns 

Twod.tra 8 7 1768 

Single2.tra 16 3 10000 

Power12trn.tra 12 1 1414 

Concrete Data Set 8 1 1030 

 

 
               The number of hidden units to be used in the MLP is determined by network pruning 

using the method of [36]. By this process the complexity of each of the data sets is analyzed 

and an appropriate number of hidden units is found. Then the k-fold validation procedure is 

used to obtain the average training and validation errors. In k-fold validation, given a data set, it 

is split into k non-overlapping parts of equal size, and (k − 1) parts are used for training and the 

remaining one part for validation. The procedure is repeated till all k combinations are 

exhausted. For the simulations the k value is chosen as 10. The number of iterations used for 

OWO-BP, CG, MOLF and VOLF is chosen as 4000. For the LM algorithm 300 iterations are 

chosen. For the VOLF algorithm NOLF = Nh/2. 
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                  The average training error and the number of multiplies is calculated for every 

iteration in a particular dataset using the different training algorithms. These measurements are 

then plotted to provide a graphical representation of the efficiency and quality of the different 

training algorithms. These plots for different datasets are shown below.  

 

 

                              Figure 6.1 Twod.tra data set: Average error vs. iterations 
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Figure 6.2 Twod.tra data set: average error vs. multiplies per iteration 

                      

                For the Twod.tra data file [39], the MLP is trained with 30 hidden units. In Figure 6.1, 

the average mean square error (MSE) for training from 10-fold validation is plotted versus the 

number of iterations for each algorithm (shown on a log10 scale). In Figure 6.2, the average 

training MSE from 10-fold validation is plotted versus the required number of multiplies (shown 

on a log10 scale).The LM algorithm show the lowest error of all the algorithms used for training, 

but its computational burden may make it unsuitable for training purposes. It is noted that the   

average error of VOLF algorithm lies between that of the OWO-BP and MOLF algorithms for 

every iteration.   
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Figure 6.3 Single2.tra data set: Average error vs. iterations 

 

 

 

Figure 6.4 Single2.tra data set: average error vs. multiplies per iteration 

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No of Iterations

M
S

E

 

 

OWO-BP

CG

LM

MOLF

VOLF

10
7

10
8

10
9

10
10

10
11

10
12

10
13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No of Multiplies

M
S

E

 

 

OWO-BP

CG

LM

MOLF

VOLF



 

34 

 

                 For the Single2.tra data file [39], the MLP is trained with 20 hidden units. In Figure 

6.3, the average mean square error (MSE) for training from 10-fold validation is plotted versus 

the number of iterations for each algorithm (shown on a log10 scale). In Figure 6.4, the average 

training MSE from 10-fold validation is plotted versus the required number of multiplies (shown 

on a log10 scale).In the earlier iterations, the MOLF algorithm shows the least error. But overall, 

as for the previous dataset, the LM algorithm shows the lowest error of all the algorithms used 

for training. However its computational burden may make it unsuitable for training purposes. As 

before the average error of VOLF algorithm lie between that of the OWO-BP and MOLF 

algorithms for every iteration.   

 

 
Figure 6.5 Power12trn.tra data set: Average error vs. iterations 
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Figure 6.6 Power12trn.tra data set: Average error vs. multiplies per iteration 

 

 

             For the Power12trn.tra data file [39], the MLP is trained with 25 hidden units. In Figure 

6.5, the average mean square error (MSE) for training from 10-fold validation is plotted versus 

the number of iterations for each algorithm (shown on a log10 scale). In Figure 6.6, the average 

training MSE from 10-fold validation is plotted versus the required number of multiplies (shown 

on a log10 scale). For this dataset the MOLF algorithm performs better than all the other 

algorithms. As found previously, the computational requirements of the LM algorithm is very 

high, perhaps making it unsuitable for training. As before the average error of the VOLF 

algorithm lie between that of the OWO-BP and MOLF algorithms for each iteration.   
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 Figure 6.7 Concrete data set: Average error vs. iterations 
 

 
 

 Figure 6.8 Concrete data set: average error vs. multiplies per iteration 
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                   For the Concrete data file [40], the MLP is trained with 15 hidden units. In Figure 

6.7, the average mean square error (MSE) for training from 10-fold validation is plotted versus 

the number of iterations for each algorithm (shown on a log10 scale). In Figure 6.8, the average 

training MSE from 10-fold validation is plotted versus the required number of multiplies (shown 

on a log10 scale).In the earlier iterations, the MOLF and VOLF algorithms shows lesser error 

than LM but towards the end LM has the lowest error. It is observed that in the later iterations, 

the error in the MOLF algorithm oscillates and doesn’t decrease constantly. This could be due 

to the ill-conditioned nature of its Hessian matrix since the VOLF algorithm, which uses the 

collapsed Hessian doesn’t have these characteristics. As before the average error of the VOLF 

algorithm lie between that of the OWO-BP and MOLF algorithms for every iteration.  

