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ABSTRACT 

 

LOW COMPLEXITY H.264 ENCODER USING MACHINE LEARNING 

 

Thejaswini Purushotham, M.S 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  K.R. Rao   

 H.264 is currently one of the most widely accepted video coding standards in 

the industry. Several software and hardware solutions for the H.264 video encoder exist in the 

market at present.  H.264 is used in such applications as Blu-ray Disc, videos on the internet, 

digital video broadcast, direct-broadcast satellite television service, cable television services, 

and real-time videoconferencing. This thesis uses the WEKA (Waikato Environment for 

Knowledge Analysis) tool to generate the classification rule. WEKA is detailed in Chapter 3. The 

input attributes to the WEKA have been calculated from the video sequence to be encoded. The 

procedure has been elaborated in Chapter 4. 

For real time applications like videoconferencing it is essential that the encoding time taken by 

the video codec be as low as possible. In the H.264 video codec, the macroblock mode decision 

in inter frames is computationally the most expensive process since it uses such features as 

variable block size, motion estimation and quarter pixel motion compensation in H.264 encoder. 

Hence, the goal of this thesis is to reduce the encoding time while conserving the quality and 

compression ratio.  
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Machine learning has been used to decide the mode decisions and hence reduce the motion 

estimation time. The proposed machine learning method on an average decreases the 

encoding time by 42.86405% for mode decisions in H.264 encoder with a loss of only .01070% 

decrease in structural similarity index metric (SSIM). 

Motion Estimation is the most time consuming part of the encoder. An average of 60 -70 % of 

the total encoding time is taken for motion estimation. The time consuming  sum of absolute 

differences(SAD) method adopted in the H.264 encoder in JM 16.2 software has been replaced 

with a classification rule. Assuming FS (Full Search) and P block types, Q reference frames and 

a search range of MxN, MxNxPxQ computations are needed. 

The classification rule has been implemented as a series of if-else statements.  The time taken 

to execute the if-else statements is lesser than the time taken to execute the SAD. Hence this 

thesis describes a reduction in the H.264 encoder execution time.   
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CHAPTER 1 

INTRODUCTION 

1.1 Significance 

    In the era of fast paced digital world, the distribution and creation of digital video is 

widespread. Technologies that can accommodate the needs of a broad array of customers from 

the video expert or an industry professional to the casual at-home user are necessary. 

 Regardless of the user‘s level of expertise, it is important to select an encoding solution 

that offers extensive format support plus the highest quality and fastest video encoding speed. 

For many users, the ability to repurpose content for distribution to a growing number of new 

media channels, such as web, DVD and mobile phones, is also very important. There are 

various stages in the digital video workflow process, however, one of the most critical and 

challenging is encoding, since this step has a direct impact on the ultimate quality of the viewing 

experience. With the many complexities that are involved in video encoding, this step can make 

or break the end product if the ―right‖ solution is not selected. 

 Many of the challenges experienced during the encoding process involve file format 

compatibility, optimizing picture quality, and/or processing speed. Video encoding can be 

viewed as a complex process due to the many variables at play, including an ever-growing 

number of video codecs, frame sizes and frame rates required for viewing on everything from 

HDTV to mobile devices. With this in mind, it is important to find an encoding solution that 

addresses all of these variables and simplifies the process while offering maximum flexibility to 

distribute the video to more viewers at the highest quality, regardless of how it is being viewed. 

The best solutions in the market not only ensure the highest compression quality, but also 

include the ability to apply video processing filters to ensure the highest visual quality of the final 

content [1]. 
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 Video encoding requires high processing and hence has traditionally been implemented 

on special-purpose hardware.  Software solutions are feasible for applications requiring low 

encoding rates, typically being the non real-time applications. Software solutions need a 

general-purpose computing system .The usage of general-purpose computing system has 

various advantages. Software solutions are easily available and flexible and allow 

experimenting with and hence improving the various components of the encoder. For a real-

time software solution to be feasible it is necessary that the encoding time offered by the 

solution be very low.  Several prominent companies/organizations that provide software 

implementations for H.264/AVC are as follows [1]: Adobe Systmes, AVS Video Editor, Apple 

Inc, BT Group, Sorenson, Intel, Main Concept, On2 Technologies, LGPL, CoreAVC, NeroLogic, 

Blu-Code, Sonic Cinevision, Siway, SBMC Media Center.  

 Figure 1.1 shows the usage of H.264/AVC video codec in the market. The 

H.26/AVC[1][8][9][10] standard provides more than 100 times the number of coding modes of 

MPEG-2, and H.264/AVC achieves a compression ratio more than two times that of MPEG-2 by 

selecting the best coding mode from among them. As a  result, the encoding complexity of the 

encoder processing is about ten times or more than that of MPEG-2 when H.264/AVC JM 

reference software[29] distributed by JVT is used. In addition, the memory bandwidth required 

for processing increases in proportionencoding complexity. To achieve a practical 

implementation of H.264/AVC, a significant reduction in encoding complexity must be achieved 

while  maintaining coding efficiency. 
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Figure 1.1 H.264/AVC products to video-related markets [51] 
 

 H.264 video coding standard is the latest block-oriented motion-compensation-based 

codec standard developed by the ITU-T Video Coding Experts Group (VCEG) together with the 

ISO/IEC Moving Picture Experts Group (MPEG). H.264 can achieve considerably higher coding 

efficiency than previous standards. Unfortunately, this comes at a cost in considerably 

increased complexity at the encoder mainly due to motion estimation [1], in-loop deblocking 

filter [1], sub-pel interpolation [15] and mode decision [1]. The high-computational complexities 

of H.264 and realtime requirements of video systems represent the main challenge to overcome 

in the development of efficient encoder solutions. Different techniques to reduce complexity in 

H.264 have been proposed in [41], [42], [44] and [45].But few approaches have been done 

using machine learning [43]. This thesis focuses on reducing the complexity of the H.264 JM 

16.2 [29] encoder using machine learning techniques. The idea behind using machine learning 
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is to exploit structural similarities in video in order to make optimal prediction modes throu the 

use of fast if-else statements instead of the usual cumbersome SAD (sum of absolute 

differences) and cost evaluations.  

1.2 Summary 

 This thesis contributes in the study and implementation of machine learning and data 

mining techniques applied to video compression. A new technique is implemented for reducing 

complexity in H.264 using as reference software optimized encoder. Results show reduction in 

complexity in terms of encoding time for different video formats and video context. Chapter 2 is 

an introduction to H.264/AVC standard. It discusses the characteristic features of H.264. 
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CHAPTER 2 

INTRODUCTION 

2.1 Introduction 

H.264/MPEG4-Part 10 advanced video coding (AVC) introduced in 2003 became one 

of the latest and most efficient video coding standards [4]. The H.264 standard was developed 

by the Joint Video Team (JVT), consisting of VCEG (Video Coding Experts Group) of ITU-T 

(International Telecommunication Union – Telecommunication standardization sector), and 

MPEG (Moving Picture Experts Group) of ISO/IEC [4]. 

H.264 can support various interactive (video telephony) and non-interactive applications 

(broadcast, streaming, storage, video on demand) as it facilitates a network friendly video 

representation. It leverages on the previous coding standards such as MPEG-1, MPEG-2, 

MPEG-4 part 2, H.261, H.262 and H.263 [8] and adds many other coding tools and techniques 

which give it superior quality and higher compression efficiency.  

The standardization of the first version of H.264/AVC was completed in May 2003. The JVT 

then developed extensions to the original standard that are known as the fidelity range 

extensions (FRExt) [11]. These extensions enable higher quality video coding by supporting 

increased sample bit depth precision and higher-resolution color information, including sampling 

structures known as YUV 4:2:2 and YUV 4:4:4. Several other features are also included in the 

fidelity range extensions, such as adaptive switching between 4×4 and 8×8 integer transforms, 

encoder-specified perceptual-based quantization weighting matrices, efficient inter-picture 

lossless coding, and support of additional color spaces. The design work on the fidelity range 

extensions was completed in July 2004, and the drafting work on them was completed in 

September 2004. 
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 Scalable video coding (SVC) [48] as specified in Annex G of H.264/AVC allows the 

construction of bitstreams that contain sub-bitstreams that conform to H.264/AVC. For temporal 

bitstream scalability, i.e., the presence of a sub-bitstream with a smaller temporal sampling rate 

than the bitstream, complete access units are removed from the bitstream when deriving the 

sub-bitstream. In this case, high-level syntax and inter prediction reference pictures in the 

bitstream are constructed accordingly. For spatial and quality bitstream scalabilities, i.e. the 

presence of a sub-bitstream with lower spatial resolution or quality than the bitstream, network 

abstraction layer (NAL) units are removed from the bitstream when deriving the sub-bitstream. 

In this case, inter-layer prediction, i.e., the prediction of the higher spatial resolution or quality 

signal by data of the lower spatial resolution or quality signal, is typically used for efficient 

coding. The scalable video coding extension was completed in November 2007. 

 The next major feature added to the standard was Multiview Video Coding (MVC) [49]. 

Specified in Annex H of H.264/AVC, MVC enables the construction of bit streams that represent 

more than one view of a video scene. An important example of this functionality is stereoscopic 

3D video coding. Two profiles were developed in the MVC work: one supporting an arbitrary 

number of views and designed specifically for two-view stereoscopic video. The Multiview Video 

Coding extensions were completed in November 2009 [5]. Like any other previous motion-

based codecs, H.264 uses the following basic principles of video compression [4]:[4] 

•  Transform for reduction of spatial correlation 

•  Quantization for control of bit rate 

•  Motion compensated prediction for reduction of temporal correlation 

•  Entropy coding for reduction in statistical correlation. 

The improved coding efficiency of H.264 can be attributed to the additional coding tools and the 

new features. Listed below are some of the new and improved techniques used in H.264 for the 

first time [9]: 

•  Adaptive intra-picture prediction 
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•  Small block size transform with integer precision 

•  Multiple reference pictures and generalized B-frames 

•  Variable block sizes for ME and MC. 

