EFFICIENT EXPLORATION TECHNIQUES ON LARGE DATABASES

by
SENJUTI BASU ROY

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON
May 2011

Copyright© by SENJUTI BASU ROY 2011
All Rights Reserved

To my mother who set the example, and who made me who | am.

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my supenyiprofessor and
committee chair, Dr. Gautam Das, who continually and carivigly conveyed words of
encouragement and a spirit of adventure in regard to rdseaut scholarship. Without his
guidance and persistent help, this dissertation would ae¢ lheen possible. In addition, |
extend my sincere thanks to all my committee members for stgpiterest in my research
and serving on my committee; especially, | am extremelyejuhto my external committee
members, who have exhibited extraordinary enthusiasm exithifity in their schedule for

advising me and keeping this dissertation accessible.

| would also like to extend my gratitude to the department oE@GBUTA and my advisor,
Dr. Das for providing me with financial supports during myiengraduate studies. | am
especially grateful to my research collaborators, Dr. @il#ener-Yahia of Yahoo! Labs,
and Dr. Cong Yu of Google Research for introducing me to sonraesdinarily interesting

problems and engaging me in exciting research discussions.

| am grateful to all my teachers who taught me during the yeapent in school, first in
India, and then in the Unites States. In Particular, | woiklel fo express my deepest thanks
to my high-school mathematics teacher, Dr. Geetarashmi,Basil my undergraduate

thesis advisor, Dr. Jaya Sil, for encouraging and inspinmggto pursue research.

| would like to convey my heartfelt gratitude to my parentsl damily. | am especially
indebted to my mother, who has been instrumental in shaprgywlife. | feel extremely

fortunate to be so blessed.

| would like to thank Arjun and Mahashweta, my very good fderand lab mates during

my graduate studies. It would have been a lonely lab withoerint Many thanks to all my
iv

friends who helped me throughout my career; my researchdvoatl have been possible
without their constant encouragement. | also acknowledg&JifA friends and other lab

mates; without them my UTA life would not have been so much fun

Finally, | would like to thank my husband Kausik, who alwaysal by me through thick

and thin.

April 14, 2011

ABSTRACT

EFFICIENT EXPLORATION TECHNIQUES ON LARGE DATABASES

SENJUTI BASU ROY, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Gautam Das

Search, retrieval, and exploration of information havednee some of the most in-
tense and principal research challenges in many entegonaze-commerce applications off
late. The mainstay of this dissertation is to analyze andstgate different aspects of on-
line data exploration, and propose techniques to accomiiesm efficiently. In particular,
the results in this dissertation widen the scope of exidtiegted searchndrecommenda-
tion systems two upcoming fields in data exploration which are still ieithinfancy.

Faceted searchthe de facto standard for e-commerce applications, is tnfate
framework with the primary design goal of allowing users ¥plere large information
spaces in a flexible manner. We study this alternative semrdrexploration paradigm in
the context of structured and unstructured databases. Bf@efically, motivated by the
rapid need of knowledge discovery and management in largpg@ize organizations, we
proposeDynaCet a minimum effort driven dynamic faceted search system arctired
databases. In addition, we study the problem of dynamiddaaetrieval in the context of
unstructured data usingyikipedia the largest and most popular encyclopedia. We propose
Facetedpediaga faceted retrieval system which is capable of dynamicgdhyerating query-

dependent facets for a set of Wikipedia articles.

Vi

The ever-expanding volume and increasing complexity asrimition on the web
has madeecommender systerassential tools for users in a variety of information segkin
or e-commerce activities by exposing them to the most isterg items, and by offering
novelty, diversity, and relevance. Current research sugdleat there exists an increasing
growth in online social activities that leaves behind saif information created by users.
Interestingly, recommendation tasks stand to benefit ins@lgrby tapping into these latent
information sources, and by following those trails. A sfgraint part of this dissertation has
investigated on how to improve the online recommendatiskstavith novel functionalities
by considering additional contexts that can be leverage@dying into social data.

To this end, this dissertation investigates problems ssch@wv to compute recom-
mendation for a group of users, or how to recommend compibsites to a user. Underly-
ing models leverage on social data (co-purchase or brownsstgries, social book-marking
of photos) to derive additional contexts to accomplish ¢h@sommendation tasks. In par-
ticular, it focuses on techniques that enable a recommiemdsystem to interact with the
user in suggesting composite items - such as, bundled pduonline shopping, or
itinerary planning for vacation travel. We investigate teehnical and algorithmic chal-
lenges involved in enabling efficient recommendation catapan, both from the user (the
interaction should be easy, and should converge quicksyyell as the system (efficient
computation) points of view.

This dissertation also discusses extensive performarceasar study results, which
were conducted using the crowd-sourcing platform Amazorhdaical Turk. We con-

clude by briefly describing other promising problems wittufe opportunities in this field.

Vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS e e e v
ABSTRACT e Vi
LISTOFFIGURES e e Xiii
LISTOF TABLES e XVi
Chapter Page
1. INTRODUCTION e e e e e 1
1.1 OVEIVIEW o 1
1.2 Categoryl:FacetedSearch 8.
121 DynaCetResults 8
1.2.2 FacetedPediaResults,
1.3 Category ll: Recommendation 01
1.3.1 Subcategory I: Composite Item Construction 10
1.3.2 Subcategory Il: Group Recommendation 11
2. DYNACET e 13
2.1 Introduction 13
2.2 FSNoRank - Faceted Search as an Alternative to Ranked\Rétrie. . . . 17
2.2.1 Comparing Against Other Attribute Selection Procedur. 20
2.2.2 Modeling Uncertainty in User Knowledge 22
2.2.3 Extending t&-Facets Selection 25
2.2.4 Designing a Fixefl-Facets Interface 26
2.25 Implementation 28
2.3 FSRank - Faceted Search in Conjunction with Ranking Fumgtio 29

viii

2.3.1 Facet Selection Algorithms 31

2.3.2 Comparing Against Other Attribute Selection Procedur. 32
2.3.3 Implementation 33
2.4 TheDynaCetSystem i 40
25 Evaluation 43
2.5.1 FSNoRank Experiments 45
2.5.2 Performance Evaluation 47
2.5.3 FSRank Experiments 48
2.6 RelatedWork 51
2.7 Conclusion 53
FACETEDPEDIA e e 55
3.1 Introduction 55
3.1.1 Overview of Challenges and Solutions 57
3.1.2 Summary of Contributions and Outline 59
3.2 Faceted Retrieval Systems: A Comparative Study 59
3.3 Faceted Interface for Wikipedia by Collaborative Vodabu 62
3.4 FacetRanking e 65
3.4.1 Single-FacetRanking 67
3.4.2 Multi-FacetRanking 70
3.5 Algorithms e 72
3.5.1 Relevant Category Hierarchy (Algorithrm3) 73
3.5.2 Ranking Single Facet (Algorithm4and5) 78
3.5.3 Searching for k-Facet Interface (Algorithm®6) 79
3.6 Experimental Evaluation 80
3.6.1 Experimental Settings 80
3.6.2 UserStudies 82

4.5

4.6

4.7
4.8

3.6.3 Characteristics of Generated Facets 84

3.6.4 Efficiency Evaluation 85
3.7 DISCUSSION e 85
3.8 Conclusion 87
. STARCOMPOSITEITEMS e 88
4.1 Introduction 88
4.2 Model and Problem Statement, 91
4.2.1 Validand Maximal Packages 91
4.2.2 Summarization 94
423 VisualEffect 95
4.3 Maximal Package Construction 98
4.3.1 Algorithm MaxCompositeltemSet 99
4.3.2 Termination Condition 101
4.4 Summarization 102

4.4.1 Greedy Summarization Algorithms with Bounded

Approximation Factors oL 104

4.4.2 Randomized Summarization Algorithm 108
Visual Effect Optimization 111
4.5.1 Visual Effect Optimizationis NP-Complete 112
4.5.2 Heuristic Visual Effect Optimization 114
Experiments L 118
4.6.1 DataPreparation 118
4.6.2 Summarizing Maximal Packages 191
4.6.3 Visual Effect Optimization 123
RelatedWork 125
Conclusion 126

5. CHAIN COMPOSITEITEMS e 128

5.1 Introduction 812
5.2 Formalism and Problem Statement 131
5.2.1 SystemOverview e 134
5.2.2 Probability Model 136
5.2.3 ltinerary Scoring Semantics 137
5.2.4 Problem Definitions 138
5.3 General Algorithms for Itinerary Planning 139
5.3.1 A Generic Optimal POI Batch Selection Algorithm 140
5.3.2 Complexity Analysis 142
5.4 Efficient Algorithms for Itinerary Planning 144
5.4.1 Efficient Approximation Algorithm for POI Batch Selext 144
5.4.2 Efficient Computation of a Batch Score 451
5.4.3 Approximation Algorithm for Itinerary Construction 149
55 EXperiments e 153
55.1 DataGeneration 153
5.5.2 Summary of Experimental Results 541
5.5.3 Quality Experiments o 156
5.5.4 Performance Experiments 8 15
5.6 RelatedWork 161
5.7 Conclusion 163
6. GROUP RECOMMENDATION: SEMANTICS AND EFFICIENCY 164
6.1 Introduction 416
6.1.1 Contributionsand Outline 616
6.2 Backgroundand DataModel 8 16
6.2.1 Individual Recommendation Model 681

Xi

6.2.2 Group RecommendationModel 170

6.2.3 Problem Statement 172

6.3 Efficient Computation of Group Recommendation 172

6.3.1 Applicability of Top-K Threshold Algorithms 172

6.3.2 Monotonicity of Group Disagreements 173
6.3.3 Group Recommendation Algorithms 761
6.3.4 Sharpening Thresholds 0 18
6.4 BehaviorFactoring 318
6.4.1 Factoring Algorithm 184
6.4.2 Impact of Factoring on Query Processing189
6.5 Partial Materialization e 189
6.5.1 Partial Materialization Without Factoring 191
6.5.2 Partial Materialization after Factoring 194
6.6 Experiments 197
6.6.1 UserStudy 198
6.6.2 Performance Evaluation 720

6.6.3 Space reduction techniques and their impact on quecgpsing . . 212

6.7 Related Work 219
6.7.1 Recommendations, 219

6.7.2 QueryProcessing e 221

6.8 Conclusion 222
7. CONCLUSION e e e 224
7.1 OngoingWork 224
7.2 Future Work 225
REFERENCES e 228
BIOGRAPHICAL STATEMENT e 239

Figure
21
2.2
2.3
24
25
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
3.1
3.2

3.3
3.4
3.5
3.6
3.7

LIST OF FIGURES

Page
A small moviesdatabase oL 8 1
An optimal decisiontree L 18
The decision tree of Figure 2.1 with uncertainty models 25
Architectureof DynaCet 41
Screenshotof DynaCetGUI 42
Change Of cost with varying probability 45
Change of cost with varying database size 46
Change of average node creation time with varying numieitridbutes . . 47
Change of average node creation time with varying numiespées 48
Comparison of Cost - Facet Selection and Attribute OnddProblem . . . 49
Change of Cost Varyingin Approximate FSRank Algorithm 50
Change of average node creation time varying attribe¢e s 50
Change of average node creation time varying datasetsiz. 51
Average Node Creation Time Varying DatasetSize 52
The faceted retrieval interfacefédcetedpedia. 56

Taxonomies of faceted retrieval systems.(a)Facestgpd semantics,
(b)Automationand dynamism oo e 60

The conceptoffacet, 3 6
The navigation on a 2-facet interfae= {Fo, F5} 66
Navigational costsoffacets 69
The sequences of navigationalsteps 70
Characteristics of thedataset 81

3.8 Experimentqueries
3.9 User study questions and availableanswers 83
3.10 Usefulness dfacetedpedia@andCastanet.

3.11 User experience witkacetedpedidor open queries
3.12 Execution time ofacetedpediass. number of targetarticles

3.13 Compare the quality of faceted interfaces generate@byus methods . . .

4.1 Function MaxCompositeItem v v v v v v v v vt 100
4.2 RandomWalkonltemLattice, 011
4.3 Example Maximal Packages to be Summarized. 103
4.4 FunctionComputeCoverage v v v v v v v v 104
4.5 FunctiorSelectRepresentative 111
4.6 Transforming a graphinto packages.113
4.7 FunctionPickBestCandidate o 116
4.8 Summarization Algorithms Performance122
4.9 Summarization Algorithms Coverage123
4.10 Performance of Visual Effect Algorithms 124
5.1 Hamiltonian pathsin hypercubes. 147
5.2 Expected Score Comparison. e 157
5.3 Effectiveness of Itinerary Planning Algorithm 158

5.4 Runningtime Comparison e
5.5 Runningtime Varying BatchSize 159
5.6 Running Time VaryingBudget
5.7 Running time Varying NumberofPOIs 160

6.1 Group Disagreement is not monotonic w.r.t. predictéidgdists 174

6.2 FactoringSteps

6.3 Comparison of User predicted ratings (using NDCG)
Xiv

among Different Group RecommendationLists204

6.4 Comparison of User Preference for Group Ratings and bhaiiPredicted

Ratings among Different Group Recommendation Lists 206
6.5 a)Measures #SA-s varying Similarity, b)Measures #BlRrying Similarity,

c)Measures #SA-s varying and d)Measures #SA-s varying Group Size . . 209
6.6 Effectofthe numberdbls 211
6.7 Query Processing Performance of Group Recommendatgorifims . . . 213
6.8 Difference in Performance betweBMandFM. 214
6.9 Space Savings of Factoring Algorithm for Similar Usekba 215
6.10 Space Savings of Factoring Algorithm for Random Userbas. 216

6.11 Performance of Space Saving Strategies Under Diff&eace Budgets . . 217

6.12 Performance of Space Saving Strategies with a SpaceeBotig)% 218

XV

LIST OF TABLES

Table Page
4.1 Centralltems. 92
4.2 Satellite tems and theirPrice 93
4.3 Examples of Valid Satellite Packages 93
4.4 Two Sets of Summary Packages for Central ltehone 3G/8GB. 95
4.5 # Maximal Packages Generated 120
4.6 Comparison of Penalty Vectors 125
5.1 3-step lterative Itinerary Planning 132
5.2 Notations and Their Corresponding Interpretations 133
5.3 Example CitiesandPOIs 515
6.1 Statistics about the MovieLens DataSet.198
6.2 Similarities of User Study Groups. 201
6.3 Dissimilar User Group - Overall model ratings206
6.4 Similar User Group - Overall modelratings.207

XVi

CHAPTER 1
INTRODUCTION

1.1 Overview

This dissertation has focussed in designing novel onlite egploration techniques
from underlying large data repositories (structured daid web), that extend existing
ranked retrieval based query-answering paradigm. Inqaati, the results in this dis-
sertation widen the scope of existif@ceted searchandrecommendation systems$wo
upcoming fields in data exploration which are still in thefancy.

Broadly speaking, data exploration aids a naive user to ex@darge information
space in an effective manner. A large number of emergingegtjuns stand to benefit from
such exploratory querying techniques; examples includest any activity a user may
perform online - potential customers shopping for regutanmodities (e.g., car, electron-
ics, home, clothes etc.), users looking for pertinent testats or movies of their interests,
readers reading news, articles, reviews etc., or profealsadn enterprize organizations
searching for some records of their interest from vast dgpasitories. The mainstay of
this dissertation is to analyze and investigate differespieats of online data exploration,
and propose techniques to accomplish them efficiently.

Exploratory techniques are extremely useful in the casksrevthe user queries are
not too selectivde.g.,cheap cars, action movies, iPhone witl§i200, database research
in graduate school®tc.), and are not intended towards a single fact (pgpulation in
Texa3. A relevance-based ranked retrieval method may fail teatiffely distinguish a
smaller subset of results from there. Therefore, the gaeswering task needs to be further

enhanced to capture additional context and intent that $kee may have in mind during

1

2
qguerying. In addition, the increase in online social attifias given rise to additional

opportunity and challenges in query-answering taBlecommendatigms a research topic
has emerged to facilitate user in decision making in sucbsaBurthermore, sometimes

a user is unfamiliar about the domain, or unsure about helt gégploratory browsing
techniques (such &aceted Seardhare of great assistance that facilitates and guides users
to focus on the relevant aspects of her search results.

Consider a potential car buyer searching for a suitable uaetisted in an online
auto dealers database, where each car is described viaousradtributes such as Make,
Model, Mileage, and so on. While the buyer is eventually iesézd in buying only one
car, at the beginning of her search she may only have a fewenarefes in mind; thus an
exploratory search is necessary to narrow down the choices.

Faceted searcls a novel exploratory search technique to aid users in exyglitems
of interest within such vast data repository. It allows sderrefine or navigate a collection
of information by using a number of discrete attributes - sloecalledfacets A facet
represents a specific perspective on content that is typidalarly bounded and mutually
exclusive (e.g., color , manufacturers or model of a car)e Values within a facet can
be a flat list (e.g. all possible manufacturers of cars) tiiatva only one choice or a
hierarchical list that allows user to drill-down through Itiple levels (e.qg., car types-
mid size car— compact executive car- D-segment). The combination of all facets and
values is often referred to adaceted interfaceln the previous example, a user may have
the option of drilling down through different facets, first tolor (color— Black), then by
car types (car types> mid size car— compact executive car D-segment), and then by
make (Make— Japanese Car Honda), and so on.

The effectiveness of faceted search lies in the ability @rsigo create their own
custom navigation by combining various perspectives raten forcing them through a

specific path. Lately, faceted search has become the de-4$temdard for e-commerce

3
and product- related web-sites, from big box stores to prbrview sites. Any content-

heavy sites such as media publishers (e.g. Financial Tifhesm), libraries (e.g. NCSU
Libraries: lib.ncsu.edu/), and even non-profit organ@adi (e.g. Urban Land Institute:
uli.org) are tapping into faceted search to make their vagbsitory content easily ex-
plorable. We analyze the opportunities of adopting prilesjpf the faceted search paradigm
for tuple search. However, unlike past works on images asttuctured data such as text,
here, the challenge is to dynamically determine the fatetisare best suited for enabling
a faceted search interface. Our proposed faceted searobviiark is dynamic and com-
pletely user interaction dependent as compared to exitdicefed search systems where
the facets and hierarchies are predefined and static [1, 2)8{ overall goal is to judi-
ciously select the facet(s) dynamically based on user gtleythe user employs further to
drill down in the results, such that usenavigational costluring this exploration process
is minimized. We investigate dynamic minimum effort driianeted search in conjunction
with structured and unstructured data.

In the cars database example above, a very simple facetechsaterface is one
where the user is prompted an attridute.g., Make), to which she responds with a desired
value (e.g., “Honda"), after which the next appropriateiladte (e.g., Model) is suggested
to which she responds with a desired value (e.g., “Accoraliy so on. Our overall goal
is to judiciously select the next facet(s) dynamically atrgvstep, so that the user reaches
the desired tuples witminimum effort While the effort expended by a user during a
search/navigation session may be fairly complex to measwedocus on a rather simple
but intuitive metric: the expected number of queries thatubker has to answer in order to
reach the tuples of interest.

In particular, we proposBynaCet, the minimum effort driven faceted search sys-

tem that focuses upon two broad problem arehsFaceted Search as an Alternative to

IHenceforth in this dissertatidacetsandattributeswill be used interchangeably.

4
Ranked-Retrievadnd2. Faceted Search that Leverages Ranking Functiv¥es elaborate

on these problems and propose several of their variantssrdissertation. Furthermore,
we investigate fast implementation techniques of our pseddacet selection algorithms
to achieve significant CPU speed up. This work has been pellish [4, 5, 6].

Next, we investigate faceted search in conjunction withtruicsured data. To that
end, we propos€acetedPedia a faceted retrieval system for information discovery and
exploration inWikipedia Given the set oWikipediaarticles resulting from a keyword
guery,Facetedpediajenerates a faceted interface for navigating the resutiest Com-
pared with other faceted retrieval systems [1, 2,Rcetedpedias fully automatic and
dynamic in both facet generation and hierarchy constroctimd the facets are based on
the rich semantic information frotwikipedia The essence of our approach is to build
upon the collaborative vocabulary Wikipedig specifically the intensive internal structure
(hyperlinks) and folksonomy (category system). Given thees size and complexity of
this corpus, the space of possible choices of faceted auesfis prohibitively large. We
propose metrics for ranking individual facet hierarchigsulser’s navigational cost, and
metrics for ranking interfaces (each witifacets) by both their average pairwise similari-
ties and average navigational costs. We thus develop fhoderface discovery algorithms
that optimize the ranking metrics. This work has been aeckipi[7, 8].

This dissertation also discusseeommendationanother emerging information ex-
ploration technique that aims to support users in theirgiesimaking while interacting
with large information spaces. Broadly speaking, a recontiaton system automatically
predicts how much a user will like an item that is unknown ta HRecommended items
of interest are based on preferences that a user has exgyregther explicitly or implic-
itly. The ever-expanding volume and increasing compleaftinformation on the web has
therefore made such systems essential tools for users iregyvaf information seeking

or e-commerce activities. Recommender systems help overdoennformation overload

5
problem by exposing users to the most interesting itemspgradfering novelty, surprise,

and relevance. This dissertation also investigates nawddlgms in the area of recom-
mender systems.

Single user recommendation has received significant aitemt the past due to its
extensive use in Amazon and Netflix. A significant number ol user recommender
systems are already in use, includilaginch.comfor online music,entreefor restaurant
recommendationalkindi, Moviefinder, Movielentr movie recommendation etc. In ad-
dition, social networking sites like Facebook, contergsguch as Yahoo! Travel, which
have traditionally focused on managing content only, agriveng to encourage people
to form social ties and share content. While there has beepeamtrérend in developing
techniques for finding relevant content on social contaatgb], very little has been done
to help socially acquainted individuafsnd content of interest to all of them together. The
need forgroup recommendationarises in many scenarios: a movie for friends to watch
together, a travel destination for a family to spend a helideeak, and a good restaurant
for colleagues to have a working lunch. Intuitively, iterhattare ideal for recommendation
to a group may be quite different from those for individualmieers.

In this dissertation, we analyze the desiderata of groupmecendation and propose a for-
mal semantics that accounts for both item relevance to ggrnad disagreements among
group members. We design and implement algorithms for effiti computing group
recommendations. We further explore the impact of spacst@ints on maintaining per-
user and pair-wise item lists and develop two complemerstaligtions that leverage shared
user behavior to maintain the efficiency of our recommepdagigorithms within a space
budget. These results have been published in [10].

We further investigate how to extend the idea of single-itwommendation to
composite item recommendationand enable user interaction in recommendation com-

putation. The overall objective is to recommend composéms by interacting with the

6
user, and considering her preference. Several onlinecgpioins such as shopping, trav-

els, and so on benefit from such composite item recommemdatibor example, a user
shopping for an iPhone with a price budget can be presentidoeth the iPhone (central
item) and a package of other items that match well with theieh(e.g., Belkin case, Bose
sounddock, Kroo USB cable) as a composite item, whose totz s within the user’s
budget. Alternatively, a traveler, starting from a par@docation in a city (central item)
with certain budgets (time, money) can be presented withirerary (that consists of dif-
ferent POIs) that can be visited within her specified budgee heart of this problem is the
existence of different relationships between the indigldiems in a composite item. As an
example, in the case of former example, the rest of the itamagpackage forms the shape
of astarwith the central item, whereas, in the latter example, thé&siQan itinerary form
achain Different relationship between individual items giveserito different modeling,
and subsequently completely different solution.

In the case o$tar model, we define the problem as effective construction and explo-
ration of large sets of packages associated with a cengral iand design and implement
efficient algorithms for solving the problem in two stagesmsnarization, a technique
which picksk representative packages for each central item; and visiggit @ptimiza-
tion, which helps the user diverse composite items quicklynimimizing overlap between
packages. The challenge is to design efficient algorithimsgamany of these problems
are NP-complete in nature. We propose formal proof and ypliext solutions for these
problems. This work has appeared in [11].

In the case othain model we formalize itinerary recommendation as an iterative
process, where, at each step: (1) the user provides feedibaells selected by the sys-
tem, (2) the system recommends the best itineraries basell f@edback so far, and (3)
the system further selects a new set of POls, with optimbiytio solicit feedback for, at

the next step. This iterative process stops when the usatissied with the recommended

7
itinerary. We show that computing an itinerary is NP-conpleven for simple itinerary

scoring functions and that POI selection is NP-complete.défelop heuristics and opti-
mizations for a specific case where the score of an itinesapyaportional to the number
of desired POls. This work has been accepted recently in [1].

In addition to formal modeling and theoretical proofs, myDPtissertation exten-
sively validates our proposed solutions empirically, bgrmmg rigorous experiments, and
comprehensive user studies.

Our results in this dissertation can be divided into two droategories: In the first
category, we consider the problem of faceted search in theekts of structured and un-
structured data. In particular, we prop@gnaCetthat enables effective tuple search using
faceted navigation on structured databases. At each Big@Cetdynamically suggests
facets based on user’s response at previous step suchdlexicted number of such inter-
actions with user is minimized. In addition, we considerdiesiderata of faceted retrieval
using unstructured data. Precisely, we progessetedPediaa faceted retrieval system for
information discovery and exploration Wikipedia

In the next category, we discuss the recommendation refatglollems. Broadly
speaking, our contributions in this space are in sohgnoup recommendatioproblems,

and in investigatingomposite item constructio®ur main results igroup recommenda-

tion problem are - modeling the semantics of group recommendatid presenting algo-
rithms to compute them efficiently. We further explore th@aut of space constraints on
maintaining per-user and pair-wise item lists. We produefeavior factoring that factors
out user agreements from disagreement lists, @artlal materialization that selectively
materializes a subset of disagreement lists to accomlistiadsk. These results have ap-

peared in [10].

8
In particular, we investigate two different models in t@mposite itenspace - the

star mode| and thechain model For thestar model we aim to solve the problem of
identifying all valid and maximalsatellite packages, given a central item. We show that
the number of valid and maximal packages associated witintaadétem is typically very
large and presenting all of them to the user is impracticahd¢ we investigate techniques
to choose a set df-representative maximal packages ussugnmarizatiorand returning

thosek-packages to the user usiuigual effecoptimization.

For thechain modelwe introduce and formalize the novel approach of intevagtinerary
planning based on user feedback and itinerary expectedscdre formalize theptimal
itinerary construction problemandoptimal POI batch selection problerand prove the
hardness. We design efficient algorithms for solving boéséproblems.

In the rest of this introductory chapter, we provide a brigfapsis of oussignificant

contributions.

1.2 Category I: Faceted Search
1.2.1 DynaCet Results
1. We initiate research into the problem of automated faisebdery to enable minimum-
effort driven faceted search in structured databases. \&etadsimple approxima-
tion algorithm, and show how this approach can be extendedooporate the notion
of facet uncertainty. We discuss how this approach is diffefrom other attribute

selection techniques.
2. We also extend our methods to work in conjunction with latéé ranking functions

for tuples. We show how our methods are different from othibate selection

techniques in the presence of ranking functions such as [12]

9
3. We develop novel scalable implementation techniquesupgtgorithms. In partic-

ular, we leverage pipelining execution ranking models toidacomplete database

scans at any time.
4. We describe the results of a thorough experimental etratuaf our proposed tech-

niques.
5. We propose techniques to improve the performance of treg &election algorithms

by reducing CPU intensive computations. The main idea is alramlaptation of the
early stopping techniques used in the TA-family of algarihfor top-k computations
[13, 14, 15]. Such techniques can attain early terminathat &void scanning and

scoring the complete database in determining the next nmostiping facet.

1.2.2 FacetedPedia Results

1. Concept: Facetedikipedia We propose an automatic and dynamic faceted retrieval
system forWikipedia To the best of our knowledge, this is the first system of its
kind. The key philosophy of our approach is to exploit cotleddive vocabulary as
the backbone of faceted interfaces.

