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ABSTRACT

MICROARRAY IMAGE DENOISING USING COMPLEX GAUSSIAN SCALE

MIXTURES OF COMPLEX WAVELETS

LAKSHMI SRINIVASAN, M.S.

The University of Texas at Arlington, 2011

Supervising Professor: Soontorn Oraintara

The scientific world has witnessed an explosion in the development of compre-

hensive and high-throughput methods for molecular biology experimentation. High-

density DNA microarray technology, allows researchers to monitor the expression

levels of thousands of genes in an organism simultaneously, to characterize genetic

diseases at the molecular level and to direct new treatment for specific cellular aber-

rations. The microarray analysis is rapidly becoming a standard research tool. But,

the images produced by microarray experiments, are not perfect and includes noisy

sources, that contaminate them during the various stages of its formation. These

microarray images need to be denoised to ensure reliable and accurate downstream

analysis. A major challenge in DNA microarray analysis is to effectively dissoci-

ate actual gene expression values from experimental noise. This thesis, focuses on

proposing an efficient noise reduction technique for microarray images, by using an

appropriate model for the complex wavelet coefficients, obtained by decomposition of

these images using a complex transform.
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Among the number of filtering and enhancement techniques available for noise

reduction, wavelet-based approaches have been more successful as it processes the

images in multiresolution. In particular, complex wavelets have been more success-

ful in image denoising due to its shift invariance property and improved directional

selectivity. A two- channel cDNA microarray experiment generates two 16-bit red

and green channel images that reflect the expression levels of the genes in treatment

and control samples respectively. Since the two channel images produced are from

the same microarray slide, a significant noise correlation between the microarray im-

ages exist and methods that exploit this property of inter-channel signal and noise

correlation between the two channel images in the complex wavelet domain, achieve

better denoising performance. The Gaussian scale mixtures (GSM) model of wavelet

coefficients using Bayesian least square(BLS) estimator has been very effective in

noise reduction for natural images. To fully utilize the usefulness of complex wavelet

coefficients, complex Gaussian scale mixtures (CGSM) model has been developed as

an extension of the GSM for real wavelet coefficients. The CGSM model of complex

wavelet coefficients, improves the quality of denoised images from using the GSM of

real wavelet coefficients.

In this work, we combine the advantages of using an improved CGSM model

of the complex wavelet coefficients, by taking into consideration the inter-channel

dependency in the complex coefficients of the image as well as the noise for denoising

the red and green channel images. Thus, we propose to jointly denoise the two

channel microarray images by modeling the complex coefficients of signal and noise

using CGSM, by incorporating the joint statistics of the images into the model to

achieve better noise reduction performance.

Extensive experimentations are carried out on a set of cDNA microarray images,

to evaluate the performance of the proposed denoising methods as compared to the

vi



existing ones. Comparisons are made using standard metrics such as, the peak signal-

to-noise ratio (PSNR) for measuring the amount of noise removed from the pixels of

the images, and the structural similarity (SSIM) index as a measure of signal preser-

vation quality of the denoised images to the original image. To impress the usefulness

of the joint model, we have compared the joint denoising of the two channel images

with independent denoising of these images using same CGSM model. We find the

best window size for denoising these microarray images using our proposed method

such that, the PSNR of the output images is maximized. We have also compared the

performance of the our algorithm against some existing noise reduction methods in

literature. We have used the Dual Tree- Complex Wavelet Transform (DT-CWT),

which is probably the most widely used complex wavelet transform in image process-

ing, but have also compared our method with other complex-valued multiresolution

transforms, such as the fast discrete curvelet transform (FDCT), the pyramidal dual-

tree directional filter bank (PDTDFB), and the uniform discrete curvelet transform

(UDCT). Results indicate that the proposed denoising method adapted to microarray

images, do indeed, lead to better noise reduction evaluated in terms of PSNR and

SSIM. Thus, we expect our proposed model for noise reduction, to play a significant

role in improving the reliability of the results obtained from practical microarray

experiments.
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CHAPTER 1

INTRODUCTION

DNA microarray technology has been established as one of the most impor-

tant tool for analyzing the interactions between the genes that make up a genome.

With microarray technology, the possibility to simultaneously monitor the expression

levels of thousands of genes, under various experimental conditions, has become a re-

ality. With such genome-wide gene expression profiles, microarray technology holds a

promise for providing possible clues in treating difficult diseases caused due to genetic

abnormalities.

1.1 cDNA and Importance of microarray analysis

The ability of the cells to store and translate the genetic information is very

essential to create and maintain a living organism. The entire genetic material in a

living organism is called a genome. Every organism, has a genome that contains all

of the biological information needed to build and maintain a living organism. The

biological information contained in a genome is encoded in its deoxyribonucleic acid

(DNA) and is divided into discrete units called genes. These genes are packaged in

chromosomes and affect specific characteristics of the organism. A cell relies on its

gene products for a wide variety of functions including energy production, macro-

molecule biosynthesis, cellular architecture maintenance, and response to environ-

mental stimuli. Although DNA is the carrier of genetic information in a cell, proteins

are the active working components of the cellular machinery. Proteins function in

the cell in various forms like, enzymes that catalyze nearly all chemical processes
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in cells; structural components that give cells their shape and help in mobility;

hormones that transmit signals throughout the body; antibodies that recognize

foreign molecules; and transport molecules that carry oxygen. Proteins are made

up of smaller units called amino acids. DNA is the blueprint that specifies the order

and number of amino acids and, therefore, the shape and function of the protein. Ex-

pression of the information in DNA, to synthesize proteins is mediated by ribonucleic

acid (RNA) molecule. Thus, the cell expresses itself through the proteins it produces,

which are coded by genes in the cell.

DNA: The DNA that constitutes a gene is a double-stranded molecule con-

sisting of two chains running in opposite directions giving it a coiled structure called

double-helix. These two anti-parallel strands of sugar-phosphate linkages are con-

nected to each other by chemical pairing of each base on one strand to a specific base

on the other strand. Adenine, Thymine, Guanine and Cytosine are four amine bases

of which DNA is made up of and its sequential order contributes to the functioning of

a particular segment of the DNA strand (a gene). The bases exhibit a characteristic

and specific bonding known as base pairing. Base pairing (also known as Watson-

Crick base pairing) is a chemical bonding process that allows molecular hybridization

to occur, which will be discussed later. Between two strands of DNA, the base known

as adenine (A) specifically bonds with thymine (T) through two hydrogen bonds, and

guanine (G) specifically bonds to cytosine (C) through three hydrogen bonds, in a

manner that creates the double helix. The amine base that will form a bonding pair

with another amine base (A with T and G with C) is considered to be its complemen-

tary base. This complementary base pairing is what makes DNA a suitable molecule

for carrying our genetic information: one strand of DNA can act as a template to

direct the synthesis of a complementary strand. In this way, the information in a

DNA sequence is readily copied and passed on to the next generation of cells.
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Figure 1.1. Central dogma of molecular biology.

Transcription of DNA to RNA and translation RNA to protein is referred to as

the central dogma of molecular biology and is illustrated in figure (1.1) For the cell to

express, it must generate the proteins required to carry out the specific functionality.

Protein synthesis occurs in two steps : Transcription and Translation. The encoded

information in DNA is copied to messenger RNAs (mRNAs) by a process called Tran-

scription. Transcription is the communication of a genetic code from DNA to RNA

through the synthesis of a strand of RNA that has sequence of bases complementary

to that of the DNA strand from which it is generated. mRNA contains the base uracil

in the place of base thymine in DNA. The sequence of the bases in a DNA segment

comprises the code or genetic instructions that are passed on from the DNA molecule

to the RNA molecule because of the specific pairing that occurs between the bases in

DNA and RNA. Genetic transcription is carried out to direct the activity of the cell.

Synthesis of proteins from the information coded in the mRNA is accomplished

through a process called Translation. The mRNA then moves out of the nucleus of

the cell to the site of protein synthesis, the ribosomes. To convert the mRNA into

protein, transfer RNA (tRNA) is used to read the mRNA sequence, three nucleotides

(represented by their bases A, U ,G or C) at a time. A sequence of three nucleotides

in mRNA is called a Codon. Each of the possible 64 codons in the mRNA codes

for an amino acid. The mRNA sequence is matched, three nucleotides at a time to

a complementary set of three nucleotides in the anticodon region of the correspond-
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ing tRNA molecule. Opposite the anticodon region of each tRNA, an amino acid is

attached and as the mRNA is read off, the amino acids on each tRNA are joined

together through peptide bonds. The polymer of amino acids thus generated, forms

the protein molecule. Thus, we see that the proteins generated by the cell depends

upon the codon sequences in mRNA, which are formed by a base sequence comple-

mentary to that of DNA strand it is generated from. Though all the cells in the body

contain the same genome, the genes expressed in each cell differs and hence each cell

produces different proteins giving it a different behavior.

Complementary DNA (cDNA): mRNA produced from transcription directs

the production of cellular proteins, and is thus important in experiments of gene ex-

pression. Researchers want to observe what cellular proteins are produced and the

function of those proteins in particular types of cells (such as tumor cells) or in re-

sponse to specific external stimuli. So, they are interested in testing the expression

patterns of the mRNA. Although protein synthesis and activation are not regulated

solely by mRNA levels in a cell, mRNA measurement is used to estimate cellular

changes in response to external signals or environmental changes. The molecule of

mRNA is relatively fragile and is first chemically bound to a DNA molecule. In or-

der to remove it from the other cellular components, it can easily be broken down

by the action of enzymes that are prevalent in biological solutions. So researchers

commonly extract the mRNA from the cell and generate a form of DNA that pos-

sesses the complementary bases of the mRNA while existing in a more stable state.