•  Quarter pixel precision for motion compensation 

•  Content adaptive in-loop deblocking filter and 

•  Improved entropy coding by introduction of CABAC (context adaptive binary arithmetic 

coding) and CAVLC (context adaptive variable length coding) 

 The increase in the coding efficiency and increase in the compression ratio result in a 

greater complexity of the encoder and the decoder algorithms of H.264, as compared to 

previous coding standards. In order to develop error resilience for transmission of information 

over the network, H.264 supports the following techniques [9]: 

•  Flexible macroblock ordering (FMO) 

•  Switched slice  

•  Arbitrary slice order (ASO) 

•  Redundant slice (RS) 

•  Data partitioning (DP) 

•  Parameter setting 
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Figure 2.1 Different profiles in H.264 with distribution of various coding tools among the 
profiles [8] 

 

2.2 Profiles and Levels of H.264 

 

2.2.1. Baseline Profile 

 The list of tools included in the baseline profile are I (intra coded) and P (predictive 

coded) slice coding, enhanced error resilience tools of flexible macroblock ordering, arbitrary 

slices and redundant slices. It also supports CAVLC (context-based adaptive variable length 

coding). The baseline profile is intended to be used in low delay applications, applications 

demanding low processing power, and in high packet loss environments. This profile has the 

least coding efficiency among all the three profiles. 

2.2.2. Main Profile 

 The coding tools included in the main profile are I, P, and B (bi directionally predictive 

coded) slices, interlaced coding, CAVLC and CABAC (context-based adaptive binary arithmetic 

coding). The tools not supported by main profile are error resilience tools, data partitioning and 
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SI (switched intra coded) and SP (switched predictive coded) slices. This profile is aimed to 

achieve highest possible coding efficiency. 

2.2.3. High Profile 

  The coding tools included in the main profile are I, P, and B (bi directionally predictive 

coded) slices, interlaced coding, CAVLC and CABAC (context-based adaptive binary arithmetic 

coding). The tools not supported by main profile are error resilience tools, data partitioning and 

SI (switched intra coded) and SP (switched predictive coded) slices. This profile is aimed to 

achieve highest possible coding efficiency. 

2.2.4. Extended Profile 

 This profile has all the tools included in the baseline profile. As illustrated in the Figure 2 

1 this profile also includes B, SP and SI slices, data partitioning, interlaced frame and field 

coding, picture adaptive frame/field coding and MB adaptive frame/field coding. This profile 

provides better coding efficiency than baseline profile. The additional tools result in increased 

complexity. 

2.2.5. High Profiles defined in the FRExts amendment 

 In September 2004 the first amendment of H.264/MPEG-4 AVC video coding standard 

was released [11]. A new set of coding tools were introduced as a part of this amendment. 

These are termed as ―Fidelity Range Extensions‖ (FRExts). The aim of releasing FRExts is to 

be able to achieve significant improvement in coding efficiency for higher fidelity material. It also 

has lossless representation capability: I PCM raw sample value macroblocks and entropy coded 

transform by-pass lossless macroblocks (FRExts only). The application areas for the FRExts 

tools are professional film production, video production and high-definition TV/DVD. 

The FRExts amendment defines four new profiles (Figure 2 2) [12]: 

•  High (HP) 

•  High 10 (Hi10P) 
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•  High 4:2:2 (Hi422P) 

•  High 4:4:4 (Hi444P) 

 

Figure 2.2 Tools introduced in FRExts and their classification under the new high profiles 
[11] 

 
All four of these profiles build further upon the design of the prior Main profile. The 

Table 2.1 provides a comparison of the high profiles introduced in FRExts with a list of different 

coding tools and which of them are applied to which profile. All of the high profiles include the 

following three enhancements to coding efficiency performance [13]. 

•  Adaptive macroblock-level switching between 8x8 and 4x4 transform blocks. 

 The main aim behind introducing the 8x8 transform in FRExts is to fulfill high fidelity 

video demands preservation of fine details and textures. To achieve this, larger basis functions 

are required. However a smaller transform like the 4x4 reduces ringing artifacts and reduces 

computational complexity. The encoder adaptively chooses between the 4x4 and 8x8 

transforms.  

The transform selection process is limited by the following conditions 
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If an inter-coded MB has sub-partition smaller than 8x8 (i.e. 4x8, 8x4, 4x4), then 4x4 

transform is used. 

If an intra-coded MB is predicted using 8x8 luma spatial prediction, only 8x8 transform 

is used. 

•  Encoder-specified perceptual-based quantization scaling matrices 

The encoder can specify a matrix for scaling factor according to the specific frequency 

associated with the transform coefficient for use in inverse quantization scaling by the decoder. 

This allows optimization of the subjective quality according to the sensitivity of the human visual 

system (HVS), less sensitive to the coded error in high frequency transform coefficients [8]. 

•  Encoder-specified separate control of the quantization parameter for each 

chroma component 

Table 2.1 Comparison of the high profiles and corresponding coding tools introduced in 
the FRExts [11] 

 

Coding tools High High 10 
High 

4:2:2 

High 

4:4:4 

Main Profile tools x x X x 

4:2:0 Chroma format x x X x 

8 bit sample bit depth x x X x 

 

 

x x X x 
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8x8 vs. 4x4 transform adaptivity 

Quantization scaling matrices x x X x 

Separate Cb and Cr Quantization 

parameter (QP) control 
x x X x 

Monochrome video format x x X x 

9 and 10 bit sample depth  x X x 

4:2:2 Chroma format   X x 

11 and 12 sample bit depth    x 

4:4:4 Chroma format    x 

Residual color transform    x 

Predictive lossless coding    x 

 

2.2.6. Overview of Scalable video codec 

 A video bit stream is called scalable when parts of the stream can be removed in a way 

that the resulting sub-stream forms another valid bit stream for some target decoder, and the 

sub-stream represents the source content with a reconstruction quality that is less than that of 

the complete original bit stream. The modes of scalability are temporal, spatial, and quality [14] . 

Spatial  and temporal scalabilities describe cases in which subsets of the bit stream represent 

the source content with a reduced picture size (spatial resolution) or frame rate (temporal 

resolution), respectively. With quality scalability, the sub-stream provides the same spatial-

temporal resolution as the complete bit stream, but with a lower signal-to-noise ratio (SNR). 

Table 2.1 -Continued 
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 Quality scalability is also commonly referred to as fidelity or SNR scalability. Figure 2.3 

shows the basic principle and applications of scalable coding. 

 

Figure 2.3 Scalable video coding [50] 

 

Figure 2.4 The basic types of scalability in video coding [50] 
 

2.2.6.1 Spatial Scalability     

 For supporting spatial scalable coding, SVC follows the conventional approach of multi-

layer coding. In each spatial layer, motion-compensated prediction and intra prediction are 
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employed as for single-layer coding. In addition to these basic coding tools of H.264/AVC, SVC 

provides inter-layer prediction methods, which allow an exploitation of the statistical 

dependencies between different layers for improving the coding efficiency of enhancement 

layers. The supported inter-layer prediction methods employ the reconstructed samples of the 

lower layer signal. The prediction signal is either formed by motion-compensated prediction 

inside the enhancement layer, by up-sampling the reconstructed lower layer signal, or by 

averaging such an up-sampled signal with a temporal prediction signal. Apart from these, two 

additional inter-layer prediction concepts have been added in SVC: prediction of macroblock 

modes and associated motion parameters and prediction of the residual signal. All inter-layer 

prediction tools can be chosen on a macroblock or sub-macroblock basis allowing an encoder 

to select the coding mode that gives the highest coding efficiency [14]. 

 2.2.6.2 Inter-layer intra prediction 

               For SVC enhancement layers, an additional macroblock coding mode (signaled by the 

syntax element base_mode_flag equal to 1) is provided, in which the macroblock prediction 

signal is completely inferred from co-located blocks in the reference layer without transmitting 

any additional side information. When the co-located reference layer blocks are intra-coded, the 

prediction signal is built by the up-sampled reconstructed intra signal of the reference layer – a 

prediction method also referred to as inter-layer intra prediction.  

  2.2.6.3 Inter-layer macroblock mode and motion prediction 

When the base_mode_flag is equal to 1 and at least one of the co-located reference 

layer blocks is not intra-coded, the enhancement layer macroblock is inter-picture predicted as 

in single-layer H.264/AVC coding, but the macroblock partitioning – specifying the 

decomposition into smaller block with different motion parameters – and the associated motion 

parameters are completely derived from the co-located blocks in the reference layer. This 

concept is also referred to as the inter-layer motion prediction. For the conventional inter-coded 
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macroblock types of H.264/AVC, the scaled motion vector of the reference layer blocks can also 

be used as replacement for usual spatial motion vector predictor.   

 2.2.6.4 Inter-layer residual prediction 

A further inter-layer prediction tool, referred to as inter-layer residual prediction, targets 

a reduction of the bit rate required for transmitting the residual signal of inter-coded 

macroblocks. With the usage of residual prediction (signaled by the syntax element 

residual_prediction_flag equal to 1), the up-sampled residual of the co-located reference layer 

blocks is subtracted from the enhancement layer residual (difference between the original and 

the inter-picture prediction signal) and only the resulting difference, which often has a smaller 

energy then the original residual signal, is encoded using transform coding as specified in 

H.264/AVC [14] as illustrated in Figure 2.5. 

 

 

Figure 2.5 Coding structure example with two spatial layers. [47] 
   

 2.2.6.5 SNR Scalability 

Different techniques exist in the Joint Scalable Video Model (JSVM) for providing SNR 

scalability [14]  

 2.2.6.7 Fine-Grain Scalability 
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Fine-Grain Scalability (FGS) uses an advanced form of bit-plane coding for encoding 

successive refinements of transform coefficients. The FGS slices have the property that they 

can be truncated at any byte-aligned position to achieve SNR scalability. FGS SNR scalability 

has the advantage that it provides a larger degree of flexibility, allowing a quasi-continuous 

spectrum of achievable bitrates, while CGS is limited to a number of pre-determined bitrates, 

i.e., one extraction point per layer. Due to its high computational complexity, however, the FGS 

concept was not included in one of the SVC profiles. As a consequence, it was removed from 

the joint draft. After further study and complexity reduction, FGS might be included in a future 

amendment to the current SVC specification. 

2.2.6.8 Medium-Grain Scalability 

As an alternative to FGS, Medium-Grain Scalability (MGS) was introduced. MGS 

tackles a number of problems that are encountered for CGS, such as the limited number of rate 

points, and the lack of flexibility for bitstream adaptation. MGS increases the number of 

achievable rate points by allowing different quality levels within one dependency layer. The 

flexibility is improved by allowing the removal of these quality levels at any point in the 

bitstream. Switching between the number of dependency layers (as is required for CGS), is only 

allowed at certain pre-defined points. Presently, 16 quality refinement levels are allowed for 

every dependency layer. In conjunction with CGS, this means that 128 quality extraction points 

are now achievable for SVC bit-streams.   