2. Metrics: Facet Ranking: Based on a user navigation modeprojgose metrics for
measuring the “goodness” of facets, both individually aoltectively.

3. Algorithms: Faceted Interface Discovery: We develogdffe and efficient algo-
rithms for discovering faceted interfaces in large seapeits.

4. System EvaluatiorfracetedpediaWe conducted user study to evaluate the effective-
ness of the system and to compare with alternative appreatfealso measured its

quality and efficiency quantitatively.

10
1.3 Category Il: Recommendation

1.3.1 Subcategory I: Composite Item Construction
We discuss star composite item recommendation, and chawpasite recommen-

dation problems to that end.

1.3.1.1 Star Composite Items

1. We propose the notion of composite item and compatiblellgatpackage in the
context of online data exploration. To help users effetfiezplore composite items,
we formalize the problems of finding valid and maximal padsagiven a budget,
finding representative packages through summarizatiahreordering packages for
visual effect optimization.

2. We design and implement a random walk algorithm to efftbyezonstruct all valid
and maximal packages.

3. We introduce a novel principle for summarizing a large afetnaximal packages
associated with one central item, and develop a mart coverage algorithm for
efficient summarization. We further improve the efficien€yoemmarization by in-
tegrating it with the random walk package construction atgo.

4. We formulate the problem of optimizing the visual effettkopackages associated
with the same central item as that of finding an ordering ofpthekages that min-
imizes overlap between consecutive packages. We provahtisaproblem is NP-
Complete, and design and implement a heuristic algorithradtving it. In addition,

we also prove that this algorithm is optimal when there iy ame satellite type.

11
1.3.1.2 Chain Composite Items

1. We introduce and formalize the novel approach of intéradtinerary planning
based on user feedback and itinerary expected scores.

2. We formally define th@ptimal itinerary construction problepwhich is one of the
two core problems in interactive itinerary planning. We y@d\NP-completeness
of this problem and design an efficient real-time heurislgoathm for computing
itineraries based on user feedback and time budget.

3. We formally define theptimal POI batch selection problemwhich is the other core
problem, and propose a probabilistic model based on themofiexpected itinerary
score given user feedback on a POI batch. We prove NP-coemgles of this prob-
lem and design efficient heuristics for selecting a goodtbatd®Ols.

4. Finally, we run extensive experiments validating ourrapph on real datasets. Qual-
ity experiments confirm the effectiveness of our algoritHorsinteractive itinerary

planning and performance experiments demonstrate tHigiieeicy.

1.3.2 Subcategory II: Group Recommendation

1. We formalize the problem of group recommendation and defsnsemantics as a
consensus function that aims at maximizing item relevandaw@nimizing disagree-
ments between group members.

2. We prove that the two important disagreement models beiogosed satisfy the
conditions required by the family of top-k threshold algjoms.

3. We design efficient algorithms based on one represeattireshold algorithml A,
to perform top-k group recommendation.

4. We formalize two optimizations: the problem of which djszement lists to materi-

alize given a space budget and the refinement of score bounds.

12
5. We conduct a comprehensive experimental evaluatiohydimg a user study on

Amazon Mechanical Turk to demonstrate the benefits of irmatg disagreements
into group recommendation, and extensive experimentsitwmdstrate the efficiency
of our algorithms.
To summarize, Chapter 2 contains resultdymaCef Chapter 3 orFacetedPediaChap-
ter 4 onstar composite itefrChapter 5 orchain composite itejrand Chapter 6 ogroup
recommendatioproblem. We conclude by discussing ongoing and future rekedirec-

tions briefly in Chapter 7.

CHAPTER 2

DYNACET: MINIMUM-EFFORT DRIVEN DYNAMIC FACETED SEARCH IN
STRUCTURED DATABASES

2.1 Introduction

One of the primary problems that many organizations fackasdf facilitating ef-
fective search for data records within vast data warehouls@sexample, consider the cus-
tomer database of a large financial institution such as a.badlata analyst or a customer
service representative for the bank often has to searchetmrds of a specific customer
or a specific account in such databases. Of course, if theargléuple is uniquely iden-
tifiable by an identifier known to the user, this problem igiai. But in most cases the
user only has partial information about the tuple (e.g.hpps the values of a few of its
attributes) and thus it is necessary to enable an effeatiaech procedure. As another ex-
ample, consider a potential car buyer searching for a daeitaded car listed in an online
auto dealer’s database, where each car is described viarousratributes such as Make,
Model, Mileage, and so on. While the buyer is eventually esézd in buying only one
car, at the beginning of her search she may only have a fewenerefes in mind (e.g., a
late model family sedan with low mileage); thus a search eeggary to narrow down the
choices.

One approach for enabling tuple search in databases is IR rstyked retrieval
from databases. For the cars example above, a query such ag/f€asedan, Age5,
Mileage<10k” can be specified via a form-based interface, and rakizer $imply execut-
ing the query using SQL - which will result in a flood of residisce there are presumably

many cars in the database that satisfy such broad querytmmredi ranking-based systems

13

14

will attempt to rank and retrieve the tdpmost “relevant” tuples that satisfy these condi-
tions (wherek is usually a small number, such as 10-20). Much of the re@=®arch has
focused on the design of suitable ranking functions, as aslbn the design of efficient
retrieval algorithms [16, 17, 18].

However, recently, other search paradigms have gainedarityun certain special-
ized IR domains, including for searching over image and tiaxa. In particular, it has
been argued thdtaiceted searcimterfaces can be extremely useful in user navigation and
search [19, 2]. E.g., a user searching for a photograph dbtkat Wall at a photo hosting
website may have the option of drilling down via differenté#s of the dataset, e.g., first
by geographical regions (such as AstaChina— Beijing), then via age (such as period
— ancient), then via phototype (man madehistorical monuments). While it remains to
be seen if faceted search is a viable option for searchingeafMeb scale, it does offer a

promising alternative in specialized domains such as teeamples.

Main Goal of DynaCet - Investigate Faceted Search in DatabaseThe main goal of Dy-
naCet is to explore the opportunities of adopting principlethe faceted search paradigm
for tuple search in structured databases. However, unkis¢ works on images and text
data, where the primary task is to design hierarchical rdata-and facets to enable faceted
search, structured databases come with the tremendoustageahat they are already as-
sociated with rich meta-data in the form of tables, attelsiwgnd dimensions, known domain
ranges, and so on. Instead, the challenge is to determore,tfre abundance of available
meta-data, which attributes of the tuples are best suitedrfabling a faceted search in-
terface. In the cars database example above, a very sing@tethsearch interface is one
where the user is prompted an attriduge.g., Make), to which she responds with a desired
value (e.g., “Honda”), after which the next appropriateiladte (e.g., Model) is suggested

to which she responds with a desired value (e.g., “Accomtiyl so on. In this thesis we fo-

IHenceforth in this thesifacetsandattributeswill be used interchangeably.

15
cus on two broad problem areas. We briefly elaborate on thedésms and our solutions

below.

1. FSNoRank - Faceted Search as an Alternative to Rankedeiair\We first consider
the problem where we don’'t assume any tuple relevance arihgafunction as being
available. Thus when a user poses an initial selection quathyout any further information
from the user we can only assume that all of the selectedsapéeequally preferred by the
user. Our task is then to develop a dialog with the user t@ekinore information from her
on other desired attribute values - essentially initiatacet-by-facet drill down procedure
to enable her to zoom in on the tuple(s) of interest. Our divgoal is to judiciously select
the next facets dynamically at every step, so that the usehses the desired tuples with
minimum effort While the effort expended by a user during a search/navigaession
may be fairly complex to measure, we focus on a rather simpienbuitive metric: the
expected number of queries that the user has to answer in eodexach the tuples of
interest

Variants of this problem have been considered in [20] in thietext of interactive
guestion-answer applications. It was shown that the proldantractable, and an approx-
imation algorithm suggested with provably good perforngané/hile we adopt the same
cost metric, we extend the idea in several important waysplpose a novel cost model
for fast tuple search which assumes that attributes areiassd withuncertaintieswhere
the uncertainty of an attribute refers to the probabilityrwvhich a user can provide a value
that belongs to the domain of the attribute. We develop faekeiction techniques that take
into account such uncertainties.

Also, we formally show that the approximation algorithm Building minimal cost
decision trees given in [20] generates trees different filowse generated by other classical
decision tree construction algorithms based on informag@in, as well as other classical

dimensionality reduction techniques such as principalmpament analysis (PCA).

16
2. FSRank - Faceted Search that Leverages Ranking FunctMesnext ask whether

faceted search procedures can wiorkonjunction withranking functions. This is a novel
problem area, and to the best of our knowledge, has not beestigated before. Recall
that a ranked-retrieval system typically assigns relegauores to all selected tuples and
returns only the tog: tuples. From a faceted search perspective, we may view ttie ra
ing function as imposing skewover the user preferences for the selected tuples, and thus
would like to select the facet that directs the user towandsrost preferred tuples as effi-
ciently as possible. One interesting complication is thase tuple preferences (or scores)
may change as the faceted search progresses; this is besanee attribute information
is provided by the user, the ranking function may re-evalulé scores of the remaining
tuples still in contention. Thus a faceted search systermjunction with a ranking func-
tion offers the benefits of focused retrieval as well as-diaNvn flexibility. We provide a
formal definition of this problem, and offer a solution focé& selection that is based on
minimume-effort driven principles.

The main contributions of our thesis may be summarized &sasl

1. We presenDynaCet[5]- a middle-ware system that sits between the user and the

database and dynamically suggests facets for drilling dotenthe database. The

facet suggestion model is driven by our intent to provideiasimum-effortdatabase

exploration solution for enterpriser users. We focus omgk but intuitive metric

for measuring effortthe expected number of queries that the user has to answer in

order to reach the tuples of interest

2. We adopt a simple approximation algorithm, and show hadg dbproach can be
extended to incorporate the notion of facet uncertaintydisfeuss how this approach

is different from other attribute selection techniques.

17
3. We also extend our methods to work in conjunction with ladé ranking functions

for tuples. We show how our methods are different from otheibate selection
techniques in the presence of ranking functions such as [12]

4. We develop novel scalable implementation techniquesuofatgorithms using a
modified Rainforest framework [21]. Furthermore, we leverggpelining execu-
tion ranking models to avoid complete database scans K(eef¢éo as thd-ull Scan
Algorithmin this thesis) at any time.

5. We describe the results of a thorough experimental etraluaf our proposed tech-

niques.

2.2 FSNoRank - Faceted Search as an Alternative to Ranked \Rétrie

Let D be a relational table with tuples{t,, 5, ..., t,} andm categorical attributes
A ={A, Ay, ..., Ay}, each with domaiDom; (for the rest of this thesis we only con-
sider categorical data, and assume that numeric data hasbigbly discretized). Assume
that no two tuples are identical and that a user wishes tieveta tuple from this database.
The faceted search system will prompt the user with a sefigsastions, where each ques-
tion takes the form of an attribute name, and to which the resgronds with a value from
its domain. This drill-down process terminates when a umimgyle has been isolated. The
task is to design a faceted search system which asks the oxmmmber of questions on
the average, assuming that each tuple is equally likely foreferred by the user (thus we
do not assume the presence of a ranking function).

Essentially, the task is to build @ecision treewhich distinguishes each tuple by
testing attribute values (asking questions). Each nodeedfée represents an attribute, and
each edge leading out of the node is labeled with a value frenattribute’s domain. As

an example consider Figure 2.1 which refers to artmyiedatabase with three attributes

18

and four tuples. A decision tree for identifying each of thplés in the tuple seb =

{t1,t2,t3,t4} is shown in Figure 2.2. The leaves of the tree represent ile setD and

each tuple appears exactly once. A user reaches her tupitecést by picking a path after

each non-leaf node in the tree i.e. by assigning a value to &&cbute query on the path

leading to the tuple.

Actor

Genre

Color

tt——| Al Pacino Drama Color

2 Gregory Drama Color
Peck

3 Brad Pitt Drama Color

t Al Pacino Thriller Black&White

Figure 2.1. A small movies database.

Al Pacino

jory Peck

Brad Pitt

Genre

Drama Thriller

t, t,

Figure 2.2. An optimal decision tree.

Given such a tre&’, cost(1") can be defined as the average tree heightht(t;)/n

whereht(t;) is the height of leaf;. Equivalently, cost (i.e., effort) represents the expecte

number of queries that needs to be answered before the us@saat a preferred tuple

19
(assuming all tuples are equally likely to be preferred)s kasy to verify that the tree in

Figure 2.2 is optimal (with minimum cost@ + 2+ 1+ 1)/4 = 1.5).

The problem of determining the minimum cost tree has beediesiun the past in
the context of question-answering dialog systems, and showe NP-complete (see [20]
and references therein). A greedy approximation algorhlsbeen developed [20] which
achieves an approximation factor Oflog dlogn) in the cost, wherel is the maximum
domain size of any attribute. Although the approximatiatdaappears large, itis the only
theoretical approximation bound known for this problem. rbtaver, as our experiments
show, this algorithm performs quite well in practice. Wedadse this algorithm next as it
forms the foundation for all our facet selection procedures

The intuition is that any decision tree should distinguigdrg pair of distinct tuples.
The approach is to make the attribute that distinguishestdrsamum number of pairs of
tuples as the root of the tree, where an attribdtas said to distinguish a pair of tuples
ti, t; if t;[l] # t;[l]. Picking the attributed; as the root node partitions the databasto
disjoint tuple set9,.,, D,., ..., DxlDom”, where eaclD, is the set of tuples that share the
same attribute value, of A;. Using this intuition, we seek to select as root attribdit¢hat
minimizes the number of indistinguishable pairs of tuplegnce, formally the function,
Indg() seeks to minimize,

Indg(A, D)= > [Dy|(|Ds,| = 1)/2 (2.1)
1<q<|Domy|

This process is recursively repeated for all sBtg, until each set reduces to singleton
tuples. Applying this algorithm to the database in Figurg @ives the same resultant
decision tree as shown in Figure 2.2. We see thay(Actor) = 1, while Indg(Genre) =

Indg(Color) = 3. Thus Actor should be the root.

20
2.2.1 Comparing Against Other Attribute Selection Procedur

Comparing Against Information Gain: Decision tree construction is a very well under-
stood process in machine learning and data mining, andagwepular algorithms such
as ID3 and C4.5 have been developed [22]. These algorithneargned for thelassi-
fication problem, and seek to maximize classification accuracy aondl awer-fitting. In
contrast, our goal is not to solve a classification proble@ther our aim is to build full
decision trees (where each leaf is a tuple) that minimizesa@e root-to-leaf path lengths.

A popular heuristic used by these algorithms (e.g., ID3)sklecting the next feature, or
“splitting” attribute, is thenformation gainmeasure. Since there is no class variable asso-
ciated with the database, we may imagine that each tuplestems its own unique class,

and thus the information gain of an attributgis equivalent to

1
I in(A;, D) = logn — — D, |log | D, 2.2
nfoGain(A, D) =logn——~ | 3 |Dy,[log|Dy,| (2.2)

1<q<|Domy|
The selected facet may be the one with the largest informaj#n. Unlike thelndg()
based approach for which there are known approximationdmgunis open whether simi-
lar approximation bounds exist for information gain basgpraaches. In fact, as we show
now, the information gain heuristic produces differenesr¢éhan the approach of minimiz-
ing Indg().
Lemma 2.2.1. Given a databasé, the decision tree constructed by selecting facets that
minimizelndg() may be different from the decision tree constructed by Sefefacets that
maximizeln foGain().
Proof. Consider two attributed and B of a database tablB. Let A be a Boolean attribute

with domain{a,,a>}. Letn(z) represent the number of tuples with attribute valué.et

21
n(ar) = n(az) = n/2. Let the domain ofB be {b1,bs, ..., b, .51} Wheren(b;) =

n/v2andn(by) = --- = n(b, .2 1) = 1. We then have

n/2—1 n/{2—1 n(n —2
Indg(A,D)—§(22)4‘5(22)_(T)

Indg(B, D) = % <%2_ 1) _n(n ; V?2)

ClearlyIndg(B, D) > IndgA, D), and thusA will be preferred ove3 during facet selec-

tion. We next consider the information gain heuristic. Wertihave

InfoGain(A, D) =logn — % (g log (g) + glog (g)) =1

InfoGain(B, D) = logn — %(% (% log <%)>)
(logn — 3)

Clearly InfoGain(B, D) > InfoGain(A, D) and thusB will be preferred overd dur-
ing facet selection. These arguments demonstrate thatabeptoduced by maximizing

information gain may be different from the tree produced bgimizing Indg().

Comparing Against Principal Component Analysis (PCA): We explore the popular
technique ofprincipal component analysi@PCA) [23] to see if it is applicable in facet
selection. PCA has traditionally been developed for dinradity reduction in numeric
datasets, thus extending PCA to categorical databases sacinsarequires some care. We
illustrate these ideas by again considering the small nsaa¢abase in Figure 2.1. Suppose
we wish to reduce the dimension of this database from threed@nd decide to retain the
dimensions Genre and Color. In that case, the attribute Aasito be homogenized (i.e.,
all values have to be transformed to a single common valws) that the number of values
that are changed is minimized. It is easy to see that if we nallk&ctors as “Al Pacino”,
this will require minimum number of changes (two changes, the Actor field in tuples

ty andt3). Hence the cost of the reduction is two in this case. On therdtand, if we

22
decide to retain the dimensions Actor and Genre, only ongevial the database needs to

be changed (the Color field of has to be changed to “Color”). Thus, reducing the dimen-
sions to Actor and Genre is cheaper than (and thus prefet@bleducing the dimensions
to Genre and Color. More specifically, the bestttributes we retain are the ones that have

the smallest modes. Mode of an attribute is defined as:
Mode(A;, D) = max{|D,,|,|1 < ¢ < [Domy|}

Lemma 2.2.2. Given a databasé), the decision tree constructed by selecting facets that
minimizelndg() may be different from the decision tree constructed by Sefefacets that
minimizeM ode().

The proof for above lemma can be derived using similar imdnias for prior lemma.
The details are omitted in the interest of space. Among editiheuristics, only théndg()
based approach has a known approximation factor assoevéted and performs better in

experimental evaluation.

2.2.2 Modeling Uncertainty in User Knowledge

The facet selection algorithm presented above assumeththaser knows the an-
swer to any attribute that is selected as the next facet. racipal setting, this is not very
realistic. For example, a customer service representatimebank searching for a specific
customer may not know exactly the street address of the mest® residence; likewise a
user searching for a movie may not be sure of the directoref#sired movie, and so
on. One of the contributions of this thesis is to recognizg there are inherent uncertain-
ties associated with the user’s knowledge of an entitytsoattie values, and accordingly to
build decision trees that take such uncertainties into@tco

In the simplest case, each attributeof the database is associated with a probability

p; that signifies the likelihood that a random user knows thevans$o the corresponding

23
query. For example, in a cars database, the attribute Car mgyebe associated with a

probability of0.8 (i.e., 80% of users know whether they want a sedan, hatchBag¥ etc.)
For simplicity we assume no correlations between attribuieertainties (i.e., a user who
does not know the car type is still assumed to specify heaais svith a finite probability)
nor other more general uncertainty models. Estimatingetbesbabilities require access to
external knowledge sources beyond the database such agdexparts, user surveys, and
analyzing past query logs.

In this thesis, we assume that the uncertainty models hagadyl been estimated.
In designing our decision trees to cope with uncertaintyagsime that users can respond
to a question by either (a) providing the correct value ofdheried attribute4;, or (b)
responding with a “don’t know”. In either case, the facetedrsh system has to respond by
guestioning the user with a fresh attribute. Consider Figu8ewhich shows the decision
tree of the same database of Figure 2.1. Assume each of titeutts has associated
uncertainties. Consequently, each node in the decisioratseehas an associated “don’t
know” link. As can be seen, the leaf nodes in this decisioa &ne either a single tuple, a
set of tuples, or, at worst, the entire database. Moreowég,that the tuples of the database
do not occupy unique leaves in the decision tree. For exartipdee arer different path
instances of tuple;. This implies that when attempting to reach a tuple, difiéngsers
may follow different paths through the tree.

At this context, we organized a small survey ama@fgpeople selected from the
students and faculty of our university.In that survey, ga@fson assigned a value (between
0 to 1) for each attribute. This value denotes the likelihabability) with which she is
able to answer the question corresponding to that attrifiite overall probability of each

attribute is calculated by averaging 2l values.

24

Algorithm 1: Single Facet Based Searéh(4’)
1: Input: D, a setd’ C A of attributes not yet used

2: Global parameters: an uncertaintyfor each attributed; € A
3: Output: A decision tred” for D
4: begin
5: if |[D| = 1 then
6: Return a tree with any attributé, € A" as a singleton node
7: if |A'] = 1then
8: Return a tree with the attribute it as a singleton node
9: Let A, be the attribute that distinguishes the maximexpectechumber of pairs
10: A = argming,ca (1 —ps) X |D|(|D| — 1)/2 4 ps x Indg(As, D)
11: Create the root node witH; as its attribute label
12: for eachz, € Dom; do
13: LetD, = {t € D|t[l] = z4}
14: T, = Single-Facet-Based-Sea(dh, , A" — {A;})
15: Add7,, toT by adding a link from4; to T, with labelz,
16: Create the “don’t know” link:
17: T" = Single-Facet-Based-Seaftéh A" — {A;})
18: Add 7" to T' by adding a link fromA4, to 7" with label “don’t know”
19: ReturnT with A; as root

20: end

Thus our challenge is to build such decision trees such tiea¢xpected path length
through the tree is minimized. Our Single Facet based sedggtithm is shown in Al-
gorithm 1. However, we note that each nadenow has|Dom,| + 1 links, with one of

the links labeled as “don’t know”. This link is taken with frability 1 — p;, whereas the

25

Gregary Peck “\Brad Pit

Al Pacino /

5

Don’t Know

Dan’t Know

alor k/é ,
Black&White Don’t
Know

Blacki

{7

Figure 2.3. The decision tree of Figure 2.1 with uncertambdels.

rest of the links are taken with probability. Thus, in the former case, the attribute
cannot distinguish any further pairs of tuples (the querg essentially wasted), whereas
in the latter case, onlyndg(A;, D) pairs were left indistinguishable. Thus, we can see that
if we selectA,; as the root node, then thexpectechumber of tuple pairs that cannot be
distinguished ig1 — p;) x |D|(|D| — 1)/2 + p; x Indg(A;, D). Consequently, an obscure
attribute that has little chance of being answered cogrditimost users, but is otherwise
very effective in distinguishing attributes, will be oveoked in favor of other attributes in

the decision tree construction.

2.2.3 Extending t&-Facets Selection
Next, we extend our model further by giving the user more ffigity at every step.
As a practical consideration, a decision tree as shown inr€i@.3 can sometimes be

tedious to a user. It may be more efficient to present, at estepjseveralsayk) attributes

26
to the user at the same time, with the hope that the user migiw khe correct value of

one of the proffered attributes.

It may appear that for designing the root node of the decisiea for thek-facet
case, instead of considering onty possible attributes as we did for the single-facet case,
we will need to considein, sets of attributes of sizeeach, and from them, select the set
that is the best at disambiguating tuple pairs. Howevergit@strict the user to answering
only one question at each iteration, the problem of detangibestk-facets at any node in
this decision tree has a much simpler solution - we order tlused attributes from the one
that distinguishes most number of tuple pairs to the onedistinguishes the least number
of tuple pairs, and select the t@pattributes from this sequence.

In this tree, the probability that a random user will followon’t know” links is
much smaller than the single-facet case. For example, giheeget of attributes!” at the
root, the probability that a random user will be unable torsersany of thek questions is
[14,c4»(1 — p1). Thus we expect such trees to be more efficient (i.e., shafjothan the

trees in the single-facet case.

2.2.4 Designing a Fixefl-Facets Interface

In certain applications, it is disconcerting for the useb#&continuously presented
with new sets of attributes after every response. Such wgaukl prefer to be presented
with a single fixed form-like interface, in which a reasondbkge ¢) number of attributes
are shown, and the user assigns values to as many of therpce#dtributes as she can.
If the space available on the interface is restricted suahdhly & < m attributes can be
shown, the task is then to select the best sét aftributes such that the expected number
of tuples that can be distinguished via this interface cambagimized. We formalize this
problem as follows: Given a datababe a numberk, and uncertaintieg; for all attributes

A;, selectk attributes such that the expected number of tuples that eafigtinguished

27
is maximized. If we assume that there are no uncertaintsscéged with attributes, this

problem has similarities with the classical problem of cotimy minimum-sizedkeysof
database relations, and with the problem of computing aqmiate keys of size: (see
[24]).

However, in our case the problem is complicated by the faadtdttributes are asso-
ciated with uncertainties, thus such deterministic procesl [24] appear difficult to gen-
eralize to the probabilistic case. Instead, we propose edgrstrategy for selecting the
k facets that is based on some of the underlying principlesldped in our earlier algo-
rithms. The overall idea is, if we have already selected ad$eff £’ attributes, the task
is then to select the next attribute such that the expected number of pairs of tuples that
cannot be distinguished by U { 4} is minimized.

Ignoring attribute uncertainties, the algorithm can becdbed as follows. Led’ U
{A,} partition D into the setsD,, D,, ..., D, where within each set the tuples agree on
the values of attributes ial’ U {A4;}. Thus, we should select; such that the quantity
> 1Dil(|Di] — 1)/2 is minimized. Introducing attribute uncertainties implithat A’ U
{A,} does not always partitio® into the setsD;, D», ..., D,. Rather, depending on the
user interactions, the possible partitions could vary kbetwfinest possible partitioning,
Prine(A"U{A;}) = {D1, Ds,..., Dy}, to the coarsest possible partitionifiy,,.s. (A’ U
{A;}) = {D} (the latter happens if the user responds to each attribtieatidon’t know”).
Each intermediate partitioning occurs when the user redpuasith a “don’t know” to some
subset of the attributes.

Consider any partitioning = {Uy, Us, ... U, }. Letthe quantityndg Partition(P)
be defined as _, |U;|(|U;| — 1)/2. This represents the number of tuple pairs that fail to
be distinguished. Since each partitioning is associatel aviprobability of occurrence,
we should thus seleet; such that the expected value bfdg Partition(P) is minimized.

However, this process is quite impractical since the nurabpartitionings are exponential

28

in |[A”U{A;}|, i.e., exponential ik’ + 1. We thus chose a simpler approach, by assuming
that there are only two partitionings, the finest, as welltesdoarsest. The probability
of occurrence of the coarsest partitioning{goarse) = [, carga,,(1 — ps). Thus, we

select4; that minimizes

IndgPartition(Progrse (A" U {A;}))p(coarse)+

IndgPartition(Ppine(A" U {A1}))(1 — p(coarse))

2.2.5 Implementation

We have implemented our algorithms by modifying scalableisien tree frame-
works Rainforest [21]. While Rainforest [21] aims to identifglass of tuples efficiently
for a large data set, our task here is to identify each tupleceShere is no class variable
associated with the database, we may imagine that eachdapsgsts of its own unique
class. Precisely, we can assume At every leaf node of thelbahuilt tree, a single scan
of the database partition associated with that node candmktosscore each tuple and si-
multaneously and incrementally computeig(A;, D) for all facetsA;, and eventually the
most promising facet is selected.

For the case where the database is static and the searcesyjaesi provided be-
forehand, our proposed approaches can simply pre-comipeitéeicision trees. However,
when the search queries are initiated on-the-fly with a segdQL-like query, then building
faceted search interface would require us to build the trdi@@ (or in realtime). For such
cases, instead of building the complete tree immediatedycan stay in sync with the user
while she is exploring the partially constructed tree, anittba few “look ahead” nodes at
a time. Finally, in the highly dynamic scenario where theablase is frequently updated, a
simple solution is to persist with the decision tree creaietthe start of the search, except

that if a path through the tree terminates without a tupledpdistinguished, the algorithm

29
can then ask the remaining attributes in decreasing ordstrdfute probability until either

the tuple gets distinguished or we run out of attributes. sTlaufresh construction of the
decision tree can be deferred to reasonable intervalrrégthn after each update to the

database.

