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ABSTRACT

ALGEBRAIC SOLUTION TO THE PLANAR

RIGID BODY IMPACT PROBLEM

DREW MORGAN, M.S.

The University of Texas at Arlington, 2011

Supervising Professor: Alan Bowling

For systems of rigid bodies that undergo impacts, a series of closed-form equa-

tions are developed to solve for post-impact velocities which simulate a real-world

(energy-consistent) interaction. The analysis is based in the impulse domain, and

requires that the surface interaction be characterizable by Coulomb friction and an

energetic coefficient of restitution. No iteration, optimization, or numerical methods

are used.
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CHAPTER 1

INTRODUCTION

The field of classical mechanics is one of the oldest and most well-developed

in physics and engineering. The movement of masses under the influence of forces

is well-understood, and many methods are available for simulating the motions of

systems of masses. These methods provide tractable solutions and simulations for

many real-world systems. However, most of these methods require that a rigid-body

assumption be made: every point in a body is fixed with respect to every other

point. If the deformation of bodies must be taken into account, a whole field of study

becomes involved to characterize and quantify them.

The rigid-body assumption allows for efficient, tractable, versatile simulation

of objects in motion for many real-world systems. However, a common problem

occurs in these rigid-body systems: objects collide. When one rigid body hits another

rigid body, a shortcoming of the rigid-body assumption jumps into apparency: the

velocity of the impacting points must change instantaneously, or else their motion will

carry them into an intersecting state. A discontinuity in velocity requires an infinite

acceleration, which requires an infinite force to produce it.

Another way to look at the problem is this: bodies may be considered rigid

as long as the forces acting on them are sufficiently small as to not deform them

very much. Many real systems satisfy this approximation during almost every part

of their motion, but violate it wildly during very brief periods when two bodies are in

colliding contact. Impact forces are generated which are orders of magnitude higher

than any other forces experienced by the bodies during their motion.
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Thus rigid-body dynamics alone cannot explain impacts or collisions between

bodies in a system. All the phenomena that may be observed during collisions of

real objects (rebound, energy loss, acquisition of rotation, breaking, etc.) are due

to deformations near the impacting surfaces. Many methods have been proposed to

augment rigid-body dynamics, to produce these effects without requiring that bodies

be considered flexible throughout the simulation.

Generally, the rigid body impact problem is handled in one of two ways: using

a continuous method or a discontinuous method.[6] In continuous methods, the time-

varying impact forces are calculated along with the other forces and accelerations of

the rigid body system (based on some surface deformation model), and applied to the

impact point only during appropriate intervals in the rigid body dynamics integration.

In discontinuous methods, the impact event is considered to be very short, such that

the integration of all the contact forces may become a single impulse. This impulse

is applied at the instant of contact by pausing the rigid body dynamics integration,

calculating a velocity change, and restarting the integration with changed velocities.

Continuous methods, such as in [11] and [4], can present a number of problems.

Depending on the implementation, some problems can include induced chatter, un-

realistically large surface deformations, and slow calculation times. This work avoids

such problems by using a discontinuous method, most similar to Mirtich’s work in

[10], which utilizes a differential approach. [13] This means that the impact event,

while discontinuous in time, is treated as continuous in impulse: in an instant, im-

pulse is applied to the contacting point in a steadily increasing fashion beginning from

zero, allowing velocity change to be described differentially per unit impulse. Other

discontinuous methods, such as in [2], use optimization or iteration instead of a dif-

ferential approach, assuming nothing about the way in which impulses are applied.

Complementarity conditions are also often employed in algebraic methods. [9] [1]
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Although discontinuous, differential approaches serve as the most direct foun-

dation for this work, it diverges from them in that it substitutes an exact analytical

integration for others’ numerical integrations. The integration is thus performed in

the derivation, leaving the calculation of the algorithm as purely algebraic. This work

also differs from other discontinuous, algebraic approaches in that no optimization or

iteration is required, nor must a complementarity problem be solved. From quanti-

ties available in the rigid body equations of motion, and from a pre-impact velocity

state, one to three intermediate velocity states are calculated, from which the final,

post-impact velocity is produced.