2.2.6.9 Temporal Scalability 

A bit stream provides temporal scalability when the set of corresponding access units 

can be partitioned into a temporal base layer and one or more temporal enhancement layers 

with the following property - Let the temporal layers be identified by a temporal layer identifier T, 

which starts from 0 for the base layer and is increased by 1 from one temporal layer to the next. 

Then for each natural number k, the bit stream that is obtained by removing all access units of 

all temporal layers with a temporal layer identifier T greater than k forms another valid bit stream 
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for the given decoder [14]. For hybrid video codecs, temporal scalability can generally be 

enabled by restricting motion-compensated prediction to reference pictures with a temporal 

layer identifier that is less than or equal to the temporal layer identifier of the picture to be 

predicted. H.264/AVC provides a significantly increased flexibility for temporal scalability 

because of its reference picture memory control. It allows the coding of picture sequences with 

arbitrary temporal dependencies, which are only restricted by the maximum usable decoded 

picture buffer (DPB) size. Hence, for supporting temporal scalability with a reasonable number 

of temporal layers, no changes to the design of H.264/AVC are required. The only related 

change in SVC refers to the signaling of temporal layers. 

2.2.7. Levels in H.264 

 In H.264 /AVC, 16 levels are specified. Each level defines upper bounds for the bit 

stream or lower bounds for the decoder capabilities. A profile and level can be combined to 

define the conformance points. These points signify the point of interoperability for applications 

with similar functional requirements. The levels defined in H.264 are listed in  Table 2.2. The 

level ‗1b‘ was added in the FRExts amendment. 

Table 2.2 Levels defined in H.264 (P represents Progressive scanning and I represents 
interlaced scanning). [38] 

Level 

number 

Typical picture 

size 

Typical 

frame rate 

Maximum 

compression bit 

rate (for VLC) in 

Non-FRExt 

profiles 

Maximum number of 

reference frames for typical 

picture size 

1 QCIF 15 64 kbps 4 

1b QCIF 15 128 kbps 4 

1b QCIF 15 128kbps 4 
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1.1 CIF or QCIF 7.5 (CIF) / 

30 (QCIF) 

192 kbps 2 (CIF) / 9 (QCIF) 

1.2 CIF 15 384 kbps 6 

1.3 CIF 30 768 kbps 6 

2 CIF 30 2 Mbps 6 

2.1 HHR 30 / 25 4 Mbps 6 

2.2 SD 15 4 Mbps 5 

3 SD 30 / 25 10 Mbps 5 

3.1 1280x720p 30 14 Mbps 5 

3.2 1280x720p 60 20 Mbps 4 

4 HD formats 60p / 30i 20 Mbps 4 

4.1 HD formats 60p / 30i 50 Mbps 4 

4.2 1920x1080p 60p 50 Mbps 4 

5 2k x 1k 72 135 Mbps 5 

5.1 2k x 1k or 

4k x 2k 

120 / 30 240 Mbps 5 

 

 

 
Table 2.2 - Continued 
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2.3 H.264 Encoder 

Figure 2.6 illustrates the schematic of the H.264 encoder. H.264 encoder works on 

macroblocks and motion-compensation like most other previous generation codecs. Video is 

formed by a series of picture frames. Each picture frame is an image which is split down into 

blocks. The block sizes can vary in H.264. The encoder may perform intra-coding or inter-

coding for the macroblocks of a given picture. Intra coded frames are encoded and decoded 

independently. They do not need any reference frames. Hence they provide access points to 

the coded sequence where decoding can start. H.264 uses nine spatial prediction modes in 

intra-coding to reduce spatial redundancy in the source signal of the picture. These prediction 

modes are explained in section 2.7. Inter-coding uses inter-prediction of a given block from 

some previously decoded pictures. The aim to use inter-coding is to reduce the temporal 

redundancy by making use of motion vectors. Motion vectors give the direction of motion of a 

particular block from the current frame to the next frame. The prediction residuals are obtained 

which then undergo transformation to remove spatial correlation in the block. The transformed 

coefficients, thus obtained, undergo quantization. The motion vectors (obtained from inter-

prediction) or intra-prediction modes are combined with the quantized transform coefficient 

information. They are then encoded using entropy code such as context-based adaptive 

variable length coding (CAVLC) or context-based adaptive binary arithmetic coding (CABAC) 

[8]. 
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Figure 2.6 H.264 Encoder block diagram [1] 
 

There is a local decoder within the H.264 encoder. This local decoder performs the 

operations of inverse quantization and inverse transform to obtain the residual signal in the 

spatial domain. The prediction signal is added to the residual signal to reconstruct the input 

frame. This input frame is fed in the deblocking filter to remove blocking artifacts at the block 

boundaries. The output of the deblocking filter is then fed to inter/intra prediction blocks to 

generate prediction signals. 

The various coding tools used in the H.264 encoder are explained in the sections 2.7 

through 2.12. 

2.3.1. Intra-Prediction 

 Intra-prediction uses the macroblocks from the same image for prediction. Two types of 

prediction schemes are used for the luminance component. These two schemes can be referred 

as INTRA_4x4 and INTRA_16x16 [16]. In INTRA_4x4, a macroblock of size 16x16 pixels are 

divided into 16 4x4 sub blocks. Intra prediction scheme is applied individually to these 4x4 sub 

blocks. There are nine different prediction modes supported as shown in Figure 2.7. In the 

FRExts profiles alone, there is also 8x8 luma spatial prediction (similar to 4x4 spatial prediction) 

and with low-pass filtering of the prediction to improve prediction performance. 
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Figure 2.7 7 4x4 Luma prediction (intra-prediction) modes in H.264 [1] 
In mode 0, the samples of the macroblock are predicted from the neighboring samples 

on the top. In mode 1, the samples of the macroblock are predicted from the neighboring 

samples from the left. In mode 2, the mean of all the neighboring samples is used for prediction. 

Mode 3 is in diagonally down-left direction. Mode 4 is in diagonal down-right direction. Mode 5 is 

in vertical-right direction. Mode 6 is in horizontal-down direction. Mode 7 is in vertical-left 

direction. Mode 8 is in horizontal up direction. The predicted samples are calculated from a 

weighted average of the previously predicted samples A to M. 

For prediction of 16x16 intra prediction of luminance components, four modes are used. 

The three modes of mode 0 (vertical), mode 1 (horizontal) and mode 2 (DC) are similar to the 

prediction modes for 4x4 block. In the fourth mode, the linear plane function is fitted in the 

neighboring samples. 

 

Figure 2.8 4x4 Luma prediction (intra-prediction) modes in H.264 [1] 
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Figure 2.8 The chroma macroblock is predicted from neighboring chroma samples. The 

four prediction modes used for the chroma blocks are similar to 16x16 luma prediction modes. 

The number in which the prediction modes are ordered is different for the chroma macroblock: 

mode 0 is DC, mode 1 is horizontal, mode 2 is vertical and mode 3 is plane. The block sizes for 

the chroma prediction depend on the sampling format. For 4:2:0 format, the 8x8 size of the 

chroma block is selected. For the 4:2:2 format, the 8x16 size of the chroma block is selected. 

For the 4:4:4 formats; the 16x16 size of chroma block is selected [1]. 

 

Figure 2.9 Chroma sub sampling [1] 
2.3.2. Intra-Prediction 

Inter-prediction is used to capitalize on the temporal redundancy in a video sequence. 

The temporal correlation is reduced by inter prediction through the use of motion estimation and 

compensation algorithms [1]. An image is divided into macroblocks; each 16x16 macroblock is 

further partitioned into 16x16, 16x8, 8x16, 8x8 sized blocks. A 8x8 sub-macroblock can be 

further partitioned into 8x4, 4x8, 4x4 sized blocks. Figure 2.9 illustrates the partitioning of a 

macroblock and a sub-macroblock [1]. The input video characteristics govern the block size. A 
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smaller block size ensures less residual data; however smaller block sizes also mean more 

motion vectors and hence more number of bits required to encode these motion vectors [1]. 

 

(a) 

 

(b) 

Figure 2.10 Macroblock portioning in H.264 for inter prediction [1] (a) (L-R) 16x16, 8x16, 
16x8, 8x8 blocks; (b) (L-R) 8x8, 4x8, 8x4, 4x4 blocks 

Each partition or sub-macroblock partition in an inter-coded macroblock is predicted 

from an area of the same size in a reference picture. The offset between the two areas (the 

motion vector) has quarter-sample resolution for the luma component and one-eighth-sample 

resolution for the chroma components. The luma and chroma samples at sub-sample positions 

do not exist in the reference picture and so it is necessary to create them using interpolation 

from nearby coded samples. Figure 2.10 and Figure 2.11 illustrate half and quarter pixel 

interpolation used in luma pixel interpolation respectively. Six-tap filter with weights (1, −5, 20, 

20, −5, 1)/32 is used to derive half-pel luma sample predictions, for sharper sub pixel motion-

compensation. Quarter-pixel motion is derived by linear interpolation of the half-pel values, to 

save processing power. 
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Figure 2.11 Interpolation of luma half-pel positions [1] 

 

Figure 2.12 Interpolation of luma quarter-pel positions [1] 
 

The reference pictures used for the inter prediction are previously decoded frames and 

are stored in the picture buffer. H.264 supports the use of multiple frames as reference frames. 

This is implemented by the use of an additional picture reference parameter which is 

transmitted along with the motion vector. Figure 2.12 illustrates an example with 4 reference 

pictures. 
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Figure 2.13 Motion compensated prediction with multiple reference frames [1] 
 

2.3.3. Transform Coding 

There is high spatial redundancy among the prediction error signals. The H.264 

implements a block-based transform to reduce this spatial redundancy [1]. The former 

standards of MPEG-1 and MPEG-2 employed a two dimensional discrete cosine transform 

(DCT) [36] for the purpose of transform coding of the size 8x8 [1]. H.264 uses integer 

transforms instead of the DCT. The size of these transforms is 4x4 [1]. The advantages of using 

a smaller block size in H.264 are stated as follows: 

•  The reduction in the transform size enables the encoder to better adapt the 

prediction error coding to the boundaries of the moving objects and to match the transform 

block size with the smallest block size of motion compensation. 

