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ABSTRACT

CONTEXT REASONING UNDER UNCERTAINTY BASED ON EVIDENTIAL

FUSION NETWORKS IN HOME-BASED CARE

HYUN LEE, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Ramez Elmasri

Pervasive computing technologies use embedded intelligent systems to enable

various real-time applications. Some of these applications are: continuous health-

care monitoring, autonomous diagnosis and treatment, and remote disease manage-

ment without spatial-temporal limitations. Additional healthcare applications include

home-based care, disaster relief management, medical facility management, and sports

health management. Issues related to the pervasive healthcare are generally classified

into five categories: Hardware, Software, Regulations, Standardization and Organi-

zation. Our focus in this dissertation is on software issues. We propose new methods

to generate a reliable context in a pervasive information system that has high rates

of new measurements over time using data aggregation and data fusion. Different

aggregation and fusion techniques can be applied depending on the types of sensed

data and autonomous processing within the fusion step.

The goal of this research is to produce a high confidence level in the generated

context for remote monitoring of patients. Reliable contextual information of re-

motely monitored patients can prevent hazardous situations by recognizing emergency
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situations in home-based care. However, it is difficult to achieve a high confidence

level of contextual information for several reasons. First, the pieces of information

obtained from multi-sensors have different degrees of uncertainty. Second, generated

contexts can be conflicting even though they are acquired by simultaneous operations.

And last, context reasoning over time is difficult because of unpredictable temporal

changes in sensory information. In particular, some types of contextual information

are more important than others in home-based care. The weight of this information

may change, due to the aggregation of the various sensors (evidence) and the varia-

tion of the values of the various sensors (evidence) over time. This causes difficulty

in defining the absolute weight of the evidence in order to obtain the correct decision

making.

In this dissertation, we propose an evidential fusion process as a context reason-

ing method based on the defined context classification and state-space based context

modeling. First, the context reasoning method processes sensed data with an evi-

dential form based on Dezert-Smarandache Theory (DSmT). The DSmT approach

reduces ambiguous or conflicting contextual information in multi-sensor networks.

Second, we deal with dynamic metrics such as preference, temporal consistency, and

relation-dependency of the context using Autonomous Learning Process (ALP) and

Temporal Belief Filtering (TBF) in order to improve the confidence level of contextual

information that makes a correct decision about the situation of the patient. And

last, we deal with both relative and individual importance of the evidence to obtain

an optimal weight of the evidence. We then apply dynamic weights of the evidence

into Dynamic Evidential Network (DEN) in order to improve the confidence level of

the context and to understand the emergency progress of the patient in home-based

care.
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Finally, we compare the Evidential Fusion Process on DSmT with traditional

fusion processes such as Bayesian Networks (BNs), Dempster-Shafer Theory (DST),

and Dynamic Bayesian Networks (DBNs). This comparison makes us understand the

uncertainty analysis in decision-making by distinguishing sensor reading errors (i.e.,

false alarm) from new sensor activations or deactivations, and shows the improvement

of our proposed method compared to the others.

The main contributions of the proposed context reasoning method under un-

certainty based on evidential fusion networks are: 1) Reducing the conflicting mass

in uncertainty level and improving the confidence level by adapting the DSmT, 2)

Distinguishing the sensor reading error from new sensor activations or deactivations

by considering the ALP and the TBF algorithm, and 3) Representing optimal weights

of the evidence by applying the normalized weighting technique into related context

attributes. These advantages help to make correct decisions about the situation of

the patient in home-based care.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years, healthcare applications such as home-based care, disaster re-

lief management, medical facility management and sports health management have

gained considerable interest [22, 79, 98, 126] as a pervasive computing area. A wide

range of pervasive computing technologies use embedded intelligent systems in order

to provide autonomous and pro-active services to the users. A Pervasive Healthcare

Monitoring System (PHMS) enables independent living, general wellness and remote

disease management in real time without spatial-temporal restrictions using these

technologies for everyday healthcare management. This PHMS approach gives advan-

tages: comprehensive health monitoring services, intelligent emergency management

services and self-adaptable automation services [41, 112, 128] to the elderly person or

patient using advanced pervasive technologies: Body Sensor Network (BSN), Wireless

Sensor Network (WSN), Mobile devices such as PDA, Handheld, and Cell-phone and

IT-based network such as Bluetooth, WiFi, Zigbee, and internet [136, 129, 11, 64].

A PHMS is composed of the combination of four components: Elderly person

or patient, Medical Sensor Networks, Information System, and Doctor as shown in

Figure 1.1. Sensor devices installed in medical sensor networks collect sensed data

continuously from an elderly person or a patient and the environment. Information

system aggregates sensed data based on data fusion techniques in order to generate

the context for a particular situation of an elderly person or a patient. Finally, a

doctor analyzes the situation using analysis tools and provides feedback to an elderly

1
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Figure 1.1. A Pervasive Healthcare Monitoring System (PHMS).

person or a patient. If an emergency situation occurs, medical emergency aid can be

requested by a doctor or an emergency alarm system.

Issues related to everyday healthcare management still exist in pervasive health-

care area. These healthcare management issues can be classified into five categories:

Hardware, Software, Regulation, Standardization and Organization [6, 122]. The

hardware issue deals with low power, energy scavenging, material constraints and

long-term operation. The software issue deals with reliability, energy-efficiency, secu-

rity, fault-tolerance, context-awareness and actuation. The regulation issue deals with

authority and legislation. The standard issue deals with hardware-software interfaces,

software-software interfaces, data communication and data storage. The organization

issue deals with methods so as to define who will deploy and control such systems and

who will cover the costs of installation, management and repair. Our research focus

in this dissertation is on the software issues. In particular, our research challenge

is how to generate reliable context in a pervasive information system that has high

rates of new measurements over time using data aggregation and data fusion tech-
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niques. Different aggregation and fusion techniques can be applied depending on the

types of sensed data and autonomous processing within the fusion step. In addition,

our research goal is to produce a high confidence level of contextual information for

remote monitoring of an elderly person or a patient. Reliable contextual informa-

tion of remotely monitored patients can prevent hazardous situations by recognizing

emergency situations of the patient in home-based care.

However, it is difficult in achieving a high confidence level of contextual informa-

tion for several reasons. First, the pieces of information obtained from multi-sensors

have different degrees of uncertainty. Second, generated contexts can be conflicting

even though they are acquired by simultaneous operations. And last, context rea-

soning over time is difficult because of unpredictable temporal changes in sensory

information. In particular, some types of contextual information are more important

than others in home-based care. The weight of this information may change, due to

the aggregation of the various sensors and the variation of the values of the various

sensors over time. This causes the difficulty in defining the absolute weight of the

evidence in order to obtain the correct decision making.

Therefore, in this dissertation, we make the scenario that reliable contextual in-

formation of remotely monitored patients should be generated to prevent hazardous

situations by recognizing emergency situations correctly in home-based care. Based

on the scenario, we propose an evidential fusion process under uncertainty as a con-

text reasoning method. The proposed context reasoning methods deal with different

aspects of the imperfection of information such as reliable, partial reliable, or com-

pletely unreliable. The proposed context reasoning methods also deal with dynamic

weights of sensed data by considering dynamic metrics such as preference, temporal

consistency and relation-dependency of contextual information. In this dissertation,

we show that the proposed context reasoning methods reduce uncertainty of con-



4

textual information so as to improve the confidence level of contextual information

compared to the others such as fusion processes based on Bayesian Networks (BNs)

[105, 108], Dempster-Shafer Theory (DST) [56, 134] and Dynamic Bayesian Networks

(DBNs) [29, 90, 141].

1.2 Challenges and Problem Statement

An instance of such an intelligent indoor healthcare environment perceives the

surroundings through multi-sensors and acts on it with the help of related actuators.[25].

In this environment, the activities of the elderly person or patient create uncertainty

of the context depending on his/her location and time. Context is defined as any in-

formation that can be used to characterize the situation of an entity, where an entity

is a person, place or object [34]. A relevant to the interaction between a user and

an application, including the user and the application themselves, is considered as

context. In order to be cognizant of his/her contexts correctly, we need to minimize

this uncertainty and improve the confidence level that is generally used as a decision

criterion for the situation of the elderly person or patient. In particular, we con-

sider data fusion techniques depending on the types of context. The types of context

involves his/her location, activities and vital signs that can provide health related

and wellness management services in an intelligent way so as to promote independent

living and medical automated diagnosis and treatment.

Contextual information should be presented by some generalized forms of con-

text classification and modeling to deal with all aspects of the contexts correctly.

The quality of a given piece of contextual information should be considered based on

the applied context classification and modeling [106]. However, a generalized context

classification is difficult to produce. Context classification defines the way in order to

implicate contextual information itself. For instance, the number of ways to describe
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an event or an object is unlimited and there are no standards or guidelines regarding

granularity of context information. Contextual information of interest is not con-

fined to traditional parameter measurements that manage uncertainty by using error

propagation rules and statistical weighting of redundant measurements. In addition,

reliable contextual information should be generated by applying a context reasoning

method [98]. This is helpful to recognize the activities of the elderly person or patient

correctly so as to identify hazardous situation using data fusion techniques. However,

multi-sensors may provide fault information due to inaccurate sensor readings and

conflicted reading errors. Some sensor readings give information about context only

at an abstract level that can include uncertainty to some extent. It is difficult to gen-

erate a context reasoning method under uncertainty for inferring the correct situation

of the elderly person or patient directly. Moreover, context reasoning over time is im-

portant in order to find wrong contextual information and emergency progress of the

patient by considering unpredictable temporal changes in sensory information [108].

Dynamic and active information fusion method is used in [141] to deal with tempo-

ral changes in sensory information based on Dynamic Bayesian Networks (DBNs) by

considering the sensor selection. However, the [141] did not consider temporal con-

sistency and relation-dependency of consecutive time-indexed states. The association

or correlation between consecutive time-indexed states should be considered in order

to reduce the affection of wrong sensor operations that may happen at one of time-

indexed states. Finally, the weights of the information are applied to the pervasive

healthcare system in order to strongly indicate the specific situation of the patient

[97]. However, it is difficult in defining the absolute weight of selected sensors. The

weight of the selected sensor is different depending on the aggregation of selected

sensors and the variation of the value of the selected sensors over time. The [97] only

did consider the pre-defined weight of selected sensors.
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Therefore, in this dissertation, we define the problem statement as follow: what

the necessary concepts and methods are for generalized context classification, model-

ing and reasoning based on an evidential fusion network in a home-based care appli-

cation so as to improve the confidence level of contextual information of the elderly

person or patient.

1.3 Scope and Methodology

A contextual analysis for situation assessment (SA) and metrics have been

important topics in the Information Fusion (IF) literature for many years [17, 47,

109]. A SA synthesizes different kinds of selected information using fusion processes,

provides interfaces between the user and the automation and focuses on data collection

and management. A PHMS is one of pervasive healthcare systems for situation

assessment (SA).

In order to deal with the problem statement of this dissertation, we define a

relation-dependency based context classification as a generalized context classifica-

tion. We define a state-space based context modeling as a generalized context model-

ing. In a smart space such as home-based care, an information description vocabulary

set is carefully pre-specified in context classification. The qualitative contextual in-

formation is transferred to the quantitative representation in the given location and

time. All possible values and their ambiguous combinations are considered as eviden-

tial forms within the proposed context modeling. In addition, we process sensed data

with an evidential form based on Dezert-Smarandache Theory (DSmT) [36, 37, 38]

that reduces the uncertainty level using a proportional conflict redistribution no. 5

(PCR5) combination rule [117] and obtains a rational decision of contextual infor-

mation using a generalized pignistic transformation (GPT) [39]. In particular, we

compare the (pignistic) probability level and uncertainty level of Bayesian Networks
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(BNs), Dempster-Shafer Theory (DST) and DSmT based on Shafer’s model [114]. In

this case, we apply different weighting factors and discounting factors into evidential

fusion networks. Moreover, we consider the association or correlation of contextual

information between two consecutive time-indexed states by considering dynamic

metrics: preference, temporal consistency and the relation-dependency of informa-

tion. We utilize Autonomous Learning Process (ALP) and Temporal Belief Filtering

(TBF) so as to find a false alarm from new sensor activations or deactivations. In

order to show the improvement of our suggested method, we compare the uncertainty

level and confidence (i.e., GPT) level of our approach with those of Static Evidential

Fusion Process (SEFP) and Dynamic Bayesian Networks (DBNs) by considering four

cases: 1) temporal dependency, 2) relation-dependency, 3) different weighting factors,

and 4) different discounting factors. In this case, we use pre-defined thresholds and

time window sizes so as to find an optimal context reasoning method based on Dy-

namic Evidential Network (DEN). Finally, we apply dynamic weights into the various

sensors (evidence) in order to represent the variations of the weights depending on

the aggregation of the selected sensors over time. In particular, we calculate relative

and individual importance of the evidence using the proposed normalized weighting

technique so as to update the weights of the evidence. We compare the confidence

level of contextual information based on Dynamic Weighting based Evidential Fusion

Process (DWEFP) with the previous works [69, 68, 56].

1.4 Key Contributions

As we mentioned, contextual analysis and metrics for Smart Applications have

been important topics in the Information Fusion literature for twenty years. There

are three areas of key contribution in this dissertation: 1) Static Evidential Fusion

Process (SEFP) Approach, 2) Dynamic Evidential Fusion Process (DEFP) Approach,
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and 3) Dynamic Weighting based Evidential Fusion Process (DWEFP) Approach. We

discuss each of these below.

1.4.1 Static Evidential Fusion Process

With a static evidential fusion process (SEFP) based on DSmT, PCR5 combi-

nation rule and GPT, we covered difficult issues in uncertainty analysis in decision-

making as to the ability to measure confidence, belief, or uncertainty in a multi-sensor

network. Using this approach, we compared our approach to existing methods using

home-based care application in our comparison. No previous works with the DSmT in

a home-based care application as a context reasoning method under uncertainty. Ac-

cording to this approach, we improved the confidence level of contextual information

compared to that of Bayesian Networks (BNs) and we reduced the conflicting mass

in uncertainty level of contextual information compared to that of Dempster-Shafer

Theory (DST).

1.4.2 Dynamic Evidential Fusion Process

With a dynamic evidential fusion process (DEFP) based on the ALP and TBF

algorithm, we made two key contributions. First, we suggested a method in order to

distinguish a sensor reading error from new sensor activations or deactivations using

the mean of differentiation of consecutive time-indexed states. Second, we established

a higher confidence level of contextual information of the elderly person or patient

by considering the TBF with an optimal time window sizes compared to that of

Dynamic Bayesian Networks (DBNs). This approach is helpful to reduce unnecessary

operations of the caregiver or the expert system by checking an emergency progress of

the elderly person or patient. No previous works have combined DSmT with Markov

Chain (MC) so as to make a temporal belief filtering (TBF) algorithm.
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1.4.3 Dynamic Weighting based Evidential Fusion Process

With a dynamic weighting based evidential fusion process (DWEFP) based on

the pre-defined rules of a context attribute and the normalized weighting technique,

we improved the confidence level of contextual information compared to those of

SEFP, DEFP, and DBNs. This approach improved the quality of contextual infor-

mation by considering a dynamic weight of a context attribute at each time-indexed

state.

The main contributions of this dissertation are: 1) Reducing the conflicting

mass in uncertainty level and improving the confidence level of contextual informa-

tion by adapting the DSmT, PCR5 combination rule, and GPT, 2) Distinguishing

a sensor reading error from new sensor activations or deactivations and improving

the confidence level of contextual information by considering the ALP and TBF al-

gorithm, 3) Representing optimal weights of the evidence by applying the normalized

weighting technique. These advantages help to make correct decisions about the situ-

ation of the patient compared to the others such as context reasoning methods based

on BNs, DST, and DBNs.

1.5 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, the

basics of context reasoning are introduced. Types of sensors, characteristics of the

evidence, relation-dependency based context classification, and state-space based con-

text modeling are introduced. In Chapter 3, we propose the Static Evidential Fusion

Process (SEFP) as a context reasoning method. The proposed method is compared

to the others based on Static Evidential Network (SEN) so as to reduce the conflicting

mass in uncertainty level of contextual information. In Chapter 4, we propose the
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Dynamic Evidential Fusion Process (DEFP) as a context reasoning method. This

proposed method improves the confidence level of contextual information over time

and estimates a sensor reading error from new sensor activations or deactivations

by adapting the Autonomous Learning Process (ALP) and Temporal Belief Filtering

(TBF) algorithm. In Chapter 5, we propose the Dynamic Weighting based Fusion

Process (DWEFP) as a context reasoning method. The proposed method represents

optimal weights of the evidence in order to improve the quality of contextual infor-

mation by adapting a normalized weighting technique. In Chapter 6, related work is

summarized and this dissertation is positioned among and against other publications

with regard to novelties in our approach and differences to previous work. Finally,

the dissertation is summarized by pointing out the main arguments and the scientific

contribution and giving an outlook on possible future research in Chapter 7.



CHAPTER 2

BASICS OF CONTEXT REASONING

2.1 Introduction

A wide range of pervasive computing technologies aim to provide pervasive ser-

vices to the occupants using intelligent embedded systems in smart spaces (e.g., smart

home, smart office, smart home-based care, smart environment, etc.) [25, 98, 28]. In

smart spaces, reliable contextual information should be obtained by a context rea-

soning method that recognizes the correct status of the occupants in order to provide

adaptive pervasive services to them. A pervasive computing system shows different

degrees of reliability depending on the types of sensors and the applied application.

In addition, the quality of a given piece of information should be considered based

on the applied context classification and context modeling [106]. In this chapter, we

introduce some concepts and the basics of context reasoning such as types of sen-

sors, characteristics of the evidence, context classification and context modeling. In

particular, we assume that the PHMS is used as a pervasive healthcare system in

home-based care environment so as to deal with the basics of context reasoning with

a selected smart space.

2.2 Types of Sensors

In general, several types of sensors such as medical body sensors, environmental

sensors and actuators, location sensors, and time stamps are utilized in PHMS. We

show the relationship among these types of sensors in terms of distance between their

locations and the position of a patient as shown in Figure 2.1.

11
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Figure 2.1. An example of types of sensors.

2.2.1 Medical Body Sensors

In pervasive healthcare applications, body sensor devices play an important

role in order to obtain information of a patient’s body condition. Broadly, we divide

body sensor devices into two classes: 1) internal sensor devices and 2) external sensor

devices.

2.2.1.1 Internal Sensor Devices

Internal types of body sensor devices include ingestible capsule and implanted

sensors. A core temperature sensor embedded in an ingestible capsule that is easy to

swallow can measure a core body temperature (CBT) [1, 5]. the [1, 5] introduces new

products for checking the core body temperature. Some implanted sensor can check

medical information using an implanted chip. These chips diagnose conditions of the

patient such as Parkinson’s disease and Paralysis [4, 2]. The VeriChip [4] is a small

Radio Frequency Identification (RFID) chip sized grain of rice that is implanted under

the skin. The Neurotech has Neural Signals to check the progress of the Parkinson’s
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disease [2]. The Endoscope sensor implemented by RF system lab measures internal

body conditions using two products Noriak3 (2001) and Sayaka (2005) [3].

2.2.1.2 External Sensor Devices

External types of body sensor devices include wearable and detachable electrical

signaling sensors. A pulse oximeter sensor measures a heart rate (HR) and a blood

oxygen saturation. For blood oxygen saturation, the sensor detects colors of beams

based on hemoglobin molecules. The sensor utilizes two beams on finger or earlobe

then calculates the amount of beam reflected by hemoglobin. A HR is measured by

contracting and expanding of blood vessels [116]. An electrocardiograph sensor checks

the cardiac information. Sensors detect a cardiac rhythm then electrocardiograph

obtains the information signal from the contraction and extension of the cardiac

muscle. Products of these types of sensors are discussed in [42]. A skin temperatures

is detected by dermal body temperature sensor patched as introduced in [44].

2.2.2 Environmental Sensors and Actuators

Environmental variables are important factors in a PHMS. Environmental sens-

ing data is combined with sensed body/location/time data so as to assist the analysis

of personal situations of the elder person or patient. Decision making is enhanced by

operating smart actuators or providing feedback requests of a doctor. In this case,

parameters such as temperature, humidity, air quality, illumination and noise are cal-

culated and applied to the current PHMS. For instance, we assume that an elderly

person enters a bathroom. We check the physiological condition using body sensors

and find the location using location sensors. However, we can not easily distinguish a

cardiac episode from a period of staying in a hot tub unless the location information

is provided correctly because both situations can cause rapid heartbeat and degener-
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ated ECG signal. In this situation, temperature and humidity sensors help to analyze

the current situation and an acoustic sensor traces the activity of the elderly person

so as to make a context. A pre-installed actuator reduces the CO2 level and controls

the lighting level based on the air quality and illumination sensor readings in order to

support better conditions of the elderly person or patient. Thus, environmental types

of sensors are important so as to determine a reliable context generation and a better

quality of service. A dimmable lighting, fire alarm, flood alarm, heater, ventilate and

air-conditioning are examples of systems that can be controlled by various types of

actuators.

2.2.3 Location

Spatial information of a single or multiple persons is one of the important

factors in order to check the targeted person’s condition in a PHMS. In pervasive

healthcare area, the system has to keep tracking the person’s location because a

body condition of a body sensor worn person might be changed depending on the

location. For example, the person’s heart rate and body temperature can increase.