The analysis of this work is based on impulses applied in a plane to a point of

contact during a collision, which cause instantaneous changes in velocity. The im-

pacting surfaces are modeled using an energetic coefficient of restitution and Coulomb

friction. The equations of motion for a rigid body system are simplified by integra-

tion through a short time of impact, during which the configuration of the system is

assumed to be constant. To supplement this simple collision equation, a novel expres-

sion is developed for the energy exchange that occurs during the impact, guaranteeing

the energy-consistency of the method.

Because this solution ties the governing equations so tightly into an algorithm,

it is most clear to derive them in the context of the algorithm. Chapter 2 covers

these derivations while explaining the significance and necessity of each equation.

The derivation is in the most general terms possible.

To supplement the general derivation of Chapter 2, Chapter 3 provides some

insight into what the actual numerical calculations look like for a specific mechanism

and a specific collision. It also covers some dilemmas that are not immediately ob-

vious, and some special cases that may occur when writing computer code for an

implementation of this method.
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The most obvious limitation of this method is the requirement that collision

impulses be constrained to lie in a plane. Chapter 4 explains more about why this

limitation exists. It also provides an incomplete derivation for full 3D impacts and

presents the algorithm that would be used to solve them.

Chapter 5 offers a brief conclusion, and suggestions for future work.



CHAPTER 2

ALGORITHM AND DERIVATION

2.1 Example Mechanism

A planar double pendulum system provides a simple context to explain this

method. The pendulum is composed of two equally-sized slender bars of length r

and mass m hanging from a fixed support, with pin joints forming the connections.

A fixed floor is placed such that it interferes with the full range of motion of the

lower bar, and the colliding surface interaction is assumed to be characterizable by a

coefficient of friction µ and an energetic coefficient of restitution e∗.

Figure 2.1. A planar double pendulum that interferes with the floor.

5



6

The equations of motion for the double-pendulum system in Figure 2.1 may be

represented with generalized coordinates q and and generalized speeds u = q̇ as: [7]

M(q)u̇ = b(q,u) + g(q) + J(q)T f (2.1)

For reference, this mechanism has

J =

 − sin(q1)− sin(q1 + q2) − sin(q1 + q2)

cos(q1) + cos(q1 + q2) cos(q1 + q2)

 r
M =

 cos(q2) +
5

3

cos(q2)

2
+

1

3
cos(q2)

2
+

1

3

1

3

mr2

2.2 Algorithm

2.2.1 Governing Equations

The analysis of this work is based on a fundamental idea that the velocity

change occurring during a collision happens in a continuous, piecewise-linear fashion

with respect to a scalar impulse measurement. Within the instant of the collision,

impulse is added monotonically from zero to some final value, and the generalized

speeds change linearly in response to added impulse. In order to show this, a collision

governing equation is derived.

A short collision duration is assumed, such that configuration of the system is

approximately constant during the impact event. The generalized speeds are bounded

between pre-impact and post-impact values. With these provisions, integrating (2.1)

through a very short change in time ∆t destroys the influence of the terms that

depend only on q and u. As ∆t goes to zero, all that remain are a large contact force
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and its associated large acceleration, which form an instantaneous impulse and its

associated instantaneous velocity change.∫
∆t

M(q)u̇ dt =

∫
∆t

b(q,u) dt+

∫
∆t

g(q) dt+

∫
∆t

J(q)T f dt (2.2)

M∆u = 0 + 0 + JTp (2.3)

The Jacobian matrix J transforms between generalized coordinates and the

world coordinates of the impact point. However, the impact impulse p is more intu-

itive when expressed in a normal-tangential frame at the impact surface. Rearranging:

∆u = M−1JTp (2.4)

The combined constants M−1JT are called L, the collision matrix.