•  The smaller block size of the transform leads to a significant reduction in the 

ringing artifacts. 

•  The 4x4 integer transform has the benefit for removing the need for 

multiplications. 

H.264 employs a hierarchical transform structure, in which the DC coefficients of 

neighboring 4x4 transforms for luma and chroma signals are grouped into 4x4 blocks (blocks -1, 



  

26 

 

16 and 17) and transformed again by the Hadamard transform as shown in Figure 2.14 (a). As 

shown in Figure 2.14(b) the first transform (matrix H1 in Figure 2.14(e)) is applied to all samples 

of all prediction error blocks of the luminance component (Y) and for all blocks of chrominance 

components (Cb and Cr). For blocks with mostly flat pixel values, there are 25 significant 

correlation among transform DC coefficients of neighboring blocks. Hence, the standard 

specifies the 4x4 Hadamard transform (matrix H2 in Figure 2.14 (e)) for luma DC coefficients 

(Figure 2.14 (c)) for 16x16 intra-mode only, and 2x2 Hadamard transform as shown in Figure 

2.14 (d) (matrix H3 in Figure 2.14 (e)) for chroma DC coefficients 
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.  
(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 2.14 H.264 Transformation (a)DC coefficients of 16 4x4 luma blocks for 4 4x4 Cb 
and Cr blocks [1] (b) Matrix H1 is applied to 4x4 block of luma/chroma coefficients X  (c) 
[8](c) Matrix H2 (4x4 Hadamard transform) applied to luma DC coefficients WD [8]  (d) 

Matrix H3 (2x2 Hadamard transform) applied to chroma DC coefficients WD [8] e) 
Matrices H1, H2 and H3 of the three transforms used in H.264 [8] 

 

2.3.4. Deblocking Filter 
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The deblocking filter is used to remove the blocking artifacts due to the block based 

encoding pattern. The transform applied after intra-prediction or inter-prediction is on blocks; the 

transform coefficients then undergo quantization. These block based operations are responsible 

for blocking artifacts which are removed by the in-loop deblocking filter. It reduces the artifacts 

at the block boundaries and prevents the propagation of accumulated noise. The presence of 

the filter however adds to the complexity of the system [1]. Figure 2.15 illustrates a macroblock 

with sixteen 4x4 sub blocks along with their boundaries. 

 

Figure 2.15 Boundaries in a macroblock to be filtered (luma boundaries shown 
with solid lines and chroma boundaries shown with dotted lines) 

 

As shown in the Figure 2.15, the luma deblocking filter process is performed on the 16 

sample edges – shown by solid lines. The chroma deblocking filter process is performed on 8 

sample edges – shown in dotted lines. 

H.264 employs deblocking process adaptively at the following three levels: 
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•  At slice level – global filtering strength is adjusted to the individual 

characteristics of the video sequence 

•  At block-edge level – deblocking filter decision is based on inter or intra 

prediction of the block, motion differences and presence of coded residuals in the two 

participating blocks. 

•  At sample level – it is important to distinguish between the blocking artifact and 

the true edges of the image. True edges should not be de blocked. Hence decision for 

deblocking at a sample level becomes important. 

2.3.5. Entropy Coding 

H.264 uses variable length coding to match a symbol to a code based on the context 

characteristics. All the syntax elements except for the residual data are encoded by the Exp- 

Golomb codes [1]. The residual data is encoded using the Context adaptive Variable Length 

Coding (CAVLC). The main and the high profiles of H.264 use CABAC. 

•  Context-based adaptive variable length coding (CAVLC): 

 After undergoing transform and quantization the probability that the level of 

coefficients is zero or +1 is very high [1]. CAVLC handles these values differently. It codes the 

number of zeroes and +1. For other values, their values are coded. 

•  Context-based adaptive binary arithmetic coding (CABAC): 

 This technique uses the arithmetic encoding to achieve good compression. The 

schematic for CABAC is shown in Figure 2.16. 
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Figure 2.16 Schematic block diagram of CABAC [1] 
 

CABAC consists of three steps: 

Step 1: Binarization: A non-binary value is uniquely mapped to a binary sequence 

Step 2: Context modeling: A context model is a probability model for one or more 

elements of binarized symbol. The probability model is selected such that the corresponding 

choice depends on previously encoded syntax elements. 

Step 3: Binary arithmetic coding: An arithmetic encoder encodes each element 

according to the selected probability model. 

2.3.6. B-slices and adaptive weighted prediction 

Bi-directional prediction which uses both past and future frames for reference can be 

very useful in improving the temporal prediction. Bi-directional prediction in H.264 uses multiple 

reference frames. Figure 2.17 show bidirectional prediction from multiple reference frames. The 

standards, before H.264, with B pictures use the bidirectional mode, with limitation that it allows 

the combination of a previous and subsequent prediction signals. In the previous standards, one 

prediction signal is derived from subsequent inter-picture, another from a previous picture, the 

other from a linear averaged signal of two motion compensated prediction signals. 
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Figure 2.17 Partition prediction examples in a B macroblock type: (a) past/future, (b) past, 
(c) future [1] 

 

H.264 supports the forward/backward prediction pair and also supports forward/forward 

and backward/backward prediction pair [1]. Figures 2.17 (a) and 2.17 (b) describe the scenario 

where bidirectional prediction and multiple reference frames respectively are applied and a 

macroblock is thereby predicted as a linear combination of multiple reference signals using 

weights as described in (2.1). Considering two forward references for prediction is beneficial for 

motion compensated prediction of a region just before scene change. Considering two 

backward reference frames is beneficial for frames just after scene change. H.264 also allows 

bi-directionally predictive-coded slice which may also be used as references for inter-coding of 

other pictures. Except for the H.264 codec, all the existing standards consider equal weights for 

reference pictures. Equal weights of reference signals are averaged and the prediction signal is 

obtained. H.264 also uses weighted prediction [1]. It can be used for a macroblock of P slice or 

B slice. Different weights can be assigned to two different reference signals and the prediction 

signal is calculated as follows: 
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 1* 1 2* 2p w r w r  (1) 

In(1), p is the prediction signal, r1 and r2 are the reference signals and w1 and w2 are the 

prediction weights. 

2.3.6. H.264 Decoder 

The H.264 decoder works similar in operation to the local decoder of H.264 encoder. An 

encoded bit stream is the input to the decoder. Entropy decoding (CABAC or CAVLC) takes 

place on the bit stream to obtain the transform coefficients. These coefficients are then inverse 

scanned and inverse quantized. This gives residual block data in the transform domain. Inverse 

transform is performed to obtain the data in the pixel domain. The resulting output is a 4x4 

blocks of residual signal. Depending on inter predicted or intra-predicted, an appropriate 

prediction signal is added to the residual signal. For an inter-coded block, a prediction block is 

constructed depending on the motion vectors, reference frames and previously decoded 

pictures. This prediction block is added to the residual block to reconstruct the video frames. 

These reconstructed frames then undergo deblocking before they are stored for future use for 

prediction or being displayed. Figure 2.18 illustrates the decoder. 

 

Figure 2.18 H.264 Decoder block diagram [1] 
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2.4 Summary 

 This chapter outlines the coding tools of H.264 codec. The next chapter describes the 

coding tools used in Machine learning. 
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CHAPTER 3 

 
INTRODUCTION 

 Machine learning shows how computers are used to simulate human learning activities, 

and to study self-improvement methods of computers Figure 3. Compared with human learning, 

machine learning is a faster process. The accumulation of knowledge (knowledge here refers to 

the information about the system behavior in response to various inputs to the system.) is to 

facilitate faster and easier learning. So, any progress in the field of machine learning will 

enhance the capability of computers and thus have an impact on human society. In the process 

of machine learning, the quality of information that external environment provides to the system 

is the primary factor [51]. 

  The external environment is referred to the information set that delivers itself to the 

learning process in some form. It represents sources of outside information; Learning is the 

process that processes the outside information to knowledge, first it obtains  information from 

the  outside environment and then processes the information to provide knowledge, and puts 

this knowledge into a repository; the repository stores many general principles that guide the 

implementation action. The environment provides all kinds of information for the learning 

system, the quality of information impacts directly on the learning realization. The repository is 

the second factor that impacts the design of a learning system. The expression of knowledge 

can come in the form of eigenvector, logic statements of the first order, production rules, 

semantic networks, frameworks and so on; these fashions of expression have strong and weak 

points. 

  The important aspects that need to be considered are the robustness of expression, 

simplicity of the expression, ease in the repository manipulation and the ease with which the 
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knowledge can be expanded. The implementation is the process that uses the knowledge of 

repository to complete a certain task and to feed back the information which is obtained in the 

process of completing the task to the process of learning, and to guide further study. 

 

Figure 3.1 Basic model of machine learning [51] 
. 

3.1 Machine Learning Methods 

  

 3.1.1. Rote learning [51] 

 Rote learning is a learning process where memory is involved; the process stores the 

new knowledge and calls for it when necessary. A calculation and reasoning a learning system 

need not remember any of the knowledge. In the rote learning system, knowledge is called in a 

direct way. The system does not require much processing. The implementation part of learning 

system can be considered abstractly as a function. The learning system receives the input 

variables and calculates the output values of the functions. The input and output values are 

stored. On arrival of the next input variable, the rote learning system searches the memory 

rather than re-calculating the knowledge. Memory is the critical parameter in Rote Learning 

rather than the learning process.  

3.1.2. Inductive Learning [52] 

 Inductive consequence applies inductive methods to summarize general knowledge 

from sufficient specific examples, and to distill a general law of things. This process extrapolates 

form the individual to general. Learning can be based on the guidance of pre-determined rules 

or not. Inductive learning can be divided into learning by examples and learning by observation. 
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The former is learning with the rules; the latter is learning without the rules. The model of a 

learning system is shown in Figure 3.2. 

 

Figure 3.2 The model of learning system [51] 
 

 The learning by examples method concludes the learning methods by examples. In this 

method, the general concepts are learnt through the examples related with a concept in the 

environment. Take a group of animals as an example, and tell the learning system which animal 

is "Ma", and which is not. When the sample is enough, the learning system can conclude the 

conceptual model about ―Ma‖, so it can identify ―Ma‖, and can distinguish ―Ma‖ from other 

animals. The learning by observation is also known as the descriptive summary, has as its goal 

to identify a general description of a law or a theory. It depicts an observation set and specifies 

the nature of certain objects. 