2.3 FSRank - Faceted Search in Conjunction with Ranking Fumgtio

In this section we develop faceted search procedures thatvoegk in conjunction
with ranking functions. Given a query, a ranking function typically assigns relevance
scoresS(Q,t) to all selected tuples, and a ranked-retrieval system will score and re-
turn only the topr’ tuples wheren’ << n. Developing ranking functions for database
search applications is an active area of research, andngufilknctions range from simple
distance-based functions to probabilistic models (seeg%f. But in this thesis we shall
treat such ranking functions as “black boxes”; thus our éshare aimed at very general
applicability.

Our facet selection algorithm calls one such “black box’kiag function at every
node in the decision tree during its construction and usesahked scores of the returned
tuples as inputs to the facet selection algorithm. Howdwecause the ranking function is
a black box, it is challenging to develop methods for facé&c®n that are theoretically
rigorous. In our approaches, we shall make one assumphianhthte scores are normalized
so that they are (a) positive, and (B), ...cica v, o (@, t) = 1. In other words, the ranking
function can be imagined as inducing a non-uniform “proligbdistribution” over the
selected tuples, such th&f(), t) represents the probability that tuplés preferred by the
user. Of course, in the case that scoring functions are eefrom probabilistic IR as
well as language models, this assumption is justifiablehéncase of more ad-hoc ranking

functions (such as distance-based, or vector-space moaojaldar in IR), this assumption is

30
perhaps a stretch. However, other than this specific assampte strive to be as principled

as possible in our approaches.

From a faceted search perspective the task is to selectdbetfet directs the user
towards the most preferred tuples (according to the rarfkingtion) as efficiently as possi-
ble. One interesting complication is that these tuple pezfees may change as the faceted
search progresses; this is because as new attribute itfomisprovided by the user, the
ranking function may re-evaluate the scores of the remgituples still in contention. As
an example, consider the car buyer who starts her searclawitfitial query = “Mileage
= low AND Age = recent AND Car Type = sedan”. Suppose a rankingfion when ap-
plied to such cars ranks cars with good reliability ratingshighest. After this initial query,
a faceted search process starts which allows her to drilndaviher into the query results.
But as the faceted search progresses, the buyer could sidxita values that may cause
the ranking function to rank the remaining cars differentfpr example, if the user also
desires a “powerful engine” (i.e., the query has now beeersidd ta)) = “Mileage = low
AND Age = recent AND Car Type = sedan AND Engine Power = high®rtithe ranking
function may score cars with top speeds higher over gooahiéty. Thus a faceted search
system in conjunction with a ranking function offers the &i#s of focused retrieval as

well as drill-down flexibility.

Defining the Cost of a Decision Tree:Given the above discussion, the cost of a specific
decision tred’ becomes more complicated than the corresponding definitiSection??
where no ranking function was assumed. Consider a datdbaskcted by an initial query

@, and consider a decision tr&éwith each tuple ofD at its leaves. We will thus derive

a formula forcost(T, Q). Note thatQ) needs to be a parameter in the cost, as the ranking
function uses) to derive preference probabilities for each tuple. Notd thahis cost

definition we are not considering attribute uncertainties.

31
Let the root of the tree select the facét. The root partitionsD into the sets

Dy, ... ,leDom“ where D, is the set that satisfies the queyA (A; = z,) for each
x4 € Dom,. Letthe corresponding subtrees for each of these pasibef,,, . .. >Tx|Doml‘-

Clearly cost(1,,,Q N (A4 = x,)) is the (recursive) cost of each subtree. The quantity
Ztequ S(Q,t) is the cumulative probabilities of all tuples I, and represents the prob-
ability that when the user is at the root, she will prefer ahthe tuples inD, . Thus we

have

cost(T, Q) = Z Z S(Q,t) x (cost(Ty,, QN Ay = x4) + 1) (2.3)

zq€Domy tEDIq

It is easy to see that if no ranking functions are assumed,dach tuple is uni-
formly preferred by the user, the cost of a tree reduces taéfiaition in Section 2, i.e.,
> wep Pt(t)/n. Our task is then the followingGiven an initial queryQ) that selects a set
of tuplesD, to determine a tre& such thatcost(T,) is minimized.Since the problem is

NP-Hard even without a ranking function, this problem tomisactable.

2.3.1 Facet Selection Algorithms

We develop a greedy heuristic that is motivated by our faektction approaches
presented in Section 2. Assume that we are at a particulamnotithe decision tree. Let
@ be the current query at that node. Thuss the initial query at the root, concatenated
(i.e., AND’ed) with all conditions along the path from theotao v. Let D be the set
of tuples of the database that satigpy For any attributed, we can define a function

Indg(A;, D) as follows:

Indg(A;, D)= > > 8(Q.t) x S(Q,t;) (2.4)

zg€Domy \ti,t;€Dzy,i<]
The rest of the algorithm for selecting a single facet, ev@rsering attribute uncertainty,

is exactly the same as in Algorithm 1, except that Line 12 ajokithm 1 is replaced

32
selecting the attributd, that minimizes the expected value of Equation 2.4. The sxes

to selectingt-facets, or building a fixed-facet interface are similarly straightforward, and

details are omitted from this version of the thesis.

2.3.2 Comparing Against Other Attribute Selection Procedur

In a recent thesis [12], algorithms were described thatraatizally select attributes
of the results of a ranking query. Several selection catesre examined, with the overall
objective of attempting to select attributes that are maseful” to the user. Attributes
are consider most useful if, when the database is projecigdam these attributes, the
ranking function will re-rank the tuples in almost the samden. By listing the useful
attributes, the motivation was to provide the end user theaes why the top tuples were
ranked so high. While such attribute selection algorithmslmaused for faceted search,
the following lemma shows that they do not necessarily aehaur goal of minimizing
effort during the drill-down process.
Lemma 2.3.1.Given a queryQ that selects a set of tupld3, and a scoring functioty (),
the decision tree constructed by selecting facets thatmingi /ndg() may be different
from the decision tree constructed by selecting facetsrdoug to the Score-Base@nd
Rank-Basedattribute selection algorithms in [12].
Proof (sketch) We sketch the proof by describing an example. Consider adzdebase,
and assume a ranking function exists, such that when a uses@an initial query for
cars available in Texas, it ranks cars with air-conditisnary high. The ranking function
assigns scores of 1 to the latter cars, and O to the rest. BetBdbre-Based and Rank-
Based algorithms in [12] will select the Boolean attribute@on as the most influential
attribute. However, our minimum effort driven approach Vdonot prefer to select the
AirCon attribute. This is because all cars with air-condigcs will have high scores and

will group together to produce a rather high value farig(AirC'on). In contrast, consider

33
another attribute such as AutoTrans, which splits the togalle set such that the highly

ranked cars are evenly divided into each group. It is easgéedlsat/ndg(AutoTrans) is
smaller thanindg(AirCon) and hence more preferable.

Basically the attribute AirCon does not really help in furtmarrowing down the
highly ranked tuples, because of the correlation with Tedaas via the ranking function.
Offering some other facet such as AutoTrans will help the mserow down the tuples

more efficiently. Our experiments corroborate this obg@an general.

2.3.3 Implementation

Although we assume that we are provided with a black box sgdtinctionS(Q, t),
the way such a scoring function is implemented greatly &fdte performance of our at-
tribute selection algorithms. We defisengle-result interfacdor the ranking black box
which is supported by previous works [12] on tbomputations. Thsingle-result inter-
faceS(Q,t) takes as input a query and a tupleg and outputs the score of the tuple. This

interface incurs unit cost.

2.3.3.1 Facet Selection using Single Result Interface:

A scalable implementation of facet selection (Equatior) Bging the single result
interface is straightforward using ideas from the Rainfofiesnework [21]. We point out
that even though the definition éfidg() appears to require a quadratic-time algorithm, it
can be computed in a single linear sdaull Scan Algorithm The extensions to selecting
k-facets as well as designing a fixéefacet interface are straightforward. The extensions
to include attribute uncertaintieg;facet selection, as well as designing a fixefacet

interface are straightforward and omitted.

34
2.3.3.2 Implementation of Facet Selection using Pipefjnimterface - Early Stoppage:

Furthermore, we explore interesting and novel technigyesghich the performance
of the facet selection algorithms in [4, 5] can be improveshdurther. To be truly effective,
faceted search algorithms have to respond rapidly and ufittkelay during an interactive
session with an end user. The Full Scan algorithm presentdd 5], while better than any
naive strategy, still suffered from high CPU cost and slowpoese time, as selecting the
best attribute at each node required extensive calcukaiimolving the database partitién.
In this thesis, we propose techniques to improve the pedoom of the facet selection
algorithms by reducing CPU intensive computations. The nu#n is a novel adaptation
of the early stopping techniques used in the TA-family obailipms for top-k computations
[13, 14, 15]. Such techniques can attain early terminatian @avoid scanning and scoring
the complete database in determining the next most progiiaget. In addition, as an even
faster alternative, we propose an approximate facet seteteichnique that is guaranteed to
stop after reading a fixed number of tuples and return the prostising facet discovered
thus far.

Two types of faceted search problems on databases havedresidared so far [4, 5]:
() Faceted Search as an Alternative to Ranked-Retrievaligih¢eted Search that Lever-
ages Ranking Functions (referred to as FSNoRank and FSRardctiesy in this theis).
Essentially the second problem assumes that a rankingigdanction is available that de-
scribes the preferences of the user for each tuple in aipar{gee [4, 5] for more details).
In this section, we focus on improving response time of tlhetfaelection algorithms, by

leveraging early stopping techniques from top-k algorghifhis part of our work has ap-

2The 1/O cost is typically not an issue, as with the latest atheé semiconductor technology, even an
inexpensive personal computer can often store an entisbdsé partition associated with a decision tree
node in main memory. It is the computational costs that areerontical to attain real-time response during

interactions with an end user.

35
peared in [6].

Exact Indg() Calculation Based On Top-k ComputationIn general, top-k algorithms
operate on index lists corresponding to a query’s elemgrtanditions and aggregate

scores monotonically for result candidates. The objectivte terminate the index scans
as early as possible based on lower and upper bounds fordhessaf result candidates.
Motivated by such early stopping techniques employed irktafgorithms, we wish to de-
termine the best facet (or the best set ddicets) at every step of faceted navigation without
performing a complete database partition scan.

In this thesis, we assume that the ranking function in the F&Reoblem is acces-
sible via apipelining interfacewhich is natural and supported by previous works onkop-
computation such as [13, 14, 15]. Thielining interfaceS(Q, D) takes as input a query
() and a databasP and outputs a stream of tuples ranked descending accomi(gx ¢)
along with their scores. The cost incurred in using thisriat is the number of tuples
retrieved (we can stop retrieving tuples at any time).

The high-level idea of early stopping is as follows: whileasoing the database
partition D;, we consume tuples in some sequence and maintain a lowepaed bound
for the value of/ndg(As, D) for each attributed,, and stop as soon as we discover an
attribute A; whose upper bound is no larger than the lower bound of allr@tiebutes.
Lemma 2.3.2. Given a databaseé) with n tuples andm attributes, a CPU speedup of
n/(r + (n — r)/m) over the Full Scan algorithm can be obtained, if onlf < n) tuples
are consumed before the next best facet can be determined.

Proof SketchThe Rainforest implementation of Full Scan requitesm update operations
to compute/ndg() and return the best facet to the user (along with its domaamrimation).
Using the pipelining interface, if the best facet is detewmi after reading tuples, then the
total number of update operations required to suggest tsifdeet to the user (along with

its domain information) i$r x m)+ (n—r), where the first term refers to the update cost of

36
processing the firsttuples, and the second term refers to the update cost ofgsiocethe

remaining tuples, where only the counts for the selectethaté are updated. Therefore
the speedup ia/(r + (n —r)/m). O

As an illustrative example, for a database partition combai 200k tuples ands0
attributes, if only20% of the tuples are consumed before termination, then the CEB&bisyp
over Full Scan i200k/(40k 4 160k /50) = 4.6.

We next discuss the FSRank case in detail. Assume that thingigénterface has
already scored tuples, and leD, be the set of tuples with the highest scores. Let the score
of therth tuple beS,.. For each attributel,, we maintain the following two quantities:

LowerIndg(As, D) = Indg(As, D,) (2.5)
UpperIndg(As, D) = LowerIndg(As, D)+

(n—1r)S, x max Z S(Q,t) ¢ +

zrq€Doms
/ ° teD, t[s]=xz4

Sy XSy x(n—=r)n—r—1)/2 (2.6)

The lower bound of ndg() reflects the minimum score that attribute can get,i.e.,
it assumes that the re@t —) tuples will not contribute anything to the score. This inagli
that each tuple that is not read yet has a unique domain valler attributed,. Therefore,
LowerIndg(As, D) = Indg(As, D,).

On the other hand, the upper boundlefdg() captures the maximum cumulative
score attributed, can attain from the rest. —) tuples by considering that the rést— r)
tuples have the same scafg and can be paired with the largest subset of already read
r tuples with the same domain value. This impliesgjfis the largest domain value of
attribute A, so far, then the domain value of attribute for the rest(n — r) tuples is also
z4. Hence thé/pperIndg(A,, D) formula contains the extra score accumulated by pairing

these(n — r) tuples with score,. with each other and adding it up with the scores of the

37
pairs formed by each (n-r) tuples with scdfg and each tuple in the largest subset-of

tuples with domain value,, and score> S,. QuantityS, x S, x (n —r)(n —r —1)/2

in the UpperIndg(As, D) formula captures the score accumulated by pairing éachr)

tuples with each other, whereas the quantity-)5, x max > 8@
rgeDoms
teD, t[s]=z4
contains the scores obtained by pairing each- r) tuples with each tuple in the largest

subset of- tuples with domain value,.
The pipelining interface consumes tuples and maintainsethmunds, and stops
when it discovers an attributd; whose upper bound is no larger than the lower bound

of all other attributes. We refer to this as Exact FSRank Atgor.

38

Algorithm 2 : Exact FSRankiD, A")

1:

2:

3:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

Input: a databas® with n tuples, a subset’ C A attributes not yet used
Output: AttributeA; € A’ that minimizes thdndg() value.
if |D| = 1then

Return a tree with any attributé, € A’ as a singleton node

. if |[A’'| = 1then

Return a tree with the attribute i’ as a singleton node

. Read the first tuple.
. Setr = 2;

- whiler <=ndo

Read the-th tuple.

for eachA4; € A’ do
LowerIndg(Ay, D) = Indg(Ay, D)
Upperindg(Ay, D) =
LowerIndg(A;, D)+

(n—1)S, x ,max tED;[S]:xq S5(@.1) ¢ +
Sy XS x(n=r)(n—r—1)/2
ChosenAttribute = Attribute witlhrgmin a,c 4 Upperindg(A;, D)
for eachA; € A" andA; # ChosenAttribute do
if argmina,caUpperindg(Ay, D) < LowerIndg(A;, D) then
Continue;
else
r=r+1
Return to the while loop;

return attribute withurgmin 4, 2 UpperIndg(A;, D) as root;

39
The Exact FSNoRank Algorithm is very similar, except that tipger and lower

Indg() for each attributed, is computed as follows:

LowerIndg(As, D) = Indg(As, D,) (2.7)

UpperIndg(As, D) = LowerIndg(As, D)+

[(n—7r)+ max {D,, }]/2

xq€Doms

{(n—r)—l— max {qu}_1} 2.8)

rq€Doms

Here the pipelining interface outputs tuples in any arbjt@der (since there is no
ranking function), and stops when it discovers an attribditevhose upper bound is no
larger than the lower bound of all other attributes. We r&dehis as the Exact FSNoRank
Algorithm.

The LowerIndg(As, D) calculation in the FSNoRank case follows similar explana-
tion as for the FSRank case, except for the score of each tsiglssumed to bé here.
Also, the score of each tuple is assumed ta lethe Upperndg(As, D) calculation, and
the upper bound simply captures the score that can be atthinpairing each of the rest
(n — r) tuples with the largest subset of théuples with domain value,,.

Although our attribute selection algorithms can work foy &lack box scoring func-
tion S(Q,t), the score distribution across the tuples greatly affdutsperformance of
our algorithms, since it determines which algorithms aeesilele and efficient. A highly
skewed scoring function - where the top few tuples have laogees, followed by a rapid
degradation in score values for the remaining tuples - ig eftective in making the Exact
FSRank algorithm very efficient. This unfortunately does aygply in the case of Exact
FSNoRank, because there is no ranking function to be levdrdgdact as the lemma be-
low shows, no matter what is the database, more than haleafdbabase has to bévays

scanned by the FSNoRank algorithm before the best attrilautée determined.

40
Lemma 2.3.3. For FSNoRank, even in the best case more than half of the dsegtoar-

tition has to be scanned using the pipelining interface teetbe best facet can be deter-
mined.
Proof Sketch Consider a simple case, where a databaseith n (n is even) tuples has
only two attributesA and B. Let us assume that already? tuples have been read, and the
best scenario of early stopping has occurred so fdb,ine., attributeA has returnea /2
different domain valueg, , as, . . ., a, /2, While attribute3 repeats the same domain valye
in all n/2 tuples. Then we havd,owerindg(A, D) = 0 andUpperIndg(A, D) = n(n +
2)/8. Similarly, LowerIndg(B, D) = n(n — 2)/8 andUpperIndg(B, D) = n(n —1)/2.

At this stage, no stopping decision can yet be made consmlére upper and lower

bounds of thendg() values of the attributes, and we must continue the scdn
Approximate Indg() calculation As an even faster alternative to the above algo-

rithms, we can simply stop reading further tuples after allsfixed number of iterations
(i.e., bounded), and use the most promising facet discovered thus far. &a@igorithm
is of course guaranteed not to exhaust all tuples in the dagapartition, but may not
necessarily produce the facet with the minimiémalg() value. However, this is a good ap-
proximation ifr is reasonably chose. It is easy to observe that such an apya®{ ndg()

calculation can be applied to both FSNoRank and FSRank.
The extensions to include attribute uncertaintiefacet selection, as well as design-

ing a fixedk-facet interface are straightforward and omitted.

2.4 The DynaCet System

The architecture of DynaCet and the flow of information thiotige system is il-
lustrated in Figure 2.4. The front-end of the system is a Wa&ed user interface which
enables user to build queries and provides navigationaisadato the database. The back-

end consists of two components, thecet Componerdnd theRanking ComponenDy-

41
naCet is domain independent and requires read-only accéssuaderlying database, thus

making it implementable over any database system.

Front-end

Facet Component

Facet
Generation

I

I

| ¢
| Tree
I

I

I

I

Construction

Ranking Component

Figure 2.4. Architecture of DynaCet.

We have implemented our algorithms by leveraging the statidxision tree frame-
work Rainforest [21]. Thd-acet Generatioomodule supports two modes of exploration
over the facets Browse OnlyandSearch and Browsdn the Browse Only modea typical
browsing session begins by showing suggested facets tastre A user simply needs to
select one of the facet values in order to move on to the negtistbrowsing. In this mode,
the entire database is to be explored, hence the facet giemeraodule uses pre-computed
decision trees. However, for ttf@&earch and Browseode, a more dynamic scenario is in-
vestigated. Here, a user can typically begin her searclosdsg specifying one or more of
her preferences in the form of a query. Next, the resultgietset is retrieved by DynaCet

and faceted search is enabled on that set. Hence, in thisd=xgsion trees are constructed

42

earch Erovme Seling
Name Country ‘Gearch Browse Setting
Vear seloct ¥ Language English % [Seerch] Atiangen search
Ganre select ¥ Calor Color ¥ Set Application
Parameters
Name Year Database imdb v
The Godfather 1872 Ranking Function none v
anking Function Imp tation | Single Result Int
The Shawshank Redemption 1994 Ranking Function Implementation | Single Result Inteface ¥
Mumber of Facet 1
The Godather. Part I 1974 ripshia
Fixed Facet? No >
The-Lord of the Rings: The Fellowship of the Ring am A
Uncertainty
Pulp Fiction 1994 Caugsa = -
The Lord of the Rings: The Retum of the King 03 N = =
One Flew Over the Cuckoo's Nest 1875 Diractor [0 %
Star Wars: Episode V- The Empire Strikes Back 1860 asr B T
Goodfellas 1990 Color a0 %
Star Wars 1977 =]
Pravious<< 1,23 45,6 >>Hex AAE,
----- Browse Setting
‘ HName Year Gemie Country Language Director
‘ The Godfather 1972 Drama LS4, Emglish Francis Ford Coppola
‘ The Shawshank Redamption 1994 Drama LSA Enyglish Frank Darabont
The Godfather Part il 1974 Thiller LISA English Francis Ford Coppaola
‘ Buong, il brutt, il caftio, I 1968 Aption italy Italian Sergio Leone
——— | Puip Fiction 1994 Crirne. usa Emnglish Cuentin T. ting
L¥ (B kaly (4) Iedia 21 France {2 Schindle 3 1953 Bioagraphy USA Enyglish Steven Spielbarg
3 gan (1) Kotea (1
L lagan l) Kamea ll) One Flew Ot the Guckoo's Nest 1975 Drams USA Enalizh Miles Forman
Language | alorwiars: Episode W - The Emaire Strkes Back logg Action LSa Englich lnvin Kgrehner

Figure 2.5. Screen shot of DynaCet GUI.

online over search results. Essentially, we build a pattes with a few “look ahead”
nodes and then stay in sync with the user while she is exgjahe partially constructed
tree. Each of these two above mentioned mode can also wodanjarection with a Rank-
ing component, where the Ranking module impossekeavover the user preferences for
the selected tuples. Different problem variants of Dyna@Getiésscussed in more detail in
[?].
Browse Only Mode: In this model, the user does not initiate the search with ayque
rather DynaCet will recommend facet(s) for her. Consequgeathger is showm different
facets, to which she responds by selecting a value from ortheofacet domain (or a
"don’t know”). Depending upon the user response, the nexvstacets are dynamically
suggested and the process repeats. The lower half of Figush8ws the interface from a
typical browsing session over IMDB using DynaCet.

This model takes the advantage of a pre-computed decistenand thus results

in good response time. We will also provide a comparativduesen of our proposed

43
solutions with some existing attribute selection techagjin the demonstration. The user

will be allowed to choose the-Facets or the Fixegh-Facets algorithm in this mode.
Search and Browse Modein this mode the user will be able to start the exploratiorsgha
by providing a query through the form interface. The uppérgart of Figure 2.5 shows
the interface for querying. The query form shows only a fetsitattes from among the
total set of attributes. A larger set can be seen by goirgdteanced Searchn the figure,
the user has asked for movies with Language="English” anaGtColor” which then
results in only three dynamically generated facets beingvato the user.

Faceted Search in Conjunction with Ranking Function: The user will have an option of
choosing an appropriate ranking function from the list cdilable ranking functions (pro-
vided as a drop-down list). A comparative cost evaluatiamvben our proposed solution

and a prior attribute ordering method [12] will also be shown

2.5 Evaluation

In this section we describe our experimental setup, oueidfit results of facet selec-
tion algorithms (without and in conjunction with rankingttions) and draw conclusions
on the quality and performance of the techniques. We vaditite quality of the our solu-
tions by measuringost which is defined as the average number of user interacti@ns (
number of attributes or facets selected) before the detipgd is identified. Experiments
evaluating the time complexity of the node creation stepofteee building algorithms
were also conducted. This measure is especially relevamixfdoratory interactive users
and hence a fast scalable implementation is desirable. da ttee trees can be built in a
preprocessing step, this measure is less critical. We alptemented several existing at-
tribute selection techniques to compare against our appesa Evaluation results clearly

show that our solutions perform significantly better.

44
All implementation is done using Java and C# and the evalwsgerformed on a

Windows XP machine with 3.0Ghz Intel Xeon processor and 2GB/RA

Database Used\We evaluated our methods using two data d81§B movie database-

a real world movie database accessible over the interneYaindo Auta§ a online used-
car listing database. Using the IMDB database, we genemt&dgle movie database
containing abouR34, 000 tuples with19 attributes including null values in some fields.
Similarly, we built a car database wit3 attributes and more that, 000 tuples. We also
generated a large synthetic dataset having nearly 10 milbavs and 100 attributes from
the car dataset by maintaining the original distributionhaf dataset.

Uncertainty Model: As we discussed in Section 2.2.2, we use external knowleblgeta
user uncertainty for ranking the attributes of our databas®r our evaluation, we orga-
nized a small survey amority) randomly selected users comprising students and faculty
members. In the survey, each person was asked to assignea(lvatween 0 to 1) for each
attribute in the IMDB movie database. This value denotedikieéhood (probability) with
which the user thinks she would be able to answer a questientbat attribute. We took
average probability scores for all attributes in our evidua Note that the question of
whether the survey accurately reflects the true uncertantgiel for the user population
at large is an orthogonal problem, and is not extremely agletor our purposes. The
survey was conducted merely to obtain uncertainty valuasate somewhat realistic for
the related domain. Developing techniques for ascertginicertainty values is a future

direction of research.

Shttp://www.imdb.com
“http://autos.yahoo.com

45
2.5.1 FSNoRank Experiments

In this set of experiments all tuples were considered egdakirable to the end user
as no ranking function was assumed. We conducted evalgaiiocheck the quality and

robustness of the algorithms we developed.

2.5.1.1 Quality Evaluation

In this subsection, we briefly explain the three differeralgy experiments we per-
formed and draw inferences. These experiments measurasdstfined in previous sec-
tion, which is the average number of queries that needs tmbe&ered before the user
arrives at a desired tuple (i.e., effort).

Cost versus varying attribute probability: The intrinsic assumption in our decision tree
modeling is the user’s inability to answer all the questiofiis experiment infers the

influence of the probability of an attribute in determinirgst

Probabllity Vs. Cost
2.5 -
2 .

w
8 1.5 4
14 —— Single Facet
0.5 4
—&— K-Facet
0 T T
p p+0.2 p+0.4 p+0.6 p+0.8

Probability

Figure 2.6. Change Of cost with varying probability.

As shown in Figure 2.6, we compare the cost of the SingletFsearch with the:-Facets
based search algorithm by varying the uncertainty modelounevaluation we set the

value ofk top = 2. We varied the probability of each attribute in incremerft.0 in this

46
experiment. As the graph suggests, with higher probakihty cost decreases for both the

algorithms. This observation corroborates our basic tiliuiof considering probability of
the attributes in the decision tree construction.

Cost versus varying database sizeln this set of experiments, we vary the database size
(auto database) and compare the costs of the Single-Fat¢h@ah-Facets based search
algorithms. As can be seen from Figure 2.7, the cost is moitdésSingle-Facet algorithm.
Also, in both cases, costs increase with increasing dataizas. The reason being, with an

increase in the number of tuples, more questions are needkstinguish them.

Algorithm Data Size | Data Size | Data Size Data Size Data Size
Naiia 10000 12000 15000 20000 25000
Single Facet Based 3.52 3.82 4.36 4.78 5.02
Method
K-Facet (K=2) Based 2.15 25 2.77 2.93 3.08
Method
Ambiguous Method 3.4 3.76 4.3 4.5 4.89
1D3 Classification 7.6 9.2 9.96 11.23 12.78
Categorical PCA 5.2 5.9 6.9 1.7 8.3

Figure 2.7. Change of cost with varying database size.

