
LOW COMPLEXITY AVS-M USING MACHINE LEARNING ALGORITHM C4.5

by

PRAGNESH R. RAMOLIA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

Of the Requirements

For the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

MAY 2011

Copyright © by Pragnesh Ramolia, 2011

All Rights Reserved

iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to convey my sincere gratitude to Dr. Rao, playing a role model to me.

It was he who gave me the courage to undertake research work in a field which was completely strange

to me. With his immense experience in the field and patience to undertake any challenge even at this

age, he inspired me to do something different. I want to thank him for always being there for me,

whenever I needed.

I also want to express my sincere thanks to Dr. Dongil Han for coming up with an industrial project to our

team of multimedia processing lab. I was not sure to go for research in this field, until he came up with a

project which sounded very interesting to me. I knew this was a part of an industrial project, which

motivated me to undertake that task.

I am also thankful to Dr. Jonathan Bredow and Dr. Saibun Tjuatja for taking time out of their busy

schedule to be the members of my defense committee. I am also thankful to all my friends at UTA for all

their love, support and encouragement for me.

Finally, I would like to thank my family for always believing in me. Without their support I would not have

come a long way here, I dedicate this thesis to my family.

April 13, 2011

iv

ABSTRACT

“LOW COMPLEXITY AVS-M CODEC USING MACHINE LEARNING ALGORITHM C4.5”

 PRAGNESH R. RAMOLIA, MS

UNIVERSITY OF TEXAS AT ARLINGTON, 2011

Supervising Professor: Dr. K.R. RAO

AVS China is the video coding standard developed by the AVS work group of China employing the latest

video coding tools for achieving high compression while preserving the quality of the video [15]. AVS

China video standard has been proven superior to the existing video standards such as MPEG-2 and

MPEG-4 part 2, in terms of reduced complexity and coding efficiency. AVS is a set of integrated standard

system which contains systems, video, audio and media copyright management. AVS-M, the 7th part of

the system is video codec targeting mobile devices. AVS-M uses high efficiency tools like macroblock

partitioning, entropy coding and motion estimation and motion compensation to exploit the temporal and

spatial redundancies present inside the video sequence. This helps to save the number of bits used to

encode the video sequence, in turn saving bandwidth of video transmission. But all these tools come at

the cost of computational complexity. Motion estimation alone, consumes 75%-80% of the encoding time.

With all these tools, AVS-M, simulated on a general purpose processor, can process upto 2 frames per

second. Live streaming on the other hand will demand at least 15 frames per second. The huge gap

between the power demanded and available power can be bridged by embedding special purpose

hardware like FPGA (field programmable gate array) or ASICS (application specific integrated circuits).

But these solutions are very expensive and also create problems like consuming lot of power and

overheating problems in mobile devices. One possible way is to reduce the complexity of the encoder.

v

Various studies have been undertaken, to implement fast motion estimation algorithms in place of regular

motion estimation block. Machine learning algorithm, is implemented to predict the macroblock mode

decision for encoding. In the first step to achieve the desired result, many attributes of frames are

extracted, and then fed to an .arff (attribute relation file format) file. .arff file is then used as input to a

Weka tool. Weka is embodiment of various data mining algorithms. Using C4.5 of Weka, a decision tree

in terms of if-else statements is obtained. The decision tree obtained here, traces back to maximum of 7

if-else statement executions, to decide the macroblock mode, which compared to the RDO (rate distortion

optimization) process, is very less. Hence large amounts of time saving are expected, with the proposed

encoder. As expected the proposed encoder achieved on an average 75%- 80% reduction in encoding

time, compared to the original encoder AVS-M.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT ..iv

LIST OF ILLUSTRATIONS .. viii

LIST OF TABLES ... x

LIST OF ACRONYMS AND ABBREVIATIONS ...xi

Chapter Page

1. INTRODUCTION ... 1

2. AVS PART – 7 .. 4

 2.1 AVS Introduction .. 4

 2.2 Introduction to AVS- ... 5

2.2.1 Data structure of AVS-M .. 7

2.2.2 Embodiment of AVS-M .. 12

2.2.3 Various Levels in Jiben profile ... 13

 2.3 Block mode prediction modes .. 17

 2.3.1 Intra prediction ... 17

 2.3.2 Inter prediction ... 20

 2.3.3 Skip mode prediction ... 22

 2.3.4 RD Optimization ... 22

 2.4 Transform, Quantization and Entropy coding .. 23

 2.4.1 Transform ... 23

 2.4.2 Quantization ... 23

 2.4.3 Entropy coding ... 24

vii

2.5 The deblocking filter .. 25

2.6 Summary ... 26

3. DATA MINING, DATA MINING ALGORITHMS AND WEKA....................................... 27

3.1 Introduction to data mining ... 27

 3.1.1 Steps for data mining ... 27

3.2 Classification of data mining methods ... 29

 3.2.1 Classification methods in data mining ... 29

 3.2.2 Supervised and unsupervised learning .. 32

3.3 Machine learning algorithm C4.5 ... 33

 3.3.1 Initial stage of C4.5 .. 34

 3.3.2 Tree construction algorithm ... 34

3.4 Weka .. 37

3.5 Summary .. 39

4. PROPOSED BLOCK DECISION METHOD .. 40

4.1 Introduction .. 40

4.2 Approach. ... 41

4.3 Experimental results .. 42

4.4 Conclusions and future work .. 56

APPENDIX

A. SNAPSHOTS OF THE VIDEO SEQUENCES USED .. 57

B. ATTRIBUTES EXTRACTED FROM THE VIDEO FRAMES 60

C. CONFIGUREATION FILE-ENCODER.CFG ... 70

REFERENCES ... 75

BIOGRAPHICAL INFORMATION .. 79

viii

LIST OF FIGURES

Figure Page

1.1 Use of Multimedia data in different environments [26] ... 2

2.1 History of video coding standards [11] .. 3

2.2 Standard structure of AVS profiles [2]... 4

2.3 Various Profiles of AVS in terms of key features and coding tools 5

2.4 Nominal vertical and horizontal locations of 4:2:0 luma and chroma
samples in a frame [45] ... 8

2.5 Slices [45] .. 9

2.6 MB structure for 4:2:0 format [45] ... 10

2.7 Scanning order in a MB for 4:2:0 format [45] ... 11

2.8 Data structure of AVS-M ... 11

2.9 Block diagram of AVS-M encoder [10] .. 13

2.10 Block diagram of AVS-M decoder [10] .. 13

2.11 Intra prediction modes [25] ... 18

2.12 Intra chroma prediction modes in AVS-M [25] .. 19

2.13 The positions of integer, half and quarter pixel samples [16] 21

2.14 Inter prediction block sizes [9] ... 24

2.15 Zigzag scanning pattern used for quantized transform coefficients [24] 23

2.16 Block edges of a macroblock to be filtered [45] .. 26

3.1 The process of knowledge discovery in data bases [41] .. 29

3.2 Typical neural networks [41] ... 30

3.3 Typical Bayesian network [41] .. 30

3.4 Typical tree [41] ... 31

ix

3.5 (a) Supervised learning process block diagram (b) Unsupervised
Learning process [39] ... 33

3.6 Classifier tree in terms of statements obtained by Weka.. 38

3.7 Tree structure obtained by Weka .. 39

4.1 Block diagram of the proposed encoder ... 40

4.2 Decision tree obtained from Weka tool ... 43

4.3 The classifier tree in terms of statements ... 44

4.4 Implementing the tree in AVS-M ... 45

4.5 Bar chart to compare encoding time of AVS-M and the proposed encoder 46

4.6 Bar chart to compare PSNR of luma component when encoded by AVS-M
and the proposed encoder .. 48

4.7 Bar chart to compare PSNR of U component when encoded by AVS-M
and the proposed encoder .. 49

4.8: Bar chart to compare PSNR of V component when encoded by AVS-M
and the proposed encoder .. 51

4.9: Bar chart to compare PSNR of YUV component when encoded by AVS-M
and the proposed encoder .. 52

4.10 Bar chart to compare number of bits used AVS-M
and the proposed encoder .. 54

x

LIST OF TABLES

Table Page

2.1 Profiles of AVS with their targeted applications [37] ... 5

2.2 different parts of AVS [10] ... 6

2.3 Limits on the values of some syntax elements for level 1.x [45] 14

2.4 Limits on the syntax elements of Jiben profile for level 2.x [45] 15

2.5 Limits on the syntax elements of Jiben profile for level 3.x [45] 16

2.6 Most probable mode table [25] ... 19

2.7 Kth order exponential Golomb coding [6] ... 25

4.1 %accuracy in mode prediction by C4.5 embedded in Weka 42

4.2 Comparison of the encoding time between AVS-M and the proposed encoder 45

4.3 Comparison of the Y component when encoded by AVS-M
and the proposed encoder .. 47

4.4 Comparison of the U component when encoded by AVS-M
and the proposed encoder .. 48

4.5 Comparison of the V component when encoded by AVS-M
and the proposed encoder .. 50

4.6 Comparison of YUV component when encoded by AVS-M
and the proposed encoder .. 51

4.7 Comparison of number of bits used by AVS-M
and the proposed encoder .. 53

4.8 Comparison of encoding performances by AVS-M and the proposed encoder 53

xi

LIST OF ACRONYMS AND ABBREVIATIONS

2D-VLC 2 dimensional variable length coding

3-G 3rd generation

4-G 4th generation

ARFF attribute relational file format

AVS audio video coding standard

AVS-M audio video coding standard- mobile video

Cb blue difference

Cr red difference

DC direct current (here refers to the average of coefficients)

DIP direct intra prediction

DM data mining

GOP group of pictures

HD high definition

HDTV high definition television

IBL instance based learning

ICT integer cosine transform

IDR instantaneous decode refresh

IMS IP multimedia subsystem

IP internet protocol

I-picture intracoded picture

ITU-T international telecommunication union, telecommunication sector

KDD knowledge discovery in data bases

LTE long term evolution

MB macroblock

xii

MPEG moving picture experts group

MPM most probable mode

NAL network abstraction layer

P- Picture predictive picture

PBP padding before prediction

PSNR peak signal to noise ratio

QP quantization parameter

RDO rate distortion optimization

SAD sum of absolute differences

SCI simplified chroma intraprediction

SD standard definition

SEI supplemental enhancement information

SVM support vector machines

Th threshold

TSFT two step four taps

VLC variable length coding

Weka Waikato environment for knowledge analysis

Y luma

1

CHAPTER 1

INTRODUCTION

The recent deployment of 3-G (3rd generation) network and 4-G (4th generation) / LTE (long term

evolution) has lead to exponential increase in multimedia data in mobile devices. Additionally recent

developments in multimedia processing have changed the face of multimedia communication over the

internet and mobile devices. Multimedia traffic, and more specifically digital video traffic, has grown

exponentially in recent years. Everybody in this era of digital world, wants the best possible, be it the

communication speed or quality of multimedia content they are getting. This demand puts pressure on

entire fraternity in research area to develop networks as fast as possible and with the least possible

transmission errors, computers and laptop devices to process the data as fast as possible and mobile

devices with maximum number of features possible. One of the most demanding situations is created by

the live-streaming of videos over the internet. In this world of 3-G and 4-G networks people expect to view

HD (high definition) videos over mobile devices and at speed of 30 frames per second.