3.1.3. Analogy Learning [51] 

 Analogy describes the similarity between objects clearly and concisely. Analogy 

learning carries out learning by comparing similar things. For example, when a professor wants 

to teach a new concept which is more difficult to understand for the students, he or she always 

use some of the examples that students have mastered that are similar to the new concept to 

be learned. 

3.1.4. Explained Learning 

 The learning based on interpretation is called explained learning. This form of learning 

analyzes and classifies the current instances by the knowledge already known while it continues 

to learn. This type of learning generally yields a classification tree; which classifies any new 

instance. It learns new knowledge by considering the relationship between the various factors 
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affecting the knowledge. The generalized process based on interpretation is shown in Figure 

3.3. 

 

Figure 3.3 The generalized process based on interpretation [51] 
 

3.1.5. Learning Based on Neural Network 

 The nature of a neural network depends on three main factors: the topology structure of 

network, right values and work rules of network. Combination of the three can form the main 

characters of a network. The learning problem of a neural network is the problem of adjustment 

of network values. There are two ways to determine the value of a neural network: one is 

determined through the design calculations; another is determined by the study of the network 

through certain rules. Most neural networks use the second method to determine the value of its 

network. The well-known network model and learning algorithm contain the back propagation 

arithmetic, The Hopfield network and so on [51] Figure 3.4 describes the approach. 
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Figure 3.4 Network constructed from fuzzy rules [55] 
 

 In Figure 3.4, the input variables are fed into the first layer, which contains nodes which 

act as membership functions, responding only in a certain region of the input variable domain, 

with a result between zero and one. The second layer is formed by the rules themselves. The 

nodes in this layer perform the fuzzy ‗AND‘ operation, computing a minimum of their inputs. The 

third layer contains a node for each output fuzzy. Finally, the last layer contains a single node 

which performs a centroid defuzzification of the outputs. This node normalizes the weights from 

the previous layer and weights them with the centers of the output membership functions to 

calculate the actual output. [55] 

3.1.6. Knowledge Discovery [51] 

 Knowledge discovery of repository is a senior managed process to identify effective, 

novel, potential and a useful model from large amounts of data. The discovery process of 

knowledge is shown in Figure 3.5 
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Figure 3.5 The discovery process of knowledge  [51] 
 

 Data selection extracts relevant data from the database based on the needs of users. 

Pre-processing checks data‘s integrity and consistency, processes the noisy data, fills up the 

loss of data by statistical methods, and forms explored database. Data transformation chooses 

data from explored database, the methods of transformation mainly use discrimination analysis 

and clustering analysis. Data mining identifies the goal of what type of knowledge is to discover 

based on the user‘s requirements. It then extracts the knowledge which users need from the 

database. Knowledge evaluation mainly evaluates the acquired rules, and then determines if 

the rules have to be added to the basic knowledge database. Knowledge discovery process can 

be generalized in three steps. That is, pretreatment of data mining, data mining and post 

treatments of data mining. Knowledge discovery has been successfully applied in the banking, 

insurance, retail, healthcare, engineering and manufacturing, scientific research, satellite 

observation, entertainment industries and so on. It has provided a great help in people's 

scientific decision-making. 

3.2 Application of Machine Learning [51] 

 Research shows that machine learning technology has been widely used in marketing, 

finance, telecommunications and network analysis. [51] In the field of marketing, machine 

learning technology is more widely used in the area of tasks classification and related fields; in 

the field of finance, machine learning technology is more widely used in tasks of forecasts; in 
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the field of telecommunications, machine learning technology is widely used in the tasks of 

classification and prediction. In addition, machine learning is also applied to the field of data 

mining combination with other applications. The typical methods are based on the neural 

network initialization, the application of evolutionary computation in machine learning research 

and the study of level classification of machine learning.  

3.3 Weka 

 Machine learning has the potential to become one of the key components of intelligent 

information systems, enabling compact generalizations, inferred from large databases of 

recorded information, to be applied as knowledge in various practical ways; such as being 

embedded in automatic processes like expert systems, or used directly for communicating with 

human experts and for educational purposes. Presently, however, the field is not well placed to 

do this. Most research effort is directed towards the invention of new algorithms for learning, 

rather than towards gaining experience in applying existing techniques to real problems. The 

WEKA project (Waikato Environment for Knowledge Analysis) [52] is redressing the balance by 

applying standard machine learning techniques to a variety of agricultural and horticultural 

problems. The goal of WEKA is to discover and characterize what is required for successful 

applications of machine learning to real-world data. To support this effort, a workbench has 

been developed to provide an integrated environment which not only gives easy access to a 

variety of machine learning techniques through an interactive interface, but also incorporates 

those pre- and post-processing tools that is found to be essential when working with real-world 

data sets. Other systems for machine learning experimentation exist, but these are libraries of 

routines that are intended for use by a researcher who is extending and comparing algorithms. 

One exception although still a library of modules is Consultant, an expert system that allows 

domain experts to choose a learning algorithm suited to their needs. Consultant assumes that a 

machine learning algorithm exists that can be applied directly to solve the problem at hand. 

Although a suitable algorithm may well exist, it is unlikely that its direct application on the 



  

41 

 

domain expert‘s data will produce a meaningful result. Domain experts need an environment in 

which they can easily manipulate data and run experiments themselves. [52] 

The philosophy behind WEKA is to move away from supporting a computer science or machine 

learning researcher, and towards supporting the end user of machine learning. The end user is 

someone typically, an agricultural scientist-with an understanding of the data and sufficient 

knowledge of the capabilities of machine learning to select and investigate the application of 

different techniques. In order to maintain this philosophy, WEKA concentrates on ensuring that 

the implementation details of the machine learning algorithms and the input formats they require 

are hidden from the user. 

 

Figure 3.6 Classification tree for Container sequence from Weka tool. 
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3.4 C4.5 Algorithm 

3.4.1. Algorithm 

 The C4.5 [54] algorithm creates a model based on a tree structure. Nodes in the tree 

represent features, with branches representing possible values connecting features. A leaf 

representing the class terminates a series of nodes and branches. Determining the class of ‗n‘ 

number of instance is a matter of tracing the path of nodes and branches to the terminating leaf. 

C4.5 uses the ‗divide and conquer‘ method to construct a tree from a set S of training instances. 

If all instances in S belong to the same class, the decision tree is a leaf labeled with that class. 

Otherwise the algorithm uses a test to divide S into several non-trivial partitions. Each of the 

partitions becomes a child node of the current node and the tests separating S are assigned to 

the branches. C4.5 uses two types of tests each involving only a single attribute A. For discrete 

attributes the test is to test the value of A with one outcome for each value of A. For numeric 

attributes the test is A  where  is a constant threshold. Possible threshold values are 

found by sorting the distinct values of A that appear in S and then identifying a threshold 

between each pair of adjacent values. For each attribute a test set is generated. To find the 

optimal partitions of S C4.5 relies on greedy search and in each step selects the test set that 

maximizes the entropy based gain ratio splitting criterion. 

 The ‗divide and conquer‘ approach partitions until every leaf contains instances from 

only one class or further partition is not possible for example, two instances have the same 

features but different class. If there are no conflicting cases the tree will correctly classify all 

training instances. However, this over-fitting decreases the prediction accuracy on unseen 

instances. C4.5 attempts to avoid over-fitting by removing some structure from the tree after it 

has been built. Pruning is based on estimated true error rates. After building a classifier the ratio 

of misclassified instances and total instances can be viewed as the real error. However this 

error is minimized as the classifier was constructed specifically for the training instances. 

Instead of using the real error the C4.5 pruning algorithm uses a more conservative estimate, 
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which is the upper limit of a confidence interval constructed around the real error probability. 

With a given confidence CF the real error will be below the upper limit with 1-CF. C4.5 uses sub 

tree replacement or subtree rising to prune the tree as long as the estimated error can be 

decreased. In our test the confidence level is 0.25 and the minimum number of instances per 

leaf is set to two. We use subtree replacement and subtree rising when pruning. 

3.4.2. Flow and Feature Definitions [57] 

 The tool can calculate the attributes value of the network traffic. The tool forms packs 

which have the same source IP and source port, destination IP, destination port and protocols 

as a flow. In order to facilitate understanding, based on the definition of IP Packet header, the 

following features were found and became the base feature set for the experiments: 

• Flow duration 

• Flow size in bytes and packets 

• Packet length (minimum, mean, maximum and standard deviation) 

•Inter-arrival time between packets (minimum, mean, maximum and standard deviation) 

 Packet lengths are based on the IP length excluding link layer overhead. Inter-arrival 

times have at least microsecond precision and accuracy. As the traces contained both 

directions of the flows, features were calculated in both directions (except protocol and flow 

duration).This produces a total of 37 flow features, which we refer to as the full feature set. Our 

features are simple and well understood within the network community. They represent a 

reasonable benchmark feature set. More complex features might be added in the future. 

3.4.3. Feature Selection Algorithms  

 In order to reduce the amount of computation, as well as other resources (such as 

memory) consumption, and raise the classification rate. The use of CFS (correlation feature 

selection) and genetic search method to select some of the most representative attributes from 

the dozens of attributes of the flow to form a subset. The CFS algorithm uses an evaluation 

heuristic that examines the usefulness of individual features along with the level of inter 
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correlation among the features. High scores are assigned to subsets containing attributes that 

are highly correlated with the class and have low inter-correlation with each other. Conditional 

entropy is used to provide a measure of the correlation between features and class and 

between features. If H(X) is the entropy of a feature X and H(X|Y) the entropy of a feature X 

given the occurrence of feature Y the correlation between two features X and Y can then be 

calculated using the symmetrical uncertainty: 
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The class of an instance is considered to be a feature. The goodness of a subset is then 

determined as: 
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where k is the number of features in a subset, 1r  is the mean feature correlation with the class 

and 2r  is the mean feature correlation.  

 When 1r  is larger and the 2r  is smaller, the classification results of subset is better. 

3.4.4. The C4.5 Tree-Construction Algorithm [53] 

 The algorithm constructs a decision tree starting from a training set S, which is a set of 

cases or tuples in the database terminology. Each case specifies values for a collection of 

attributes and for a class. Each attribute may have either discrete or continuous values. 