Comparing against existing techniques:We compared the cost of facets suggested by
our methods with that suggested using thdg() method developed in [20] (named as
Ambigous method in Figure 2.7, PCA for categorical data aed i3 classification algo-
rithm. Note that these three algorithms assume all value&raown to the user and so do
not have any provision for handlinghcertaintyin user response. Hence, these techniques
are principally different from our facet selection algbnts. Howeve, from Figure 2.7, it

is clear that the Indg() based method clearly outperformesifi8 and PCA. Since, both

Single-Facet and K-Facet algorithms are richer than Indg@ also show better perfor-

47
mance, we can therefore claim that our techniques are ltb#erexisting facet (attribute)

selection methods.

2.5.2 Performance Evaluation

We implemented the scalable Rainforest [21] framework tostrot the decision
tree. We vary two parameters (number of tuples and numbaétrafides) and measure the
average node creation time. As seen from the Figure 2.13 muild-2.12, average node
creation time increases with the increase of dataset sizit w\Ve point out that that the
objective of our decision tree is to distinguish each tuplefntrast to identifying a class
of tuples). Hence, the depth of this tree is much larger thambrmal decision trees used
for classification problems. Consequently, this leads tooagmional increase in creation
time.

Performance Evaluation Varying Attribute Size

(No Ranking Function)
30

25 1

20

15 A

10

| ----- s 1-FacetBasedAIgorilhm|
0 T T T T

43 50 60 70 80
No Of Attributes

Average Node Creation Time (Sec)

Figure 2.8. Change of average node creation time with vanyurgber of attributes.

48

70

Performance Varying Dataset Size

60

50 +

40 +

30 4

20+

10 A

Average Node Creation Time {Seconds)

‘---I-w 1-Facet Based Algorithm |
O T T
50k 100k 150k 200k 250k

Number Of Records

Figure 2.9. Change of average node creation time with vanyimgber of tuples.

2.5.3 FSRank Experiments

In this section, we explain our experiments on facet saladaigorithms in conjunc-
tion with ranking functions. We assume the presence of ackblaox” ranking function
which simply contributes skewness towards the preferemdapbes. Consequently, the
solution cost is computed as described in Section 2.3.

Ranking Function: Design of an efficient and effective ranking function is an or
thogonal research problem and is not our focus here. Fotigahpurposes, however, we
implement a simple ranking function where a tuplgets a score equal to the square of its
Euclidian distance from the centroid of the residual dagelgzartition. We further normal-
ize this squared distance to a non-uniform probabilityritigtion over the selected tuples,

such thatS(Q, t) represents the probability that tuples preferred by the user, and that
Zt selected by Q S(Q; t) - 1

49
2.5.3.1 Quality Evaluation

In this experiment, we compared the cost of our Single latarfalgorithm with the
existing rank based attribute selection technique [12]MDB data. As seen from the
Figure 2.10, our Single Interface facet selection techmigearforms better than existing

approach.

Single Tuple Interface Facet Selection Vs Attribute Ordering Problem
0.0012

0.001 -

0.0008 -

0.0006 -

Cost

0.0004 -

e Single Tuple Interface Facet Selection|

0.0002 - st Rank Based Aftribute Ordering

0

5000 7000 10000 12000 15000
No of Tuples

Figure 2.10. Comparison of Cost - Facet Selection and Atgiurdering Problem.

Next, we evaluate how (number of tuples are to be read before the pipelining inter-
face is terminated to make the selection of the attribufertd the quality of Approximate
FSRank Algorithm.We vary the parametehere. As expected, by decidimgn advance,
we lose quality (i.e., increase the average navigatior) esst trade off to the performance.
However, the navigation cost decreases @screases. An interesting problem here can
be to find an optimat value for a given dataset. This concludes our discussion on

experiments.

2.5.3.2 Performance Evaluation

As discussed earlier, we implement the scalable Rainfopdgtffamework to con-

struct the decision tree. We vary two parameters (numbeeadrds and number of at-

50

0.0014

Cost Varying Parameter r

0.0012 4

0.001 +

0.0008 +

Cost

0.0006 ~

0.0004 +

0.0002 ~

=== Approximate FSRank Algorithm

r=50 r=100 r=150 r=200 r=250
r

Figure 2.11. Change of Cost Varyimgn Approximate FSRank Algorithm.

tributes) and measure the average node creation time. Asfsae the Figures 2.13 and
2.12, average node creation time increases with the ineredataset size/ width. We
point out that that the objective of our decision tree is teeasially identify each tuple
unambiguously (in contrast to identifying a class of tuplddence, the depth of this tree
is much higher than the normal decision trees used for €leestson purposes in Machine

Learning problems.

Performance Evaluation Varying Attribute Size

(No Ranking Function)
30

25

20 -

15 4

10

| ----- il 1-Facet Based Algorithm
D T T T T

43 50 60 70 80
No Of Attributes

Average Node Creation Time (Sec)

Figure 2.12. Change of average node creation time varyingute size.

51

-1
(=)

Performance Varying Dataset Size

[=2]
(=)
1

w
o
L

=
o
L

w
o
L

[
o
L

-
o
I

Average Node Creation Time {Seconds)

‘---I-w 1-Facet Based Algorithm |

(=)

50k 100k 150k 200k 250k

Number Of Records

Figure 2.13. Change of average node creation time varyiragdasize.

Next, we vary database size and observe the performanceesf thfferent algo-
rithms. Performance is evaluated among the FSRank Full Stgorithm, the Exact FS-
Rank Algorithm and the Approximate FSRank=€ 100) Algorithm.

Figure 2.14 corroborates our claim - the average node oretithe can be signifi-
cantly improved in Exact FSRank Algorithm compared to the F&Haull Scan Algorithm.
The Approximate FSRank is the fastest, but it comes with aitogsality - the navigation

cost is sometimes more.

2.6 Related Work

The traditional design goal of faceted search interfac@s26, 2, 27, 28] is to offer
users a flexible navigational structure, targeted towasisand/or image data. There have
been recent efforts at creating a faceted search interfasestructured database, e.g., [29],
as well as heterogeneous collections [30]. The former i@y designed for specific
applications by domain experts. In our work, we aim to prepasiomain independent

solution for automatically generating facets. In [30], fbeus is on computing correlated

52

Performance Analysis
1200

—l—FSRank Full Scan Algorithm

1000 1) e Exact FSRank Algorithm

—&— Approximate FSRank Algorithm

800 A

600

400 -

IAverage Node Creation Time (in sec)l

200

0 @ —— — " 9
50k 100k 150k 200k

Number Of Tuples

Figure 2.14. Average Node Creation Time Varying Dataset.Size

facets and using them to aggregate and present relatechiation to the user. This appears
to be different from our problem, where the focus is minimufarédrill-down.

Our work bears resemblance to the problem of generatingraatio categorization
of query results [31]. Our developed approach differs frbm prior work along several
key dimensions: (a) our proposed approach considers anugrmodels, (b) our approach
is decision-tree based and depends on user interaction(¢padr algorithms can work in
conjunction with available ranking functions.

Decision trees and classidaformation Value Theor{32] are widely studied class
of techniques in machine learning [22]. However such mourkisiire explicit knowledge
of each of the user decision models which is not present immgel. A recent work [20]
uses decision trees for fast tuple identification in dateba®ur proposed decision tree
model captures user inability to answer certain attribagasell as the ability to incorporate
ranking functions, which marks the intrinsic differenceviaeen our approach and [20].

In this thesis we have attempted a mapping of the key ideaSAf[P3] to categorical

data, and have compared it against other approaches fotisgléacets.

53
Ranked retrieval in structured databases is an active seaea [16, 17, 18, 33].

Recent research effort address the problem of keyword-ls#sedh techniques in databases
combined with the power of aggregation in Online AnalytiPabcessing(OLAP) systems
[34]. This ranking metric is based upon “interestingnesatiributes. We propose an
effort-based strategy in our work for enabling tuple seaesid leverage external knowl-
edge in the form of uncertainty models and ranking functiolms[12], algorithms were
described that automatically select attributes of theltesfia ranking query. As discussed
in this thesis, while such attribute selection algorithras be used for faceted search, they
do not necessarily achieve our minimum effort goals.

Selecting the next facet based on a ranking function hasemtioms with automatic
guery expansion studies in IR ([35, 36]. At some level autierfacet selection may be
viewed as a similar problem, however while AQE techniquedangely empirical and tar-
get text collections, we make several new and importantitiutions involving structured
data, black box ranking functions, as well as scalable @lgos based on modern tdp-
concepts.

Our Fixedk-Facets Based Search Problem has similarities with theicégsoblem
of computing minimum and approximate keys and functiongktielencies of database re-
lations (see [37, 24]). Most problem variants are NP-comepland popular algorithms
are based on level-wise methods from data mining ([24]). él@# in our case the prob-
lem is complicated by the fact that attributes are assatiaith uncertainties, thus such

deterministic procedures appear difficult to generaliziaéoprobabilistic case.

2.7 Conclusion

In this thesis we tackle the problem of effective minimurfedfbased faceted search
within structured data warehouses of business organimtiour proposed technique uses

uncertainty models of attributes in the structured datapas well as leverages the exis-

54
tence of ranked-retrieval models, and our solution framiew®based on the novel tap-

approaches to efficient decision tree construction. As oturé work, we like to extend
these approaches to work for multi-table databases, desggnods for obtaining reliable
uncertainly models from external data sources, and leednaterogeneous data (e.g., text
as well as structured) as well as rich meta-data (e.g., ftedhhierarchies) that naturally
occur as part of modern data warehouses.

We also aim to explore other techniques, such as sampliagc#n assist in expe-
diting the response time of facet selection algorithms.hSechniques may be useful in
approximating domain information of the attributes in anpipled way, thus guaranteeing
a reduced CPU cost while suggesting facets to the user. Wedvatad like to perform a
comparative quality evaluation of these various proposetirtiques on a variety of real
world datasets. In the future, we would like to conduct usediss to obtain user evalua-

tions on our proposed speedup techniques.

CHAPTER 3

FACETEDPEDIA: DYNAMIC GENERATION OF QUERY-DEPENDENT FACETED
INTERFACES FOR WIKIPEDIA

3.1 Introduction

Wikipediahas become the largest encyclopedia ever created, wite wdsmillion
English articles by far. The prevalent manner in which thebWeers accesd/ikipedia
articles is keyword search. Keyword search has been efédatfinding specific Web pages
matching the keywords. Therefore it may well satisfy thersisehen they are causally
interested in a single topic and udékipediaas a dictionary or encyclopedia for that topic.
However,Wikipediahas now become a primary knowledge source for many casued use
and even an integral component in the knowledge managerysteinss of businesses for
decision making. It is thus typical for a user to explore asetlevant topics, instead of
targeting a particular topic, for more sophisticated infation discovery and exploratory
tasks. With only keyword search, one would have to digestpttentially long list of
search result articles, follow hyperlinks to connectectas, adjust the query and perform
multiple searches, and synthesize information manuallljis Procedure is often time-
consuming and error-prone.

One useful mechanism for information exploration is theeted interfaceor the
so-calledhierarchical faceted categorig$iFC) [1]. A faceted interface for a set of objects
is a set of category hierarchies, where each hierarchy smorels to an individudicet
(dimension, attribute, property) of the objects. The usar cavigate an individual facet
through its hierarchy of categories and ultimately a spetgtoperty” value if necessary,

thus reaching those objects associated with the categortbghe value on that facet. The

55

56

Faceted

s action film | search What kind of entities are you looking for: Film v
[Facets | Selected Categories:
- %
Film_production_companies_of_the_United_States [13] l|remove[Films_by_subgenre=Action films by genre =Science fiction action films j
20th Century Fox [8] Universal Studios [7
Metro-Goldwyn-Mayer [5] {Universal Studios} [4 e 5 =
Defunct American movie {Paramount Pictures} [2 Wlklpedla Articles
studios (3 Disney production studios [2; = R =
{20th Century Fox} [2 Lucasfilm [1] ® 13 Articles Selected
{Metro-Goldwyn-Mayer} [2] < -~ - "
S Crouching Tiger, Hidden Tshtﬂ";l ate f"l'“ "
_— e film was released in
_ Dragon . October, 1994 in the United
American_film_actors [A2] | | The martial arts and action sequences were States and released
{Harrison Ford} [6 {Sylvester Stallone} [3 choreographed by Yuen Wo Ping, ... After its internationally ... Stargate has
{Nicolas Cage} [2] {Adam Sandler} [2] US premiere at the Hawai International Film alPAA Rating of PG-13 for
{Sarah Michelle Gellar} [2] {Tom Cruise} [2 f'e!sﬂv\v/al, s sci-fi action violence. ...
{Brad Pitt} [2] {George Clooney} [2 TG wiopSca. 0.) hittp:len.wikipedia.org
{Madonna (entertainer)} [2 {Jodie Foster} [2 IwikilCrouching_Tiger,_Hidden_Dragon IwikilStargate_(film)
Seemore... Starship Troopers
) Independence Day (film) film
American_television_actors [12] | | The United States mitary originally intended ~~ The "”"dhad a Z“fg:’ i
American soap operaactors {Harrison Ford} [6] to provide personnel, vehicles, and costumes Zs;"gaﬁe ar °g" '3' on
@ Sarah Michelle Gellar} [2] for the film; however, they backed out when olars and grossed over.
3 - the producers 120 million as a celebration
{Sylvester Stallone} [3; Brad Pitt} [2] P rs .. f i 5
i hittp://en wikipedia.or of fascism, or as a simple
{George Clooney} [2] {Jim Carrey} [2 Rt I g ction fil
{Adam Sandler} [2] {Eliiah Wood} (1] Iwikilndependence_Day_(film) SOOI e
Brad Dourifh [1] http:/len.wikipedia.org
{Brad Dourif} [1] IwikilStarship_Troopers_(film)
See more... 5
J Troy (film) J

Figure 3.1. The faceted retrieval interfaceFaicetedpedia

user navigates multiple facets and the intersection oftilke@n objects on individual facets
are brought to the user’s attention. The procedure heneentdss repeated constructions
of conjunctive queries with selection conditions on muétigimensions.

In this paper we propodéacetedpedig a faceted retrieval system which is capable
of dynamically generating query-dependent facets for ak@fikipediaarticles. We use
the following example to further illustrate.

Example 1(Motivating Example) Imagine that a user is exploring information about ac-
tion films. TheFacetedpedidaystem takes a keyword query, say, “us action film”, as the
input and obtains a ranked list of search result articleswill create a faceted interface,
as shown in Figure 3.1. The system dynamically deriviegets (region (A)) for covering
the tops result articles. For instance, for “us action film”, thesendensions (facets) can
include Companies, Actors, and so on. Each facet is assacvaitl a hierarchy of cate-

gories. Each article can be assigned to the nodes in thesarbiges, with each assignment

thttp://idir.uta. edu/ facet edpedi a/

57
representing an attribute value of the article. On each fattee user can navigate through

the category path which is formed by parent-child relatiapstof Wikipediacategories?
The interface also shows the navigation paths (region (Bg) amicle titles (region (C)).
When the user clicks one article title, the correspondigipediaarticle would be shown.
(This part of the interface is omitted.)

Here in Figure 3.1 we only show three facets from the generatedface in region
(A): (1) Film_productioncompaniesof the United _States; (2) Americafilm_actors; (3)
Americantelevisionactors. When the user selects any facet items for navigatioae-
gion (A), a user navigational path is added in region (B). éle&e show only one path:
Films_by subgenre-Action films by genre>Sciencefiction action films, which means the
user selected facet root Filmby subgenre, then its subcategory Actifiims by genre,
and the subcategory of subcategory, Scieficton action films. There are thirteen arti-
cles satisfying the chosen navigational paths, and theglaogvn in region (C). In this way,

the user filters the large number of result articles and firflese matching her interests.

3.1.1 Overview of Challenges and Solutions

We study the problem of dynamic discovery of query-depentiaeted interfaces.
Given the set of top-rankedWikipediaarticles as the result of a keyword search query,
Facetedpedigroduces an interface of multiple facets for exploring th&utt articles.

We focus orautomaticanddynamicfaceted interfaces. The facets could not be pre-
computed due to the query-dependent nature of the systeapplications where faceted
interfaces are deployed for relational tuples or schenadlable objects, the tuples/objects
are captured by prescribed schemata with clearly definedrtiians (attributes), therefore

a query-independent static faceted interface (either aignar automatically generated)

2A Wikipediaarticle may belong to one or more categories. These cagsyare listed at the bottom of

the article.

58
may suffice. By contrast, the articles\ikipediaare lacking such pre-determined dimen-

sions that could fit all possible dynamic query results. &fae efforts on static facets
would be futile. Even if the facets can be pre-computed fones@opular queries, say,
based on query logs, the computation must be automatic amahtug. Given the sheer
size and complexity oWikipediaand its rapid growth, a manual approach would be pro-
hibitively time-consuming and cannot scale to stay updted The main challenges in
realizingFacetedpediare summarized as follows:

Challenge 1: The facets and their category hierarchies are rigeadily available.

The concept of faceted interface is built upon two pillaecetts (i.e., dimensions or
attributes) and the category hierarchy associated with faet. The definition of “facet”
itself for Wikipediadoes not arise automatically, leaving alone the discovégy faceted
interface. Therefore we must answer two questionsfgdgt identificatior What are the
facets of aWikipediaarticle?; and (2hierarchy construction Where does the category
hierarchy of a facet come from?

Challenge 2: We need metrics for measuring the “goodness” dacets both individu-
ally and collectively.

We need to find facets useful for user navigation. A goodnessicrfor ranking the
facets is needed. The problem gets even more complex betteusiilities of multiple
facets do not necessarily build up linearly— Since the facean interface should ideally
describe diverse aspects of the result articles, a set ofidclly “good” facets may not
be “good” collectively.

Challenge 3: We must design efficient faceted interface disgery algorithms based
on the ranking criteria.

Itis infeasible to directly apply the ranking metric exhewedy on all possible choices,
due to the large search space. Furthermore, the interadietwveen the facets in a faceted

interface make the computation of its exact cost intraetaBiven computing the costs of

59
individual facets without considering the interactionsi@-trivial, given the size and the

complexity ofWikipedia

3.1.2 Summary of Contributions and Outline

e Concept: FacetedWikipedia. We propose an automatic and dynamic faceted retrieval
system forWikipedia To the best of our knowledge, this is the first system of itslki
The key philosophy of our approach is to exploit collabaatrocabulary as the back-
bone of faceted interfaces. (Section 3.3)

e Metrics: Facet Ranking. Based on a user navigation model, we propose metrics for
measuring the “goodness” of facets, both individually aaliectively. (Section 3.4)

e Algorithms: Faceted Interface Discovery We develop effective and efficient algo-
rithms for discovering faceted interfaces in the large deapace. (Section 6.3)

e System Evaluation: Facetedpedia. We conducted user study to evaluate the effective-
ness of the system and to compare with alternative appreadie also measured its

guality and efficiency quantitatively. (Section 6.6)

3.2 Faceted Retrieval Systems: A Comparative Study

Faceted interface has become influential over the last fansyend we have seen an
explosive growth of interests in its application [38, 3939, 1, 40, 41, 42, 43, 44, 45, 46,
47]. Commercial faceted search systems have been adoptezhtgrg (such aBndeca
IBM, andMercadq, as well as E-commerce Websites (eaBay.comAmazon.com The
utility of faceted interfaces was investigated in variotslges [38, 1, 48, 39, 49, 48, 50,
1], where it was shown that users engaged in exploratorystaftken prefer such result
grouping over simple ranked result list (commonly provitdgdsearch engines), as well as

over alternative ways of organizing retrieval results hsas clustering [51, 52, 49].

60

2 |oue <
o Facetedpe S 2 Facetedpedi
c:[3,7,17 g2 P
ge ol S: B 6] e
§ 16l 5
g 8] z.| 8] :
c 3 o
S5 [5.6] 53
3 . 283,271 [7]
[15] ndeca, [15]*
structured) text predefined automatically discovere
types of dimensions facet identification

() (b)

The work does not support hierarchy on facets.

Figure 3.2. Taxonomies of faceted retrieval systems, (@fF&pes and semantics,
(b)Automation and dynamism.

In this section we present taxonomies to characterize tlegamet faceted retrieval
systems and compare them withcetedpediaExisting research prototypes or commercial
faceted retrieval systems mostly cannot be applied to meejaals, because they either are
based on manual or static facet construction, or are foctstred records or text collections
with prescribed metadata. Very few have investigated tbhblpm of dynamic discovery of
both facet dimensions and their associated category hlees:

To the best of our knowledge, we are the first to propose a eiegpgndent faceted
retrieval system fowikipedia CompleteSearc}b3] supports query completions and query
refinement inVikipediaby a special type of “facets” on three dimensions that arg g
ferent from our notion of general facets: query completimasching the query terms; cate-
gory names matching the query terms; and categories ot @masicles. Recently, a faceted
Wikipediasearch interface came out of tBBPedia[54] project around the same time

as our work. The facets there appear to be query-indepdgdetitacted from common

61
Wikipediainfobox attributes, although the underlying method rersambe proprietary at

this moment.
Figure 3.2(a): Taxonomy by Facet Types and Semantics

Previous systems roughly belong to two groups on this asp@csome systems
the facets are on relational data (elgndeca Mercadq [44]) or structured attributes in
schemata (e.g., [39, 46, 47]) and the hierarchies on atitrNmlues are predefined based on
domain-specific taxonomies. The hierarchies could even deually created, thus could
contain rich semantic information. In some other systemacetfis a group of textual
terms, over which the hierarchy is built upon thesaurug#4S-A relationships (e.g., [40])
or frequency-based subsumption relationships betweeargeand specific terms (e.g.,
[41, 42]). These systems cannot leverage as much semafatimetion. The work [45] is
in the middle of Figure 3.2(a) since it has both structuredatisions and a subsumption-
based topic taxonomy.

In contrastFacetedpedi@nables semantic-rich facet hierarchies (distilled from
Wikipediacategory system) over text attributes (hyperlink&tkipediaarticle titles). In
the absence of predefined schemata, it builds facet hieearelith abundant semantic in-
formation from the collaborative vocabulary, instead dyireg on IS-A or subsumption
relationships.

Figure 3.2(b): Taxonomy by Degree of Automation and Dynamish

When building the two pillars in a faceted interface, namb#/facet and the hierar-
chy, Facetedpedias both automatic and dynamic, as motivated in Section 3.01 this
aspect, none of the existing systems could be effectivghiegbin place ofFacetedpedia
because none is fully automatic in both facet identificadiod hierarchy construction.

In some systems (e.g=ndecaMercadq [44, 47, 39, 46]) the dimensions and hier-
archies are predefined, therefore they do not discover tetd@r construct the hierarchy.

In [46, 44] a subset of interesting/important facets arematically selected from the pre-

62
defined ones. In [41, 42] the set of facets are predefinedhbutierarchies are automat-

ically created based on subsumption. In [45] only one spémiat (a topic taxonomy) is
automatically generated and the rest are predefined.

With respect to the automation of faceted interface disgowbe closest work to
ours is theCastanetalgorithm [40]. The algorithm is intended for short textdascrip-
tions with limited vocabularies in a specific domain. It antdically creates facets from a
collection of items (e.g., recipes). The hierarchies fa thultiple facets are obtained by
first generating a single taxonomy of terms by IS-A relatiops and then removing the

root from the taxonomy.

3.3 Faceted Interface for Wikipedia by Collaborative Vodabu

In discovering faceted interfaces f@vikipedig the basis of our approach is to ex-
ploit its user-generatecbllaborative vocabularguch as the “grassroots” category system.
Even internaWikipediahyperlinks are an instance of collaborative vocabularybncader
sense, as they indicate the users’ collaborative endorgesheclationships between enti-
ties. The collaborative vocabulary represents the colleattelligence of many users and
rich semantic information, and thus constitutes the promgibasis for faceted interfaces.
With regard tothe concept of facet dimensionthe Wikipediaarticles hyperlinked from
a search result article are exploited as its attributes. fabiethat the authors of an arti-
cle collaboratively made hyperlinks to other articles igradication of the significance of
the linked articles in describing the given article. Thiswilargely enriches the semantic
information associated with the result articles. With relge the concept of category
hierarchy, theWikipediacategory system provides the category-subcategoryaekdtips

between categories, allowing users to go from general toifspevhen specifying con-

63

supercategory

category of
attribute article

attribute article
(hyperlinked fron
target article)

target article

Figure 3.3. The concept of facet.

ditions. We now formally define the concepts in our framewankl deliver the problem
specification.

Definition 1 (Target Article, Attribute Article) Given a keyword query, the set of top-
s rankedWikipedia articles, 7={py, ..., ps}, are thetarget articlef q. Given a target
article p, eachWikipedia article p’ that is hyperlinked fronp is an attribute articleof
p. This relationship is represented a$s < p. Given7, the set of attribute articles is
A={p},....,p.,}, where eaclp; is an attribute article of at least one target articlec7 .
Definition 2 (Category Hierarchy)Wikipedia category hierarchig a connected, rooted
directed acyclic graplH(r«, Cy, £x), where the node sé€y,={c} is the set of categories
and the edge seét,= {c--+¢'} is the set of category)-subcategory() relationships. The
root category ofH, 74, iS Category:Fundamenta?

Definition 3 (Facet) AfacetF(r,Cr, £x) is a rooted and connected subgraph of the cate-
gory hierarchyH (4, Cy, Ex), WhereCxCCyy, E£CEy, andreCy is the root of F.
Example 2 (Running Example)In Figure 3.3 there are target articles f1, ..., p;) and

9 attribute articles f, ..., py). The category hierarchy has! categories ¢, ..., c14).
The figure highlight$ facets ¢, ..., 75, and F}). For instance,F; is rooted atc, and

consists oB categories ¢z, c7, cg) and2 edges ¢;--+c7, co--+cg). There are many more

%htt p: // en. w ki pedi a. or g/ wi ki / Cat egor y: Fundanent al

64
facets since every rooted and connected subgraph of tharbieris a facet. Note that the

figure may give the impression that edges such,as-+c;4 and c;=p) are unnecessary
since there is only one choice undgr and c;, respectively. The example is small due to
space limitations. Such single outgoing edge is very rarthéreal Wikipedia category
hierarchy. We will use Figure 3.3 as the running example tghmut the paper.

The categories in the facet careach’ the target article§ through attribute articles
A. That is, by following the category-subcategory hierarohyhe facet, we could find a
category, then find an attribute article belonging to thegaty, and finally find the target
articles that have the attribute. These target articlesatedreachable target articlesA
facetis asafe reaching faceat VceCy, there exists a target articte=7 such that reaches
p, i.e., there exists--»...=p’«p, a navigational path of, starting fromc, that reacheg.
In order to capture the notion of “reach”, we formally defirevigational pathas follows.
Definition 4 (Navigational Path)With respect to the target articlés, the attribute articles
A, and a facetF(r,Cr, £x), anavigational patlin F is a sequence,--»...--s¢,=p'«p,

where,
o for 1<i<t, ¢;€Cr, i.e.,c; IS a category inF;
o for 1<i<t—1, ¢;--+¢;11€EF, 1.€.,¢;11 IS a subcategory af; (in category hierarchyH)
and that category-subcategory relationship is kepfin
e p'€A, andc, is a category of (represented ag, = p');

e pc7, andy’ is an attribute article op (i.e., there is a hyperlink — p/).
Given a navigational path;--+...--+¢,=p'<p, we say that the corresponding cat-
egory pathe;--»...--»¢; reachegarget articlep through attribute articlep’, and we also
say that category; (for any 1<i<t) reache% throughyp'. Interchangeably we say is

reachabldrom ¢; (for any 1<i<t).
Definition 5 (Faceted Interface)Given a keyword query, a faceted interfacé={F;} is

a set of safe reaching facets of the target articlesThat is,v.F;€1, F; safely reache§ .