This form of DNA, known as complementary DNA (cDNA), is created directly from

the sample mRNA through a procedure known as reverse transcription (transcribing

complementary genetic base sequences from RNA to DNA). cDNA is also called syn-

thetic DNA, since it is formed through reverse transcription from RNA rather than
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through self-replication during cell division. cDNA is generally prepared in strand

lengths of 500 to 5,000 bases of known sequence.

Microarrays may be used to measure gene expression in many ways, but one

of the most popular applications is to compare expression of a set of genes from a

cell maintained in a particular condition (treatment) to the same set of genes from

a reference cell maintained under normal conditions(control). In two-channel DNA

microarray, mRNA molecules from the control and treatment samples to be studied,

are isolated and complementary DNA (cDNA), which is called target, is produced

from it using Reverse Transcriptase (RT) enzyme. During this process, the control

samples are labeled with green (Cy3) and treatment samples with red (Cy5) fluo-

rescent dyes respectively. This mixture is then washed over a microarray slide. A

microarray slide has known reference genes called probes that are printed on them

in a pre-determined scheme. This results in competitive hybridizations between the

target and probe, causing the target to bind to the slide. The scanner then scans

the slide with a green and red laser separately to produce two 16-bit images. The

spots occupy a small fraction of the image area, and have to be individually located

and isolated from the image background prior to the estimation of its mean intensity.

The intensity values of each spot in the image represents the level of gene expression

(strength of binding), with higher values implying more expression of that gene[2]. It

thereby enables us to identify differentially expressed genes in the control and treat-

ment samples. Log intensity ratio of the expression levels of these gene spots in the

red and green channel images are extracted and used for further analysis like gene

clustering, etc. The DNA microarrays will be discussed in detail in chapter 2.
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1.2 Background and Motivation

In this section we first discuss the steps involved in microarray image analysis

and the motivation for the proposed work. Once the microarray image has been con-

verted into the digital domain, the first step in the analysis of data is to process these

images. The intensity of the spots in red and green channel image give the expression

level of the gene of interest in the treatment and control samples respectively. To

measure the relative activity of the gene, we take the log intensity ratio of the gene

spot intensity of treatment and control sample images. If this quantity is greater than

zero, we say the gene is over-expressed or up-regulated in the treatment sample in

comparison to control. If less than zero, gene activity is suppressed or down-regulated

in the treatment compared to control. If zero, they are equal expressed in both condi-

tions. These transcription values from the image analysis stage are commonly focused

at finding similarities between the behavior genes under two different conditions or

between known and unknown genes in the initial samples. Such behavior analysis

renders the ability to predict the behavior of genes in different conditions or function

of unknown genes.

This overall process can be broken down into three main steps [3]:

1. Addressing: A typical slide has several gene groupings on its surface, with hun-

dreds of genes per group. Addressing, uniquely identifies the locations of the genes

in the image in such a way that, there is no overlap between any two gene locations.

The separation of gene spots in the image into distinct cells by constructing grids

covering block of spots is called microarray image gridding. Several methods have

been proposed for gridding. They can be viewed in terms of automation as man-

ual, semiautomated and fully automated. For example, popular softwares ImaGene

[4] uses a semiautomated process while ScanAlyze [5] uses a manual gridding. An
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overview of the various gridding methods can be found in [6].

2. Segmentation: Once the genes have been localized by the addressing process, the

task becomes one of accurately separating the gene spots themselves from their local

background area. Various algorithms proposed to solve this problem include fixed

circle method in [5], adaptive circle method, hybrid k-means algorithm [7], Markov

random field (MRF) modeling for the microarray spot segmentation [8], wavelet based

MRF [9], etc. A comparison of some these methods of segmentation is presented in

[10].

3. Feature Extraction: Feature extraction quantifies the area of interest (gene

spot) by intensity measurement along with that of the local background. This pro-

cess calculates a host of other metrics to facilitate downstream analysis such as gene

clustering [11], tumor analysis, etc.

One of the major factors that complicates the image analysis task is that, the

microarray images are contaminated with various types of noise (biological and ex-

perimental). If this noise is treated improperly, analysis of these images may result in

erroneous biological conclusions. Biological noise is intrinsic, it includes the stochastic

internal noise of the cell and error sources related to sample preparation, and it in-

duces image blurring[12]. Experimental noise can be subdivided into source noise and

detector noise. Source noise is generated during the fabrication and target labeling,

whereas detector noise is generated during the amplification and digitization stages.

These types of noise produce microarray images, which are corrupted by irregularities

in the shape, size, and position of the spots, and are dominated by spatially inhomo-

geneous noise[12]. The undesirable effect of noise is that, it causes inaccurate spots

segmentation, which in turn has a direct effect on the incorrect estimation of the rel-

ative mean spots intensities and reduces the reproducibility and validity of the gene

expression levels, derived from microarray images. Noise complicates all microarray
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image processing tasks (gridding, segmentation, intensity extraction). For noiseless

images, these would have been a trivial task even by using simpler segmentation and

feature extraction method, but this is not the case[12].

In order to overcome these and other noise related issues, a systematic approach

is needed while analyzing the image data. The pre-processing of these images, should

be able to reduce the artifact noise without disturbing the signal of interest (the gene

spots).

An investigation of the noise reduction algorithms for microarray images reveal

an important phenomena.

First, among the methods that are proposed for denoising the images, the wavelet

based approaches have been promising due to its ability to analyze images in more

than one resolution. In particular, complex wavelets due to improved directional se-

lectivity and shift invariance property are an attractive choice.

Second, methods that account for the inter-channel noise and signal correlation be-

tween the red and the green channel images are more efficient in denoising the mi-

croarray images.

Third, a recent work [13], which combines both above said advantages by denoising

the magnitude of the complex coefficients using linear minimum mean square error

(LMMSE) and maximum a posteriori (MAP) estimator have shown better denoising

performance in terms peak signal to noise ratio (PSNR).

Among the models proposed for wavelet coefficients, we are particularly in-

terested in Gaussian scale mixture (GSM) model. It is a statistical model of the

coefficients of an over-complete multiscale oriented basis. Neighborhood coefficients

in adjacent positions and scales are modeled as a product of, a Gaussian random

vector and a hidden positive scalar multiplier, which modulate the local variance of

the neighborhood coefficients. This model is able to account for the observed corre-
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lation between the coefficient amplitudes. This GSM model is used for real -valued

random vectors. Application of this model for noise reduction in natural images using

Bayesian least square (BLS) estimator [14] is very effective. Recently, complex GSM

(CGSM) was developed for complex wavelets, as an extension of GSM used for real

wavelets. This model completely utilizes the usefulness of complex magnitude and

phase of the complex coefficients in the statistical framework for image modeling. It

is shown to be more effective in image denoising than using the joint GSM model for

real and imaginary parts of complex coefficients.

The above discussed study of microarray image denoising algorithms and the

usefulness of CGSM, is the main motivation behind this work. In this proposed work,

we want to apply the more appropriate CGSM model of the complex coefficient and

also utilize the property of correlation between the signal and noise that exist between

the two channel microarray images in denoising them.

1.3 Organization of the Thesis

This thesis is organized as follows. Some background on the microarray exper-

iments and wavelet-based noise reduction schemes are given in Chapter 2. It helps in

understanding the proposed algorithm and its advantages. Chapters 3, discusses the

details of the CGSM and shows how it models the complex wavelet coefficients. In

chapter 4, we present our proposed algorithm for microarray image denoising using

the Bayes least square (BLS) estimator in the complex wavelet domain. Using these

results, we discuss how we incorporate the inter-channel signal and noise correlations

into the BLS estimator of the CGSM to denoise the two channel images. Suitable

window sizes for denoising these images is investigated first. Using this optimum

neighborhood window size, simulation experiments are conducted on a set of cDNA

microarray images to evaluate the performance of the proposed algorithms. Com-
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parisons are made between the joint denoising algorithm and independent denoising

of these images to show the effectiveness of the proposed method. In addition, we

also compare its performance, with some of the existing efficient noise reduction tech-

niques. Finally, we fix our proposed model and vary the complex transform used to

capture the effect of choice of transform in denoising these images. We conclude with

Chapter 5, which summarizes the main theme and overall findings of this research

work and provides directions for future study.



CHAPTER 2

NOISE REDUCTION IN MICROARRAY IMAGES

2.1 Introduction

In this chapter, we discuss the various noise reduction techniques for microarray

images. To get a good understanding of these methods and the difficulties involved, a

clear understanding of the dynamics involved in the experiment should be understood.

So, first we focus primarily on technical aspects of cDNA microarrays and the various

sources of noise. Next, we impress on the need for an efficient pre-processing of these

images to reduce the noise contamination. Among the previous work in this area, we

place particular emphasis on wavelet-based techniques as it will give a good basis for

us to introduce our proposed work.

2.1.1 cDNA microarray image

High-density DNA microarray technology allows researchers to monitor the in-

teractions among thousands of gene transcripts in an organism on a single experimen-

tal medium, which is often a glass microscope slide or nylon membrane. Microarrays

can be used to evaluate the dynamic expression of genes in response to normal cellular

activity (for example, changes in gene transcription, cell division) or in response to

external stimuli (for example, a toxic substance, viral infection). The ability to simu-

late a large variety of cellular conditions and then translate and process the resulting

large quantities of data, provides a systematic way to evaluate cellular function and

genetic variations.