Videoconferences, streaming video and digital television are some of the currently available video

services. Furthermore, HDTV (high definition television) systems are a contemporary revolution in the

world of domestic multimedia applications, offering the best video qualities available in the broadcast

systems. This demand has forced the network providers to improve their networks and calibrate networks

to the current load on a regular basis. Figure 1.1 shows the use of multimedia contents in different

environments and communication of that data across different types of networks, on different types of

devices. Now transmitting a video sequence in SD (standard definition) and now even in HD, requires a

large amount of bandwidth, and bandwidth is a very expensive resource, network providers cannot blindly

allocate more and more bandwidth to meet the demands of the users. It is at this point where the video

compression standards come into picture. Reducing considerably the amount of data and therefore

reducing the resources required for their transmission and storage, while guaranteeing a high quality

2

image, compression schemes enable the storage and transmission of video information in a more

compact form.AVS (audio video coding standard) China is the video coding standard developed by the

AVS work group of China employing the latest video coding tools for achieving high compression while

preserving the quality of the video [15]. AVS China video standard has been proven superior to the

existing video standards such as MPEG-2 and MPEG-4 part 2 in terms of reduced complexity and coding

efficiency. In other words, this codec can provide high quality video at the same bandwidth or the same

quality video at a reduced bandwidth. Due to these robust features, AVS China standard has been

adopted for video compression and transmission in this thesis. AVS-M, (AVS mobile) is the video codec

targeting mobile devices. If a live streaming of a video is to take place from a device, it should be capable

of processing at least 15 frames (to create the perception of moving video) and transmit it. Now if AVS-M

is to be implemented in software, it cannot process more than 2 frames per second, to narrow this huge

gap between the required processing power and the power available with general processing hardware,

AVS-M is to be implemented in special hardware (digital signal processors) to empower the device. But

these specialized hardware solutions then consume a lot of power and create over-heating device

problems. To overcome this problem, an effort is made here to implement a machine learning algorithm

C4.5 [35] [43] inside the AVS-M, and reduce the complexity present inside the codec.

Figure 1.1 Use of multimedia data in different environments [26].

AVS China was developed by the AVS workgroup, and is currently owned

standard was initiated by the Chinese government in order to counter the monopoly of the moving picture

experts group (MPEG) standards [24

AVS is a set of integrated standard system which contains systems, video, audio and

management. Different parts of audio video

Table 2.2 [10]. The development of various video coding standa

Also Figure 2.2 shows various AVS

1stGENERATION

Figure

3

CHAPTER 2

AVS PART-7

2.1 AVS Introduction

AVS China was developed by the AVS workgroup, and is currently owned by China. This audio and video

standard was initiated by the Chinese government in order to counter the monopoly of the moving picture

24]

AVS is a set of integrated standard system which contains systems, video, audio and

management. Different parts of audio video coding standard (AVS) and their applications

The development of various video coding standards over the years is shown in F

2.2 shows various AVS profiles and their applications.

GENERATION 2ndGENERATION

 2.1 History of video coding standards [11]

by China. This audio and video

standard was initiated by the Chinese government in order to counter the monopoly of the moving picture

AVS is a set of integrated standard system which contains systems, video, audio and media copyright

applications are shown in

rds over the years is shown in Figure 2.1.

4

 2002 2003 2004 2005 2006

Figure 2.2 Standard structure of AVS profiles [2]

This standard can serve a wide range of bit rates, resolutions and qualities. Considering the capability of

interoperation, a limited number of subsets of the syntax are stipulated by means of ‘profiles’ and ‘levels’.

A ‘profile’ is a subset of the syntax elements, semantics, and algorithmic features of this standard. A

‘level’ is a specified set of limits on the syntax elements and the values that may be taken by the syntax

elements of a certain profile. The purpose of defining profiles and levels is to target different applications

for different profiles and levels. Table 2.1 shows various profiles with their targeted applications.

5

Table 2.1 Profiles of AVS with their targeted applications [37].

Profile Key applications:

Jizhun profile Television broadcasting, HDTV (High Definition Television)etc.

Jiben profile Mobility applications

Shenzhan pfofile Video surveillance systems

Jiaqiang profile Multi-media applications, entertainment.

Figure 2.3 shows various profiles of AVS with their key features available for coding and some high

efficiency coding tools used to achieve the requirements for the target application.

Figure 2.3 various profiles of AVS in terms of some key features and coding tools. [45]

6

2.2 Introduction to AVS-M

AVS-M is the seventh part of the standards developed by the audio video coding standard (AVS) [11]

workgroup of China with emphasis on video coding for mobile systems and devices with limited

computation capability and power consumption. AVS-M standard can cover a broad range of applications

which include mobile multimedia broadcasting, (internet protocol) IP multimedia subsystem (IMS),

multimedia mailing, and multimedia services over packet networks, videoconferencing, video phone, and

video surveillance.

Table 2.2 Different parts of AVS [10]

Part Name

1 System

2 Video

3 Audio

4 Conformance test

5 Reference Software

6 Digital media rights management

7 Mobile video

7

Table 2.2 - continued

8 Transmit AVS via IP network

9 AVS file format

10 Mobile speech and audio coding

In this standard, number of techniques may be used to achieve highly efficient compression, including

interprediction, intraprediction, transform, quantization, entropy coding, etc. Intercoding uses motion

vectors for block-based interprediction to exploit temporal statistical dependencies among adjacent

pictures. Intracoding uses various spatial prediction modes to exploit spatial statistical dependencies in

the source signal for a single picture. The prediction residual is then further compressed using a

transform to remove spatial correlation inside the transform block before it is quantized, producing an

irreversible process that typically discards less important visual information while forming a close

approximation to the source samples. Finally, the motion vectors or intra prediction modes are

multiplexed with the quantization coefficients and encoded using entropy coding.

2.2.1 Data structure of AVS-M [45]

AVS-M has two bit stream formats: the network abstraction layer (NAL) and unit stream format or the

byte stream format. The NAL unit stream consists of a sequence of syntax structures called NAL units.

The byte stream format can be constructed from the NAL unit streams, which include a sequence of NAL

units ordered in decoding order. Each NAL unit is prefixed with a start code.

The video sequence is encoded in terms of layers: coded video sequence, picture, slice, macro block and

block where video sequence is the highest layer and block is the lowest layer. Higher level layer encloses

the lower level layers along with their headers.

8

Coded Video Sequence [45]

This is the highest structure present in the bit stream. The bit stream of coded video sequence starts with

an IDR (instantaneous decode refresh) picture, followed by zero or more non-IDR pictures up to but not

including the next IDR picture or the end of the bit stream. Decoded pictures are ordered consecutively in

the bit stream, whose order is the same as decoding order.

Pictures [45]

Picture represents one frame of a sequence. Coded bit stream for a picture consists of a picture header

and three matrices as data: Y (luma), Cb (blue difference) and Cr (red difference) and relation between Y,

Cb, Cr and primary analog (Red, Green and Blue) components. A decoder outputs a series of frames. Two

successive frames have an interval time, called as one frame duration. Picture decoding process includes

parsing (of header and matrices information) process and decoding process. This standard supports the

4:2:0 formats. In this format the Cb and Cr matrices shall be half the sizes of Y-matrix in both horizontal

and vertical dimensions shown in Figure 2.4. “O” denotes the locations of luma samples Y and “X” denote

the locations of chroma samples Cb and Cr.

Figure 2.4 Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame [45]

9

This standard specifies two types of decoded pictures. An intra decoded picture (I-picture). A forward inter

decoded picture (P-picture). P picture can have a maximum of two reference frames for forward

prediction. A motion vector can exceed the boundaries of the reference picture. In this case, the nearest

pixel within the frame shall be used to extend the boundary. A reference pixel block shall not exceed the

picture boundary beyond 16 pixels for luma samples and 8 pixels for chroma samples, in both horizontal

director and vertical directions.

Slice

A slice is a sequence of macro blocks ordered consecutively in the raster scan. MBs (macroblocks) within

a slice never overlap with each other and neither does the slice overlap with other slice. The slices cover

the whole area of frame, and except in loop filtering process, the decoding process for MBs within a slice

shall not use the data from other slices of the picture. Figure 2.5 shows an example of the division of

picture into slices.

Figure 2.5 Slices [45]

10

Macroblock

Slice is divided into MBs. A MB is pixel domain block of size 16x16. The upper-left sample of each macro

block shall not exceed picture boundary. The partitioning is used for motion compensation. The number in

each rectangle specifies the order of appearance of motion vectors and reference indices in a bit stream.

The partition of image into slice is done so that there is no overlapping of macro blocks of two slice and

no overlapping of two slice for a macro block, this is ensured to make sure that all the macro blocks in a

slice can be decode using only the macro blocks in the same slice as their neighbors.

A MB includes four 8×8 luma blocks (Y) and two 8×8 chroma blocks (one Cb and one Cr) as shown in

Figure 2.6. The number in each rectangle specifies the coding order of each 8×8 block of a macro-block

in a bit-stream.

Figure 2.6 MB structure for 4:2:0 format [45]

A macro-block if coded with a sub-block type, each 8x8 block is portioned in sub-blocks of size ranging

from 8x8 to 4x4. The Figure 2.7 shows the partition of a Macro-block in to 16 4x4 luma blocks and 2

chroma blocks portioned into 4 4x4 blocks each. The numbers in the boxes represent the order of

scanning while encoding a macro block.

Figure 2.7 Scanning order in a MB

Overall layered data structure present in the encoded video sequence bit

Figure2.8.

11

2.7 Scanning order in a MB for 4:2:0 format [45]

Overall layered data structure present in the encoded video sequence bit-stream is as shown in

Figure 2.8 Data structre of AVS-M.

stream is as shown in

12

2.2.2 Embodiment of AVS-M

The block diagrams of AVS-M encoder and decoder [10] are depicted in Figure-2.9 and Figure-2.10

respectively. MB needs to be predicted (intra predicted or inter predicted). In an AVS-M encoder, the S0 is

used to select the right prediction method for current MB whereas in the decoder, the S0 is controlled by

the MB type of current MB. The predicted MB is then subtracted from the original MB to obtain the

prediction residue. The residue is then transformed by ICT and then quantized. The quantized coefficients

along with the motion vectors (if the MB was inter-predicted) are entropy coded with 2-D VLC and

transmitted to decoder side. The encoder also maintains the local decoder, on its side, to get the exact

reconstructed frame, as will be obtained on the decoder side. This is done so that the exact frame, the

encoder uses for prediction, is used by the decoder for the reconstruction. So both encoder and decoder

work in synchronization. If this is not maintained then the quantization error goes on accumulating.

Once the decoder obtained the AVS-M bitstream, it entropy decodes the stream, separates the MVs if a

macroblock is interpredicted, and then adds the inverse transformed, quantized coefficients to the

predicted macroblock (inter or intra predicted), and then applies the deblocking filter on the edges, hence

video frame is ready to played by any player. The video frame reconstructed is also stored in a frame

buffer for future reference, for inter prediction of future frames and intra prediction of future MBs of the

same frame. The block diagram of decoder is shown in Figure 2.10.

13

Figure 2.9 Block diagram of AVS-M encoder [10]

Figure 2.10 Block diagram of AVS-M decoder [10].

2.2.3 Various levels in Jiben profile

The part of AVS considered here is AVS-M, also known as Jiben profile. AVS-M defines Jiben Profile wit h

9 different levels: Tables 2.3 through 2.5 specify limits on certain syntax elements for a particular level.