                   Table 6.2 given below, compares the average training and validation errors of the 

MOLF and VOLF algorithms with the other algorithms for different data files. For each data set, 

the average training and validation errors are found after 10-fold validation. 

 
Table 6.2 Average 10-fold training and validation error 

 

Data Set  BP-OLF CG MOLF VOLF LM 

Twod.tra 

Etrn 0.217899 0.196059 0.166088 0.179418 0.157198 

Eval 0.252385 0.215986 0.198837 0.205892 0.168934 

Single2.tr
a 

Etrn 0.834977 0.629386 0.164867 0.512276 0.030426 

Eval 1.023428 0.992340 0.193423 0.644342 0.112323 

Power12t
rn.tra 

Etrn 6959.885485 6471.980875 4177.452590 5475.007808 4566.338420 

Eval 7937.212382 7132.132432 5031.234234 6712.343243 5423.535234 

Concrete 

Etrn 38.981067 19.886229 21.814297 21.560383 16.981587 

Eval 65.123234 56.123984 37.239453 37.212893 33.123498 
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                   From the plots and the Table presented, it can be inferred that the error found from 

the VOLF algorithm lies between the errors produced by the MOLF and OWO-BP algorithms. 

The VOLF and MOLF algorithms are also found to produce good results approaching that of the 

LM algorithm, with computational requirements only in the order of first order training 

algorithms. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

                The basic MOLF algorithm is reviewed, and a stronger theoretical foundation for it is 

given. It is now clear that MOLF is equivalent to optimally transforming the net function vector of 

the MLP. MOLF is found to have problems due to the presence of dependent input and hidden 

units, resulting in a distorted and ill-conditioned Hessian matrix. This problem is addressed by 

collapsing the Hessian matrix of the MOLF algorithm down to a smaller size. The collapsed 

version of the MOLF Hessian is proved to be equivalent to training the MLP with several hidden 

units per OLF. This process also results in reduced computational complexity compared to that 

of the MOLF algorithm. The proposed algorithm is found to interpolate between the OLF and 

MOLF algorithms based on the value of NOLF. Simulation results show that the proposed 

algorithm works as stated.  

             Future work will include converting the proposed algorithm into a single–stage 

procedure where all the weights are updated simultaneously. This can be done by assigning 

OLF’s to bypass and output weights. The algorithm can also be extended for use in MLP’s with 

more than one hidden layer.  
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APPENDIX A 

 
 

DESCRIPTION OF DATA SETS USED FOR TRAINING 
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TWOD.TRA: ( 8 Inputs , 7 Outputs, 1768 Training Patterns) 

            This training file is used in the task of inverting the surface scattering parameters from 

an inhomogeneous layer above a homogeneous half space, where both interfaces are randomly 

rough. The parameters to be inverted are the effective permittivity of the surface, the normalized 

rms height, the normalized surface correlation length, the optical depth, and single scattering 

albedo of an inhomogeneous irregular layer above a homogeneous half space from back 

scattering measurements. 

             The training data file contains 1768 patterns. The inputs consist of  eight theoretical 

values of back scattering coefficient parameters at V and H polarization and four incident 

angles. The outputs were the corresponding values of permittivity, upper surface height, lower 

surface height, normalized upper surface correlation length, normalized lower surface 

correlation length, optical depth and single scattering albedo which had a joint uniform pdf. 

SINGLE2.TRA: (16 Inputs, 3 Outputs, 10,000 Training Patterns) 

              This training data file consists of 16 inputs and 3 outputs and represents the training 

set for inversion of surface permittivity, the normalized surface rms roughness, and the surface 

correlation length found in back scattering models from randomly rough dielectric surfaces. The 

first 16 inputs represent the simulated back scattering coefficient measured at 10, 30, 50 and 70 

degrees at both vertical and horizontal polarization. The remaining 8 are various combinations 

of ratios of the original eight values. These ratios correspond to those used in several empirical 

retrieval algorithms. 

POW12TRN: ( 12 Inputs, 1 Output, 1414 Training Patterns) 

                This training file was generated using data obtained from TU Electric Company in 

Texas. The first ten input features are last ten minutes power load in megawatts for the entire 
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TU Electric utility, which covers a large part of north Texas. The output is power load fifteen 

minutes in the future from the current time. All powers were originally sampled every fraction of 

a second, and averaged over 1 minute to reduce noise. The last two inputs are respectively, the 

"True Area Control Error" (TACE) and the "Filtered Area Control Error" (FACE). The FACE is a 

combination of exponentially filtered TACE and moving average filtered TACE. 

Concrete: (12 Inputs, 1 Output, 1414 Training Patterns) 

             This data file is available on the UCI Machine Learning Repository [40]. It contains the 

actual concrete compressive strength (MPa) for a given mixture under a specific age (days) 

determined from laboratory. The concrete compressive strength is a highly nonlinear function of 

age and ingredients. These ingredients include cement, blast furnace slag, fly ash, water, super 

plasticizer, coarse aggregate, and fine aggregate. The data set consists of 8 inputs and one 

output per pattern, with a total of 1030 patterns. 
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