11
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The following is a simplification of the complicated biochemical processes and

protocols involved in the preparation of nucleic acid materials and microarrays and

in the conduct of gene expression studies in the biology laboratory. These were taken

from [15]. It is provided as an introduction to the technology.

The microarray array is a solid base on which a grid of spots or droplets of

genetic material of known sequence is arranged systematically. The array is commonly

a small piece of glass or nylon (similar to a microscope slide), with thousands of

spots or wells that can each hold a droplet representing a different cDNA sequence.

The cDNA of known sequence that is fixed onto the array after micro-spotting is

commonly referred to as the probe, while the polynucleotide of unknown sequence

in the biological sample solution is commonly referred to as the target. The robotic

machine that applies the droplets of different cDNA strands of known sequence to a

spot on the array is called the spotter or arrayer.

Once the slide is prepared, to identify and measure the presence of a nucleotides

of unknown sequence (in the target sample) after it binds to the material on the

microarray, it is labeled with a fluorescent dye. The dye is incorporated with the

molecule during reverse transcription. A different dye color is used for the control

sample, and generally the two dye colors used are Cyanine 3 (Cy3) and Cyanine 5

(Cy5) due to the accompanying scanning and imaging requirements to detect fluores-

cent light of specific wavelengths. These two samples are then mixed and washed over

a microarray slide leading to hybridization between the target and the probes. Molec-

ular hybridization is the association of single strands of polynucleotides through their

specific base-pairing properties to form a complementary double-stranded molecule.

This is the chemical process that occurs between the labeled polynucleotide strands

of target tissues and their complementary strands of cDNA of known sequence among

the spots on the array. Ideally, if a polynucleotide from the target sample contains a
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Figure 2.1. Illustration of the steps in cDNA microarray experiment (Duggan D.J. et
al [1].,1999, Nature Genetics).

base sequence that is complementary to that of a polynucleotide at one spot of the

array, it will hybridize to the molecule at that spot. The location of that spot on

the array grid will then be detectable by the fluorescent light that is given off during

the scanning and imaging processes. When many target polynucleotides hybridize to

complementary cDNA probe strands at one spot on the array then the fluorescent

signals emitted and detected at that spot will have greater intensity.

Many scanners use a specific frequency of light from a laser (for example, an ar-

gon laser) in the ultraviolet region to excite the fluorescent dye attached to the target

samples that have hybridized to their complementary probe sequences on the array.

The photons emitted by the excited dye are collected at a detector, which measures
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Figure 2.2. A sample microarray image.

and records their levels, converting the measurements to electrical signals. Since two

different fluorescent labels are generally used in gene expression studies, each slide is

scanned at two wavelengths. The ratio of the fluorescent light emissions between the

two different wavelengths (corresponding to the two different dyes used to label the

unknown and control polynucleotide target samples) is the indirect measurement of

the relative gene transcript expression levels.

A digitized scanned array image is obtained from the microarray scanner and is

displayed on a monitor. False coloration of the fluorescent intensities, translated on

the computer monitor as pixel intensities, is applied to the image to produce a color

image for the analyst to read. If the biochemist tagged the polynucleotide from the

unknown experimental sample with a red dye and the control polynucleotide sample

with a green dye, and the false colorations mimic the fluorescent tagging, then visual-

ization of a red spot on the final array grid indicates that the unknown polynucleotide

hybridized abundantly to the cDNA affixed at that location on the microarray slide.

A final green spot indicates that the control polynucleotide hybridized abundantly

to the cDNA affixed at that location, a yellow spot indicates that the unknown and

the control polynucleotides hybridized in relatively equal amounts at that location
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on the microarray, and a black spot indicates that neither sample of polynucleotides

hybridized at that location.The standard image format for microarray images is a

16-bit tagged image file format (TIFF). Figure (2.2) illustrates a cDNA microarray

experimental procedure. For more details on the specifics of each step refer to [15, 16]

2.1.2 Applications of Microarrays

DNA Microarray technology can help in the identification of new genes, their

function and expression levels under different conditions. DNAMicroarray technology

helps researchers learn more about different diseases such as heart diseases, mental

illness, infectious disease and especially the study of cancer. It will be possible for

the researchers to further classify the types of cancer on the basis of the patterns

of gene activity in the tumor cells. This will tremendously help the pharmaceuti-

cal community to develop more effective drugs as the treatment strategies will be

targeted directly to the specific type of cancer. Microarray technology also has ex-

tensive application in pharmacogenomics and taxicogenomics. Pharmacogenomics is

the study of correlations between therapeutic responses to drugs and the genetic pro-

files of the patients and Taxicogenomics establishes correlation between responses to

toxicant and the changes in the genetic profiles of the cells exposed to such toxicant.

Comparative analysis of the genes from a diseased and a normal cell will help in the

identification of the biochemical constitution of the proteins synthesized by the dis-

eased genes. The researchers can use this information to synthesize drugs which will

combat with these proteins and reduce their effect. Microarray technology provides a

robust platform for the research of the impact of toxins on the cells and their passing

on to the progeny.
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Figure 2.3. Samples of noisy microarray images taken from SMD database.

2.1.3 Need for Noise reduction

The technology for microarray studies is still evolving, and many researchers

are conducting their studies using different types of customized microarrays, including

home-made array chips. In general, the current technology does not consistently gen-

erate robust and reliable data when used in the average laboratory. Ideally, reliable

microarray data should exhibit the qualities of accuracy, assessed by the probable er-

ror of a measurement, and precision, defined by the reproducibility of a measurement

[15]. Samples of noisy microarray images from the SMD database is shown in figure

(2.3).

The intensities of the signal represent the amount of fluorescent DNA bound to

microarrays and is subject to considerable uncertainty because of large- and small-

scale intensity fluctuations within spots, nonadditive background, and fabrication

artifacts (Brown et al. 2001), contributing to poor-quality images. Some of the noise

sources in the different stages of the experiment are discussed below.
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Biological contamination One of the places for the noise to enter the system is

within the biological stage itself. This process relies on the biochemical in-

teractions of the underlying four- base nucleotide components. A mutation

or corruption of a single nucleotide within a sequence interaction can have a

significant impact on the final hybridization results.

Hybridization noise As hybridization is a complex process, it can be affected by

conditions like temperature, humidity, salt and formamide concentration. With

genes of closely related families, it is not uncommon for cross hybridization

to occur between different genes. Such cross hybridization can manifest itself

into the resultant image surface as excessive bounding of genetic material or

erroneous pairing between sample and reference material.

Washing noise Once the hybridization process is complete, the microarray slide

must be washed for two important reasons. First, not all the cDNA within an

individual experiment will have bound to the probe’s DNA. This excess material

must be removed to calculate the gene expression quantity as accurately as

possible. Second, cross hybridization between similar species can cause probe

to bind with inappropriate target gene. Washing helps in remove these weakly

bound target from the probe region and thereby increasing the stringency of the

resultant data. A poor wash with excessive wash material or prolonged wash

time, can causing the washing material to bind to dry on the slide surface.

Systematic noise This type of noise in microarray usually results from poor slide

preparation and manual process. Other sources of systematic variation, internal

or external to the sample, include fluctuations in the physical properties of the

dyes, efficiency of dye incorporation, probe coupling and processing procedures,

background and overshining effects, and scanner settings, among others. The

background signal may increase due to dust, fibers, fingerprints, autofluores-
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cence of the coated glass and hybridization problems resulting from dehydration

near the edge of coverslips (Hess et al. 2001).

Thus, we can summarize that, due to the dynamics involved in the microarray

experiment, the microarray images produced are not perfect. It is contaminated with

various amounts of artifact noise that could cause an analysis algorithm to make

erroneous decisions. The noise originates from different sources during the course of

experiment, such as hybridization noise, washing noise, systematic noise, hardware

noise, photon noise, electronic noise, laser light reflection, dust on the slide, etc.

Additionally, the natural fluorescence of the glass slide and non-specifically bounded

DNA or dye molecules add a substantial noise floor to the microarray image. To

make the task even more challenging, the microarrays are also afflicted with discrete

image artifacts such as highly fluorescent dust particles, unattached dye, salt deposits

from evaporated solvents, fibers and various airborne debris[17]. Clearly, given the

various sources of noise in the microarray procedure, microarray images need to be

denoised to ensure reliable and accurate downstream analysis. Thus, critical first

steps in any analysis of gene expression data must include an attempt to clean the

data by automatic procedures that can improve image quality, by separating signal

from noise.

2.2 Previous work

In this section we investigate the previous research work on noise reduction in

microarray images. There are some commercially available microarray image pro-

cessing softwares for estimating the log-intensity ratios such as QuantArray, Spot,

and GenePix. These softwares use low-level noise reduction techniques, such as the

median filter, for processing the microarray images. These are help only in low-level
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noise reduction. However, these methods are insufficient, and the presence of noise

results in erroneous segmentation and intensity extraction that leads to inaccurate es-

timation of the log-intensity ratios[12]. To achieve accurate estimation of log-intensity

ratios from these images, efficient algorithms for reducing noise is essential for mi-

croarray image analysis. These noise reduction schemes can be broadly classified as

pixel domain and transform domain methods.