14

Table 2.3 Limits on the values of some syntax element for level-1.X [45]

Profile

 Level

 1.0 1.1 1.2 1.3

Maximum number

of MBs per second

1485 1485 6000 11880

Maximum number

of MBs per frame

99 99 396 396

Maximum MBs

coding bit rate

(bits/second)

4096 4096 4096 4096

Maximum bit rate

(bits/second)

64000 128000 384000 768000

Maximum decoded

picture buffer size

(bytes)

114048 114048 456192 456192

Maximum coded

picture buffer size

(bits)

175000 350000 1000000 2000000

Maximum range of

horizontal motion

vector

[-2048,2047.75] [-2048, 2047.75] [-2048, 2047.75] [-2048, 2047.75]

15

Maximum range of

vertical motion

vector

[-32,31.75] [-32,31.75] [-32,31.75] [-32,31.75]

Max

SubMbRectSize

572 572 572 572

Minimum

compression ratio

2 2 2 2

Table 2.4 Limits on the syntax elements of Jiben profile for level 2.X [45]

Level

Parameter 2.0 2.1 2.2

Maximum number of

MBs per second

11880 19800 20250

Maximum number of

MBs per frame

396 792 1620

Maximum MB coding bit

rate (bits/second)

4096 4096 4096

Maximum bit rate

(bits/second)

2000000 4000000 4000000

Maximum decoded

picture buffer size

(bytes)

456192 912384 15552000

Maximum coded picture

buffer size (bits)

2000000 4000000 4000000

Table 2.3 - continued

16

Maximum range of

horizontal motion vector

[-2048,2047.75] [-2048, 2047.75] [-2048, 2047.75]

Maximum range of

vertical motion vector

[-32,31.75] [-256,255.75] [-256,255.75]

Max SubMbRectSize

(bytes)

572 572 572

Minimum compression

ratio

2 2 2

Table 2.5 limits on the syntax elements of Jiben profile for Level 3.X [45]

Parameter Level

 3.0 3.1

Maximum number of MBs per

second

36000 40500

Maximum number of MBs per

frame

1620 1620

Maximum MB coding bit rate

(bits/second)

4096 4096

Maximum bit rate (bits/second) 6000000 8000000

Maximum decoded picture buffer

size (bytes)

1555200 1555200

Maximum coded picture buffer

size (bits)

6000000 8000000

Maximum range of horizontal

motion vector

[-2048,2047.75] [-2048,2047.75]

Table 2.4 - continued

17

Maximum range of vertical

motion vector

[-256,255.75] [-256,255,75]

Max SubMbRectSize (bytes) 572 572

Minimum compression ratio 2 2

2.3 Block mode prediction modes

2.3.1 Intra prediction

The intra predictions are derived from the neighboring pixels in left and top blocks. There are 9 intra_4*4

modes as shown in Figure 2.11. The unit size of intra prediction is 4×4 because of the 4×4 integer cosine

transform (ICT) used by AVS-M. Some specific techniques are working together with 4_4 intraprediction,

such as direct intra prediction (DIP), padding before prediction (PBP) and simplified chrominance intra-

prediction (SCI) [16]. Prediction of most probable mode from neighboring blocks is also used [16]. Table

2.6 [25] shows the most probable mode for the current block based on the left (L) and upper (U) blocks.

Mode ‘-1’ is assigned to L or R whenever there is no left or upper block or that block is inter coded. One

flag at block level indicates if the particular block is encoded with “most probable mode” and one flag at

macro block level indicates the use of DIP [17][18]. If one macro block is marked as DIP-mode, it infers

that each of the 16 luminance 4*4sub-blocks in this macro block takes the most probable mode as its

intra-prediction mode, even though the intra-prediction mode for each 4*4 sub-block might be different no

more mode information is transmitted in bit-stream, saving a large number of bits. The probability of

occurrence of most probable mode is very high [22] thus saving a lot of bits in entire process. PBP is

applied for both luminance and chrominance components, during which the reference pixels “Ds” and

“Hs” are padded from “D” and “H” respectively, so as to skip conditional test of availability of up-right and

down-left reference pixels. SCI means that only DC, vertical and horizontal modes are available for

chrominance components [19].

Table 2.5 - continued

18

 Adaptive intra-prediction enables 4*4_intra-prediction to be applied along with 8*8_intra-prediction, using

an indicator at macro block header in AVS-2[20]. Besides, mapping is needed between the modes used

in 4*4_intra-prediction and those in 8*8_intra-prediction before the prediction of most probable mode, if

the current block and its neighboring blocks are using different block-sized intra-predictions.

Figure 2.11 Intra prediction modes [25]

If current block is a chroma block, the prediction mode Intra_Chroma_Pred_Mode is equal to

intra_Chroma_pred_mode. Every 4×4 chroma block of the macro-block uses the same prediction mode.

The 4×4 chroma intra prediction modes are illustrated Figure 2.12

19

Figure 2.12 Intra chroma prediction modes in AVS-M[25]

Table 2.6 Most probable mode table [25]

U� -1 0 1 2 3 4 5 6 7 8

L

-1 8 8 8 8 8 8 8 8 8 8

0 8 0 0 2 0 0 0 2 0 2

1 8 2 1 2 2 2 2 2 2 2

2 8 2 2 2 2 2 2 2 2 2

Horizontal intra chroma

prediction mode

Vertical intra chroma

prediction mode

20

3 8 2 1 2 3 4 5 2 7 2

4 8 4 4 2 5 5 5 6 5 5

5 8 5 5 2 5 5 5 6 5 5

6 8 6 6 6 6 6 6 6 6 6

7 8 7 7 2 7 7 7 6 7 7

8 8 0 1 2 3 4 5 6 7 8

(L indicates the intra mode for left macroblock and U indicates the intra mode for right macroblock)

2.3.2 Inter prediction

To remove temporal redundancy in video sequence, inter-frame prediction (inter-prediction) predicts from

previously decoded frames/fields. A number of techniques jointly contribute to the coding efficiency of

inter prediction in AVS-video. There are two types of inter prediction: P-prediction and Bi-prediction. AVS-

M supports only P-prediction, which uses only past decoded frames as its reference frames.

 The inter predictions are derived from the decoded frames. Seven types of block sizes, 16×16, 16×8,

8×16, 8×8, 8×4, 4×8, and 4×4 are supported in AVS-M as shown in Figure-2.14[9]. The precision of a

motion vectors in inter prediction is up to 1/4 pel (pixel) accurate, since the motion-compensated

prediction in AVS-video allows motion vector accuracy up to one quarter pel, corresponding reference

pixel values of fractional motion vectors are obtained by sub pel interpolation as shown in Figure 2.13.

Table 2.6 - continued

21

Default sub-pel interpolation in AVS-video is called as two steps four taps (TSFT) interpolation [21] and

three kinds of filters are applied, respectively, onto sub-pels of different positions. The two steps four taps

interpolation applies a filter with (-1, 5, 5, -1) coefficients to get the half-pel reference pixel values as the

first step. A filter with (1, 7, 7, 1) coefficients is applied for quarter-pel reference pixel values either

horizontally or vertically as the second step. The exception of the second step is that for quarter pel

reference pel values of e, g, p, r, where a diagonal bilinear filter is used.

Figure 2.13 The position of integer, half and quarter pixel samples [16]

(Hatched lines show half pixels; empty circles are quarter pixels; capital letter shows full pixel)

Small block sizes perform better than large ones for lower image resolution. 4x4 is the unit of transform

[10, 23], intra prediction and smallest block size motion compensation in AVS Part 7.

2.3.3 Skip mode prediction

When a macroblock is decided to be encoded with skip mode, no information for that MB is sent except

the flag that it is encoded with skip mode. Now when decoder sees that the MB is encoded with skip

mode, decoder uses the default reference marked zero in the buffer and motion vectors are calculated

based on the motion vectors of neighboring MBs, left macroblock, up macroblock MVs.[45]

22

2.3.4 RD Optimization

For I-Frame an RD cost is calculated for each of the intra-block mode, by (2.1) to select the best mode

out of available 9 intra modes.

RD-Cost (mode) = D (mode) + λ*R (mode) (2.1)

where λ is a lagarangian multiplier, which is derived based on the rate-cost plot optimization. RD-Cost

(mode) is the rate-distortion cost for a particular mode for a block, and D (mode) represents the distortion

if the block is coded with that mode, and R (mode) is the bit-rate produced if the block is coded with that

particular mode. So to decide a block mode for one block, all the 9 mode costs are calculated. For

calculating each cost the encoder needs to transform, quantize and entropy code a block with all the

modes, to calculate R (mode) because R (mode) is the amount of bits used to encode a block with that

mode. Also encoder has to perform entropy decoding, dequantization and inverse transform to

reconstruct the image on the encoder side itself, to calculate the D (mode) because D (mode) is the

difference between the original image and the image after reconstruction. After calculating the best RD-

Cost for all 16 blocks in the MB, the encoder calculates the RD-Cost of the MB if all the blocks are coded

with MPM (most probable mode), and if it happens to be less than sum of the best RD-Costs of all 16

blocks, DIP (direct intra prediction) is used to encode the MB.

For P-frames, encoder calculates the cost for all inter-modes. The best mode is calculated for intra

prediction. Then best intermode is selected based on R-D optimization and then R-D cost for skip-macro

block is also calculated. The encoding mode with the least cost is selected and MB is encoded with that

mode.

23

2.4 Transform, quantization and entropy coding

2.4.1 Transform

 The motion compensated residuals are transformed with 4×4 ICT (integer cosine transform). The 4x4

transform used in AVS is [45]. ICT are integer separable and integer precision. It is designed to minimize

decoder implementation complexity.

�� � �2 3 22 1 �222 �1�3 �22 1�33�1

2.4.2 Quantization

An adaptive uniform quantizer is used to perform the quantization process on the 4×4 transform

coefficients matrix [10] [24] [25].The step size of the quantizer can be varied to provide rate control. In

constant bit rate operation, this mechanism is used to prevent buffer overflow. The transmitted step size

quantization parameter (QP) is used directly for luminance coefficients and for the chrominance

coefficients it is modified on the upper end of its range. The quantization parameter may optionally be

fixed for an entire picture or slice. If it is not fixed, it may be updated differentially at every macroblock.

The quantization parameter varies from 0 to 63 in steps of one. The uniform quantization process is

modified to work together with the transform in order to provide low complexity decoder implementation.

Quantized coefficients are scanned using the zigzag pattern shown in Figure-2.15 [24].

24

Figure 2.14 Inter-prediction block sizes [9]

2.4.3 Entropy coding

AVS-M uses exp-Golomb code[6], for entropy coding, as shown in Table-2.7 to encode syntax elements

such as quantized coefficients, macro block coding type, and motion vectors. Eighteen tables are used for

encoding quantized coefficients. The encoder uses the run and the absolute value of the current

coefficient to select Table 2.7. AVS-M employs an adaptive variable length coding (VLC) coding

technique [10].

25

Table 2.7 Kth order exponential Golomb coding [6]

The reconstructed image is the sum of prediction and current reconstructed error image. In Figures 2.9

and 2.10, encoder adds the inverse quantized and inverse transformed coefficients to the predicted frame

(either intra-predicted or inter-predicted selected through S0 switch) to get the reconstructed frame.

2.5 The deblocking filter

 AVS-M uses the de-blocking filter on the reconstructed frame, and then stores them in the buffer for

future reference. The de-blocking process directly acts on the reconstructed reference first across vertical

edges and then across horizontal edges. Since, different image regions and different bit rates need

different smoothes; the de-blocking filter is adjusted accordingly in AVS-M depending on activities of

blocks and quantization parameters. Except edges at image boundary and slice edges with

disable_loop_filter_slice_flag equal to 1, all 4×4 block edges of a macroblock are filtered. Loop filtering

regards a macroblock as a unit. Every macroblock is processed as follows:

Luma and chroma are filtered separately, as shown in Figure 2.16. First, vertical edges are filtered from

Left to right, and then horizontal edges are filtered from top to bottom. Sample values that have not been

modified by the loop filtering process are used as input to the filtering process on the current macroblock.

Sample values may be modified during the filtering process of current macro block. The input values of

26

horizontal edges filtering process are the sample values that have been modified during [45] vertical edge

filtering process of current macro block.

Figure 2.15 Zigzag scanning pattern used for quantized transform coefficients [24]

Figure 2.16 Block edges of a macroblock to be filtered [45].

2.6 Summary

This chapter explains various high efficiency tools used in AVS-M, for encoding and decoding of a video

sequence. Also it explains the working of AVS-M encoder and decoder using block diagrams, which will

help to understand the flow of the entire process in the further chapters.

