

LOW COMPLEXITY ENCODER USING MACHINE LEARNING

by

THEJASWINI PURUSHOTHAM

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2010

Copyright © by Thejaswini Purushotham 2010

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 Multitudes of pixels come together to form a lovely portrait. Similarly, the fruition

of a thesis happens because of the encouragement and guidance of numerous people. Thus, I

would like to take this opportunity to thank everyone who invested their precious time on me in

the last two years.

In the fall of 2008, I walked into the room of Dr.K.R. Rao with the hopes of learning

from the master of video coding. Though we were total strangers, he immediately put me at

ease by creating a very positive working atmosphere which entails my sincere appreciation. His

mentoring has undoubtedly had a profound impact on me. I am greatly indebted to him.

I am deeply grateful to Dr. Dongil Han for always being available in the lab and

providing me with continued financial support and technical advice. I would like to thank the

other members of my advisory committee Dr. W. Alan Davis and Dr. Jonathan Bredow for

reviewing this thesis document and offering insightful comments. My sincere thanks to

Pragnesh and Suchethan. The love, affection and encouragement of Bhumika, Bhavana,

Gunpreet, Thara, Srikanth and all my friends who kept me going through the trying times of my

Masters.

 Finally, my sincere gratitude and love goes out to my mom Ms. N. Pushpalatha and my

dad Mr. M. Purushotham. They have been my role models and have shaped me to be the

positive and independent person that I am today. My brother Arvind has been very loving and

supportive throughout and this thesis is dedicated to my family.

 September 8, 2010

iv

ABSTRACT

LOW COMPLEXITY H.264 ENCODER USING MACHINE LEARNING

Thejaswini Purushotham, M.S

The University of Texas at Arlington, 2010

Supervising Professor: K.R. Rao

 H.264 is currently one of the most widely accepted video coding standards in

the industry. Several software and hardware solutions for the H.264 video encoder exist in the

market at present. H.264 is used in such applications as Blu-ray Disc, videos on the internet,

digital video broadcast, direct-broadcast satellite television service, cable television services,

and real-time videoconferencing. This thesis uses the WEKA (Waikato Environment for

Knowledge Analysis) tool to generate the classification rule. WEKA is detailed in Chapter 3. The

input attributes to the WEKA have been calculated from the video sequence to be encoded. The

procedure has been elaborated in Chapter 4.

For real time applications like videoconferencing it is essential that the encoding time taken by

the video codec be as low as possible. In the H.264 video codec, the macroblock mode decision

in inter frames is computationally the most expensive process since it uses such features as

variable block size, motion estimation and quarter pixel motion compensation in H.264 encoder.

Hence, the goal of this thesis is to reduce the encoding time while conserving the quality and

compression ratio.

v

Machine learning has been used to decide the mode decisions and hence reduce the motion

estimation time. The proposed machine learning method on an average decreases the

encoding time by 42.86405% for mode decisions in H.264 encoder with a loss of only .01070%

decrease in structural similarity index metric (SSIM).

Motion Estimation is the most time consuming part of the encoder. An average of 60 -70 % of

the total encoding time is taken for motion estimation. The time consuming sum of absolute

differences(SAD) method adopted in the H.264 encoder in JM 16.2 software has been replaced

with a classification rule. Assuming FS (Full Search) and P block types, Q reference frames and

a search range of MxN, MxNxPxQ computations are needed.

The classification rule has been implemented as a series of if-else statements. The time taken

to execute the if-else statements is lesser than the time taken to execute the SAD. Hence this

thesis describes a reduction in the H.264 encoder execution time.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS.. ix

LIST OF TABLES .. xi

LIST OF ACRONYMS ...xii

Chapter Page

1. INTRODUCTION……………………………………..………..….. 1

1.1 Significance .. 1

1.2 Summary .. 4

2. H.264 VIDEO CODEC ... 5

 2.1 Introduction... 5

 2.2 Profiles and Levels ... 8

2.2.1 Baseline Profile .. 8

2.2.2 Main Profile .. 8

2.2.3 High Profile ... 8

2.2.4 Extended Profile ... 8

2.2.5 High Profiles defined in FRexts amendments 9

2.2.6 Overview of Scalable Video Codec .. 12

2.2.6.1 Spatial Scalability ... 13

2.2.6.2 Inter-layer intra prediction .. 14

2.2.6.3 Inter-layer macroblock mode and motion prediction 14

2.2.6.4 Inter-layer residual prediction ... 14

2.2.6.5 SNR Scalability .. 15

vii

2.2.6.6 Fine-Grain Scalability ... 16

2.2.6.7 Medium-Grain Scalability ... 16

2.2.6.8 Temporal Scalability ... 16

2.2.7 Levels in H.264 .. 17

2.3 H.264 Encoder ... 18

2.3.1 Inter-Prediction ... 20

2.3.2 Intra-Prediction ... 22

2.3.3 Transform Coding .. 25

2.3.4 Deblocking Filter .. 27

2.3.5 Entropy Coding .. 29

2.3.6 B-slices and adaptive weighted prediction 30

2.3.7 H.264 Decoder ... 32

2.4 Summary .. 33

3. MACHINE LEARNING ... 34

3.1 Machine Learning Methods .. 35

3.1.1 Rote Learning [51] .. 35

3.1.2 Inductive Learning [52] ... 35

3.1.3 Analogy Learning [51] .. 36

3.1.4 Explained Learning ... 36

3.1.5 Learning Based on Neural Networks ... 37

3.1.6 Knowledge Discovery [51].. 38

3.2 Applications of Machine Learning [51] ... 39

3.3 Weka .. 40

3.4 C4.5 Algorithm.. 42

3.4.1 Algorithm .. 42

3.4.2 Flow and Feature Definitions [57] .. 43

viii

3.4.3 Feature Selection Algorithms ... 43

3.4.4 The C4.5 Tree-Construction Algorithm [53] 44

3.5 Summary .. 49

4. PROPOSED ENCODER .. 50

4.1 Introduction... 50

4.2 Approach .. 50

4.3 Experimental Results ... 51

4.4 Observations .. 74

5. CONCLUSIONS AND FUTURE WORK .. 75

5.1 Conclusions .. 75

5.2 Future Work .. 76

APPENDIX

A. STRUCTURAL SIMILARITY INDEX METRIC (SSIM) ... 77

B. VIDEO SEQUENCES CONSIDERED IN THE THESIS .. 81

REFERENCES ... 84

BIOGRAPHICAL INFORMATION .. 91

ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 H.264/AVC products to video-related markets [51] .. 3

2.1 Different profiles in H.264 with
 Distribution of various coding tools among the profiles [8] .. 7

2.2 Tools introduced in FRExts and
 their classification under the new high profiles [11]. .. 10

2.3 Scalable video coding [50] ... 13

2.4 The basic styles of scaling in video coding [50] ... 13

2.5 Coding structure example with two spatial layers [47]... .. 15

2.6 H.264 Encoder block diagram [1] ... 19

2.7 4x4 Luma prediction (intra-prediction) modes in H.264 [1] .. 20

2.8 4x4 Luma prediction (intra-prediction) modes in H.264 [1] .. 21

2.9 Chroma sub sampling [1] ... 23

2.10 Macroblock portioning in H.264 for inter prediction [1]
 (a) (L-R) 16x16, 8x16, 16x8, 8x8 blocks; (b) (L-R) 8x8, 4x8, 8x4, 4x4 blocks 23

2.11 Interpolation of luma half-pel positions [1] ... 24

2.12 Interpolation of luma quarter-pel positions [1] .. 24

2.13 Motion compensated prediction with multiple reference frames [1] 27

2.14 H.264 Transformation

(a) DC coefficients of 16 4x4 luma blocks for 4 4x4 Cb and Cr blocks [1], (b) Matrix H1
 is applied to 4x4 block of luma/chroma coefficients [8], (c) Matrix H2 (4x4 Hadamard
transform) applied to luma DC coefficients WD [8], (d) Matrix H3 (2x2 Hadamard
transform) applied to chroma DC coefficients WD [8], (e) Matrices H1, H2 and H3
of the three transforms used in H.264 [8] ... 27

2.15 4x4 Boundaries in a macroblock to be filtered (luma boundaries shown with
 solid lines and chroma boundaries shown with dotted lines) .. 28

2.16 Schematic block diagram of CABAC [1]... 30

x

2.17 Partition prediction examples in a B macroblock type:
 (a) past/future, (b) past, (c) future [1] .. 31

2.18 H.264 Decoder block diagram [1] ... 32

3.1 Basic model of machine learning [51] .. 35

3.2 The model of learning systems [51] .. 36

3.3 The generalized process based on interpretation [51] ... 37

3.4 Network constructed from fuzzy rules [55] ... 38

3.5 The discovery process of knowledge [51] .. 39

3.6 Classification tree for Container sequence from Weka tool... .. 41

4.1 Flow chart of the process followed to achieve the low complexity encoder............................. 52

4.2 Classification tree for container sequence from Weka tool .. 53

4.3 Tree structure for container sequence from Weka tool ... 55

4.4 Snap shot of the implementation of the tree structure in JM 16.2 encoder 55

4.5 Motion estimation time for 4 frames for sequences in Table 4.2 ... 57

4.6 Compressed file sizes using
 machine learning for four frames for sequences in Table 4.4.. ... 60

4.7 MSE in JM 16.2 and machine learning for four frames for sequences in Table 4.5 62

4.8 SSIM comparison for four frames for sequences in Table 4.6 ... 64

4.9 Estimation time for 100 frames for sequences in Table 4.8 ... 66

4.10 Speed up in total encoding time for 100 frames for sequences in Table 4.8.. 68

4.11 Speed up in Motion estimation time for 100 frames for sequences in Table 4.8 68

4.12 Compressed file sizes for
 100 frames using machine learning for sequences in Table 4.4 .. 70

4.13 SSIM in JM 16.2 and machine learning
 for 100 frames for sequences in Table 4.10 .. 72

4.14 MSE in JM 16.2 and machine learning for
 100 frames for sequences in Table 4.10 ... 72

4.15 SSIM comparison for 100 frames for sequences in Table 4.11 ... 74

5.1 Snap shot of the implementation of the Tree structure in JM 16.2 encoder 76

xi

LIST OF TABLES

Table Page

2.1 Comparison of the high profiles and
 corresponding coding tools introduced in the FRExts [11].. 11

2.2 Levels defined in H.264 (P represents Progressive
 scanning and I represents interlaced scanning). [38] ... 17

4.1 Weka Results ... 52

4.2 Results obtained using JM 16.2 and JM using machine learning for 4 frames........................ 55

4.3 Speed up in encoding time and motion estimation time for 4 frames using machine learning

compared to JM 16.2 encoder ... 57

4.4 Comparison of compressed file sizes for four frames for sequences in Table 4.2 59

4.5 Comparison of PSNR and MSE for four frames .. 61

4.6 SSIM comparison for four frames .. 63

4.7 Encoding time and ME time for 100
 frames using JM 16.2 and JM using machine learning ... 65

4.8 Speed up in encoding time and motion
 estimation time for 100 frames using machine learning compared to JM 16.2 encoder 67

4.9 Comparison of compressed file sizes for 100 frames .. 69

4.10 Comparison of PSNR and MSE for 100 frames ... 70

4.11 SSIM comparison for 100 frames ... 73

xii

LIST OF ACRONYMS

3G/4G Third or Fourth Generation

3GPP 3rd Generation Partnership Project

ASO Arbitrary slice ordering

AVC Advanced Video Coding

AVI Audio Video Interleave

B MB Bi-predicted MB

CIF Common Intermediate Format

DCT Discrete Cosine Transform

DP Data Partition

DSP Digital Signal Processing

DVD Digital Versatile Disc

FMO Flexible macroblock ordering

FRExt Fidelity Range Extensions

GOP Group Of Pictures

IDR Instantaneous Decoder Refresh

I MB Intra Predicted MB

IEC International Electro Technical Commission

ISO International Organization for Standardization

ITU-T International Telecommunication Union – Transmission sector

JM Joint Model

xiii

JVT Joint Video Team

P MB Inter Predicted MB

IDCT Inverse Discrete Cosine Transform

IQ Inverse Quantizer

MB Macroblock

MBAFF Macroblock level Adaptive Frame/Field

PicAFF Picture level Adaptive Frame/Field

ME Motion Estimation

MC Motion Compensation

MV Motion Vector

MPEG Moving Picture Experts Group

MSE Mean Square Error

NAL Network Abstraction Layer

PSNR Peak –to – peak Signal to Noise Ratio

Q Quantizer

QCIF Quarter Common Intermediate Format

R-D Rate – Distortion

SP/SI Switched P / Switched I

SMPTE Society of Motion Picture and Television Engineers

SSIM Structural Similarity Index Measure

SVC Scalable Video Coding

VCEG Video Coding Experts Group

VLC Variable Length Coding

VLD Variable Length Decoder

xiv

YUV Y- Luminance and UV- Chrominance

WEKA Waikato Environment for Knowledge Analysis

1

CHAPTER 1

INTRODUCTION

1.1 Significance

 In the era of fast paced digital world, the distribution and creation of digital video is

widespread. Technologies that can accommodate the needs of a broad array of customers from

the video expert or an industry professional to the casual at-home user are necessary.