2.2.1 Pixel based methods

In pixel domain methods [18], [19], [17], contamination due to noise is removed

by a filtering operation using the neighborhood information of the pixels. In [18],

nonlinear filtering solutions based on robust order statistics of the pixels is used to

remove background and high frequency noise. It consider the two channel images

as vectorial inputs and denoises them by minimizing the aggregate distance between

the vectorial inputs. It also exploits the correlation that exists in the microarray

images. A similar method in [17], proposes use of arithmetic mean filter (AMF) and

the vector median filter (VMF) for the suppression of the detected noise in microarray

images. [20] proposes a pixel based approach in which possible microarray slide image

is recreated, with all the genes removed. The estimate of background thus recreated

is subtracted from the original, to calculate the gene ratios with less influence from

outliers and other artifacts. But its seen that, these pixel based method, though

simpler to implement, are not as efficient as transform based methods.

2.2.2 Transform based methods

In image processing, the image is often transformed because certain properties

of the transform domain data enables us to efficiently solve the problem at hand than

the pixel domain approach. Various kinds of transforms such as the discrete cosine
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transform (DCT), the discrete Fourier transform (DFT), the discrete wavelet trans-

form (DWT) and Complex Wavelet Transform (CWT) are available for processing

microarray images. Among these various transforms, wavelets are being extensively

used for image denoising as it can efficiently process images in more than one reso-

lution. Denoising of images corrupted by Gaussian noise using wavelet techniques is

effective because of its ability to capture the energy of a signal in few energy trans-

form values. In addition it also provides flexibility with choice of basis function, as

required for the application, making it an attractive choice. Wavelet transform is

superior approach to other time-frequency analysis tools because its time scale width

of the window can be stretched to match the original signal, especially in image pro-

cessing studies. This makes it particularly useful for non-stationary signal analysis,

such as noises and transients. Also, wavelets being used for other microarray image

analysis tasks like gridding and segmentation[9], it can easily be incorporated into a

comprehensive automated microarray image analysis system.

In [21], stationary wavelet transform (SWT) is employed, which is shift in-

variant, to reduce the noise in these images. It follows a three step procedure, in

which the image is first decomposed by the stationary wavelet transform. Then the

decomposition coefficients are thresholded by the SureShrink rule. These threshold

coefficients are then reconstructed to get the denoised image. The main drawback

of such an approach is that, the efficiency of this algorithm depends highly on the

choice of thresholding function used. The method in [22] is based on decomposing

the noisy microarray into wavelet subbands, then applying a smoothing filter within

each highest subband, and reconstructing the microarray from the modified wavelet

coefficients. This is applied only to the first level of decomposition. The smooth-

ing filter exploits the local coefficient variations in reducing noise. Another similar

approach [23], first decomposes the signal by a multiresolution transform and then
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accounts for both the multiscale correlation of the subband decompositions and their

heavy-tailed statistics. Unfortunately, the discrete wavelet decomposition based on

these typical wavelets suffer from two main problems which hamper their use for

many image analysis and reconstruction tasks [24]:

• Lack of shift invariance, which means small shifts in the input signal can cause

major variations in the distributions of energy between the wavelet transform

coefficients at different scales.

• Poor directional selectivity for diagonal features, because wavelet filters are sep-

arable and real.

For better reconstruction of edges of the circular spots of the microarray images,

improved directional selectivity and shift invariance of the transform are desirable.

Complex wavelets overcome these two key problems by introducing limited redun-

dancy into the transform. They provide both shift invariance and good directional

selectivity. Dual-Tree Complex wavelet Transform, contourlet, curvelet and steerable

pyramid possess these properties. Dual-Tree Complex wavelet transform (DT-CWT)

due to its minimum redundancy and computational efficiency are popularly used.

[13] exploits the inter-channel signal and noise correlation that exists between the

two channel microarray generated from the same slide. It accounts for this prop-

erty in the complex wavelet domain and effectively reduces the noise in these images

compared to independent denoising of images. With this knowledge as the basis, we

present the proposed model in the next chapter.



CHAPTER 3

COMPLEX GAUSSIAN SCALE MIXTURE (CGSM)

3.1 Introduction

The goal of this chapter is to introduce CGSM, which is used to model the

complex wavelet coefficients of signal and noise in microarray images. This work has

been completely developed in the paper [25]. It exploits the usefulness of the complex

magnitude and phase of complex wavelets and proposes an appropriate model to

handle complex random variables in the statistical framework.

3.2 Gaussian scale mixtures (GSM)

Noise reduction in images based on a statistical modeling of the wavelet co-

efficients by GSM was developed in [14]. Gaussian scale mixtures are a class of

distributions that can be expressed as a product of a Gaussian random vector, and

an independent hidden scalar multiplier. In multiscale orientated representation, the

marginal distributions of the wavelet coefficients of images are highly kurtotic and

have high correlation between coefficients at similar position, orientation and scale.

GSM model can account for both the shape of wavelet coefficient marginal and the

strong correlation between the neighborhood amplitudes. The GSM distribution en-

compasses many known distributions as special cases, like Student’s t-distribution,

the generalized Gaussian distribution, etc[26].

Let an image be decomposed into oriented subbands at different scales. Then,

local neighborhood around each reference coefficient is defined. This may include

coefficients from different subbands at nearby scales or orientation as well as from the

22
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same subband. Having defined this, the coefficients in each local neighborhood of a

subband is modeled by a GSM. By definition, a random vector is a Gaussian scale

mixture if and only if, it can be expressed as the product of a zero-mean Gaussian

vector u and an independent positive scalar random variable
√
z

x =
√
zu (3.1)

The variable z is known as themultiplier. The vector x is mixture of Gaussian vectors,

whose density is determined by the covariance matrix Cu of the vector u with mixing

density pz(z) Then,

px(x) =

∫
p(x|z)pz(z)dz (3.2)

=

∫
exp (−xT (zCu)−1x

2
)

(2π)N/2|zCu|1/2
pzzdz (3.3)

where, N is dimensionality of the vectors x and u. The most widely used choice for

pz(z) is the Jeffery’s prior, which is obtained as

pz(z) ∝
1

z
(3.4)

More details regarding the choices for the probability density of pz(z) can be

found in [14].

3.3 CGSM model of complex coefficient

Having introduced the GSM model, we extend these to introduce the concept

of complex GSM (CGSM) developed in [25].

For image denoising, we model the real subband coefficients of the image using

GSM. To handle complex subband coefficients generated by complex wavelets we have

two options.

• To model jointly the real and imaginary parts of the complex coefficients by

GSM.
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• To model the complex coefficients directly as complex GSM. CGSM models the

complex subband coefficients as a product of a complex Gaussian pdf and a

hidden multiplier.

Of the two, the CGSM is preferred as it fully utilizes the complex coefficients, its

magnitude and phase information in the statistical framework.

Distributions whose pdf depend only on the covariance matrix, the pdf of a

complex random variables can be expressed as a function of a complex-valued vector

itself, if its the real and imaginary parts satisfy the circularity condition i.e., the

covariance matrix of real and imaginary parts must be equal and the sum of their

cross covariance must be zero.

To start with, let X and Y be two N × 1 zero-mean Gaussian random vectors.

Assume that they are jointly Gaussian with the circular condition, i.e.

CX = CY and CXY = −CYX, (3.5)

where CX = E[XXT ], and CXY = E[XYT ]. Let U = [XT , Y T ]T , which is Gaussian

with covariance matrix CU =




CX CXY

CXY CX


 . Let Z = X+jY with complex covari-

ance matrix CZ = E[ZZH ]. Therefore, CZ = 2(CX − jCXY ). Then, we can express

the Gaussian pdf of U = [XT , Y T ]T as the complex Gaussian pdf of Z = X + jY

having the form

fZ(z) =
exp

(
−zHC−1

Z z
)

πN |CZ|
, for z ∈ CN . (3.6)

This circularity condition is shown to be satisfied by complex subband coeffi-

cients of the complex wavelet transforms like DT-CWT, FDCT and UDCT in [25]

and thus can be modeled as a pdf of complex vector.
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Figure 3.1. Illustration of Transform domain denoising.

Also its been shown that if X and Y are two random vectors of neighborhoods

of the real and imaginary parts of complex subband coefficients, respectively, then Y

is a GSM, if X is a GSM, and that both X and Y have the same scalar multiplier.

From the above two results, the pdf of the complex-valued random vector,

Z = X + jY can be expressed as the product of the zero-mean complex Gaussian

random vector Z̃ = X̃+ jỸ and the unit mean S as

Z =
√
SZ̃ (3.7)

Conditioned on S, Z|{S = s} =
√
sZ̃ is complex Gaussian with complex co-

variance matrix CZ|S = sCZ̃, where CZ̃ = E[Z̃Z̃
H
] = 2(CX̃ − jCX̃Ỹ). Hence, Z is

said to be Complex GSM.

3.4 Application of CGSM for image denoising

Formulation of the image denoising problem is illustrated in the figure (3.1).