∆u = Lp (2.5)

In the general 3D case, p will be a vector with three components: one normal

to the impact surface and two tangential to it. If the motion of the impact point is

constrained to lie in a plane that contains the surface normal, whether by virtue of

the whole mechanism being planar, or by means of other constraints, then the scalar

tangential force during the collision is, according to dynamic Coulomb friction,

ft = ±µfn (2.6)

It may be shown [8] [3] that, after the integration into impulse space, this relation

still holds:

pt = ±µpn (2.7)

The collision matrix may be split into its two columns, which multiply the

normal and tangential forces separately. In the case of a 3D system where the impact
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velocity is constrained to be planar, L will have three columns, but the impact point

coordinate system may be chosen such that it is aligned in the plane of possible

velocities. In this way, one of the tangential columns of L will multiply with the

excluded impulse component, and will therefore not appear in the expansion of (2.5):

∆u = Lnpn + Ltpt (2.8)

Substituting from (2.7),

∆u = Lnpn + Lt (±µpn)

∆u = (Ln ± µLt) pn (2.9)

Thus the exact velocity change caused by the instantaneous collision may be

represented as a function of the magnitude of the normal impulse. All velocity change

will occur along a line determined by a vector L = Ln ± µLt, away from the initial

velocity state u0.

The two components of L are shown In Figure 2.2, indicating the direction in

which the velocity will change from the initial condition. This line will somewhere

intersect a hyperplane where the normal impact velocity vn is zero. It may also

intersect the hyperplane where the tangential impact velocity vt is zero.

The two hyperplane intersections in Figure 2.3 may be easily found algebraically

once the collision line is known. The order in which these two points occur determines

the order of the next calculations.

2.2.2 Friction Direction

The sign in (2.9) is determined by the direction of the frictional forces. The

governing principle here is also from the continuous understanding of collisions: at

every point during a collision, the friction force must be opposed to the tangential
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Figure 2.2. Initial collision direction.

velocity. Thus the sign in (2.9) should be positive if the tangential contact velocity is

negative, and vice versa. (The vector shown in Figure 2.2 is taken with the positive

sign.)

The case when the tangential velocity is exactly zero yields no direction infor-

mation for the friction forces. This may correspond to a simple transition from one

sign to the other, or to a sticking condition. The transition condition may be passed

over while switching between the positive and negative signs, because no finite veloc-

ity change occurs at this single velocity state. The sticking condition requires special

treatment.

In a dynamic friction model, the friction force is fully defined by the normal

force, the coefficient of dynamic friction, and the slip velocity direction. In the static
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Figure 2.3. Ordering the normal and tangential pauses.

friction model, however, the equality becomes an inequality with some unknown pro-

portion m between the magnitudes of the normal force and the friction force. The

static versions of (2.6) and (2.7) are thus

ft = mfn : m ≤ µ (2.10)

pt = mpn : m ≤ µ (2.11)

In this analysis, m may be determined by noting that, for sticking to occur, any

∆u must again yield a tangential velocity of zero. The set of all such points in u is

the hyperplane Jau = 0, where Ja denotes the first row of J. So m is the value for

which Ln + mLt lies within this hyperplane. It may be thought of as the required

portion of the maximum available friction force to hold the sticking condition.
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Thus (2.9) may be expanded as

∆u = L pn : L =


(Ln + µLt) if Jau < 0

(Ln − µLt) if Jau > 0

(Ln +mLt) if Jau = 0

(2.12)

Because of the linear nature of (2.12), any evolution of the generalized speeds

will be a piecewise straight line that crosses the hyperplane Jau = 0 at most one

time, bending at the intersection. In the case of sticking, the velocity evolution stays

within the hyperplane after touching it.

Figure 2.4. Accounting for a change in friction force direction.

The bend in the piecewise-linear trajectory at the intersection with vt = 0

occurs when the sign changes in (2.12). As seen in Figure 2.4, the frictional component
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of the collision vector changes sign, causing L to point in a new direction. In this

case, the originally calculated location of the vn = 0 intersection is not valid. It

must be found again using the new collision direction, as shown in Figure 2.5. This

repeated-calculation will occur at most once during any collision solution.