 Regardless of the user‘s level of expertise, it is important to select an encoding solution

that offers extensive format support plus the highest quality and fastest video encoding speed.

For many users, the ability to repurpose content for distribution to a growing number of new

media channels, such as web, DVD and mobile phones, is also very important. There are

various stages in the digital video workflow process, however, one of the most critical and

challenging is encoding, since this step has a direct impact on the ultimate quality of the viewing

experience. With the many complexities that are involved in video encoding, this step can make

or break the end product if the ―right‖ solution is not selected.

 Many of the challenges experienced during the encoding process involve file format

compatibility, optimizing picture quality, and/or processing speed. Video encoding can be

viewed as a complex process due to the many variables at play, including an ever-growing

number of video codecs, frame sizes and frame rates required for viewing on everything from

HDTV to mobile devices. With this in mind, it is important to find an encoding solution that

addresses all of these variables and simplifies the process while offering maximum flexibility to

distribute the video to more viewers at the highest quality, regardless of how it is being viewed.

The best solutions in the market not only ensure the highest compression quality, but also

include the ability to apply video processing filters to ensure the highest visual quality of the final

content [1].

2

 Video encoding requires high processing and hence has traditionally been implemented

on special-purpose hardware. Software solutions are feasible for applications requiring low

encoding rates, typically being the non real-time applications. Software solutions need a

general-purpose computing system .The usage of general-purpose computing system has

various advantages. Software solutions are easily available and flexible and allow

experimenting with and hence improving the various components of the encoder. For a real-

time software solution to be feasible it is necessary that the encoding time offered by the

solution be very low. Several prominent companies/organizations that provide software

implementations for H.264/AVC are as follows [1]: Adobe Systmes, AVS Video Editor, Apple

Inc, BT Group, Sorenson, Intel, Main Concept, On2 Technologies, LGPL, CoreAVC, NeroLogic,

Blu-Code, Sonic Cinevision, Siway, SBMC Media Center.

 Figure 1.1 shows the usage of H.264/AVC video codec in the market. The

H.26/AVC[1][8][9][10] standard provides more than 100 times the number of coding modes of

MPEG-2, and H.264/AVC achieves a compression ratio more than two times that of MPEG-2 by

selecting the best coding mode from among them. As a result, the encoding complexity of the

encoder processing is about ten times or more than that of MPEG-2 when H.264/AVC JM

reference software[29] distributed by JVT is used. In addition, the memory bandwidth required

for processing increases in proportionencoding complexity. To achieve a practical

implementation of H.264/AVC, a significant reduction in encoding complexity must be achieved

while maintaining coding efficiency.

3

Figure 1.1 H.264/AVC products to video-related markets [51]

 H.264 video coding standard is the latest block-oriented motion-compensation-based

codec standard developed by the ITU-T Video Coding Experts Group (VCEG) together with the

ISO/IEC Moving Picture Experts Group (MPEG). H.264 can achieve considerably higher coding

efficiency than previous standards. Unfortunately, this comes at a cost in considerably

increased complexity at the encoder mainly due to motion estimation [1], in-loop deblocking

filter [1], sub-pel interpolation [15] and mode decision [1]. The high-computational complexities

of H.264 and realtime requirements of video systems represent the main challenge to overcome

in the development of efficient encoder solutions. Different techniques to reduce complexity in

H.264 have been proposed in [41], [42], [44] and [45].But few approaches have been done

using machine learning [43]. This thesis focuses on reducing the complexity of the H.264 JM

16.2 [29] encoder using machine learning techniques. The idea behind using machine learning

4

is to exploit structural similarities in video in order to make optimal prediction modes throu the

use of fast if-else statements instead of the usual cumbersome SAD (sum of absolute

differences) and cost evaluations.

1.2 Summary

 This thesis contributes in the study and implementation of machine learning and data

mining techniques applied to video compression. A new technique is implemented for reducing

complexity in H.264 using as reference software optimized encoder. Results show reduction in

complexity in terms of encoding time for different video formats and video context. Chapter 2 is

an introduction to H.264/AVC standard. It discusses the characteristic features of H.264.

5

CHAPTER 2

INTRODUCTION

2.1 Introduction

H.264/MPEG4-Part 10 advanced video coding (AVC) introduced in 2003 became one

of the latest and most efficient video coding standards [4]. The H.264 standard was developed

by the Joint Video Team (JVT), consisting of VCEG (Video Coding Experts Group) of ITU-T

(International Telecommunication Union – Telecommunication standardization sector), and

MPEG (Moving Picture Experts Group) of ISO/IEC [4].

H.264 can support various interactive (video telephony) and non-interactive applications

(broadcast, streaming, storage, video on demand) as it facilitates a network friendly video

representation. It leverages on the previous coding standards such as MPEG-1, MPEG-2,

MPEG-4 part 2, H.261, H.262 and H.263 [8] and adds many other coding tools and techniques

which give it superior quality and higher compression efficiency.

The standardization of the first version of H.264/AVC was completed in May 2003. The JVT

then developed extensions to the original standard that are known as the fidelity range

extensions (FRExt) [11]. These extensions enable higher quality video coding by supporting

increased sample bit depth precision and higher-resolution color information, including sampling

structures known as YUV 4:2:2 and YUV 4:4:4. Several other features are also included in the

fidelity range extensions, such as adaptive switching between 4×4 and 8×8 integer transforms,

encoder-specified perceptual-based quantization weighting matrices, efficient inter-picture

lossless coding, and support of additional color spaces. The design work on the fidelity range

extensions was completed in July 2004, and the drafting work on them was completed in

September 2004.

6

 Scalable video coding (SVC) [48] as specified in Annex G of H.264/AVC allows the

construction of bitstreams that contain sub-bitstreams that conform to H.264/AVC. For temporal

bitstream scalability, i.e., the presence of a sub-bitstream with a smaller temporal sampling rate

than the bitstream, complete access units are removed from the bitstream when deriving the

sub-bitstream. In this case, high-level syntax and inter prediction reference pictures in the

bitstream are constructed accordingly. For spatial and quality bitstream scalabilities, i.e. the

presence of a sub-bitstream with lower spatial resolution or quality than the bitstream, network

abstraction layer (NAL) units are removed from the bitstream when deriving the sub-bitstream.

In this case, inter-layer prediction, i.e., the prediction of the higher spatial resolution or quality

signal by data of the lower spatial resolution or quality signal, is typically used for efficient

coding. The scalable video coding extension was completed in November 2007.

 The next major feature added to the standard was Multiview Video Coding (MVC) [49].

Specified in Annex H of H.264/AVC, MVC enables the construction of bit streams that represent

more than one view of a video scene. An important example of this functionality is stereoscopic

3D video coding. Two profiles were developed in the MVC work: one supporting an arbitrary

number of views and designed specifically for two-view stereoscopic video. The Multiview Video

Coding extensions were completed in November 2009 [5]. Like any other previous motion-

based codecs, H.264 uses the following basic principles of video compression [4]:[4]

• Transform for reduction of spatial correlation

• Quantization for control of bit rate

• Motion compensated prediction for reduction of temporal correlation

• Entropy coding for reduction in statistical correlation.

The improved coding efficiency of H.264 can be attributed to the additional coding tools and the

new features. Listed below are some of the new and improved techniques used in H.264 for the

first time [9]:

• Adaptive intra-picture prediction

7

• Small block size transform with integer precision

• Multiple reference pictures and generalized B-frames

• Variable block sizes for ME and MC.

• Quarter pixel precision for motion compensation

• Content adaptive in-loop deblocking filter and

• Improved entropy coding by introduction of CABAC (context adaptive binary arithmetic

coding) and CAVLC (context adaptive variable length coding)

 The increase in the coding efficiency and increase in the compression ratio result in a

greater complexity of the encoder and the decoder algorithms of H.264, as compared to

previous coding standards. In order to develop error resilience for transmission of information

over the network, H.264 supports the following techniques [9]:

• Flexible macroblock ordering (FMO)

• Switched slice

• Arbitrary slice order (ASO)

• Redundant slice (RS)

• Data partitioning (DP)

• Parameter setting

8

Figure 2.1 Different profiles in H.264 with distribution of various coding tools among the
profiles [8]

2.2 Profiles and Levels of H.264

2.2.1. Baseline Profile

 The list of tools included in the baseline profile are I (intra coded) and P (predictive

coded) slice coding, enhanced error resilience tools of flexible macroblock ordering, arbitrary

slices and redundant slices. It also supports CAVLC (context-based adaptive variable length

coding). The baseline profile is intended to be used in low delay applications, applications

demanding low processing power, and in high packet loss environments. This profile has the

least coding efficiency among all the three profiles.

2.2.2. Main Profile

 The coding tools included in the main profile are I, P, and B (bi directionally predictive

coded) slices, interlaced coding, CAVLC and CABAC (context-based adaptive binary arithmetic

coding). The tools not supported by main profile are error resilience tools, data partitioning and

9

SI (switched intra coded) and SP (switched predictive coded) slices. This profile is aimed to

achieve highest possible coding efficiency.

2.2.3. High Profile

 The coding tools included in the main profile are I, P, and B (bi directionally predictive

coded) slices, interlaced coding, CAVLC and CABAC (context-based adaptive binary arithmetic

coding). The tools not supported by main profile are error resilience tools, data partitioning and

SI (switched intra coded) and SP (switched predictive coded) slices. This profile is aimed to

achieve highest possible coding efficiency.

2.2.4. Extended Profile

 This profile has all the tools included in the baseline profile. As illustrated in the Figure 2

1 this profile also includes B, SP and SI slices, data partitioning, interlaced frame and field

coding, picture adaptive frame/field coding and MB adaptive frame/field coding. This profile

provides better coding efficiency than baseline profile. The additional tools result in increased

complexity.

2.2.5. High Profiles defined in the FRExts amendment

 In September 2004 the first amendment of H.264/MPEG-4 AVC video coding standard

was released [11]. A new set of coding tools were introduced as a part of this amendment.

These are termed as ―Fidelity Range Extensions‖ (FRExts). The aim of releasing FRExts is to

be able to achieve significant improvement in coding efficiency for higher fidelity material. It also

has lossless representation capability: I PCM raw sample value macroblocks and entropy coded

transform by-pass lossless macroblocks (FRExts only). The application areas for the FRExts

tools are professional film production, video production and high-definition TV/DVD.

The FRExts amendment defines four new profiles (Figure 2 2) [12]:

• High (HP)

• High 10 (Hi10P)

10

• High 4:2:2 (Hi422P)

• High 4:4:4 (Hi444P)

Figure 2.2 Tools introduced in FRExts and their classification under the new high profiles
[11]

All four of these profiles build further upon the design of the prior Main profile. The

Table 2.1 provides a comparison of the high profiles introduced in FRExts with a list of different

coding tools and which of them are applied to which profile. All of the high profiles include the

following three enhancements to coding efficiency performance [13].

• Adaptive macroblock-level switching between 8x8 and 4x4 transform blocks.

 The main aim behind introducing the 8x8 transform in FRExts is to fulfill high fidelity

video demands preservation of fine details and textures. To achieve this, larger basis functions

are required. However a smaller transform like the 4x4 reduces ringing artifacts and reduces

computational complexity. The encoder adaptively chooses between the 4x4 and 8x8

transforms.

The transform selection process is limited by the following conditions

11

If an inter-coded MB has sub-partition smaller than 8x8 (i.e. 4x8, 8x4, 4x4), then 4x4

transform is used.

If an intra-coded MB is predicted using 8x8 luma spatial prediction, only 8x8 transform

is used.

• Encoder-specified perceptual-based quantization scaling matrices

The encoder can specify a matrix for scaling factor according to the specific frequency

associated with the transform coefficient for use in inverse quantization scaling by the decoder.

This allows optimization of the subjective quality according to the sensitivity of the human visual

system (HVS), less sensitive to the coded error in high frequency transform coefficients [8].