Assuming the CGSM model for the subband image coefficients, the subband neigh-

borhood coefficients V of an image corrupted with additive Gaussian noise can be

modeled as

V = Z +W (3.8)
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where, Z and W are the subband neighborhood coefficients of the original image and

the noise respectively. From equation 3.7, this can be written as,

V =
√
SZ̃ +W (3.9)

Both Z̃ and W are zero-mean Gaussian vectors, with covariance CZ̃ and CW. When

conditioned on S = s, the random vector V is a zero mean Gaussian with covariance

CV|s = sCZ̃ + CW and its pdf is given by,

fV |S(v|s) =
exp (−vH(sCZ̃ + CW )−1v)

(π)N |sCZ̃ + CW | (3.10)

For each neighborhood, we estimate the reference coefficient Zc at the center of

the neighborhood from V. Bayes Least Squares (BLS) estimator, estimates Zc from

the observed noisy subband coefficients as,

E{Zc|V} =

∫ ∞

0

fS|V (s|v)E{Zc|V = v, S = s}dz (3.11)

where, E{.} is the expectation operator and E{Z|V, S = s} is given by local Wiener

estimate as,

E{Z|V = v, S = s} = sCZ̃(sCZ̃ + cW)−1v (3.12)

The distribution of the multiplier in equation 3.11 is computed using Bayes rule

as,

fS|V (s|v) =
fV |S(v|s)fS(s)∫∞

0
fV |S(v|α)fS(α)dα

(3.13)

where, we choose the prior fS(s) to be Jeffrey’s noninformative prior as used in

[14], and is obtained as

fS(s) ∝
1

s

and fV |S(v|s) is given by equation 3.10
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In this way, the estimate of the center coefficient is obtained for each neighbor-

hood. The inverse DT-CWT is applied on these estimated subband coefficients to get

the denoised image.



CHAPTER 4

CGSM BASED DENOISING FOR MICROARRAY IMAGES

4.1 Introduction

In this chapter, we introduce how we extend the Bayesian least square(BLS)

estimator based on the CGSMmodel, for denoising the two channel microarray images

jointly. The advantage of this approach is that, denoised subband coefficients of each

image is estimated from the neighborhood coefficients taken from both the images.

This gives a better estimate than just using neighborhood of one image because of the

existence of hidden correlations between the signal and the noise of the two channel

microarray images.

4.2 Proposed Joint denoising algorithm

In this proposed method, we incorporate the joint statistics of the complex

coefficients of two channel images in the Bayesian least square estimator using CGSM

model and simultaneously denoise them together. This is illustrated in the figure (4.1)

If Vr , Zr and Wr are the complex neighborhood subband coefficient of the ob-

served noisy image, actual image and the noise of the red channel image respectively,

28
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Figure 4.1. Illustration of Joint denoising in complex wavelet domain.

and if Vg , Zg and Wg are the corresponding quantities for the green channel image,

then we can write,

Vr = Zr +Wr

Vg = Zg +Wg

By CGSM model equation we can write,

Vr =
√
S1Z̃r +Wr

Vg =
√
S2Z̃g +Wg

where, Z̃r and Z̃g are zero mean complex Gaussian vectors and S1 and S2 are their

hidden multipliers respectively. We augment these neighborhood subband coefficients

from both the images one below the other to generate a new vector V and W given



30

by V = [V T
r V T

g ]T and W = [W T
r W T

g ]
T respectively.

We propose to augmented these neighborhood subband coefficients as

V =




Vr

Vg


 W =




Wr

Wg




and write as

V = Z +W

Then, by CGSM model equation for the subband coefficients, we can write

V =
√
SZ̃ +W (4.1)

where, S is the hidden multiplier for both the images and the Z̃ is the zero mean

complex Gaussian pdf. Both Z̃ and W are zero-mean complex Gaussian vectors, with

associated complex covariance matrices CZ̃ = E[Z̃Z̃H ] and CW = E[WWH ].

For us to be able to jointly model the subband coefficients as CGSM, S1 and

S2 are the hidden multipliers of the two images when modeled independently by

CGSM, should be equal i.e., S1 = S2. figure (4.2(a)) shows the plot of the conditional

histogram of the estimates Ŝ2 given Ŝ1 and figure (4.2(b)) between the joint Ŝ given

Ŝ1 obtained by the maximum likelihood estimator in each neighborhood.

We observe that Ŝ1 ≈ Ŝ2. Thus, we can combine the coefficients from the

neighborhood of both the images and model them as a CGSM with the same hidden

multiplier S.

The pdf of the observed neighborhood vector conditioned on s is zero-mean

complex Gaussian with covariance

CV|s = sCZ̃ +CW (4.2)
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Figure 4.2. Conditional histogram of the hidden multipliers between (a) Ŝ1 and Ŝ2

and (b) Joint Ŝ and Ŝ1.

is given by

fV|S(v|s) =
exp

(
−vH(sCZ̃ +CW)−1v

)

πN |zCZ̃ +Cw|
. (4.3)

From (4.1), the covariance of observed noisy vector CV can be computed from CV |S

in (4.2) by taking expectations over S:

CV = E{S}CZ̃ + CW

If we set E{S} = 1, we get,

CZ̃ = CV − CW (4.4)

Then BLS estimator, as discussed, is the conditional expectation given by,

Ẑ = E[Z|V] =
∫ ∞

0

fS|V(s|v)E[Z|V = v, S = s] ds, (4.5)

where fS(s) is the pdf of the positive scalar random variable S. In the implementation,

the integration in (4.5) is computed numerically, where K is the number of points for

s, by
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E[Z|V] =
K∑

k=1

fS|V(sk|v)E[Z|V = v, S = sk], (4.6)

When conditioned on S and V, the conditional expectation is obtained by the local

Wiener estimate as

E[Z|V = v, S = s] = sCZ̃(sCZ̃ +CW)−1v, (4.7)

To estimate Z, fS|V(s|v) as in (4.6) is computed as follows

fS|V(s|v) =
fv|s(v|s)fS(s)∫∞

0
fV|S(v|α)fS(α) dα

, (4.8)

where we choose the prior fS(s) to be Jeffrey’s noninformative prior [14] for the

experiments in this paper.

Substituting equation (4.7), (4.3), (4.8) in equation (4.5), we estimate the de-

noised subband complex coefficients. The estimated Ẑ vector has estimates of neigh-

borhood of subband coefficients for both the images. We extract the two center

coefficients, one for each neighborhood of subband coefficients of each image. Thus,

we get two estimates of coefficients for each of the images from one neighborhood.

Having computed these denoised coefficients for all the neighborhood, we get denoised

red and green channel images from them by inverse DT-CWT.

Summary of our denoising algorithm:

1. Decompose the red and the green channel images into subbands.

2. For each subband except the lowpass residual band

(a) Compute the joint neighborhood noise covariance, CW, by augmenting the

coefficients from the subband of red and green channel image, one below

the other. This is computed for each combination of the values of σǫ and

ρ of noise in pixel domain.

(b) Estimate the joint observed noisy neighborhood covariance, CV similarly.
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(a) (b) (c)

Figure 4.3. Illustration of the subband neighborhood coefficients used for different
window sizes (a) w1 (b) w5 and (c) w9. The number denotes the total number of
coefficients used in that neighborhood.

(c) Estimate CZ̃ from CW and CV using (4.4).

(d) For each neighborhood:

i. For each value of S = sk in the summation range of (4.6):

A. Compute E{Z|V, s} using (4.7).

B. Compute fV |s using (4.3).

ii. Compute fs|V using (4.8) with Jeffery’s non-informative prior.

iii. Compute E{Z|V } using (4.6) and extract Zcr, Zcg, the center coeffi-

cients of the neighborhood for red and green channel subband, respec-

tively.

3. Reconstruct the denoised images of red and green channel from the processed

subbands and their lowpass residuals.

4.3 Experimental results

The goal of this section is to present results of the experiments to demonstrate

the effectiveness of cDNA microarray denoising using the proposed method. We first

discuss the experimental setup, then we study our results using three experiments.

In experiment I, we fix the transform (DT-CWT) and vary the window sizes to find
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best local neighborhood size for denoising the microarray images, in experiment II

we compare different methods of microarray image denoising, and in experiment III,

we fix our proposed model and vary the complex wavelet transform used.

4.3.1 Experimental Setup

For denoising performance analysis, we need the original noise-free images.

Since these are not available in practice, we pick images that visually appear to

be corrupted with very little noise, as the noise-free images. We used ten such pairs

of two channel microarray images downloaded from the website of the Stanford Mi-

croarray Database (SMD)[27] and selected them as described in[13] i.e., a synthetic

background is created by adding Gaussian noise on a zero-intensity background. This

is then compared with the background of the test images by zooming in. Images

having backgrounds that do not resemble the synthetically corrupted zero-intensity

background and possess almost no artifacts are chosen as the noise-free images. These

images are in 16-bit TIFF format and were cropped to a size of 1024 x 1024. Noisy

images were then created by adding bivariate Gaussian noise to each of the selected

red and green channel images, considering four values of ρ of 0, 0.25, 0.50 and 0.75

and three values of σǫ, 800, 1200 and 1600. The covariance matrix for each subband

coefficients of the noise image (noise added to the zero intensity image) for various

combinations of σǫ and ρ were computed offline over 100 iterations and saved. The

performance of the noise reduction algorithm is evaluated in terms of the Peak Signal

to Noise Ratio (PSNR) and Structural Similarity(SSIM) index[28]. In this paper, the

PSNR value (in dB) is defined as

PSNR = 20 log10(65535/
√
(MSE))
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where MSE is the mean square error of the denoised image. Denoising algorithm

should be able to reproduce the original clean image with least mean squared error.

Both PSNR and SSIM, quantitatively define the ability of the denoising algorithm to

produce an image as close to the original image.

4.3.2 Experiment I : Best window size estimation

We compare different window sizes for the proposed joint CGSM based method.