65

Example 3 (Navigational Path and Faceted InterfacEpntinue the running example. In
Figure 3.3, I={F,, F;} is a 2-facet interface. Two examples of navigational paths are
Co--+cg=>phy—ps and cs--+c13=py«—ps. However{F;, Fs} is not a valid faceted inter-

face becausé is not a safe reaching facet, as categogyannot reach any target articles.
Based on the formal definitions, tRaceted Interface Discovery Problenis: Given

the category hierarchyt(r+, Cy, Ex), for a keyword query and its resulting target articles
7 and corresponding attribute articlds find the “best” faceted interface withfacets. We

shall develop the notion of “best” in Section 3.4.

3.4 Facet Ranking

The search space of the faceted interface discovery proislgmohibitively large.
Given the set of targetWikipediaarticles to a keyword query,, there are a large number
of attribute articles which in turn have many categoriegeaiséed with complex hierarchi-
cal relationships. To just give a sense of the scal&Vikipediathere are about million
English articles with hundreds of millions of internal IsmkThe category systefi{ con-
tains close to half a million categories and several millkategory-subcategory relation-
ships. By definition, any rooted and connected subgrapH tfiat safely reache® is a
candidate facet, and any combinationkofacets would be a candidate faceted interface.
Given the large space, we need ranking metrics for measthmaggoodness” of facets,
both individually and collectively as interfaces.

Given that a faceted interface is for a user to navigate titréle associated category
hierarchies and ultimately reaching the target articless natural to rank the interfaces

by the user’s navigational cost, i.e., the amount of effordartaken by the user during

navigation.* The “best”k-facet interface is the one with the smallest cost. Theecfsr

the basis of such ranking metrics, we model users’ navigatibehaviors as follows.
User Navigation Model: A user navigates multiple facets inkafacet interface. At the

beginning, the navigation starts from the roots of all thiacets. At each step, the user
picks one facet and examines the set of subcategories laleadh the current category

on that facet. She follows one subcategory to further go dtivencategory hierarchy.

Alternatively the user may select one of the attribute kticeachable from the current
category. The selections made on thiacets together form a conjunctive query. After the
selection at each step, the list of target articles thasfyatie conjunctive query are brought
to the user. The navigation terminates when the user dethdeshe has seen desirable

target articles.

Example 4(Navigation in Faceted Interfaceontinue the running example in Figure 3.3.
Consider a faceted interface={F,, F5}. A sequence of navigational steps on this inter-
face are in Figure 3.4. At the beginning, the user has notcseteany facet to explore,
therefore all7 target articles are available (step 1). Once the user dexigeexploref;
which starts from,, p; is filtered out since it is unreachable froff;, (step 2). The user
then selectss, which further removes; from consideration (step 3). After the user further
exploresF, by choosings (step 4)1; is not a choice undet; anymore because no target

articles could be reached by both--+cg and c5--+c;;. The user continues to explore

4 [44] also selects facets based on navigational costs,wgjththeir system is of a different nature, as

discussed in Section 3.2.

67

F5 by choosing: 3 (step 5), which removes, and also trims down the satisfactory target
articles to{ps}. The user may decide she has seen desirable articles andhthigation

stops.

3.4.1 Single-Facet Ranking

In this section we focus on how to measure the costs of fandtgidually. Based
on the navigational model, we compute the navigational cbatfacet as the average cost
of its navigational paths. Intuitively a low-cost path,.j.a path that demands small user
effort, should have a small number of steps and at each stgpemuire the user to browse
a small number of choices. Therefore, we formally define s of a navigational path
as the summation of the fan-outs (i.e., the number of chpatesvery step, in logarithmic
form.®
Definition 6 (Cost of Navigational Path)With respect to the target articles, the corre-
sponding attribute articlesd, and a facetF(r,Cx, £), the cost of a navigational path in
Fis

cost(l) = logy(fanout(p))) + > loga(fanout(c)) (3.1)

wherel=c;--»...--»¢;=p' .

In Formula 3.1, fanout(p') is the number of (directly) reachable target articles

through the attribute article’,
fanout(y) = |T/| (3.2)

Ty ={plp € T Ap — p/(i.e.,3 a hyperlink fromp to p’) } (3.3)
In Formula 3.1,fanout(c) is the fanout of categoryin F,

fanout(c) = | Al + |Ce| (3.4)

5The intuition behind the logarithmic form is: When presentéth a number of choices, the user does

not necessarily scan through the choices linearly but byarbpisearch.

68
whereA. is the set of attribute articles belonging ¢p

A.={p'lp e Anc=p'} (3.5)

andC. is the set of subcategories oin F,

Co={d|d eCrnc--+c €&F} (3.6)

Note that we made several assumptions for simplicity of tbdeh The cost formula
only captures the “browsing” cost. A full-fledged formulawld need to incorporate other
costs, such as the “clicking” cost in selecting a choice &edcost of “backward” naviga-
tion when the user decides to change a previous selectiothefmore, we assume the user
always completes the navigational path till reaching tingetiaarticles. In reality, however,
the user may stop in the middle when she already finds desieahtles reachable from
the current selection of category. We leave the investigaii more sophisticated models
to future study.

Example 5(Cost of Navigational Path)\We continue the running example.
Givenl=c;--»c12=p5+—Dps, @ Navigational path of; in Figure 3.3,
cost(l)= fanout(cs)+ fanout(ci2)+ fanout(py)

=logs(3)+loga(2)+1ogs(3)=4.17
Albeit the basis of our facet ranking metrics, the definitmimavigational cost is

not sufficient in measuring the goodness of a facet. It doésosider such a scenario
that a facet cannot fully reach all the target articles, Wipcesents an unsatisfactory user
experience. In fact, low-cost and high-coverage could lmedualities that compete with
each other. On the one hand, a low-cost facet could be oneetiaies only a small portion
of the target articles. On the other hand, a comprehensoet faith high coverage may
tend to be wider and deeper, thus more costly. Therefore vt imeorporate into the cost
formula the notion of “coverage”, i.e., the ability of a fa¢e reach as many target articles

as possible. To combine navigational cost with coveragegemalize a facet by associating

69

Fl (Figure 3) ‘T[_‘:7 3 e, COSCF1,) = 34873 cosU(F) =4.982

F, ‘TFJ:(’ F3 ‘7}‘:6 F, ‘TFA‘:S F5 (T|=6
ZPEThcost(F:,p):lﬁ EPETF cost(Fs, p)=19.51 ZI)ET“COSI(F,‘])):II]SS ZPGTF_cost(Fs,p):MJSS
cost(F,)=3.286 cost(F;) =3.787 cost(F,) =3.679] cost(Fs)=3.394

Figure 3.5. Navigational costs of facets.

a high-cospseudo pathvith each unreachable article. We then define the cost ofed e

the average cost in reaching each target article.

Definition 7 (Cost of Facet) With respect to the target articleg, the cost of a safe
reaching facetF(r,Cr, £x), cost(F,), is the average cost in reaching each target arti-
cle. The cost for a reachable target article is the averagst @ the navigational paths
that start fromr and reach the target, and the cost for an unreachable tageat pseudo

costpenalty.

1
cost(F,) = 7 X (Z cost(Fy,p) + penalty x |T — T,|) (3.7)
p€eT:

wherecost(F,, p) is the average cost of reachipgromr,

cost(Fr,p) = ll X Zcost(l) (3.8)
P

l€l,,

wherel, is the set of navigational paths if that reachp fromr,
L={ll=r--..=p «p} (3.9)

In Formula 3.7 penalty is the cost of the aforementioned expensive pseudo path that
“reaches” the unreachable target articles, Ze-; 7., for penalizing a facet for not reaching
them. Its value is empirically selected (Section 6.6) anak ieast larger than the highest
cost of any path to a reachable target article.

Example 6(Cost of Facet)We continue the running example. Figure 3.5 shows the costs of

the 5 highlighted facets in Figure 3.3, together with their cataghierarchies and reach-

70

© 1={F,F [

(b) 1={F »,F3}

Figure 3.6. The sequences of navigational steps.

able attribute and target articles. It does not shdw which is Figure 3.3 itself exclud-
ing cg. The costs of facets are obtained by Formula 3.7, withalty="7. cost(F3)=

% X (ZPE{phpz 3P4 ,p5,p6}005t(}—2’ p)

+penaltyx|T—Tx,|)= 1 x(16+7x1)=3.286. F, and F; achieve lower costs than other
facets. Even though the paths/f are cheap,F, has higher cost due to the penalty for
unreachable target articlep§ andp;). F; is even more costly due to its wider and deeper

hierarchy, although it reaches all target articles.

3.4.2 Multi-Facet Ranking

Even with the cost metrics for individual facets, measuring “goodness” of a
faceted interface, i.e., a set of facets, is not straightod. This is because the bésfacet
interface may not be simply the cheapgdtcets. The reason is that when the user nav-
igates multiple facets, the selection made at one facetrhpaat on the available choices
on other facets, as illustrated by Example 4.

To directly follow the approach of ranking faceted intedady navigational cost, in
principle we could represent the navigational steps oniplelfacets as if the navigation
is on one“integrated” facet To illustrate, consider the navigation or2dacet interface
I={F,, F5} from Figure 3.3. Two possible sequences of navigationgisstee shown in

Figure 3.6(a). One is,, cs, cs, c13, Py, Ps, P5, Which are the steps taken by the user in
g 91 D3

71

Figure 3.4, followed by choosing,, p;, and finallyps. (Remember, for simplification of
the model, we assumed that the user will always completegatwnal paths till reaching
the target articles.) At each step, the available choiaes fvoth facets are put together as
the choices in the “integrated” facet. Note that afteis chosen¢;, andc,3 are still valid
choices but:; is not available anymore becausg cannot reach the target articles that
cs reaches. For the same reason, afteris chosenyy, is still a valid choice bupy, is not
anymore. The other highlighted sequencesis: i, c2, c7, P!, c14, D, 1. There are many
more possible sequences not shown in the figure due to spaitations.

With the concept of “integrated” facet, one may immediatghply Definition 7 to
define the cost of a faceted interface. That entails comguwlhpossible sequences of
interleaving navigational steps across all the facetsanrtterface. The interaction between
facets is query- and data-dependent, rendering such e@xlegsmputation practically
infeasible.

However, the “integrated” facet does shed light on what heeaharacteristics of
good faceted interfaces. In general an interface shoulthohtde two facets that overlap
much. Imagine a special case when two facets form a subsumgiationship, i.e., the
root of one facet is a supercategory of the other root. Pteggphboth facets would not
be desirable since they overlap significantly, thus canapture the expected properties
of reaching target articles through different dimensiofis.a concrete example, consider
the navigational steps of, and 73 in Figure 3.6(b). After the user selects from F,
and thenc; from F3, the available choices beconje;, cs, co}, which all come from the
“dimension”, F3. The same happens if the user selegtand thern:,.

Based on the above observation, we propose to capture tHapweéthek facets by
their average pair-wise similarity The pair-wise similarity of two facets is the degree of

overlap of their category hierarchies and associatedaté&iarticles, defined below.

72
Definition 8 (Average Similarity oft-Facet Interface)The average pair-wise similarity of

a k-facet interface is

Zl§i<j§k sim(F;, Fj)

sim(Z ={F1, ..., Fr}) = Kk —1)/2 , (3.10)
wheresim(F;, F,) is defined by the Jaccard coefficient,
Cr,NCx, : .
sim(Fo, F;) = ICr NCx |+ [Ax N Az (3.11)

—Cr UCE| + [Ar U Ax|
whereCg, is the set of categories if; (Definition 3) andA, is the set of attribute articles
reachable froniF;,
Az, ={p'lp) € ANTc €Cx, st.c=p'} (3.12)
We choose Jaccard coefficient since it is one of the simpétsimilarity measures.
While more complex measures that give different weights tesdigher in the hierarchy

are possible, we do not follow that in the interest of simiptic

Example 7(Similarity of Facets) Consider facets, . . ., F5 in Figure 3.3.sim/(Fs, F3)=

|C]:2 n C]:3 |+|-A.F2 ﬂ -A}-3 |

IC.7:2 U CJ:S |+|A.7'_2 U Ang |

_ [{e7,cs}+{P}.p5.P5}
[{c2,¢7,¢8,¢3,¢9 }+{P} 505,04 }

same way. The average pari-wise similaritylef{ F,, F3, Fs } is sim(Z) = (sim(Fz, F3)

=5/9. Other pair-wise similarities can be computed in the

-+ Si??l(fz,fg,) + Slm(fg,fg)))/g = 5/27

We do not design a single function to combine the averagewiae similarity of a
faceted interface with its navigational cost, since th@yeesent two measures with different
natures. Instead, in Section 3.5.3 we discuss how to sdadphtce of candidate interfaces

by considering both measures.

3.5 Algorithms
A straightforward approach for faceted interface discgverto enumerate all pos-
sible k-facet interfaces with respect to the category hierarehgnd apply the ranking

metrics directly to find the best interface. Such @&eamethod results in the exhaustive

73
examination of all possible combinations /ofnstances of all possible facets, i.e., rooted

and connected subgraphs&t Clearly it is a prohibitively large search space, given the
sheer size and complexity d¥ikipedia The nave technique would be extremely costly.
Therefore finding the begtfacet interface is a challenging optimization problem.

Our k-facet discovery algorithm hinges on (1) reducing the deapace; and (2)

searching the space effectively and efficiently.
Reducing the Search Spadéhere are two search spaces in finding a godalcet interface:

the space of facets and the spacekdhcet interfaces, which are sets bffacets. To

reduce the space of candidate facets, we focus on a subde¢ shte reaching facets,
RCH-induced facets, which are the facets that contain all tteeel®ant categories of
their roots (Section 3.5.1). To further reduce the spaceacdted interfaces, we rank the
facets individually by their navigational costs (Sectiob.3) and only consider the top

ranked facets that do not subsume each other (Section.3.5.3)
Searching the Spacénstead of exhaustively examining all possible interfacee design

a hill-climbing based heuristic algorithm to look for a lbcgtimum (Section 3.5.3). To
further tackle the challenge of modeling the interactioimoltiple facets in measuring the
cost of an interface, the hill climbing algorithm optimiZes both the average navigational
cost and the pair-wise similarity of the facets.

Our k-facet discovery algorithm is outlined as three steps: ttaoson of relevant

category hierarchy, ranking single facet, and searching-facet interface.

3.5.1 Relevant Category Hierarchy (Algorithm 3)
By Definition 5, the facets in a faceted interface must be sadehing facets, i.e.,
they do not contain “dead end” categories that cannot reaghaaget articles. Therefore

the categories appearing in any safe reaching facet coujdamme from therelevant

74
category hierarchy(RCH), which is a subgraph of th@/ikipediacategory hierarchy+,

defined below.

Definition 9 (Relevant Category Hierarchylsiven the category hierarchyt (4, C, Ex),
the target articles/, and the attribute articlesl, therelevant category hierarciffRCH) of
7T is a subgraph of{. Given any category iRCH, it is either directly a category of some
attribute articlep’e.A or a super-category or ancestor of such categories. Thestsean
edge (category-subcategory relationship) between two oategyin RCH if the same edge

exists inH. By this definition the root of{ is also the root ofRCH.
The procedural algorithm for gettifRCH is in Algorithm 3. Based on definition,

straightforwardly we could prove every safe reaching fadfethe target article§ is a
(rooted and connected) subgrapfH. However, not every rooted and connected sub-
graph of RCH is a safe reaching facet. Therefore, even tho®gl{ is much smaller
than, the search space is still very large which needs us to fusimenk the space by

considering only one type of safe reaching facets;R8&{-induced facets
Definition 10 (RCH-Induced Facet)Given the relevant category hierarctRCH of the

target articles7, a facetF(r, C,£x) is RCH-inducedif it is a rooted induced subgraph
of RCH, i.e., inF all the descendants of the roptand their category-subcategory rela-

tionships are retained frolRCH.
Example 8(RC'H andRCH-Induced Facet)Continue the running example. In Figure 3.3,

the RC'H contains all the categories in the category hierardiyexceptcs (and thus the
edgecy--+¢g), Sincecg cannot reach any target articler; is an RCH-induced facet, but

would not be if it does not contaitz (or cg).

Note that everyRCH-induced facet is safe reaching, and the single-facet ngrdmd

searching for k-facet are performed on it.

75

Algorithm 3: Construct RCH and Get Attribute Articles

10

11

12

13

14

15

16

Input: 7 target articlesH: category hierarchy.

Output: A:attribute articlesRCH:relevant category hierarchy.

/| get attribute articles.
A—0; Cren—0; Erer—0
foreachp € 7 do
foreachp — p’, i.e., a hyperlink fromp to p’ do
A—Au{p'}
/| start from the categories of attribute articles.
foreachp’ € A do
foreachc = p/, i.e., a category of’ do
Crer < Crer U {c}
/'l recursively obtain the supercategories.
C—Cren; C' 0
while C is not emptydo
foreachc € C do
foreachc’ --+ c € &4 do
Eren — Eren U{c --» c}
if ¢ ¢ Crex then
Crem — Cren U{c'} C" = C'U{}
C—C;C <0

return A and RCH(rs, Crer, Ercr)

76

Algorithm 4 : Facet Ranking

Input: 7 :targetsA:attributes;RCH:relevant category hierarchy.

Output: Z,: topn RCH-induced facets with smallest costs.

/'l getreachable target articles for each attribute article.
1 foreachp’eA do
2 Ty — {plp € T A3 p — p’ (hyperlink fromp to p’) }
3 fanout(p) — |Ty|
4 initialize visited(r) to be False for everyr € Cren-
5 ComputeCost(ry) /| recursively compute the costs of all tRe H-induced facets, starting

from the root ofRCH.
6 Z,+ the topn RCH-induced facets with the smallest costs.

7 return Z,,

77

Algorithm 5: ComputeCost(r)

10

11

12

13

14

15

16

Input: r: the root of arlRCH-induced facet.
Output: cost(F,): cost of F,; cost(F,, p): average cost of reaching target artiplrom F,.;
pathent(F,., p): number of navigational paths reachingrom F,.; 7,.: reachable target

articles ofr.

if visited(r) then
return

visited(r) « True;

Cr—{c|r --» c € Eren} /1 subcategories of.
foreachc € C,. do

ComputeCost(c)

A—{p'lp' € ANr=p'}] attribute articles belong to.
Fanout(r)— | A,| + .|
Tr— (Upea, Ty) U(Ucee, 7c) I reachable target articles.
foreachp € 7,. do
pathent(F, p)— {p'|p'€Ar,p€Tp }+) e, pathent(Fe,p)
costi— e v per, (10g2(fanout(r)) + loga(fanout(p')))
costa— 3 cc (loga(fanout(r))+cost(Fe, p)) X pathent(Fe, p)

cost(fr)HZpeTr cost(Fy,p)+penaltyx|T — T,|

return

78

Algorithm 6 : Facet Selection
Input: Z,: the topn RCH-induced facets with the smallest costs.

Output: Zj: a discovered faceted interface witHacets {<n).

/| remove subsumed facets frafp

1 L, «{F.|}F. € I, stF,is subsumed by, i.e.,cis a descendant category &t

/1 hill climbing

2) < arandomk-facet subsetaf,,-; Z' «+ Z,,- \Zx

3 repeat
5 makeZ,=<Z[1],...,Zx[k]> sorted in increasing order of cost.
6 makeZ’'=<7'[1],...,Z'[n—k]> sorted in increasing order of cost

7 for i = kto1step—1do

8 for j =1ton—kdo

9 Znew—(Te\{Zxli]}) U{Z'[5]}

10 SlHch,fc/GIn,w,fe#fc/ sim(Fe, Fer)

11 Ci> 5 c1,.. CoSt(Fe)

12 S22 5, FueTy Forp o ST Fes Fer)

13 Co—=) 5 ez, cost(Fe)

14 if (S1<S; and Cy<Cs) or (S1<Sy and C1<(C5) then
15 Tk Tnew; T' T \Ty

16 gotoline5

17 until Z; does not changg

18 return 7,

3.5.2 Ranking Single Facet (Algorithm 4 and 5)

Among all theRCH-induced facets, only the top facets with the smallest navi-
gational costs are considered in searching for a facetedaage. In ranking the facets by
their costs, one straightforward approach is to enumeldteeaR CH-induced facets and to

separately compute the cost of each facet by enumeratingjitdinavigational paths. This

79
approach is exponentially complex due to repeated travef fize edges iRCH, because

the RCH-induced facets would have many common categories andagtsgbcategory
relationships.

To avoid the costly exhaustive method, we design a recusdga@rithm that calcu-
lates the navigational costs of all theCH-induced facets by only one pass depth-first
search ofRCH. The details are in Algorithm 4. The essence of the algorighto, during
the recursive traversal GCH, book-keep the number of navigational paths in a facet in
addition to its navigational cost. The bookkeeping is penked for each reachable target ar-
ticle because the cost is averaged across all such articlesfinition 7. The cost of a facet
rooted at- can be fully computed based on the book-kept informatiomeffacets rooted
atr’s direct subcategories, without accumulating the indreiccosts of the facets rooted at
r’s descendants. Therefore it avoids the aforementioneshted traversal 0RCH. More
specifically, the lines 11-14 in Algorithm 5 are for computitvst(F,., p) in Formula 3.7.
However, the algorithm does not compute it by a direct tiatish of Formula 3.8 and 3.1,
i.e., enumerating all the navigational paths that reaclnstead, line 12 getsost;, the
total cost of all the navigational pathss>p'<—p, i.e., the ones that reaghwithout going
through any other categories; line 13 compuies,, the total cost of all the navigational
paths that go through other categories, by utilizingt(F., p) andpathent(F,, p) of the

subcategories, but not other descendants. We omit the formal correctness.p

3.5.3 Searching for k-Facet Interface (Algorithm 6)

Algorithm 6 searches fok-facet interface. To reduce the search space, our algo-
rithm only considerd,,, the topn facets from Algorithm 4. We further reduce the space
by excluding those top ranked facets that are subsumed ey tip facets (line 1). In

other words, we only keep,-, the maximakntichainof Z,, based on the graph (category

80
hierarchy) subsumption relationship. This is in line witle idea of avoiding large overlap

between facets (Section 3.4.2).

GivenZ,-, instead of exhaustively considering all possiblelement subsets @i, -,
we apply ahill-climbing methodto search for a local optimum, starting from a randem
facet interfaceZ,. At every step, we try to find a better neighboring solutiomeve a
k-facet interfaceZ,,.., is a neighbor ofZ,, if they only differ by one facet (line 9). Given
the kx (n—k) possible neighbors at every step, we examine them in the ofdeverage
navigational costs (line 5, 6, and 9). The algorithm jumpghfirst encountered better
neighbor. The algorithm stops when no better neighbor cdol&l. As the goal function
to be optimized in hill-climbingZ,.., is considered better if the facets Bf.,, have both
smaller pair-wise similarities and smaller navigationagts than that of;, (line 14). The

idea of considering both similarity and cost is motivate&eaction 3.4.2.

3.6 Experimental Evaluation
3.6.1 Experimental Settings

Facetedpedias implemented in C++ and the dataset is storedity&QLdatabase.
The experiments are executed on a Dell PowerEdge 2900 iiésennning Linux kernel
2.6.27, with dual quad-core Xe@r) GHz processor2x6MB cache 3GB RAM, and three

1TB SATA hard drivers in RAIDS5.
Dataset: We downloaded th&Vikipediadump of July 24, 2008 from

http://download.wikimedia.org@nd loaded the data intoMySQLdatabase. In particular, we
used the tablepage.sql pagelinks.sqlcategorylinks.sqlandredirect.sq) which provide
all the relevant data including the hyperlinks betweerckes, categories of articles, and
the category system. We performed several preprocessskg tm the tables, including
the detection and removal of cycles in the category hiesarédthough cycles should

usually be avoided as suggestedWikipedia the category system Wikipediacontains

81

number of articles 2,445,642

number of hyperlinks between articles | 109, 165, 108
average number of hyperlinks per article 45
number of distinct categories 329,007

average number of categories per article 3
number of category-subcategory relationships 731,097

Figure 3.7. Characteristics of the dataset.

a very small number504 in the dataset) of elementary cyclésdue to various reasons.
We applied depth-first search algorithm to detect the eléangrycles. The category hi-
erarchy is made acyclic by removing the last encounteree @dgach elementary cycle
during the depth-first search. Other performed preproegsseps include: removing tu-
ples irrelevant to articles and categories; replacingeetiarticles by their original articles;
removing special articles such as lists and stubs. We ajgieedbasic performance tuning
of the database, including creating additional indexepageid in various tables. The
characteristics of the dataset are summarized in FigureThé total size of the tables is

1.2GB.
Queries: We experimented witl20 keyword queries that we designed (Figure 3.8), in

addition to the open queries that the users came up withglusaer study (Section 3.6.2).
Parameters in algorithms: Each query was sent teooglewith site constraint

site:en.wikipedia.orgo get the to200 (s=200) EnglishWikipediatarget articles. The rel-
evant category hierarchgCH was then generated by applying Algorithm 3 on the afore-
mentionedMySQLdatabase. By default, Algorithm 4 returns t2@ (n=200) facets and
Algorithm 6 generated(facets £=10). The value ofpenalty in Definition 7 was set
as7. It was empirically selected by investigating the relasioip between the number of
unreachable target articles/(— 7,|) and the total navigational costs of reachable targets
(et cost(Fy, p)).

A cycle is elementary if no vertices in the cycle (except tlagtgend vertex) appear more than once.

82

Q1 | action film Q2 | country singer

Q@3 | philosophers Q4 | Texas universities

Q5 | Turing Award winner Q6 | missile

Q7 | Ivy League schools Q8 | NBA players

@9 | historic landmarks @10 cartoon characters

Q11 Microsoft acquired game companies | Q12 stand up comedian
Q13 graph theorists Q14 lakes in North America
Q15 American presidents Q16 battle far east

Q17 waterfall national park Q18 Chinese cuisine

Q19 premier league clubs Q20 PS3 game

Figure 3.8. Experiment queries.

3.6.2 User Studies

We conducted user studies to evaluate the effectivendssetedpedigand to com-
pare the quality of the faceted interfaces generatefedogtedpediandCastanef{40]. We
obtained the implementation &fastaneffrom its authors. Note thafastaneis intended
for static, short, and domain-specific documents with Eahivocabularies. Nevertheless,
we appliedCastaneton the dynamic keyword search results. Although not origirde-
signed for such purposeSastanestill appears to be possibly the closest related work. We
use the same graphical user interface for both systems, ke tha comparison irrelevant
to interface design.

The user studies were conducted online. The users all hdtegjealegrees or are in
college, including university students, faculty, stafiddinancial and IT company work-
ers. We believe these users are experienced with Web seadatoanfortable with more
sophisticated access mechanisms, matching the targstafseur system. To reduce the
overhead of the user, we partitioned ttequeries in Figure 3.8 intd equal-size groups
and asked each user to only participate inZlogieries of one group. For each query group,
we sent user-study invitations to roughly equal number oppe Ultimately we were able
to collect opinions from totally36 users8 each for2 groups, and 0 each for the othe?
groups.

For each query, we showed the query keywords and objectsaigéon to the user,

and asked the user to explore two interfaces pre-genergteddetedpediaand Castanet

83

Choices— 1: useless; 2: not very useful; 3: useful to
some extent; 4: useful; 5: very useful

R1 [My rating about usefulness of Facetedpedia.

R2 [My rating about usefulness of Castanet.

Choices— Facetedpedia; Castanet

R3 [Which interface is better than the other?

Choices— 1: strongly disagree; 2: disagree; 3: neutral;

4: agree; 5: strongly agree

R4 [The facets in Facetedpedia conveys important concepts
garding the articles related to the query.

R5 |Facetedpedia is useful for browsing and exploration puepo
R6 |l look forward to use this interface even in the future f
exploratory browsing purposes.