These changes of a body condition are normal when the person exercises in a fitness

room. If a PHMS is not location-aware, the system might falsely warn to a medical

institution. Thus, the accurate location information is a momentous factor in order

to make a correct decision of the need for emergency aid. The most uncomplicated

solution is that each healthcare needing person uses a Global Positioning System

(GPS) receiver. A home gateway system intercommunicates with the GPS receiver

to track the person. However, the GPS is not a practical solution because the GPS

is limited in indoor circumstances. Accuracy of this system is not stable due to the

several sources of error such as ionospheric effects, ephemeris errors, and satellite clock

errors. Relative localization in the indoor healthcare area is required among sensor
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nodes in a pre-specified space (e.g., home arrangement and furniture places). In

order to obtain a high accuracy, the home gateway device has to pre-acquire localized

sensors’ precise location. It maps the targeted person’s spatial information based on

the sensed data into the pre-specified space [91]. Types of on-board sensing equipment

include acoustic, Infra-Red, pressure and camera. With the use of the sensed data, the

location of a person can be processed by triangulation, trilateration, or multilateration

approaches [121]. Multilateration, also known as hyperbolic positioning, is the process

of locating an object by accurately computing the time difference of arrival (TDOA)

of a signal emitted from that object to three or more receivers. It refers to the case

of locating a receiver by measuring the TDOA of a signal transmitted from three or

more synchronized transmitters. An active RFID based localization schemes can be

employed in the indoor health care system such as LANDMARC [92] and its variation

[61].

2.2.4 Time

Time can give medical doctors or caregivers valuable temporal information to

deal with patients appropriately. In order to generate correct context from the given

sensors that we mentioned so far, each type of sensor has to have a function to record

the time stamp on each data packet of sensed data. Time stamps along with sensed

data from different types of sensors play an important role in analyzing a situation.

Dey [33] specify time as one of the primary context types for characterizing a par-

ticular situation with other context types, including location, identity and activity.

For instance, if location sensors detect a patient in a living room staying for several

hours, the system can generate different context based on whether it was at 2:00 am

or 2:00 pm. A function for time stamp generation exists in all the types of sensors:

body, environmental and location. A function for time stamp generation creates an
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additional issue of clock synchronization among the various sensors, however, we do

not discuss this issue in this dissertation.

2.3 Characteristics of the Evidence

Multi-sensors such as medical body sensors, Radio Frequency Identification

(RFID) devices, environmental sensors and actuators, location sensors, and time

stamps are utilized in a PHMS [74]. These sensors are operated by pre-defined rules

or learning processes of the expert systems. They often have thresholds to repre-

sent the emergency status of the patient or to operate actuators. Each sensor can

be represented by an evidential form such as 1 (active) and 0 (inactive) based on

the threshold. Whenever the state of a certain context associated with a sensor is

changed, the value of a sensor can change from 0 to 1 or from 1 to 0. For instance,

a medical body sensor activates the emergency signal if the sensor value is over the

pre-defined threshold. An environmental sensor operates the actuator based on the

fuzzy systems. A location detecting sensor operates if a patient is within the range of

the detection area. Thus, we can simply express the status of each sensor as a frame:

Θ = {Thresholdover, Thresholdnot−over} = {1, 0}.
Sensor data are inherently unreliable or uncertain due to technical factors and

environmental noise. Different types of a sensor may have various discounting factors

(D) (0 ≤ D ≤ 1). Hence we can express the degree of reliability, which is related in

an inverse way to the discounting factor. The smaller reliability (R) corresponds to

a larger discounting factor (D):

R = 1−D (2.1)

For inferring the activity of the patient based on evidential theory, reliability

discounting methods that transform beliefs of each source are used so as to reflect the
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sensor’s credibility, in terms of discount factor (D) (0 ≤ D ≤ 1). The discount mass

function is defined as:

mD(X) =





(1−D)m(X) X ⊂ Θ

D + (1−D)m(Θ) X = Θ
(2.2)

where the source is absolutely reliable (D = 0 ), the source is reliable with a discount-

ing factor (D) (0 < D < 1), and the source is completely unreliable (D = 1 ).

2.4 Pragmatic Context Classification

Contextual information of a patient should be presented by some generalized

forms of context classification in order to determine reliable contextual information.

The quality of a given piece of contextual information should be considered by the

applied context classification [106]. Context classification defined as the taxonomy

of contextual information needs to be developed in order to provide a reference for

better managing the context elements. It is valuable for providing the improved qual-

ity of contextual information. It can manipulate unfounded certainty from ignoring

inherent or generated errors. However, it is an impossible task to build a general

context classification so as to capture all aspects of the patient’s contextual infor-

mation in smart spaces. Context classification is not how to define some orthogonal

dimensions that can categorize the context contents but rather its origin is in the

nature of the far-reaching implications of context information itself [133]. For exam-

ple, the numbers of ways to describe an event or an object are unlimited and there

are no standards or guidelines regarding granularity of contextual information. In

addition, the quality of a given piece of contextual information is not guaranteed

by uncertainty. Contextual information of interest is not confined to traditional pa-
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rameter measurements that manage uncertainty by using error propagation rules and

statistical weighting of redundant measurements.

In this dissertation, we propose a pragmatic context classification [67] so as to

provide reliable contextual information in smart spaces. An information description

vocabulary set for given applications is carefully pre-specified in context classifica-

tion in order to make a practical solution by adopting ”occupant-centered pragmatic”

approach and ”relation-dependency” approach. The occupant-centered approach has

three categories: 1) physical environments; 2) the activities of the occupant; and 3)

occupant’s physiological states. The relation-dependency approach based on spatial-

temporal limitations has three categories: 1) discrete environmental facts; 2) contin-

uous environmental facts; and 3) occupant-interaction events.

2.4.1 An Occupant-Centered Pragmatic Approach

An occupant-centered pragmatic approach includes the following aspects of con-

textual information, defined as the relations among three subcategories of the pro-

posed approach, for making a context classification as shown in Figure 2.2.

2.4.1.1 Physical environments around the occupant

In Figure 2.2, an environmental context description is composed of four as-

pects of information: location, time, people, and facilities and devices. ”Location”

related information includes where the occupant is at the current time-indexed state.

”Time” related information can be either in the sense of time stamp (discrete) or in

the sense of time period/intervals (continuous). It will affect the methodology for fu-

sion modeling. ”People” around the occupant decide what interactions the occupant

might engage in. For instance, different actuator’s operation policies are determined

by the number of people within the same location. If multiple people stay within



19

User

Psychological

State
Cognition

Preference

Environment

Activity

Mental Physical

Location

Time

People

Devices

Discrete

Continuous

Current

History

HVAC

Profile

Lighting

Contact

In-category

Visitor
Heart Rate

Blood Pres.

Body Temp.

Respiratory

Stress Level

Motion

Pre-defined

AdaptationJoy

Grief

Anger

Happy

No emotion

Emotion

Object Property

Subclass of

General Class

Domain Class

Data-Type Class

User

Psychological

State
Cognition

Preference

Environment

Activity

Mental Physical

Location

Time

People

Devices

Discrete

Continuous

Current

History

HVAC

Profile

Lighting

Contact

In-category

Visitor
Heart Rate

Blood Pres.

Body Temp.

Respiratory

Stress Level

Motion

Pre-defined

AdaptationJoy

Grief

Anger

Happy

No emotion

Emotion

Object Property

Subclass of

Object PropertyObject Property

Subclass ofSubclass of

General Class

Domain Class

Data-Type Class

Figure 2.2. An Occupant-Centered Pragmatic Approach.

the same location, conflict resolution methods such as [66] can be applied to em-

bedded intelligent systems. ”Facilities and devices” information (i.e., activation or

deactivation) include what facilities and devices he/she can reach and possibly use.

In particular, environmental sensors and actuators such as the heating, ventilating,

and air conditioning (HVAC) and the lighting system are members of this category.

2.4.1.2 The activities of the occupant

A context description for the activities of the occupant is composed of two

aspects of information: mental activity and physical activity. ”Mental Activity” in-

cludes conceptual activities (e.g., working, resting, thinking, etc.) without any chang-

ing of the physical conditions of the body. ”Physical activity” includes measurable

activities (e.g., writing, shaking, walking, etc.) with any changing of the physical

conditions of the body. In particular, multi-sensors or RFID tags attached on the
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body of the occupant can be used in order to fuse sensed data that represent the

physical activity of the occupant.

2.4.1.3 The Physiological states of the occupant

A context description for physiological states of the occupant is composed of

two aspects of information: preference and feeling. The ”preference” of the occu-

pant includes the current likeness and the historical likenesses of the occupant. It

will be helpful to predict next patterns autonomously using a learning algorithm as

shown in [72]. It can analyze and apply occupant’s preferences into intelligent em-

bedded systems. The occupant’s ”feeling” or emotional status would be too difficult

to describe correctly. Even if we set up the pattern of occupant’s feeling by adapt-

ing occupant’s preferences, occupant’s feeling may be changed unpredictable. Hence

occupant’s manual interactions are needed in this category.

2.4.2 A Relation-Dependency Approach

The dependency is a special type of relationship that exists not between enti-

ties and attributes but between associations themselves [54]. Without knowledge of

such dependencies, inappropriate decisions may be made by context-aware applica-

tions that can lead to wrong operations to the elderly person or patient. We consider

the relation-dependency approach based on spatial-temporal criteria as shown in Fig-

ure 2.3. In this approach, contexts are represented by three relation-dependencies:

”Discrete facts”, ”Continuous facts”, and ”Occupant’s interaction events”. These

relation-dependency components consist of ”Context state (S(t))”, defined as the col-

lection and aggregation of activated or deactivated context attributes [67], ”Sensor’s

static threshold (T(t))”, ”Location of the patient (R(t))”, ”Primary context (P)”,

”Secondary context (S )” and ”Preference (Pref )”.
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Figure 2.3. A Relation-dependency approach.

2.4.2.1 Discrete Facts

Context can be represented by three types of discrete facts: ”Discrete value”,

”Enumerative set” and ”State context”. Discrete value of a context has no dependency

so it can lead to contextual information in some cases directly. In general, the values

of a context are defined in a list or a set of discrete values. The enumerative set is

constructed with this finite set of attributes that are chosen at any given time and

location even though the total size of the set may be infinite theoretically. The state

context that consists of a form of an enumerative set has two opposite values and

can toggle between them. It is useful to make a binary evidential fusion process. For

instance, a state context composed of the enumerative set can recognize a particular

contextual information of the patient: Emergency or No-Emergency .
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2.4.2.2 Continuous Facts

Context can be represented by two types of continuous facts: ”Static threshold”

and ”Dynamic metrics”. A static threshold of a context is defined by pre-defined

rules even though the value of a context changes continuously. Upper bounds, lower

bounds, and comparative criteria are involved in this category. Dynamic metrics

that combine preference values into the static threshold are used so as to estimate

or infer the future contextual information autonomously. An occupant’s location and

activity often change from one time-indexed state to the next. The preference or the

past location’s information is helpful to estimate the next location of an occupant

within the given time and location.

2.4.2.3 Occupant-Interaction Events

Two types of a context, ”Primary context (P)” and ”Secondary context (S )”,

are derived from multi-sensors or information sources. ”P” maintains directly one-

to-one interaction event that has a discrete value. Discounting factors (D) of sensors

should be reduced in order to improve the quality of generated contextual informa-

tion. In smart space, we can not recognize the correct situation or activity of the

occupant using only direct contextual information. We need to derive context using

derived or secondary context so as to get more reliable contextual information. ”S”

maintains two different interactions: ”many-to-one” interactions and ”one-to-many”

interactions. More than one ”P” (e.g., humidity, temperature, lighting level, etc.)

may be needed to generate ”S” (e.g., patient’s feeling) in ”many-to-one” interaction

events. In addition, one ”P” (e.g., the value of a respiratory rate sensor) may be

needed to generate ”S” (e.g., sleeping situation) in ”one-to-many” interaction events.
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Figure 2.4. An inter-relationship based on state-space context modeling.

The weighting factors [108] of each sensor should be considered in order to improve

the quality of generated contextual information.

2.5 State-Space based Context Modeling

In [67], we defined a state-space based context modeling with an evidential

form as a generalized context modeling so as to represent the situation of the patient

using context concepts that are similarly used in [97] and in order to improve the

quality of a given piece of contextual information by reducing uncertainty. Within

the proposed modeling, all possible values and their ambiguous combinations are

considered in order to improve the quality of data in the given time and location. We

assign a probability value to each related set so as to achieve an efficient uncertainty

representation. This can transfer a qualitative context information to a quantitative

representation. Static weighting factors of the selected data are applied in order

to represent the quality of data initially within the given time t and location R.

This context modeling consists of a hierarchical interrelationship among multi-sensors,

related contexts, and relevant activities within a selected region as shown in Figure

2.4. Each context concept is defined as follow.
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2.5.1 Context Attribute

A context attribute, denoted by αi, is defined as any type of data that is utilized

in the process of inferring situations. A context attribute is often associated with

sensors, virtual or physical, where the value of a sensor reading denotes the value

of a context attribute at a given time t, denoted by αt
i. For instance, the pressure

sensor attached on the sofa or the temperature sensor attached on the body of the

patient are examples of a context attribute in home-based care application. These

sensors are unable to directly identify situations on their own, but they can estimate

the situation by combining their values as context attributes.

2.5.2 Context State

A context state, denoted by a vector Si, describes the current state of the applied

application in relation to a chosen context. It is a collection of N context attribute

values so as to represent a specific state of the system at the given time t. A context

state is denoted as St
i = (αt

1, α
t
2, . . . , α

t
N), where each value αt

i corresponds to the value

of an attribute αi at the given time t. Whenever contextual information is recognized

by certain selected sensors that can be used in order to make context attributes, a

context state changes its current state depending on the aggregation of these context

attributes. For instance, a context state that consists of context attributes such as the

body temperature sensor, the blood pressure sensor and the respiratory rate sensor

can indicate an emergency situation of the patient depending on the values of these

sensors in home-based care application.

2.5.3 Situation Spaces

A situation space, denoted by a vector space Ri = (αR
1 , αR

2 , . . . , αR
K), describes

a collection of regions corresponding to some pre-defined situations. It consists of
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K acceptable regions for these attributes. An acceptable region αR
i is defined as a

set of elements V that satisfies a predicate P, (i.e., αR
i = V \ P (V )). A particular

contextual information can be performed or associated with a certain selected region.

For instance, a sleeping activity of the patient, which is pre-defined in the expert

system, can be associated with a selected region such as bedroom, living room, and

so on in home-based care application.

2.5.4 Quality of Data

Given a context attribute i, a quality of data ψi associates weights ω1, ω2, . . . , ωM

with combined attributes of values αt
1 + αR

1 , αt
2 + αR

2 , . . . , αt
N + αR

K of i, respectively,

where
∑M

j=1 ωj = 1. The weight ωj ∈ (0, 1] represents the relative importance of a

context attribute αj compared to other context attributes in the given time t and

region R. For instance, a higher respiratory rate may be a strong indication of the

fainting situation of a patient while other context attributes such as the blood pres-

sure and the body temperature may not be so important in order to estimate that

specific situation of the patient. In addition, a context attribute (αt
i) within a context

state (St
i = (αt

1, α
t
2, . . . , α

t
N)) has various individual weights for αt

i per different time

intervals in the same situation space (αR
i ). For example, a respiratory rate (50Hz) at

the current time-indexed state is a strong indication of the fainting situation of the

patient compared to a respiratory rate (21Hz) at previous time-indexed state. The

same context attribute can have different degrees of importance in different contexts.

In this dissertation, we only consider the quality of data with the pre-defined context

attributes, a selected region, and relevant activities (e.g., sleeping or fainting situa-

tion of the patient) initially. We then apply dynamic weights into both relative and

individual importance of the evidence in order to obtain an optimal weight of the

evidence.
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2.6 Summary

We introduced concepts: types of sensors, characteristics of the evidence, con-

text classification and context modeling as the basics of context reasoning in this

chapter. In particular, we defined a pragmatic context classification and a general-

ized context modeling so as to improve the quality of the given contextual information

in smart spaces such as in home-based care. In order to make a context classification,

we introduced two approaches: 1) Occupant-centered pragmatic approach and 2)

Relation-dependency approach. In addition, we defined a state-space based context

modeling that consists of selected sensors, related context, and relevant activities with

an evidential form as a generalized context modeling based on the proposed context

classification. The defined context modeling supports an evidential fusion network

that considers uncertainty of contextual information in order to improve the quality

of contextual information in ambiguous situation of the patient.

In the next chapter, we will make a context reasoning method based on the

static evidential network (SEN) so as to reduce the conflict mass in uncertainty level

of contextual information in home-based care.



CHAPTER 3

STATIC EVIDENTIAL NETWORK

3.1 Introduction

For many years, a contextual analysis for situation assessment (SA) and metrics

have been important topics in the Information Fusion (IF) literature. A SA synthe-

sizes different kinds of information using fusion processes, provides interfaces between

the user and the automation, and focuses on data collection and management. While

a SA has been recognized in the IF and human factors literature, there exists issues

related to context reasoning methods in some applications [17]. For instance, a per-

vasive healthcare monitoring system (PHMS) [74], which supports pervasive services

to the patient using pervasive computing technologies such as Radio Frequency Iden-

tification (RFID) devices and multi-sensors can analyze contextual information of the

patient correctly [19, 99, 103]. A PHMS enables continuous healthcare monitoring

with the help of these embedded components so as to provide methods for remote

disease management in real time and independent safe living as shown in Figure 1.1.

Reliable contextual information should be generated to recognize the activities cor-

rectly in order to identify hazardous situations of the patient by applying a context

reasoning method [98]. However, a high confidence level in the generated contexts is

difficult to produce because multi-sensors may not provide reliable information due to

faults, operational tolerance levels or corrupted data. Inaccurate sensor readings can

produce misunderstandings that lead to incorrect services to the patient. Some sensor

readings give information about context only at an abstract level that can include

uncertainty to some extent. Contextual information of the patient is more ambiguous

27
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if sensed data obtained from multi-sensors are corrupted or conflicted. It is difficult

to make a context reasoning for inferring the correct situation of the patient directly.

In order to deal with these problems within a new application in smart spaces

such as a home-based care, we defined the relation-dependency approach as a context

classification. We then constructed a state-space context modeling based on the

defined context classification in the previous chapter. In this chapter, we propose

a static evidential fusion process (SEFP) as a context reasoning method so as to

obtain a high confidence level of contextual information. In particular, we process

sensed data with an evidential form based on Dezert-Smarandache Theory (DSmT)

[36, 37, 38]. The DSmT reduces the conflicting mass in uncertainty level using a

proportional conflict redistribution no. 5 (PCR5) combination rule [117]. The PCR5

combination rule redistributes the partial conflicting mass to the elements involved

in the partial conflict by considering the canonical form of the partial conflict. The

PCR5 combination rule is mathematically exact redistribution of conflicting mass

to non-empty sets following the logic of the conjunctive rule [37]. Thus, we use

the PCR5 combination rule as a combination rule in this dissertation. In addition,

the DSmT obtains a rational decision of contextual information using a generalized

pignistic transformation (GPT) [39]. In order to take a rational decision, the GPT

generalizes the classical pignistic transformation (CPT) that has two level processes:

”credal” for combination of the evidence and ”pignistic” for decision-making within

the DSmT framework [118, 119]. The beliefs are represented by belief functions at

the credal level then the beliefs induce a probability function at the pignistic level

in order to make decisions. The decision is taken by the maximum of the pignistic

probability function. Finally, we compare the SEFP approach based on DSmT with

existing and contemporary methods such as Bayesian networks (BNs) [105, 108] and

Dempster-Shafer theory (DST) [56, 134] for performing an uncertainty analysis in
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decision-making as to the ability to measure the probability, belief, or uncertainty in

multi-sensor based networks.

The rest of this chapter is organized as follows. The basics of sensor data fusion

methods such as Bayesian and Probability Theory (i.e., BNs), Dempster-Shafer The-

ory (DST), Dezert-Smarandache Theory (DSmT), Combination rule (i.e., Dempster

and PCR5), and Pignistic transformations (i.e., CPT and GPT) are introduced in

section 3.2. We introduce the SEFP based on the static evidential network (SEN) as

a context reasoning method in section 3.3. Finally, we perform a case study in order

to infer the situation of the patient using the SEFP approach based on DSmT. We

compare and analyze the results of our approach with those of BNs and DST so as

to show the improvement of our approach in section 3.4.

3.2 Sensor Data Fusion Methods

In pervasive and ubiquitous computing area such as smart homes, offices, hos-

pitals, and spaces [40, 47, 78, 83, 115, 135], fusion techniques have been proposed

in order to reduce uncertainty and achieve reliable data processing and analysis in

a fusion system as shown in Figure 3.1. However, it is still open problem to obtain

the reliable contextual information in specific applications using the proposed fusion

techniques. No commonly accepted approaches that can estimate uncertainty in a

fusion system exist. Raw-level data or input-output characteristics of each device

may cause total uncertainty of estimation or inference. A high inference can not

correct possible errors that may occur in a lower level of data processing. Identifi-

cation tasks and decision makings based on multiple classifications may suffer from

wrongly selected data set [81, 108]. Therefore, in this dissertation, we introduce two

commonly used sensor data fusion techniques such as BNs and DST among sensor

data fusion techniques [70] as comparative criteria. In addition, we introduce the
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Figure 3.1. A fusion system consists of three layers.