27

CHAPTER 3

 DATA MINING, DATA MINING ALGORITHMS AND WEKA

3.1 Introduction to data mining [41]

Data mining is the association of an observation to past experience or knowledge in predicting the event

without undergoing the complex process of calculating the actual probability. KDD (knowledge discovery

in data bases) is an automatic, exploratory analysis and modeling of large data repositories. It is an

organized process of identifying valid novel useful and understandable patterns from large and complex

data sets. DM (data mining) is the core of KDD process, involving the inferring of algorithms that explore

the data, develop the model and discover previously unknown patterns. This is then used for analysis and

prediction.

3.1.1 Steps for data mining

The following are the 9 steps of KDD process; they are also shown in Figure 3.1.

1. Developing an understanding of the application domain

In this step, people should understand and define the goals of the end user and environment in

which the knowledge discovery process will take place.

2. Selecting data set

After understanding the application, important data from the application should be identified, which

will be used as input for further steps. Larger the amount of dataset considered, better are the

chances of getting good classifier. But collecting large amounts of data in repositories is expensive

and the tradeoff between the chances for better classifier and the amount of data to be extracted be

known before initializing the process.

3. Preprocessing and cleansing

28

In this stage, data reliability is enhanced. This stage includes data clearing such as handling missing

values and removal of noise or outliers.

4. Data transformation

In this stage, generation of better data for data mining is prepared and developed. Methods here

include dimension reduction (such as feature selection and extraction and record sampling) and

attribute transformation (such as discretization of numerical attributes and functional transformation).

This stage can be crucial for the success of the entire KDD project and it is usually very project-

specific.

5. Choosing the appropriate data mining task

This stage decides which type of data mining process to use, e.g. classification, regression or

clustering.

6. Choosing the DM algorithm

Having the strategy, this stage decides on the tactics. This stage includes selecting the specific

method to be used for searching patterns.

7. Employing the data mining algorithm:

Finally the implementation of the data mining algorithm is reached. This stage needs to employ the

algorithms several times until a satisfied result is obtained, for instance by tuning the algorithm’s

control parameters.

8. Evaluation

This stage evaluates and interprets the mined patterns (rule, reliability etc.) with respect to the goals

desired in the first step.

9. Using the discovered knowledge

29

Now the rules obtained so far can be incorporated in the targeted application system. Now note down

the changes in the system and make sure the effect it has are desired ones.

Figure 3.1 The process of knowledge discovery in data bases. [41]

3.2 Classification of Data mining methods

3.2.1 Classification methods in data mining

Following are the classification methods in data mining:

1. Neural network [41]

Neural networks are computing models for information processing and are particularly useful for

indentifying the fundamental relationship among a set of variables or patterns in the data. They grew

from research in artificial intelligence; specifically, attempts to mimic thee learning of biological neural

networks especially those in human brain which may contain more than billions of highly

30

interconnected neurons. They are very popular due to their powerful modeling capabilities for pattern

recognition. Figure 3.2 shows an example of neural network.

Figure 3.2 Typical neural networks. [41]

2. Bayesian network [41]

They belong to a more general class of models called probabilistic graphical models that arise from

the combination of graph theory and probability theory. Their success rests on their ability to handle

complex probabilistic models by decomposing them into smaller amenable components.

Figure 3.3 Typical Bayesian network. [41]

31

3. Support vector machines (SVM)[41]

They are a set of related methods for supervised learning, applicable to both classification and

regression problems. The SVM classifiers creates a maximum-margin hyper-plane that lies in a

transformed input space and splits the example classes, while maximizing the distance to the nearest

cleanly split examples. The parameters of the solution hyper-plane are derived from a quadratic

programming optimization problem.

4. Decision trees[41]

A decision tree is a classifier expressed as a recursive partition of the instance space. The decision

tree consists of nodes that form a rooted tree, meaning it is a directed tree with a node called “root”

that has no incoming edges. All other nodes have exactly one incoming edge. A node with outgoing

edge is known as internal node. All others are called leaves. Each internal node splits the instance

space into two or more sub-spaces, and finally each leaf is assigned a class.

Figure 3.4 Typical tree [41]

32

5. Instance based learning [36]

IBL algorithms are derived from the nearest neighbor pattern classifier [33]. They are highly

similar to edited nearest neighbor algorithms [30][32], which also save and use only selected

instances to generate classification predictions. IBL algorithms differ from most other supervised

learning methods: they do not construct explicit abstractions such as decision trees or rules. Most

learning algorithms derive generalizations from instances when they are presented and use

simple matching procedures to classify subsequently presented instances. This incorporates the

purpose of the generalizations at presentation time.

3.2.2 Supervised and unsupervised learning [39]

There are two types of learning methods in data mining:

1. Supervised learning

In this learning method, the pattern recognition system will first undergo a training process. During

training process the system will first undergo a training of prototypes, that is, with a set of input

patterns along with the category to which each particular pattern belongs. Whenever an error occurs

in the system output, an adjustment on the system parameters will follow. Because the system

output is fed back to the training algorithm, it is called supervised learning. Figure 3.5 (a) shows the

block diagram of supervised learning process.

2. Unsupervised learning

Learning process when there is no prior knowledge of the categories into which the patterns are to be

classified, unsupervised learning will play an important role in pattern classification. In unsupervised

learning patterns are associated by themselves into clusters based on some properties in common.

Figure 3.5(b) shows the block diagram of unsupervised learning process.

33

Figure 3.5 (a) Supervised learning process block diagram (b) Unsupervised learning process. [39]

3.3 Machine learning algorithm C4.5 [26]

Machine learning has the potential to become one of the key components of intelligent information

systems, enabling compact generalizations, inferred from large databases of recorded information, to be

applied as knowledge in various practical ways; such as being embedded in automatic processes like

expert systems, or used directly for communicating with human experts and for educational purposes.

Presently, however, the field is not well placed to do this. Most research effort is directed towards the

invention of new algorithms for learning, rather than towards gaining experience in applying existing

techniques to real problems.

 C4.5 tree induction algorithm shows good classification accuracy and is the fastest among the compared

to man-memory algorithms for machine leaning and data mining. [35][28] C4.5 generates classifiers

expressed as decision trees, but it can also construct classifiers in a more comprehensible rule set form.

The algorithm constructs a decision tree starting from a training set S, which is a set of cases or tuples in

34

the database terminology. Each case has some attributes and a class, attribute being discrete or

continuous value, but class being only discrete ranging from C1...CN.

A decision tree is a tree data structure consisting of decision nodes and leaves. A leaf specifies a class

value. A decision node specifies a test over one of the attributes, which is called the attribute selected at

the node. The test on a continuous attribute has two possible outcomes, A <= Th and A > Th, where Th is

a value determined at the node and is call the threshold. Decision tree assigns each case with a class

depending on the values of the attributes of the case; the class specified at the leaf is a predicted class. It

is compared with the actual class of the case to measure classification error.

3.3.1 Initial stage of C4.5 [35]

Given a set S of cases, C4.5 first grows an initial tree using the divide-and-conquer algorithm as follows:

If all the cases in S belong to the same class or S is small, the tree is a leaf labeled with the most frequent

class in S otherwise, choose a test based on a single attribute with two or more outcomes. Make this test

the root of the tree with one branch for each outcome of the test, partition S into corresponding subsets

S1, S2, . . . according to the outcome for each case, and apply the same procedure recursively to each

subset.

3.3.2 Tree construction algorithm [28]

The C4.5 algorithm constructs the decision tree with a divide and conquers strategy. In C4.5, each node

in a tree is associated with a set of cases. Also cases are assigned weights to take into account unknown

attribute values. At the beginning, only the root is present and associated with entire training set S and

with all case weights equal to 1. At each node, the following divide and conquer algorithm is executed,

trying to exploit the locally best choice, with no back tracking allowed.

Pseudocode of the C4.5 tree-construction algorithm [28]

FormTree (T)

1. ComputeClassFrequency(T);

2. If OneClass or FewCases return a leaf, create a decision node N;

3. ForEach Attribute A, ComputeGain(A);

4. N.test = AttributeWithBestGain;

35

5. If N.test is continuous find Threshold;

6. ForEach T’ in the splitting of T

7. If T’ is Empty Child of N is a leaf else

8. Child of N = FormTree(T’);

9. ComputeErrors of N; return N

Let T be the set of cases associated at the node. The weighted frequency freq(Ci, T) is computed (step

(1)) of cases in T whose class is Ci for i (- [1, NClass];

If all cases (Step 2) in T belong to a same class Cj (or the number of cases in T is less than a certain

value), then the node is a leaf, with associated class Cj, (respectively, the most frequent class). The

classification error of the leaf is the weighted sum of the cases in T whose class in not Cj (respectively,

the most frequent class). If T contains cases belonging to two or more classes (step-3), then the

information gain of each attribute is calculated. For discrete attributes, the information gain is relative to

the splitting of cases in T into sets with distinct attribute values. The attribute with highest information

gain (step 4) is selected for the test at node. Moreover, in case a continuous attribute is selected, the

threshold is computed (step 5) as the greatest value of the whole training set that below threshold. A

decision node has ‘s’ children if T1,……….Ts are the sets of the splitting produced by the test on the

selected attribute (step 6). s = 2, if selected attribute is continuous and s = h, for discrete attributes with

‘h’ known values.

For i = [1,s], if Ti is empty, (step- 7), the child node is directly set to be a leaf, with associated class the

most frequent class at the parent node and classification error 0.

If Ti is not empty, the divide and conquer approach consists of recursively applying the same operations

(step -8)on the set consisting of Ti plus those cases in T with an unknown values of the selected attribute.

Note that cases with an unknown value of the selected attribute are replicated in each child with their

weights proportional to the proportion of case in Ti over cases in T with a known value of the selected

attribute.

36

Finally the classification error (step-9) of the node is calculated as the sum of the errors of the child

nodes. If the result is greater than the error of classifying all cases in T as belonging to the most frequent

class in T, then the node is set to be a leaf and all sub-trees are removed.

Information Gain

The information gain of an attribute ‘a’ for a set of cases T is calculated as follows: if ‘a’ is discrete, and

T1,…….Ts are the sub-sets of T consisting of cases with distinct known value for attribute ‘a’, then:

 Gain = info (T) –� � |��||�| � ���� ��i���
��� (3.1) [28]

where

Info (T) = - � � �� !�"#,��|�| � %�&' ()*+�,-,��|�| �."/0��
#�� (3.2) [28]

is the entropy function. While having an option to select information gain, by default, however C4.5

considers the information gain ratio of splitting T1……..Ts, which is the ratio of information gain to its split

information.

 Split (T) = � � � |��||�| � %�&' �Px |��||�| ��
��� (3.3) [28]

It is easy to see that if a discrete attribute has been selected at an ancestor node, then its gain and gain

ratio are zero. Thus, C4.5 does not even compute the information gain of those attributes. If ‘a’ is a

continuous attribute, cases in T with a known attribute value are first ordered using a Quick sort ordering

algorithm [34]. Assume that the ordered values are v1,………,vm. Consider for i (- [1,m-1] the value v =

(vi+vi+1)/2 and splitting:

 T1
v = {Vj|Vj <= V } T2

v = { Vj|Vj > V }

For each value V, the information gain gainv is computed by considering the splitting above, the value v’

for which gainv
’ is maximum is set to be the local threshold and the information gain for the attribute a is

defined as gainv
’.

37

C4.5 considers [42] the information gain ratio1 (ratio of the information gains by equation 3.1) of the

splitting Tv
1,T

v’
2. Finally, note that, in case the attribute is selected at the node, the threshold is calculated

(step -5) by means of a linear search in the whole training set S of the attribute value that best

approximates the local threshold v’ from below(i.e., which is not greater than v’). Such a value is set to be

the threshold at the node.