Figure 2.5. Recalculating the intersection with vn = 0.

2.2.3 Energetic Stopping Criterion

The vn = 0 intersection represents the point at which the normal velocity

changes from negative (toward the impacting surface) to positive (away from the

impacting surface). This point is important because of the energetic coefficient of

restitution (COR), a convenient and meaningful way to determine the magnitude of

pn that simulates a real interaction between two surfaces. [12] The energetic COR may
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be thought of as a measurement of how much energy is lost when a pair of surfaces

compress into each other and then rebound. Energy is stored during the compression

phase, and some of that energy is released during the expansion phase. The energetic

COR used here is the ratio of the work done on the compressing surfaces to the work

done by the expanding surfaces.

To formulate a stopping criterion based on the COR, the energy exchange of

the collision must be divided into two parts: that energy which is stored briefly in

compression of the impacting surfaces, and that energy which is turned into heat

by sliding friction, from whence there is no restitution to the kinetic energy of the

system.

The instantaneous kinetic energy of the system is given by

K ≡ 1

2
uTMu (2.13)

Because the configuration q does not change during the instantaneous collision, no

gravitational or other position-based potential energy is lost or gained by the rigid

bodies. Instead, the only energy exchange is between kinetic energy in the system and

potential energy in the (infinitesimally) compressed surfaces. The change in kinetic

energy from the initial value Ki up to some point during the collision is given by

E ≡ 1

2
uTMu−Ki (2.14)

and the derivative of E by pn is

dE

dpn
= uTM

du

dpn
(2.15)

The impulse derivative of (2.9),

du

dpn
= Ln ± µLt (2.16)



14

may be substituted into (2.15) as

dE

dpn
= uTM (Ln ± µLt) (2.17)

This allows splitting dE/dpn into two parts by splitting du/dpn into its two

parts: a ”rate” of work due to the normal impulse and a ”rate” of work due to the

frictional impulse:

dE

dpn
=

dnE

dpn
+

dfE

dpn
dnE

dpn
≡uTMLn (2.18)

dfE

dpn
≡± µuTMLt (2.19)

The normal impulse portion, governed by the energetic COR may be positive or

negative, while the frictional portion must always extract kinetic energy from the

system without yielding it back. E is defined as an energy exchange or work rate in

this way because it can represent either a loss of kinetic energy in the rigid bodies,

or a gain in potential energy (compressive or thermal) of the contacting surfaces.

Into each of these parts of E, the instantaneous generalized speeds may be

substituted from (2.9). The normal part, (2.18), becomes

dnE

dpn
= [uo + (Ln ± µLt) pn]T MLn (2.20)

This partial work rate may then be integrated through pn to break the total exchanged

energy E into two distinct parts: a normal part En that will increase and then decrease

in magnitude during the collision, and a frictional part Ef that will always increase

in magnitude.

En =

∫
uT
o MLn dpn +

∫
(Ln ± µLt)

T MLn pn dpn

En =uT
o ML2pn +

1

2
(Ln ± µLt)

T MLnp
2
n + Eo

n (2.21)
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The constant of integration Eo
n allows this equation to be applied onward from any

point during the collision where the value of En is known, such as the point where the

friction direction (and thus the equation for En) changes. It is initially zero, because

the collision has not changed the kinetic energy of the system before any impulse is

applied.

The frictional portion may also be expressed similarly, but is not directly rel-

evant to this work. Ef and En always sum up to a total of E = 1
2
uTMu −Ki, the

change in kinetic energy of the system due to some intermediate amount of impulse

applied to the system during the collision.

Figure 2.6. Energy exchange during a collision with the separated normal and
frictional components.

This splitting of energy allows the energetic COR to be appropriately applied

only to the compressive energy exchange. Figure 2.6 shows how the kinetic energy

of the mechanism changes during a collision, with the portion En that goes into

compressing the surfaces, and Ef that goes into heat via sliding friction. The point

at which compression ends and expansion begins is also shown; it is the extreme point

of the En curve, where the COR should be applied.
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Figure 2.7. Calculating the final energy parameter and velocity state.