DSmT, the PCR5 combination rule and the GPT as the selected fusion and decision

techniques. In particular, we compare the PCR5 combination rule and the GPT with

the Dempster’s combination rule and the classical pignistic transformation (CPT),

respectively.

3.2.1 Bayesian and Probability Theory

Bayesian Networks (BNs) apply Bayes’ theorem and satisfy Markov’s condition

[31] in order to model probabilistic relationships among distinct interests in uncertain

reasoning. The BNs are directed acyclic graphs, where the nodes are random variables

representing various events and the arcs between nodes represent causal relationships.

The possibility of the particular configuration of BNs refers to an instantiation of

random variables with values from two dimensional value vectors. It is determined

by its joint probability. When the precondition for inference is already available, we

can compute a posterior probability distribution of a model. A learning operation in

BNs may take place in the presence of either fully or partially observed variables. In

any case, the objective of the learning is to find a single model which best explains
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the observed evidence. BNs does not necessarily require a transition from one state

to another for computing the global or local state of the network. BNs compute a

single high level context as an abstraction of numerous primitive contexts. However,

BNs can not represent the ignorance [84], which manages the degree of uncertainty,

caused by the lack of information.

3.2.2 Dempster-Shafer Theory (DST)

Dempster Shafer Theory (DST) (i.e., evidential theory) offers an alternative to

probabilistic theory by providing schemes in order to encode the epistemic uncertainty

into the model of a system [114]. DST is a generalization of traditional probability.

It allows us to better quantify uncertainty. Shafer’s model, denoted here by M0(Θ),

considers Θ = {θ1, · · · , θn} as a finite set of n exhaustive and exclusive elements

representing the possible states of the sensor. The set, denoted by Θ, is called ”the

frame of discernment” of the sensor in DST. For example, {1, 0} is the frame of

discernment for a sensor in which one(1) represents ”the value of a sensor is over

the pre-defined threshold” and zero(0) represents that ”the value is not over the pre-

defined threshold.” The power set of Θ, denoted 2Θ, is defined by the rules 1, 2 and

3 based on Θ and M0(Θ).

1. ∅, θ1, · · · , θn ∈ 2Θ

2. If θ1, θ2 ∈ 2Θ, then θ1 ∪ θ2 belongs to 2Θ

3. No other elements belong to 2Θ, except those obtained by rules 1) or 2)

Without loss of a generality, the general set, denoted by GΘ, on which will be

defined the general basic belief assignments (GBBA) is equal to 2Θ if Shafer’s model

M0(Θ) is adopted. In general, many factors surrounding the sensor have an impact

on the quality of the observation of the sensor. The evidential theory uses a number

in the range [0,1] in order to represent the degree of a belief in the observation. The
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distribution of the unit of a belief over the frame (Θ) is called ”evidence”. A mass

function m(.) : GΘ → [0, 1] associated with a given source, say s, of the evidence is

defined so as to represent the distribution of a belief. This satisfies the following two

conditions:

ms(∅) = 0 and
∑

X∈GΘ

ms(X) = 1 (3.1)

X is a subset of Θ and ms(X) is the general basic belief assignment (GBBA) of X

committed by the source s.

In DST, a range of the probability rather than a single probabilistic number is

used so as to represent uncertainty of the sensor. The lower and upper bounds on

probability are called ”Belief (Bel)” and ”Plausibility (Pl)”, respectively. ”Bel” and

”Pl” of any proposition X ∈ GΘ are defined as:

Bel(X) ,
∑
Y⊆X
Y ∈GΘ

m(Y ) and Pl(X) ,
∑

Y ∩X=∅
Y ∈GΘ

m(Y ) (3.2)

Bel shows the degree of a belief to which the evidence supports X. Whereas

Pl shows the degree of a belief to which the evidence fails to refute X based on eq.

(3.2). DST is often employed to combine the evidence gathered from two or more

independent sources in order to minimize the effect of imprecision. As a generalized

probabilistic approach, DST, which considers the upper and lower bounds on proba-

bility, has some distinct features compared to Bayesian methods. DST represents the

ignorance caused by the lack of information and aggregates the belief when new pieces

of evidence are accumulated [56]. This feature is useful for managing the degree of

uncertainty.

3.2.3 Dezert-Smarandache Theory (DSmT)

The basic idea of DSmT is to consider all elements of Θ as not precisely defined

and separated. No refinement of Θ into a new finer set Θref of disjoint hypotheses
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is possible in general, unless some integrity constraints are known, and in such case

they will be included in the DSm model of the frame. Shafer’s model [114] assumes

Θ to be truly exclusive and appears only as a special case of the DSm hybrid model

in DSmT. The hyper-power set, denoted by DΘ, is defined by the rules 1, 2 and 3

without additional assumption on Θ but the exhaustivity of its elements in DSmT.

1. ∅, θ1, · · · , θn ∈ DΘ

2. If θ1, θ2 ∈ DΘ, then θ1 ∩ θ2 and θ1 ∪ θ2 belong to DΘ

3. No other elements belong to DΘ, except those obtained by rules 1) or 2)

When Shafer’s model M0(Θ) holds, DΘ reduces to 2Θ. Without loss of generality,

GΘ is equal to DΘ if the DSm model is used, depending on the nature of the problem.

3.2.4 Combination Rules (Dempster’s and PCR5)

Both combination rules (Dempster’s and PCR5) are defined based on the con-

junctive consensus operator for two sources cases by:

m12(X) =
∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) (3.3)

The total conflicting mass drawn from two sources, denoted by k12, is defined

as:

k12 =
∑

X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2) =
∑

X1,X2∈GΘ

X1∩X2=∅

m(X1 ∩X2) (3.4)

The total conflicting mass is the sum of partial conflicting masses based on eqs.

(3.3) and (3.4). If the total conflicting mass k12 is close to 1, the two sources are

almost in total conflict. Whereas if the total conflicting mass k12 is close to 0, the

two sources are not in conflict.
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Within the DST framework, Dempster’s combination rule of m1(.) and m2(.)

is obtained based on Shafer’s model M0(Θ) and two independent sources m1(.) and

m2(.). In this case, GΘ = 2Θ; then, mDS(∅) = 0 and ∀(X 6= ∅) ∈ 2Θ by:

mDS(X) =
1

1− k12

m12(X), (k12 6= 1) (3.5)

where m12(X) and k12 are defined by eqs. (3.3) and (3.4). Dempster’s combination

rule can directly be extended for the combination of N independent and equally

reliable sources of evidence.

However, Dempster’s combination rule has limitations and weaknesses. The

results of the Dempster’s combination have a low confidence when a conflict becomes

important between sources [38, 36, 89]. For instance, consider Θ = {X1, X2} and the

basic belief masses that are represented by the following mass matrix:

M =




m1(X1) = 1 m1(X2) = 0 m1(X1 ∪X2) = 0

m2(X1) = 0 m2(X2) = 1 m2(X1 ∪X2) = 0




In this case, we can not apply Dempster’s combination rule. The conflicting mass

of two pieces of independent evidence is equal to 1 (k12 = 1). One formally gets

m12(X1) = 0/0 and m12(X2) = 0/0 as well. However, if one adopts Shafer’s model

M0(Θ) then applies the PCR5 combination rule, one formally gets m12(X1) = 0.5 and

m12(X2) = 0.5. Hence, we can overcome drawbacks of Dempster’s combination rule

by using the PCR5 combination rule.

Within the DSmT framework, the PCR5 combination rule redistributes the

partial conflicting mass only to the elements involved in that partial conflict. For this

approach, first, the PCR5 combination rule calculates the conjunctive rule of the belief

masses of sources. Second, it calculates the total or partial conflicting masses. And

last, it proportionally redistributes the conflicting masses to nonempty sets involved
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in the model according to all integrity constraints. The PCR5 combination rule is

defined for two sources [38]: mPCR5(∅) = 0 and ∀(X 6= ∅) ∈ GΘ,

mPCR5(X) = m12(X)+

∑

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (3.6)

where m12 and all denominators such as m1(X) + m2(Y ) and m2(X) + m1(Y ) differ

from zero(0). If a denominator is zero, that fraction is discarded. All sets in formulas

are in canonical forms. For example, the canonical form of X = (A∩B)∩ (A∪B∪C)

is A ∩B.

3.2.5 Pignistic Transformations (CPT and GPT)

When a decision must be taken, the expected utility theory, which requires

a classical pignistic transformation (CPT) from a basic belief assignment m(.) to a

probability function P{.}, is defined in [39] as follows:

P{A} =
∑

X∈2Θ

|X ∩ A|
|X| m(X) (3.7)

where |A| denotes the number of worlds in the set A (with convention |0|/|0| = 1,

to define P{0}). P{A} corresponds to BetP (A) in Smets’ notation [118]. Decisions

are achieved by computing the expected utilities. In particular, the maximum of the

pignistic probability is used as a decision criterion.

Within the DSmT framework, it is necessary to generalize the CPT to take a

rational decision. This generalized pignistic transformation (GPT) is defined by [39]:

∀(A) ∈ DΘ,

P{A} =
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (3.8)

where CM(X) denotes the DSm cardinal of a proposition X for the DSm model M

of the problem under consideration. In this case, if we adopt Shafer’s model M0(Θ),
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eq. (3.8) reduces to eq. (3.7) when DΘ reduces to 2Θ. For instance, we gets a basic

belief assignment with non null masses only on X1, X2 and X1 ∪X2. After applying

GPT, we get:

P{∅} = 0, P{X1 ∩X2} = 0

P{X1} = m(X1) + 1
2
m(X1 ∪X2)

P{X2} = m(X2) + 1
2
m(X1 ∪X2)

P{X1 ∪X2} = m(X1) + m(X2) + m(X1 ∪X2) = 1

3.3 Static Evidential Fusion Process (SEFP)

We perform context reasoning based on the proposed static evidential network

(SEN) that is constructed depending on the defined state-space context modeling in

order to reduce the conflicting mass in uncertainty level of contextual information of

a patient’s situation. In particular, we propose the Static Evidential Fusion Process

(SEFP) as a context reasoning method by using the concepts of evidential fusion

processes such as a frame of discernment, a multi-valued mapping, a combination

rule and a decision rule. The SEFP approach helps decision makings in smart spaces

such as a home-based care.

3.3.1 Evidential Operations with Static Evidential Network

Based on the proposed state-space context modeling, the Static Evidential Net-

work (SEN) is constructed as shown in Figure 3.2. Within a SEN, context reasoning

is performed in order to make a high confidence level of the situation of the patient.

In this case, a context attribute consists of binary values of multi-sensors. The binary

values are determined by the pre-defined threshold values controlled by the expert

system. In order to infer the activity of the patient along the SEN, first, the binary

values are represented as an evidential form which is either active (1) or inactive (0).
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Figure 3.2. A Static Evidential Network (SEN).

Table 3.1. An example of the frames of discernment (Θ)

Name Type Frame of discernment
Sensor 1 Sensor {Thresholdover,¬Thresholdover}
Attribute 1 Attribute {Active, Inactive}
State 1 State {State−On, State−Off}

The evidential form can represent all possible values and their combination values of

the sensors. Table 3.1 shows an example of evidential forms such as the frames of

discernment (Θ) for selected sensors (i.e., threshold over or not), context attributes

(i.e., active or inactive), and context states (i.e., on or off). These evidential forms

are components of the SEN.

Second, reliability discounting mass functions defined as eq. (2.2) transform

the beliefs of individual sources so as to reflect the credibility of the sensor. Within a

SEN, a discounting factor (D) that depends on the technical limitations of the sensors

or environmental noise is applied to each context attribute. For instance, if a sensor

has a 10% discounting factor, mD(S) = 0.90 and mD(S,¬S) = 0.10.
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Third, a multi-valued mapping is applied in order to reflect the relationship

between two frames of discernment (ΘA, ΘB) which represent the evidence to the

same problem with different views. A multi-valued mapping Γ describes a mapping

function Γ : ΘA ← 2ΘB by assigning a subset Γ(ei) of ΘB to each element ei of ΘA.

Based on the multi-valued mapping, a translation can be utilized so as to determine

the impact of the evidence that originally appears on the frame of discernment on

elements of the compatibly related frame of discernment. For example, suppose that

ΘA carries a mass function m, then the translated mass function over the compatibly

related ΘB is defined as:

m′(Bj) =
∑

Γ(ei)=Bj

m(ei) (3.9)

where ei ∈ ΘA, Bj ⊆ ΘB, and Γ : ΘA → 2ΘB is a multi-valued mapping.

Sometimes, the relationship between an element ei of ΘA and a subset Bij of

ΘB may be uncertain. Hence, an evidential mapping assigns probabilities to elements

ei of ΘA instead of a set of subsets to represent such uncertain relationships. A piece

of the evidence on ΘA is also propagated to ΘB through an evidential mapping when

the relationship is uncertain. A translation is a special case of propagation, in which

relationships between the evidence space ΘA and the hypothesis space ΘB are certain.

However, we do not consider the evidential mapping, since we use a translation which

assumes that the relationships are certain in home-based care applications.

Within a SEN, a multi-valued mapping is applied to the context attributes so as

to represent the relationships between sensors and associated objects by translating

mass functions. In addition, this mapping is applied to the related context state,

which consists of context attributes having an active (1) value and an inactive (0)

value, in order to represent the relationships among context attributes. In this case,

each context state has different static weighting factors. These weighting factors help
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Table 3.2. An example of a multi-valued mapping

Relationship Multi-valued mapping

Sensor(S)→Object(O)
{S} → {O}; {¬S} → {¬O};
{(S,¬S)} → {(O,¬O)};
{O} → {(O1, O2)};

Object(O) → {¬O} → {¬(O1, O2)};
State(O1, O2) {(O,¬O)} →

{(O1, O2),¬(O1, O2)};
{(O1, O2)} → {A1};

State(O1, O2)→ {¬(O1, O2)} → {¬A1};
Activity(A1) {(O1, O2),¬(O1, O2)} →

{(A1),¬(A1)};

to infer an activity using a multi-valued mapping among context states. We assume

that the weighting factors of the context state are same (e.g., two context states, (S1)

and (S2), have same weights, 0.5 and 0.5, respectively). Table 3.2 shows an example

of a multi-valued mapping.

Fourth, the belief mass distributions on the same frame can be combined by sev-

eral independent sources of the evidence in order to achieve the conjunctive consensus

with the conflict mass. Within the DST framework, the Dempster’s combination rule

(eq. (3.5)) is used. However, the PCR5 combination rule (eq. (3.6)) is currently

used as a combination rule within the DSmT framework. Regardless of whether the

conflicting mass is bigger or smaller, the PCR5 combination rule mathematically does

a better redistribution of the conflicting mass than other rules, because the PCR5

combination rule goes backwards on the tracks of the conjunctive rule. In this disser-

tation, the PCR5 combination rule is applied to context states so as to get a consensus

for recognizing the activity of the patient within a SEN.

Finally, a range of probabilities (i.e., the lower and upper bounds on probabil-

ity) are calculated to represent the degree of belief using eq. (3.2), and then, the
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uncertainty levels (ignorance) in the evidential framework is measured by using belief

functions such as Bel and Pl after applying two combination rules.

Uncertainty Levels (=ignorance):

Uncertainty Levels (I) = Pl −Bel; (3.10)

For making a correct decision based on the inference of the activity of the

patient, the expected utility and the maximum of the pignistic probability (eq. (3.8))

are utilized as a decision criterion. Within a SEN, the situation of the patient is

inferred by calculating the belief and uncertainty levels with a decision rule such as

the GPT. Therefore, these fusion process steps composed of the aggregation of sensed

data based on evidential networks can make the SEFP approach. The procedures of

the SEFP approach that is the 1st proposed context reasoning method consist of six

steps.

3.3.2 SEFP Approach

1. (Define the Frame of Discernment): the evidential form represents all

possible values of the sensors and their combination values.

2. (Sensor’s Credibility): reliability discounting mass functions defined as eqs.

(2.1) and (2.2) transform beliefs of individual evidence in order to reflect the

credibility of the sensor. A discounting factor (D) is applied to each context

attribute within a SEN.

3. (Multi-valued Mapping): a multi-valued mapping represents the evidence

to the same problem with different views. In particular, it can be applied to

the context attributes so as to represent the relationships between sensors and

associated objects by translating mass functions. A multi-valued mapping also

can be applied to the related context state in order to represent the relationships
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among context attributes. Each context state consists of different pre-defined

static weight of the evidence (Relative importance).

4. (Consensus): several independent sources of the evidence combine the belief

mass distributions on the same frame so as to achieve the conjunctive consensus

with the conflict mass. The PCR5 combination rule [117] is applied to context

states in order to obtain a consensus that helps to recognize the activity of the

patient.

5. (Degree of Belief): Lower (Belief (Bel)) and upper bounds (Plausibility (Pl))

on probability is calculated so as to represent the degree of belief. Then the

uncertainty levels (Pl - Bel) of the evidence in evidential framework is measured

by using belief functions such as Belief (Bel) and Plausibility (Pl) after applying

the PCR5 combination rule.

6. (Decision Making): The expected utility and the maximum of the pignistic

probability such as Generalized Pignistic Transformations (GPT) is used as a

decision criterion. The situation of the patient is inferred by calculating the

belief, uncertainty, and confidence (i.e., GPT) levels of contextual information

within a SEN.

3.4 A Case Study

In this section, we assume that a specific situation (i.e., fainting or sleeping)

of the patient is happened when the patient sits on the sofa in the living room of

the smart home for a long time without any movement. We then describe a static

evidential fusion process (SEFP) as a mathematical tool in order to calculate the

sensed data and infer the situation of the patient based on the applied scenario as

shown in Figure 3.3.
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Figure 3.3. An example of a patient’s situation based on the SEN.

3.4.1 Applied Scenario

Many ambiguous situations of the patient can happen in home-based care. Sup-

pose that two possibilities (i.e., sleeping or fainting) of the patient can happen on the

sofa when the environmental sensors (i.e., the lighting sensor and the heating sensor

of the living room) are turned on and the location sensor (i.e., the pressure sensor

attached on the sofa) becomes active. To check the status of the patient continuously,

medical body sensors (i.e., the blood pressure sensor, the body temperature sensor,

and the respiratory rate sensor) are operated by the expert system. Six types of differ-

ent sensors are used in this scenario. Each sensor has a pre-defined threshold and its

operation can be represented by an evidential form. We can derive a static evidential

network (SEN) based on these simplified two cases as shown in Figure 3.3. We then

find out more closely correct situations through context reasoning by calculating the

belief, uncertainty and pignistic probability levels of each related activity. To calcu-
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late them, we assume that a discounting factor (D) and a static weighting factor of

each sensor are fixed. In particular, we assume that a static weighting factor of the

pressure sensor, the location sensor, the motion sensor, the blood pressure sensor, the

body temperature sensor and the respiratory rate sensor are 0.5, 0.25, 0.25, 0.2, 0.2

and 0.6, respectively. In addition, we apply different simulation error rates (r) (i.e.,

0%, 20%, and 50%) into each sensor in order to calculate the evidential fusion process

based on DSmT with a 95% confidence interval. Three sensors - the location sensor,

the motion sensor and the body temperature sensor - are not activated in Figure 3.3.

3.4.2 Situation Inference

We infer the situation of the patient using the proposed evidential fusion method

such as the SEFP. Within a scenario, an evidence of the sensor operation may de-

duce objects in detail, or be summed up to a context state by adapting a different

weighting factor. That measured evidence is then translated into the relevant activ-

ity recognition by applying a multi-valued mapping. On an activity recognition step,

several belief mass distributions can be combined by two different rules (Dempster’s

and PCR5) of combination. Then, a decision is made by using the degree of belief,

uncertainty, and maximum of pignistic probability (i.e., GPT). Based on the simpli-

fied scenario, context reasoning is performed by six steps of evidential operations as

described in section 3.3.2.

We represent abbreviations for the pressure sensor (Ps), the location sensor

(Ls), the motion sensor (Ms), the blood pressure sensor (Bps), the body temperature

sensor (Bts) and the respiratory rate sensor (Rs) in Figure 3.3. We then represent a

piece of the evidence on each sensor as a mass function at first step.

mPs({Ps}) = 1; mLs({¬Ls}) = 1; mMs({¬Ms}) = 1;

mBps({Bps}) = 1; mBts({¬Bts}) = 1; mRs({Rs}) = 1;
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Second, we apply a discounting factor (D) to each sensor using eqs. (2.1) and

(2.2) so as to obtain each sensor credibility. Within the scenario, we assume that the

location sensor (Ps) has a 10% discounting factor, the environmental sensors (Ls and

Ms) have a 20% discounting factor, and the medical body sensors (Bps, Bts and Rs)

have a 5% discounting factor when they are manufactured. It means that we have to

apply a discounting factor into each sensor for reliability discounting mass functions.