The goal of this exercise is to find the optimum size of the window for denoising these

microarray images. For this we have considered different combination of window

sizes both symmetric and asymmetric. Symmetric and asymmetric are classified on

the basis of number of coefficients used from the two subband images to denoise

each image. For symmetric case, equal number of subband coefficients are taken

from subbands of both the images while for the asymmetric case, unequal number of

subband coefficients are taken to denoise. The different coefficient window sizes are

depicted in figure (4.3)

As explained earlier, the coefficients in the window are augmented one below

the other for defining the neighborhood for denoising. For example, in joint denoising

using a 3×3 window, the 9 coefficients of green channel subband image are augmented

below those of the red channel subband image. For (w5) & (w1) case, to denoise

red channel image 5 coefficients in plus-shaped neighborhood ((i.e., center and the

adjacent vertical and horizontal coefficients, denoted henceforth as w5)) of red channel

is combined with the center coefficient (w1) of the green channel (denoted henceforth

as w5 & w1), thereby using 6 coefficients to denoise the red channel and vice versa for

green channel image. This is illustrated in the figures (4.4) and (4.5) for an example

window sizes of (w5) and (w5)&(w1).
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We have considered here six different window sizes for proposed joint CGSM

based denoising:

1. (w9)& (w9): 3× 3 window of coefficients from both images.

2. (w5)& (w5): plus-shaped window(center, top,bottom,left and right coefficients)

from both images.

3. (w1)& (w1): center coefficient alone from both images.

4. (w9)& (w5): 3× 3 window from image to be denoised and plus-shaped window

from other image.

5. (w9)& (w1): 3× 3 window from image to be denoised and plus-shaped window

from other image.

6. (w5)& (w1): plus-shaped window from image to be denoised and center coeffi-

cient from other image.

The PSNR and SSIM values for the joint CGSM using different window sizes are as

shown in TABLE 4.1. We find that for the images considered joint window (w5)&

(w1) performs the best. As we increase the window size for either image, the PSNR

decreases. We suspect that, including more coefficients in the neighborhood, adds

redundant information and does not help in denoising.
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Figure 4.4. Illustration of the use of symmetric window (w5) for joint denoising of
red and green channel images.

Figure 4.5. Illustration of the use of asymmetric window (w5) & (w1) for joint de-
noising of red and green channel images.
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Table 4.1.PSNR values (in dB) and SSIM indices of denoised images using DTCWT-
CGSM with different window sizes

PSNR of Red and Green channel images SSIM of Red and Green channel images
σ 800 1200 1600 800 1200 1600

Noisy 38.27,38.27 34.75 ,34.75 32.25 ,32.25 0.873, 0.872 0.760, 0.758 0.649, 0.64

Methods Im-R Im-G Im-R Im-G Im-R Im-G Im-R Im-G Im-R Im-G Im-R Im-G

Window
:(w9)&(w9)
ρǫ = 0.0 45.26,45.09 42.71, 42.52 40.95, 40.73 0.969, 0.966 0.945, 0.939 0.919, 0.910
ρǫ = 0.25 45.00,44.83 42.42, 42.22 40.63, 40.40 0.968, 0.965 0.942, 0.936 0.915, 0.906
ρǫ = 0.50 44.79,44.63 42.19, 42.00 40.39, 40.17 0.966, 0.964 0.939, 0.934 0.911, 0.903
ρǫ = 0.75 44.64,44.51 42.02, 41.87 40.21, 40.04 0.965, 0.963 0.937, 0.933 0.908, 0.901
Average 44.92,44.77 42.33, 42.15 40.55, 40.34 0.967, 0.964 0.941, 0.935 0.913, 0.905
Window

:(w5)&(w5)
ρǫ = 0.0 45.66,45.49 43.09, 42.90 41.31, 41.09 0.972, 0.969 0.949, 0.943 0.924, 0.916
ρǫ = 0.25 45.39,45.22 42.79, 42.60 40.98, 40.77 0.970, 0.967 0.946, 0.941 0.920, 0.912
ρǫ = 0.50 45.19,45.03 42.56, 42.39 40.74, 40.53 0.969, 0.966 0.944, 0.939 0.917, 0.909
ρǫ = 0.75 45.05,44.92 42.42, 42.27 40.58, 40.41 0.968, 0.966 0.942, 0.937 0.914, 0.907
Average 45.32,45.17 42.71, 42.54 40.90, 40.70 0.970, 0.967 0.945, 0.940 0.919, 0.911
Window

:(w1)&(w1)
ρǫ = 0.0 45.64,45.47 43.00, 42.75 41.17, 40.85 0.973, 0.971 0.951, 0.946 0.928, 0.919
ρǫ = 0.25 45.32,45.13 42.65, 42.37 40.81, 40.46 0.972, 0.969 0.948, 0.943 0.923, 0.914
ρǫ = 0.50 45.10,44.91 42.41, 42.13 40.55, 40.20 0.970, 0.968 0.946, 0.940 0.919, 0.911
ρǫ = 0.75 45.03,44.86 42.32, 42.09 40.45, 40.15 0.970, 0.967 0.944, 0.940 0.917, 0.910
Average 45.27,45.09 42.59, 42.33 40.74, 40.42 0.971, 0.969 0.947, 0.942 0.922, 0.913

Window
:(w9)&(w5)
ρǫ = 0.0 45.42,45.24 42.88, 42.65 41.13, 40.85 0.970, 0.967 0.946, 0.940 0.921, 0.912
ρǫ = 0.25 45.15,44.95 42.58, 42.34 40.80, 40.52 0.968, 0.966 0.943, 0.938 0.916, 0.908
ρǫ = 0.50 44.94,44.75 42.34, 42.11 40.54, 40.27 0.967, 0.965 0.940, 0.935 0.912, 0.905
ρǫ = 0.75 44.80,44.64 42.19, 42.00 40.38, 40.15 0.966, 0.964 0.938, 0.934 0.910, 0.903
Average 45.08,44.90 42.50, 42.28 40.71, 40.45 0.968, 0.965 0.942, 0.937 0.915, 0.907
Window

:(w9)&(w1)
ρǫ = 0.0 45.42,45.26 42.88, 42.66 41.12, 40.85 0.970, 0.968 0.945, 0.941 0.920, 0.913
ρǫ = 0.25 45.17,44.99 42.60, 42.36 40.82, 40.52 0.968, 0.966 0.943, 0.939 0.916, 0.909
ρǫ = 0.50 44.97,44.80 42.38, 42.15 40.59, 40.30 0.967, 0.965 0.940, 0.936 0.912, 0.906
ρǫ = 0.75 44.85,44.70 42.24, 42.04 40.44, 40.19 0.966, 0.965 0.938, 0.935 0.909, 0.904
Average 45.10,44.94 42.53, 42.30 40.74, 40.47 0.968, 0.966 0.942, 0.938 0.914, 0.908
Window

:(w5)&(w1)
ρǫ = 0.0 45.76,45.61 43.19, 42.99 41.40, 41.15 0.972, 0.970 0.949, 0.945 0.925, 0.918
ρǫ = 0.25 45.51,45.34 42.91, 42.69 41.10, 40.83 0.970, 0.969 0.946, 0.942 0.921, 0.914
ρǫ = 0.50 45.32,45.16 42.70, 42.49 40.87, 40.61 0.969, 0.968 0.944, 0.940 0.917, 0.911
ρǫ = 0.75 45.21,45.07 42.57, 42.39 40.74, 40.51 0.968, 0.967 0.943, 0.939 0.915, 0.910
Average 45.45,45.29 42.84, 42.64 41.03, 40.78 0.970, 0.968 0.946, 0.942 0.920,0.913
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4.3.3 Experiment II : Comparison with other denoising methods

4.3.3.1 Experiment II-A

We compare seven methods of image denoising:

1. Separate BLS-CGSM [25]: CGSM based denoising in DTCWT domain of each

channel image independently. It considers a w5 window for the image to be

denoised.

2. Separate BLS-GSM [14]: GSM based denoising using Full Steerable(FS) trans-

form of each channel image independently. It also considers a w5 window for

the image to be denoised.

3. Bishrink [29]: It uses the default window size of 3x3 (9 coefficients).

4. Separate DWT BLS-GSM : GSM based denoising using Discrete Wavelet Trans-

form (DWT) of each channel image independently. It also considers a w5 win-

dow for the image to be denoised.

5. Joint DWT BLS-GSM : GSM based denoising in DWT domain using joint in-

formation from the two channel images. It considers the joint window size of

w5& w1.

6. Joint BLS-GSM : GSM based denoising in FS domain using joint information

from the two channel images. It also considers a window of w5 & w1 for de-

noising.

7. Joint BLS-CGSM(Proposed): CGSM based denoising in DTCWT domain using

joint information from the two channel images using a window size of w5 & w1.

In each of these methods, the number of levels of decomposition and the neighbor-

hood window size were chosen such that they yield the best results. DWT methods

were implemented with 5 levels of decomposition, which was best for these images.