Figure 3.9. User study questions and available answers.

respectively. At the end of each query, the user was askerbtade response t8 ques-
tions, namelyR1-R3 in Figure 3.9. The available choices fBi and R2 are ratings from
1:*useless” tor:“very useful”. The choices foR3 are “Facetedpedia”’ and “Castanet”. The
same process iterated through thqueries in the group assigned to the user. After the
5 queries were done, the user was also provided opportunity @rbitrary open queries
on Facetedpediaand provided answers to questioki$- R6 in Figure 3.9. The available
choices are ratings frort“strongly disagree” t&:“strongly agree”. The same open query
study, however, was not possible fGastanetbecause the implementation we obtained
from the authors takes abobitminutes to process each query and therefore could not be
used for dynamic queries. The reason is that it ch&#iNetfor each word in construct-
ing category hierarchy. (Remember it was designed for statlection of short texts.)

In Figure 3.10, column 2 and column 3 records average us@egsaper query on
guestionsik1 and R2 respectively. Column 4 and 5 represent user’s absoluterprefe on
one system over the other. Clearly, from the resésetedpediaeceives much stronger
feedback thalCastanebn R1 and R2. Also, for absolute preference, user preféaseted-
pediaover Castanet almost unanimously. Figure 3.11 records g&asser ratings per

group for k4, R5 and R6. As it can be seen, majority of the groups provide strongtpesi

84

Average R1 | Average R2 | R3-Facetedpedia | R3-Castanet

Q1 3.5 2.5 7 1
Q2 3.5 2.625 5 3
Q3 3.5 2.875 5 3
Q4 3.625 2.5 7 1
Q5 3.375 2.5 7 1
Q6 3.625 3.375 6 2
Q7 4.0 3.625 5 3
Q8 3.75 3.625 4 4
Q9 4.125 3.25 7 1
Q10 35 3.875 1 1
Q11 12 31 9 1
Q12 3.8 3.2 8 2
Q13 3.8 3.5 6 4
Q14 3.7 3.5 6 4
Q15 3.7 3.7 6 4
Q16 3.9 2.9 9 1
Q17 11 31 9 1
Q18 4.2 2.9 9 1
Q19 3.7 2.7 7 3
Q20 3.6 31 6 1

Figure 3.10. Usefulness 6#cetedpediaandCastanet

R4 mR5 OR6

R
»
execution time (sec.)
ORNWAGOON®

Group-1Q(1-5) Group-2 Q(6-10) Group-3 Q(11- Group-4 Q(16-
15)

o

100 200 300 400 500 600
Index of User Group number of target articles

Figure 3.11. User experience witacetedpeFigure 3.12. Execution time cfacetedpedia
dia for open queries. vs. number of target articles.

opinion the about usefulness of facets and the interfacergead byFacetedpediand they

believeFacetedpedianterface is effective for exploration purposes.

3.6.3 Characteristics of Generated Facets

Our experiments compared the effectiveness of three #éhgasi hill-climbing (Al-
gorithm 6),top-k— selecting the top facets ranked by Algorithm 4, ardndom#— ran-
domly choosingk facets. Figure 3.13 shows the average characteristicseofatteted
interfaces generated by these methods. Althdutitlimbing had a slightly worse target
article coverage than the other twgq less), it outperformed them in pair-wise similarity
which means thé facets selected have smaller overlap of navigational pates detailed

tracing results show thdtill-climbing started from choosing top-facets and gradually

85

Coverag¢ average | average | average
width height | pair-wise
similarity
Random-k 72.3% 53.8 8.6 0.108
Top-k 73.9% 10.2 5.5 0.187
Hill- 68.9% 9.8 5.7 0.072

climbing

Figure 3.13. Compare the quality of faceted interfaces gaeeby various methods.

replaced similar facets by less similar ones. The finéhcets selected bkill-climbing
usually were still within the toB0%, while the ones selected bgndom+# were evenly
distributed among the results from single-facet rankinge &verage width and height of
the facets generated by the three methods were about the sarept thatandom+# oc-
casionally chose some much wider facets. Their averagenweiddl height were usually
around10 and6, respectively. Therefore the fanout of internal nodes dmdléngth of
navigational paths are within a reasonable range for thesu€eerall hill-climbing helps

us reducing overlapping facets without losing much cove@garget articles.

3.6.4 Efficiency Evaluation

We evaluated the scalability of our approach by measuriegatrerage execution
time of discovering:=10 facets for varying number of target articlesifom 50 to 500). As
can be seen from Figure 3.12acetedpediacales well since the execution time increases
linearly by the number of target articles. It also shows teatetedpedialready achieved
fairly fast response without much performance optimizatim average it took seconds

to discover the facets fai0 target articles, and seconds foR00 target articles.

3.7 Discussion

The faceted interfaces generatedHagetedpediare certainly not perfect and could

be improved on many aspects. The pitfalls and drawbacksraymiem pose several open

86
challenges which could possibly form new research dirastidt is our plan to forward our

investigation along the following lines:

First, hyperlinks inWikipediaarticles are not always good features of the target arti-
cles. In many cases the hyperlinked articles are importamitate articles that are strongly
related to the target articles. However, there are alsasdasehich the authors of an ar-
ticle make hyperlinks to other articles not because theg lstnong relationships with the
target articles. The author may believe that the readersédwvmi be familiar with an entity
mentioned in an article, therefore decides to make thatimeain anchor text linking to
the article describing the entity. The hyperlinked artisleot necessarily highly related to
the target article. For example, Wikipediaarticle Independenc®ay._(film), hyperlinked
articles such awvill_Smithand20th CenturyFox are certainly valid attribute articles, while
MoonandMexicomay not be. To assure the quality of the discovered facetgplareto
investigate data mining methods and NLP techniques in fgnttudy related articles.

Second, we found through experiments that a category blgrdrased on both rich
semantics and strong IS-A relationships will provide mareusate facets than the current
Wikipediacategory system. This “grass-roots” folksonomyhkipedig albeit containing
user-generated categories with richer semantics thansauhgs such ad/ordNet, is not
always organized by rigorous IS-A relationships. For ine& it includes subcategories
such asPeoplefrom TexasandHistory_of Texasunder categoryfexas which can be mis-
leading to a user who plans to navigate through geograpbicalepts by choosingexas
We plan to refine the category hierarchy for strong IS-A refeghips.

Third, we need to design methods to improve the diversityheftop ranked facets
generated byracetedpediaSince our ranking metric penalizes the facets that havdl sma
coverage, the top ranked ones may tend to come from rekatargle concept domains such

as people, organizations, etc. To avoid missing usefutddcem small concept domains,

87
one idea is to first cluster the attribute articles into salvgroups and then make sure that

each group has at least a number of facets in the final results.

3.8 Conclusion
In this thesis we proposeBacetedpediaa faceted search system owdfikipedia

This system provides a dynamic and automated faceted seaedace for users to browse
the articles that are the result of a keyword search queryerGihe sheer size and com-
plexity of Wikipediaand the large space of possible faceted interfaces, we gedpuoetrics
for ranking faceted interfaces as well as efficient algongHor discovering them. Our ex-
perimental evaluation and user study verify the effectgsnof our methods in generating
useful faceted interfaces. Moreover, our findings poserakopen problems for future
study. It would also be interesting to further investigdtéhe proposed framework and

methods can be applied to other applications, or even thergeWweb.

CHAPTER 4
STAR COMPOSITE ITEMS

4.1 Introduction

While many online sites are still centered around faciligi user’s interaction with
individual items (such as buying an iPod or booking a flight),increasing emphasis is
being put on helping users with more comp#archactivities, such as comparing similar
products and determining which products are compatiblé e#&ch other. For example,
Amazon and Zappos offer the “Customers Who Viewed This Iteno Mewed” feature
to engage users more effectively. Similarly, the “ExployeXestination” feature from
Expedia invites users to examine related sights and aesvit a given geographic location.

At the center of those activities is the notion @dmposite item It consists of a
central item which is the main focus of the activity, andsatellite packagewhich is a set
of satellite itemf differenttypesthat arecompatiblewith the central item. Compatibility
can be eithesoft(e.g., other books that are often purchased together watihdlok being
browsed) orhard (e.g., battery packs that must be compatible with the laptop travel
destination that must be within a certain distance from tlagnndestination). Composite
items are often further constrained by certain criterighsas a price budget on purchases
and a time budget on travel itineraries.

Consider a user shopping for an iPhone with a price budgetditian to the list of
available iPhones within the budget, it is also desirablerésent, along with each iPhone,
a small set of packages, each of which consists of compatértes that can be purchased
together with the iPhone and whose total price is within theéget. An example of such a

package i Belkin case, Bose sounddock, Kroo USB chbléere, compatibility between

88

89
each item in the package and the returned iPhone, can bedersing item co-browsing

and co-purchasing histories or absolute product comfiiébiprovided by manufacturers.
Similarly, consider a user interested in discovering thehesn and central parts of France.
Typically, such a user will have a main destination (eRaris) and a visit duration (akin
to the price budget). In addition to the main destinationis ialso desirable to present
a set of small travel packages, each of which contains a fpw to nearby places (e.qg.,
{Normandy, Fontainebleau, Versaillgs that can be completed within the indicated visit
duration. Here, compatibility can be defined based on isitiproperties of each location,
such as the geographic distance between the central Iocatid each satellite location.
The goal of this work is to develop a principled approach famstructing such composite
items and helping users explore them efficiently and effebti

We address three main technical challenges. First, we asolt@ the problem of
identifying all valid andmaximalsatellite packages given a central item. A valid package
must satisfy a given budget such as a visit duration. A makpaakage is the largest
valid set of satellite items, where each item is compatibkh whe central item. A valid
and maximal package is theref@aeet of compatible satellite items, such that, collecpivel
with their central item, satisfy a budget and are not subsuimednother valid package
We develop a random walk algorithm for that purpose.

The number of valid and maximal packages associated withteat@&em is typically
very large and presenting all of them to the user is imprattiddence, we tackle the
challenge osummarizinghe packages associated with a central item inepresentative
packages. Intuitively, the goal of summarization is to esgothe user to as many satellite
items as possible with as few as possible summary packagesseTlpackages can then
be presented to the user, who can directly use them, or selsabset of satellite items

to construct their desired composite itemsthout worrying about checking the budget.

90
We achieve this goal based on a principle cali@akimizingk-set coveragand explore a

greedy algorithm and a randomized algorithm for efficiembsarization.

Finally, when visualizing the satellite packages assediatith a central item, the
user experience is often affected by the diversity of Stgetems encountered in sequential
packages. Intuitively, given that most users explore rdrists in a top-down fashion,
there is an ordering of the packages associated with a téetrg thatminimizes overlap
between any two consecutive packages and haneg&mizes their visual diversityOur
third challenge is therefore to efficiently identify an ordg of the &£ packages which
maximizes the visual effect of diversitWe prove that this problem in its generality is
NP-Complete and propose an efficient heuristic algorithnsédving it.

In summary, we make the following main contributions:
e We propose the notions of composite item and compatibldlisaggackage in the

context of online data exploration. To help users effetfie@plore composite items,
we formalize the problems of finding valid and maximal padsagiven a budget,
finding representative packages through summarizatiahreordering packages for

visual effect optimization (Section 4.2).

e We design and implement a random walk algorithm to efficieotinstruct all valid

and maximal packages (Section 4.3).
e We introduce a novel principle for summarizing a large setaiximal packages

associated with one central item, and develop a maet coverage algorithm for
efficient summarization. We further improve the efficien€yommarization by in-

tegrating it with the random walk package construction atgm (Section 4.4).
e We formulate the problem of optimizing the visual effect /ofpackages associ-

ated with the same central item as that of finding an orderfripe packages that
minimizes overlap between consecutive packages. We phatethis problem is

NP-Complete, and design and implement a heuristic algorftrmsolving it (Sec-

91
tion 4.5). In addition, we also prove that this algorithm gimal when there is only

one satellite type.
We conduct extensive experiments on data sets from Yahombsing site to verify
the effectiveness and efficiency of our algorithms (Sedcfi@). Finally, we discuss related

works and conclude in Sections 4.7 and 5.7, respectively.

4.2 Model and Problem Statement

We start by introducing our data model and some basic deifirstiand then we
formally state our exploration problem.

Let C denote the central type (e.gPhong andS = {Si, ..., S, }, the set of satellite
types (e.g.Case Speaker. We refer to an instance of a central (resp., satelliteg gp a
central (resp., satellite) item. Each item (central orl§tghas a unique identifiei! and
a set of attributes including a required application-deleen attributecost. For example,
the cost of an item may represent the price for retail praglacthe visit duration for travel
destinations. Compatibility between a central iterand a satellite itens, is provided
using the predicateomp(c, s), which is true ifc ands are compatible. For example, for
products, compatibility can be defined according to mariufac specifications, based on
co-purchasing histories gathered from millions of users, combination of the two. Each
central type with its set of compatible satellite types fdime composite typedenoted

C.S1,....Sl.

4.2.1 Valid and Maximal Packages

Definition 11 (Satellite Package)A satellite packagey, for a given composite type,
C,S1,...,S,], is a set of satellite items§s, ..., s,}, where eachs; is either an item of
satellite typeS; or anul | item (shown as symbol~”) indicating that p does not contain

an item ofs;.

92

A packagep is said to becompatiblewith a central itemc iff Vs € p, comp(c, s)

= true, i.e., each satellite itemin package is compatible with the central item
Definition 12 (Validity). Given a budget, avalid composite itemdenotedc, s1, . . ., s,),

is an instance of the composite tyjge Sy, . . ., S,], S.t. the satellite packages, - . ., sn}
is compatible with the central item and (c.cost +) _.(s;.cost)) < b. We refer to
{s1,...,s,} as avalid package.

Budget constraints are typically provided by the user atytiere. Depending on
the application, it may represent a price (e.g., for reteoldpcts), a time constraint (e.g.,
for travel itineraries), or a combination thereof.

As an example, consider a user shopping an iPhone for les$3h8. Assume we
have the following table containing five iPhones as centeahs. Out of the five candidate

iPhones, four qualify with price belo$s50.

Table 4.1. Central Items

iPhone memory | price
iPhone 3G | 8GB $99

iPhone 3G | 16GB $199
iPhone 3G S| 8GB $199
iPhone 3G S| 16GB $299
iPhone 3G S| 32GB $399

Also, consider the satellite items in Table 4.2, grouped/pg for ease of exposition.
There ar€7 types in the table. Assume, for simplicity, that all satelitems in Table 4.2
are compatible with all available iPhones in Table 4.1. @abB then lists some of the valid
packages along with their central items, given the budg&8a.

As shown in the example, even with a small number of satetkims, the number
of valid packages can quickly become overwhelming. Theegfae define the notions of

valid and maximal packag@r simply maximal packageandmaximal composite item

Table 4.2. Satellite ltems and their Price

type item price
Case Siase. Kroo Case $14.95
s2,... Belkin Sport Case $29.95
s3 ... Mesh Sport Case $18.95
s4 ... Folio Leather Case $39.95
Charger | s.,,,,.,- CarFM Charger $59.95
Seharger: KeNsington Deluxe Charger $99.00
Seharger: INSIPIO Car Charger $24.95
Seharger: Wireless Car Charger $14.95
Kit si.,- iKlear Spray Kit $24.95
s2.,: iPhone wipes $9.95
Cable | sl ,,.: Dock 2ft Cable $19.95
s2 1. Belkin Stereo Cable $14.95
s3 1. Kroo USB Cable $34.95
Speaker | s) .,k TWin Speaker $29.95
S2peaker- POrtable Bose Sounddock| $149.00
53 peaker- SCOSChe Speaker Dock | $64.95
Screen | sl...,: AntiGlare Screen $6.95
52...en. BodyGuardz Screen $24.95
53 . .en. Macally Mirror Screen $14.95
54 . on: Zagg Invisible Shield $66.00
Pen Spen: TOUCh Pen $19.95
Spen: Kroo Stylus $9.75

Table 4.3. Examples of Valid Satellite Packages

central item/capacity | satellite packages | total price |
iPhone 3G/8GB {5l cer s}:hawer, Skits Seables Sipeaker’ Saereens Spen) | $273.70
iPhone 3G/8GB {3§a56782ha7‘ger7 - ’Siable’ 7$;creen?8;)en} $299.80
iPhone 3G/8GB { = = = = 5 ke ,S2en} | $257.75
iPhone 3G/8GB {sgase,séharger, - ,scable,sspeaker,sém.een,séen} $309.75
iPhone 3G/8GB . o

iPhone 3G/16GB {sgase,séharger, -, - ,sg’peaker,siwem,séen} $343.75
iPhone 3G/16GB

93

94
Definition 13 (Maximality). Given a central item and a budget constraintreaximal

packages a valid package, to which no further satellite item can béetiwithout violating
the validity. A maximal package, together with its assodaientral item, form anaximal
composite item

For example, the two packagés' sd }and{s

ase’ chmger’skzt’ screen? pen

speakev} form
maximal composite items with the central iteRhone 3G/8GBandiPhone 3G S/8GB
respectively. Hence, any strict subset of those packagex rmaximal. We now define our

first technical problem of maximal package construction.

PROBLEM (Maximal Package Construction.)
Given a central itenz, and a budget, efficiently compute the maximal composite item set
M. formed by the set of valid composite items, which share theeseentral item, s.t.,

the package within each composite item is maximal.

Examining maximal composite items, rather than enumegadihvalid composite
items, is useful to an end user because it drastically redtiee number of packages to
be explored while preserving all compatible satellite gemt the end, users can always
choose a subset of the items in the package to continue thasaction. We discuss our

solution to the above problem in Section 4.3.

4.2.2 Summarization
While it is much smaller than the set of all valid packagks, can still become very

large in practice. More importantly, different maximal gages associated with the same

central item, may overlap significantly in their satelliterns. For example, botfs?

case’

sd s3 } and{s? 53 S5 ereent Spen} Ar€ Maximal packages

charger? ©cable? speaker case’ charger' speaker? ©scree

w.r.t. the central iteniPhone 3G/16GRfor a budget 0f$350), but they overlap consider-

ably. Hence, in addition to finding maximal packages, weherrtfpropose t@ummarize

95
M. into a smaller set.., containingk representativepackages (typically — 10). We now

define the summarization problem.

PROBLEM (Summarization.) Given a maximal composite item s&f. and £,
efficiently compute a séf. of k representative packages fromt,., s.t. the number of

packages inM. represented by the packages ir¥.. is maximized.

We refer to the output séi. as the set of summary packagessommary setThe
motivation is to present to the user a short listtofmaximal packages and yet represent
as many valid packages as possible, thus offering the waleste to the user. Table 4.4
shows two examples of maximal composite item sets coniioar representative pack-
ages each associated with the iPhone 3G/8GB. We discuss ounaization solution in

Section 4.4.

Table 4.4. Two Sets of Summary Packages for Central iRdlmone 3G/8GB

— 1 1 1 1 1 2 1
b= {Sca567 Scharger’ Skitr Scables Sspeaker’ Ssereens Spen}
={sl &2 _ g3 _ &l st
D2 case’ °charger’ » Zcable’ » Oscreen’ “pen
— 1 1
P3 = { — 5 T T T 5 Sspeakerr T Spen}
— 4 2 3 1 1
Pa = {Scase7 Scharger’ — s Scabler T 5 Sscreens Spen}
— 1 1 1 1 1 2 1
b= {Scase7 Scharge'r’ Skit> Scables Sspeaker’ Ssereen Spen}
={ sl gl _ g3 _ sl sl }
P2 case’ “charger’ » Zcable’) ©screen? “pen
— 1 4 2 3 1
p3 = {Scase7 Schargers 3 Scable’ Sspeakers o Spen}
={s2,..,5 — 8%, 83 st st}
D4 case’ °charger’ » “cable’ ©speaker’ “screen’ “pen

4.2.3 Visual Effect
The next challenge after obtainihgsummary packages for a given central item, is
to effectively present them to the user, typically in a rahket format. While ranking

packages according to a particular attribute (such as)dgaesirable in certain scenarios

96
(e.g., when the user is looking for the cheapest packagm)nibt always applicable. For

many users, once the package satisfies their budget, pnael@ger a critical factor in
their purchase decision, and many other factors come iato fine such factor @iversity,
i.e., the user will like to explore many different packagssaxiated with a given central
item, quickly. Our summarization technique addressegsilyeto a certain extent since it
aims at returning representative packages. However, itstihyeturn packages sharing
satellite items. Hence, we introdueisual effecta new principle which guides how a set of
packages associated with the same central item, shouldhked#n order to expose users
to as many different satellite items as early as possiblieair exploration process.

The visual effect principle aims to sort a set of packdgesssociated with a central
item ¢, such thafpresenting a package that is too similar to a package the hssrjust
seenis avoided. This is particularly important for satelliygoés which matter to the user.
Hence, to formally define the visual effect principle, weradice the notion oatellite
type prioritization denotedD = §; < S; < ... < S, which indicates theisual order
of importanceof satellite typesS; to a user, meaning that it is more important to ensure
diversity inS; than inS,, and so on. Indeed, while one user looking for an iPhone may
prefer seeing variety in chargers over seeing variety iralsges, another user may prefer
variety in protective screens over variety in cables, etaefault prioritization can often
be set if it is not provided by the user. We can now define thenatf penalty
Definition 14 (Penalty) Given a satellite type prioritization) = S; < Sy < ... < Sy,
and two packages, andp, associated with the same central item, plaér penaltybetween
p1 andps is a vector,pv(py, p2) = (v, v9, ..., vn), Wherev; = 1if p; andp, share the
same item on typ8;, andv; = 0 for all other scenarios, including the cases where one of
the two packages does not have an item for §peetpv(py, p2)|[i] refer tow;.

Hence, we define th@enaltyfor an ordering of packages associated with the same

central iteme, P. = [p1,p2, ..., Dk, @S a vectorpu(P,) = (ay,as,. .., an), Wherea; =

97
Zé‘f;ll (pv(pj, pj+1)[i]). pv(P.) is an aggregation over the pair penalties of all consecutive
packages irP..

Intuitively, the penalty vector of an ordering of packagesaxiated with the same
central item, keeps track of the number of times the saméisaieem has appeared in con-
secutive packages. It is a good indicator of hogually diversehe ranked list of packages
appears to the user. As an example, let us examine the two aynsets associated with
iPhone 3G/8GB in Table 4.4. The first orderipg, p», p3, p4], has penalty0, 0,0, 0, 0, 0, 3)
which is computed by aggregating pairwise penalties in tderng: pv(p1, p2), pv(ps, p3),

2 1

i 1 1 1 1 1
andpv(pg, p4)' For example’ given p, = (8 S Skit> Scables Sspeakers Ssereens Spen)’

case’ Scharger>
P2 = (Sgaseﬂ Sghargeﬂ - 7Sgable7 - 78;creen7 Sjl)en>
we havepv(p1,p2) = (0,0,0,0,0,0,1). The penalty for the second set of packages (in
their listed order) ig2,2,0,1, 1,0, 3).
We now formally define our third technical problem of findingpackage ordering

with the optimal visual effect

PROBLEM (Visual Effect Optimization.) Given a sef,. of k packages associated
with the same central itemand a satellite type prioritizatio® = S; < S, < ... < S,,,
find an orderingP, of the packages s.t/,P., P. # P.:
- pu(PL)[1] < po(P)[1], or
-Vi,0 < i < m,pu(P.)[i] = pv(P))[i], or
- 3R, Vi, 0 < i < h, po(Pe)[i] = po(P)[i], pu(Pe)[h] < po(Pe)[h].

Intuitively, the ordering with optimal visual effect inc@usmaller penalties on higher

priority types. We discuss the problem complexity and a iséaralgorithm in Section 4.5.

98
4.3 Maximal Package Construction

Recall from Section 4.2.1 that a maximal package is a set ellisaitems associated
with a central item where 1) each satellite item is compatvaith the central item, 2) the
total cost of the package and central item is within budget, and 3) tlseen® other valid
package containing it as a proper subset. Given a centna) d@ar first technical challenge
is to construct its set of maximal packagad.., efficiently.

This problem is closely related to frequent (maximal) itetmaining (FIM) [55, 56],
where the goal is to identify (maximal) sets of items thatocour frequently (i.e., above
a certainsupportthreshold) in a transaction database. There are two mdierelices,
however, between this problem and our maximal package ratistn problem. First, the
candidate itemsets in FIM are limited to items appearindpiwithe database transactions,
while the packages in our problem need to be constructegecuto compatibility and
budget constraints. Second, checking the satisfactiomafeanset against theupport
threshold requires scanning through the transaction daglwhile théoudgetconstraint
in our problem, can be checked using the cost of each itemeirp#itkage itself, which
makes our problem easier.

Given its resemblance to FIM, one straight-forward aldponitto solve our problem
is to adapt the Apriori-style algorithms [55]. This algbnt simply iterates through pack-
ages level-wise (i.e., single-item packages first, thenitam packages, etc.), selecting
compatible packages and eliminating those that no longesfyséhe budget or that can
be subsumed by another larger package satisfying the buddmet result is the correct
maximal composite item sei1...

Constructing the correcté1. using an Apriori algorithm is costly when the results
have to be computed and returned to the user in real time. Uimber of valid packages

to go through can be overwhelming when the number of saetéins is large, which is

99
typically the case. As a result, we propose an alternatigereahm (adapted from [57]),

MaxCompositeItemSet, that computes an approximatd,. based on random walks.

4.3.1 Algorithm MaxCompositeltemSet

Algorithm 7 illustrates our random walk algorithm. Intwily, it constructs random
maximal packages one at a time and stops after each curmmamaximal package
has been generated at least twice. The roulmeompositeltem (Figure 4.1) accom-
plishes the random walk procedure. It starts from a randogieitem package and picks
the next random item which is different from previously addems and which satisfies

compatibility, and validity until the package is maximal.
Algorithm 7 : MaxCompositeItemSet(c,.A,b) : computing maximal composite

item setM.
Require:

¢, the central item,
A, the set of all satellite items compatible with
b, the budget constraint

1 M. ={}

2: repeat

3: p=MaxConpositeltenc, A,b)

4: if p ¢ M. then

5: M. =M. U {p}

6: count(p) =1
7. else
8: count(p) + +;

9: until {Vp € M., count(p) > 2}

10: return M, ;

We illustrate this algorithm with the running iPhone exaenfpbm Section 4.2.

100

Function MaxCompositeItenm(c,.A,b) : Subroutine for computing one maximal package

p

Require:
¢, the central item,
A, the set all satellite items compatible with
b, the budget constraint

p=A{}

pick a randonu € A, adda to p

repeat
pick a randomu € A, a ¢ p, such that: (1y/s € A, a ands are of different types, (2) is
compatible withe, and (3)a.cost + >, - 4(si.cost) <b
adda top

until {no new item can be addgd

7: return p

Figure 4.1.Function MaxCompositeItem.

Example 9. Consider the central item, iPhone 3G/16GB (cos#i§9), and a total price
budget of$300, which means a total df101 as the price budget for the satellite package.
Assume there arg satellite items that are compatible with the central itesh;, ($24.95),

s3 11.($34.95), s3 ($64.95), 54,00, ($66.00), ands?

cable speaker pen

($9.95).

The set of maximal packages in this example are:

1 3 2 3 3 3 4
{skit7 S cable> Spen}' {Scable7 Sspeaker}’ {Scable7 Sscreen}’

1 3 2 1 4 2
{Skit7 Sspeakeﬂ Spen}’ {Skit7 Sscreens Spen}'

The algorithm will randomly construct one of those five pagg®at each iteration,
keep counts of the packages it has seen so far, and stop wheoudhnts of every seen
packages is at least two. Figure 4.2 depicts the random walieps as selecting random
paths in the package lattice. Algorithm 7 may not generagefth M.. For example,
it may construct each of the first four packages twice befesng the last package, in
which case, it will produce an approximate (i.e., incomple¥!. instead. We discuss the

algorithm termination condition and the probability of find all of M., next.

101

eeeeee

eeeeee

Price Budget B= 101
(s:kit’szspeaker) : [89-9]
{S I»(it’s speakervs pen) = [99'65]

Figure 4.2. Random Walk on Item Lattice.