• Encoder-specified separate control of the quantization parameter for each

chroma component

Table 2.1 Comparison of the high profiles and corresponding coding tools introduced in
the FRExts [11]

Coding tools High High 10
High

4:2:2

High

4:4:4

Main Profile tools x x X x

4:2:0 Chroma format x x X x

8 bit sample bit depth x x X x

x x X x

12

8x8 vs. 4x4 transform adaptivity

Quantization scaling matrices x x X x

Separate Cb and Cr Quantization

parameter (QP) control
x x X x

Monochrome video format x x X x

9 and 10 bit sample depth x X x

4:2:2 Chroma format X x

11 and 12 sample bit depth x

4:4:4 Chroma format x

Residual color transform x

Predictive lossless coding x

2.2.6. Overview of Scalable video codec

 A video bit stream is called scalable when parts of the stream can be removed in a way

that the resulting sub-stream forms another valid bit stream for some target decoder, and the

sub-stream represents the source content with a reconstruction quality that is less than that of

the complete original bit stream. The modes of scalability are temporal, spatial, and quality [14] .

Spatial and temporal scalabilities describe cases in which subsets of the bit stream represent

the source content with a reduced picture size (spatial resolution) or frame rate (temporal

resolution), respectively. With quality scalability, the sub-stream provides the same spatial-

temporal resolution as the complete bit stream, but with a lower signal-to-noise ratio (SNR).

Table 2.1 -Continued

13

 Quality scalability is also commonly referred to as fidelity or SNR scalability. Figure 2.3

shows the basic principle and applications of scalable coding.

Figure 2.3 Scalable video coding [50]

Figure 2.4 The basic types of scalability in video coding [50]

2.2.6.1 Spatial Scalability

 For supporting spatial scalable coding, SVC follows the conventional approach of multi-

layer coding. In each spatial layer, motion-compensated prediction and intra prediction are

14

employed as for single-layer coding. In addition to these basic coding tools of H.264/AVC, SVC

provides inter-layer prediction methods, which allow an exploitation of the statistical

dependencies between different layers for improving the coding efficiency of enhancement

layers. The supported inter-layer prediction methods employ the reconstructed samples of the

lower layer signal. The prediction signal is either formed by motion-compensated prediction

inside the enhancement layer, by up-sampling the reconstructed lower layer signal, or by

averaging such an up-sampled signal with a temporal prediction signal. Apart from these, two

additional inter-layer prediction concepts have been added in SVC: prediction of macroblock

modes and associated motion parameters and prediction of the residual signal. All inter-layer

prediction tools can be chosen on a macroblock or sub-macroblock basis allowing an encoder

to select the coding mode that gives the highest coding efficiency [14].

 2.2.6.2 Inter-layer intra prediction

 For SVC enhancement layers, an additional macroblock coding mode (signaled by the

syntax element base_mode_flag equal to 1) is provided, in which the macroblock prediction

signal is completely inferred from co-located blocks in the reference layer without transmitting

any additional side information. When the co-located reference layer blocks are intra-coded, the

prediction signal is built by the up-sampled reconstructed intra signal of the reference layer – a

prediction method also referred to as inter-layer intra prediction.

 2.2.6.3 Inter-layer macroblock mode and motion prediction

When the base_mode_flag is equal to 1 and at least one of the co-located reference

layer blocks is not intra-coded, the enhancement layer macroblock is inter-picture predicted as

in single-layer H.264/AVC coding, but the macroblock partitioning – specifying the

decomposition into smaller block with different motion parameters – and the associated motion

parameters are completely derived from the co-located blocks in the reference layer. This

concept is also referred to as the inter-layer motion prediction. For the conventional inter-coded

15

macroblock types of H.264/AVC, the scaled motion vector of the reference layer blocks can also

be used as replacement for usual spatial motion vector predictor.

 2.2.6.4 Inter-layer residual prediction

A further inter-layer prediction tool, referred to as inter-layer residual prediction, targets

a reduction of the bit rate required for transmitting the residual signal of inter-coded

macroblocks. With the usage of residual prediction (signaled by the syntax element

residual_prediction_flag equal to 1), the up-sampled residual of the co-located reference layer

blocks is subtracted from the enhancement layer residual (difference between the original and

the inter-picture prediction signal) and only the resulting difference, which often has a smaller

energy then the original residual signal, is encoded using transform coding as specified in

H.264/AVC [14] as illustrated in Figure 2.5.

Figure 2.5 Coding structure example with two spatial layers. [47]

 2.2.6.5 SNR Scalability

Different techniques exist in the Joint Scalable Video Model (JSVM) for providing SNR

scalability [14]

 2.2.6.7 Fine-Grain Scalability

16

Fine-Grain Scalability (FGS) uses an advanced form of bit-plane coding for encoding

successive refinements of transform coefficients. The FGS slices have the property that they

can be truncated at any byte-aligned position to achieve SNR scalability. FGS SNR scalability

has the advantage that it provides a larger degree of flexibility, allowing a quasi-continuous

spectrum of achievable bitrates, while CGS is limited to a number of pre-determined bitrates,

i.e., one extraction point per layer. Due to its high computational complexity, however, the FGS

concept was not included in one of the SVC profiles. As a consequence, it was removed from

the joint draft. After further study and complexity reduction, FGS might be included in a future

amendment to the current SVC specification.

2.2.6.8 Medium-Grain Scalability

As an alternative to FGS, Medium-Grain Scalability (MGS) was introduced. MGS

tackles a number of problems that are encountered for CGS, such as the limited number of rate

points, and the lack of flexibility for bitstream adaptation. MGS increases the number of

achievable rate points by allowing different quality levels within one dependency layer. The

flexibility is improved by allowing the removal of these quality levels at any point in the

bitstream. Switching between the number of dependency layers (as is required for CGS), is only

allowed at certain pre-defined points. Presently, 16 quality refinement levels are allowed for

every dependency layer. In conjunction with CGS, this means that 128 quality extraction points

are now achievable for SVC bit-streams.

2.2.6.9 Temporal Scalability

A bit stream provides temporal scalability when the set of corresponding access units

can be partitioned into a temporal base layer and one or more temporal enhancement layers

with the following property - Let the temporal layers be identified by a temporal layer identifier T,

which starts from 0 for the base layer and is increased by 1 from one temporal layer to the next.

Then for each natural number k, the bit stream that is obtained by removing all access units of

all temporal layers with a temporal layer identifier T greater than k forms another valid bit stream

17

for the given decoder [14]. For hybrid video codecs, temporal scalability can generally be

enabled by restricting motion-compensated prediction to reference pictures with a temporal

layer identifier that is less than or equal to the temporal layer identifier of the picture to be

predicted. H.264/AVC provides a significantly increased flexibility for temporal scalability

because of its reference picture memory control. It allows the coding of picture sequences with

arbitrary temporal dependencies, which are only restricted by the maximum usable decoded

picture buffer (DPB) size. Hence, for supporting temporal scalability with a reasonable number

of temporal layers, no changes to the design of H.264/AVC are required. The only related

change in SVC refers to the signaling of temporal layers.

2.2.7. Levels in H.264

 In H.264 /AVC, 16 levels are specified. Each level defines upper bounds for the bit

stream or lower bounds for the decoder capabilities. A profile and level can be combined to

define the conformance points. These points signify the point of interoperability for applications

with similar functional requirements. The levels defined in H.264 are listed in Table 2.2. The

level ‗1b‘ was added in the FRExts amendment.

Table 2.2 Levels defined in H.264 (P represents Progressive scanning and I represents
interlaced scanning). [38]

Level

number

Typical picture

size

Typical

frame rate

Maximum

compression bit

rate (for VLC) in

Non-FRExt

profiles

Maximum number of

reference frames for typical

picture size

1 QCIF 15 64 kbps 4

1b QCIF 15 128 kbps 4

1b QCIF 15 128kbps 4

18

1.1 CIF or QCIF 7.5 (CIF) /

30 (QCIF)

192 kbps 2 (CIF) / 9 (QCIF)

1.2 CIF 15 384 kbps 6

1.3 CIF 30 768 kbps 6

2 CIF 30 2 Mbps 6

2.1 HHR 30 / 25 4 Mbps 6

2.2 SD 15 4 Mbps 5

3 SD 30 / 25 10 Mbps 5

3.1 1280x720p 30 14 Mbps 5

3.2 1280x720p 60 20 Mbps 4

4 HD formats 60p / 30i 20 Mbps 4

4.1 HD formats 60p / 30i 50 Mbps 4

4.2 1920x1080p 60p 50 Mbps 4

5 2k x 1k 72 135 Mbps 5

5.1 2k x 1k or

4k x 2k

120 / 30 240 Mbps 5

Table 2.2 - Continued

19

2.3 H.264 Encoder

Figure 2.6 illustrates the schematic of the H.264 encoder. H.264 encoder works on

macroblocks and motion-compensation like most other previous generation codecs. Video is

formed by a series of picture frames. Each picture frame is an image which is split down into

blocks. The block sizes can vary in H.264. The encoder may perform intra-coding or inter-

coding for the macroblocks of a given picture. Intra coded frames are encoded and decoded

independently. They do not need any reference frames. Hence they provide access points to

the coded sequence where decoding can start. H.264 uses nine spatial prediction modes in

intra-coding to reduce spatial redundancy in the source signal of the picture. These prediction

modes are explained in section 2.7. Inter-coding uses inter-prediction of a given block from

some previously decoded pictures. The aim to use inter-coding is to reduce the temporal

redundancy by making use of motion vectors. Motion vectors give the direction of motion of a

particular block from the current frame to the next frame. The prediction residuals are obtained

which then undergo transformation to remove spatial correlation in the block. The transformed

coefficients, thus obtained, undergo quantization. The motion vectors (obtained from inter-

prediction) or intra-prediction modes are combined with the quantized transform coefficient

information. They are then encoded using entropy code such as context-based adaptive

variable length coding (CAVLC) or context-based adaptive binary arithmetic coding (CABAC)

[8].

20

Figure 2.6 H.264 Encoder block diagram [1]

There is a local decoder within the H.264 encoder. This local decoder performs the

operations of inverse quantization and inverse transform to obtain the residual signal in the

spatial domain. The prediction signal is added to the residual signal to reconstruct the input

frame. This input frame is fed in the deblocking filter to remove blocking artifacts at the block

boundaries. The output of the deblocking filter is then fed to inter/intra prediction blocks to

generate prediction signals.

The various coding tools used in the H.264 encoder are explained in the sections 2.7

through 2.12.

2.3.1. Intra-Prediction

 Intra-prediction uses the macroblocks from the same image for prediction. Two types of

prediction schemes are used for the luminance component. These two schemes can be referred

as INTRA_4x4 and INTRA_16x16 [16]. In INTRA_4x4, a macroblock of size 16x16 pixels are

divided into 16 4x4 sub blocks. Intra prediction scheme is applied individually to these 4x4 sub

blocks. There are nine different prediction modes supported as shown in Figure 2.7. In the

FRExts profiles alone, there is also 8x8 luma spatial prediction (similar to 4x4 spatial prediction)

and with low-pass filtering of the prediction to improve prediction performance.

21

Figure 2.7 7 4x4 Luma prediction (intra-prediction) modes in H.264 [1]
In mode 0, the samples of the macroblock are predicted from the neighboring samples

on the top. In mode 1, the samples of the macroblock are predicted from the neighboring

samples from the left. In mode 2, the mean of all the neighboring samples is used for prediction.

Mode 3 is in diagonally down-left direction. Mode 4 is in diagonal down-right direction. Mode 5 is

in vertical-right direction. Mode 6 is in horizontal-down direction. Mode 7 is in vertical-left

direction. Mode 8 is in horizontal up direction. The predicted samples are calculated from a

weighted average of the previously predicted samples A to M.

For prediction of 16x16 intra prediction of luminance components, four modes are used.

The three modes of mode 0 (vertical), mode 1 (horizontal) and mode 2 (DC) are similar to the

prediction modes for 4x4 block. In the fourth mode, the linear plane function is fitted in the

neighboring samples.

Figure 2.8 4x4 Luma prediction (intra-prediction) modes in H.264 [1]

22

Figure 2.8 The chroma macroblock is predicted from neighboring chroma samples. The

four prediction modes used for the chroma blocks are similar to 16x16 luma prediction modes.

The number in which the prediction modes are ordered is different for the chroma macroblock:

mode 0 is DC, mode 1 is horizontal, mode 2 is vertical and mode 3 is plane. The block sizes for

the chroma prediction depend on the sampling format. For 4:2:0 format, the 8x8 size of the

chroma block is selected. For the 4:2:2 format, the 8x16 size of the chroma block is selected.

For the 4:4:4 formats; the 16x16 size of chroma block is selected [1].

Figure 2.9 Chroma sub sampling [1]
2.3.2. Intra-Prediction

Inter-prediction is used to capitalize on the temporal redundancy in a video sequence.