We apply a multi-valued mapping in order to represent the belief level of a context

attribute by translating a mass function using eq. (3.9). We utilize abbreviations for

the sofa (S ), the lighting (L), the heater (H ), the blood pressure check device (Bp),

the body temperature check device (Bt) and the respiratory rate check device (R). We

then aggregate context attributes and translate them into two related context states.

A mass function on ”S”, ”L”, ”H ”, ”Bp”, ”Bt” and ”R” are translated onto context

state 1 (CS1) and context state 2 (CS2), respectively. Both ”CS1” and ”CS2” are

used so as to determine the relevant activities of the patient.

m1CS1({CS1}) = mS({S}) = mD
Ps({Ps}) = 0.90;

m1CS1({CS1,¬CS1}) = mS({S,¬S}) = mD
Ps({Ps,¬Ps}) = 0.10;

m2CS1({¬CS1}) = mL({¬L}) = mD
Ls({¬Ls}) = 0.80;

m2CS1({CS1,¬CS1}) = mL({L,¬L}) = mD
Ls({Ls,¬Ls}) = 0.20;

m3CS1({¬CS1}) = mH({¬H}) = mD
Ms({¬Ms}) = 0.80;

m3CS1({CS1,¬CS1}) = mH({H,¬H}) = mD
Ms({Ms,¬Ms}) = 0.20;

m1CS2({CS2}) = mBp({Bp}) = mD
Bps({Bps}) = 0.95;

m1CS2({CS2,¬CS2}) = mS({Bp,¬Bp}) = mD
Bps({Bps,¬Bps}) = 0.05;

m2CS2({¬CS2}) = mBt({¬Bt}) = mD
Bts({¬Bts}) = 0.95;

m2CS2({CS2,¬CS2}) = mBt({Bt,¬Bt}) = mD
Bts({Bts,¬Bts}) = 0.05;

m3CS2({CS2}) = mR({R}) = mD
Rs({Rs}) = 0.95;

m3CS2({CS2,¬CS2}) = mR({R,¬R}) = mD
Rs({Rs,¬Rs}) = 0.05;
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Third, we sum up a context state by adapting a different static weighting fac-

tor into each context attribute involved in the context state. We assume that the

weighting factor of ”CS1” consists of ”S” (50%), ”L” (25%) and ”H ” (25%) and that

of ”CS2” consists of ”Bp” (20%), ”Bt” (20%) and ”R” (60%).

mCS1({CS1}) = (0.5)(m1CS1) = 0.45;

mCS1({¬CS1}) = (0.25)(m2CS1 + m3CS1) = 0.40;

mCS1({CS1,¬CS1}) = (0.5)(m1CS1) + (0.25)(m2CS1 + m3CS1) = 0.15;

mCS2({CS2}) = (0.2)(m1CS2) + (0.6)(m3CS2) = 0.76;

mCS2({¬CS2}) = (0.2)(m2CS2) = 0.19;

mCS2({CS2,¬CS2}) = (0.2)(m1CS2 + m2CS2) + (0.6)(m3CS2) = 0.05;

We assume that both CS1 and CS2 can be used for inferring the ”sleeping”

(Sl) and ”fainting” (F ) situation of the patient. In this dissertation, we calculate two

mass functions ”m1F ” and ”m2F ” in order to identify the ”fainting (F )” situation of

the patient.

m1F ({F}) = mCS1({CS1}) = 0.45;

m1F ({¬F}) = mCS1({¬CS1}) = 0.40;

m1F ({F,¬F}) = mCS1({CS1,¬CS1}) = 0.15;

m2F ({F}) = mCS2({CS2}) = 0.76;

m2F ({¬F}) = mCS2({¬CS2}) = 0.19;

m2F ({F,¬F}) = mCS2({CS2,¬CS2}) = 0.05;

Fourth, we apply eqs. (3.3), (3.4), and (3.5) into m1F and m2F so as to achieve

the conjunctive consensus by combining two sources with the conflicting mass (k12).

We then redistribute the partial conflicting mass using eq. (3.6) as follows:

M =




m1(F ) m1(¬F ) m1(F ∪ ¬F )

m2(F ) m2(¬F ) m2(F ∪ ¬F )
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m12(∅) = 0; m12(F ) = 0.4785; m12(¬F ) = 0.1245; m12(F ∪ ¬F ) = 0.0075;

k12 = m12(F ∩ ¬F ) = m1(F )m2(¬F ) + m1(¬F )m2(F ) = 0.3895;

mDS(F ) = m1 ⊕m2(F ) = 1
1−k12

m12(F ) = 0.7838;

mDS(¬F ) = 1
1−k12

m12(¬F ) = 0.2039;

mDS(F ∪ ¬F ) = 1
1−k12

m12(F ∪ ¬F ) = 0.0123;

After achieving the value of k12, the partial conflicting mass m1(F )m2(¬F )

is distributed to ”F” and ”¬F” proportionally with the masses m1(F ) and m2(¬F )

assigned to ”F” and ”¬F”, respectively. We suppose that x1 and y1 be the conflicting

mass to be redistributed to ”F” and ”¬F”, respectively, so as to calculate the first

partial conflicting mass m1(F )m2(¬F ) as follows:

x1

m1(F )
=

y1

m2(¬F )
=

x1 + y1

(0.45) + (0.19)
= 0.1336;

Thus, x1 = 0.0601, y1 = 0.0254;

In addition, the partial conflicting mass m2(F )m1(¬F ) is distributed to ”F” and

”¬F” proportionally with the masses m2(F ) and m1(¬F ) assigned to ”F” and ”¬F”,

respectively. We suppose that x2 and y2 be the conflicting mass to be redistributed

to ”F” and ”¬F”, respectively, so as to calculate the second partial conflicting mass

m2(F )m1(¬F ). We have

x2

m2(F )
=

y2

m1(¬F )
=

x2 + y2

(0.76) + (0.40)
= 0.2621;

Thus, x2 = 0.1992, y2 = 0.1048;

We obtain two results of the redistribution for each corresponding set ”F” and

”¬F”, respectively. We then obtain the result of the PCR5 combination rule based

on eq. (3.6) as follows:

mPCR5(F ) = m12(F ) + x1 + x2 = 0.7378;

mPCR5(¬F ) = m12(¬F ) + y1 + y2 = 0.2547;
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mPCR5(F ∪ ¬F ) = m12(F ∪ ¬F ) + 0 = 0.0075;

Finally, we calculate the belief and uncertainty levels of the ”fainting (F )”

situation with two combination rules using eqs. (3.1), (3.2) and (3.10). We then

calculate the maximum of pignistic probability (i.e., GPT) level with a decision rule

using eqs. (3.7) and (3.8).

Bel({F}) = mDS({F}) = 0.7838;

Pl({F}) = mDS({F}) + mDS({F,¬F}) = 0.7961;

Pl({F})−Bel({F}) = mDS({F,¬F}) = 0.0123;

Bel({F}) = mPCR5({F}) = 0.7378;

Pl({F}) = mPCR5({F}) + mPCR5({F,¬F}) = 0.7453;

Pl({F})−Bel({F}) = mPCR5({F,¬F}) = 0.0075;

PDS({F}) = mDS({F}) + 1
2
mDS({F,¬F}) = 0.78995;

PPCR5({F}) = mPCR5({F}) + 1
2
mPCR5({F,¬F}) = 0.74155;

In this example, we simply know that the mass of ignorance committed by the

PCR5 combination rule (i.e., mPCR5(F ∪¬F ) = 0.0075) is less than that of ignorance

committed by the Dempster’s combination rule (i.e., mDS(F∪¬F ) = 0.0123), because

Dempster’s combination rule takes the total conflicting mass then redistributes it to

all non-empty sets, even those not involved in the conflict. However, when we com-

pare the confidence level of the two cases, the maximum of pignistic probability of the

PCR5 combination rule (i.e., PPCR5({F}) = 0.74155) is less than that of Dempster’s

combination rule (i.e., PDS({F}) = 0.78995), because the PCR5 combination rule

redistributes the partial conflicting mass to both positive and negative result of mass

distributions concurrently. Therefore, we need to analyze the reason that the DSmT

approach based on PCR5 combination rule is better than the DST approach based

on Dempster’s combination rule, even though the GPT level of the DST approach is

higher than that of the DSmT approach. In the next section, we compare the be-
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lief, uncertainty and GPT levels of contextual information with different discounting

factors and weighting factors.

3.5 Comparison and Analysis

In this section, we compare the confidence (i.e. GPT) levels of three cases:

1) BNs, 2) DST and 3) DSmT based on the SEN. Second, the uncertainty levels

of two cases: 1) DST and 2) DSmT is compared by applying three methods: 1)

defined static weighting factors, 2) different static weighting factors and 3) different

discounting factors into the two fusion processes.

3.5.1 GPT levels of BNs, DST and DSmT

We assume that Θ = {Sl, F} be the frame made of only two hypotheses in

order to compare DSmT with BNs and DST. The probability theory (i.e., BNs)

and the DST deal with basic probability assignments (BPA) m(.) ∈ [0, 1] such that

m(Sl) + m(F ) = 1 and m(Sl) + m(F ) + m(Sl ∪ F ) = 1, respectively under the

assumptions on exclusivity and exhaustivity of hypotheses. The DSmT deals with

the GBBA m(.) ∈ [0, 1] such that m(Sl) + m(F ) + m(Sl ∪ F ) + m(Sl ∩ F ) = 1

under only assumption on exhaustivity of hypotheses. However, we utilize the same

underlying model (i.e., Shafer’s model M0(Θ)) [114], which reduces the DΘ into the

2Θ without loss of generality by assuming exclusivity between elements of the Θ, for

the sake of comparison among BNs, DST and DSmT. We assume that the numbers of

activated sensors are increased based on the time progress. The ”F” situation of the

patient is calculated based on the time progress and the numbers of activated sensors.

In particular, we calculate the GPT levels of three cases with 95% confidence intervals

by considering three different simulation error rates (i.e., 0%, 20% and 50%). Then,

we compare the GPT level of our approach with those of BNs and DST, respectively,
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Table 3.3. GPT levels based on the increased sensors’ activation

ActivatedSensors Probability(BNs) PDS(F) PPCR5(F)
S 0.3 0.0459 0.1637
Bp 0.19 0.0384 0.0618
S,Bp 0.39 0.2410 0.2919
Bt,R 0.46 0.3326 0.4227
S,L,H 0.45 0.2403 0.4276
S,L,Bp 0.465 0.4022 0.4344
S,L,H,Bp 0.54 0.6674 0.5773
S,L,Bt,R 0.735 0.8892 0.8601
S,L,H,Bt,R 0.81 0.9615 0.9382
S,L,H,Bp,Bt,R 0.9 0.9963 0.9963

using paired observations [59] that construct a confidence interval for the difference.

The analysis of paired observation deals with two processes as one process of n pairs.

For each pair, the difference in performance can be computed. Then, if the confidence

interval includes zero, two fusion processes are not significantly different.

Table 3.3 shows the results of the average of GPT levels based on the increased

sensors’ activation for 500 simulation iterations. In Table 3.3, the GPT levels for

the ”F” situation of the three cases are increased based on the numbers of activated

sensors. When small numbers of sensors are activated, the degrees of probability level

of BNs are higher than those of others because BNs do not consider the uncertainty

level of two different pieces of the evidence. When four more sensors are activated, the

degrees of pignistic probability level of DST are higher than those of others because

DST does not consider the conflicting mass, which increases the uncertainty level in

evidential networks, of two different pieces of the evidence.

In addition, Figure 3.4, 3.5 and 3.6 show the GPT levels of the three cases based

on the numbers of activated sensors. In this case, we apply the same static weighting

factors and same discounting factors within the scenario. According to Figure 3.4, the
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Figure 3.4. GPT levels of BNs, DST and DSmT with r=0%.
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Figure 3.5. GPT levels of BNs, DST and DSmT with r=20%.

GPT level of DST is higher than those of others when the degree of GPT is over 0.5.

However, Figure 3.5 and 3.6 show ambiguous results with 95% confidence intervals.
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Figure 3.6. GPT levels of BNs, DST and DSmT with r=50%.

In particular, the GPT levels of BNs, DST and DSmT are almost same after we

applied a 50% error rate into evidential fusion processes. We can not distinguish the

better one among BNs, DST and DSmT. Therefore, we compare the GPT level of

DSmT with those of BNs and DST, respectively, using paired observations as shown

in Figure 3.7. In this case, we calculate the paired observations by applying different

error rates (i.e., 0%, 1%, 5%, 10%, 20% and 50%) into each sensor. We also calculate

the GPT level when the degree of GPT is over 0.5. The GPT level of DSmT is higher

than that of BNs and the GPT level of DSmT is lower than that of DST except for

the error rate is a 50% case. Based on the result of Figure 3.7, we know that the

GPT level of DST is higher than those of others with small error rates (r) when the

degree of GPT is over 0.5.

Moreover, according to Figure 3.4, the degree of GPT at 11th time stamp (e.g.,

Ps and Rs) is bigger than that at 52nd time stamp (e.g., Ls, Ms and Bps) even if the

numbers of activated sensors at 11th time stamp are smaller than that at 52nd time
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Figure 3.7. Comparison GPT levels of BNs, DST and DSmT.

stamp, because the applied weighting factors at 11th time stamp are bigger than those

at 52nd time stamp. This shows the importance of the method in defining a static

weighting factor for each context attribute in evidential fusion networks. However, it

is difficult in defining the absolute static weight of the evidence. In order to find the

optimal weight of the evidence, we deal with the method in Chapter 5.

3.5.2 Uncertainty levels of DST and DSmT

We calculate the uncertainty levels (i.e., ignorance) of two cases: 1) DST and

2) DSmT, which are used for calculating the ”fainting (F )” situation of the patient

within the applied scenario. We can not calculate the uncertainty level using BNs

because BNs, which assume equality between the implication and the conditional

belief [107], can not support a certain degree ρ that takes a value from the interval

[0,1].
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Figure 3.8. Uncertainty levels of DST and DSmT with r=0%.
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Figure 3.9. Uncertainty levels of DST and DSmT with r=20%.

3.5.2.1 Comparison with static weighting factors

We apply a static weighting factor into each context attribute as shown in Figure

3.3. We also apply error rates (r) (i.e., 0%, 20% and 50%) into the evidential fusion
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Figure 3.10. Uncertainty levels of DST and DSmT with r=50%.

process that calculates the variations of uncertainty levels. The uncertainty levels

of DST and DSmT based on the numbers of activated sensors are shown in Figure

3.8, 3.9 and 3.10. In this case, the evidential fusion process based on DST has more

various conflicting mass in the uncertainty level compared to the DSmT approach. In

particular, the degrees of uncertainty level of DST show different variations depending

on the selected simulation error rates even though the DSmT approach shows constant

degrees of uncertainty (i.e., 0.0075). The reason is that the PCR5 combination rule

of DSmT redistributes the total conflicting mass as equal to zero within the DSmT

framework. However, Dempster’s combination rule of DST takes the total conflicting

mass and redistributes it to all non-empty sets within the DST framework, even

those not involved in the conflict. As shown in Figure 3.8, 3.9 and 3.10, the degrees of

uncertainty of DSmT are lower than those of DST. When we compare the uncertainty

level of DST with that of DSmT using paired observations with different error rates

(r) (i.e., 0%, 1%, 5%, 10%, 20% and 50%), the uncertainty level of DST is higher
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Figure 3.11. Comparison Uncertainty levels of DST and DSmT.

than that of DSmT as shown in Figure 3.11. Therefore, the DSmT approach with

static weighting factors reduces the degree of uncertainty (i.e., conflicting mass in

uncertainty level) compared to the DST approach.

3.5.2.2 Comparison with different weighting factors

We apply different static weights into each context attribute as shown in Table

3.4 in order to compare the uncertainty levels of two cases: 1) DST and 2) DSmT

based on different weighting factors. In this simulation, we calculate four situations:

a) ”Bts”, and ”Rs” are not activated, b) ”Ls” and ”Bps” are not activated, c) only

”Bts” is not activated, and d) all sensors are activated to see the variation of the

uncertainty level of contextual information. In addition, we apply 0% and 50% error

rates and same discounting factors within the Figure 3.3 into the evidential fusion

process with a 95% confidence interval. After we apply different static weights into the

evidential fusion process, the uncertainty levels of DST and DSmT based on different
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Table 3.4. An example of different static weighting factors

No. S L H Bp Bt R
Case 1 0.9 0.05 0.05 0.05 0.05 0.9
Case 2 0.8 0.1 0.1 0.1 0.1 0.8
Case 3 0.7 0.1 0.2 0.1 0.2 0.7
Case 4 0.6 0.2 0.2 0.2 0.2 0.6
Case 5 0.5 0.2 0.3 0.2 0.3 0.5
Case 6 0.4 0.3 0.3 0.3 0.3 0.4
Case 7 0.3 0.4 0.3 0.3 0.4 0.3
Case 8 0.2 0.4 0.4 0.4 0.4 0.2
Case 9 0.1 0.45 0.45 0.45 0.45 0.1

0 1 2 3 4 5 6 7 8 9 10
0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

U
nc

er
ta

in
ty

 L
ev

el
s 

w
ith

 9
5%

 C
on

fi
de

nc
e 

in
te

rv
al

s

Cases based on different weighting factors

 a) case with DST (r=0%)
 a) case with DST (r=50%)
 b) case with DST (r=0%)
 b) case with DST (r=50%)
 c) case with DST (r=0%)
 c) case with DST (r=50%)
 d) case with DST (r=0%)
 d) case with DST (r=50%)
 all cases with DSmT

Figure 3.12. Uncertainty levels of DST and DSmT with different weights.

weighting factors are shown in Figure 3.12. The uncertainty levels of DSmT have the

same degrees for all cases even though those of DST have different degrees depending

on the four situations and the used error rates (r) (i.e., 0% and 50%). In addition, the

degrees of uncertainty of DSmT are lower than those of DST. Only when all sensors
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Table 3.5. An example of different discounting factors

No. S L H Bp Bt R
Case 1 0% 20% 20% 5% 5% 0%
Case 2 1% 20% 20% 5% 5% 1%
Case 3 2% 20% 20% 5% 5% 2%
Case 4 5% 20% 20% 5% 5% 5%
Case 5 10% 20% 20% 5% 5% 10%
Case 6 20% 20% 20% 5% 5% 20%
Case 7 50% 20% 20% 5% 5% 50%

are activated will the degrees of uncertainty of DSmT be equal to those of DST. It

means that the evidential fusion based on DSmT shows a constant uncertainty level,

whether a sensor reading error may happen or whether an emergency situation may

progress, by redistributing the total conflicting mass only into the sets involved in

the conflict and proportionally to their masses. Therefore, the DSmT approach with

different weighting factors also shows the better performance than the DST approach

in order to reduce the conflicting mass in uncertainty level of contextual information

in the progress of ”fainting (F )” situation of the patient.

3.5.2.3 Comparison with different discounting factors (D)

We apply different discounting factors (D), which are related to sensor’s cred-

ibility, into ”Ps” and ”Rs” in order to calculate the uncertainty levels of DST and

DSmT as shown in Table 3.5. Reducing discounting factors (D) on each sensor is

an important factor so as to obtain the reliability of contextual information of the

patient. We calculate four situations: a) ”Bts”, and ”Bps” are not activated, b) ”Ps”

and ”Bts” are not activated, c) only ”Bps” is not activated, and d) all sensors are

activated to see the variation of the uncertainty level of contextual information. We

apply 0% and 50% error rates and same weighting factors within the Figure 3.3 into
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Figure 3.13. Uncertainty levels of DST and DSmT with different D.

the evidential fusion process with a 95% confidence interval. Depending on different

D on ”Ps” and ”Rs”, the two cases show different degrees of uncertainty as shown in

Figure 3.13. The degrees of uncertainty of DST and DSmT are increased based on the

increase of the D as expected. In addition, the uncertainty levels of DSmT have the

same degrees for all cases even though those of DST have different degrees for the four

situations. In particular, the degrees of uncertainty of DSmT are lower than those of

DST. This result also shows that the DSmT approach gets the better performance

than the DST approach in order to reduce the conflicting mass in uncertainty level

of contextual information in the progress of ”F” situation of the patient.

3.6 Summary

In this chapter, we utilized a static evidential fusion process (SEFP) with the

PCR5 combination rule as a context reasoning method based on spatial dependency,

which is shown in Figure 3.14 in order to reduce the degrees of uncertainty in sensed
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Figure 3.14. Spatial dependency within the applied context classification.

data and in generated contexts. In addition, we applied a generalized pignistic trans-

formation (GPT) so as to understand uncertainty analysis in decision makings. In

particular, we calculated the uncertainty and GPT level of selected contextual in-

formation in order to compare and analyze the SEFP approach with an evidential

fusion process based on BNs or DST. Wwe applied different static weighting factors,

discounting factors and simulation error rates into the SEFP approach. According

to the results of our simulation, the SEFP approach based on DSmT is better than

that based on BNs so as to improve the GPT level of contextual information. The

SEFP approach based on DSmT is better than that based on DST approach so as to

reduce the conflicting mass in uncertainty level of contextual information. However,

this approach does not deal with the variations of the evidence over time that is one

of important factors in order to estimate the correct situation of the patient.
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In the next chapter, we will improve the GPT level of selected contextual infor-

mation based on Dynamic Evidential Network (DEN) by considering dynamic met-

rics: preference, temporal consistency, and relation-dependency of the evidence using

Autonomous Learning Process (ALP) and Temporal Belief Filtering (TBF) [68].