Moreover, the special value unknown is allowed to denote unspecified values. The class may 

have only discrete values. We denote with C1,……,CNClass the values of the class. 

Decision Trees: A decision tree is a tree data structure consisting of decision nodes and leaves. 

A leaf specifies a class value. A decision node specifies a test over one of the attributes, which 

is called the attribute selected at the node. For each possible outcome of the test, a child node 
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is present. In particular, the test on a discrete attribute A has h possible outcomes iA d  

where 1,i n  and id  are the known values for attribute A. The test on a continuous attribute 

has two possible outcomes, A th and A th , where th  is a value determined at the node 

and called the threshold. 

  A decision tree is used to classify a case, i.e., to assign a class value to a case 

depending on the values of the attributes of the case. In fact, a path form the root to a leaf of the 

decision tree can be followed based on the attribute values of the case. The class specified at 

the leaf is the class predicted by the decision tree. A performance measure of a decision tree 

over a set of cases is called classification error. It is defined as the percentage of misclassified 

cases, i.e., of cases whose predicted classes differ from the actual classes. 

 The C4.5 algorithm constructs the decision tree with a divide and conquers strategy. In 

C4.5, each node in a tree is associated with a set of cases. Also, cases are assigned weights to 

take into account unknown attribute values. At the beginning, only the root is present and 

associated with the whole training set S and with all case weights equal to 1.0 .At each node, 

the following divide and conquer algorithm is executed , trying to exploit the locally best choice, 

with no backtracking allowed. 

Program 1: Pseudo code of the C4.5 Tree-Construction Algorithm 

(1)Compute ClassFrequency(T); 

(2)if ‗OneClass‘ or ‗FewCases‘  

    Return a leaf; 

Create a decision node N; 

(3)For Each Attribute A 

    ComputeGain(A); 

(4)N.test=AttributeWithBestGain; 

(5)if N.test is continuous; 
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   Find threshold; 

(6)For Each T‘ in the splitting of T 

(7)if T‘ is Empty 

   Child of N is a leaf 

Else 

(8) Child of N =FormTree(T‘); 

(9) Compute Errors of N; 

    Return N 

Let T be the set of cases associated at the node. The weighted frequency freq 

( , )iC T is computed (Step (1))) of cases in T whose class is iC  for 1,i Nclass .  

  In all cases (Step (2)) in T belong to the same class as 
jC  (or the number of cases in T 

is less than a certain value), then the node is a leaf, with associated class 
jC  (respectively, the 

most frequent class). The classification error of the leaf is the weighted sum of cases in T 

whose class is not 
jC (respectively, the most frequent class).If T contains cases belonging to 

two or more classes (Step (3)), then the information gain of each attribute is calculated. For 

discrete attributes, the information gain is relative to the splitting of cases in T into sets with 

distinct attribute values. For continuous attributes, the information gain is relative to the splitting 

of T into two subsets, namely, cases with an attribute value not greater than a local threshold 

and cases with an attribute value greater than a certain local threshold, which is determined 

during information gain calculation. The attribute with the highest information gain (Step (4)) is 

selected for the test at the node. Moreover, in case a continuous attribute is selected, the 

threshold is computed (Step (5)) as the greatest value of the whole training set that is below the 

local threshold. 
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 A decision node has s children if iT  (where i[1,s]) are the sets of the splitting produced 

by the test on the selected attribute (Step(6)). Obviously, s=2 when the selected attribute is 

continuous, and s=h for discrete attributes with h known values.  For i=[1,s], if iT  is empty, 

(Step(7)) the child node is directly set to be a leaf, with associated class the most frequent class 

at the parent node and classification error 0. 

  If iT  is not empty, the divide and conquer approach consists of recursively applying the 

same operations (Step (8)) on the set consisting of iT  plus those cases in T with an unknown 

value of the selected attribute. Note that cases with an unknown value of the selected attribute 

are replicated in each child with their weights proportional to the proportion of cases in iT over 

cases in T with a known value of the selected attribute.  Finally, the classification error (Step (9)) 

of the node is calculated as the sum of the error of classifying all cases in T as belonging to the 

most frequent class in T, then the node is set to be a leaf and all sub trees are removed. 

 The information gain of an attribute a for a set of cases T is calculated as follows: if a is 

discrete, and iT  (where i [1,s]) are the subsets for T consisting of cases with distinct known 

value for attribute a, then: 

1

gain info info
s

i

i

i

T
T T

T
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T
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is the entropy function .The function ,jfreq C T ,is the function calculating frequency of 

classifying case T as 
jC  .While having an option to select information gain, by default, 
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however, C4.5 considers the information gain ratio of splitting iT  (where 1,i s ), which is the 

ratio of information gain to its split information: 

2

1

log
s

i i

i

T T
Split T P

T T
 

where P represents the probability function. 

 It is easy to see that if a discrete attribute has been selected at an ancestor node, then 

its gain and gain ratio are zero. Thus, C4.5 does not even compute the information gain of those 

attributes. If a is a continuous attribute, cases in T with a known attribute value are first ordered 

using a Quicksort ordering algorithm[53]. Assume that the ordered values are iv  

(where 1,i m  ).Consider for 1, 1i m  the value 
1

2

i iv v
v  and the splitting: 

1 2;v v

j j j jT v v v T v v v
 

 For each value v, the information gain vgain  is computed by considering the splitting 

above, The value v‘ for which gain is vgain . By default, again, C4.5 calculates the information 

gain ratio of the splitting sets
1

stT ,
2

ndT . Finally, note that, in case the attribute is selected at the 

node, the threshold is calculated (Step(5)) by means a linear search in the whole training set ΓS 

of the attribute value that best approximates the local threshold v‘ from below(i.e., which is not 

greater than v‘). Such a value is a set to be the threshold at the node. 

  Since constructed decision trees may be large and unreadable and may suffer from the 

over fitting problem. The C4.5 system offers a simplified tree obtained by cutting paths 

according to a given confidence level. Both the decision tree and its simplified version are 

evaluated by computing the percentage of cases misclassified by the trees. Also, such an 

evaluation can be performed on a test set, a set of unseen cases during the tree construction. 

[53]. 
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3.5 Summary 

 Chapter 3 explains the basic concepts of machine learning and the C4.5 algorithm that 

the thesis used for the research. Chapter 4 summarizes the experimental results. 
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CHAPTER 4 

PROPOSED ENCODER 

   

4.1 Introduction 

 Motion estimation accounts for about 70% of the total encoding time in H.264 [36]. This 

thesis aims at applying machine learning to the motion estimation block to reduce the encoding. 

The implementation has been done on JM 16.2 [29]. Machine learning is used to exploit the 

spatial and temporal redundancies in video in order to make optimal mode decisions by 

replacing the sum of absolute differences (SAD) and other cost evaluations by if – else 

statements in the motion estimation block. The flow chart shown in Figure 6 sums up the 

approach incorporated in this thesis. J4.8 analysis is used to reduce the complexity in 

determining the mode decisions. The statistics for each 16x16 macroblock of the first four 

frames of the video sequence is calculated. The statistics being the mean, variance, variance of 

means for all the sub macroblock sizes in the macroblock, mean of the adjacent macroblocks, 

variance of the adjacent macroblocks and variance of means for all the submacroblock sizes in 

the adjacent blocks. The modes for the same first four frames from the video sequences are 

determined from the H.264 encoder in the JM 16.2 software. These modes and the determined 

statistics are collectively given as attributes for training in the WEKA [40] tool. This is an offline 

process. The improvement in the encoding varies with the number of frames and the statistical 

data of the macroblocks in those frames. The improvements in the encoding time for 4 frames 

and 100 frames have been listed in this thesis report.  

4.2 Approach 

C4.5 (J48) of the WEKA [40] is used as the classifier algorithm to determine the mode 

decision tree. This thesis has tried to determine a universal tree that can give relatively accurate 
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mode decisions to any video sequence. To demonstrate this, this thesis has used different 

combinations of video sequences for training the mode decision trees and later testing the 

mode decision trees. Table 4.1 summarizes the results. The attributes most commonly 

considered for mode decision in all the entries in the table are considered to determine the 

mode decision for the universal mode decision tree. This tree is implemented in the form of if – 

else statements in the motion estimation block of JM16.2. Hence, the motion estimation process 

is reduced to if-else statements. 

The idea of applying the concept of machine learning to improve the encoding time in 

H.264 encoder is taken from [18] as shown in figure 4.1. But the approach that this thesis has 

implemented is different from that in [18]. The idea in [18] is that the attributes of a sequence 

along with its mode decisions are given to the WEKA tool. The classifier result is obtained. The 

motion estimation code is then replaced by this tree. A unique tree is first built for every 

sequence. The same sequence is used for both training and testing.  Hence, the efficiency of 

the tree (with respect to the motion estimation time) is greater than the approach of this thesis. 

4.3 Experimental Results 

Table 4.1 shows the WEKA tool results for various combinations of video sequences as 

training and test sequences. The if-else statements derived from the mode decision trees were 

used to replace the mode decision block in the JM encoder. The assessment metrics like 

PSNR, MSE, SSIM and file compression ratios for the H.264 video encoder as in JM 16.2 and 

the encoder based on machine learning are tabulated in Tables 4.2 through 4.13. 
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Table 4.1 Weka Results 
 

Training Seq 

1 

 

% 

Accuracy 

* for 

Training 

seq 1 

Training seq 

2 

% 

Accurac

y * for 

Training 

seq 2 

Test seq % Accuracy* 

Bus_cif 70.6861 Foreman_cif 80.7645 Mobile_cif 77.188 

Stefan_cif 81.8182 Tempete_cif 82.8897 Container_cif 85.207 

Container_cif 98.9268 ------ ---- Waterfall_cif 93.358 

Waterfall_cif 90.5636 --------- ------- Stefan_cif 85.9583 

Bus_cif 70.6861 -------- ------ Container_cif 86.529 

Bus_cif 75.4665 Foreman_cif 94.9495 Mobile_cif 82.0896 

Stefen_cif 88.3838 Tempete_cif 85.0444 Container_cif 90.1812 

Container_cif 98.131 ---------- ----- Waterfall_cif 95.00442 

Waterfall_cif 92.1086 -------- -----------

-- 

Stefan_cif 88.952 

Bus_cif 70.6861 --------- -----------

-- 

Bus_cif 74.8865 



  

 53 

Waterfall_cif 90.5636 --------- ------ Bus_cif 83.0469 

%Accuracy * refers to the accuracy in determining the mode decision using machine learning in 

comparison to the mode decision in JM 16.2 encoder . 