Since constructed decision trees may be large and unreadable and may suffer from the over fitting

problem [43], the C4.5 system offers a simplified tree obtained by cutting paths according to a given

confidence level. Both the decision tree and its simplified version are evaluated by computing the

percentage of case misclassified by the trees. Also, such an evaluation can be performed on a test set, a

set of unseen cases during the tree construction.

3.4 Weka [27]

Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be

applied directly to a dataset or called from user’s Java code. Weka contains tools for data pre-processing,

classification, regression, clustering, association rules, and visualization. It is also well-suited for

developing new machine learning schemes. Weka is open source software issued under the GNU

general public license. The types of files used by the WEKA data mining program are known as ARFF

files. An ARFF file is written in ASCII text and shows the relationship between a set of attributes. These

files contain the datasets to be classified. An ARFF file has two different sections: the first section is the

header with the information about the name of the relation, the attributes that are used and their types;

the second section contains the data with comma division. In the header section, there are attributes

declarations. For each MB different metrics are calculated and then stored in the ARFF file.

The goal of WEKA is to discover and characterize what is required for successful applications of machine

learning to real-world data. To support this effort, a workbench has been developed to provide an

integrated environment which not only gives easy access to a variety of machine learning techniques

through an interactive interface, but also incorporates those pre- and post-processing tools that are found

to be essential when working with real-world data sets. Other systems for machine learning

38

experimentation exist, but these are libraries of routines that are intended for use by a researcher who is

extending and comparing algorithms. One exception although still a library of modules is “Consultant”, an

expert system that allows domain experts to choose a learning algorithm suited to their needs. Consultant

assumes that a machine learning algorithm exists that can be applied directly to solve the problem at

hand. Although a suitable algorithm may well exist, it is unlikely that its direct application on the domain

expert‘s data will produce a meaningful result. Domain experts need an environment in which they can

easily manipulate data and run experiments themselves. The philosophy behind WEKA is to move away

from supporting a computer science or machine learning researcher, and towards supporting the end

user of machine learning. The end user is someone typically, an agricultural scientist with an

understanding of the data and sufficient knowledge of the capabilities of machine learning to select and

investigate the application of different techniques [27]. In order to maintain this philosophy, WEKA

concentrates on ensuring that the implementation details of the machine learning algorithms and the input

formats they require are hidden from the user.

Figure 3.6 Classifier tree in terms of statements obtained by Weka.

39

Figure3.7 Tree structure obtained by Weka

3.5 Summary

This chapter explains some concepts of data mining and classification of data mining based on the

approach, detailed working (pseudo code) of C4.5 and finally explains Weka tool. This stage of the thesis

is the intermediate and final stage of the whole thesis. Attributes used in figure 3.6 are obtained along

with many other attributes [appendix B] from the video frames [appendix A], and are written to .arff file.

.arff file is then given as input to Weka, which selects key attributes and gives a decision tree (Figure 3.6).

The decision tree is then implemented inside the AVS-M encoder.

40

CHAPTER 4

 PROPOSED BLOCK DECISION METHOD

4.1 Introduction

Motion estimation along with block decision accounts for 75% - 80 % of the total encoding time in AVS-M.

This thesis aims to replace block decision mode with classifier from data mining algorithm C4.5 [43][28].

The reference software used for AVS-M is obtained from avs.org [8].

Actual AVS-M exploits temporal and spatial redundancies to reduce the number bits required to code the

video sequence, but the highly efficient coding tools like block prediction and motion estimation come with

lot of encoding complexity. This makes it almost impossible to broadcast a video sequence in real time

without taking help of specialized hardware solutions for the application. This thesis replaces block motion

estimation mode calculated by sum of absolute differences (SAD) or rate distortion optimization (RDO)

present in actual AVS-M with if-else statements obtained from machine learning algorithm C4.5. Figure

4.1 explains block diagram of the proposed encoder.

Figure 4.1 Block diagram of the proposed encoder.

41

4.2 Approach

Various attributes such as mean, variance, mean of variance, variance of mean, edge of all possible

block sizes (4x4,4x8,8x4,8x8,8x16,16x8,16x16) are extracted for each macro-block of 4 frames of all

sequences along with actual mode decision taken by AVS-M are written to a .arff (Attribute relation file

format) file.

C4.5 implemented in Weka [27] is used as the classifier algorithm to get the decision tree.

An effort is made initially to use various sequences as trainer to obtain the decision tree and then use the

same tree on different test sequence for testing, results of which are tabulated in Table 4.1. Finally a tree

is developed from the frames of different sequences which can be embedded in the encoder efficiently for

all sequences. Though there are 7 block modes used in AVS-M, this thesis exploited only the classifiers

with macro block mode types – 16x16, 16x8, 8x16, 8x8 leaving sub-macro block mode in their regular

processing because of fitting problem. Different video sequences have different numbers of macroblocks

in particular mode type depending on the amount of information present in each macro block and its

redundancy with regards to spatial and temporal neighbors. Because of this vast variations Weka does

not give reliable tree for all the 7 block types. So what is done here is that, in initial stage macroblock type

ranging from 16x16 to 8x8 are decided with if-else statement from their attributes and is coded, but if a

macroblock is decided to be coded with 8x8 block type, then it further undergoes whole RDO process to

decide with which of the sub-block type ranging from 8x8 to 4x4 and skip-mode, it will be coded. The

entire process is shown in the block diagram of the proposed encoder, Figure 4.1.

The idea of applying machine learning algorithm C4.5 was taken from [2]. But in that thesis, a unique tree

is developed for each and every sequence to be encoded, and that tree is embedded only for that

sequence. This approach cannot be applied in real world, because then every encoder will need,

embodiment of the C4.5 and the mode decision part will have to be changed for encoding each and every

sequence. Though it will give highly efficient results in terms for PSNR and bit savings, it is not viable.

Though this thesis has tried to establish the fact that mode decisions can be correctly predicted with

42

accuracy as good as 95% (Table 4.1), with the C4.5 trees, but then they are good for that sequence only

and some time even not viable to embody them in to the encoder because of their size and though gives

reasonable accuracy of 80%, for some other sequences depicted as test sequence in (Table 4.1). Here a

tree with moderate accuracy of 60%-70% is implemented, because it is moderate for all the sequences

tested and also, is viable to implement because of its size.

4.3 Experimental results

Table 4.1 shows the % accuracy in prediction the block mode decision by Weka too. The accuracy is

measured with respect to the actual decision taken by AVS-M while running the whole RDO process. The

if-else statements obtained from this tool are then embodied in the AVS-M replacing the block mode

decision process. The metrics such as PSNR, encoding time and number of bits used to encode the file

are compared for both encoders as shown in Tables 4.2 through 4.7.

Table 4.1 % accuracy in mode prediction by C4.5 embodied in Weka.

Sequence no: Training sequence % accuracy for

training sequence

Test sequence % accuracy for

test sequence *

1. Foreman_qcif 95.78 Highway_qcif 94.04

2. Coastguard_qcif 95.074 Carphone_qcif 84.172

3. Akiyo_qcif 90.625 Container 83.186

4. Highway_qcif 96.90 Bridge-close_qcif 87.234

5. News_qcif 98.05 Akiyo_qcif 77.718

6. Miss-america_qcif 95.693 News_qcif 88.429

7. Container_qcif 96.95 Miss-america_qcif 87.288

8. Carphone_qcif 93.99 Coastguard_qcif 80.108

9. Bridge-clsose_qcif 95.69 Foreman_qcif 84.211

 (* - % accuracy is obtained by calculating the number of modes predicted same as that predicted by

AVS-M and converting it into %)

43

Figure 4.2 Decision tree obtained from Weka tool.

The tree structure in Figure 4.2 can be implemented in terms of if-else statement in the block-estimation

section of the AVS-M video encoder. Each ovular structure is called node of the tree: it represents the

attribute value extracted from the current macro-block of the frame. Each line joining the nodes is called

the branch: the value on the branch tells the decision maker, depending on the current value of that

attribute, which direction the decision process will progress. Finally the rectangular blocks are called the

leaves: they are the final mode decision taken by the classifier after passing through their corresponding

root, branches and nodes. The Weka gives two different views of the same tree, one is shown as tree

structure as in Figure 4.2 and the other one is in terms of statement and its prediction accuracy as shown

in Figure 4.3

44

Figure 4.3 The classifier tree in terms of statements.

Tree obtained in Figure 4.2 or figure 4.3 is implemented in terms of if-else statement inside the AVS-M

code replacing the RDO procedure block selection mode. The if-else statements in AVS-M are shown in

Figure 4.4. After implementing the if-else statements inside the encoder, the thesis tried to study the

effect of some evaluation parameters of sequence and performance parameter of the encoder. Table 4.2

shows the reduction in encoding time, which is the main aim of this thesis.

45

Figure 4.4 Implementing the tree in AVS-M.

Table 4.2 Comparison of the encoding time between AVS-M and the proposed encoder

Sequence no: Sequence Encoding time of

the sequence with

original AVS-M

(seconds)

Encoding time of

the sequence with

machine learning

algorithm

implemented

(seconds)

% reduction in

encoding time of

the sequence **

1. Akiyo_qcif 1.497 0.390 73.94

2. Highway_qcif 1.934 0.390 79.83

3. Coastguard_qcif 2.699 0.390 85.56

4. Bridge-close 2.075 0.359 82.70

46

5. News_qcif 1.732 0.374 78.41

6. Miss-america_qcif 1.747 0.452 74.13

7. Container_qcif 1.903 0.405 78.72

8. Carphone_qcif 1.872 0.405 78.36

9. Foreman_qcif 1.997 0.405 79.71

 (** % reduction in time =
�*345�36 7�8* 9:;<:==�< �*345>�36 7�8* ?)5?5@*> *345>*)��*345�36 7�8* 9:;<:==� X 100 %)

Figure 4.5 Bar chart to compare encoding time of AVS-M and the proposed encoder.

Table 4.3 shows the comparison of PSNR of luma component of the video sequences, when encoded by

AVS-M and the proposed encoder. Unexpected drop in PSNR for carphone_qcif and foreman_qcif

sequences is observed.

0

0.5

1

1.5

2

2.5

3

A
k

iy
o

_
q

ci
f

H
ig

h
w

a
y

_
q

ci
f

C
o

a
st

g
u

a
rd

_
q

ci
f

B
ri

d
g

e
-c

lo
se

N
e

w
s_

q
ci

f

M
is

s-
a

m
e

ri
ca

_
q

ci
f

C
o

n
ta

in
e

r_
q

ci
f

C
a

rp
h

o
n

e
_

q
ci

f

F
o

re
m

a
n

_
q

ci
f

1 2 3 4 5 6 7 8 9

Encoding time of the

sequence with original

AVS-M

Encoding time of the

sequence with machine

learning algorithm

implemented (seconds)

Table 4.2 - continued

47

Table 4.3 Comparison of the Y-component when encoded by AVS-M and the proposed encoder.

Sequence number Sequence PSNR of the video

sequence encoded

with AVS-M

(Y-component in

dB)

PSNR of the video

sequence encoded

with AVS-M, with

machine learning

algorithm (Y-

component in dB)

% *** reduction in

PSNR of Y-

component while

encoding with

proposed encoder

1. Akiyo_qcif 37.316987 37.176920 0.375

2. Highway_qcif 37.622730 37.116283 1.34

3. Coastguard_qcif 34.206012 33.834510 1.08

4. Bridge-close 34.361937 33.416094 2.70

5. News_qcif 35.964311 35.575041 1.08

6. Miss-america_qcif 39.417091 38.895065 1.32

7. Container_qcif 35.798379 35.076394 2.01

8. Carphone_qcif 36.517526 34.486256 5.56

9. Foreman_qcif 35.977242 34.749983 3.41

(*** % reduction in PSNR(Y) =
�A;BC�D,9:;_:==��< �A;BC�D,A)5?5@*> *345>*)���A;BC�D,9:;_:==�� X 100 %)

Figure 4.6 represents the Y-component of the video sequences in both encoder and compares them.