In the example collision of Figure 2.7, the dividing point between compression

and expansion occurs after the friction direction has changed. At this point, a value

for En can be calculated based on the total amount of pn that was required to get

there. Then a value of En may be obtained for which the collision should end: that

is to say, the point at which the impacting surfaces have released all of the stored

compressive energy that they will release. This corresponds to the amount of impulse

which will separate the colliding surfaces, if they indeed follow the characterization

of the energetic COR.
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Figure 2.8. A summary of the algebraic algorithm.

There are 3 possible orders in which calculations might be performed,
depending on initial configuration and velocity state.

2.3 Algorithm Summary

In this analysis, there are four events of interest during a planar collision. These

events correspond to four different generalized speeds along a velocity trajectory that,

while discontinuous in time, is continuous in impulse. They are the point where the

collision begins, the point where the normal velocity of the collision point is zero, the

point where the tangential velocity of the collision point is zero, and the all-important

point at which the collision ends.

The middle two points may be solved for algebraically based on the initial

velocity and the governing collision equation described in Sec. 2. The tangential

”pause” is the location where the sign of the friction force changes; the normal pause

is where the compression phase ends and the expansion phase begins. Depending on
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which point occurs first (ordered in the impulsive sense), the friction direction may

change during the compression phase or the expansion phase.

First, from (2.12), an initial collision direction vector may be found based on

the pre-impact velocity and the parameters of the mechanism. This vector defines a

line on which all future velocity states during the collision must lie. It is a summation

of two vectors: one from normal impulses, and one from tangential impulses.

Next, the two ”pause” points may be found at the intersection of the collision

line with the hyperplanes representing vt = 0 and vn = 0. In this two-degree-

of-freedom example, the hyperplanes are also lines. The amount of normal-direction

impulse which will push the velocity to each of those two points may also be calculated.

In the example collision, the tangential pause comes first, so path a-b-e is

followed through the flowchart of Figure 2.8. At the tangential pause, a value for

the normal energy exchange parameter En may be calculated from (2.21), and stored

for continuation of the collision after the collision direction changes. Then (2.12) is

applied again to determine a new collision direction, with a changed friction direction.

The possibility of sticking is also treated here, in which case the collision will proceed

within the hyperplane (along the line) of vt = 0.

A corrected location and amount of normal impulse is calculated for the normal

pause, and En is again evaluated. This is the extreme value of En, and the moment

when the compression phase ends and the expansion phase begins. A stopping value

for En may be calculated based on this extreme and the coefficient of restitution.

Once the stopping value for En is known, the normal impulse that will achieve that

value may also be found.

Had the normal pause in the example collision occurred first, box c would

have followed box a. The stopping value of En would have been calculated before

the friction direction change was handled. Figure 2.9 shows examples of two other
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(a) (b)

Figure 2.9. Two examples of interesting collision trajectories.

Notation and axes are the same as in Figure 2.7. (a) Collision ends
before vt = 0 is reached. (b) Collision pushes the velocity state
entirely away from vt = 0.

unique cases that may occur, in which no friction direction change happens during

the collision. In a case like Figure 2.9 the tangential pause, calculated in the first

steps of the algorithm, would go unused, and path a-c-e would be taken. In a case

like Figure 2.9(b), the value of pn for the tangential pause will be negative, indicating

that it will not occur during the collision. This may also be treated with path a-c-e.

Two other special cases are nearly impossible in a collision that results from

pre-impact velocities found by numerical integration. The normal and tangential

pauses may occur exactly simultaneously, at the point (0,0). In this case, which

one is considered first does not matter, because no finite velocity change will occur

between the two points. Another rare case occurs if the collision vector L is exactly

parallel to (but not on) the hyperplane vt = 0. The intersection of the collision line

with the hyperplane does not exist in this case, and the calculated value of pn would
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be infinite to push the velocity to an ”intersection”. This case would be treated the

same as the case in Figure 2.9(b).