 

Figure 4.1 Classification tree for container sequence from Weka tool 

Table 4.1 - Continued 
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Figure 4.2 Tree structure for container sequence from  Weka tool 
 

 

Figure 4.3 Snap shot of the implementation of the tree structure in JM 16.2 encoder 
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The simulation results (4 frames)obtained using  JM  16.2  and the JM modified using 

machine learning .The results are as shown in Table 4.2. 

Table 4.2 Results obtained using JM 16.2 and JM using machine learning for 4 frames 
 

Seq No Sequence Encoding time 

(seconds) for 

JM 16.2 

without 

machine 

learning. 

Encoding 

time 

(seconds) 

using  

machine 

learning. 

ME time 

(seconds) for 

JM 16.2 without 

machine 

learning. 

ME time 

(seconds) 

using machine 

learning. 

1 Foreman_

qcif 

346.720 270.037 247.147 151.595 

2 Coast_qcif 361.714 279.803 242.531 144.371 

3 Car 

phone_qcif 

347.85 269.674 249.081 152.576 

4 Silent_qcif 368.155 253.006 254.297 139.053 

5 Suzie_qcif 343.983 342.583 263.777 260.981 

6 Miss-

america_q

cif 

368.694 198.909 310.542 141.584 

7 Bus_cif 1608.934 1346.542 1010.012 617.088 

8 Container_ 1542.106 1241.772 1109.672 686.165 
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9 

 

Foreman_

cif 

 

1689.383 

 

889.833 

 

1316.543 

 

537.128 

 

10 

 

Mobile_cif 

 

2031.07 

 

1695.243 

 

1066.867 

 

627.440 

11 Tempete_

cif 

1808.560 1361.954 1078.435 590.689 

12 Stefan_cif 1750.255 1267.813 1136.800 617.822 

13 Waterfall_

cif 

1497.525 

 

994.996 1017.974 529.557 

14 Mother-

daughter_

qcif 

422.332 360.371 322.011 276.212 

 

Table 4.2  – Continued       
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Figure 4.4 Motion estimation time for 4 frames for sequences in Table 4.2 
 

The speed up in the encoding time and motion estimation time (4 frames)by using machine 

learning .The results are tabulated in Table 4.3. 

Table 4.3 Speed up in encoding time and motion estimation time for 4 frames using 
machine learning compared to JM 16.2 encoder 

 

Sequence 

Number 

Sequence Speed up in Encoding 

time 

Speed up in ME time 

1 Foreman_qcif 22.11 % 38.66 % 

2 Coast_qcif 22.64 % 40.47 % 

3 Car phone_qcif 22.47 % 38.74 % 

4 Miss-

america_qcif 

15.772% 28.86% 
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 5 

 

Bus_cif 

 

16.30 % 

 

38.90 % 

6 Container_cif 19.47 % 38.16 % 

7 Foreman_cif 47.32 % 59.20 % 

8 Mobile_cif 47.47% 62.99% 

9 Tempete_cif 40.370% 56.629% 

10 Stefan_cif 35.04% 51.268% 

11 Waterfall_cif 32.022% 46.778% 

12 Silent_qcif 30.9266% 45.039% 

 

13 

 

Suzie_qcif 

 

23.36779% 

 

23.819% 

14 Mother-

daughter_qcif 

23.75% 23.353% 

 

The compressed file sizes (4 frames) obtained using normal JM 16.2 and JM using 

machine learning. It is important that the H.264/AVC encoder with machine learning maintains 

the compression ratio. Hence it is important to compare the compressed file sizes for the 

encoder with machine learning and the encoder in JM 16.2 .The results are tabulated in Table 

4.4. 

 

Table 4.3 - Continued 
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Table 4.4 Comparison of compressed file sizes for four frames for sequences in Table 4.2 
 

Sequence 

Number 
Sequence 

Compressed  

file size (KB) in 

JM 16.2 

encoder. 

Compressed file  

size (KB) using 

machine 

learning. 

% Increase in encoded 

file size using machine 

learning 

1 Foreman_qcif 4.34 4.34 0 

2 Coast_qcif 5.68 5.67 + 0.0017 

3 Silent_qcif 4.0 4.0 0 

4 Suzie_qcif 3.0 3.0 0 

5 

Car  

 

 

phone_qcif 

4.52 4.54 0.0044 

 

6 

 

Bus (cif) 

 

31.9 

 

32.2 

 

0.0093 

7 Container (cif) 12.0 12.0 0 

8 Foreman (cif) 12.4 12.7 0.1903 

9 Mobile(cif) 50.4 51.0 0.0119 
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10 
Stefan(cif) 32.5 34.0 0.0462 

11 Waterfall(cif) 18.7 19.0 0.0160 

12 Tempete(cif) 36.7 37.0 0.0082 

13 

 

Miss-

america_qcif 

2.0 2.0 0 

14 
Mother-

daughter_qcif 
2.279 2.279 0.0 

 

 

Figure 4.5 Compressed file sizes using machine learning for four frames for sequences in 
Table 4.4 

 
 
Table 4.4 - Continued 
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 It is important that the H.264/AVC encoder with machine learning maintains the fidelity 

of the video sequences. Hence it is important to compare the fidelity measures like PSNR and 

MSE for the encoder with machine learning and the encoder in JM 16.2. The results are 

tabulated in Table 4.5. 

 

 
Table 4.5 Comparison of PSNR and MSE for four frames 

 

Sequence 

Number 
Sequence 

PSNR(

dB) 

using 

JM 

16.2 

encode

r 

PSNR (dB) 

using 

machine 

learning 

MSE using 

JM 16.2 

encoder. 

MSE  using 

machine 

learning. 

 

1 

Foreman_qcif 37.389 37.324 11.881 12.068 

2 Coast_qcif 35.24 35.21 19.539 19.681 

3 Car ph_qcif 37.937 37.879 10.472 10.619 

4 
Miss-

america_qcif 
40.949 40.881 5.22970 5.31475 

5 Bus_cif 35.961 35.932 16.518 16.633 

6 Container_cif 37.162 37.153 12.517 12.544 
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7 Foreman_cif 37.833 37.85 10.371 10.684 

8 Mobile_cif 35.541 35.512 18.2873 18.419 

9 Tempete_cif 35.962 35.93 16.594 16.705 

10 Stefan_cif 37.011 36.985 13.00572 13.08644 

11 Waterfall_cif 35.912 35.906 16.6923 16.716 

12 
Mother-

daughter_qcif 
38.363 38.363 9.481 9.481 

13 Silent_qcif 36.784 36.775 13.63795 13.6775 

14 Suzie_qcif 37.749 37.741 10.938 10.381 

 

 

Figure 4.6 MSE in JM 16.2 and machine learning for four frames for sequences in Table 
4.5 

 
The simulation results obtained (4 frames) with respect to SSIM . 

 
 
 
Table 4.5 – Continued       
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It is important that the H.264/AVC encoder with machine learning maintains the fidelity 

of the video sequences. Hence it is important to compare the perceptual quality measure SSIM 

for the encoder with machine learning and the encoder in JM 16.2 the results are tabulated in 

Table 4.6 

Table 4.6 SSIM comparison for four frames 

Sequence 

Number 

Sequence SSIM for JM 16.2 SSIM using 

machine learning. 

% decrease 

** 

1 Foreman_qcif 0.95944 0.95910 0.035 

2 Coast_qcif 0.91793 0.91763 0.032 

3 Car phone_qcif 0.96670 0.96641 0.029 

4 Suzie_qcif 0.9555 0.9557 0.0002 

5 Bus_cif 0.94973 0.94941 0.033 

6 Container_cif 0.92827 0.92823 0.0043 

7 Foreman_cif 0.94302 0.94306 + 0.0042 

8 Mobile_cif 0.9758 0.9755 .00003 

9 Tempete_cif 0.9711 0.9709 0.02 

10 Stefan_cif 0.9807 0.9806 0.0001 

11 Waterfall_cif 0.9420 0.9420 0.00 

12 Silent_qcif 0.9600 0.9600 0.00 
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13 Miss-america_qcif 0.9707 0.9706 0.001 

14 Mother-

daughter_qcif 

0.9663 .9663 0.00 

%decrease** refers to the percentage decrease in SSIM  using machine learning in 

comparison to the SSIM as obtained  in JM 16.2 encoder 

 

 

Figure 4.7 SSIM comparison for four frames for sequences in Table 4.6 
 

The simulation results (100 frames) obtained using  JM  16.2  and the JM modified 

using machine learning .The results are as shown in Table 4.7. 

 
 
 
 
 

Table 4.6 - Continued 
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Table 4.7 Encoding time and ME time for 100 frames using JM 16.2 and JM using 
machine learning 

 

Seq No Sequence Encoding time 

(seconds) for JM 

16.2 without 

machine learning. 

Encoding time 

(seconds) 

using  

machine 

learning. 

ME time 

(seconds) for 

JM 16.2 

without 

machine 

learning. 

ME time 

(seconds) 

using machine 

learning. 

1 Foreman_qci

f 12061.84 12135.46 12309.39 11334.7 

2 Coast_qcif 12466.84 11593.49 12050.3 11094.56 

3 Car 

phone_qcif 11988.99 11121.75 12385.94 11908.72 

4 Suzie_qcif 11088.88 10539.32 11050.17 10502.91 

5 Miss-

america_qcif 13062.02 11595.37 13020.76 11559.16 

6 Bus_cif 51582.83 44868.16 50387.4 44700.1 

7 Container_ci

f 49234.23 40012.79 48001.23 38785.19 

8 Foreman_cif 58235.76 50674.88 56342.9 49463.13 
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9 Mobile_cif 100018.6 82372.02 9981.046 8156.502 

 

 

10 

 

 

Tempete_cif 37896.78 36143.12 35963.65 34172.36 

11 Stefan_cif 64173.79 61685.47 63243.57 58976.46 

12 Waterfall_cif 56789.43 53845.07 49876.13 47876.32 

13 Mother-

daughter_qci

f 10137.79 9248.341 9103.293 8078.816 

 

 

 

Figure 4.8 Estimation time for 100 frames for sequences in Table 4.8 
 

Table 4.7 – Continued       
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The speed up in the encoding time and motion estimation time (100 frames) by using 

machine learning. The results are tabulated in Table 4.8. 