The temporal correlation is reduced by inter prediction through the use of motion estimation and

compensation algorithms [1]. An image is divided into macroblocks; each 16x16 macroblock is

further partitioned into 16x16, 16x8, 8x16, 8x8 sized blocks. A 8x8 sub-macroblock can be

further partitioned into 8x4, 4x8, 4x4 sized blocks. Figure 2.9 illustrates the partitioning of a

macroblock and a sub-macroblock [1]. The input video characteristics govern the block size. A

23

smaller block size ensures less residual data; however smaller block sizes also mean more

motion vectors and hence more number of bits required to encode these motion vectors [1].

(a)

(b)

Figure 2.10 Macroblock portioning in H.264 for inter prediction [1] (a) (L-R) 16x16, 8x16,
16x8, 8x8 blocks; (b) (L-R) 8x8, 4x8, 8x4, 4x4 blocks

Each partition or sub-macroblock partition in an inter-coded macroblock is predicted

from an area of the same size in a reference picture. The offset between the two areas (the

motion vector) has quarter-sample resolution for the luma component and one-eighth-sample

resolution for the chroma components. The luma and chroma samples at sub-sample positions

do not exist in the reference picture and so it is necessary to create them using interpolation

from nearby coded samples. Figure 2.10 and Figure 2.11 illustrate half and quarter pixel

interpolation used in luma pixel interpolation respectively. Six-tap filter with weights (1, −5, 20,

20, −5, 1)/32 is used to derive half-pel luma sample predictions, for sharper sub pixel motion-

compensation. Quarter-pixel motion is derived by linear interpolation of the half-pel values, to

save processing power.

24

Figure 2.11 Interpolation of luma half-pel positions [1]

Figure 2.12 Interpolation of luma quarter-pel positions [1]

The reference pictures used for the inter prediction are previously decoded frames and

are stored in the picture buffer. H.264 supports the use of multiple frames as reference frames.

This is implemented by the use of an additional picture reference parameter which is

transmitted along with the motion vector. Figure 2.12 illustrates an example with 4 reference

pictures.

25

Figure 2.13 Motion compensated prediction with multiple reference frames [1]

2.3.3. Transform Coding

There is high spatial redundancy among the prediction error signals. The H.264

implements a block-based transform to reduce this spatial redundancy [1]. The former

standards of MPEG-1 and MPEG-2 employed a two dimensional discrete cosine transform

(DCT) [36] for the purpose of transform coding of the size 8x8 [1]. H.264 uses integer

transforms instead of the DCT. The size of these transforms is 4x4 [1]. The advantages of using

a smaller block size in H.264 are stated as follows:

• The reduction in the transform size enables the encoder to better adapt the

prediction error coding to the boundaries of the moving objects and to match the transform

block size with the smallest block size of motion compensation.

• The smaller block size of the transform leads to a significant reduction in the

ringing artifacts.

• The 4x4 integer transform has the benefit for removing the need for

multiplications.

H.264 employs a hierarchical transform structure, in which the DC coefficients of

neighboring 4x4 transforms for luma and chroma signals are grouped into 4x4 blocks (blocks -1,

26

16 and 17) and transformed again by the Hadamard transform as shown in Figure 2.14 (a). As

shown in Figure 2.14(b) the first transform (matrix H1 in Figure 2.14(e)) is applied to all samples

of all prediction error blocks of the luminance component (Y) and for all blocks of chrominance

components (Cb and Cr). For blocks with mostly flat pixel values, there are 25 significant

correlation among transform DC coefficients of neighboring blocks. Hence, the standard

specifies the 4x4 Hadamard transform (matrix H2 in Figure 2.14 (e)) for luma DC coefficients

(Figure 2.14 (c)) for 16x16 intra-mode only, and 2x2 Hadamard transform as shown in Figure

2.14 (d) (matrix H3 in Figure 2.14 (e)) for chroma DC coefficients

27

.
(a)

(b)

(c)

(d)

(e)

Figure 2.14 H.264 Transformation (a)DC coefficients of 16 4x4 luma blocks for 4 4x4 Cb
and Cr blocks [1] (b) Matrix H1 is applied to 4x4 block of luma/chroma coefficients X (c)
[8](c) Matrix H2 (4x4 Hadamard transform) applied to luma DC coefficients WD [8] (d)

Matrix H3 (2x2 Hadamard transform) applied to chroma DC coefficients WD [8] e)
Matrices H1, H2 and H3 of the three transforms used in H.264 [8]

2.3.4. Deblocking Filter

28

The deblocking filter is used to remove the blocking artifacts due to the block based

encoding pattern. The transform applied after intra-prediction or inter-prediction is on blocks; the

transform coefficients then undergo quantization. These block based operations are responsible

for blocking artifacts which are removed by the in-loop deblocking filter. It reduces the artifacts

at the block boundaries and prevents the propagation of accumulated noise. The presence of

the filter however adds to the complexity of the system [1]. Figure 2.15 illustrates a macroblock

with sixteen 4x4 sub blocks along with their boundaries.

Figure 2.15 Boundaries in a macroblock to be filtered (luma boundaries shown
with solid lines and chroma boundaries shown with dotted lines)

As shown in the Figure 2.15, the luma deblocking filter process is performed on the 16

sample edges – shown by solid lines. The chroma deblocking filter process is performed on 8

sample edges – shown in dotted lines.

H.264 employs deblocking process adaptively at the following three levels:

29

• At slice level – global filtering strength is adjusted to the individual

characteristics of the video sequence

• At block-edge level – deblocking filter decision is based on inter or intra

prediction of the block, motion differences and presence of coded residuals in the two

participating blocks.

• At sample level – it is important to distinguish between the blocking artifact and

the true edges of the image. True edges should not be de blocked. Hence decision for

deblocking at a sample level becomes important.

2.3.5. Entropy Coding

H.264 uses variable length coding to match a symbol to a code based on the context

characteristics. All the syntax elements except for the residual data are encoded by the Exp-

Golomb codes [1]. The residual data is encoded using the Context adaptive Variable Length

Coding (CAVLC). The main and the high profiles of H.264 use CABAC.

• Context-based adaptive variable length coding (CAVLC):

 After undergoing transform and quantization the probability that the level of

coefficients is zero or +1 is very high [1]. CAVLC handles these values differently. It codes the

number of zeroes and +1. For other values, their values are coded.

• Context-based adaptive binary arithmetic coding (CABAC):

 This technique uses the arithmetic encoding to achieve good compression. The

schematic for CABAC is shown in Figure 2.16.

30

Figure 2.16 Schematic block diagram of CABAC [1]

CABAC consists of three steps:

Step 1: Binarization: A non-binary value is uniquely mapped to a binary sequence

Step 2: Context modeling: A context model is a probability model for one or more

elements of binarized symbol. The probability model is selected such that the corresponding

choice depends on previously encoded syntax elements.

Step 3: Binary arithmetic coding: An arithmetic encoder encodes each element

according to the selected probability model.

2.3.6. B-slices and adaptive weighted prediction

Bi-directional prediction which uses both past and future frames for reference can be

very useful in improving the temporal prediction. Bi-directional prediction in H.264 uses multiple

reference frames. Figure 2.17 show bidirectional prediction from multiple reference frames. The

standards, before H.264, with B pictures use the bidirectional mode, with limitation that it allows

the combination of a previous and subsequent prediction signals. In the previous standards, one

prediction signal is derived from subsequent inter-picture, another from a previous picture, the

other from a linear averaged signal of two motion compensated prediction signals.

31

Figure 2.17 Partition prediction examples in a B macroblock type: (a) past/future, (b) past,
(c) future [1]

H.264 supports the forward/backward prediction pair and also supports forward/forward

and backward/backward prediction pair [1]. Figures 2.17 (a) and 2.17 (b) describe the scenario

where bidirectional prediction and multiple reference frames respectively are applied and a

macroblock is thereby predicted as a linear combination of multiple reference signals using

weights as described in (2.1). Considering two forward references for prediction is beneficial for

motion compensated prediction of a region just before scene change. Considering two

backward reference frames is beneficial for frames just after scene change. H.264 also allows

bi-directionally predictive-coded slice which may also be used as references for inter-coding of

other pictures. Except for the H.264 codec, all the existing standards consider equal weights for

reference pictures. Equal weights of reference signals are averaged and the prediction signal is

obtained. H.264 also uses weighted prediction [1]. It can be used for a macroblock of P slice or

B slice. Different weights can be assigned to two different reference signals and the prediction

signal is calculated as follows:

32

 1* 1 2* 2p w r w r (1)

In(1), p is the prediction signal, r1 and r2 are the reference signals and w1 and w2 are the

prediction weights.

2.3.6. H.264 Decoder

The H.264 decoder works similar in operation to the local decoder of H.264 encoder. An

encoded bit stream is the input to the decoder. Entropy decoding (CABAC or CAVLC) takes

place on the bit stream to obtain the transform coefficients. These coefficients are then inverse

scanned and inverse quantized. This gives residual block data in the transform domain. Inverse

transform is performed to obtain the data in the pixel domain. The resulting output is a 4x4

blocks of residual signal. Depending on inter predicted or intra-predicted, an appropriate

prediction signal is added to the residual signal. For an inter-coded block, a prediction block is

constructed depending on the motion vectors, reference frames and previously decoded

pictures. This prediction block is added to the residual block to reconstruct the video frames.

These reconstructed frames then undergo deblocking before they are stored for future use for

prediction or being displayed. Figure 2.18 illustrates the decoder.

Figure 2.18 H.264 Decoder block diagram [1]

33

2.4 Summary

 This chapter outlines the coding tools of H.264 codec. The next chapter describes the

coding tools used in Machine learning.

34

CHAPTER 3

INTRODUCTION

 Machine learning shows how computers are used to simulate human learning activities,

and to study self-improvement methods of computers Figure 3. Compared with human learning,

machine learning is a faster process. The accumulation of knowledge (knowledge here refers to

the information about the system behavior in response to various inputs to the system.) is to

facilitate faster and easier learning. So, any progress in the field of machine learning will

enhance the capability of computers and thus have an impact on human society. In the process

of machine learning, the quality of information that external environment provides to the system

is the primary factor [51].

 The external environment is referred to the information set that delivers itself to the

learning process in some form. It represents sources of outside information; Learning is the

process that processes the outside information to knowledge, first it obtains information from

the outside environment and then processes the information to provide knowledge, and puts

this knowledge into a repository; the repository stores many general principles that guide the

implementation action. The environment provides all kinds of information for the learning

system, the quality of information impacts directly on the learning realization. The repository is

the second factor that impacts the design of a learning system. The expression of knowledge

can come in the form of eigenvector, logic statements of the first order, production rules,

semantic networks, frameworks and so on; these fashions of expression have strong and weak

points.

 The important aspects that need to be considered are the robustness of expression,

simplicity of the expression, ease in the repository manipulation and the ease with which the

35

knowledge can be expanded. The implementation is the process that uses the knowledge of

repository to complete a certain task and to feed back the information which is obtained in the

process of completing the task to the process of learning, and to guide further study.

Figure 3.1 Basic model of machine learning [51]
.

3.1 Machine Learning Methods

 3.1.1. Rote learning [51]

 Rote learning is a learning process where memory is involved; the process stores the

new knowledge and calls for it when necessary. A calculation and reasoning a learning system

need not remember any of the knowledge. In the rote learning system, knowledge is called in a

direct way. The system does not require much processing. The implementation part of learning

system can be considered abstractly as a function. The learning system receives the input

variables and calculates the output values of the functions. The input and output values are

stored. On arrival of the next input variable, the rote learning system searches the memory

rather than re-calculating the knowledge. Memory is the critical parameter in Rote Learning

rather than the learning process.

3.1.2. Inductive Learning [52]

 Inductive consequence applies inductive methods to summarize general knowledge

from sufficient specific examples, and to distill a general law of things. This process extrapolates

form the individual to general. Learning can be based on the guidance of pre-determined rules

or not. Inductive learning can be divided into learning by examples and learning by observation.

36

The former is learning with the rules; the latter is learning without the rules. The model of a

learning system is shown in Figure 3.2.

Figure 3.2 The model of learning system [51]

 The learning by examples method concludes the learning methods by examples. In this

method, the general concepts are learnt through the examples related with a concept in the

environment. Take a group of animals as an example, and tell the learning system which animal

is "Ma", and which is not. When the sample is enough, the learning system can conclude the

conceptual model about ―Ma‖, so it can identify ―Ma‖, and can distinguish ―Ma‖ from other

animals. The learning by observation is also known as the descriptive summary, has as its goal

to identify a general description of a law or a theory. It depicts an observation set and specifies

the nature of certain objects.

3.1.3. Analogy Learning [51]

 Analogy describes the similarity between objects clearly and concisely. Analogy

learning carries out learning by comparing similar things. For example, when a professor wants

to teach a new concept which is more difficult to understand for the students, he or she always

use some of the examples that students have mastered that are similar to the new concept to

be learned.