48

Figure 4.6 Bar chart to compare PSNR of luma component when encoded by AVS-M and the proposed
encoder

Table 4.4 Comparison of the U-component when encoded by AVS-M and proposed the encoder.

Sequence number Sequence PSNR of the video

sequence encoded

with AVS-M

(U-component in

dB)

PSNR of the video

sequence encoded

with AVS-M, with

machine learning

algorithm (U-

component in dB)

%**** reduction in

PSNR of U-

component while

encoding with

proposed encoder

1. Akiyo_qcif 39.285791 39.180394 0.268

2. Highway_qcif 37.678196 37.656085 0.059

3. Coastguard_qcif 43.270733 43.169228 0.023

4. Bridge-close 36.929451 36.741130 0.050

5. News_qcif 38.555165 38.355257 0.052

6. Miss-america_qcif 38.947323 38.895372 0.013

0
5

10
15
20
25
30
35
40
45

A
k

iy
o

_
q

ci
f

H
ig

h
w

a
y

_
q

ci
f

C
o

a
st

g
u

a
rd

_
q

ci
f

B
ri

d
g

e
-c

lo
se

N
e

w
s_

q
ci

f

M
is

s-
a

m
e

ri
ca

_
q

ci
f

C
o

n
ta

in
e

r_
q

ci
f

C
a

rp
h

o
n

e
_

q
ci

f

F
o

re
m

a
n

_
q

ci
f

1 2 3 4 5 6 7 8 9

PSNR of the video

sequence encoded with

AVS-M

PSNR of the video

sequence encoded with

AVS-M, with machine

learning algorithm (Y-

component in dB)

49

7. Container_qcif 39.586359 39.325356 0.065

8. Carphone_qcif 39.951664 39.775975 0.044

9. Foreman_qcif 40.318186 40.114908 0.050

(**** % reduction in PSNR (U) =
�A;BC�F,9:;_:==��< �A;BC�F,A)5?5@*> *345>*)���A;BC�F,9:;_:==�� X 100 %)

Table 4.4 compares the U component of the video sequences when encoded with AVS-M and with

proposed encoder.

Figure 4.7 Bar chart to compare PSNR of U component when encoded by AVS-M and the proposed
encoder.

Table-4.5 compares the PSNR of V component of video sequence when encoded with AVS-M and

encoded with proposed encoder.

0
5

10
15
20
25
30
35
40
45
50

A
k

iy
o

_
q

ci
f

H
ig

h
w

a
y

_
q

ci
f

C
o

a
st

g
u

a
rd

_
q

ci
f

B
ri

d
g

e
-c

lo
se

N
e

w
s_

q
ci

f

M
is

s-
a

m
e

ri
ca

_
q

ci
f

C
o

n
ta

in
e

r_
q

ci
f

C
a

rp
h

o
n

e
_

q
ci

f

F
o

re
m

a
n

_
q

ci
f

1 2 3 4 5 6 7 8 9

PSNR of the video

sequence encoded with

AVS-M

PSNR of the video

sequence encoded with

AVS-M, with machine

learning algorithm (U-

component in dB)

Table 4.4 - continued

50

Table 4.5 Comparison of the V-component when encoded by AVS-M and the proposed encoder.

Sequence number Sequence PSNR of the video

sequence encoded

with AVS-M

(V-component in

dB)

PSNR of the video

sequence encoded

with AVS-M, with

machine learning

algorithm (V-

component in dB)

%***** reduction in

PSNR of V-

component while

encoding with

proposed encoder

1. Akiyo_qcif 40.506783 40.452600 0.013

2. Highway_qcif 38.493726 38.502246 -0.002

3. Coastguard_qcif 44.820145 44.577757 0.054

4. Bridge-close 37.376204 37.257109 0.031

5. News_qcif 39.619799 39.583642 0.009

6. Miss-america_qcif 38.929404 38.647452 0.072

7. Container_qcif 39.617169 39.488338 0.033

8. Carphone_qcif 40.275814 40.190305 0.021

9. Foreman_qcif 40.925833 40.786655 0.034

(***** % reduction in PSNR (V) =
�A;BC�:,9:;_:==��< �A;BC�:,A)5?5@*> *345>*)���A;BC�:,9:;_:==�� X 100 %)

Figure 4.8 shows the bar-chart to compare the PSNR of V-component of video sequence, encoded with

AVS-M and encoded with proposed encoder. The study observes that there is almost no loss in PSNR in

V component. There was unexpected increase in PSNR of V-component for highway_qcif.

51

Figure 4.8 Bar chart to compare PSNR of V component when encoded by AVS-M and the proposed
encoder.

Table 4.6 Comparison of YUV-component when encoded by AVS-M and the proposed encoder.

Sequence number Sequence PSNR of the video

sequence encoded

with AVS-M

(YUV-component

in dB)

PSNR of the video

sequence encoded

with AVS-M, with

machine learning

algorithm (YUV-

component in dB)

% reduction in

PSNR of YUV-

component while

encoding with

proposed encoder

1. Akiyo_qcif 38.006087 37.878926 0.033

2. Highway_qcif 37.732928 37.390016 0.090

3. Coastguard_qcif 35.741460 35.380718 1.009

4. Bridge-close 35.074161 34.300780 2.204

0

5

10

15

20

25

30

35

40

45

50

A
k

iy
o

_
q

ci
f

H
ig

h
w

a
y

_
q

ci
f

C
o

a
st

g
u

a
rd

_
q

ci
f

B
ri

d
g

e
-c

lo
se

N
e

w
s_

q
ci

f

M
is

s-
a

m
e

ri
ca

_
q

ci
f

C
o

n
ta

in
e

r_
q

ci
f

C
a

rp
h

o
n

e
_

q
ci

f

F
o

re
m

a
n

_
q

ci
f

1 2 3 4 5 6 7 8 9

PSNR of the video

sequence encoded with

AVS-M

PSNR of the video

sequence encoded with

AVS-M, with machine

learning algorithm (V-

component in dB)

52

5. News_qcif 36.766114 36.429744 0.091

6. Miss-america_qcif 39.244104 38.850075 1.004

7. Container_qcif 36.732660 36.100675 1.720

8. Carphone_qcif 37.412563 35.663827 4.742

9. Foreman_qcif 37.044786 35.856083 3.208

(***** % reduction in PSNR (YUV) =
�A;BC�DF:,9:;_:==��< �A;BC�DF:,A)5?5@*> *345>*)���A;BC�DF:,9:;_:==�� X 100 %)

Figure 4.9 Bar chart to compare PSNR of YUV component when encoded by AVS-M and the proposed
encoder.

PSNR (YUV) is calculated from PSNR(Y), PSNR (U) and PSNR (V) by equations 4.1 through 4.4. [8]

tmpy = (4.0 / pow(10, PSNR(Y) / 10)) (4.1)

 tmpu = (1.0 / pow(10, PSNR(U) / 10)) (4.2)

 tmpv = (1.0 / pow(10, PSNR(V)/ 10)) (4.3)

 PSNR(YUV) = (10 * log10(6 / (tmpy + tmpu + tmpv))) (4.4)

0
5

10
15
20
25
30
35
40
45

A
k

iy
o

_
q

ci
f

H
ig

h
w

a
y

_
q

ci
f

C
o

a
st

g
u

a
rd

_
q

ci
f

B
ri

d
g

e
-c

lo
se

N
e

w
s_

q
ci

f

M
is

s-
a

m
e

ri
ca

_
q

ci
f

C
o

n
ta

in
e

r_
q

ci
f

C
a

rp
h

o
n

e
_

q
ci

f

F
o

re
m

a
n

_
q

ci
f

1 2 3 4 5 6 7 8 9

PSNR of the video

sequence encoded with

AVS-M

PSNR of the video

sequence encoded with

AVS-M, with machine

learning algorithm (YUV-

component in dB)

Table 4.6 - continued

53

Table 4.7 Comparison of number of bits used by AVS-M and the proposed encoder.

Sequence number Sequence No. of bits used to

encode the

sequence

encoding with

AVS-M

No. of bits used to

encode the

sequence

encoding with the

proposed encoder.

%****** increase in

bits while encoding

with proposed

encoder

1. Akiyo_qcif 27283 26867 -1.524

2. Highway_qcif 27346 27098 -0.090

3. Coastguard_qcif 55790 54702 -1.950

4. Bridge-close 49424 44405 -10.154

5. News_qcif 42013 41877 -0.324

6. Miss-america_qcif 20689 20385 -1.469

7. Container_qcif 37725 36061 -4.410

8. Carphone_qcif 47101 45925 -2.496

9. Foreman_qcif 47029 46557 -1.003

(****** % reduction in bits =
�35.5(H�7@�9:;<I��< �35.5(H�7@� A)5?5@*> *345>*)���35.5(H�7@�9:;_:==�� X 100 %)

54

Figure 4.10 Bar chart to compare number of bits used by AVS-M and the proposed encoder.

Table 4.8 shows the performance of proposed encoder for 100 frames. Even though considerable loss in

PSNR(Y) is observed, there is almost the same saving in encoding time. One reason behind the

significant loss in %dB in PSNR (Y) may be that the tree that is trained for 4 frames only and we are

testing it on 100 frames.

Table 4.8 Comparison of encoding performances by AVS-M and the proposed encoder

Sequence Akiyo_qcif Container_qcif Bridge-

close_qcif

Miss-

america_qcif

Foreman_qcif

PSNR(Y) dB 38.876830 36.852617 35.705636 41.028109 37.394567

PSNR(Y’) dB 36.958418 33.763365 33.269825 38.091754 35.005621

%decrease in

PSNR

4.92 7.95 6.82 7.15 6.38

PSNR(U) dB 40.388664 40.580305 37.145837 39.639008 41.00515186

PSNR(U’) dB 40.167291 40.127251 36.935639 39.508902 40.930060

0

10000

20000

30000

40000

50000

60000

A
k

iy
o

_
q

ci
f

H
ig

h
w

a
y

_
q

ci
f

C
o

a
st

g
u

a
rd

_
q

ci
f

B
ri

d
g

e
-c

lo
se

N
e

w
s_

q
ci

f

M
is

s-
a

m
e

ri
ca

_
q

ci
f

C
o

n
ta

in
e

r_
q

ci
f

C
a

rp
h

o
n

e
_

q
ci

f

F
o

re
m

a
n

_
q

ci
f

1 2 3 4 5 6 7 8 9

No. of bits used to encode

the sequence encoding

with AVS-M

No. of bits used to encode

the sequence encoding

with the proposed

encoder.

55

%decrease in

PSNR

0.05 1.11 0.056 0.032 0.018

PSNR(V) dB 41.280113 40.484948 37.877927 40.017777 42.023883

PSNRV’) dB 41.207557 40.255924 37.772218 39.779168 41.934222

%decrease in

PSNR

0.02 0.056 0.027 0.059 0.021

PSNR(YUV)

dB

39.430119 37.769947 36.222158 40.586585 38.380581

PSNR(YUV’)

dB

37.854104 35.0472241 34.251494 38.481546 36.272297

%decrease in

PSNR

3.99 7.2 5.44 5.18 5.49

No. of bits

used(B)

204723 252364 549384 230396 766770

No. of bits

used(B’)

209955 253908 398959 227076 841282

% saving in

bits

2.5 0.06 -27.38 -1.44 9.71

Encoding

time(t) (t)

49.873 66.143 65.692 54.615 72.634

Encoding time

(t’)

10.186 14.352 11.730 14.071 13.915

%decrease in t 79.57 78.30 82.14 74.23 80.84

 (Y, U, V, YUV, B, t components of sequences when encoder with AVS-M and Y’, U’, V’, YUV’, B’, t’ are
the components of video sequences when encoded with the proposed encoder)

Table 4.8 - continued

56

4.4 Conclusions and Future work

By observing quality matrices from Table 4.2 through Table 4.8, it is concluded that a highly time efficient

AVSM codec can be obtained by implementing machine learning algorithm C4.5 in place of mode-

decision block of AVS-M. That has resulted in, an average 75% reduction in the encoding time of the

AVS-M, also saving the number of bits required to encode the sequence with negligible loss of quality in

terms of PSNR (Y, U, V, YUV components).