CHAPTER 3

NOTES ON IMPLEMENTATION

Figure 3.1. Motion of the example mechanism during an actual simulation.

To implement the method of this work on a real system, in order to produce

a full motion trajectory prediction as in Figure 3.1, several intersections between

lines and hyperplanes must be calculated. For the double pendulum example, these

calculations are as follows.

Initially, values for M and J are calculated from (2.2) using the values of q at

the impact point/time. A value for m may be obtained before any other calculations

21
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are performed, as the value which will cause the collision vector to lie exactly on the

line vt = 0:

m = −JaLn

JaLt

(3.1)

From (2.12), L may then be determined based on the pre-impact slip direction. The

sticking case may be entered during the collision only if m ≤ µ. If it is necessary to

simulate a difference between static friction and dynamic friction, the static coefficient

should be used to determine whether sticking is possible. The dynamic coefficient is

used everywhere else.

The pre-impact velocity point and the slope L define the equation of a line that

the velocity will follow as pn increases. Two points on this line are defined by the

intersections with the lines vt = 0 and vn = 0. The amount of normal impulse that

will push the velocity from some velocity u to the tangential pause is

[pn|vt=0] = −Jau

JaL
(3.2)

and the amount that will push the velocity to the normal pause is

[pn|vn=0] = −Jbu

JbL
(3.3)

If the normal pause occurs first (for a smaller value of pn, as in Fig. 2.9(a)),

the minimum value of En may be calculated at that point using (2.21). Then the

stopping value of En may be calculated using e∗. If the tangential pause occurs first,

then the friction direction change must be handled using (2.12). Again, the sticking

case may only be entered when m ≤ µ.

After the first pause is handled, the second must also be handled. When the

second point of interest is the tangential pause (and the friction direction is changed

after a stopping value has been calculated for En) a new constant of integration Eo
n

must be used in (2.21), to enforce continuity of the normal energy parameter. This
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new constant of integration should be the value of En that was calculated at the

tangential pause.

The equations used in this method require the mass matrix to be calculated

and inverted, and the Jacobian matrix to be calculated as well. These operations

typically require O(n3) time on the number of generalized coordinates in the system.

Since one of the primary motivations for this algorithm is reducing the time required

to simulate a collision, it should be noted that an alternative formulation of (2.5) is

available.[10] This formulation uses Featherstone’s algorithm[5]; it requires only linear

time, as it bypasses intermediate calculation of the mass and Jacobian matrices to

directly yield the collision matrix L.



CHAPTER 4

TOWARD A FULL THREE-DIMENSIONAL SOLUTION

4.1 Partial Derivation

Figure 4.1. Two directions become an infinity of directions.

It usually seems simple to change a derivation from two to three dimensions, but

here it is not easy. In order to obtain the solution in Chapter 2, the friction direction

was represented simply as the sign, positive or negative, of a frictional influence term.

This is possible when the friction force is one-dimensional.

The difference between math in one dimension versus math in two dimensions

is very profound, and whole fields of mathematics become suddenly relevant when the

jump is made. In this case the primary concern is that the third dimension affects the

friction force only, leaving the normal force constrained in it’s direction. Suddenly,

instead of only two possible friction force directions (+ or -), there are an infinite

number of possible directions (illustrated in Figure 4.1).

The analysis in 3D diverges from the 2D analysis at (2.5), where the friction

direction may not be simplified down to a sign. Instead of breaking the collision

matrix L into two columns and disregarding the third, one must break it into a single

24
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column Ln that multiplies the normal impulse, and a 3x2 matrix LT that multiplies

the 2x1 vector pt of tangential impulses:

∆u = Lnpn + LTpt (4.1)

Differentiating by pn yields

du

dpn
= Ln + LT

dpt

dpn
(4.2)

where the differential on the right may be expressed in terms of the normal force fn

(a positive scalar) and the tangential (frictional) force ft (a 2x1 vector):

dpt

dpn
=

dpt

dt
dpn
dt

=
ft
fn

(4.3)