3.1.4. Explained Learning

 The learning based on interpretation is called explained learning. This form of learning

analyzes and classifies the current instances by the knowledge already known while it continues

to learn. This type of learning generally yields a classification tree; which classifies any new

instance. It learns new knowledge by considering the relationship between the various factors

37

affecting the knowledge. The generalized process based on interpretation is shown in Figure

3.3.

Figure 3.3 The generalized process based on interpretation [51]

3.1.5. Learning Based on Neural Network

 The nature of a neural network depends on three main factors: the topology structure of

network, right values and work rules of network. Combination of the three can form the main

characters of a network. The learning problem of a neural network is the problem of adjustment

of network values. There are two ways to determine the value of a neural network: one is

determined through the design calculations; another is determined by the study of the network

through certain rules. Most neural networks use the second method to determine the value of its

network. The well-known network model and learning algorithm contain the back propagation

arithmetic, The Hopfield network and so on [51] Figure 3.4 describes the approach.

38

Figure 3.4 Network constructed from fuzzy rules [55]

 In Figure 3.4, the input variables are fed into the first layer, which contains nodes which

act as membership functions, responding only in a certain region of the input variable domain,

with a result between zero and one. The second layer is formed by the rules themselves. The

nodes in this layer perform the fuzzy ‗AND‘ operation, computing a minimum of their inputs. The

third layer contains a node for each output fuzzy. Finally, the last layer contains a single node

which performs a centroid defuzzification of the outputs. This node normalizes the weights from

the previous layer and weights them with the centers of the output membership functions to

calculate the actual output. [55]

3.1.6. Knowledge Discovery [51]

 Knowledge discovery of repository is a senior managed process to identify effective,

novel, potential and a useful model from large amounts of data. The discovery process of

knowledge is shown in Figure 3.5

39

Figure 3.5 The discovery process of knowledge [51]

 Data selection extracts relevant data from the database based on the needs of users.

Pre-processing checks data‘s integrity and consistency, processes the noisy data, fills up the

loss of data by statistical methods, and forms explored database. Data transformation chooses

data from explored database, the methods of transformation mainly use discrimination analysis

and clustering analysis. Data mining identifies the goal of what type of knowledge is to discover

based on the user‘s requirements. It then extracts the knowledge which users need from the

database. Knowledge evaluation mainly evaluates the acquired rules, and then determines if

the rules have to be added to the basic knowledge database. Knowledge discovery process can

be generalized in three steps. That is, pretreatment of data mining, data mining and post

treatments of data mining. Knowledge discovery has been successfully applied in the banking,

insurance, retail, healthcare, engineering and manufacturing, scientific research, satellite

observation, entertainment industries and so on. It has provided a great help in people's

scientific decision-making.

3.2 Application of Machine Learning [51]

 Research shows that machine learning technology has been widely used in marketing,

finance, telecommunications and network analysis. [51] In the field of marketing, machine

learning technology is more widely used in the area of tasks classification and related fields; in

the field of finance, machine learning technology is more widely used in tasks of forecasts; in

40

the field of telecommunications, machine learning technology is widely used in the tasks of

classification and prediction. In addition, machine learning is also applied to the field of data

mining combination with other applications. The typical methods are based on the neural

network initialization, the application of evolutionary computation in machine learning research

and the study of level classification of machine learning.

3.3 Weka

 Machine learning has the potential to become one of the key components of intelligent

information systems, enabling compact generalizations, inferred from large databases of

recorded information, to be applied as knowledge in various practical ways; such as being

embedded in automatic processes like expert systems, or used directly for communicating with

human experts and for educational purposes. Presently, however, the field is not well placed to

do this. Most research effort is directed towards the invention of new algorithms for learning,

rather than towards gaining experience in applying existing techniques to real problems. The

WEKA project (Waikato Environment for Knowledge Analysis) [52] is redressing the balance by

applying standard machine learning techniques to a variety of agricultural and horticultural

problems. The goal of WEKA is to discover and characterize what is required for successful

applications of machine learning to real-world data. To support this effort, a workbench has

been developed to provide an integrated environment which not only gives easy access to a

variety of machine learning techniques through an interactive interface, but also incorporates

those pre- and post-processing tools that is found to be essential when working with real-world

data sets. Other systems for machine learning experimentation exist, but these are libraries of

routines that are intended for use by a researcher who is extending and comparing algorithms.

One exception although still a library of modules is Consultant, an expert system that allows

domain experts to choose a learning algorithm suited to their needs. Consultant assumes that a

machine learning algorithm exists that can be applied directly to solve the problem at hand.

Although a suitable algorithm may well exist, it is unlikely that its direct application on the

41

domain expert‘s data will produce a meaningful result. Domain experts need an environment in

which they can easily manipulate data and run experiments themselves. [52]

The philosophy behind WEKA is to move away from supporting a computer science or machine

learning researcher, and towards supporting the end user of machine learning. The end user is

someone typically, an agricultural scientist-with an understanding of the data and sufficient

knowledge of the capabilities of machine learning to select and investigate the application of

different techniques. In order to maintain this philosophy, WEKA concentrates on ensuring that

the implementation details of the machine learning algorithms and the input formats they require

are hidden from the user.

Figure 3.6 Classification tree for Container sequence from Weka tool.

42

3.4 C4.5 Algorithm

3.4.1. Algorithm

 The C4.5 [54] algorithm creates a model based on a tree structure. Nodes in the tree

represent features, with branches representing possible values connecting features. A leaf

representing the class terminates a series of nodes and branches. Determining the class of ‗n‘

number of instance is a matter of tracing the path of nodes and branches to the terminating leaf.

C4.5 uses the ‗divide and conquer‘ method to construct a tree from a set S of training instances.

If all instances in S belong to the same class, the decision tree is a leaf labeled with that class.

Otherwise the algorithm uses a test to divide S into several non-trivial partitions. Each of the

partitions becomes a child node of the current node and the tests separating S are assigned to

the branches. C4.5 uses two types of tests each involving only a single attribute A. For discrete

attributes the test is to test the value of A with one outcome for each value of A. For numeric

attributes the test is A where is a constant threshold. Possible threshold values are

found by sorting the distinct values of A that appear in S and then identifying a threshold

between each pair of adjacent values. For each attribute a test set is generated. To find the

optimal partitions of S C4.5 relies on greedy search and in each step selects the test set that

maximizes the entropy based gain ratio splitting criterion.

 The ‗divide and conquer‘ approach partitions until every leaf contains instances from

only one class or further partition is not possible for example, two instances have the same

features but different class. If there are no conflicting cases the tree will correctly classify all

training instances. However, this over-fitting decreases the prediction accuracy on unseen

instances. C4.5 attempts to avoid over-fitting by removing some structure from the tree after it

has been built. Pruning is based on estimated true error rates. After building a classifier the ratio

of misclassified instances and total instances can be viewed as the real error. However this

error is minimized as the classifier was constructed specifically for the training instances.

Instead of using the real error the C4.5 pruning algorithm uses a more conservative estimate,

43

which is the upper limit of a confidence interval constructed around the real error probability.

With a given confidence CF the real error will be below the upper limit with 1-CF. C4.5 uses sub

tree replacement or subtree rising to prune the tree as long as the estimated error can be

decreased. In our test the confidence level is 0.25 and the minimum number of instances per

leaf is set to two. We use subtree replacement and subtree rising when pruning.

3.4.2. Flow and Feature Definitions [57]

 The tool can calculate the attributes value of the network traffic. The tool forms packs

which have the same source IP and source port, destination IP, destination port and protocols

as a flow. In order to facilitate understanding, based on the definition of IP Packet header, the

following features were found and became the base feature set for the experiments:

• Flow duration

• Flow size in bytes and packets

• Packet length (minimum, mean, maximum and standard deviation)

•Inter-arrival time between packets (minimum, mean, maximum and standard deviation)

 Packet lengths are based on the IP length excluding link layer overhead. Inter-arrival

times have at least microsecond precision and accuracy. As the traces contained both

directions of the flows, features were calculated in both directions (except protocol and flow

duration).This produces a total of 37 flow features, which we refer to as the full feature set. Our

features are simple and well understood within the network community. They represent a

reasonable benchmark feature set. More complex features might be added in the future.

3.4.3. Feature Selection Algorithms

 In order to reduce the amount of computation, as well as other resources (such as

memory) consumption, and raise the classification rate. The use of CFS (correlation feature

selection) and genetic search method to select some of the most representative attributes from

the dozens of attributes of the flow to form a subset. The CFS algorithm uses an evaluation

heuristic that examines the usefulness of individual features along with the level of inter

44

correlation among the features. High scores are assigned to subsets containing attributes that

are highly correlated with the class and have low inter-correlation with each other. Conditional

entropy is used to provide a measure of the correlation between features and class and

between features. If H(X) is the entropy of a feature X and H(X|Y) the entropy of a feature X

given the occurrence of feature Y the correlation between two features X and Y can then be

calculated using the symmetrical uncertainty:

XH X H
YXC

Y H Y
 (2)

The class of an instance is considered to be a feature. The goodness of a subset is then

determined as:

1

21
subset

kr
G

k k k r
 (3)

where k is the number of features in a subset, 1r is the mean feature correlation with the class

and 2r is the mean feature correlation.

 When 1r is larger and the 2r is smaller, the classification results of subset is better.

3.4.4. The C4.5 Tree-Construction Algorithm [53]

 The algorithm constructs a decision tree starting from a training set S, which is a set of

cases or tuples in the database terminology. Each case specifies values for a collection of

attributes and for a class. Each attribute may have either discrete or continuous values.

Moreover, the special value unknown is allowed to denote unspecified values. The class may

have only discrete values. We denote with C1,……,CNClass the values of the class.

Decision Trees: A decision tree is a tree data structure consisting of decision nodes and leaves.

A leaf specifies a class value. A decision node specifies a test over one of the attributes, which

is called the attribute selected at the node. For each possible outcome of the test, a child node

45

is present. In particular, the test on a discrete attribute A has h possible outcomes iA d

where 1,i n and id are the known values for attribute A. The test on a continuous attribute

has two possible outcomes, A th and A th , where th is a value determined at the node

and called the threshold.

 A decision tree is used to classify a case, i.e., to assign a class value to a case

depending on the values of the attributes of the case. In fact, a path form the root to a leaf of the

decision tree can be followed based on the attribute values of the case. The class specified at

the leaf is the class predicted by the decision tree. A performance measure of a decision tree

over a set of cases is called classification error. It is defined as the percentage of misclassified

cases, i.e., of cases whose predicted classes differ from the actual classes.

 The C4.5 algorithm constructs the decision tree with a divide and conquers strategy. In

C4.5, each node in a tree is associated with a set of cases. Also, cases are assigned weights to

take into account unknown attribute values. At the beginning, only the root is present and

associated with the whole training set S and with all case weights equal to 1.0 .At each node,

the following divide and conquer algorithm is executed , trying to exploit the locally best choice,

with no backtracking allowed.

Program 1: Pseudo code of the C4.5 Tree-Construction Algorithm

(1)Compute ClassFrequency(T);

(2)if ‗OneClass‘ or ‗FewCases‘

 Return a leaf;

Create a decision node N;

(3)For Each Attribute A

 ComputeGain(A);

(4)N.test=AttributeWithBestGain;

(5)if N.test is continuous;

46

 Find threshold;

(6)For Each T‘ in the splitting of T

(7)if T‘ is Empty

 Child of N is a leaf

Else

(8) Child of N =FormTree(T‘);

(9) Compute Errors of N;

 Return N

Let T be the set of cases associated at the node. The weighted frequency freq

(,)iC T is computed (Step (1))) of cases in T whose class is iC for 1,i Nclass .

 In all cases (Step (2)) in T belong to the same class as
jC (or the number of cases in T

is less than a certain value), then the node is a leaf, with associated class
jC (respectively, the

most frequent class). The classification error of the leaf is the weighted sum of cases in T

whose class is not
jC (respectively, the most frequent class).If T contains cases belonging to

two or more classes (Step (3)), then the information gain of each attribute is calculated. For

discrete attributes, the information gain is relative to the splitting of cases in T into sets with

distinct attribute values. For continuous attributes, the information gain is relative to the splitting

of T into two subsets, namely, cases with an attribute value not greater than a local threshold

and cases with an attribute value greater than a certain local threshold, which is determined

during information gain calculation. The attribute with the highest information gain (Step (4)) is

selected for the test at the node. Moreover, in case a continuous attribute is selected, the

threshold is computed (Step (5)) as the greatest value of the whole training set that is below the

local threshold.