BLS-CGSM methods and Bishrink using DTCWT were implemented with 5 levels of



40

Table 4.2. PSNR values (in dB) and SSIM indices of denoised images from several
methods

PSNR of Red and Green channel images SSIM of Red and Green channel images
σ 800 1200 1600 800 1200 1600

Noisy 38.27,38.27 34.75 ,34.75 32.25 ,32.25 0.873, 0.872 0.760, 0.758 0.649, 0.646
Methods Im-R Im-G Im-R Im-G Im-R Im-G Im-R Im-G Im-R Im-G Im-R Im-G

Bishrink: 44.59,44.50 41.87,41.73 39.96,39.80 0.965,0.964 0.934,0.933 0.901,0.899
Separate

DWT:(w5) 43.91,43.91 41.13,41.11 39.21,39.16 0.961,0.961 0.929,0.928 0.895,0.894
Separate

FS-GSM:(w5) 44.87,44.64 42.33,42.09 40.54,40.30 0.966,0.965 0.940,0.937 0.912,0.908
Separate

CGSM:(w5) 45.03,44.97 42.35,42.27 40.48,40.38 0.967,0.967 0.940,0.939 0.911,0.909
Joint DWT:
(w5)&(w1)
ρ1 = 0.0 44.66,44.54 42.00, 41.80 40.16, 39.89 0.967, 0.965 0.939, 0.935 0.911, 0.903
ρ1 = 0.25 44.40,44.28 41.71, 41.51 39.85, 39.58 0.965, 0.963 0.936, 0.932 0.906, 0.899
ρ1 = 0.50 44.21,44.09 41.50, 41.31 39.62, 39.36 0.963, 0.962 0.934, 0.930 0.902, 0.896
ρ1 = 0.75 44.11,44.00 41.37, 41.21 39.49, 39.27 0.963, 0.961 0.932, 0.929 0.899, 0.894
Average 44.35,44.23 41.65, 41.46 39.78, 39.53 0.964, 0.963 0.935, 0.931 0.904, 0.898
Joint GSM:
(w5)&(w1)
ρ1 = 0.0 45.58,45.26 43.12, 42.77 41.39, 41.02 0.971, 0.968 0.949, 0.943 0.926, 0.917
ρ1 = 0.25 45.33,45.00 42.85, 42.48 41.11, 40.72 0.970, 0.967 0.946, 0.941 0.921, 0.913
ρ1 = 0.50 45.14,44.82 42.64, 42.29 40.90, 40.51 0.968, 0.965 0.944, 0.939 0.918, 0.910
ρ1 = 0.75 45.02,44.76 42.52, 42.22 40.76, 40.44 0.967, 0.965 0.942, 0.938 0.916, 0.909
Average 45.27,44.96 42.78, 42.44 41.04, 40.67 0.969, 0.966 0.945,0.940 0.920,0.912

Joint CGSM:
(w5)&(w1)
ρ1 = 0.0 45.76,45.61 43.19, 42.99 41.40, 41.15 0.972, 0.970 0.949, 0.945 0.925, 0.918
ρ1 = 0.25 45.51,45.34 42.91, 42.69 41.10, 40.83 0.970, 0.969 0.946, 0.942 0.921, 0.914
ρ1 = 0.50 45.32,45.16 42.70, 42.49 40.87, 40.61 0.969, 0.968 0.944, 0.940 0.917, 0.911
ρ1 = 0.75 45.21,45.07 42.57, 42.39 40.74, 40.51 0.968, 0.967 0.943, 0.939 0.915, 0.910
Average 45.45,45.29 42.84, 42.64 41.03, 40.78 0.970, 0.968 0.946, 0.942 0.920, 0.913

decomposition and 6 orientations in each level while BLS-GSM using FS was imple-

mented with 5 level decomposition with 8 orientations. For all GSM/CGSM based

methods, that denoise images independently, the optimized window size was found

to w5. For the joint denoising schemes based on GSM/CGSM, a plus-shaped window

for the image to denoised and the center coefficient of the other channel image (w5

& w1) was found to be best. TABLE 4.2 shows the output PSNR and SSIM values

for the seven denoising methods obtained by averaging the results of ten microarray

images. From this data, the following observations can be made.
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First, among the various methods, the proposed joint CGSM based method

outperforms its independent counterpart both in terms of PSNR and SSIM values.

This is because, the proposed model considers both intra-subband and inter-channel

dependency between the complex wavelet coefficients while denoising. These indicate

that proposed joint model is better fit for the subband coefficients of microarray

images.

Second, in both separate and joint methods, the complex wavelets perform bet-

ter than real wavelets. This is because, for microarray image denoising shift invariance

property and ability to better represent singularity are desirable which are provided

by complex wavelets.

Third, though joint GSM method using FS, gives results close to our proposed

joint CGSM, the complexity of our method is comparatively very less with faster

computational time. A comparison of the redundancy and computational time taken

by these transforms reveal that, FS is approximately four time more redundant than

DT-CWT and take four times the computational time of DT-CWT as shown.

Table 4.3. Redundancy ratios of FS and DT-CWT

Transform FS DT-CWT
Redund. Ratio ≈18.67 4

Computation time using FS

Computation time using DT − CWT
=

466s

108s
≈ 4

Fourth, from the experiments I and II-A we observe that, the inter- chan-

nel correlation is more stronger than the inter-scale dependency for these images.

This is evident from the comparison of the performance of joint CGSM with window

(w1)&(w1) and Bishrink.
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4.3.3.2 Experiment II-B

Next, we now compare the performance of our proposed method with linear

minimum mean square error (LMMSE) and Maximum a posteriori (MAP) estimators

proposed in [13]. The methods are compared under two benchmarks.

1. Bishrink[29]

2. BLS-GSM[14]

In this analysis, we compared the PSNR differences of the LMMSE and MAP esti-

mators and our proposed method with respect to Bishrink and BLS-GSM for the red

and green channel images. We see from the plot that our proposed method, consis-

tently performs better than both the estimators as shown in the figures (4.3.3.2) and

(4.3.3.2). This is because, these estimators consider only magnitude information and

ignore phase information of complex coefficients while denoising. Also it assumes a

different model by considering a Gaussian distribution for the magnitude of complex

coefficients while our proposed method models the complex coefficients as complex

GSM. It also assumes an equivalence between the magnitude of observed subband

coefficients and the additive model of the magnitude of complex coefficients of orig-

inal signal and noise, while in reality this equivalence is true only for their complex

counterparts. From this we conclude that, though LMMSE and MAP methods also

considers the inter-channel dependency between subband coefficients, our model is

better representation for complex subband coefficients of these images.

4.3.4 Experiment III : Comparison with other transforms

In this experiment, we fix our proposed model i.e., joint CGSM with best win-

dow size of (w5)& (w1) and vary the transform. We have used 4 different complex

wavelet transforms:
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Figure 4.6. Plot of the PSNR differences (in dB) of our proposed method, LMMSE
and MAP estimators as a function of the input PSNR with respect to Bishrink
method. (a) Red channel image (b) Green channel image.
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Figure 4.7. Plot of the PSNR differences (in dB) of our proposed method, LMMSE
and MAP estimators as a function of the input PSNR with respect to BLS-GSM
method. (a) Red channel image (b) Green channel image.
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1. Dual Tree - Complex Wavelet Transform (DT-CWT)[30].

2. Fast Discrete Curvelet Transform (FDCT)[31].

3. Uniform Discrete Curvelet Transform (UDCT)[32]

4. Pyramidal Dual-Tree Directional Filter Bank(PDTDFB)[33].

The PSNR and SSIM values for the joint CGSM using different complex trans-

forms are as shown in TABLE 4.5. For each of these transforms, the level of decom-

position and orientation were chosen to give the best result in terms of PSNR and

SSIM. As it can be seen, DT-CWT performs the best compared to all other trans-

forms. This is a very interesting observation. We suspect this behavior is because of

the nature of images. Unlike natural images, microarray images are made up spots

which are very small in size (approximately of size 20or less) and are isotropic in na-

ture. The dictionary of wavelets is made up of roughly isotropic elements occurring

at all scales and positions. The area of expertise of wavelet and curvelet transform

has been studied by many and in particular its been pointed out in [34] that curvelets

are computationally efficient for geometric features with line and surface singularities,

while wavelets efficiently represent small features (such as eyes of Lena). We suspect

that this weakness of the curvelets is witnessed here, where the small features of the

image (spots) are well represented by wavelets. Thus, choice of the transform can

affect the denoising performance of this model.

The redundancy ratios of the various transforms used in as show in TABLE4.4

Table 4.4. Redundancy ratios of the transforms used herein

Transform FS UDCT DT-CWT PDTDFB FDCT
Redund. Ratio ≈18.67 4 4 ≈2.67 ≈14.53
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Table 4.5. PSNR values (in dB) and SSIM indices of denoised images using Joint
CGSM(Window:(5)&(1)) with different transforms

PSNR values Red and Green channel images SSIM values Red and Green channel images
σ 800 1200 1600 800 1200 1600

Noisy 38.27,38.27 34.75 ,34.75 32.25 ,32.25 0.873, 0.872 0.760, 0.758 0.649, 0.646
Methods Im-R Im-G Im-R Im-G Im-R Im-G Im-R Im-G Im-R Im-G Im-R Im-G

DTCWT
:(5)&(1)
ρǫ = 0.0 45.76, 45.61 43.19, 42.99 41.40, 41.15 0.972, 0.970 0.949, 0.945 0.925, 0.918
ρǫ = 0.25 45.51, 45.34 42.91, 42.69 41.10, 40.83 0.970, 0.969 0.946, 0.942 0.921, 0.914
ρǫ = 0.50 45.32, 45.16 42.70, 42.49 40.87, 40.61 0.969, 0.968 0.944, 0.940 0.917, 0.911
ρǫ = 0.75 45.21, 45.07 42.57, 42.39 40.74, 40.51 0.968, 0.967 0.943, 0.939 0.915, 0.910
Average 45.45, 45.29 42.84, 42.64 41.03, 40.78 0.970, 0.968 0.946, 0.942 0.920, 0.913