4.3.2 Termination Condition

The termination condition used in Algorithm 7 is inspiredthe Good Turing Test
that is often used in population studies to determine thelraurof unique species in a large
unknown population [58]. Consider a large population of wdlials drawn from an un-
known number of species with diverse frequencies, inclyidifew common species, some
with intermediate frequencies, and many rare species. 4 dtaw a random sample of
individuals from this population, which results+n individuals that are the lone represen-
tatives of their species, and the remaining individual®bglto species that contain multi-
ple representatives in the sample population. THgnwhich represents the frequency of
all unseen species in the original population can be estdnasing the following Lemma:
Lemma 4.3.1(Good Turing Test) Py, = n;/N.

The assumption here is that the overall probability of igftone rare species is high
while the probability of hitting the same rare species is [dhverefore, the more the sample
hits the rare species multiple times, the less likely theeeumseen species in the original
population. We apply Lemma 4.3.1 to the maximal packagetoacteon problem, where

the maximal packages map to the species and the probabditieonstructing each max-

102
imal package iMaxCompositeItem are the frequencies. The set of maximal packages

constructed through the random walk process is the samplelgiton. By ensuring this
process visits each constructed maximal package at le@st, twe are essentially ensuring
thatn, is0. Thus, using Lemma 4.3.F, can be estimated to e which means it is highly

likely that all maximal packages have been discovered.

4.4 Summarization

Presenting the full set of maximal packages to the userttiirbas two main chal-
lenges as discussed in Section 4.2.2. First, the number wimahpackages can be ex-
tremely large for effective exploration by the user. Secaohere can be significant overlaps
between the maximal packages. The goal of summarizatidveisfore to find: represen-
tative maximal packages for further exploration by the user.

One commonly adopted approach for summarization is clagterSpecifically, a
pair-wise distance measure can be defined to measure thaaidtetween any two pack-
ages. Then, various clustering algorithms (e.g., k-mezarspe used to group the packages
into k clusters, and one package can be selected from each clu$tem thek represen-
tatives. However, defining a good distance measure in ow@r isadifficult. For example,
Jaccard distance can not tell the difference between a paingle-item packages and a
pair of multiple-item packages, as long as there is no oppitey item in either pair.

In this work, we explore a different approach to summararatyy leveraging the
principle of maximizing coverage Specifically, we consider the goal of summarization
as the following: maximizing the number of valid packagesarwcan construct with the
k maximal packages, where we consider a packagenstructibleif it is subsumed by

(i.e., is a subset of) one of themaximal packages. Intuitively, this provides the user with

103

p1=1{1,2,3,45.78,12}
p2 ={1,13,15}
p3 ={4,56,8,9}
p4 ={3,4,6,14 }

Figure 4.3. Example Maximal Packages to be Summarized..

the highest flexibility in creating a desired package withwarrying about checking the
budget constraints. Formally, we have:

Definition 15 (Set Coverage)Given a set of package®t = {my, ms,...,m,}, letZ =
2miJ2m2J...1J2™ be the union of all powersets of the individual packagesinthe
set coveragef M, denoted”overage(M), is|Z|, the number of unique sets in the union.

The goal of summarization is therefore to compute a sétrepresentative maximal
packageq. such thatCoverage(Z.) is maximized.

This principle is better illustrated in Figure 4.3, where tumbers indicate satel-
lite items and the circles indicate maximal packages. (lapkcity, we adopt abstract
items in this example and assume that these are all the posailid maximal packages.)
Assume we want to picR packages out of thé total packages (i.ek = 2). Selecting
p1 andps (which turns out to be the best summary in this example) Widhathe user to
construct a total o279 unique valid package®55 packages can be constructed from the
8-item package; and31 packages can be constructed from 3higeem packages, minus
the 7 packages that are doubled-counted because o3-ttean overlap between the two
packages. In contrast, selecting the two non-overlappaeggges, andps will only give

us 38 constructible packages.

104

Function ComputeCoverage(M) Subroutine for Coverage Computa-
tion
Require:
M = {mq,ma,...,m,}, the set of packages

1My =Y (2lmil 1)

20 My = Z?giq‘gn@'miﬂmﬂ - 1)

3 My = Z?gi<j<kgn(2|mmmjmmk| -1)

4: ...

5: M, = 2mi-Nmal g

6: C =M — My+ Ms—...(—1)""*M,

7: return C

Figure 4.4. Functio@omputeCoverage.

Intuitively, the coverage of a set of packages can be cordagsed on thinclusion-
Exclusion Principlg59] (a standard technique for deriving the cardinalitytod tinion of
a set of sets) using the procedure described in Figure 4.4s nidive way of coverage
computation has an exponential complexity, since ed¢imay require the summation of
an exponential number of terms. As a result, summarizayandximizing coverage turns
out to be a hard problem.

To address this performance challenge, in Section 4.4.lintkeduce a baseline
greedy algorithm and a fast greedy algorithm for efficiectynputingk summary pack-
ages, with a coverage that is within a bounded factor of thiena coverage. Furthermore,
in Section 4.4.2, we show that the performance can be fuithproved by generating
summary packages directly from individual items, a progesgired by the random walk

process in Section 4.3.

4.4.1 Greedy Summarization Algorithms with Bounded Appmneiion Factors

We first present the baselige@eedySummarySet, which is shown in Algorithm 15.
The algorithm starts by selecting the largest packageithe package with the largest num-
ber of items). At each iteration, it selects the package tbgether with the previously cho-

sen packages, produces the highest coverage (as computeddtjonComputeCoverage

105

in Figure 4.4). The algorithm stops aftepackages have been chosen. Consider again the

example in Figure 4.3: wheh = 2, Algorithm 15 produces the summafy,, ps;}, and

whenk = 3, it produces the summagyp, ps, p4}.

Algorithm 8: GreedySummarySet(M., k) : Algorithm for computingk sum-

mary packages

Require:

10:

11:

M., the set of maximal packages for central item

k, desired number of summary packages

I =A}
. let package be the largest package i,

: removep from M,

addptoZ.

 iteration =1

. while iteration < k do

p = argmazpe pm, (ComputeCoverage(Z. (J{p}))

removep from M.
addptoZ.
iteration + +

return Z.

This baseline algorithm is directly adapted from a greedy@axmate algorithm de-

signed for theMlaximumk-Set Covelproblem [60], which is defined as follows. Given a

set of setsX over a set of element®, find k& sets inX such that the union of the sets

is maximized. Our summarization problem can be mapped tddpemum k-Set Cover

problem by considering each subset\df. as an element iv. The greedy approximate al-

gorithm for theMaximum#k-Set Coveproblem is known to have@d — 1/¢) approximation

ratio [60], therefore we have:

106

Lemma 4.4.1. Given the set of maximal packagad., let the optimal set ot pack-

ages beZ?' and the set ot packages returned byreedySummarySet be Z97¢%, then

Coverage(TI™e°%) >
Coverage(I3P') =

(1 — 1/e), wheree is the base of the natural logarithm.

Because of the need to compute the coverage of multiple setchtiteration, Al-
gorithm 15 can still be quite expensive in practice. We dbs®astGreedySummarySet
(Algorithm 9) that improves upon the performanceGekedy SummarySet, while pro-
ducing the same output (therefore maintaining the sameoappation bound). The key
idea within the fast greedy algorithm is to leverage Bonferupper and lower bounding
techniques [59] to speed up the coverage calculations, ake isure the decision made
in each iteration ofastGreedySummarySet is exactly the samas the decision made by

GreedySummarySet.

107

Algorithm 9: FastGreedySummarySet(M,, k) : Algorithm for computingk

summary packages
Require:

M., the set of maximal packages for central item
k, desired number of summary packages

1 I, = {}

2: iteration =1

3: while iteration < k do

4. r=-1

5: repeat

6: r=1r-42

7 for p € M. do

8: p.lower = BonferroniLower(Z.|J{p},)

9: p.upper = BonferroniUpper(Z. | J{p},r)
10: P1 = argmazyepm, (p’.lower)
11: P2 = aArgmazy c M, p'+p, (P'-upper)

12: until (py.lower > ps.upper)
13: removep; from M,
14: addp;, toZ.

15: iteration + +

16: return Z,

The algorithm estimates the coverage usingBbeaferroni Inequalitieg59] with a
depth parameter, an odd number betwednandn wheren is the total number of pack-
ages inM.. Specifically, the lower and upper bound estimates of themme can be
computed asBonferronilower(M,r) = My — My + M3 — ... + M, — M,,,, and

BonferroniUpper(M,r) = My — My + M3 — ...+ M,. Whenr is relatively small com-

108
pared ton, those bounds can be computed efficiently. WaileedySummarySet computes

the exact coverage of each candidate package at eachatgftstGreedySummarySet
considers the candidate packages in a round-robin mandexcamputes the (increasingly
tighter) lower and upper bounds of the coverage by graduatiseasing-. Furthermore,
whenr is incremented, the upper and lower bounds can be computeshientally from
those computed earlier with a smaller valuerof At each iteration, a package is cho-
sen when its coverage lower bound is no smaller than the ageeupper bounds of the
remaining candidates. The idea of leveraging the lower gpkubounds is motivated
by the TA-style algorithms developed for tépranking problems [61], since the function

ComputeCoverage exhibits a monotonic behavior with increasing

4.4.2 Randomized Summarization Algorithm

Both greedy algorithms described in Section 4.4.1 take a# itye full set of maxi-
mal packages\1... As a result, their performance is constrained by the paskagstruc-
tion time (i.e., Algorithm 7). In practice, the number of nmaal packages can be large
and therefore limits how fast the summary can be generatethid section, we describe
a randomized algorithnBrobSummarySet, that produces: representative packages di-
rectly from the set of compatible satellite items, withoahgrating the full set of maximal

packages first.

109

Algorithm 10: ProbSummarySet()V,, b, k) : Randomized Algorithm for comput-

ing £k summary packages
Require:

V., the set of all satellite items across all satellite types for the centraldtem
b, the budget,
k, desired number of summary packages

LI ={}

2:1=1

3: fora e V.do

4: a.seenCnt =1

5: while: < k do

6: p = SelectRepresentative(V,,b)

7. ifp¢Z.then

8: addp to 7.

9: for a € pdo
10: a.seenCnt + +
11: 1+ +

12: return Z.;

As shown in Algorithm 10,ProbSummarySet has the same overall structure as
MaxCompositeItemSet (Algorithm 7), i.e., it makes similar random walks to geriera
a set of maximal packages. There are two main differencest, Rilgorithm 10 stops as
soon as: packages are generated. Second, more importantly, easbmanalk (Function
Select Representative in Figure 4.5) invoked from within Algorithm 10 is designea t
generate a package that is as “different” as possible frenp#tkages already discovered
by the previous random walks, thus maximizing the potectakrage of the resulting set

of maximal packages.

110
We now explain the rationale behind the computation of tlebabilities of items

being chosen (inside Functi®delectRepresentative, lines1-4). Consider theath it-
eration and assume that = {m;,ms,...,m;_1} is the current set of packages already
chosen by the algorithm. For each iterme V., the algorithm keeps track of the number
of packages irZ. that containa (a.seenCnt). The algorithm then selects the next item
with probability inversely proportional to ite seenCnt. The intuition is that if an item has
already appeared in many chosen packages, picking it agihimotvincrease the coverage
by much. The probability also inversely depends on the cioteoitem. The intuition for
this is that packages with items of lower costs can admit ritenes, hence, leading higher
coverage.

As an example, consider Example 9 and the correspondindati¢ice in Figure 4.2
and assume that Algorithm 10 discovers the maximal saglackage
D1 = {Skitr Sapearers Suen) AUriNg the first iteration of the random walk. In the second
iteration, the probabilities of the items that appeapirmare reduced. For example, item
st., Now gets al6% probability of being chosen, compared againstit$; probability

ands?, now get6% and42% probabilities,

eaker pen

in the first iteration, whereas itemg,
respectively. On the other hand, the remaining itefps, ands? ..., which havel 4% and
7% probabilities, respectively, in the first random walk, acsvrgiven higher probabilities
of 24% and12%, respectively. (Note that, the cheaper itefy,. gains higher probability,
although it appears in the same number of chosen packagés, as)

While there is no approximation guarantee that can be prdfmerobSummarySet,
it runs much faster than the greedy algorithms since it bggmthe computation of the full

set of maximal packages. As shown in Section 4.6, we fourscrimdomized summariza-

tion algorithm to work very well in practice.

111

Function SelectRepresentative(V.,b): Subroutine for selecting one random pack-
age

Require:
V., the set of all satellite items across all satellite types for the central dtemith their
seenCntS
b, the budgetl, X
LP= a;c{a.seenCnt X a.cost}
2: fora € V. do
3: a'prObiblity = a.seenCnt>1<a.cost><P
4: p={}
5: repeat
6: picka € V., a ¢ p, with probability a.probility, such that: (1)s € A, a ands are of

different types, (2} is compatible withr, and (3)a.cost + >, . 4(si.cost) <b
adda top

until {no new item can be addgd

9: return p

© N

Figure 4.5. FunctiolSelectRepresentative.

4.5 Visual Effect Optimization

While summarization drastically reduces the number of pgekdo be explored by
the user, the challenge of presenting the finplckages to the user still remains. As dis-
cussed in Section 4.2.3, we propose a new principle ceaitel effecto guide how a set of
packages should be ordered and presented to the user teeabbteer visual diversity. Op-
timal visual effect is achieved when the cumulative penlaéifwveen consecutive packages
(i.e., common satellite items) in the ordering is minimiztdhigher priority satellite types,
given a satellite type prioritization. In this section, wansider how to solve the problem
of identifying the package ordering with optimal visual effedte begin by recalling the
second set of packages in Table 4.4:

Example 10. Consider the following four packages:

— (1 1 1 1 1 2 1
1= (Scase? Scharger’ Skit> Scable Sspeaker’ Ssereens 8pen)’

S S

_ 1 1 3 1 1
D2 = <$case7schzzrger7 — s Scabler T Sscreens pen)’

— 1 4 2 3 1
p3s = (scase7 Schargew — 5 Scables Sspeakew - ’Spen)’

112

— (2 4 _ 2 3 1 1
b1 = (Scase? Schargeﬂ » Scable> sspeakew Ssereens Spen)’

Let the type priority D& = S.ose < Scharger < Skit < Scable < Sspeaker = Sscreen =< Spen-
Among the24 possible orderingsip, p4, p2, ps] is one of the two optimal orderings, with
penalty(1,0,0,0,0,0,3). This penalty indicates that the ordering incurs one pgnpdiint
(i.e., same satellite item for one consecutive package pairtypeS..... (betweerp, and
ps), three penalty points for typ§,.,, (between all three consecutive pairs), and none for
the other five types.

Identifying the ordering with the optimal visual effectmgrout to be a hard problem.
In Section 4.5.1, we give the proof sketch that the visuaafbptimization problem is
NP-complete. As a result, we design a heuristic algorith@dation 4.5.2 and show that it

is optimal when there is only one satellite type.

4.5.1 Visual Effect Optimization is NP-Complete
Lemma 4.5.1.Thevisual effect optimizatioproblem is NP-Complete for. satellite types,
wherem is bounded by, the number of packages.

Proof Sketcht To prove this, we use a reduction from the NP-complete Hami&n
Path problem.

Consider the following problenGiven a set of packages and a type priority order-
ing, check if an ordering® of the packages exists such thatpuv(P)[i| = 0. If we can
solve the visual effect optimization problem in polynontiaie, then this new problem can
be solved in polynomial time by producing an ordering wita tdptimal visual effect, and
checking whether the penalty vector of the result orderorgains all zeros. The process of
checking can be accomplisheddr{mn), wheren is the number of packages andis the
number of satellite types. Therefore, to prove that thealistfect optimization problem is

NP-Complete, we just need to show this new problem is NP-Cdmple

S, S,
@4? S DA I

3
p2 321 S%

Ps 2 s’z
P4 s s%
@ @ p5 S1 1 312

Figure 4.6. Transforming a graph into packages..

Given a graphz, we can transform it into a set of packagesn polynomial time
and show that an optimal ordering of the packages with ameath-penalty vector exists if
and only if a Hamiltonian path exists f6f.

Due to lack of space, we omit the details of the full transfation and only provide
a brief description here. Basically, each negén the graphGG corresponds to one package
p;. For any edgén;, n;) in the graph, the corresponding packageandp, are created
such that theylo notshare any common satellite item on any type. For any non-pdige
of nodes(n;, n;), the packages; andp, are created such that they share the same satellite
item on at least one type. Figure 4.6 illustrates an examafestormation from a graph to
a set of packages. Thus, an ordering of the packages witH-aaral penalty vector exists
if and only if a Hamiltonian path exists fa¥.

It can also be shown that the number of satellite types reddiar this transformation
is bounded by the number of packagés:— 1) satellite types are needed only whén
contains a single node that is not connected to any otherinag@dand the rest of- is fully
connected. The time complexity of the transformatio®{%?): we update a package at

most(i — 1)? times.[

114
4.5.2 Heuristic Visual Effect Optimization

In this section, we introduce a heuristic algorithm (Alglonh 11) for solving the
visual effect optimization problem. The basic idea is toates select the next package
from among the candidate packages that are optimized fdirtesatellite type (i.e., the
one with the highest priority) and select the package in adydashion by choosing the
one that incurs the minimum penalty with the previously @mgackage. Interestingly, we
show later that, despite being heuristic in the general,¢hsealgorithm is optimal when

there is exactly one satellite type.

115

Algorithm 11: EnhanceVE(P, O) : Heuristic algorithm for enhancing visual ef-

fect
Require:
P = {p1,p2, ...}: the set of satellite packages
O =81 <82 < ... <5, the prioritization ofm satellite types
1. PO = {} will maintain the ordered list of packages to be output
2: let Dg, (P) be the set of distinct satellite items for tyge within all the packages i®;
let Dz (P) be the set of packages (P) with item s7 € Ds, for typeS;
3: while |Dgs, (P)| > 1do
4: letp, be the last chosen package
5: let s{ be the satellite item for typ§; in p,
6: let Dy (P) be the largest set of packages among all 5gtsP), st € Dg,
7: let Dg:(P) be the second largest such set
8: if s{ == s then
9: D = D¢ (P)
10: else
11: D =Dy(P)
12: p = PickBestCandidate(p,, D,)
13: addpto PO
14: removep from P
15: while |P| > 0 do
16: let p, be the last chosen package
17: p = PickBestCandidate(p,, D, O)
18: addpto PO
19: removep from P
20: return PO

116

Function PickBestCandidate(p,, D, Q) : Subroutine for choosing the next best pack-
age
Require:
po: the previously chosen package
D: the set of candidate packages
0 =381 <8 < ... < S, the ordered list ofn satellite types
1: for i = 2tom do
2 C = {} will maintain the just eliminated candidate packages
3. forp; € Ddo
4 if p, andp; share the same item for tyig& then
5: addp; to C
6 removep; from D
7. if |[D| == 1then
8 return pe D
9: if |[D| == 0then
10: return randomp € C
11: if |D| > 1 then
12: return randomp € D

Figure 4.7 Function PickBestCandidate.

Intuitively, the algorithm starts by grouping all packagesording to their satellite
items of typeS;. In choosing the next package, the algorithm always sefeats the
largest group for the remaining packages, unless the lakbga is also selected from that
group, in which case the algorithm selects from the secage$a group. Picking the exact
package from within the group is accomplished by removintkpges that share the same
satellite item with the previously chosen package for eatissquent satellite type, until
one package remains. We illustrate the algorithm with theok example in Table 4.4:
Example 11. Given the following four packages:

st sl

(Scase7 Schar ger) Skzt’ cable’ © speaker> Sgcreen’ 8117671)

(Scase7 chargew T sgable’ o S;cree’m s;zlxan)’
(Scase7 chargew B sgable’ Sipeaker’) Szl)en)’
(S ase)’ chargew B Sgable’ st))peakew Sic’reen’ Szlnzn)’

117
We first separate them into two grou@s: = {p1,p2, ps} andGz, = {ps}. Next,p;

is randomly chosen from the grodp,: _ since itis a larger group. Althougy',> s still
the smaller group, we need to choose a package from it bechadadt chosen package
p1 is from the larger group. Nexp, is chosen from the grou@.. . Then, between the
two remaining packages andps, ps is eliminated first because it shares itefy,,..,. with
p4, the last chosen package. The final ordering is therefprep,, p2, ps), which happens
to be one of the two optimal orderings. Observe that, it is irtgrd to deterministically
select the next package such that its addition incurs thstlpanalty with respect to the
previously added package. Otherwise, a random selectiondsgtp, and ps in the third
step may generate an ordering suchas p4, ps, p2), Which is worse than the ordering that
our algorithm produces. In certain settings, where the pgelsashare many common items
with each other on lower priority satellite types, such a ramdzation may exacerbate the
result drastically.

The algorithm is not guaranteed to find the optimal orderifRgr example, ifps
is chosen as the first package, the algorithm will fail to fimet @f the two optimal or-
derings. However, the time complexity of the algorithm idyo@ (mn?), wherem is the
number of types and is the number of packages. As we will experimentally demaest
in Section 4.6, this heuristic algorithm efficiently progscgpackage orderings with close
to optimal quality. Further, we prove that when = 1, Algorithm 11 does produce the

optimal ordering.

Lemma 4.5.2. Algorithm 11 produces the ordering of packages with the ocgitvsual

effect if| O] = 1.
Proof: Givenn packages, letr;;, be the largest group containing a single item with

a total ofx packages. Let the remaining groups have a totglpdickages. Let the optimal
ordering have penalt{). If - <= y+1, there will be enough packages that are nafip),

to separate packagesah,,, therefore = 0. Otherwise, there will be —y — 1 packages in

118
Gyig that are followed or preceded by another packagejp, leading tot = x—y—1. The

ordering produced by Algorithm 11 has exactty as the penalty because each package
in Gy, is followed and/or preceded by a package containing a éiffietem, until there
is no more such package left, at which point, all 1 remaining packages it,, are

consecutively placedl

4.6 Experiments

We conduct a set of comprehensive experiments using a dabhtséned from Ya-
hoo! Shopping site to evaluate the quality and performaho@ioproposed summarization
and visual effect optimization algorithms. We assume thatlist of central items can be
retrieved efficiently (for example, using the TA-family dbarithms [62]) and focus our
experiments primarily on efficiently summarizing and preasey satellite packages for a
given central item.

Our prototype system is implemented in Java with JDK 5.0. ekpperiments were
conducted on an Intel machine with dual-core 3.2GHz CPUs, Me&Biory, and 500GB
HDD, running Windows XP. The Java Virtual Memory size is $e512MB. All numbers

are obtained as the average of three runs.

4.6.1 Data Preparation

Online shopping is one of the main applications of compatéta construction and
exploration, so we naturally turn to Yahoo! Shopping thaavailable to us for data set
generation. There are two main pieces of required gataduct listingsandproduct com-
patibilities. The product (i.e., item) listings are obtained from the ditectly, and for each
item, we obtain itsd, price, andtype The items have wide ranging prices frantent to
several thousand dollars. We filter away items with extreneep (price below $2 or price

above $1000) because those are often spam listings. The é@esorganized intd0 high-

119
level types. We choose one particular type, which contaimgieh higher concentration

of items with prices from $550 to $1000, to be the central fygrel the othep to be the
satellite types. In the end, we hail, 271 items, of which2, 222 are considered as central
items, and the rest are satellite items. On an average, welhaf05 items per satellite
type.

Obtaining item compatibilities turns out to be a non-trivask. Our initial thought
is to use manufacturers’ specifications. However, it isaarly hard to obtain a compre-
hensive list of compatibilities for such a large number efis. Instead, we turn to the
history of transactions from the shopping site. Specificate compute the compatibilities
between two items based on their pair-wise co-occurremcearious kinds of activities of
the same user, such as browsing, rating, and purchasingreshiing compatibility is a
normalized score betwe@mand1, indicating how related two items are based on historical
records. A threshold score is then selected to determingwhtvo items are compatible.
In the experiments, tuning this threshold allows us to adritow many satellite items are
compatible with a central item on average.

The rest of this section is organized as follows. In Sectién?4 we demonstrate that
our summarization algorithm$astGreedySummarySet and ProbSummarySet, clearly
outperform baseline algorithms in terms of speed while pcaty summaries of the same
quality. Similarly, in Section 4.6.3, we show that the heticiEnhanceVE algorithm can
produce almost the optimal ordering of the summary packedpde running much faster

than its brute force counterpart.

4.6.2 Summarizing Maximal Packages
In this section, we experimentally evaluate both perforoesand quality aspects of
the FastGreedySummarySet andProbSummarySet algorithms in Section 4.4. We com-

pare them against three baseline algorithms:

120

Table 4.5. # Maximal Packages Generated

#Comp. Size| 10 | 50 100 150 200
#Max. Pckg. | 71 | 320 2,442 | 6,877 | 17,972

% Price | 5% | 10% | 15% | 20% 25%
#Max. Pckg. | 320 | 1,060 | 4,375 | 11,470 | 14,805

Random, where a set ok random packages are chosen to be in the summary;
Deterministic, where a set of largest packages are chosen to be in the summary;
GreedySummarySet (Algorithm 15), where the coverage of a candidate set of sargm
packages are computed using thelusion-Exclusion Principl¢59].
We begin by validating that summarization is a necessatynigoe to help users
explore the results because the number of maximal packadesye in many reasonable

scenarios.

4.6.2.1 Number of Maximal Packages is Large

Given a central item, the set of maximal packages are gestefatm individual
items, which are compatible with the central item, usifagCompositeItemSet (Algo-
rithm 7). The number of generated maximal packages depemddyron two factors:
compatibility sizei.e., how many satellite items are compatible with the i@@ritem; and
price budgeti.e., the total price the user is willing to pay. We vary bfatttors and examine
the number of maximal packages generated.

Specifically, we control the compatibility size by tuningttnreshold for the compat-
ibility score, and we vary the price budget for the satejigekage by setting it at various
percentage levels compared to the price of the central kerandom sample of00 central
items are chosen, and we record the average number of mgxautiehges being generated

for those items. The price budget is fixedsét when we vary the number of compatible

121
satellite items, while the number of compatible satelligens is fixed at0 when we vary

the price budget. As shown in Table 4.5, the number of maxpaakages grows quickly
as the price budget goes up and as the number of compatiblitsatiems increases. More
importantly, even at a modest level of 5% price budget @hdompatible satellite items,
the number of maximal packages reaches into the hundredsh wgiclearly beyond what a
normal user is willing to explore. This result clear indesithat obtaining a good summary
of those maximal packages is a necessary step for exploiagithe user.

Finally, we note that the number of maximal packages beimgigged by the ran-
domizedMaxCompositeItemSet algorithm is not an underestimate of the actual number
that is generated by the Apriori-style optimal algorithnis.those settings where the op-
timal algorithms are able to finish within a reasonable amofitime (they don’t always
do), our heuristic algorithm generates exactly the samefseiaximal packages (results

omitted due to space limitation).

4.6.2.2 Summarization: Performance

Figure 4.8 shows the performance comparison between owprvpmsed algorithms,
FastGreedySummarySet andProb SummarySet, against the baseline algorithm,
GreedySummarySet. For this experiment, we fix the compatibility size &t and the
price budget ab% (i.e., on an averag820 maximal packages), and vary the size of
the summary (i.e., number of representatives) to be betweerd25. Not surprisingly,
FastGreedySummarySet outperforms the baseline algorithm, especially for largem-
maries. More importantlerobSummarySet significantly outperforms both across all sum-
mary sizes. The significant performance advantage ebSummarySet lies in the fact that
it avoids producing the full set of maximal packages, while other two algorithms have
to generate all the maximal packages first. In fact, the m®oégenerating the full set of

maximal packages alone is quite time-consuming, as showigure 4.8, where the cost

122

Perfr of St ization Algorithms

o
L

=)
L

W MaxCompositeltemSet
B GreedySummarySet

[FastGreedySummarySet
O ProbSummarySet

iy

0 25

IS
L

)
L

©
L

Average Time (milliseconds in log scale)
>

Number of Representatives

Figure 4.8. Summarization Algorithms Performance.

of MaxCompositeItemSet alone is more than the cost PfobSummarySet. We note that
the other two baseline algorithmBandom andDeterministic have essentially the same
performance adaxCompositeItemSet Since they also require the generation of the full
set of maximal packages, but the cost of picking random ppekar largest packages are
negligible. Finally, we note that onlyrobSummarySet is able to produce the summary
with interactive speed, which is critical in our goal of sopjing users’ exploration of the

results.