This thesis considered a tree with moderate accuracy in predicting the block mode decision, to be

implemented in the encoder, so that a unique tree can be applied for all the sequences to be tested. Two

sequences carphone_qcif and foreman_qcif show a loss in PSNR value for Y component which is a bit

more than expected. Intense study in video data statistics and identifying the key attributes, and also

preprocessing these attributes before getting the tree may help improving the tree efficiency. There are

large numbers of encoding modes for a macroblock, but only inter-predicted macroblock and that too

only macroblock modes ranging from 16x16 to 8x8 are considered, leaving 8x8 to 4x4 and skip mode

decision in its original decision making process, to minimize the overfitting problem that would occur in

trees leading to more decision errors. So intense study can be under taken in the field of statistics and

pattern recognition to improve the decision tree, and also for embodying all decision modes in terms of if-

else statements. This effort can decrease the encoding time exponentially without affecting the video

quality too much.

57

APPENDIX A

 SNAPSHOTS OF THE VIDEO SEQUENCES USED

58

Sequence 1: akiyo_qcif. Sequence 2: bridge-close_qcif.

Sequence 3: carphone_qcif Sequence 4: coastguard_qcif

Sequence 5: container_qcif Sequence 6: foreman_qcif

59

Sequence 7: highway_qcif Sequence 8: miss-america_qcif

Sequence 9: news_qcif.

60

APPENDIX B

ATTRIBUTES EXTRACTED FROM THE VIDEO FRAMES

61

@attribute mean_4x4[0] numeric

@attribute mean_4x4[1] numeric

@attribute mean_4x4[2] numeric

@attribute mean_4x4[3] numeric

@attribute mean_4x4[4] numeric

@attribute mean_4x4[5] numeric

@attribute mean_4x4[6] numeric

@attribute mean_4x4[7] numeric

@attribute mean_4x4[8] numeric

@attribute mean_4x4[9] numeric

@attribute mean_4x4[10] numeric

@attribute mean_4x4[11] numeric

@attribute mean_4x4[12] numeric

@attribute mean_4x4[13] numeric

@attribute mean_4x4[14] numeric

@attribute mean_4x4[15] numeric

@attribute var_4x4[0] numeric

@attribute var_4x4[1] numeric

@attribute var_4x4[2] numeric

@attribute var_4x4[3] numeric

@attribute var_4x4[4] numeric

@attribute var_4x4[5] numeric

@attribute var_4x4[6] numeric

@attribute var_4x4[7] numeric

@attribute var_4x4[8] numeric

@attribute var_4x4[9] numeric

@attribute var_4x4[10] numeric

62

@attribute var_4x4[11] numeric

@attribute var_4x4[12] numeric

@attribute var_4x4[13] numeric

@attribute var_4x4[14] numeric

@attribute var_4x4[15] numeric

@attribute mean_4x8[0] numeric

@attribute mean_4x8[1] numeric

@attribute mean_4x8[2] numeric

@attribute mean_4x8[3] numeric

@attribute mean_4x8[4] numeric

@attribute mean_4x8[5] numeric

@attribute mean_4x8[6] numeric

@attribute mean_4x8[7] numeric

@attribute mean_8x4[0] numeric

@attribute mean_8x4[1] numeric

@attribute mean_8x4[2] numeric

@attribute mean_8x4[3] numeric

@attribute mean_8x4[4] numeric

@attribute mean_8x4[5] numeric

@attribute mean_8x4[6] numeric

@attribute mean_8x4[7] numeric

@attribute var_4x8[0] numeric

@attribute var_4x8[1] numeric

@attribute var_4x8[2] numeric

@attribute var_4x8[3] numeric

@attribute var_4x8[4] numeric

@attribute var_4x8[5] numeric

63

@attribute var_4x8[6] numeric

@attribute var_4x8[7] numeric

@attribute var_8x4[0] numeric

@attribute var_8x4[1] numeric

@attribute var_8x4[2] numeric

@attribute var_8x4[3] numeric

@attribute var_8x4[4] numeric

@attribute var_8x4[5] numeric

@attribute var_8x4[6] numeric

@attribute var_8x4[7] numeric

@attribute mean_8x8[0] numeric

@attribute mean_8x8[1] numeric

@attribute mean_8x8[2] numeric

@attribute mean_8x8[3] numeric

@attribute var_8x8[0] numeric

@attribute var_8x8[1] numeric

@attribute var_8x8[2] numeric

@attribute var_8x8[3] numeric

@attribute mean_8x16[0] numeric

@attribute mean_8x16[1] numeric

@attribute mean_16x8[0] numeric

@attribute mean_16x8[1] numeric

@attribute var_8x16[0] numeric

@attribute var_8x16[1] numeric

@attribute var_16x8[0] numeric

@attribute var_16x8[1] numeric

@attribute mean_16x16 numeric

64

@attribute mean_var_4x4 numeric

@attribute var_mean_4x4 numeric

@attribute mean_var_4x8 numeric

@attribute var_mean_4x8 numeric

@attribute mean_var_8x4 numeric

@attribute var_mean_8x4 numeric

@attribute mean_var_8x8 numeric

@attribute var_mean_8x8 numeric

@attribute mean_var_8x16 numeric

@attribute var_mean_8x16 numeric

@attribute mean_var_16x8 numeric

@attribute var_mean_16x8 numeric

@attribute edge_4[0] numeric

@attribute edge_4[1] numeric

@attribute edge_4[2] numeric

@attribute edge_4[3] numeric

@attribute edge_4[4] numeric

@attribute edge_4[5] numeric

@attribute edge_4[6] numeric

@attribute edge_4[7] numeric

@attribute edge_4[8] numeric

@attribute edge_4[9] numeric

@attribute edge_4[10] numeric

@attribute edge_4[11] numeric

@attribute edge_4[12] numeric

@attribute edge_4[13] numeric

@attribute edge_4[14] numeric

65

@attribute edge_4[15] numeric

@attribute edge_4[16] numeric

@attribute edge_4[17] numeric

@attribute edge_4[18] numeric

@attribute edge_4[19] numeric

@attribute edge_4[20] numeric

@attribute edge_4[21] numeric

@attribute edge_4[22] numeric

@attribute edge_4[23] numeric

@attribute edge_48[0] numeric

@attribute edge_48[1] numeric

@attribute edge_48[2] numeric

@attribute edge_48[3] numeric

@attribute edge_48[4] numeric

@attribute edge_48[5] numeric

@attribute edge_48[6] numeric

@attribute edge_48[7] numeric

@attribute edge_48[8] numeric

@attribute edge_48[9] numeric

@attribute edge_84[0] numeric

@attribute edge_84[1] numeric

@attribute edge_84[2] numeric

@attribute edge_84[3] numeric

@attribute edge_84[4] numeric

@attribute edge_84[5] numeric

@attribute edge_84[6] numeric

@attribute edge_84[7] numeric

66

@attribute edge_84[8] numeric

@attribute edge_84[9] numeric

@attribute edge_88[0] numeric

@attribute edge_88[1] numeric

@attribute edge_88[2] numeric

@attribute edge_88[3] numeric

@attribute edge_16[0] numeric

@attribute edge_16[1] numeric

@attribute lmean_4_4[0] numeric

@attribute lmean_4_4[1] numeric

@attribute lmean_4_4[2] numeric

@attribute lmean_4_4[3] numeric

@attribute lmean_4_4[4] numeric

@attribute lmean_4_4[5] numeric

@attribute lmean_4_4[6] numeric

@attribute lmean_4_4[7] numeric

@attribute lmean_4_4[8] numeric

@attribute lmean_4_4[9] numeric

@attribute lmean_4_4[10] numeric

@attribute lmean_4_4[11] numeric

@attribute lmean_4_4[12] numeric

@attribute lmean_4_4[13] numeric

@attribute lmean_4_4[14] numeric

@attribute lmean_4_4[15] numeric

@attribute lvar_4_4[0] numeric

@attribute lvar_4_4[1] numeric

@attribute lvar_4_4[2] numeric

67

@attribute lvar_4_4[3] numeric

@attribute lvar_4_4[4] numeric

@attribute lvar_4_4[5] numeric

@attribute lvar_4_4[6] numeric

@attribute lvar_4_4[7] numeric

@attribute lvar_4_4[8] numeric

@attribute lvar_4_4[9] numeric

@attribute lvar_4_4[10] numeric

@attribute lvar_4_4[11] numeric

@attribute lvar_4_4[12] numeric

@attribute lvar_4_4[13] numeric

@attribute lvar_4_4[14] numeric

@attribute lvar_4_4[15] numeric

@attribute lmean_4_8[0] numeric

@attribute lmean_4_8[1] numeric

@attribute lmean_4_8[2] numeric

@attribute lmean_4_8[3] numeric

@attribute lmean_4_8[4] numeric

@attribute lmean_4_8[5] numeric

@attribute lmean_4_8[6] numeric

@attribute lmean_4_8[7] numeric

@attribute lmean_8_4[0] numeric

@attribute lmean_8_4[1] numeric

@attribute lmean_8_4[2] numeric

@attribute lmean_8_4[3] numeric

@attribute lmean_8_4[4] numeric

@attribute lmean_8_4[5] numeric

68

@attribute lmean_8_4[6] numeric

@attribute lmean_8_4[7] numeric

@attribute lvar_4_8[0] numeric

@attribute lvar_4_8[1] numeric

@attribute lvar_4_8[2] numeric

@attribute lvar_4_8[3] numeric

@attribute lvar_4_8[4] numeric

@attribute lvar_4_8[5] numeric

@attribute lvar_4_8[6] numeric

@attribute lvar_4_8[7] numeric

@attribute lvar_8_4[0] numeric

@attribute lvar_8_4[1] numeric

@attribute lvar_8_4[2] numeric

@attribute lvar_8_4[3] numeric

@attribute lvar_8_4[4] numeric

@attribute lvar_8_4[5] numeric

@attribute lvar_8_4[6] numeric

@attribute lvar_8_4[7] numeric

@attribute lmean_8_8[0] numeric

@attribute lmean_8_8[1] numeric

@attribute lmean_8_8[2] numeric

@attribute lmean_8_8[3] numeric

@attribute lvar_8_8[0] numeric

@attribute lvar_8_8[1] numeric

@attribute lvar_8_8[2] numeric

@attribute lvar_8_8[3] numeric

@attribute lmean_8_16[0] numeric

69

@attribute lmean_8_16[1] numeric

@attribute lmean_16_8[0] numeric

@attribute lmean_16_8[1] numeric

@attribute lvar_8_16[0] numeric

@attribute lvar_8_16[1] numeric

@attribute lvar_16_8[0] numeric

@attribute lvar_16_8[1] numeric

@attribute lmean_16_16 numeric

@attribute nx numeric

@attribute ny numeric

@attribute modes {0,1,2,3,4}

70

APPENDIX C

CONFIGURATION FILE- ENCODER.CFG

71

New Input File Format is as follows

<ParameterName> = <ParameterValue> # Comment

See configfile.h for a list of supported ParameterNames

Files

InputFile = "C:\E\research\test_sequences\akiyo_qcif.yuv" # Input sequeextern FILE *bits;ce,

YUV 4:2:0

FramesToBeEncoded = 60 # Number of frames to be coded

SourceWidth = 176 # Image width in Pels, must be multiple of 16

SourceHeight = 144 # Image height in Pels, must be multiple of 16

ReconFile = "test_rec.yuv"