CHAPTER 4

DYNAMIC EVIDENTIAL NETWORK

4.1 Introduction

During emergency situations of the patient in home-based care, a PHMS [74]

is significantly overloaded with pieces of contextual information of different known

reliability (reliable, partial reliable, or completely unreliable) or unknown reliabil-

ity. The pieces of the information should be processed, interpreted, and combined

in order to recognize the situation of the patient as accurate as possible. In such a

context, the information obtained from different sources such as multi-sensors and

Radio Frequency Identification (RFID) devices can be imperfect due to the imperfec-

tion of contextual information itself or unreliability of the sources. In order to deal

with different aspects of the imperfection of contextual information, we proposed a

Static Evidential Network (SEN) [69] as a mathematical tool so as to characterize

and combine the imperfect information in Chapter 3. As a context reasoning method,

SEN utilizes Dezert-Smarandache Theory (DSmT) [38]. SEN reduces the uncertainty

level of contextual information compared to Dempster-Shafer Theory (DST) [134].

However, context reasoning over time is a difficult in an emergency context, because

unpredictable temporal changes in sensory information may happen [108]. SEN also

did not consider dynamic metrics [67] of the context. Dynamic metrics combine up-

per bounds, lower bounds, or comparative criteria into a static threshold so as to

estimate or infer future contextual information autonomously. In this chapter, we

propose a Dynamic Evidential Network (DEN) as the 2nd context reasoning method.

DEN deals with the relations between two consecutive time-indexed states of the in-

61
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Figure 4.1. Temporal dependency within the applied context classification.

formation by considering dynamic metrics: preference, temporal consistency, and the

relation-dependency of the information as shown in Figure 4.1. DEN produces Au-

tonomous Learning Process (ALP) in order to improve the confidence (i.e., GPT) level

of contextual information using the Temporal Belief Filtering (TBF) algorithm. Fi-

nally, we compare the proposed fusion process with a fusion process based on Dynamic

Bayesian Networks (DBNs) [90] that has the same assumption of the environments,

so as to show the improvement of our proposed method in an emergency situation of

the patient.

The rest of this chapter is organized as follows. The basics of autonomous learn-

ing process principles such as Disjunctive rule of combination, State-Markov model

for temporal dependency, Autonomous Learning Process (ALP) and Temporal Belief

Filtering (TBF) are introduced in section 4.2. We introduce the Dynamic Evidential
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Fusion Process (DEFP) based on the Dynamic Evidential Network (DEN) as a con-

text reasoning method in section 4.3. Finally, we perform a case study in order to

distinguish a sensor reading error from new sensor activations or deactivations in the

emergency situation of the patient using the DEFP approach. We then compare and

analyze the results of our approach with those of DBNs so as to show the improvement

of our approach in section 4.4.

4.2 Autonomous Learning Process Principles

4.2.1 Disjunctive Rule for Temporal Belief Filtering (TBF)

Temporal Belief Filtering (TBF) [104], which reflects that only one hypothesis

concerning activity is true at each time-indexed state, ensures a temporal consistency

with an exclusivity. Within a TBF, the disjunctive rule of combination (m∪(.)) is used

so as to compute prediction from previous mass distributions and model of evolution.

m∪(.) is defined for two sources: m∪(∅) = 0 and ∀(C) ⊂ Θ,

m∪(C) =
∑
i,j

C=Xi∪Yj

m1(Xi)m2(Yj), ∀(C 6= ∅) ∈ Θ (4.1)

The core of a belief function given by m∪(C) equals the union of the cores

of Bel(X) and Bel(Y ). This rule reflects the disjunctive consensus and is usually

preferred when one knows that one of the source X or Y is mistaken but without

knowing which one between X and Y.

4.2.2 State-Markov Model for Temporal Dependency

Contextual information of the patient has the association or correlation between

two consecutive time-indexed states based on time progress. In order to deal with

this context reasoning over time, SEN should include a temporal dimension as shown

in Figure 4.2. This new dimension is managed by a time-indexed state that is similar
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Figure 4.2. SEN with a temporal dimension.
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Figure 4.3. Temporal dimension made of two consecutive states.

to that of DBNs as shown in Figure 4.3. The state, denoted by Xt, is represented at

time stamp t by a state X with the aggregation of the belief mass assigned to a finite

number of focal elements Xt : {m(St
0),mS(t

1),m(St
2),m(St

3)} (e.g., m(St
0) denotes the
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belief mass assigned to the focal element S0 at time stamp t). Several time-indexed

states are represented by the belief mass distribution of four states relative to the

time stamp t. An arc linking the two consecutive states belonging to different time

stamps represents a temporal change of the belief mass in order to model the temporal

dependence between these states. Defining these impacts as transition-belief masses

between focal elements of the state at time stamp t and those at time stamp t+1 lead

to the definition of the association or correlation of the state relative to inter-time

stamps, as it is defined as:

M(Xt+1|Xt) =

({m(St+1
0 ),m(St+1

1 ),m(St+1
2 ),m(St+1

3 )})|

({m(St
0),m(St

1),m(St
2),m(St

3)}) (4.2)

The state of the first time-indexed state does not have any parameters associated

conditional probability distribution in Figure 4.3. It is possible to compute the belief

mass distribution of any state Xi at time stamp t corresponding to selected (i.e.,

activated and deactivated) sensors at time stamp t. The belief mass distribution at

time stamp t+1 is also computed using selected sensors at time stamp t+1. The two

states are such rotated that the old state is dropped and the new state is used as the

time progress. The temporal link between two consecutive time-indexed states reflects

the temporal dependency [68], which can distinguish a false alarm from new sensor

activations or deactivations by comparing the measured belief mass distribution for

three consecutive time-indexed states. We increase the index t by one every time a

new observation (i.e., sensory information) arrives, because we only consider discrete-

time stochastic processes. In addition, we consider the relation-dependency which

has the association or correlation of a sensor’s activation or deactivation between two

consecutive time-indexed states using the Autonomous Learning Process (ALP).
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Figure 4.4. Autonomous Learning Process (ALP) Principle.

4.2.3 Autonomous Learning Process (ALP)

Sensors measurements show different values based on temporal changes. We

know that the values of the sensor at the current time-indexed state are evolved

by the measured values at the previous time-indexed state, because the belief mass

distribution can not vary abruptly between two consecutive time-indexed states. In

order to deal with this evolution, we utilize an autonomous learning process (ALP)

that has three states: 1) Initial State, 2) Reward State, and 3) Final Decision State

as shown in Figure 4.4. This ALP is performed based on the Q-learning technology

represented by [66, 111]:

Q(Xt,mt(.)) ← (1−mt(.))Q(Xt,mt(.)) + mt(.)(Re + D max mt−1(.)Q(Xt−1, mt−1(.))

(4.3)

In eq. (4.3), Xt is the current state, m(.) is the belief mass distribution, D is

the discounting factor, and Re is the reward state to help decision making in final

decision state. We are able to support dynamic metrics (e.g., the evolution of the

upper bounds or lower bounds of the pre-defined criteria). In particular, Temporal
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Belief Filtering (TBF) algorithm is performed in the reward state so as to support

the ALP principle.

4.2.4 Temporal Belief Filtering (TBF) for Relation-Dependency

In reward state of the ALP principle, TBF operations: prediction, fusion, learn-

ing and update are performed so as to obtain the relation-dependency that repre-

sents the association or correlation of two consecutive time-indexed states. TBF en-

sures temporal consistency with the exclusivity between two consecutive time-indexed

states when only one hypothesis concerning activity is true at each time. TBF as-

sumes that the general basic belief assignment (GBBA) at the current time stamp t

is close to the GBBA at the previous time stamp t−1. Based on this assumption, the

evolution process predicts a current GBBA taking the GBBA at t − 1 into account.

The TBF that operates at each time stamp t consists in four steps: 1) Prediction, 2)

Fusion, 3) Learning and 4) Updated rule if required. For instance, if the activity of

the patient was fainting (F ) at t−1 then it would be partially fainting (F ) at t. This

is an implication rule for fainting (F ) which can be weighted by a confidence value of

mF{.} ∈ [0, 1]. In this case, the vector notation of a GBBA defined on the frame of

discernment (Θ) is used:

mΘ = [ mΘ(∅) mΘ(¬F ) mΘ(F ) mΘ(¬F ∪ F ) ]

The evolution process can be interpreted as a GBBA defined as:

mΘ
F = [ 0 1− PlF BelF PlF −BelF ]T (4.4)

4.2.4.1 Prediction

Depending on the current model M with only two focal sets, the disjunctive

rule of combination is used in order to compute prediction from the previous GBBA
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at t− 1 and model of evolution using eq. (4.1). The disjunctive rule of combination

does not allow to assign more belief to a hypothesis than does the previous GBBA.

It is well suited for the autonomous evolution process under uncertainty:

m̂Θ
t,M = mΘ

t−1 (M∪) mΘ
M (4.5)

where mΘ
t−1 is the previous GBBA and mΘ

M is model of evolution.

For instance, the prediction for fainting (F ) situation of the patient at time

stamp t is defined as:

m̂Θ
t,F =




0

(1− PlF )×mΘ
t−1(¬F )

BelF ×mΘ
t−1(F )

1− [((1− PlF )×mΘ
t−1(¬F )) + BelF ×mΘ

t−1(F )]




(4.6)

when mF = 1 or when mF = 0, the prediction reflects a total confidence or a total

ignorance with the current time-indexed state, respectively.

4.2.4.2 Fusion, Learning and Updated Rule

Prediction (m̂Θ
t,M) and measurement (mΘ

t ) represent two distinct pieces of the

information. Fusion of the two distinct pieces of the information leads to a new GBBA

whose conflict value (CF ) is relevant for belief learning and update requirement. In

this case, conflict value (CF ), which is similar to k12 of the eq. (3.4), is calculated by

the conjunctive rule of combination of m̂Θ
t,M and mΘ

t :

CF = m̂Θ
t,M (M∩) mΘ

t (∅) (4.7)

In addition, policy is required so as to analyze whether the current model M

is valid or not. If CF is not greater than the pre-defined threshold (T ), the model at

t− 1 is kept as valid at t. However, if CF exceeds the T, the model is evolved based
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on the result of the conjunctive rule of combination of m̂Θ
t,M and mΘ

t . Depending on

the applied policy, the evolution process (mΘ
t,M) (i.e., learning) is performed as below:

mΘ
t,M =





m̂Θ
t,M (M∩) mΘ

t , if CF ≥ T

mΘ
t−1,M , if CF < T

(4.8)

After a learning, a fading memory process (Fa) has been embedded so as to

reduce the relation-dependency of the pieces of long past information even though

the cumulative sum of conflict value (CF ) between m̂Θ
t,M and mΘ

t is lower than the

pre-defined threshold (T ) during long time intervals. A fading memory process (Fa)

resets the cumulative sum of CF as a zero (0) and m̂Θ
t+w,M is equal to mΘ

t+w based on

time window size (W ), which is chosen as a constant value (C ). Then, updated rule

is applied to the model of evolution repeatedly after Fa is applied to mΘ
t,M .

mΘ
t+w,M =





(1) Fa ←





∑
CF = 0 , if W = C

m̂Θ
t+w,M = mΘ

t+w

(2) mΘ
t,M × (Fa)

(4.9)

4.2.4.3 Decision Rule

Finally, a decision is taken by the maximum of GPT (i.e., eq. (3.8)) within the

DSmT framework after the evolution process is performed. In this dissertation, we

adopt Shafer’s model [114] in order to compare our approach with DBNs, which can

get a BBA with non null masses only on θ1 and θ2 (i.e., P{θ1∪θ2} = m(θ1)+m(θ2) =

1) where θ1 and θ2 are hypotheses of the frame of discernment (Θ) (i.e., focal elements

of the state within the frame of the set).

In addition, it is required to assess the recognition performance of a time-

indexed state so as to decide whether a temporal sequence of the state has a false

alarm or a new sensor activation/deactivation within the defined time window size
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(W ). It is necessary to find a quality criterion without references to assess this

performance. We defined DF as the differentiation of GPTs of two consecutive time-

indexed states. The D̄F is defined as the mean of DF (i.e.,
∑

DF

W
) within the defined

W as the chosen criterion (i.e., eq. (4.10)) in order to distinguish a sensor reading

error from new sensor activations or deactivations (i.e., eq. (4.11)). For instance, as

shown in eq. (4.11), if D̄F is less than δ, there is no error within W . If D̄F is located

between δ and γ, a false alarm happens. And if D̄F is greater than γ, the emergency

situation of the patient progress.

D̄F , 1

W

∑
i=1,W

Di
F (4.10)

Decision(De) =





No errors within the W , if D̄F < δ

False alarm , if δ ≤ D̄F < γ

Emergency Progress , if γ ≤ D̄F

(4.11)

where δ is the defined false alarm threshold and γ is the defined emergency progress

threshold for the chosen criterion. In this case, the value of δ is always lower than

that of γ, because we assume that the false alarm does not often happen when the

new sensor activation or deactivation is detected by the expert system in emergency

situation of the patient. Based on the defined threshold (T ) for conflict value (CF )

and time window size (W ), we can distinguish a sensor reading error from new sensor

activations or deactivations. Then, we perform a dynamic evidential fusion process

(DEFP) in order to improve the confidence (i.e., GPT) level of contextual information.

4.3 Dynamic Evidential Fusion Process (DEFP)

We perform context reasoning based on DEN that is constructed on SEN with

a temporal dimension in order to improve the GPT level of contextual information.

The Dynamic Evidential Fusion Process (DEFP) estimates a sensor reading error
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Figure 4.5. The Proposed DEN for n time intervals.

from new sensor activations or deactivations. Then, DEFP helps to make a correct

decision about the situation of the patient by comparing the GPT levels of consecutive

time-indexed states. In particular, first, we define the threshold (Te) of the GPT level

for the emergency situation of the patient. Second, we calculate the GPT level at each

time-indexed state using a TBF with defined T and W . And last, if the GPT level

is over the defined Te for four continuous time-indexed states, we make a decision

about the situation of the patient as an emergency.

4.3.1 Evolution Operations with DEN

The DEN is constructed based on the proposed SEN with a temporal dimension

as shown in Figure 4.5. Within a DEN, context reasoning is performed in order to find

a false alarm in captured contexts and make a high confidence level of the situation

of the patient. We assume that the initial prediction is equal to the 1st measurement

at 1st time-indexed state t1. The consecutive processing of two combination rules
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(i.e, disjunctive rule and conjunctive rule) is well adapted to SEN so as to update the

belief mass distribution of SEN at time-indexed states. In Figure 4.5, we define n time

intervals and time window sizes W so as to reflect a fading memory process (Fa) to

the pervasive healthcare system. The Fa can reduce long past contextual information

of the patient. Depending on DF and D̄F , we can trace the emergency progress

which can check a false alarm. We then make an optimal time window size (W )

that is applied to the evolution process. This consecutive fusion process composed of

the combination of two combination rules (i.e., disjunctive rule and conjunctive rule)

based on SEN can make the DEFP approach. The procedures of the DEFP approach,

which is the 2nd proposed context reasoning method, consist of six steps.

4.3.2 DEFP Approach

1. (Measure a GBBA of SEN): Initially, we measure a GBBA of SEN using

evidential operations at time stamp t. In TBF algorithm for DEFP, we assume

that the first prediction (m̂Θ
t1,M) is equal to measurement (mΘ

t1
) at time-indexed

state t1.

2. (Prediction and Evolution): We calculate prediction from the previous

GBBA and model of evolution using the disjunctive rule of combination (i.e.,

eq. (4.1)). The disjunctive rule of combination is well suited for the model

evolution under uncertainty because it does not allow to assign more belief to

an hypothesis than does the previous GBBA. The GBBA of SEN at time stamp

t + 1 will be affected by m̂Θ
t+1,M .

3. (Learning): We fuse m̂Θ
t+1,M and mΘ

t+1 using the conjunctive rule of combina-

tion so as to make a new GBBA. As a learning, if conflict value is greater than

the pre-defined threshold (CF > T ), a new GBBA is adapted. Whereas, the

previous learned GBBA is adapted as a new GBBA (i.e., eq. (4.8)).
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4. (Fading Memory Process): We apply a fading memory process (Fa) with

the defined time window size (W ) so as to reduce the affection of long past

information. After the Fa is performed, the GBBA of m̂Θ
t+w,M is equal to the

GBBA of mΘ
t+w. (i.e., eq. (4.9)). The previous GBBA of m̂Θ

t+w−1,M is ignored

at time stamp t+w.

5. (Update and Decision Making): We calculate the GPT of the frame at each

time stamp (i.e., eq. (3.8)) by applying the updated rule, then, we calculate DF

of the two consecutive time-indexed states. Based on D̄F and the pre-defined

value for δ and γ, we can make a decision: No errors, False alarm, or Emergency

progress (i.e., eq. (4.11)).

6. (Comparison the GPT level): Finally, we compare the GPT level of con-

secutive time-indexed states. If the GPT level is over the pre-defined thresh-

old (Te), which represents the emergency situation, for four continuous time-

indexed states, we make a decision about the situation of the patient as an

emergency.

4.4 A Case Study

In this section, we assume that the same specific situation (i.e., fainting or

sleeping) of the patient in the living room is occurred so as to describe the DEFP

approach as a context reasoning method based on the applied scenario. In addition,

we suggest a method to distinguish a sensor reading error from new sensor activations

or deactivations.

4.4.1 Applied Scenario

As shown in Figure 3.3, we suppose that the same situation: ”sleeping (Sl)”

or ”fainting (F )” of the patient can happen in smart home applications. We utilize
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Figure 4.6. An example of sensor activations during 50 time intervals.

six types of different sensors in this scenario. Then, we apply the same % of static

weighting factors and discounting factors (D) into each sensor. For instance, we

assume that a static weighting factor of Ps, Ls, Ms, Bps, Bts, and Rs are 0.5, 0.25,

0.25, 0.2, 0.2 and 0.6, respectively. Based on the applied scenario, 26 cases that

depends on activated sensors happen randomly in order to represent temporal changes

in sensory information. The GPT level of each case is calculated within a SEN as

the default value of the criterion. This default value is used in order to compare the

relation-dependency of DEN with that of DBNs [141]. The model evolution (i.e., the

association or correlation of two consecutive time-indexed states) of DEN is applied

as a transition probability of DBNs so as to compare the GPT of DEN with that

of DBNs. In this chapter, we assume that different types of sensors are randomly

activated during 50 time intervals in order to simulate evidential operations with two

fusion processes such as DEFP and DBNs as shown in Figure 4.6. In this case, we
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Figure 4.7. Uncertainty levels of SEFP and DEFP.

apply different simulation error rates (e.g., 0%, 20% and 50%) into the evidential

fusion process with a 95% confidence interval for 500 iterations.

4.5 Comparison and Analysis

We need the same underlying model (i.e., Shafer model) [114] that reduces DΘ

to 2Θ without loss of generality by assuming exclusivity between elements of Θ in

order to compare the GPT level of DEN with that of DBNs. Based on Shafer model,

first, we compare the uncertainty level and the GPT level of two theories: 1) DSmT

(i.e., SEFP) and 2) DSmT with a TBF (i.e., DEFP) using paired observations [59].

Second, we compare the GPT level of DEFP with that of DBNs by considering six

steps: 1) Checking a temporal dependency of two consecutive time-indexed states,

2) Finding an optimal threshold (T ) for a conflict value (CF ) in TBF algorithm, 3)

Finding an optimal time window size (W ), 4) Calculating the GPT level with the



76

0% 1% 5% 10% 20% 50%

0.000

0.002

0.004

0.006

0.008

U
nc

er
ta

in
ty

 D
if

fe
re

nc
e 

w
ith

 a
 9

5%
 C

on
fi

de
nc

e 
in

te
rv

al


Error Rates (%)

 Criterion
 DSmT(SEFP) - DSmT with a TBF (DEFP)

Figure 4.8. Comparison Uncertainty levels of SEFP and DEFP.

pre-defined weights and different error rates (r), 5) Calculating the GPT level with

different weights and 6) Calculating the GPT level with different discounting factors

(D) with paired observations.

4.5.1 Uncertainty levels of SEFP and DEFP

After performing a SEFP within the evidential network, we apply a TBF using

eqs. (4.1), (4.4), (4.5) and (4.6) in order to compare the uncertainty level of DSmT

(i.e., SEFP) with that of DSmT with a TBF (i.e., DEFP). We assume that the pre-

defined threshold (T ) for the conflict value (CF ) is equal to zero. Thus, we always

apply the model evolution process (i.e., CF > 0). As shown in Figure 4.7, we can

reduce the degrees of uncertainty of DSmT by applying a TBF. In addition, the

degrees of uncertainty of the SEFP approach are higher than those of the DEFP

approach when we compare the uncertainty levels of SEFP with those of DEFP using

paired observations with different error rates (i.e., 0%, 1%, 5%, 10%, 20% and 50%)
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Figure 4.9. GPT levels of SEFP and DEFP.

as shown in Figure 4.8. Therefore, we know that the DEFP approach obtains the

better performance than the SEFP approach so as to reduce the conflicting mass in

uncertainty level of contextual information of the patient.