UDCT
:(5)&(1)
ρǫ = 0.0 44.53, 44.08 42.16, 41.67 40.52, 39.99 0.963, 0.959 0.937, 0.928 0.910, 0.897
ρǫ = 0.25 44.30, 43.84 41.92, 41.41 40.27, 39.72 0.962, 0.957 0.934, 0.925 0.905, 0.893
ρǫ = 0.50 44.12, 43.69 41.73, 41.24 40.08, 39.54 0.960, 0.956 0.931, 0.923 0.902, 0.890
ρǫ = 0.75 44.01, 43.63 41.62, 41.18 39.95, 39.47 0.959, 0.955 0.929, 0.922 0.899, 0.888
Average 44.24, 43.81 41.86, 41.38 40.20, 39.68 0.961, 0.957 0.933, 0.925 0.904, 0.892
CDFB
:(5)&(1)
ρǫ = 0.0 44.55 44.25 42.07 41.69 40.37 39.92 0.964 0.960 0.937 0.929 0.910 0.898
ρǫ = 0.25 44.29 43.97 41.79 41.39 40.08 39.61 0.962 0.958 0.934 0.926 0.905 0.893
ρǫ = 0.50 44.09 43.79 41.58 41.20 39.86 39.41 0.961 0.957 0.932 0.924 0.901 0.890
ρǫ = 0.75 43.96 43.71 41.45 41.12 39.72 39.34 0.960 0.956 0.930 0.923 0.899 0.889
Average 44.22 43.93 41.72 41.35 40.01 39.57 0.962 0.958 0.933 0.926 0.904 0.893
FDCT
:(5)&(1)
ρǫ = 0.0 44.66, 44.38 42.04, 41.72 40.17, 39.83 0.961, 0.958 0.926, 0.922 0.888, 0.882
ρǫ = 0.25 44.45, 44.15 41.83, 41.49 39.97, 39.60 0.960, 0.957 0.925, 0.921 0.886, 0.880
ρǫ = 0.50 44.29, 44.00 41.67, 41.34 39.81, 39.45 0.959, 0.957 0.924, 0.920 0.885, 0.879
ρǫ = 0.75 44.19, 43.95 41.58, 41.30 39.72, 39.41 0.959, 0.956 0.923, 0.919 0.884, 0.879
Average 44.40, 44.12 41.78, 41.46 39.92, 39.57 0.960, 0.957 0.925, 0.920 0.886, 0.880

Figure (4.8) shows the 3-D visualization of a clean spot, a noisy spot with noise

of stand deviation σǫ=1200 and rho = 0, its denoised version using LMMSE and our

proposed method. This plot clearly shows that our method removes most of the noise

while preserving the edge information of the spots. The spot appears smoothed at

the edges by the LMMSE method. Thus, our method effectively preserves the signal

information while reducing the noise content in the images as desired.



47

0
10

20
30

0

20

40
−4000

−2000

0

2000

4000

6000

8000

(a)

0
10

20
30

0

20

40
−4000

−2000

0

2000

4000

6000

8000

(b)

0
10

20
30

0

20

40
−4000

−2000

0

2000

4000

6000

8000

(c)

0
10

20
30

0

20

40
−4000

−2000

0

2000

4000

6000

8000

(d)

Figure 4.8. 3D plot of a spot from a microarray image. (a) Clean spot (b) Noisy spot
with noise of σǫ=1200 and rho = 0 (c) denoised spot using LMMSE (d) denoised spot
using Joint CGSM with window (w5) & (w1). We observe the edge of the circular
spot is preserved in our proposed method. .



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary

This thesis is concerned with the problem of developing an effective method for

noise reduction in cDNA microarray images for the purpose of extracting accurate

information regarding gene expression levels. The outcome of two- channel cDNA

microarray, are two images, which show the expression level of genes in control and

treatment samples in terms of the intensity levels of the gene spots. Measurement of

relative gene expression from these samples helps in identifying differentially expressed

genes and find the root cause of their behavior. But the success for these experiments

depends on extracting meaningful information from these experiments. This poses a

great challenge in microarray data analysis as these images are corrupted with high

degree of noise accumulated during its synthesis. Unless we can effectively disassociate

the required signal from the noise, the intensity measurements from these images will

have no significance. Since an error in measurement at this stage propagates down

to further stages of gene expression analysis, it is very essential to reduce the noise

content in them and this is the main motivation for our work.

Microarray images owing to the way they are generated, carry significant sig-

nal and noise correlation between the two channel images. Studies have shown that

methods accounting for such correlations are more successful than those that ig-

nore. Among the successful wavelet based methods for denoising, complex wavelets

have more desirable properties for denoising microarray images and consequently the

CGSM model in the complex wavelet domain provides high quality image denois-
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ing. The proposed method in this paper, effectively utilizes the advantages of CGSM

model in the framework of noise reduction in microarray images, by incorporating

the inter-channel signal and noise correlation that exists between the red and green

channel images.

5.2 Conclusion

The three factors that led to the development of this algorithm are as fol-

lows. First, the success of wavelet based approaches in image denoising over other

transform based approaches or any pixel based approach. Second, among wavelets,

complex wavelets due to its redundancy and shift invariance property over the Dis-

crete Wavelet Transform (DWT) are more suitable for noise reduction application.

Also, both magnitude and phase of the complex coefficients can be exploited in the

statistical framework when working with complex wavelets. Third, algorithms that

account for the hidden correlations between the gene signals and the noise in the two

channel microarray images have improved performance over those that treat them

independently for noise reduction. Thus, we propose to use the CGSM model of the

complex coefficients and denoise the two channel microarray images using a Bayesian

least square estimator by incorporating the joint statistics of the images into the al-

gorithm. Joint statistics accounts for the correlations thats exists between the signal

and the noise and the denoised subband coefficient of the both the images are esti-

mated simultaneously. Simulation results show that the proposed method provides

better denoising performance in terms of PSNR and SSIM than the existing methods

being compared.

From our analysis, we see that, first, our joint CGSM model of complex co-

efficients of the two channel images performs better than the CGSM model based

denoising of these channel images independently, for denoising application. This im-
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plies, joint estimation of the denoised subband coefficients is essential for effective

noise reduction in these images. The two channel images have inter-channel correla-

tion that must be exploited to efficiently reduce noise. This is accomplished in our

algorithm by incorporating the joint covariances of the observed signal and noise of

the two channel images. Second, the proposed joint model of complex coefficients

is a better fit than the model of magnitude of subband coefficients proposed in [13]

as its leads to more effective noise reduction in terms of PSNR and SSIM. Though

both methods consider the inter-channel dependency in estimating the denoised sub-

band coefficients, it is important to consider both magnitude and phase information

of the subband coefficients for estimating them. Third, the inter- channel correla-

tion is more stronger than the inter-scale dependency for these images. Methods like

bishrink, that exploit the inter-scale dependency do not yield high PSNR as the meth-

ods that exploit the inter-channel dependency like joint CGSM. Fourth, the choice of

the transform used for decomposition is also very important to yield effective noise re-

duction. From our experimental data, we found DT-CWT to be best suited for these

images. Thus, we conclude that our proposed model for noise reduction, will play

a significant role in improving the reliability of the results obtained from practical

microarray experiments.

5.3 Future work

There are some additional analysis related to this thesis work which are worth

investigating. In particular, we would like to investigate the following.

1. We want to apply this algorithm to the denoising of real noisy microarray

images from the database by computing the noise characteristics from the higher

subbands of the complex transform domain.
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2. We observe that the GSM based denoising of microarray images using Full

Steerable (FS) performs very close to that CGSM model based on DT-CWT coef-

ficients. We would like to evaluate the performance of our proposed model using

complex Full Steerable for noise reduction.

3. In our algorithm, we aim to reduce the additive white Gaussian noise present

in the microarray images. But microarray images, in reality, could be contaminated

with mixture of noises of varying distribution like impulse noise, Poisson noise, etc

and densities. It is necessary to investigate the various noise sources and their distri-

butions. In future, we would like to develop a more general model that can account

for these various noise components in these images and help in denoising them more

effectively.



APPENDIX A

ABBREVIATION LIST
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A Adenine

AGN Additive Gaussian Noise

AWGN Additive White Gaussian Noise

BLS Bayesian Least Square

CGSM Complex Gaussian Scale Mixtures

cDNA Complementary DNA

CWT Complex Wavelet Transform

Cy3 Cyanine-3

Cy5 Cyanine-5

C Cytosine

dB Decibels

db4 Daubechies 4 wavelet function

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DNA Deoxyribonucleic acid

DT-CWT Dual-Tree Complex Wavelet Transform

DWT Discrete Wavelet Transform

FDCT Fast Discrete Curvelet Transfrom

FS Full Steerable

G Guanine

GSM Gaussian Scale Mixtures

LMMSE Linear Minimum Mean Squared Error

MAP Maximum A Posteriori

mRNA Messenger RNA

MSE Mean Squared Error

PDF Probability Density Function

PDTDFB Pyramidal Dual-Tree Directional Filter Bank

PSNR Peak Signal to Noise Ratio



54

RNA Ribonucleic Acid

RT Reverse Transcriptase

SMD Stanford Microarray Database

SSIM Structural Similarity Index

SWT Stationary Wavelet Transform

T Thymine

TIFF Tagged Image File Format

tRNA Transfer RNA

U Uracil

UDCT Uniform Discrete Curvelet Tranfrom
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