47

 A decision node has s children if iT (where i[1,s]) are the sets of the splitting produced

by the test on the selected attribute (Step(6)). Obviously, s=2 when the selected attribute is

continuous, and s=h for discrete attributes with h known values. For i=[1,s], if iT is empty,

(Step(7)) the child node is directly set to be a leaf, with associated class the most frequent class

at the parent node and classification error 0.

 If iT is not empty, the divide and conquer approach consists of recursively applying the

same operations (Step (8)) on the set consisting of iT plus those cases in T with an unknown

value of the selected attribute. Note that cases with an unknown value of the selected attribute

are replicated in each child with their weights proportional to the proportion of cases in iT over

cases in T with a known value of the selected attribute. Finally, the classification error (Step (9))

of the node is calculated as the sum of the error of classifying all cases in T as belonging to the

most frequent class in T, then the node is set to be a leaf and all sub trees are removed.

 The information gain of an attribute a for a set of cases T is calculated as follows: if a is

discrete, and iT (where i [1,s]) are the subsets for T consisting of cases with distinct known

value for attribute a, then:

1

gain info info
s

i

i

i

T
T T

T

Where

2

1

, ,
info() log

NClass
j j

j

freq C T freq C T
T

T T

is the entropy function .The function ,jfreq C T ,is the function calculating frequency of

classifying case T as
jC .While having an option to select information gain, by default,

48

however, C4.5 considers the information gain ratio of splitting iT (where 1,i s), which is the

ratio of information gain to its split information:

2

1

log
s

i i

i

T T
Split T P

T T

where P represents the probability function.

 It is easy to see that if a discrete attribute has been selected at an ancestor node, then

its gain and gain ratio are zero. Thus, C4.5 does not even compute the information gain of those

attributes. If a is a continuous attribute, cases in T with a known attribute value are first ordered

using a Quicksort ordering algorithm[53]. Assume that the ordered values are iv

(where 1,i m).Consider for 1, 1i m the value
1

2

i iv v
v and the splitting:

1 2;v v

j j j jT v v v T v v v

 For each value v, the information gain vgain is computed by considering the splitting

above, The value v‘ for which gain is vgain . By default, again, C4.5 calculates the information

gain ratio of the splitting sets
1

stT ,
2

ndT . Finally, note that, in case the attribute is selected at the

node, the threshold is calculated (Step(5)) by means a linear search in the whole training set ΓS

of the attribute value that best approximates the local threshold v‘ from below(i.e., which is not

greater than v‘). Such a value is a set to be the threshold at the node.

 Since constructed decision trees may be large and unreadable and may suffer from the

over fitting problem. The C4.5 system offers a simplified tree obtained by cutting paths

according to a given confidence level. Both the decision tree and its simplified version are

evaluated by computing the percentage of cases misclassified by the trees. Also, such an

evaluation can be performed on a test set, a set of unseen cases during the tree construction.

[53].

49

3.5 Summary

 Chapter 3 explains the basic concepts of machine learning and the C4.5 algorithm that

the thesis used for the research. Chapter 4 summarizes the experimental results.

 50

CHAPTER 4

PROPOSED ENCODER

4.1 Introduction

 Motion estimation accounts for about 70% of the total encoding time in H.264 [36]. This

thesis aims at applying machine learning to the motion estimation block to reduce the encoding.

The implementation has been done on JM 16.2 [29]. Machine learning is used to exploit the

spatial and temporal redundancies in video in order to make optimal mode decisions by

replacing the sum of absolute differences (SAD) and other cost evaluations by if – else

statements in the motion estimation block. The flow chart shown in Figure 6 sums up the

approach incorporated in this thesis. J4.8 analysis is used to reduce the complexity in

determining the mode decisions. The statistics for each 16x16 macroblock of the first four

frames of the video sequence is calculated. The statistics being the mean, variance, variance of

means for all the sub macroblock sizes in the macroblock, mean of the adjacent macroblocks,

variance of the adjacent macroblocks and variance of means for all the submacroblock sizes in

the adjacent blocks. The modes for the same first four frames from the video sequences are

determined from the H.264 encoder in the JM 16.2 software. These modes and the determined

statistics are collectively given as attributes for training in the WEKA [40] tool. This is an offline

process. The improvement in the encoding varies with the number of frames and the statistical

data of the macroblocks in those frames. The improvements in the encoding time for 4 frames

and 100 frames have been listed in this thesis report.

4.2 Approach

C4.5 (J48) of the WEKA [40] is used as the classifier algorithm to determine the mode

decision tree. This thesis has tried to determine a universal tree that can give relatively accurate

 51

mode decisions to any video sequence. To demonstrate this, this thesis has used different

combinations of video sequences for training the mode decision trees and later testing the

mode decision trees. Table 4.1 summarizes the results. The attributes most commonly

considered for mode decision in all the entries in the table are considered to determine the

mode decision for the universal mode decision tree. This tree is implemented in the form of if –

else statements in the motion estimation block of JM16.2. Hence, the motion estimation process

is reduced to if-else statements.

The idea of applying the concept of machine learning to improve the encoding time in

H.264 encoder is taken from [18] as shown in figure 4.1. But the approach that this thesis has

implemented is different from that in [18]. The idea in [18] is that the attributes of a sequence

along with its mode decisions are given to the WEKA tool. The classifier result is obtained. The

motion estimation code is then replaced by this tree. A unique tree is first built for every

sequence. The same sequence is used for both training and testing. Hence, the efficiency of

the tree (with respect to the motion estimation time) is greater than the approach of this thesis.

4.3 Experimental Results

Table 4.1 shows the WEKA tool results for various combinations of video sequences as

training and test sequences. The if-else statements derived from the mode decision trees were

used to replace the mode decision block in the JM encoder. The assessment metrics like

PSNR, MSE, SSIM and file compression ratios for the H.264 video encoder as in JM 16.2 and

the encoder based on machine learning are tabulated in Tables 4.2 through 4.13.

 52

Table 4.1 Weka Results

Training Seq

1

%

Accuracy

* for

Training

seq 1

Training seq

2

%

Accurac

y * for

Training

seq 2

Test seq % Accuracy*

Bus_cif 70.6861 Foreman_cif 80.7645 Mobile_cif 77.188

Stefan_cif 81.8182 Tempete_cif 82.8897 Container_cif 85.207

Container_cif 98.9268 ------ ---- Waterfall_cif 93.358

Waterfall_cif 90.5636 --------- ------- Stefan_cif 85.9583

Bus_cif 70.6861 -------- ------ Container_cif 86.529

Bus_cif 75.4665 Foreman_cif 94.9495 Mobile_cif 82.0896

Stefen_cif 88.3838 Tempete_cif 85.0444 Container_cif 90.1812

Container_cif 98.131 ---------- ----- Waterfall_cif 95.00442

Waterfall_cif 92.1086 -------- -----------

--

Stefan_cif 88.952

Bus_cif 70.6861 --------- -----------

--

Bus_cif 74.8865

 53

Waterfall_cif 90.5636 --------- ------ Bus_cif 83.0469

%Accuracy * refers to the accuracy in determining the mode decision using machine learning in

comparison to the mode decision in JM 16.2 encoder .

Figure 4.1 Classification tree for container sequence from Weka tool

Table 4.1 - Continued

 54

Figure 4.2 Tree structure for container sequence from Weka tool

Figure 4.3 Snap shot of the implementation of the tree structure in JM 16.2 encoder

 55

The simulation results (4 frames)obtained using JM 16.2 and the JM modified using

machine learning .The results are as shown in Table 4.2.

Table 4.2 Results obtained using JM 16.2 and JM using machine learning for 4 frames

Seq No Sequence Encoding time

(seconds) for

JM 16.2

without

machine

learning.

Encoding

time

(seconds)

using

machine

learning.

ME time

(seconds) for

JM 16.2 without

machine

learning.

ME time

(seconds)

using machine

learning.

1 Foreman_

qcif

346.720 270.037 247.147 151.595

2 Coast_qcif 361.714 279.803 242.531 144.371

3 Car

phone_qcif

347.85 269.674 249.081 152.576

4 Silent_qcif 368.155 253.006 254.297 139.053

5 Suzie_qcif 343.983 342.583 263.777 260.981

6 Miss-

america_q

cif

368.694 198.909 310.542 141.584

7 Bus_cif 1608.934 1346.542 1010.012 617.088

8 Container_ 1542.106 1241.772 1109.672 686.165

 56

9

Foreman_

cif

1689.383

889.833

1316.543

537.128

10

Mobile_cif

2031.07

1695.243

1066.867

627.440

11 Tempete_

cif

1808.560 1361.954 1078.435 590.689

12 Stefan_cif 1750.255 1267.813 1136.800 617.822

13 Waterfall_

cif

1497.525

994.996 1017.974 529.557

14 Mother-

daughter_

qcif

422.332 360.371 322.011 276.212

Table 4.2 – Continued

 57

Figure 4.4 Motion estimation time for 4 frames for sequences in Table 4.2

The speed up in the encoding time and motion estimation time (4 frames)by using machine

learning .The results are tabulated in Table 4.3.

Table 4.3 Speed up in encoding time and motion estimation time for 4 frames using
machine learning compared to JM 16.2 encoder

Sequence

Number

Sequence Speed up in Encoding

time

Speed up in ME time

1 Foreman_qcif 22.11 % 38.66 %

2 Coast_qcif 22.64 % 40.47 %

3 Car phone_qcif 22.47 % 38.74 %

4 Miss-

america_qcif

15.772% 28.86%

 58

 5

Bus_cif

16.30 %

38.90 %

6 Container_cif 19.47 % 38.16 %

7 Foreman_cif 47.32 % 59.20 %

8 Mobile_cif 47.47% 62.99%

9 Tempete_cif 40.370% 56.629%

10 Stefan_cif 35.04% 51.268%

11 Waterfall_cif 32.022% 46.778%

12 Silent_qcif 30.9266% 45.039%

13

Suzie_qcif

23.36779%

23.819%

14 Mother-

daughter_qcif

23.75% 23.353%

The compressed file sizes (4 frames) obtained using normal JM 16.2 and JM using

machine learning. It is important that the H.264/AVC encoder with machine learning maintains

the compression ratio. Hence it is important to compare the compressed file sizes for the

encoder with machine learning and the encoder in JM 16.2 .The results are tabulated in Table

4.4.

Table 4.3 - Continued

 59

Table 4.4 Comparison of compressed file sizes for four frames for sequences in Table 4.2

Sequence

Number
Sequence

Compressed

file size (KB) in

JM 16.2

encoder.

Compressed file

size (KB) using

machine

learning.

% Increase in encoded

file size using machine

learning

1 Foreman_qcif 4.34 4.34 0

2 Coast_qcif 5.68 5.67 + 0.0017

3 Silent_qcif 4.0 4.0 0

4 Suzie_qcif 3.0 3.0 0

5

Car

phone_qcif

4.52 4.54 0.0044

6

Bus (cif)

31.9

32.2

0.0093

7 Container (cif) 12.0 12.0 0

8 Foreman (cif) 12.4 12.7 0.1903

9 Mobile(cif) 50.4 51.0 0.0119

 60

10
Stefan(cif) 32.5 34.0 0.0462

11 Waterfall(cif) 18.7 19.0 0.0160

12 Tempete(cif) 36.7 37.0 0.0082

13

Miss-

america_qcif

2.0 2.0 0

14
Mother-

daughter_qcif
2.279 2.279 0.0

Figure 4.5 Compressed file sizes using machine learning for four frames for sequences in
Table 4.4

Table 4.4 - Continued

 61

 It is important that the H.264/AVC encoder with machine learning maintains the fidelity

of the video sequences. Hence it is important to compare the fidelity measures like PSNR and

MSE for the encoder with machine learning and the encoder in JM 16.2. The results are

tabulated in Table 4.5.

Table 4.5 Comparison of PSNR and MSE for four frames

Sequence

Number
Sequence

PSNR(

dB)

using

JM

16.2

encode

r

PSNR (dB)

using

machine

learning

MSE using

JM 16.2

encoder.

MSE using

machine

learning.

1

Foreman_qcif 37.389 37.324 11.881 12.068

2 Coast_qcif 35.24 35.21 19.539 19.681

3 Car ph_qcif 37.937 37.879 10.472 10.619

4
Miss-

america_qcif
40.949 40.881 5.22970 5.31475

5 Bus_cif 35.961 35.932 16.518 16.633

6 Container_cif 37.162 37.153 12.517 12.544

 62

7 Foreman_cif 37.833 37.85 10.371 10.684

8 Mobile_cif 35.541 35.512 18.2873 18.419

9 Tempete_cif 35.962 35.93 16.594 16.705

10 Stefan_cif 37.011 36.985 13.00572 13.08644

11 Waterfall_cif 35.912 35.906 16.6923 16.716

12
Mother-

daughter_qcif
38.363 38.363 9.481 9.481

13 Silent_qcif 36.784 36.775 13.63795 13.6775

14 Suzie_qcif 37.749 37.741 10.938 10.381

Figure 4.6 MSE in JM 16.2 and machine learning for four frames for sequences in Table
4.5

The simulation results obtained (4 frames) with respect to SSIM .