For three dimensions, the Coulomb friction equation (2.6) becomes

||ft|| = µ||fn|| (4.4)

This gives the magnitude of the friction force, and its direction is defined to

be in the opposite direction from the sliding velocity of the contact point. If the

normalized sliding velocity is labeled as a unit vector v̂t, then (4.3) may become

dpt

dpn
= −µv̂t (4.5)

which yields an expanded form for (4.2):

du

dpn
= Ln − µLT v̂t (4.6)

One last substitution may be performed by recognizing that

vt =
[

1 0 0
0 1 0
0 0 0

]
Ju (4.7)
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If a simpler notation is defined as

Jt ≡
[

1 0 0
0 1 0
0 0 0

]
J (4.8)

then (4.6) may be written as

du

dpn
= Ln − µLT

Jtu

||Jtu||
(4.9)

This is an ordinary differential equation in the generalized speeds u. It describes

how the velocity of the rigid body system changes during a collision with respect to

how much normal impulse has been effected at the contact point. A solution to this

differential equation would be a parametric curve having the form

u = f(pn) (4.10)

4.2 Three-Dimensional Algorithm

If a solution in the form of (4.10) were known, a derivation of the energy pa-

rameter En might be performed, similar to the derivation in (2.15) through (2.21). In

the absence of such a solution, numerical integration may be utilized both to generate

the parametric velocity trajectory during of the collision and to calculate the value

of En at each point along that trajectory.

A modified algorithm for solving full 3D collisions may be carried out as follows:

1. Find intersection between velocity trajectory and hyperplane vn = 0

2. Calculate the value of pn that yields this intersection

3. Calculate En at this intersection

4. Find En for end of collision, based on COR

5. Find the value of pn that yields the stopping value of En

6. Use the post-impact velocity state that corresponds to the stopping value of pn
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Sticking may only occur where the velocity trajectory passes simultaneously

through both of the hyperplanes of zero tangential velocity. For a three-degree-of-

freedom system, this would correspond to the intersection between the curve of (4.10)

and a line. If this intersection exists within the bounds of the collision, (4.9) may

need to be reformulated using the static Coulomb friction model:

ft = mfn : ||m|| ≤ µ (4.11)

This gives a static friction equivalent to(4.9) as:

du

dpn
= Ln − LTm (4.12)

where m must be chosen such that the vector Ln − LTm lies simultaneously within

both hyperplanes of zero tangential velocity, and ||m|| ≤ µ. Integrating this yields

the linear post-sticking equation

∆u = (Ln − LTm) pn (4.13)

Of course, if no such m exists, sticking is not possible, and the collision trajec-

tory continues in the sliding mode.



CHAPTER 5

CONCLUSIONS

Many methods have been proposed for simulating rigid body collisions, but none

have so far been both energetically consistent and closed-form. These characteristics

are desirable for use in the simulation of rigid body motion, and this method has

both. It does not depend on any tuning or numerical issues associated with numerical

methods for integration and optimization. It is numerically precise, requires few

calculations, and will yield an answer deterministically.

Future work along this track will require finding a solution to the system of

ordinary differential equations given in (??). If a solution exists, the method of

this work may be easily expanded to cover full three-dimensional collisions between

systems of rigid bodies.

28



REFERENCES

[1] David Baraff. Fast contact force computation for nonpenetrating rigid bodies. In

Proceedings of the 21st annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’94, pages 23–34, New York, NY, USA, 1994. ACM.

[2] A. Bowling and D.M. Flickinger. Energetically consistent collisions in simulation

of multibody systems. In Proceedings IEEE International Conference on Robotics

and Automation, pages 1303–1308, May 2009.

[3] A. Bowling and D.M. Flickinger. Simultaneous oblique impacts and contacts in

multibody systems with friction. Multibody System Dynamics, 23(3):249–261,

2010.

[4] Bernard Brogliato, AA ten Dam, Laetitia Paoli, Frank Génot, and Michel
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