4.5.2 GPT levels of SEFP and DEFP

We compare the GPT levels of the DSmT approach by applying a TBF with

different error rates (r) (i.e., 0%, 20% and 50%). In a TBF algorithm, a conflict

value (CF ) between prediction and measurement requires different model changes

depending on the selected thresholds. In particular, we can get a higher GPT level

when the conflict value (CF ) between prediction and measurement is greater than

zero (i.e., CF > 0), because the model evolution process utilizes the conjunctive rule

of combination such as the PCR5 combination rule. It means that we can get higher

confidence levels when we adapt more model evolution at each time stamp. As shown

in Figure 4.9, the GPT level of DEFP is higher than that of SEFP with a 0% error
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Figure 4.10. Comparison GPT levels of SEFP and DEFP.

rate when the degree of GPT is over 0.5. However, the GPT level of DEFP and that

of SEFP are difficult to distinguish with a 20% or a 50% error rate. Thus, we compare

the GPT level of DEFP with that of SEFP using paired observations depending on

the GPT level of the DEFP approach as shown in Figure 4.10. In this case, we

calculate the paired observations by applying different error rates (i.e., 0%, 1%, 5%,

10%, 20% and 50%) into the evidential fusion process for the degree of GPT is over

0.5 case. Based on the results of Figure 4.10, the GPT level of the DEFP approach

is higher than that of the SEFP approach when the degree of GPT is over 0.5.

4.5.3 GPT levels of DEFP and DBNs

4.5.3.1 Calculating a temporal dependency

Before we compare the GPT level of DEFP with that of DBNs, we calculate a

temporal dependency of DSmT with different error rates (r) (i.e., 0%, 20% and 50%).
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Figure 4.11. A temporal dependency of DSmT.

As shown in Figure 4.11, it is difficult to distinguish a sensor reading error from new

sensor activations or deactivations when we check a temporal dependency between

two consecutive time-indexed states. A temporal dependency is expressed as 1 or

0 with a 0% error rate if temporal changes happen between two consecutive time-

indexed states. For instance, the degree of GPT at 22nd ∼ 23rd or 32nd ∼ 33rd time

intervals are suddenly decreased in Figure 4.11. It is not easy to estimate a sensor

reading error or not, because the values of a temporal dependency show the 1 values

between 22nd and 33rd time intervals. In addition, a temporal dependency shows the

1 values constantly if we apply a 20% or a 50% error rate. In this case, we don’t know

exactly what happens to the patient. Therefore, we need to reduce this ambiguity

by calculating the relation-dependency of the consecutive time-indexed states. We

consider a temporal consistency that the belief on activity can not vary abruptly

between two consecutive time-indexed states using the proposed TBF algorithm. In
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Figure 4.12. Increased GPT levels with different thresholds for a conflict value.

order to apply the TBF algorithm, we will find an optimal threshold (T ) for a conflict

value (CF ) between prediction and measurement in TBF algorithm.

4.5.3.2 Finding an optimal threshold for a conflict value

In order to calculate the relation-dependency of two consecutive time-indexed

states, we have to define the threshold (T ) for a conflict value (CF ). In the previous

section, the model evolution process is performed based on the conjunctive rule of

combination of prediction and measurement. In addition, we can get a higher con-

fidence level when we adapt more model evolution at each time stamp, because the

degree of the conjunctive combination rule (i.e., learning) will be increased by depend-

ing on small differentiation of prediction and measurement. For example, we compare

the GPT levels of DEFP by applying different T (0 ≤ T ≤ 1) (i.e., T = 0.0, 0.2, 0.4

and 1.0) with a 0% error rate into the model evolution process. In this case, we only

consider time intervals from the 17th, because medical body sensors operate from
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that time interval. Depending on the applied threshold (T ), different degrees of the

learning are adapted to the updated rule. Then, we obtain the increased GPT levels

of the DEFP approach based on the GPT levels of the SEFP approach at each time-

indexed state as shown in Figure 4.12. The highest GPT level is obtained when we

apply T = 0 into CF compared to the others. Whereas the GPT levels of the DEFP

approach are lower than those of the SEFP approach. According to the Figure 4.12,

we know that we get more GPT level when we adapt a new model evolution process

into the TBF algorithm. In the next, we will find an optimal time window size (W )

for reducing the affection of long past information in TBF algorithm. In this case, we

will define δ (i.e., False alarm threshold) and γ (i.e., Emergency progress threshold) to

distinguish a sensor reading error from new sensor activations or deactivations within

the same applied scenario.

4.5.3.3 Finding an optimal time window sizes

In order to calculate the relation-dependency of two consecutive time-indexed

states, we also have to define the time window size (W ) that supports a fading memory

process (Fa). We assume that the threshold for a conflict value is equal to zero (T = 0)

and the error rate is equal to zero, because some degrees of confidence intervals of the

model evolution process are overlapped when we apply a 20% or a 50% error rate.

We can not distinguish which one is better than others. As shown in Figure 4.13,

we apply different W (1 ≤ W ≤ 35) (i.e., W = 2, 3, 5, 15 and 35) with T = 0 into

the model evolution process in TBF algorithm. It is difficult to find the highest GPT

level between 17th and 27th time intervals, because sensor activations or deactivations

among six sensors happen concurrently at those time intervals. However, the higher

GPT levels are obtained between 30th and 50th time intervals when we apply the

longer time window size. The increased GPT levels of the DEFP approach is reduced
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Figure 4.13. Increased GPT levels with different time window sizes.

when we apply a fading memory process (Fa) frequently. The frequent Fa can ignore

the relation-dependency of consecutive time-indexed states.

However, the longer time window size can have a difficult to catch a false alarm

or an emergency progress. If we apply the longer time window size such as W = 35 or

W = 15, the mean of the differentiation (DF ) between two consecutive time-indexed

states (i.e., D̄F ) has no variations as shown in Figure 4.14. In Figure 4.14, we assume

that δ = 0.05 and γ = 0.08 in order to make a correct decision (i.e., eq (4.11))

which helps to reduce the ambiguity of the estimation about sensor’s activation or

deactivation. As shown in Figure 4.14, it is difficult to make a correct decision about

sensor’s activation or deactivation (e.g., a false alarm or an emergency progress) if we

utilize the longer time window sizes. We can distinguish a false alarm from new sensor

activations or deactivations if we check the mean of differentiation (D̄F ) frequently.

Thus, the shorter time window size can make a decision easily. Based on the results

of Figure 4.13 and 4.14, we know that a trade-off exists between the increased GPT
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Sensor Activations based on Time progress (from 17th)
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Figure 4.14. Comparison D̄F with different time window sizes.

level of the DEFP approach and the mean of differentiation (D̄F ). We should consider

two factors concurrently in order to compare the GPT level of DEFP with that of

DBNs. In the next, we will compare the GPT level of DEFP with that of DBNs by

considering different error rates (i.e., 0%, 20% and 50%) and static weighting factors

with T = 0 and W = 5 (e.g., the middle value of the time window sizes: 2, 3, 5, 15

and 35).

4.5.3.4 Comparison GPT levels of DEFP and DBNs

Finally, we compare the GPT level of DEFP with that of DBNs by applying

three different error rates (i.e., 0%, 20% and 50%) into the evidential fusion process

with a 95% confidence interval. In this case, we calculate the GPT levels based on

the same applied scenario. We consider the same static weighting factors with T = 0

and W = 5. According to Figure 4.15, the GPT level of DEFP is higher than that of

DBNs with a 0% and a 20% error rate when the degree of GPT is over 0.5 (e.g., time
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Figure 4.15. GPT levels of DEFP and DBNs.
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Figure 4.16. Comparison GPT levels of DEFP and DBNs.

intervals from 17th). However, the GPT level of DEFP and that of DBNs is difficult

to distinguish with a 50% error rate. Therefore, we compare the GPT level of DEFP
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Table 4.1. An example of different weights for DEFP and DBNs

Case Ps Ls Ms Bps Bts Rs
1 (DEN) 0.9 0.05 0.05 0.05 0.05 0.9
2 (DEN) 0.5 0.25 0.25 0.2 0.2 0.6
3 (DEN) 0.3 0.4 0.3 0.3 0.3 0.4
4 (DEN) 0.1 0.4 0.5 0.4 0.4 0.2
5 (DBN) 0.9 0.05 0.05 0.05 0.05 0.9
6 (DBN) 0.5 0.25 0.25 0.2 0.2 0.6
7 (DBN) 0.3 0.4 0.3 0.3 0.3 0.4
8 (DBN) 0.1 0.4 0.5 0.4 0.4 0.2

with that of DBNs using paired observations depending on the GPT level of DEFP as

shown in Figure 4.16. In this case, we calculate the paired observations by applying

different error rates (i.e., 0%, 1%, 5%, 10%, 20% and 50%) into each sensor when the

degree of GPT level is over 0.5 case. The GPT level of DEFP is higher than that of

DBNs. Based on the results of Figure 4.16, we know that the GPT level of the DEFP

approach is higher than that of DBNs when the degree of GPT is over 0.5.

4.5.3.5 Comparison with different weighting factors

We apply different weights to each context attribute based on Ps and Rs as

shown in Table 4.1 in order to compare the GPT levels of two cases: 1) DSmT with

a TBF (i.e., DEFP) and 2) DBNs based on different weighting factors. We apply

0%, 20% and 50% error rates into the evidential fusion process with a 95% confidence

interval in the degree of GPT is over 0.5 (e.g., time intervals from 17th). We apply

the same discounting factors within the Figure 3.3.

After we apply different weights into the evidential fusion process, the GPT

levels of DEFP and DBNs based on different weighting factors are shown in Figure

4.17. The GPT levels of the eight cases have different degrees of GPT at each time
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Figure 4.17. GPT levels of DEFP and DBNs with different weights.
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Figure 4.18. Comparison GPT levels of DEFP and DBNs with different weights.

interval. It means that the GPT levels of DEFP and DBNs show different results

depending on the applied static weighting factors even though the activated sensors
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have the same error rate. Hence, defining the weights is another importance so as to

obtain the reliable information in context reasoning. In order to compare the GPT

level of DEFP and that of DBNs, we compare the two fusion processes using paired

observations. As shown in Figure 4.18, the GPT levels of eight cases have different

paired observation results. When we compare the case 1 and case 5, the confidence

interval includes zero so we can not distinguish which one is better than the other.

The reason is that the degree of GPT is lower than 0.5 sometimes from 17th time

intervals. Whereas the confidence intervals of the case 2 and 4, the case 3 and 7, and

the case 4 and 8 do not have zero so we can prove that the GPT levels of DEFP are

better than those of DBNs (i.e., except for 50% error rate case). Therefore, we know

two importance things. One is that defining the weights of each sensor is important

in order to improve the confidence level of contextual information and the other is

that we should consider the degree of GPT is at least over 0.5 so as to support the

reliable contextual information. In the next, we will compare the GPT level of the

DEFP approach with that of DBNs with different discounting factors.

4.5.3.6 Comparison with different discounting factors (D)

We apply different discounting factors (D), which are related to sensor’s credi-

bility, into ”Ps” and ”Rs” as shown in Table 3.5 in order to calculate the GPT levels

of DEFP and DBNs. Reducing the discounting factor (D) on each sensor is an im-

portant factor so as to obtain the reliability of contextual information of the patient.

We apply the static weighting factors within the Figure 3.3 into the evidential fusion

process. We also calculate the GPT level of the two cases by applying different error

rates (i.e., 0%, 20% and 50%). Depending on different D on ”Ps” and ”Rs”, the

two cases show different degrees of GPT. Figure 4.19 shows an example of the GPT

level of Case 7. In this case, the degrees of GPT of DEFP and DBNs are different
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Figure 4.19. An example of the GPT level of Case 7.

depending on the applied error rates (r). Moreover, we can obtain different degrees

of GPT based on a selected case. Thus, we compare the GPT of DEFP with that of

DBNs using paired observations for all cases in Table 3.5. In order to compare the

GPT level of DEFP with that of DBNs with different discounting factors, we apply

different error rates (i.e., 0%, 1%, 5%, 10%, 20% and 50%) into the evidential fusion

process from 17th time interval as shown in Figure 4.20. According to Figure 4.20,

the GPT levels of DBNs are lower than those of the DEFP approach except for the

50% error rate case. This result shows that the DEFP approach gets the better per-

formance than the DBNs for improving the confidence level of contextual information

in the progress of fainting (F ) situation of the patient.

We know that we get a higher GPT level when we apply a TBF algorithm

into evidential fusion process compared to the fusion process based on DBNs. We

can improve the GPT level where the degree of GPT is higher than 0.5, because

the aggregation of the degree of GPT is over 0.5 and the degree of GPT is not over
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Figure 4.20. Comparison GPT levels of DEFP and DBNs with different D.

0.5 reduces the total GPT level. In addition, an error make the wrong simulation

operation then it is nothing if we apply an error is equal to 0.5. We can not believe

the sensor activation or deactivation at that time-indexed state. Therefore, we have

to consider the degree of GPT is over 0.5 case so as to improve the GPT level of

contextual information. We also have to reduce an error rate in order to obtain

acceptable decision makings.

Finally, we can infer the situation of the patient by using the mean of the DF

(i.e., D̄F ) and pre-defined rule of a decision based on Figure 4.14 and 4.15. For

example, we assume that the pre-defined threshold (Te) for an emergency situation is

equal to 0.7. If the degree of GPT is over 0.7 for four continuous time-indexed states,

we estimate that the patient is an emergency. According to Figure 4.14 and 4.15, we

catch a false alarm between 30th and 35th time intervals. Then, we can estimate that

the emergency situation of the patient starts from 25th time interval. This is helpful

to make a decision about the situation of the patient.



90

4.6 Summary

In order to achieve a higher confidence level of contextual information and a

correct decision making with unpredictable temporal changes in sensory information,

we proposed a learning based fusion method (i.e, the DEFP approach) based on DEN

as a context reasoning method. The proposed method dealt with a temporal consis-

tency and a relation-dependency of the contexts using the model evolution process

such as the TBF algorithm in ALP principle. This method reduced the ambiguity of

the consecutive time-indexed states. After comparing the DEFP approach based on

DEN with a fusion process based on DBNs with six steps: 1) Checking a temporal

dependency of two consecutive time-indexed states, 2) Finding an optimal threshold

(T ) for a conflict value (CF ) in TBF algorithm, 3) Finding an optimal time window

size (W ), 4) Calculating the GPT level with static weighting factors and different

error rates (r), 5) Calculating the GPT level with different weighting factors and 6)

Calculating the GPT level with different discounting factors (D), we knew that our

DEFP approach based on DEN is better than a fusion process based on DBNs in

order to improve the GPT level of contextual information in the emergency situation

of the patient.

In the next chapter, we will improve the quality of a context by considering

dynamic weights of the evidence based on the relation-dependency of consecutive

time-indexed states. Correct designing the quality of the context is one of important

factors for improving the confidence level of contextual information, which helps to

make a reliable decision about the situation of the patient.



CHAPTER 5

DYNAMIC WEIGHTING BASED EVIDENTIAL NETWORK

5.1 Introduction

For describing an emergency situation of the patient in home-based care, some

types of contextual information are more important than others. A high respiratory

rate may be a strong indication of the emergency of the patient others may not

be so important to estimate that specific situation [97, 134]. The weight of this

information may change, due to the aggregation of the evidence and the variation of

the value of the evidence over time. For instance, a respiratory rate (e.g., 50 Hz) at

current time-indexed state (St) should have more weight compared to a respiratory

rate (e.g., 21 Hz) at previous time-indexed state (St−1), because 50 Hz indicates

the emergency situation of the patient strongly [21, 30]. However, the proposed DEN

[68], which deals with the relations between two consecutive time-indexed states of the

information by using the ALP and TBF algorithm, did not consider dynamic weights

of the information over time. In addition, it is difficult in defining the absolute weight

of the evidence. In this chapter, we propose the Dynamic Weighting based Evidential

Network (DWEN) [70] as the 3rd context reasoning method. DWEN deals with both

relative and individual importance of the evidence so as to obtain optimal weights of

the evidence. Given a context attribute i, we defined a quality of data ψi associates

weights ω1, ω2, . . . , ωK , where
∑K

j=1 ωj = 1 in Chapter 2. The weight ωj ∈ (0, 1]

represents the relative importance of a context attribute αj compared to others in

the given time t and region R. A context attribute has individual differences in the

same situation space over time [67]. This difference is represented by the individual

91
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importance of a context attribute αj. We only consider the quality of data with the

pre-defined context attributes, selected region, and relevant activities as shown in

Figure 2.4.

Based on dynamic weights of the evidence, DWEN improves the GPT level

of contextual information compared to previous works (i.e., [69, 68, 56]), which ap-

plied a static weight into the evidential fusion process within the given time t and

location R. In order to model this goal, we divide each sensor’s operation with two

types of a context attribute: Intrinsic and Optional. An intrinsic context attribute

is an attribute that changes the weight of a context attribute if its value at current

time-indexed state (St) is not equal to that at previous time-indexed state (St−1).

An optional context attribute is an attribute that assists in inferring the situation.

Individual differences between two consecutive time-indexed states would not weaken

the support for having the specific situation of the patient when the sensor between

two consecutive time-indexed states activates continuously. We then recalculate and

update the weight of each intrinsic context attribute using the proposed dynamic

normalized weighting technique [127]. Finally, we fuse both intrinsic and optional

context attributes, then, we apply them into Dynamic Weighting based Evidential

Fusion Process (DWEFP) [70] so as to infer the situation of the patient based on

temporal and relation dependency [67]. A temporal dependency distinguishes a false

alarm from new sensor activations by comparing the measured belief mass distribu-

tion of three consecutive time-indexed states. A relation dependency represents the

association or correlation of two consecutive time-indexed states. The index t is in-

creased by one every time a new observation (e.g., sensory information) arrives. We

consider a discrete-time stochastic process.

The rest of the chapter is organized as follows. The basics of dynamic weights

of the evidence are introduced in section 5.2. We propose the DWEFP as a context
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reasoning method in section 5.3. Finally, we perform a case study in order to compare

the DWEFP with the DEFP [68] to show the improvement of the DWEFP approach

compared to the DEFP approach in section 5.4.

5.2 Basics of Dynamic Weights of the Evidence

In this section, we introduce the basics of dynamic weight of the evidence. First,

we pre-define rules of a context attribute based on the value of each sensor. Then,

we determine the importance of the evidence in regarding to a specific situation of

the patient using a normalized weighting technique that is similar to Simple Multi-

Attribute Utility Theory (SMART) [127, 132].

5.2.1 Pre-defined Rule of a Context Attribute

First, we define a rule so as to represent dynamic weights of a context attribute

as shown in Table 5.1. We assume that the ratio of total weights of optional context

attributes O(
∑

ωi) is equal to that of intrinsic context attributes I(
∑

ωi) in order to

apply the rule of combination. In evidential fusion networks, each context state has

the same weight (e.g., the weight is equal to 0.5). We apply more C(at
k), which reflects

the increase or decrease degree of a particular context attribute, to the activated case

(i.e., Emergency (4)) compared to the non-activated case (i.e., Warning (2 and 3) and

Regular (1)), because the activated case is more important than the non-activated

case in an emergency situation of the patient. In addition, we apply more C(at
k) to

the level increased case (i.e., L(at+1
k ) > L(at

k)) compared to the level decreased case

(i.e., L(at+1
k ) < L(at

k)), where L(at
k) reflects the level of a particular context attribute.

The level increased case is also more important than the level decreased case in an

emergency situation of the patient. Therefore, we calculate the weight of an intrinsic

context attribute as below.
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1. initial O(
∑

ωi) = I(
∑

ωi) = 0.5

2. if all L(at
k) = L(at+1

k ), then C(at+1
k ) = 0

3. else if L(at+1
k ) > L(at

k) and L(at+1
k ) 6= 4, then C(at+1

k ) = 2α

4. else if L(at+1
k ) < L(at

k) and L(at
k) 6= 4, then C(at+1

k ) = -α

5. else if L(at+1
k ) > L(at

k) and L(at+1
k ) = 4, then C(at+1

k ) = 3β

6. else if L(at+1
k ) < L(at

k) and L(at
k) = 4, then C(at+1

k ) = -2β

with two % values α and β (i.e., β ≥ α).

5.2.2 A Normalized Weighting Technique

We calculate the relative weight of a context attribute based on Multi-Attribute

Utility Theory (MAUT) [127, 132] in order to setup the initial weight of a context

attribute within a given context state. The weights are determined by their impor-

tance in regarding to a specific situation of the patient. In particular, we construct

a scale representing the properties of the levels of a context attribute in order to

evaluate context attributes. For instance, we assume that the scale from 0 (e.g., the

least affection) to 55 (e.g., the most affection) for the situation serves as measure of

the evaluation as shown in Table 5.2. We pre-defined the scale of a context attribute

then we calculate the relative importance of a context attribute using eq. (5.1).

ω̃u = ωv/

N∑
w=1

(ωw) (5.1)

where ω̃u defines the relative weight of a context attribute, ωv is the sum of the value

of Scale-R and Scale-E for one sensor type, and
∑N

w=1(ωw) is the total sum of the

value of Scale-R and Scale-E.