Table 4.5 – Continued

 63

It is important that the H.264/AVC encoder with machine learning maintains the fidelity

of the video sequences. Hence it is important to compare the perceptual quality measure SSIM

for the encoder with machine learning and the encoder in JM 16.2 the results are tabulated in

Table 4.6

Table 4.6 SSIM comparison for four frames

Sequence

Number

Sequence SSIM for JM 16.2 SSIM using

machine learning.

% decrease

**

1 Foreman_qcif 0.95944 0.95910 0.035

2 Coast_qcif 0.91793 0.91763 0.032

3 Car phone_qcif 0.96670 0.96641 0.029

4 Suzie_qcif 0.9555 0.9557 0.0002

5 Bus_cif 0.94973 0.94941 0.033

6 Container_cif 0.92827 0.92823 0.0043

7 Foreman_cif 0.94302 0.94306 + 0.0042

8 Mobile_cif 0.9758 0.9755 .00003

9 Tempete_cif 0.9711 0.9709 0.02

10 Stefan_cif 0.9807 0.9806 0.0001

11 Waterfall_cif 0.9420 0.9420 0.00

12 Silent_qcif 0.9600 0.9600 0.00

 64

13 Miss-america_qcif 0.9707 0.9706 0.001

14 Mother-

daughter_qcif

0.9663 .9663 0.00

%decrease** refers to the percentage decrease in SSIM using machine learning in

comparison to the SSIM as obtained in JM 16.2 encoder

Figure 4.7 SSIM comparison for four frames for sequences in Table 4.6

The simulation results (100 frames) obtained using JM 16.2 and the JM modified

using machine learning .The results are as shown in Table 4.7.

Table 4.6 - Continued

 65

Table 4.7 Encoding time and ME time for 100 frames using JM 16.2 and JM using
machine learning

Seq No Sequence Encoding time

(seconds) for JM

16.2 without

machine learning.

Encoding time

(seconds)

using

machine

learning.

ME time

(seconds) for

JM 16.2

without

machine

learning.

ME time

(seconds)

using machine

learning.

1 Foreman_qci

f 12061.84 12135.46 12309.39 11334.7

2 Coast_qcif 12466.84 11593.49 12050.3 11094.56

3 Car

phone_qcif 11988.99 11121.75 12385.94 11908.72

4 Suzie_qcif 11088.88 10539.32 11050.17 10502.91

5 Miss-

america_qcif 13062.02 11595.37 13020.76 11559.16

6 Bus_cif 51582.83 44868.16 50387.4 44700.1

7 Container_ci

f 49234.23 40012.79 48001.23 38785.19

8 Foreman_cif 58235.76 50674.88 56342.9 49463.13

 66

9 Mobile_cif 100018.6 82372.02 9981.046 8156.502

10

Tempete_cif 37896.78 36143.12 35963.65 34172.36

11 Stefan_cif 64173.79 61685.47 63243.57 58976.46

12 Waterfall_cif 56789.43 53845.07 49876.13 47876.32

13 Mother-

daughter_qci

f 10137.79 9248.341 9103.293 8078.816

Figure 4.8 Estimation time for 100 frames for sequences in Table 4.8

Table 4.7 – Continued

 67

The speed up in the encoding time and motion estimation time (100 frames) by using

machine learning. The results are tabulated in Table 4.8.

Table 4.8 Speed up in encoding time and motion estimation time for 100 frames using
machine learning compared to JM 16.2 encoder

Sequence Number Sequence Speed up in Encoding

time

Speed up in ME time

1 Foreman_qcif 12.11% 28.66%

2 Coast_qcif 12.64% 30.47%

3 Car phone_qcif 12.47% 28.74%

4 Miss-america_qcif 21.27% 35.31%

5 Bus_cif 12.43% 31.25%

6 Container_cif 36.05% 44.40%

7 Foreman_cif 15.30% 28.90%

8 Mobile_cif 19.47% 28.16%

9 Tempete_cif 37.32% 49.20%

10 Stefan_cif 16.53% 31.18%

11 Waterfall_cif 14.69% 35.22%

12 Silent_qcif 17.56% 35.65%

13 Suzie_qcif 23.55% 37.97%

 68

Figure 4.9 Speed up in total encoding time for 100 frames for sequences in Table 4.8

Figure 4.10 Speed up in Motion estimation time for 100 frames for sequences in Table
4.8

The compressed file sizes (100 frames) obtained using normal JM 16.2 and JM using

machine learning. The results are tabulated in Table 4.9.

 69

Table 4.9 Comparison of compressed file sizes for 100 frames

Sequence

Number

Sequence Compressed

file size (KB) in

JM 16.2

encoder.

Compressed file

size (KB) using

machine

learning.

% Increase in

encoded file size

using machine

learning

1 Foreman_qcif 4.34 4.34 0

2 Coast_qcif 5.68 5.67 + 0.0017

3 Silent_qcif 4.0 4.0 0

4 Suzie_qcif 3.0 3.0 0

5 Car phone_qcif 4.52 4.54 0.0044

6 Bus (cif) 31.9 32.2 0.0093

7 Container (cif) 12.0 12.0 0

8 Foreman (cif) 12.4 12.7 0.1903

9 Mobile(cif) 50.4 51.0 0.0119

10 Stefan(cif) 32.5 34.0 0.0462

11 Waterfall(cif) 18.7 19.0 0.0160

12 Tempete(cif) 36.7 37.0 0.0082

13 Miss-

america_qcif

2.0 2.0 0

 70

Figure 4.11 Compressed file sizes for 100 frames using machine learning for sequences
in Table 4.4

The simulation results obtained (100 frames) with respect to PSNR and MSE are

tabulated in Table 4.10.It is important that the H.264/AVC encoder with machine learning

maintains the fidelity of the video sequences. Hence it is important to compare the fidelity

measures like PSNR and MSE for the encoder with machine learning and the encoder in JM

16.2. Table 4.10 tabulates the comparisons.

Table 4.10 Comparison of PSNR and MSE for 100 frames

Sequence

Number

Sequence PSNR(dB)

using JM 16.2

encoder

PSNR (dB)

using

machine

learning

MSE

using JM

16.2

encoder.

MSE using

machine

learning.

1 Foreman_q

cif

37.389 37.324 11.881 12.068

 71

2 Coast_qcif 35.24 35.21 19.539 19.681

3 Car ph_qcif 37.937 37.879 10.472 10.619

4 Miss-

america_qci

f

40.949 40.881 5.22970 5.31475

5 Bus_cif 35.961 35.932 16.518 16.633

6 Container_c

if

37.162 37.153 12.517 12.544

7 Foreman_ci

f

37.833 37.85 10.371 10.684

8 Mobile_cif 35.541 35.512 18.2873 18.419

9 Tempete_cif 35.962 35.93 16.594 16.705

10 Stefan_cif 37.011 36.985 13.00572 13.08644

11 Waterfall_cif 35.912 35.906 16.6923 16.716

12 Mother-

daughter_q

cif

38.363 38.363 9.481 9.481

13 Silent_qcif 36.784 36.775 13.63795 13.6775

14 Suzie_qcif 37.749 37.741 10.938 10.381

Table 4.10 – Continued

 72

Figure 4.12 SSIM in JM 16.2 and machine learning for 100 frames for sequences in Table
4.10

Figure 4.13 MSE in JM 16.2 and machine learning for 100 frames for sequences in Table
4.10

The simulation results obtained (100 frames) with respect to SSIM . It is important that

the H.264/AVC encoder with machine learning maintains the fidelity of the video sequences.

 73

 Hence it is important to compare the perceptual video quality SSIM for the encoder with

machine learning and the encoder in JM 16.2The results are tabulated in Table 4.11.

Table 4.11 SSIM comparison for 100 frames

Sequence

Number

Sequence SSIM for JM

16.2

SSIM using

machine

learning.

% decrease **

1 Foreman_qcif 0.95944 0.95910 0.035

2 Coast_qcif 0.91793 0.91763 0.032

3 Car phone_qcif 0.96670 0.96641 0.029

4 Suzie_qcif 0.9555 0.9557 0.0002

5 Bus_cif 0.94973 0.94941 0.033

6 Container_cif 0.92827 0.92823 0.0043

7 Foreman_cif 0.94302 0.94306 + 0.0042

8 Mobile_cif 0.9758 0.9755 .00003

9 Tempete_cif 0.9711 0.9709 0.02

10 Stefan_cif 0.9807 0.9806 0.0001

11 Waterfall_cif 0.9420 0.9420 0.00

12 Silent_qcif 0.9600 0.9600 0.00

13 Miss-america_qcif 0.9707 0.9706 0.001

 74

Figure 4.14 SSIM comparison for 100 frames for sequences in Table 4.11

4.4 Observations

 Tables 4.2 through Tables 4.6 tabulate the simulation results for encoding 4 frames of

the video sequences and Tables 4.7 through Tables 4.11 tabulate the simulation results for

encoding 100 frames of the video sequences. The observation made is that the average

improvement in encoding time for the first 4 frames is 40.28% and the average improvement in

encoding time for the first 100 frames is 18.3%. This variation can be attributed to the fact that

the training for the classification rule has been done using the first four frames. Training on 100

frames is not done because the amount of data in 100 frames would lead to the over-fitting

problem and hence a general classification rule cannot be built. Hence the performance of the

classification rule is optimum for the first four frames only.

 75

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

 It was observed that a single universal mode decision tree failed to produce good

fidelity of the video when all the modes for ME/MC were used in the machine learning algorithm.

So this thesis considered only the sub macro block modes, i.e. 8x8, 8x4, 4x8 and 4x4 modes

(Figure 2.6) for the machine learning. The function called ‗submacroblock_mode_decision‘ in

the JM 16.2 software [29] has been replaced by the if-else statements as shown in Figure 5.1.

The results for four frames are tabulated in the Tables 4.3 through 4.7. From Table 4.3, it is

clear that the average speed up in the encoding time is 28.5%. The average speed up in the

motion estimation time is 42.84605%. From table 4.5, the average percentage decrease in

compressed file size is 0.36%. From Table 4.7, it is evident that the average decrease in SSIM

is less than 0.0107%. The results for hundred frames are tabulated in the Tables 4.8 through

4.11. From Table 4.8, it is clear that the average speed up in the encoding time is 8.5%. The

average speed up in the motion estimation time is 18.34600%. From Table 4.10, it is evident

that the average decrease in SSIM is less than 0.0109%. This can be attributed to the over-

fitting problem of the classifier. Since the training sequence includes only the first four frames,

the efficiency of the classifier is less when the testing sequence includes one hundred frames.

 76

Figure 5.1 Snap shot of the implementation of the Tree structure in JM 16.2 encoder

5.2 Future Work

 As explained in section 5.1, the sub-macroblock 8x8, 8x4, 4x8 and 4x4 modes have

been used for classification in this thesis. A classification rule which considers all the modes for

mode decision can be developed. This thesis used data from four frames for training the

classification rule. A scheme which would consider more number of frames for training while

considering the over-fitting problem can be pursued for future work.

 77

APPENDIX A

STRUCTURAL SIMILARITY INDEX METRIC (SSIM)

 78

 SSIM is a new objective method that can measure image quality between a distorted

image and a reference image. The SSIM measures the degradation of structural information

based on the assumption that human visual system characteristics are adopted for extracting

structural information from an image scene. SSIM has better consistency with perceived image

quality than pixel error model based on different performance evaluations. The system diagram

of structural similarity measurement system is shown in Figure A.1.

Figure A.1 Structural similarity index measurement system [56]

Suppose x = { xi |i = 1, 2, · , N} and y = { yi |i = 1, 2, · , N} are two finite-length image

signals, which have been aligned with each other, SSIM is defined as the product of three local

quantities: luminance comparison (function of mean), contrast comparison (function of

variance), and structure comparison (function of correlation coefficient and variance).

 79

where and are the means of x and y respectively.

 and are the standard deviations of the images X and Y respectively.

 is the covariance of X and Y .

, and are small constants such that

 and

where K1,K2 and L are constants

SSIM can have a maximum value of 1.

 The MSE and its derivative PSNR are conventional metrics to compare any two

images. MSE measures the difference between the original and distorted pixels. PSNR is a

logarithmic representation of the inverse of this measure. Compared to other objective

measures, PSNR is easy to compute and well understood by most researchers. However both

MSE and PSNR do not correlate well with the subjective quality of the reconstructed images.