OutputFile = "test.avs"

AttributeFile = "Attributes.dat"

Encoder Control

ProfileIDC = 16 # Profile IDC (16=Jiben)

LevelIDC = 16 # Level IDC (e.g. 10=Level 1.0, 12 = Level 1.1)

IntraPeriod = 0 # Period of I-Frames (0=only first)

QPFirstFrame = 40 # Quant. param for first frame (intra) (0-63)

QPRemainingFrame = 28 # Quant. param for remaining frames (0-63)

FrameSkip = 0 # Number of frames to be skipped in input (e.g 2 will code every third frame)

UseHadamard = 1 # Hadamard transform (0=not used, 1=used)

SearchRange = 16 # Max search range

NumberReferenceFrames = 2 # Number of previous frames used for inter motion search (1-5)

RDOptimization = 1 # rd-optimized mode decision (0:off, 1:on)

72

HalfPixelMVEnable = 0 # if half pixel MV is enabled (0: off, 1:on)

ConstrainedIntraPred = 0 # 0: No constrained; 1 constrained

High Level Syntax Set

SeqID

Fixed QP Stuff

FixedPictureQP = 0 # 0: QP is variable in picture 1: QP is constant in picture

FixedSliceQP = 0 # 0: QP is variable in Slice 1: QP is constant in Slice

SliceDeltaQP = 0 # slice delta qp set, must be in [-32:31]

MbDeltaQP = 0 #macroblock delta qp, must be in [-32:31]

EPMVFAST = 0 # Enhanced PMVFAST for Fast ME (0=disable, 1=enable)

#Have to Do before next Release

#InterSearch16x16 = 1 # Inter block search 16x16 (0=disable, 1=enable)

#InterSearch16x8 = 1 # Inter block search 16x8 (0=disable, 1=enable)

#InterSearch8x16 = 1 # Inter block search 8x16 (0=disable, 1=enable)

#InterSearch8x8 = 1 # Inter block search 8x8 (0=disable, 1=enable)

#InterSearch8x4 = 1 # Inter block search 8x4 (0=disable, 1=enable)

#InterSearch4x8 = 1 # Inter block search 4x8 (0=disable, 1=enable)

#InterSearch4x4 = 1 # Inter block search 4x4 (0=disable, 1=enable)

#FME

Loop filter parameter

LoopFilterDisable = 0 # Disable loop filter in slice header (0=Filter, 1=No Filter)

73

LoopFilterParameter = 1 # Configure loop filter parameter (0=parameter below ingored,

1=parameters sent)

SliceLFDisable = 0 # 0: Filter in Slice edge 1: No filter in slice edge

LoopFilterAlphaCIOffset = 0 # alpha_ci_offset, [-8:8]

LoopFilterCPOffset = -1 # cp_offset, [-16:16]

LoopFilerQPOffset = 1 # qp_offset, [-40:23]

##

#Slice

Slice_Enable = 1 # Must be enabled(0= no slice, 1= slice)

Slice_Parameter = 11 # (1,2,3....Total_Mb_nr in one frame: slice format indicate the MBs in one

slice)

##

#SEI

SEIEnable = 1 # 1: enable, 0 : disable

HRDEnable = 1 # 1: enable, 0 : disable

#Isolated Region

IREGEnable = 0 # 1 : enable, 0 : disable

IREGEvolutionRate = 11 # evolution rate of isolated region

LoopfilterMode = 1 # not used yet !

##

Hypothetical reference decoder (HRD)

##

NumberofLeakyBuckets = 8 # Number of Leaky Bucket values

74

LeakyBucketRateFile = "leakybucketrate.cfg" # File from which encoder derives rate values

LeakyBucketParamFile = "leakybucketparam.cfg" # File where encoder stores leakybucketparams

#Rate control

PictureRate = 30 # frame/s

RateControlEnable = 0 # 0 Disable, 1 Enable

Bitrate = 64000 # Bitrate(bps)

InitialQP = 0 # Initial Quantization Parameter for the first I frame

 # InitialQp depends on two values: Bits Per Picture,

 # and the GOP length

ChannelType = 0 # type of channel(1=time varying channel; 0=Constant channel)

75

REFERENCES

[1]http://ee.uta.edu/Dip/Courses/EE5359/Multimedia%20Processing%20project%20report%20final.pdf ;

course website UTA

[2]P. Carrillo, H. Kalva and T. Pin, “Low complexity H.264 video encoding", SPIE. vol.7443, Paper #

74430A, Aug. 2009

[3]Kusrini and S. Hartati, ”Implementation of C4.5 algorithm to evaluate the cancellation possibility of new

student applicants at STMIK AMIKOM YOGYKARTA”, Proceedings of the International Conference on

Electrical Engineering and Informatics Institute Teknologi Bandung, Indonesia June 17-19, 2007

[4]S. Saponara, et al, “Adaptive algorithm for fast motion estimation in H.264/MPEG-4 AVC”, Proc.

Eusipco2004, pp. 569 – 572, Wien, Sept. 2004

[5]Décisions tree basics : http://dms.irb.hr/tutorial/tut_dtrees.php

[6]Weka tool software :http://www.cs.waikato.ac.nz/ml/weka/

[7]X. Jing and L. P. Chua, “An efficient inter mode decision approach for H.264 video coding “, IEEE,

International Conference on Multimedia and Expo (ICME), pp. 1111-1114, July 2004.

[8]Download AVS-M software from:ftp://159.226.42.57/public/avs_doc/avs_software(password protected)

[9]Power-point slides by L. Yu, chair of AVS video:

http:// www-uta.edu/dip/Courses/EE5351/ISPACSAVS.pdf

 [10]L.Fan, “Mobile multimedia broadcasting standards”, ISBN: 978-0-387-78263-8, Springer US, 2009

[11]AVS working group official website, http://www.avs.org.cn

[12]Test sequences can be downloaded from the site http://trace.eas.asu.edu/yuv/index.html

[13]Y.Xiang et al, “Perceptual evaluation of AVS-M based on mobile platform”, Congress on image and

Signal Processing, 2008, vol. 2, pp.76 – 79, 27-30 May 2008.

[14]M.Liu and Z.Wei, “A fast mode decision algorithm for intra prediction in AVS-M video coding”, vol.1,

ICWAPR apos; 07, Issue, 2-4, pp.326 – 331, Nov. 2007.

76

[15]L.Yu et al, “Overview of AVS-Video: Tools, performance and complexity,” SPIE VCIP, vol. 5960, pp.

596021-1~ 596021-12, Beijing, China, July 2005.

[16]L. Yu, S. Chen, and J. Wang, “Overview of AVS-video coding standards” special issue on AVS,

SP:IC, vol. 24, p. 247-262, April 2009.

[17]Y. Shen, et al, “A simplified intra prediction method”, AVS Doc. AVS-M 1419, 2004.

[18]F. Yi, et al, “An improvement of intra prediction mode coding”, AVS Doc. AVS-M 1456, 2004.

[19]L. Xiong, “Improvement of chroma intra prediction”, AVS Doc. AVS-M1379, 2004

[20]X. Mao, et al, “Adaptive block size coding for AVS-X profile”. AVS Doc. AVS-M2372, 2008.

[21]R. Wang, et al, “Sub-pixel motion compensation interpolation filter in AVS”, 2004 IEEE International

Conference on Multimedia and Expo, pp. 1:93-96, 2004.

[22]F.Yi, et al, “Low-complexity tools in AVS Part 7”, J. Computer Science Technology, vol.21, pp. 345-

353, May, 2006

[23]W.Gao and T.Huang “AVS Standard -Status and Future Plan”, Workshop on Multimedia New

Technologies and Application, Shenzhen, China, Oct., 2007.

[24]W.Gao, et al, “AVS the Chinese next-generation video coding standard,” National Association of

Broadcasters, Las Vegas, 2004.

[25]Z.Ma, et al, “Intra Coding of AVS Part 7 Video Coding Standard”, J. Comput. Sci. Technol, vol.21,

Feb.2006.

[26]W.Hua, M.Cuiqin and Z.Lijuan, “A brief review of machine learning and its application”. International

conference on ICIECS, pp. 1-4, 2009.

 [27]] G.Holmes, A.Donkin and I.H.Witten, “WEKA: a machine learning workbench”, Proceedings of the

1994 second Australian and New Zealand Conference on Intelligent Information Systems, pp .357-

361,1994.

[28] S.Ruggieri, “Efficient C4.”, IEEE Trans. on Knowledge and Data engineering, Vol.14, pp. 438-444,

Aug.2002.

 [29] C.M. Higgins and R.M. Goodman, “Learning fuzzy rule-based neural networks for function

approximation”, International Joint Conference on Neural Networks, vol.1, pp.251-256, 1992.

77

[30] P.Hart, “The condensed nearest neighbor rule”, IEEE Trans. on Information theory, Vol. 14, pp. 515–

516, May 1968.

[31] G. Gates, “The reduced nearest neighbor rule”, IEEE Trans. on Information

Theory”, Vol. 18, pp. 431–433, May 1972.

[32] B. Dasarathy,”Nosing around the neighborhood: A new system structure and classification rule for

recognition in partially exposed environments”. IEEE Trans. Pattern Analysis and Machine Intelligence,

Vol. 2, pp. 67–71. Jan. 1980.

[33] T. Cover and P. Hart, “Nearest neighbor pattern classification”. IEEE Trans. Inform. Theory, IT-13(1),

pp. 21–27, Jan.,1967.

[34] C. Hoare. "Partition: Algorithm 63," "Quicksort: Algorithm 64," and "Find: Algorithm 65." Comm.

ACM 4(7), pp. 321-322, 1961.

[35] X. Wu et al, “top 10 algorithms in data mining” survey paper, Springer-Verlag London Limited 2007.

[36] D. W. Aha, D. Kibler and M.Albert, “Instance based learning algorithms”, Kluwer Academic

Publishers, Boston, pp. 37-66 (1991).

[37] L. Yu, S. Chen, J. Wang, “Overview of AVS-video coding standards”, Signal Processing: Image

Communication, vol. 24, pp. 247–262, May 2009.

[38] H. Abbas, R. Sarker and C. Newton. “Data mining: a heuristic approach”, idea group publishing,

2002.

[39] S.Bow, “Pattern recognition and image processing” signal processing and communications series,

2002.

[40] R.Kennedy et al, “ Solving data mining problems through pattern recognition”, the data warehousing

institute series , Prentice Hall ptr, 1997.

[41] O.Maimon and L.Rokach, “ The data mining and knowledge discovery handbook”, Springer, 2005.

[42] J.R.Quinlan, “Improved use of continuous attributes in C4.5”, J. Artificial intelligence research, vol. 4,

pp. 77-90, 1996.

[43] J.R.Quinlan,”C4.5: programmes for machine learning”, san mateo, calif.: Morgan Kaufmann, 1993.

78

[44] S.Dua and X.Du, “Data mining and machine learning in cyber security”, Boca Raton, FL CRC press,

2011.

[45] Information technology- advanced coding of audio and video part -7: mobile video

[46]S. Sridhar, “Multiplexing and demultiplexing of AVS China video with AAC Audio and maintaining lip

synchronization during playback”, M.S.Thesis, EE Dept. UTA, Dec. 2010.

79

BIOGRAPHICAL INFORMATION

Pragnesh Ramolia was born in Rajkot city of Gujarat state in India. He received his Bachelor of

engineering degree in Electronics and Communication from Veer narmad south Gujarat University,

Gujarat, India in May 2007. He started pursuing his master’s degree at The University of Texas at

Arlington from January 2009. He did his internship at 3S Network Inc. in summer 2010 and fall 2010 in RF

Field testing. He will be awarded Master of Science in electrical engineering in May 2011. His areas of

interest are multimedia processing, wireless communications and networking.