After calculating the relative weight of a context attribute, we redistribute the

weight of a context attribute over time based on the pre-defined rule of a context

attribute. Let ω1, ω2, · · · , ωk, · · · , ωk+m, · · · , ωN denote an initial relative weight
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Table 5.2. An example of Relative Weight of a Context Attribute

Sensor Type Regular Emergency Relative Weight ω̃u

Respiratory Rate Scale-R (5) Scale-E (15) 0.6
Blood Pressure Scale-R (5) Scale-E (15) 0.2
Body Temperature Scale-R (5) Scale-E (55) 0.2

Location Scale-R (5) Scale-E (10) 0.25
Motion Scale-R (5) Scale-E (10) 0.25
Pressure Scale-R (5) Scale-E (25) 0.50

associated with a given context state St
i for fusion process. A normalized weighting

technique for individual difference between two time-indexed states is applied to each

context attribute as below:

A Normalized Weighting Technique within the same location:

1. Repeat for each optional context attribute k:

ωk = ωi, where i defines an initial weight

2. Repeat for each intrinsic context attribute k:

if all L(at
k) = L(at+1

k ) or all C(at+1
k ) are equal,

then all ωk = ωi

else if any L(at
k) 6= L(at+1

k ) or any C(at+1
k ) is different,

then ω̂k = ωi/
∑N

j=1(ωj ± C(at+1
j )),

where ω̂k defines a new weight for a context attribute

5.3 Dynamic Weighting based Evidential Fusion Process (DWEFP)

We perform context reasoning based on the dynamic weighting based eviden-

tial network (DWEN) that is constructed based on DEN with dynamic weights of the

evidence in order to improve the GPT level of contextual information. In particu-
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Figure 5.1. An example of the DWEN, which has updated weights.

lar, we propose the Dynamic Weighting based Evidential Fusion Process (DWEFP)

approach by using a normalized weighting technique (e.g., SMART).

5.3.1 Evidential Operations with DWEN

Based on the proposed SEN with a temporal dimension as shown in Figure 4.2,

the dynamic weighting based evidential network (DWEN) is constructed as shown in

Figure 5.1. Within a DWEN, context reasoning is performed so as to make a high

GPT level of the situation of the patient compared to the DEFP approach. We first

calculate the GBBA of SEN initially using evidential operations (i.e., Chapter 3.3.2)

at 1st time-indexed state. Second, we apply the updated weight into each context

attribute from 2nd time-indexed state using the proposed normalized weighting tech-

nique. Finally, we calculate the confidence level (i.e., GPT) of contextual information

then compare it with the DEFP approach (i.e., Chapter 4.3.2) in order to make a
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correct decision about the situation of the patient. The procedures of the DWEFP

approach, which is the 3rd proposed context reasoning method by applying dynamic

weights into each context attribute over time, consist of seven steps.

5.3.2 DWEFP Approach

1. (Measure a GBBA of SEN): Initially, we measure a GBBA of SEN using

evidential operations at time stamp t. The first prediction (m̂Θ
t1,M) is equal to

measurement (mΘ
t1
) at time-indexed state t1.

2. (Update the Weight of a Context Attribute): We calculate the relative

importance of a context attribute then we redistribute the weight of a context

attribute over time based on the pre-defined rule of a context attribute. Then,

we calculate individual difference between two time-indexed states using the

proposed normalized weighting technique (i.e., eq. (5.1)). Finally, we apply the

updated weight into each context attribute from 2nd time-indexed state so as

to obtain the GPT of contextual information.

3. (Prediction and Evolution): We calculate prediction from the previous

GBBA and model of evolution using the disjunctive rule of combination (i.e.,

eq. (4.1)). The disjunctive rule of combination is well suited for the model

evolution under uncertainty because it does not allow to assign more belief to

an hypothesis than does the previous GBBA. The GBBA of SEN at time stamp

t + 1 will be affected by prediction (m̂Θ
t+1,M).

4. (Learning): We fuse m̂Θ
t+1,M and mΘ

t+1 using the conjunctive rule of combi-

nation so as to make a new GBBA. As a learning, if a conflict value (CF ) is

greater than the pre-defined threshold (T), a new GBBA is adapted. Whereas,

the previous learned GBBA is adapted as a new GBBA (i.e., eq. (4.8)).
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5. (Fading Memory Process): We apply a fading memory process (Fa) with

the defined time window size (W ) so as to reduce the affection of long past

information. After Fa is performed, the GBBA of m̂Θ
t+w,M is equal to the GBBA

of mΘ
t+w (i.e., eq. (4.9)). The previous GBBA of m̂Θ

t+w−1,M is ignored at time

stamp t+w.

6. (Update and Decision Making): We calculate each GPT of the frame of

discernment per time-indexed state (i.e., eq. (3.8)) by applying the updated

rule then calculate differentiation (DF ) of two consecutive time-indexed states.

Based on the mean of DF (i.e., D̄F ) and the pre-defined value for δ and γ, we

can make a decision: No errors, False alarm, or Emergency progress (i.e., eq.

(4.11)).

7. (Comparison the GPT level): Finally, we compare the GPT level of con-

secutive time-indexed states. If the GPT level is over the pre-defined thresh-

old (Te), which represents the emergency situation, for four continuous time-

indexed states, we make a decision about the situation of the patient as an

emergency.

5.4 A Case Study

We make the same specific situation (i.e., fainting or sleeping) of the patient in

the living room of the smart home as shown in Figure 3.3. We describe the DWEFP

approach as a context reasoning method based on the applied scenario. Then, we

compare the uncertainty level and GPT level of DWEFP with those of DEFP in

order to show the improvement of the GPT level of the DWEFP approach. For

making a simulation, we perform an evidential fusion process with a 95% confidence

interval for 500 iterations.
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Figure 5.2. An example of emergency level changes based on time intervals.

Table 5.3. An example of the % values of α and β

% value Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

β 5 % 10 % 15 % 20 % 25 % 30 %
α 5 % 5 % 10 % 10 % 15 % 30 %

5.4.1 Applied Scenario

As mentioned in Chapter 3, many ambiguous situations of the patient can

happen in home-based care. We suppose that the same situation (i.e., ”sleeping” (Sl)

or ”fainting” (F )) of the patient can happen in smart home applications. In order to

check dynamic emergency level changes based on time intervals, six types of a sensor

are randomly activated during 20 time intervals as shown in Figure 5.2. Among six

types of a sensor, three types of a sensor: blood pressure, body temperature and

respiratory rate are involved in an intrinsic context attribute type. Whereas three

types of a sensor: pressure, location and motion are involved in an optional context

attribute type. Within Figure 5.2, we apply the level increased case and the activated

case based on the data of Table 5.1. Initially, a discounting factor and a relative weight

of each sensor are fixed so as to calculate the initial GBBA of SEN. In particular, we

assume that a discounting factor of the environmental sensors, the location sensor,
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Table 5.4. Comparison Case 1 in Table 5.3 without/with dynamic weights

Time Without dynamic weight With dynamic weight (Case 1)

B T R B T R

1 0.2 0.2 0.6 0.2 0.2 0.6
2 0.2 0.2 0.6 0.190 0.181 0.629
3 0.2 0.2 0.6 0.208 0.198 0.594
4 0.2 0.2 0.6 0.199 0.179 0.622
5 0.2 0.2 0.6 0.187 0.196 0.617
6 0.2 0.2 0.6 0.202 0.192 0.606
7 0.2 0.2 0.6 0.198 0.207 0.595
8 0.2 0.2 0.6 0.189 0.188 0.623
9 0.2 0.2 0.6 0.210 0.190 0.600
10 0.2 0.2 0.6 0.199 0.179 0.622
11 0.2 0.2 0.6 0.201 0.200 0.599
12 0.2 0.2 0.6 0.182 0.190 0.628
13 0.2 0.2 0.6 0.197 0.187 0.617
14 0.2 0.2 0.6 0.220 0.181 0.599
15 0.2 0.2 0.6 0.197 0.208 0.596
16 0.2 0.2 0.6 0.184 0.175 0.641
17 0.2 0.2 0.6 0.214 0.203 0.583
18 0.2 0.2 0.6 0.200 0.171 0.628
19 0.2 0.2 0.6 0.179 0.196 0.625
20 0.2 0.2 0.6 0.201 0.191 0.608

and the medical body sensors are 20%, 10% and 5%, respectively. We can obtain an

initial relative weight of each sensor using a scale representing method as shown in

Table 5.2. In addition, we apply different % values of α and β (i.e., β ≥ α) as shown

in Table 5.3 so as to check the variations of the weight depending on the selected

degree of a level change (C(at+1
k )).

5.4.2 Updated Weights with the normalized weighting technique

In order to show the improvement of the GPT level of the DWEFP approach,

we first calculate the updated weights of each context attribute by applying the
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Figure 5.3. An example of updated weights of a context attribute (Rs) .

normalized weighting technique into the evidence. Then, we can obtain the updated

weights for each intrinsic context attribute as shown in Table 5.4. In Table 5.4, we

compare two cases: 1) Without dynamic weights and 2) With dynamic weights. In

particular, we apply Case 1 in table 5.3 (e.g., α = β = 5%) into dynamic weights

so as to update the weight of the evidence. Depending on the selected α and β, we

can estimate which context attribute has a level increase case or an activation. For

example, in Figure 5.3, we show the variations of the respiratory rate sensor based on

different % values of α and β in Table 5.3. We can estimate which context attribute

has a level increase or an activation by comparing an individual difference between

two consecutive time-indexed states. The degrees of the variation of ”Rs” until 13th

time interval is smaller than those from 14th to 20th time interval. Based on these

variations, we can distinguish the level increased case from the activated cases. An

individual difference is more clear than the others when we consider Case 6 in Table

5.3.
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Figure 5.4. Uncertainty levels of DWEFP and DEFP with Case 6 in Table 5.2.

5.5 Comparison and Analysis

In this section, first, we compare the uncertainty level of DWEFP with that of

DEFP. Second, we compare the GPT level of DWEFP with previous approaches such

as SEFP, DEFP and DBNs [90, 141].

5.5.1 Uncertainty levels of DWEFP and DEFP

After obtaining updated weights of context attributes, we apply a TBF using

eqs. (4.1), (4.4), (4.5) and (4.6) in order to compare the uncertainty level of DWEFP

with that of DEFP. We assume that the pre-defined threshold (T ) for the conflict value

(CF ) is equal to zero. Thus, we apply the model evolution process continuously. As

shown in Figure 5.4, the degrees of uncertainty of DWEFP can not easily distinguish

from those of DEFP when we apply different error rates (i.e., 0%, 20% and 50%) into

the evidential fusion process with a 95% confidence interval. Thus, we compare the

uncertainty level of DWEFP with that of DEFP using paired observations by applying
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Figure 5.5. Comparison Uncertainty levels of DWEFP and DEFP.

different error rates (r) (i.e., 0%, 1%, 5%, 10%, 20% and 50%). As shown in Figure

5.5, the 95% confidence interval of paired observations includes zero so we can not

distinguish which one has the better performance than the other so as to reduce the

conflicting mass in uncertainty level of contextual information. The uncertainty level

of the DWEFP approach and that of DEFP approach has no different in performance

analysis.

5.5.2 GPT levels of DWEFP and DEFP

5.5.2.1 GPT levels of DWEFP, DEFP, SEFP, and DBNs

We compare the GPT level of DWEFP, which applies the updated weights into

the evidential operations, with those of DEFP, SEFP and DBNs. We utilize the

same underlying model (i.e., Shafer model [114]), which assumes exclusivity between

elements of the Θ [69], so as to compare the DWEFP approach with the others. We

deal with the level increased case as the activated case so as to calculate the GPT
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Figure 5.6. GPT levels of DEFP, SEFP, DBNs and DWEFP (Case 1 and 6).

level. We apply a fading memory process (Fa) into the evidential fusion process such

as DEFP and DWEFP with pre-defined threshold for a conflict value (i.e., T=0 )

and time window size (i.e., W=5 ). We also apply two error rates (i.e., 0% and

20%) into the evidential fusion process with a 95% confidence interval. Based on

the result of Figure 5.6, the GPT level of DBNs is higher than others when optional

context attributes only activate, because DBNs does not consider the ignorance [84]

of different pieces of the evidence. In addition, the GPT level of DWEFP seems like

a higher than others when both intrinsic and optional context attributes activate.

However, there exists ambiguity among DEFP and DWEFP, because of the confidence

intervals of the two fusion processes DEFP and DWEFP. Thus, we compare the GPT

level of DWEFP with that of DEFP using paired observations as shown in Figure 5.7.

In this case, we compare the GPT levels of DWEFP with those of DEFP based on

different error rates (i.e., 0%, 1%, 5%, 10%, 20% and 50%) and different % values of α

and β (i.e., from Case 1 to Case 6 in Table 5.2). As shown in Figure 5.7, the confidence
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Figure 5.7. Comparison GPT levels of DWEFP and DEFP.

intervals does not include zero except for the error rate is 50% case. Therefore, the

GPT level of DWEFP is higher than that of DEFP. We know that we improve the

GPT level using the DWEFP approach compared to the DEFP approach.

5.5.2.2 Comparison with different discounting factors (D)

We apply different discounting factors (D) with selected error rates (r) (i.e.,

0%, 5%, 10%, 20% or 50%) into context attributes as shown in Table 5.5 in order to

calculate the GPT levels of DEFP and those of DBNs. We apply updated weights

into each sensor by calculating the % values of α and β as shown in Case 1 and Case

6 of Table 5.2, because the % value of α and β is the smallest and the biggest in Table

5.2, respectively. In the previous chapter, the evidential fusion process with a 95%

confidence interval show various degrees of GPT that depends on different discounting

factors. Thus, we compare the GPT level of DWEFP and with that of DEFP by using
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Table 5.5. Different discounting factors (D) with selected error rates (r)

No. S L H Bp Bt R
Case 1 - error rate 0% 0% 0% 0% 0% 0% 0%
Case 2 - error rate 0% 5% 5% 5% 5% 5% 5%
Case 3 - error rate 5% 5% 5% 5% 5% 5% 5%
Case 4 - error rate 5% 10% 10% 10% 10% 10% 10%
Case 5 - error rate 10% 10% 10% 10% 10% 10% 10%
Case 6 - error rate 10% 20% 20% 20% 20% 20% 20%
Case 7 - error rate 20% 20% 20% 20% 20% 20% 20%
Case 8 - error rate 20% 50% 50% 50% 50% 50% 50%
Case 9 - error rate 50% 50% 50% 50% 50% 50% 50%

paired observations directly. In order to compare the two fusion processes, we assume

that a threshold for conflict value is equal to zero (T = 0) and time window size is

equal to five (W = 5) in TBF algorithm. According to Figure 5.8, the confidence

intervals do not include zero except for the error rate is 50% case. With a 50% error

rate case, we can not prove anything, because an error make the wrong simulation

operation then it is nothing. We can not believe the sensor activation or deactivation

at that time-indexed state. Therefore, the GPT of DWEFP is higher than that of

DEFP in this scenario. We improve the degree of GPT using the DWEFP approach

compared to the DEFP approach.

In addition, we can infer the situation of the patient by using the mean of

the DF (i.e., D̄F ) and pre-defined rule of a decision. We assume that a pre-defined

threshold (Te) for an emergency situation is equal to 0.7. For instance, if the degree

of GPT is over 0.7 for four time-indexed states continuously, we estimate that the

situation of the patient is an emergency. This is helpful to make a decision about the

situation of the patient in home-based care.
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Figure 5.8. Comparison GPT levels of DWEFP and DEFP with different D.

5.6 Summary

Correctly designing the quality of a context is an important factor so as to

improve the GPT level of contextual information. However, it is difficult in defining

the absolute weight of the evidence. We considered both relative and individual

weight of the evidence in order to apply dynamic weights to the evidence over time.

This helped to make a reliable decision about the situation of the patient based

on time progress. We then compared the uncertainty level and GPT level of the

DWEFP approach with the DEFP approach using paired observations. Finally, we

knew that we can not distinguish the better one when we compared the uncertainty

level of DWEFP with that of DEFP. However, we improve the GPT level when we

utilized DWEFP compared to DEFP. Until now, we compared the uncertainty level

and GPT level of contextual information based on different fusion processes such as

BNs, DST, SEFP, DEFP and DWEFP from chapter 3 to chapter 5. In particular,

we utilized paired observations in order to compare two fusion processes within the
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same framework. Based on the results of the paired observations, we knew that the

uncertainty level of DEFP or DWEFP is lower than that of SEFP and DST. The GPT

(i.e., pignistic probability) level of DWEFP is higher than that of others. Therefore,

in this dissertation, we improved the reliability of contextual information using the

PCR5 combination rule, the TBF algorithm, and the normalized weighting technique.

In the next chapter, we will introduce recent related works about data fusion

method in ubiquitous or pervasive computing area.



CHAPTER 6

RELATED WORK

6.1 Introduction

This chapter presents recent research works related to context awareness, con-

text modeling, context reasoning and decision making in general or more specifically

to context reasoning method under uncertainty in pervasive computing area. In sec-

tion 6.2, the most important pioneering projects which help to define the notion of

activity monitoring and had great influence on the development of this field are briefly

introduced. In section 6.3, different types of context modeling is compared to lead

the reason of our selection of context modeling concept and to make our context

modeling. In section 6.4, some context reasoning method, which helps to improve

the quality of contextual information, is introduced. In particular, dynamic situation

reasoning under uncertainty is treated as a specific in order to compare it with our

approach. In section 6.5, we introduce the simple multi-attribute rating technique

which helps to make a decision using ranking concept. Finally, we summarize the

related work in section 6.6.

6.2 Projects

In recent years, research conducted within the area of context awareness in

ubiquitous or pervasive computing area has become very active due to the demands

for smart environments technology so as to improve the quality of life for individu-

als with disabilities and those wishing to age in place [26]. Thus, several research

projects have studied the use of multi-sensor based technologies in order to facilitate

110
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an assisted living environment. Among them, MavHome [27, 138, 137] is a project

motivated to support ambient intelligent systems into the smart environments. In

MavHome project, motion sensors are deployed so as to determine the location of

the inhabitant then this location based information is subsequently considered with

other sensory based information such as temperature, moisture measurement, and

so on. The combined information of the ambient intelligent system that controls the

devices automatically and reduces the interaction of the inhabitant is used in order to

make an inference about the situation of the inhabitant in smart environment. This

combined information of multi-sensor devices is similarly used in this dissertation.

The Adaptive Home [87, 88] is another research project that uses sensors so as to de-

termine ideal settings for lights and HVAC within the home by using a feed-forward

neural network and by learning the habits of the user by using reinforcement learning

algorithm. As the Adaptive Home project that can save resources then support users

by learning their behavior and automating simple task, this dissertation also uses a

similar learning algorithm in order to predict the user’s status over time in smart

environments. The Aware Home is built as a living laboratory for empirical research

on ubiquitous computing with the goal to sense contextual information about itself

and its inhabitants by using the developed Context Toolkit [63, 35]. It is a very

flexible framework for abstracting context sensing from applications in a distributed

heterogeneous network environments. However, the Aware Home project does not

support continuous context and does not deal with unreliable sensory information

that is mainly dealt with in this dissertation.

A limited number of research projects have been studied for the management

of uncertainty of the sensor in smart environments. In [102], RFID tags, which are

similarly used as a medical body sensor device, are placed on objects of interests so as

to detect object interactions. This RFID tag can be envisaged for activity recognition
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in conjunction with activities of daily living. Nevertheless, the constraints imposed

through the RFID reader glove that has to be worn to sense tags makes it potentially

less desirable to the patient to use such a glove. To recognize activities performed by

an inhabitant, a set of simple sensors based on the identification of patterns [124] and

simultaneous room-level tracking system [131] are developed to check the movement

of the inhabitant. The systems are limited to whether or not an inhabitant is moving.

These projects [131, 102, 124, 125] use a probabilistic reasoning method in order to

deal with uncertainty in sensory information for context-aware activity recognition in

a sensory network environment. However, they still have a potential drawback that

the fact studies of behavioral patterns require large amount of activity history data

then this limitation does not solve the uncertainty of sensory data. Therefore, in this

dissertation, we utilize the bottom-up reasoning structure [56, 110] for recognizing

contextual information in smart environments. It can model uncertainty at a low

sensor level and has the ability of managing the reliability of the system in order to

help correct decision making of the contexts.

6.3 Context Modeling

Contextual information is gathered from a variety of the pieces of evidence that

differ in the quality of information they produce and that are often failure prone. The

pervasive computing community increasingly understand that developing context-

aware applications should be supported by adequate contextual information modeling

and reasoning techniques. These techniques reduce the complexity of context-aware

applications and improve their maintainability and evolvability [16]. For instance,

context aware applications use contextual information in order to evaluate whether

there is a change to the user and computing environment context then they take a

decision whether any adaptation to that change is necessary often requires reasoning
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capabilities. It is therefore important that context modeling techniques are able to

support both consistency verification of the model and context reasoning techniques.

In addition, due to its dynamic and heterogeneous nature, contextual information

may be of variable quality. In fact, it may even be incorrect since most sensors

feature an inherent inaccuracy and this inaccuracy increase over time. Contextual in-

formation may be incomplete or conflicting with other contextual information. Thus,

a good context modeling approach must include modeling of contextual information

quality so as to support reasoning about context. In this section, we introduce dif-

ferent context modeling based on context information types, their relationships and

dependencies, context histories, context qualities and context abstractions describing

real world situations using context information facts.