The subtle differences between degradations of different intensities are not properly reflected

using PSNR. The SSIM metric has proven to be a metric that is closest to the human perception

 80

of the received video sequence. This method utilizes structural distortion as an estimate of

perceived visual distortion, whereas most other proposed approaches are error sensitivity

based methods [25].

 81

APPENDIX B

VIDEO SEQUENCES CONSIDERED IN THIS THESIS

 82

 83

Figure B.1 Test Sequences mentioned in table 4.1

84

REFERENCES

[1] I. E.G. Richardson, ―H.264 and MPEG-4 video compression: video coding for

next-generation multimedia‖, Wiley, 2003.

[2] K. Sayood, "Introduction to Data Compression,‖ 3rd Edition, Morgan Kaufmann

Publisher Inc., 2006.

[3] R. Schafer and T. Sikora, "Digital video coding standards and their role in video

communications," Proceedings of the IEEE, Vol. 83, pp. 907-923, Jan. 1995.

[4] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 /

ISO / IEC 14496-10, Nov. 2009.

[5] Open source article, ―H.264/MPEG-4 AVC,‖ Wikipedia Foundation,

http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

[6] G.A Davidson et al, ―ATSC video and audio coding‖, Proceedings of the IEEE,

vol. 94, pp. 60-76, Jan. 2006 (www.atsc.org).

[7] G.F.Escribano et al, ― An MPEG-2 to H.264 video transcoder in the baseline profile‖,

IEEE Trans. CSVT, vol. 20, pp. 763-768, May 2010.

[8] S. Kwon, A. Tamhankar and K.R. Rao, ‖Overview of H.264 / MPEG-4 Part 10‖,

J. Visual Communication and Image Representation, vol. 17, pp.183-216, April

2006.

[9] T. Wiegand and G. J. Sullivan, ―The H.264 video coding standard‖, IEEE Signal

Processing Magazine, vol. 24, pp. 148-153, March 2007.

http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

85

[10] A. Puri et al, ―Video coding using the H.264/ MPEG-4 AVC compression

standard‖, Signal Processing: Image Communication, vol. 19, pp: 793 – 849,

Oct. 2004.

[11] D. Marpe, T. Wiegand and S. Gordon, ―H.264/MPEG4-AVC Fidelity Range

Extensions: Tools, Profiles, Performance, and Application Areas‖, Proceedings

of the IEEE International Conference on Image Processing 2005, vol. 1, pp.

593 - 596, Sept. 2005.

[12] G. Sullivan, P. Topiwala and A. Luthra, ―The H.264/AVC Advanced Video

Coding Standard: Overview and Introduction to the Fidelity Range Extensions‖,

SPIE conference on Applications of Digital Image Processing XXVII, vol. 5558,

pp. 53-74, Aug. 2004.

[13] K. R. Rao and P. C. Yip, ―The transform and data compression handbook‖,

Boca Raton,FL: CRC press, 2001.

[14] T. Wiegand et al, “Introduction to the Special Issue on Scalable Video

Coding—Standardization and Beyond‖ IEEE Trans. on Circuits and Systems

for Video Technology, vol. 17, pp. 1034, Sept. 2007.

[15] HHI presentation of the Scalable Extension of H.264/AVC,

http://ip.hhi.de/imagecom_G1/savce/index.htm

[16] Y. Huh, K. Panusopone, K.R. Rao, ―Variable block size coding of images with

hybrid quantization‖, IEEE Trans. Circuits And Systems for Video Technology

vol. 6, pp 679–685, Dec. 1996.

http://ip.hhi.de/imagecom_G1/savce/index.htm

86

[17] J. Ribas-Corbera and D.L. Neuhoff, ―Optimizing Block Size in Motion

Compensation‖, Journal of Electronic Imaging, vol. 7, pp.155-165, Jan. 1998

[18] T.D.Tran, J.Liang and C. Tu, ―Lapped Transform via Time-Domain Pre- and

Post-Filtering‖, IEEE Trans on Signal Processing, vol.51, no.6, pp. 1557-1571,

Jun. 2003.

[19] W.B.Pennebaker and J.L.Mitchell, JPEG Still Image Data Compression

Standard, Van Nostrand Reinhold, 1993.

[20] M. Wien, ―Variable block size transforms for H.264/AVC‖, IEEE Trans. For

Circuits and Systems for Video Technology, vol. 13, pp. 604–613, July 2003.

[21] Nokia, Proposal to support MPEG-4 AVC / H.264/ AVC in Rel-6, 3GPP SA4

Meeting #27, document S4-030478. (available from http://www.3gpp.org/ftp/tsg

sa/WG4 CODEC/TSGS4 27/Docs/)

[22] M. Ravassi, M. Mattavelli and C. Clerc, ―JVT/H.26L decoder complexity analysis‖, Joint

Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, doc. JVT-D153, Klagenfurt,

Austria, 22–26 July, 2002 (available via anonymous ftp from ftp://ftp.imtc-files.org/jvt-

experts/).

[23] M.-T. Sun, T.-D. Wu and J.-N. Hwang, ―Dynamic bit allocation in video combining for

multipoint conferencing,‖ IEEE Trans. Circuits and Syst. II, vol. 45, no. 5, pp. 644-648,

May 1998.

[24] O. Werner, ―Re-quantization for transcoding of MPEG-2 intra frames,‖ IEEE Trans.

Image Processing, vol. 8, no. 2, pp. 179-191, Feb. 1999.

http://www.3gpp.org/ftp/tsg%20sa/WG4%20CODEC/TSGS4%2027/Docs/
http://www.3gpp.org/ftp/tsg%20sa/WG4%20CODEC/TSGS4%2027/Docs/
http://www.3gpp.org/ftp/tsg%20sa/WG4%20CODEC/TSGS4%2027/Docs/
ftp://ftp.imtc-files.org/jvt-experts/
ftp://ftp.imtc-files.org/jvt-experts/

87

[25] T. Shanabelah and M. Ghanbari, ―Heterogeneous video transcoding to low spatial

temporal resolutions and different encoding formats,‖ IEEE Trans. Multimedia, vol. 2,

no. 2, pp. 101-110, Jun. 2000.

[26] K.-H. Tan and M. Ghanbari, ―Layered image coding using the DCT pyramid,― IEEE

Trans. Image Processing, vol. 4, no. 4, pp. 512-516, Apr. 1995.

[27] J.-N.Hwang and T.-D. Wu, ―Motion vector re-estimation and dynamic frame-skipping for

video transcoding,‖ Conf Rec. 32nd Asilomar Conf. Signals, Systems and Computers

vol. 2, pp .1606-1610, 1998.

[28] I. E. Richardson, ―The H.264 Advanced Video Compression Standard‖, Second Edition,

Wiley, 2010.

[29] JM reference software http://iphome.hhi.de/suehring/tml/

[30] A. Luthra, G. Sullivan and T. Wiegand, ―Introduction to the special issue on the

H.264/AVC video coding standard‖, IEEE Trans. on Circuits and Systems for Video

Technology, vol. 13, issue 7, pp. 557-559, July 2003.

[31] Ten things to consider when considering video for distribution for multiple platforms

http://www.internetvideomag.com/articles_2010/010610_EncodingVideo.html.

[32] A. Nakagawa, ―Fujitsu‘s Approach to H.264/AVC and Application Trends‖, Sci.Tech.

Journal, vol.44, pp.343-350, 2008.

[33] G .Holmes, A. Donkin and I .H. Witten, ―Weka: a machine learning workbench, ‖IEEE

conference on IIS , pp 357-361, 1994.

http://iphome.hhi.de/suehring/tml/
http://www.internetvideomag.com/articles_2010/010610_EncodingVideo.html

88

[34] W.Hua, M.Cuiqin and Z.Lijuan, ―A Brief Review of Machine Learning and Its

Application‖, IEEE conference on ICIECS , pp.1-4, 2009.

[35] Video test sequences (YUV 4:2:0): http://trace.eas.asu.edu/yuv.

[36] M. Chelemal and K.R.Rao, ―Fast Computuation for the Discrete Cosine Transform‖,

Nineteenth Asilomar Conf. on circuits, systems and computers, pp. 273-277,Nov 1985.

[37] http://www.apple.com/quicktime/technologies for H.264 codec reference.

[38] Z. Wang and A. C. Bovik, Modern Image Quality Assessment. Synthesis Lectures on

Image, Video and Multimedia Processing. Morgan and Claypool, 2006.

[39] J.Lee,et.al, ―SIMD optimization of the H.264/SVC decoder with efficient data structure‖,

IEEE International Conf. on Multimedia and expo, pp. 69-72, June 2003.

[40] http://www.cs.waikato.ac.nz/ml/weka/ for WEKA tool download.

[41] Z. He and S. K. Mitra, ―Optimum bit allocation and accurate rate control for video coding

via p-domain source modeling‖, IEEE Trans. Circuits Syst. Video Tech, vol.12, pp. 840-

849, Oct. 2002.

[42] H.Kim and Y.Altunhasak, ―Low-Complexity macroblock mode selection for H.264-AVC

encoders‖, International Conference on Image Processing, vol.2, pp .765-768, Oct

2004.

[43] P.Carrillo, H. Kalva and T.Pin, ―Low complexity H.264 video encoding‖, Applications of

Digital Image Processing Proc of SPIE, vol. 7443, 74430A, Sept 2009.

http://trace.eas.asu.edu/yuv
http://www.apple.com/quicktime/technologies%20for%20H.264

89

[44] M.Enriquez. et.al, ―A Fast Motion-Cost Based Algorithm for H.264/AVC Inter Mode

Decision‖, ICIP 2007, pp 325-328, 2007.

[45] J.M.Moon and J.H. Kim, ―A new Low-Complexity Integer Distortion Estimation Method

for H.264/AVC Encoder‖, IEEE Trans. on Circuits and Systems for video Technology,

2010, vol.20, pp 207-212, Feb.2010.

[46] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 / ISO /

IEC 14496-10, Nov. 2009.

[47] M.Wien, H.Schwarz and T.Oelabum, ―Performance Analysis of SVC‖, IEEE Trans on

Circuits and systems for video Technology, vol.17, pp.1194-1203, Sept.2007.

[48] T. Schierl, T. Stockhammer and T. Wiegand, "Mobile Video Transmission using

Scalable Video Coding (SVC)," IEEE Trans. On Circuits and Systems for Video

Technology, vol.17,pp.1204-1217,Sept .2007.

[49] E.Martinian ,‖Extensions of H.264/AVC for Multimedia Video Compression‖, IEEE Proc.

of ICIP ―,pp 2981-2984,2006.

[50] HHI presentation of the Scalable Extension of H.264/AVC,

http://ip.hhi.de/imagecom_G1/savce/index.htm

[51] W.Hua, M.Cuiqin and Z.Lijuan, ―A Brief Review of Machine Learning and Its

Application.‖, International conference on ICIECS, pp 1-4, 2009.

[52]] G.Holmes, A.Donkin and I.H.Witten, ―WEKA: a machine learning workbench‖,

Proceedings of the 1994 second Australian and New Zealand Conference on Intelligent

Information Systems, pp .357-361,1994.

http://ip.hhi.de/imagecom_G1/savce/index.htm

90

[53] S.Ruggieri, ―Efficient C4.5‖, IEEE Trans on Knowledge and Data engineering, Vol.14,

pp. 438-444, Aug.2002.

[54] Y.Ma, et.al, ―Study of information network traffic identification based on C4.5 algorithm‖,

4
Th

 international conference on Wireless Communications, Networking and Mobile

computing, pp.1-5, 2008.

[55] C.M. Higgins and R.M. Goodman, ―Learning fuzzy rule-based neural networks for

function approximation‖, International Joint Conference on Neural Networks, vol.1,

pp.251-256, 1992.

[56] Zhi-Yi Mai, et al ―A new-rate distortion optimization using structural information in

H.264

 I-frame encoder‖ ACIVS 2005, LNCS 3708, pp. 435–441, 2005.

[57] N.Williams, S.Zander and G.Armitage, ―A Preliminary Performance Comparison of Five

Machine Learning Algorithms for Practical IP Traffic Flow Classification‖ ACM

SIGCOMM computer communication review, vol.36, issue 5, pp 5-16, Oct 2006.

91

BIOGRAPHICAL INFORMATION

Thejaswini Purushotham was born in Bangalore, Karnataka, India. She received her

bachelor‘s degree in Electronics and Communication from P.E.S.I.T, Bangalore in May 2008.

She was a member of the Multimedia Processing Lab, headed by Dr. K.R. Rao. She worked as

a Graduate Research Assistant for Dr. K. R. Rao. She did her internship with Damaka Inc. Her

research interests are in the field of video compression, networking and wireless

communications and she plans to join the video development group at Damaka Inc after

graduation.