Table 4.8 Speed up in encoding time and motion estimation time for 100 frames using 
machine learning compared to JM 16.2 encoder 

 

Sequence Number Sequence Speed up in Encoding 

time 

Speed up in ME time 

1 Foreman_qcif 12.11% 28.66% 

2 Coast_qcif 12.64% 30.47% 

3 Car phone_qcif 12.47% 28.74% 

4 Miss-america_qcif 21.27% 35.31% 

5 Bus_cif 12.43% 31.25% 

6 Container_cif 36.05% 44.40% 

7 Foreman_cif 15.30% 28.90% 

8 Mobile_cif 19.47% 28.16% 

9 Tempete_cif 37.32% 49.20% 

10 Stefan_cif 16.53% 31.18% 

11 Waterfall_cif 14.69% 35.22% 

12 Silent_qcif 17.56% 35.65% 

13 Suzie_qcif 23.55% 37.97% 
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Figure 4.9 Speed up in total encoding time for 100 frames for sequences in Table 4.8 
 

 

Figure 4.10 Speed up in Motion estimation time for 100 frames for sequences in Table 
4.8 

 
The compressed file sizes (100 frames) obtained using normal JM 16.2 and JM using 

machine learning. The results are tabulated in Table 4.9. 
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Table 4.9 Comparison of compressed file sizes for 100 frames 
 

Sequence 

Number 

Sequence Compressed  

file size (KB) in 

JM 16.2 

encoder. 

Compressed file  

size (KB) using 

machine 

learning. 

% Increase in 

encoded file size 

using machine 

learning 

1 Foreman_qcif 4.34 4.34 0 

2 Coast_qcif 5.68 5.67 + 0.0017 

3 Silent_qcif 4.0 4.0 0 

4 Suzie_qcif 3.0 3.0 0 

5 Car phone_qcif 4.52 4.54 0.0044 

6 Bus (cif) 31.9 32.2 0.0093 

7 Container (cif) 12.0 12.0 0 

8 Foreman (cif) 12.4 12.7 0.1903 

9 Mobile(cif) 50.4 51.0 0.0119 

10 Stefan(cif) 32.5 34.0 0.0462 

11 Waterfall(cif) 18.7 19.0 0.0160 

12 Tempete(cif) 36.7 37.0 0.0082 

13 Miss-

america_qcif 

2.0 2.0 0 
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Figure 4.11 Compressed file sizes  for 100 frames using machine learning for sequences 
in  Table 4.4 

 
The simulation results obtained (100 frames) with respect to PSNR and MSE are 

tabulated in Table 4.10.It is important that the H.264/AVC encoder with machine learning 

maintains the fidelity of the video sequences. Hence it is important to compare the fidelity 

measures like PSNR and MSE for the encoder with machine learning and the encoder in JM 

16.2. Table 4.10 tabulates the comparisons. 

Table 4.10 Comparison of PSNR and MSE for 100 frames 
 

Sequence 

Number 

Sequence PSNR(dB) 

using JM 16.2 

encoder 

PSNR (dB) 

using 

machine 

learning 

MSE 

using JM 

16.2 

encoder. 

MSE using 

machine 

learning. 

1 Foreman_q

cif 

37.389 37.324 11.881 12.068 
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2 Coast_qcif 35.24 35.21 19.539 19.681 

3 Car ph_qcif 37.937 37.879 10.472 10.619 

4 Miss-

america_qci

f 

40.949 40.881 5.22970 5.31475 

5 Bus_cif 35.961 35.932 16.518 16.633 

6 Container_c

if 

37.162 37.153 12.517 12.544 

7 Foreman_ci

f 

37.833 37.85 10.371 10.684 

8 Mobile_cif 35.541 35.512 18.2873 18.419 

9 Tempete_cif 35.962 35.93 16.594 16.705 

10 Stefan_cif 37.011 36.985 13.00572 13.08644 

11 Waterfall_cif 35.912 35.906 16.6923 16.716 

12 Mother-

daughter_q

cif 

38.363 38.363 9.481 9.481 

13 Silent_qcif 36.784 36.775 13.63795 13.6775 

14 Suzie_qcif 37.749 37.741 10.938 10.381 

 

 
Table 4.10 – Continued       



  

 72 

 

Figure 4.12 SSIM in JM 16.2 and machine learning for 100 frames for sequences in Table 
4.10 

 

 

Figure 4.13 MSE in JM 16.2 and machine learning for 100 frames for sequences in Table 
4.10 

 
The simulation results obtained (100 frames) with respect to SSIM . It is important that 

the H.264/AVC encoder with machine learning maintains the fidelity of the video sequences. 



  

 73 

 Hence it is important to compare the perceptual video quality SSIM for the encoder with 

machine learning and the encoder in JM 16.2The results are tabulated in Table 4.11. 

Table 4.11 SSIM comparison for 100 frames 
 

Sequence 

Number 

Sequence SSIM for JM 

16.2 

SSIM using 

machine 

learning. 

% decrease ** 

1 Foreman_qcif 0.95944 0.95910 0.035 

2 Coast_qcif 0.91793 0.91763 0.032 

3 Car phone_qcif 0.96670 0.96641 0.029 

4 Suzie_qcif 0.9555 0.9557 0.0002 

5 Bus_cif 0.94973 0.94941 0.033 

6 Container_cif 0.92827 0.92823 0.0043 

7 Foreman_cif 0.94302 0.94306 + 0.0042 

8 Mobile_cif 0.9758 0.9755 .00003 

9 Tempete_cif 0.9711 0.9709 0.02 

10 Stefan_cif 0.9807 0.9806 0.0001 

11 Waterfall_cif 0.9420 0.9420 0.00 

12 Silent_qcif 0.9600 0.9600 0.00 

13 Miss-america_qcif 0.9707 0.9706 0.001 
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Figure 4.14 SSIM comparison for 100 frames for sequences in Table 4.11 
 

 

4.4 Observations 

 Tables 4.2 through Tables 4.6 tabulate the simulation results for encoding 4 frames of 

the video sequences and Tables 4.7 through Tables 4.11 tabulate the simulation results for 

encoding 100 frames of the video sequences. The observation made is that the average 

improvement in encoding time for the first 4 frames is 40.28% and the average improvement in 

encoding time for the first 100 frames is 18.3%. This variation can be attributed to the fact that 

the training for the classification rule has been done using the first four frames. Training on 100 

frames is not done because the amount of data in 100 frames would lead to the over-fitting 

problem and hence a general classification rule cannot be built. Hence the performance of the 

classification rule is optimum for the first four frames only. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

   It was observed that a single universal mode decision tree failed to produce good 

fidelity of the video when all the modes for ME/MC were used in the machine learning algorithm. 

So this thesis considered only the sub macro block modes, i.e. 8x8, 8x4, 4x8 and 4x4 modes 

(Figure 2.6) for the machine learning. The function called ‗submacroblock_mode_decision‘ in 

the JM 16.2 software [29] has been replaced by the if-else statements as shown in Figure 5.1. 

The results  for four frames are  tabulated in the Tables 4.3 through 4.7.  From Table 4.3, it is 

clear that the average speed up in the encoding time is   28.5%. The average speed up in the 

motion estimation time is 42.84605%. From table 4.5, the average percentage decrease in 

compressed file size is 0.36%. From Table 4.7, it is evident that the average decrease in SSIM 

is less than 0.0107%. The results for hundred frames are  tabulated in the Tables 4.8 through 

4.11.  From Table 4.8, it is clear that the average speed up in the encoding time is   8.5%. The 

average speed up in the motion estimation time is 18.34600%. From Table 4.10, it is evident 

that the average decrease in SSIM is less than 0.0109%. This can be attributed to the over-

fitting problem of the classifier. Since the training sequence includes only the first four frames, 

the efficiency of the classifier is less when the testing sequence includes one hundred frames. 
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Figure 5.1 Snap shot of the implementation of the Tree structure in JM 16.2 encoder 

 
5.2 Future Work 

 As explained in section 5.1, the sub-macroblock 8x8, 8x4, 4x8 and 4x4 modes have 

been used for classification in this thesis. A classification rule which considers all the modes for 

mode decision can be developed. This thesis used data from four frames for training the 

classification rule. A scheme which would consider more number of frames for training while 

considering the over-fitting problem can be pursued for future work.  
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APPENDIX A 

 
 

STRUCTURAL SIMILARITY INDEX METRIC (SSIM) 
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 SSIM is a new objective method that can measure image quality between a distorted 

image and a reference image. The SSIM measures the degradation of structural information 

based on the assumption that human visual system characteristics are adopted for extracting 

structural information from an image scene. SSIM has better consistency with perceived image 

quality than pixel error model based on different performance evaluations. The system diagram 

of structural similarity measurement system is shown in Figure A.1. 

 

Figure A.1 Structural similarity index measurement system [56] 
 

Suppose x = { xi |i = 1, 2, ·  , N} and y = { yi |i = 1, 2, · , N} are two finite-length image 

signals, which have been aligned with each other, SSIM is defined as the product of three local 

quantities: luminance comparison (function of mean), contrast comparison (function of 

variance), and structure comparison (function of correlation coefficient and variance). 



  

 79 

 

 

 

 

where  and  are the means of x and y respectively. 

 and  are the standard deviations of the images X and Y respectively. 

 is the covariance of X and Y . 

,  and  are small constants such that   

 and  

where K1,K2 and L are constants 

SSIM can have a maximum value of 1. 

 The MSE and its derivative PSNR are conventional metrics to compare any two 

images. MSE measures the difference between the original and distorted pixels. PSNR is a 

logarithmic representation of the inverse of this measure. Compared to other objective 

measures, PSNR is easy to compute and well understood by most researchers. However both 

MSE and PSNR do not correlate well with the subjective quality of the reconstructed images. 

The subtle differences between degradations of different intensities are not properly reflected 

using PSNR. The SSIM metric has proven to be a metric that is closest to the human perception 
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of the received video sequence. This method utilizes structural distortion as an estimate of 

perceived visual distortion, whereas most other proposed approaches are error sensitivity 

based methods [25].
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APPENDIX B 
 
 

VIDEO SEQUENCES CONSIDERED IN THIS THESIS
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Figure B.1 Test Sequences mentioned in table 4.1   
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