6.3.1 Object-role based Models

The object-role based model (ORM) [49, 48] was developed for conceptual mod-

eling of databases. Context Modeling Language (CML) is the representative of ORM.

The CML was described in a preliminary form by [53, 52]. CML provides a graphical

notation designed in order to support different sources of context, imperfect informa-

tion and constraints of context. For instance, CML is able to support querying over

uncertain information using the alternative construct (i.e., three-valued logic). This

logic expression combines any number of basic expressions using logical connectives

and special forms of the universal and existential quantifiers. It can support runtime

representation and querying for high-level context abstractions. However, CML has

several weaknesses. All context types are uniformly represented as atomic facts in

CML. If a hierarchical structure is needed or one particular dimension of context is

dominant, this model is not adaptable. In addition, CML emphasizes the develop-

ment of context models for particular applications or application domains, which do
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not provide the interoperability. Thus, there are some attempts to create a hybrid

model that combines the respective advantages of CML and ontology-based model

in [123, 55]. In this dissertation, we utilize the graphical model for describing the

occupant-centered pragmatic approach that provides primary context attributes such

as location, time, people and facilities and devices, in section 2.4.1.

6.3.2 Spatial Models

Space is an important context in many context-aware applications and most

spatial context models organize their contextual information by physical locations

(e.g., the boundary of room, the location of the sensor, or the associated location as

metaphor) [113, 32, 100]. Spatial context models are well suited for context-aware

applications that are mainly location-based. In particular, a spatial organization of

contextual information may be beneficial in many mobile information systems due

to their inherent mobility. Thus, spatial context models allow reasoning about the

location and spatial relationships of objects. Such relations cover the inclusion in a

distinct area or range and the distance to other entities (e.g., position, range and

nearest neighbor [14, 45]. In addition, their efficient processing highly depends on

the underlying context information management system that uses different types of

contextual information based on the location. For instance, geometric and geographic

locations offer simple mapping to map data and sensor data, while symbolic and

relational locations are easier to build up and represent a simple perception of space

[93]. However, this spatial model keeps the location data of contextual information

up to date. In this dissertation, we consider a spatial contextual information in order

to reason the situation of the inhabitant. We then assume that a spatial contextual

information is no importance when the related sensor operation does not changed.



115

6.3.3 Ontology-based Models

Context can be considered as a specific kind of knowledge. Ontology-based

context model exploits the representation and reasoning of this knowledge so as to

describe complex context that can not be represented by simple context models [10].

In ontology-based models with OWL-DL formalism [57], a particular set of instances

of a basic context data and their relationships reveals the presence of more abstract

context characterization (e.g., user’s activity). It is possible to automatically derive a

new knowledge about the current context and to detect possible inconsistencies in the

context information of pervasive environments [24, 140, 18]. Compared to the other

context models, an ontology-based model provides clear advantages both in terms

of heterogeneous and interoperability. However, it is difficult to support modeling

temporal aspect in ontology and the operators provided by OWL-DL, which makes

a computational expensive reasoning, are sometimes inadequate to define complex

descriptions [8]. Hence, the possibility of augmenting the expressivity of ontological

languages through an extension with rules has been investigated by the Semantic Web

community and brought to the definition of logic languages [23]. In this dissertation,

we only use a classification concept of ontology for defining a context classification,

because our context modeling method such as the relation-dependency approach is

more focused on temporal-related contextual information.

6.3.4 Hybrid Models

In order to obtain more flexible and general systems, different models and rea-

soning tools need to be integrated with each other. For instance, a hybrid approach

combines ontologies with the fact-based approach provided by the CML so as to han-

dle ambiguous and imperfect contextual information with interoperability in [55]. In

addition, the integration of above three models has been presented in [9, 15] in order to
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support the scalability requirements of pervasive computing services that can derive

high-level context data on the basis of raw one. In particular, a hierarchical hybrid

model composed of sensor data fusion, context data representation and semantics of

context terms is considered so as to make context modeling [85, 82]. However, it still

has an open issue (e.g., how to integrate the open-world semantics of ontologies with

the closed-world semantics of DB-based models and logic programming and how to

reconcile probabilistic reasoning with languages not supporting uncertainty. Thus,

in this dissertation, we defined our context modeling, which is similar to the combi-

nation of spatial and object context models, in order to derive probabilistic context

reasoning under uncertainty based on sensor data fusion.

6.4 Context Reasoning

In context-aware applications, situations [43, 32] are external semantic interpre-

tations of low-level sensor data by permitting a higher-level specification of human

behavior and the corresponding system services and the way of changing situation

is called context reasoning and interpretation [77]. It means that we need reasoning

context models that can adapt the situation definitions based on discovered changes

with changing environments and changing user needs [60]. However, both the physical

world itself and our measurements of it are prone to uncertainty. Thus, different types

of entities in the pervasive environment must be able to reason about uncertainty.

In order to solve this problem, a number of mechanisms have been proposed in the

literature for reasoning on uncertainty and there are two main purposes for reasoning

on uncertainty: 1) improving the quality of contextual information and 2) inferring

new kinds of contextual information. Reasoning to improve the quality of contextual

information typically takes the form of multi-sensor fusion where data from different

sensors are used so as to increase confidence, resolution or any other context quality
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metrics. Reasoning to infer new contextual information typically takes the form of

deducing higher-level contexts (e.g., activity of a user) or situations from lower-level

contexts (e.g., location information of a user), because we can not directly sense the

higher-level contexts. These contexts may be associated with a certain level of un-

certainty depending on both the accuracy of the sensed information and precision of

the deduction process [16, 73]. Therefore, in this section, we introduce some con-

text reasoning approaches such as Fuzzy logic, Probabilistic logic, Bayesian Networks

(BNs), Hidden Markov Models (HMMs), Kalman Filtering Models (KFMs), Dynamic

Bayesian Networks (DBNs) and Dempster-Shafer Theory (DST) of the evidence in

order to compare them with our context reasoning approach.

6.4.1 Puzzy Logic, Probabilistic Logic and BNs

In fuzzy logic, a degree of membership represented by a pair (A:m) where A is

a set and m is a possibility distribution in real unit interval [0,1] is used so as to show

an imprecise notion such as confidence values [139, 75]. The elements of two or more

fuzzy sets can be combined in order to create a new fuzzy set with its own membership

function then it is used for reasoning models which need more than the probabilistic

theory with uncertainty. For instance, the fuzzy logic is used so as to capture a clinical

uncertainty in medical data of pervasive computing applications in [7]. In addition,

fuzzy logic is well suited for describing subject contexts by resolving conflicts between

different contexts (e.g., Actuator’s operation in [66]). In this dissertation, we assume

that the environmental sensors are operated based on the fuzzy logic of the selected

sensors.

As mentioned in section 3.2.1, probabilistic logic and Bayesian networks (BNs)

can be used for improving the quality of contextual information through multi-sensor

fusion as well as for deriving the higher-level probabilistic contexts. They also can be
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used for resolving conflicts between contextual information obtained from different

sources. According to [105, 46], the probabilistic logic is used for encoding access

control policies and the BNs is used for combining uncertain information from a large

number of sources and deducing higher-level contexts. However, these rules can not

represent the ignorance [84], which manages the degree of uncertainty, caused by the

lack of information.

6.4.2 HMMs, KFMs and DBNs

In order to deal with unpredictable temporal changes in sensory information,

Hidden Markov Models (HMMs) [31, 95, 120], Kalman Filtering Models (KFMs)

[86, 130] or Dynamic Bayesian Networks (DBNs) [39, 90, 141] are utilized as fusion

techniques. In terms of probabilistic networks, HMMs represent stochastic sequences

as Markov chains; the states are not directly observed, but are associated with ob-

servable evidences, and their occurrence probabilities depend on the hidden states.

This model can be used for location prediction by using a hierarchical Markov model

that can learn and infer a user’s daily movements [76]. KFMs represent the state

of the system refers to a set of variables that describe the inherent properties of the

system at a specific instant of time. This is a useful technique for estimating, or

updating the previous estimate of, a system’s state by using indirect measurements

of the state variables and using the covariance information of both state variables and

indirect measurements [94]. However, DBNs, which were proposed as a generalization

of HMMs and KFMs, have some distinct features. DBNs allow much more general

graph structures compared with HMMs or KFMs. DBNs represent the hidden state

in terms of a set of random variable compared with HMMs, which represent the state

space with a single random variable. DBNs allow general hybrid and nonlinear con-

ditional probability densities (CPDs) compared with KFMs, which require all CPDs
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to be linear-Gaussian. This is a useful feature to manage the causality between ran-

dom variables as well as time series data. For instance, a high level user behavior

is inferred from low level sensor data by adding knowledge of real-world constraints

to user location data in [101]. A variant of DBNs is used in an unsupervised way in

order to predict transport routes based on GPS data. By adding constraints on the

routes that could be learned by the training algorithm, the prediction accuracy was

significantly improved.

DBNs are made up of the interconnected two time-indexed states of a static

Bayesian Network (BN) and the transition of a static BN between two consecutive

time t and t + 1 satisfies the Markov property [96] as shown in Figure 6.1. DBNs can

be implemented by keeping in memory two states at any one time-indexed state, rep-

resenting a previous time-indexed state and current time-indexed state, respectively.

In Figure 6.1, the two time-indexed states, which have an associated conditional prob-

ability, are such rotated that old states are dropped and new states are used as time

progress. The arcs between two time-indexed states reflect temporal causality and

they are parameterized by transitional probabilities. The joint distribution from the

initial moment of time (t = 1) until the time boundary (t = T ) is then given by

P (S1:T ) =
T∏

t=1

n∏
i=1

P (St
i |k(St

i )) (6.1)

where St
i is the ith node at time t and k(St

i ) stands for the parents of a node St
i

at time t. They can either be in the same time-indexed state or in the previous

time-indexed state. In this dissertation, we use the Markov property, which is similar

to DBNs, in order to represent temporal and state links between two consecutive

time-indexed states of a Static Evidential Network (SEN) (i.e., Dynamic Evidential

Network (DEN)) then compare it with the original process of DBNs.
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Figure 6.1. An example of Dynamic Bayesian Networks (DBNs).

6.4.3 Dempster-Shafer Theory (DST)

As mentioned in section 3.2.2, the DST is a mathematical theory of the evidence

based on belief and plausible reasoning, which is used to combine separate pieces of

information in order to calculate the probability of the event. It is often used method

of sensor fusion so as to deal with uncertainty associated with context reasoning by

combining the independent observations of multiple sensors (e.g., the user’s activity

monitoring in smart home) [133, 56]. However, DST has limitations and weaknesses.

In particular, the Dempster’s combination rule has limitations. The results of the

combination has low confidences when a conflict becomes important between sources.

Thus, in this dissertation, we use the Dezert-Smarandache Theory (DSmT), which is

an extended DST, as a context reasoning method. No one applies the DSmT into the

ubiquitous or pervasive computing area. Our research first attempts the DSmT into

the pervasive computing applications (e.g., home-based care application) in order to

reduce the conflicting mass in uncertainty level of contextual information compared

to the DST approach and improve the confidence (i.e., GPT) level of contextual

information compared to the fusion process based on BNs in emergency situation of

the patient in [71].
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6.5 Making Decisions

Decision making is the study of identifying and choosing alternatives based on

the values and preferences of the decision maker. Making a decision implies that

there are alternative choices to be considered, and in such a case we want not only

to identify as many of these alternatives as possible but to choose the one that best

fits with our goals, objectives, desires, values, and so on [50, 127, 58]. In addition, all

decision problems have multiple alternatives and criteria then the weights associated

with the criteria can properly reflect the relative importance of the criteria only if the

scores aij are from a common, dimensionless scale in most of the approaches based on

the Multi-attribute Utility Theory (MAUT) [20, 62], which uses utility functions that

can be applied to transform the raw performance values of the alternatives against

diverse criteria, both factual (objective, quantitative) and judgmental (subjective,

qualitative), to a dimensionless scale. In the practice, the intervals [0,1] or [0,100] are

used for fusing data obtained from different sensor into one single utility value (e.g.,

confidence). This confidence is used to reason the occurrence of a situation. As one

of a MAUT, Simple Multi-Attribute Rating Technique (SMART) [13, 80], which is an

extension to MAUT that employs ranking procedure to rank the contextual elements

(e.g., context attributes), is the simplest form of the MAUT methods. The ranking

value xj of alternative Aj is obtained simply as the weighted algebraic mean of the

utility values associated with it, i.e.

xj =
m∑

i=1

wiaij/

m∑
i=1

wi, j = 1, . . . , n. (6.2)

where wi represents the relative importance of a criteria and aij reflects the values of

a decision table.

To apply SMART, first, the decision makers assign values so as to measure the

performance of the alternatives on each criterion. Second, the relative importance of
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the criteria in the value needs to be established by ranking the relative importance

of the criteria. Not all of the criteria will be equally important. Finally, the decision

makers aggregate weights and values for all criteria for that alternatives by using

the normalized weighting, which is calculated by dividing the value by the total for

all values. For instance, [60] computes a dynamic situation based on ranked context

attribute using this approach. In this dissertation, we also utilize the similar method

(i.e., the proposed normalized weighting technique) so as to process the dynamic

weight of the evidence (i.e., an intrinsic context attribute) over time.

6.6 Summary

In ubiquitous or pervasive computing environments, various entities are required

to work together in order to achieve the goal of anywhere anytime computing. Con-

text awareness, which is composed of the information ranging from user location, user

history and user preferences to environmental conditions and changes in the environ-

ment, is a key factor that facilitates coordination between various entities in these

environments. In addition, it allows entities to adapt to changing situation in the

environment that helps them in their reasoning process in pervasive environments.

To make this goal, dynamic context reasoning under uncertainty based on context

model is needed as one of the fundamental features. Therefore, in this chapter, we

briefly introduced the related projects, several context modeling, context reasoning

methods and decision makings so as to reduce uncertainty of contextual information

and infer new kinds of contextual information by improving the confidence level of

the contexts.

As related projects, we treated MavHome [27, 138, 137], Adaptive Home [87, 88],

and AwareHome [63, 35]. Several projects [102, 124, 131] are introduced so as to

manage uncertainty of sensory information in smart environments. In particular,
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[131, 102, 124, 125] used a probabilistic reasoning method in order to deal with un-

certainty in sensory information. However, they still had a potential drawback, we

also introduced [56, 110], which used the bottom-up reasoning method. It can model

uncertainty at a low sensor level and had the ability of managing the reliability of the

system.

As related context modelings, we categorized four context models such as

object-role based model (e.g., fact-based model) [49, 48, 53, 52], spatial-based model

[113, 32, 100, 14, 45, 93], ontology-based model [10, 57, 24, 140, 18], and hybrid model

[55, 9, 15, 85, 82]. In particular, the hybrid model that integrated different types of

model is more frequently used in recent years, because each model had limitations

to represent all aspects of the contexts. For instance, object-role based model can

express dynamic and heterogeneous contextual information, histories and high-level

context abstractions (e.g., the activity monitoring of the patient). However, it can

less support a hierarchical context description compare to the ontology-based model.

The spatial-based model can provide efficient procedures for the execution of typical

spatial query. However, if more complex spatial domains are modeled, interoperability

can be more easily obtained by a shared ontology of location. Finally, ontology-based

model can support for interoperability and heterogeneity. Thus, it can well suited

for the representation of complex relationships and dependencies among context data

then can recognize the high-level context abstractions. However, it is difficult to rec-

ognize the simpler context data (e.g., basic physical activities) and user’s dynamic

adaptive preferences. The above considerations seemed to suggest that different mod-

els need to be integrated with each other. In this dissertation, we used a hybrid model

that is similar to the combination of spatial and object context models in order to

make our context modeling.
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As related context reasoning methods, we introduced some approaches such

as Fuzzy logic [139, 75, 7, 66], Probabilistic logic and Bayesian Networks (BNs)

[105, 46, 84], Hidden Markov Models (HMMs) [31, 95, 120, 76], Kalman Filtering

Models (KFMs) [86, 130, 94], Dynamic Bayesian Networks (DBNs) [39, 90, 141, 101],

and Dempster-Shafer Theory (DST) of the evidence [133, 56]. In particular, the

advantages and disadvantages of fuzzy logic, probabilistic logic, BNs and DST are

compared so as to deal with uncertainty of contextual information and improve the

quality of contextual information. In addition, HMMs, KFMs and DBNs are com-

pared so as to deal with unpredictable temporal changes in sensory information.

Based on the related context reasoning methods, in this dissertation, we adapted

the Dezert-Smarandache Theory (DSmT), which is an extended DST, as a context

reasoning method, because it can reduce the uncertainty level then can improve the

confidence (i.e., GPT) level of contextual information [71].

Finally, we introduced the SMART [13, 80], which is an extension to MAUT that

employed ranking procedure to rank the contextual elements (e.g., context attributes),

as a decision making method. This approach computed a dynamic situation based on

ranked context attribute by fusing data obtained from different sensor into one single

utility value (e.g., confidence), which is used to reason the occurrence of a situation.

In this dissertation, we used a similar method so as to deal with dynamic weights of

the evidence over time in pervasive environments. In summary, we made a similar or

improved context reasoning method by adapting the new context modeling, context

reasoning and decision making techniques compared to related works.
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CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we proposed context reasoning under uncertainty based on

evidential fusion networks in home-based care in order to support both consistency

verification of the model and context reasoning techniques. The proposed reasoning

technique improved the quality of contextual information and inferred new kinds of

contextual information.

First, we defined a pragmatic context classification in order to provide reliable

contextual information in smart spaces such as in home-based care. In smart perva-

sive environments, an information description vocabulary set for a given application

is carefully pre-specified in context classification so as to make a practical solution by

adopting two approaches: 1) occupant-centered pragmatic approach and 2) relation-

dependency approach. Based on the defined context classification, we proposed a

state-space based context modeling with an evidential form as a generalized context

modeling in order to represent the situation of the patient, to improve the quality

of a given piece of contextual information by reducing uncertainty, and to infer new

kinds of contextual information. Given context modeling consists of a hierarchical

interrelationship among multi-sensors, related context and relevant activities within

a selected region, we reasoned the context models that can adapt the situation defi-

nitions based on discovered changes with changing environments and changing user

needs over time.

125



126

Second, we proposed a static evidential fusion process (SEFP) as a context rea-

soning method in order to obtain a high confidence (i.e., GPT) level of contextual

information. In particular, we processed data obtained from multi-sensors with an

evidential form based on Dezert-Smarandache Theory (DSmT). The DSmT reduced

the uncertainty level and obtained a rational decision of contextual information using

the proportional conflict redistribution no. 5 (PCR5) combination rule and a gen-

eralized pignistic transformation (GPT). This approach had better performance for

uncertainty analysis in decision making as to the ability to measure the probability,

belief, or uncertainty levels in multi-sensor based networks compared to the existing

and contemporary methods based on Bayesian Networks (BNs) or Dempster-Shaper

Theory (DST).

Third, we proposed a dynamic evidential fusion process (DEFP) as the 2nd

context reasoning method in order to deal with dynamic metrics such as preference,

temporal consistency and relation-dependency of the context using the autonomous

learning process (ALP) and the temporal belief filtering (TBF). The DEFP approach

improved the confidence level of contextual information so as to reduce the ambiguity

of the consecutive time-indexed states in unpredictable temporal changing environ-

ments, then, provide a correct decision making about the situation of the patient

in emergency environments. In particular, this approach had better confidence lev-

els compared to Dynamic Bayesian Networks (DBNs) by considering six steps: 1)

Checking a temporal dependency of two consecutive time-indexed states, 2) Finding

an optimal threshold (T ) for a conflict value (CF ) in TBF algorithm, 3) Finding an

optimal time window size (W ), 4) Calculating the GPT level with static weights and

different error rates (r) of the evidence, 5) Calculating the GPT level with different

weights of the evidence and 6) Calculating the GPT level with different discounting

factors (D) of the evidence.
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Figure 7.1. The proposed approach as context reasoning under uncertainty.

At the end, we proposed a dynamic weighting based evidential fusion process

(DWEFP) as the 3rd context reasoning method in order to deal with both relative and

individual importance of the evidence in the given context attribute using the pro-

posed normalized weighting technique. The DWEFP approach obtained an optimal

weight of the evidence over time that improved the quality of contextual information

in the emergency progress of the patient. In particular, this approach had better con-

fidence levels compared to the previous approaches such as the fusion process based

on SEFP, DEFP or DBNs that applied a static weighting factor into the given context

attribute.

Therefore, we summarized our proposed approach as context reasoning under

uncertainty based on evidential fusion networks in home-based care as Figure 7.1.
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7.2 Future Work

A diversity of things can influence a person’s user experience [65] defined as ”a

person’s perceptions and responses that result from the use or anticipated use of a

product, system or service” with a system. To address the variety, factors influencing

user experience have been classified into three main categories: user’s state, system

properties and context (e.g., situation) [51]. Studying typical users and contexts

helps designing the system then improve the decision making in pervasive computing

environments [12]. In the future, we will continuous work on user experience in order

to adapt the user’s feelings stemming both from pragmatic and hedonic aspects of

the system into the pervasive healthcare monitoring system (PHMS).
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