4.6.2.3 Summarization: Quality

Having the best performance is of little importance if ougaxlthms fail to gen-
erate summaries of good qualities. We next verify that thraraaries generated by our
FastGreedySummarySet andProbSummarySet are indeed comparable with the baseline
algorithm and better than the two simple heuristic algongh The experiments are per-
formed with the same settings as in the previous sectionhédws in Figure 4.9,
FastGreedySummarySet achieves exactly the same coverage as the baseline

GreedySummarySet, which confirms our theoretical analysis in Section 4.4t the for-

123

3500

y Coverage

mRandom

@ Deterministic

3000 | OGreedySummarySet
DFastGreedySummarySet
O ProbSummarySet

2500 -

2000 -

1500 -

Average Coverage Size

1000 -

500 -

5 10 15 20 25
Number of representatives

Figure 4.9. Summarization Algorithms Coverage.

mer faithfully mimics the behaviors of the latter, while i@y a substantially better perfor-
mance. Furthermor@robSummarySet’s coverage number is within a reasonable range of
the baseline coverage GfteedySummarySet, and it is comparable witheterministic

and significantly better theRendom. Given the far superior performanceRafobSummarySet
against all other algorithms as shown in Figure 4.8, we beligs the best choice for sum-

marization.

4.6.3 Visual Effect Optimization

In this section, we evaluate the quality and performancheheuristics visual effect
optimization algorithnEnhanceVE in Section 4.5. We compatre this algorithm against the
exponential brute force algorithBruteForceVE, which computes the optimal ordering
of packages by going through the types in their priority orded removing candidate
orderings, which are no longer the best for the list of exaaitypes so far, until only
one ordering is left or all types are examined. We performetigeriments fod 00 central
items, and for each central item, we generate summariesrgihgasizes (i.e., number of

representatives), starting wish using both algorithms.

124

Performance of Visual Effect Algorithm

EnhanceVE
Algorithm (millioseconds)
Brute Force VE
Algorithm (seconds)

—8—EnhanceVE

—&—Brute Force VE

T T T T T

3 5 8 10 15 20 25
No of Representatives(k)

Figure 4.10. Performance of Visual Effect Algorithms.

Performance Figure 4.10 illustrates th&nhanceVE significantly outperforms
BruteForceVE. Note that the time cost dfruteForceVE is shown along the second y-
axis on the right and is measured in seconds. As expetadeForceVE fails to produce
an ordering within a reasonable amount of timé® (ninutes) as soon as the summary
size reached0, which is a reasonable number of packages to be shown to #reirus
practice. MeanwhileEnhanceVE is able to produce an ordering in und¥rmilliseconds,
fast enough for the system to be interactive with the user.

Quality: Table 4.6 shows the aggregated penalty vectors for differalues ofk.
(Note thatBruteForceVE fails to produce results aft@rhours of running for summaries
with £ > 10.) The penalty vectors are of sigdthe number of satellite types in the experi-
ment), where the earlier entries correspond to higheripyisatellite types. As the numbers
illustrate, the penalty vector of the ordering producedhlyanceVE matches exactly with
the optimal penalty vector in higher priority types in alkea, and is only slightly higher
in very few positions on the lower priority types. This indies thaEnhanceVE indeed

produces realistically good solutions at a fraction of tbstof the brute force algorithm.

125

Table 4.6. Comparison of Penalty Vectors

’ k \ EnhanceVE \ BruteForceVE ‘
3110,0,0,0,0,0,2,1,0] | [0,0,0,0,0,0,2,1,0]
511,2,0,1,3,0,4,1,0] | [1,2,0,1,2,1,4,1,0]
8112,0,2,2,1,0,4,1,0] | [2,0,2,1,1,1,4,1,0]

10 | [2,1,2,3,1,3,5,1,0] | [2,1,2,2,1,2,5,1,0]
15 1(2,1,2,3,1,4,7,2,1] N/A
20 | [2,1,2,5,3,4,7,2,1] N/A
251 12,3,2,5,3,5,7,2,2] N/A

4.7 Related Work

We organize our discussion on related works according tdhitee main technical
problems of our work: maximal package generation, sumnmgyipackages, and visual
effect optimization. We also note that, to the best of ounkiedge, the work described in
this thesis is the first to propose and address the geneialepnoof helping online users
construct and explore composite items.

Generating Maximal Packages:Our maximal item set generation algorithm lever-
ages random walk algorithms [57, 63] that are primarily giestd for computing maximal
frequent itemsets. Several other works have also invastigihis problem [55, 64, 56].
Our solution is efficient since it leverages the fact thatdhdget constraint can be checked
purely based on the item itself, and uses@ud Turing Tesi58] as the stopping criterion.

Summarizing Packages:Our summarization problem can be mapped to an instance
of the well-known NP-complet®ax k-Set Cover Problef®0]. The main difference lies
in counting the number of distinct subsets (not distinahag of representative sets.

Although different from our problem statement, we note 8witema summarization
techniques based on information theory and statisticalatsodere proposed recently in

the context of relational [65] and XML databases [66].

126
Our proposed modeling of summarization bears resemblanegisting work on

ranking skyline points based on dominance [67]. Each remtasive maximal package
can be thought of as a skyline point which covers (dominaest of sub-packages. Thus
the problem is to seleétrepresentative maximal packages (points) such that thoaciof
packages covered by at least one of them is maximized. Howaweproblem is more dif-
ficult, since we consider this problem in a high dimensioréégorical space (as opposed
to a low-dimensional numeric space) where the packagesetby a representative max-
imal package are not present explicitly in the data set.

Visual Effect Optimization: Our visual effect optimization problem definition uses
a similar intuition as the diversity problem in [68]. Howeyehile the latter solves the
problem of evaluating: diverse query results, we aim at finding an optiraadering of
a set of representative packages which maximizes theialsiuersity. This calls for a
fundamentally different solution. The NP-complétamiltonian Path Probleni60] can be

reduced to an instance of our visual effect optimizatiorbfm as discussed in Section 4.5.

4.8 Conclusion

A wide variety of online stores, from e-commerce sites suElmazon, to online
travel reservation sites such as Expedia offer featuresendnaser is suggested a set of ad-
ditional complementary items along with her main item oénetst based on co-purchasing
or co-viewing behavior. Broadly motivated by such appli@as, our approach helps users
efficiently and effectively explore a large number of conifgogems formed by a central
item, the item of interest, and compatible satellite paekagubject to a budget constraint.
To that effect, we propossummarizatiorio reduce the large number of satellite packages
associated with a central item, anidual effect optimizatioto leverage diversity and help
users get a quick overview of available options within thmidget. We design and im-

plement efficient algorithms to address the technical ehgks involved. Our extensive

127
experiments on data obtained from Yahoo! Shopping site detrete the effectiveness

and efficiency of our algorithms. As future research digetdi we aim to explore more
complex modeling of compatibility between satellite iteam&l other variants of visual di-

versity.

CHAPTER 5
CHAIN COMPOSITE ITEMS

5.1 Introduction

Planning an itinerary is one of the most time-consumingdirpveparation activities.
For a popular touristic city, it involves painstakingly eximing the hundreds of Points-
of-Interest (POIs) to select the POIs that one likes, figuoat the order in which they
are to be visited, and ensuring the time it takes to visit thana to transit from one POI
to the next, satisfies the user’s time budget. Many onlineices such as Lonely Planet
provide packaged itineraries to their users. However gitoseraries suffer from two main
drawbacks. First, they are often not tailored to one’s owarests. For example, a first-
time NYC tourist is likely to be interested in a trip to the S of Liberty, while a NYC
regular may prefer to check out the latest MOMA exhibit. Setosuggested itineraries
may not fit one’s particular time budget. Someone who visjitaae for a very short time
frame, e.g, in the case of a layover in a city, or a very longtframe, e.g., in the case of
a month-long backpacking trip, is unlikely to find an itingrauggested by those services,
satisfactory.

Constructing a personalized itinerary for a user is a biglehgk because, even with
a relatively small number of POls, the number of possibheitaries can be combinatorially
large. In this paper, we adopt an interactive process winereiser provides feedback on
POls suggested by our itinerary planning system and themsylgverages those feedback
to suggest the next batch of POls, as well as to recommencdesiatimeraries so far. The
process repeats until the user is satisfied. In other wondsead of asking the user to

examine all the POls before deciding on the itinerary, oal goto ask the user to examine

128

129
only a subset of those POIls in multiple steps, each with alsmahber of increasingly

relevant POIs, thereby reducing the overall efforts resglion the user to construct the
itinerary. To the best of our knowledge, this work is the fistaddress the question of
formalizing interactive itinerary planning and exploré@&@eént solutions to this problem.

More specifically, the itinerary planning process involtles following interactions.

1. It starts with a user providing a time budget and a startiomt of the itinerary

(usually corresponding to the hotel where the user is stpyin

2. At each step, the system presents the user with a smallrfixeber of POls that are
most probably likedby the user, based on feedback provided by the user so far;

3. The system also recommertdghly ranked itinerarie$o the user based on the feed-
back;

4. The user provides héeedbaclon suggested POls to indicate whether or not she is
interested in them, and the process continues;

5. The user can also choose to pick one of the recommendedhitias, at which point,
the process stops.

Designing such an interactive system is a non-trivial tagk raises both semantics
and efficiency challenges. We provide a brief overview okthohallenges here.

First, we need to define tHeOIl Feedback Mode| which dictates how the user can
specify her preference for the individual POls. The mostegiermodel is thestar model
where the user provides 5-star ratings for POIs she realtysia visit and 1-star ratings for
POls she does not want to see. Two simpler models are also eontheternary model
where the user specifieges’ (i.e., positive), do_not_care’, and‘no’ (i.e., negative) for the
POls, and théinary model where the user is provided with only two feedback options
‘yes’ and‘do_not_care’. We note that the star model can often be converted into tharg
model. We will discuss the impact of different feedback mede the complexity of

itinerary planning, and focus on the binary model withirstivork.

130
Second, we need to define thimerary Scoring Semantics which dictates how an

itinerary should be scored based on the user feedback.a®iynit can also be defined us-
ing multiple semantics. In thget semantigghe score of an itinerary positively correlates
with the number of POIs with ges’ feedback and negatively correlates with the number of
POls with a'no’ feedback. In the strictest interpretation, a single POhwaito’ feedback
can render the entire itinerary ineligible. In tbleain semantics, the score of an itinerary
will further depend on how the positive and negative POlsaaranged in the itinerary.
One such semantics could be to rank itineraries contairongexcutive POIs marked with
a ‘yes’ higher than ones containing more POls marked withea’ none of which being
consecutive. Finally, an itinerary is omalid if it satisfies the budget constraint specified
by the user. We focus on time budget in this paper and defar d&inds of budget for
future work. We argue that during the interactive itineramlding process, previous user
feedback has a direct impact on the score of a new itineraryekample, wheffimes Sq.
has been markedes’ by the user in previous steps, the score of an itinerary aunta
Times SgandMadame Tussauds Wax Musetshould increase, because those two POls
are frequently co-visited. In this work, we use a probatiisnodel to compute thex-
pected scoref valid itineraries given user feedback using the set séicen/\Ve leave the
chain semantics to future work.

Third, we need to efficiently solve th@ptimal Itinerary Construction Problem ,
i.e., how to construct the best scoring itinerary based avemget of POls, along with their
feedback, and the user provided time budget. We argue thatiad&ation of all itineraries
is not practically feasible and design efficient algoritiforscomputing itineraries with the
best expected scores the fly

Finally, we need to efficiently solve th@ptimal POI Batch Selection Problem
i.e., how to select a fixed number of POls to solicit futurerdsedback based on the feed-

back received so far. We argue that the best candidate POk (fuggested to the user

131
next) are those which maximize te&pected scoresf the best itineraries. Any user feed-

back for those POls is likely to lead to itineraries with highpected scores, and therefore
satisfy user’'s needs sooner. We provide a formal definitiotiis problem and propose
a probabilistic model to compute the expected score of ahbaitdOls. There are two
main efficiency challenges. First, selecting the optimatiaf £ POIls according to the
expected itinerary scores requires the system to go thraligh, sets of POls, wherex

is the number of remaining POlIs in the system, which can lgeelave design a heuris-
tic algorithm that selects POls one by one to form partiathes, therefore significantly
reducing the candidate POI sets to be examined. Seconduthken of remaining POls
to be checked for each partial batch can still be large. et reduce that number, we
design an efficient pruning strategy which accounts for ite@adce of the remaining POls
from the starting point and from POls already in the batch.

Table 5.1 summarizes an example @fstep interactive itinerary planning for a user,
whose starting location iGround Zero, NY@nd has a budget 6fhours. At each step, the
suggested batch 6fPOls (column-2) is shown, the POls for which user feedbackeis’
(column-3), and the resulting top-1 itinerary based on kedback (column-4) are also
displayed. Note that, top-1 itinerary of step-2 considathlstep-1 and step-2 feedback.

In summary, we make the following contributions.

The paper is organized as follows. Section 5.2 containsradtization of the inter-
active itinerary planning approach. Section 5.3 desciibeslgorithms. Our experiments
are reported in Section 6.6. The related work is summarizeection 5.6. We conclude

with future directions in Section 5.7.

5.2 Formalism and Problem Statement
In this section, we discuss the formal data model of int@radtinerary planning.

We begin by describing different notations and their cqrogsling interpretations to be

132

Table 5.1. 3-step Iterative Itinerary Planning

| Step | POl batch | ‘yes’ feedback | Top-1 ltinerary

1 Trinity Church; | Trinity Church; NYC| 1. Ground Zero - Trin-
Brooklyn Bridge | Stock ExBattery Park | ity Church - NYC Stock
NYC Stock Ex Ex - Battery Park
Battery Park ;
Statue of Liberty

2 Times Square Times Square Grand| 1. Ground Zero - Trin-
; Grand Cen-| Central Terminal ity Church - NYC Stock
tral Terminal ; Ex - Battery Park -
Chrysler Build- Times Square - Grand
ing ; UN Head Central Terminal

Quarter ; Rocke-
feller Center

used throughout the paper. A summary of those notationstedlin Table 5.2 for easy

reference.

Data Model: The underlying data model is a directesmplete grapltz = (M, E). Each
nodem € M represents a POl and each edgg, m,) in £ represents a transit between
the two nodes and is annotated with an edge €pshsit(m;,m;). The edge cost is not
always symmetric. For example, traveling time between t@ésRan be different because
it is downhill in one direction and uphill in another. EachIP@; is also annotated with
visit(m;), which represents the cost associated with visiting the. FOi example, it

takes about 3 hours to visit tfg&tatue of Liberty.

Itinerary : An itinerary is a path in the input graph starting from tharstPOI. Each
itinerary 7 has a total visit timecotalVisit(r) = %,,,-visit(m;), and a total transit
time, totalTransit(7) = X, m,)e-transit(m;, m;). A validitinerary is one such that

totalVisit(7) + totalTransit(7) < B, whereB is a user provided budget constraint.

Table 5.2. Notations and Their Corresponding Interpretatio

| Notation | Interpretation |
M set of all POls in a city
Meen set of POls for which feed-
back has been received
Mremain =M - Mseen
transit(m;,m;) transit time from POlm;
to mj
visit(my) time to visit POIm;
FeedbackOptions set of different feed-
back values a user
can assign a POI (e.g.
{‘yes’, ‘nd, ‘do_not_care'})
n number of feedback op-

tions

(1d, feedback)

a POl as an ordered pair of

id and feedback option

a POl batch

number of POIs in a batch

total budget

7
k
B
AllFeedbacks(Z)

= {7,..., I}, i.e., set
of all possible feedbac
combinations off

)

Z;

= {< idy, feedback] >
,oy < idy, feedback] >
}, i.e., j-th feedback com;
bination for the POI batch
7

an itinerary, expressed as a

sequence of POls

TT

best itinerary correspond
ing to j-th feedback com;
bination for the POI batch
z

S,

J

score of the best itinerary
givenZ;, B and M.,

ExpScore(T| Mgeen)

expected score of itinerary,
given feedback\ ..,

ExpBatchScore(Z|Mseen)

expected value (over a
7;) of Sz,

133

134
5.2.1 System Overview

The input to the system is the graphthat obeys metric properties, a budéfete.q.,
the user has hours to spend in the city), and a starting POI (e.g., an diquoa hotel).
The task of the system is to interact with the user and gatbepteferences, and build
the best possible itinerary for her via this iterative femdbprocess. In each iteration, the
system suggests a batch ofPOls to the user, and the user provides feedback on these
POls, i.e., her preference for including them in her itimgrdased on the feedbacks, the
valid itineraries are re-ranked according to ftering semanticand the top itineraries are
suggested to the user. SinGeis complete, therefore the POls that the user has preferred
to have included in the itinerary can always be connecteld @ath other with direct edges
based on their shortest transit time paths subject to thgdiutbnstraints, and does not
need to involve any POI that she has not chosen. At each &eepiser is shown the next
batch of POI suggestions from the system. This interactieegss ends when the user is
satisfied with the top itineraries suggested by the systahrdanides not to proceed with
the next batch.

Two computational problems form the heart of the system. fireeis theOptimal
POI Batch Selection Problenwhere the system has to determine at every iteration the
next batch ofk POIs to be shown to the user. Once these POIs have been pcksemnt
user feedback collected and updated, the system then hat/éotke Optimal Itinerary
Construction Problenwhich re-ranks all itineraries and presents the top-rdakes to the
user. In fact, thé@ptimal POI Batch Selection Probleatso requires solutions to multiple
instances of th®ptimal Itinerary Construction Problepas each candidate set/oPOls
have to be considered and top itineraries have to be comfartedch possible combination
of user feedback. In the rest of this section we develop formotations and definitions of

both problems. We begin by describing the feedback modatsath consider.

135
POI Feedback Model When one (or more) POls are shown to the user, the user egpress

her preference for them according to a specific feedback mbadéFeedbackOptionbe
the set of different ways in which a user can show her preterén a POI. As an exam-
ple, for theternary feedback modeFeedbackOptions = {‘yes’, ‘nd’, ‘do_not_care'}. A
simpler modebinary feedback moddlas the options‘yes’, ‘do_not_care’}. An alternate
binary feedback model may have the optigng:s’, ‘no’}.

Interestingly, since in this paper we consider recommendineraries only for a
single userthe specific feedback model is irrelevant. We only need todmeerned with
the POIs marked ages’ by the user, as the POIs marked@as or ‘do_not_care’ are never
considered by the recommendation algorithm. This is bexéus underlying graph is a
complete graph, and the recommended itinerary should tstbas manyyes’ POls as
the budget allows, and will never need to visit any a POl mauke ‘no’ or ‘danot care’.
The different feedback models only differ in their “useefidliness”, and do not impact
the underlying solution®

In our system, a POl may be regarded as an orderedja&if cedback), whereid
identifies the POI (e.g.Statue of Liberty Initially each POI’s feedback is set to the value
‘unseen’, and, after the POI is seen by the user, is set to a value freadbackOptions.

At any stage during the interactive process,Mdt.., (respectively,M,..,..:») b€ the set

of POls that have currently been seen (respectively, remoalie seen) by the user; thus
initially M = M.in. At every step of the iteration, the system selects a batohk
POIs fromM.,........ and shows them to the user. The user provides feedback for eac

POI in Z indicating her preference for including the POIs in the ottpinerary. Let

IHowever, if an itinerary has to be shared by a group of usegs, (@ set of people sharing a tour bus),
then a POI marked as ‘no’ by some users may be marked as ‘yesthisy users, and the recommendation
algorithm will have to carefully consider the impact of tiisg a POI with conflicting preferences by the user

group. Recommending itineraries for user groups is leffiture work.

136

n = |FeedbackOptions|. We note that there can bé feedback combinations, each of
which represents a possible user feedback for PO iithe following notation will be
convenient: All Feedbacks(Z) = {Zy,Z,,...,Z,}, where eacl¥; represents a specific
combination of feedback by the user for each POI. Thus fotehsary model there ai¥
feedback combinations, whereas the simpler binary modeksl¢o2* feedback combina-

tions.

5.2.2 Probability Model

For any candidate sét of k£ POls considered during an iteration, it is crucial that
the system be able to derive the probability distributiothesen* feedback combinations.
Such a probability distribution will be useful in steeringetsystem towards choosing the
subsetZ that maximizes the chances of getting highly ranked itinesa We adopt prob-
abilistic models that are intended to combine users’ geén@ederences (e.g., statistics
derived from past query logs may reveal that most users wisb va visit theStatus of
Liberty would also like to visit theEmpire State Buildingwith personalization (e.g., the
specific feedback obtained from the user on previous batwhe®Is may reveal that this

particular user prefers art related places). We describenodels in more details below.

Generic Probability Model: A generic probability model can be used to compute the
probability of j-th feedback combinationPr(Z;| M,..,). This probability model can be
learned from two training sources: the past activities.(ggst itineraries accepted by
other users of the system), and current ongoing activities the POls that have been seen
and marked by the current user). Several classical mackaraihg solutions can be used
for this purpose, e.g., graphical models such as Bayesiawddet or Markov Random
fields [69].

Specific Probability Model: In this paper, however, instead of relying on complex solu-

tions involving a generic probability model, we adopt a msahpler probability model

137

using the assumption of a limited form ednditional independenéeWe assume the POls

in Z; are nottotally independenbut rather areonditionally independent
Under the conditional independence assumption, we have:
Pr(Z;|Mucen) = Tl ez, Pr(mil Micen)

Using Bayes’ Theorem [70], this can be rewritten as:

Pr(Mgseen|m;) X Pr(m;
PT(Ij|Mseen) = HmiEIj (P’/‘(/|Vlse):;) =

SincePr(M...,,) is a constant for that particular iteration, we thereforeeha
PT(Ij|M(seen) (0,8 Hmite PT(MS€€n|mi) X Pr(ml)
Applying conditional independence again:

Pr(Z;| Mseen) Hmiezj Hmle/\/tseen Pr(my|m;) x Pr(m;)

Even though the probability formula is a proportionalityrfaula, it suffices for our
purpose as it is used in the scoring function for rankingeitamies, since all we need to
know is whether one itinerary has a higher score than tha-ettie exact score is irrele-
vant. Computing the probability formula requires us to knbe value of quantities such
as Pr(my|m;) and Pr(m;) wherem; andm, are POIs. However, singleton and pairwise
probabilities can be computed in a preprocessing step flioeraries chosen by previous
users. For exampld}r(m,;|m;) can be estimated as the fraction of previous itineraries con
tainingm, that also contaimn;, and Pr(m;) can be estimated as the fraction of itineraries

that containm;.

5.2.3 lItinerary Scoring Semantics

An itinerary consists of two sets of POls: the seen POls foicvluser feedback

has already been collected, and the remaining POls for whieltan only estimate the

2Conditional independence assumption is used in buildingeNBayes classifiers [70]

138
user feedback. Thus the score of an itinerary should be aioatidn of the score of the

seen part, as well as the expected score of the remainingnpaate the expectation is over
the probability distribution of all possible user feedbatke probability model proposed

earlier can be used to model the expected score of the unaeen p

Generic Scoring Function Consider an itinerary as7sce, U Tremain. A gENEric scoring
function has the form:

ExpScore(T|Mgeen) =

Combine(Score(Tseen), ExpScore(Tremain| Mseen))

where the two parts may be combined using any meaningfubtipar(such as addition,
weighted or un-weighted). There can be numerous ways ofidgfiaasonable forms of the
function Score(s.e,). FOr example, a reasonable function is positively coreelatith the
number of ‘yes’ POIs, or a sophisticated scoring functiory msen consider the sequence

of the ‘yes’ POls in the overall itinerary score.

Specific Scoring Function While we do not advocate for a specific scoring function in
this paper, we illustrate several optimization opportesiin conjunction with a specific
scoring function in Section 5.4. This scoring function itated to the binary feedback
model, and has a simple but compelling form—the score of iaerdry is the expected

number of POls that will be marked ags’ by the user.

5.2.4 Problem Definitions
We are now ready to describe the two fundamental problenmstiressystem needs

to solve.
Optimal Itinerary Construction Problem : Given B, M., andZ; (i.e., a specific batch
of k£ POls with their feedbacks from the user), compute the vdiigtiary = such that

ExpScore(t|Mseen U Z;) is maximized.

139
We nextintroduce some useful notation. kgtbe the output of th®ptimal Itinerary

Construction Problemi.e., the valid itinerary with the maximum expected scarg] let its
expected score bg;,. Next, given3, M., and a batch of unseen POIZ (i.e., without
any specific user feedback combination), #etp BatchScore(Z| Ms..,,) be the expected

value (over all possible user feedback combinatib)®of the random variabléz, .

Optimal POI Batch Selection Problem Given B and M,,.,,, compute the batch of

unseen POlIs that maximizé&s:p BatchScore(Z| Meen).

Intuitively, we wish to select a batch @f unseen POls such that, no matter how
the user responds with her preferences to these POls, tleetexipscore of the top ranked
itinerary over all possible user feedback is maximized.

As will be discussed in the next sections, the choice of iheriary scoring function
as well as the probability model affects the efficiency of salutions to these problems.
We discuss a general solution framework for these problen@ection 5.3, and more ef-
ficient solutions tailored to a specific scoring function dhe simpler probability model
in Section 5.4. Our solutions are designed to solve onetiberatep in the interactive

itinerary planning problem.

5.3 General Algorithms for Itinerary Planning

In this section we shall develop the framework of a genegosthm for solving the
Optimal POI Batch Selection ProblemiVe refer to this as a “generic” algorithm because
it is essentially a framework that assumes any arbitraryirsgdunction for itineraries, as
well as any arbitrary probabilistic model for predictingeugreferences for the remaining
unseen POls, given the current user feedback. We also grewgleneric subroutine to solve
the Optimal Itinerary Construction ProblemWe analyze the computational complexity

of the problems as well as the proposed algorithms. In thé seotion, we show how

140
a specific probabilistic model (based on conditional indeleace), as well as a specific

scoring function (based on user feedback restricted to @iy and ‘do_not_care’ for
POIs), can be leveraged, along with several algorithmimopations, to achieve extremely

efficient approximate solutions to these problems.

5.3.1 A Generic Optimal POI Batch Selection Algorithm

Our generic algorithm for th®©ptimal POI Batch Selection Problem shown in
Algorithm 12. As can be seen, the main body consists of géingrall possiblek-sized
batches of potential POls from the remaining unseen POt f@neach potential batch,
computing the expected score of the optimal itinerary—wtlibe expectation is over the
probability distribution of all possible user feedback hosek POIs. This calculation is
performed by théexpBat chScor e subroutine (which will be discussed next). The set

of k£ POIs selected are those that maximize this expected opsicoaé. We next

Algorithm 12: Algorithm OptPOIBatchSelection
Require: Meen, Myemain, batch sizé:, budgets;

1. RS = {I | 1cC Mrema'm7 |I| = k‘},
2! Ipag = argmazyre pgExpBatchScore(Z| Mgeen, B);

3: retun Lo

discuss thd&xpBat chScor e subroutine as described in Algorithm 13, which computes
the expected score of the top itinerary given the POI bafghconditioned upon the feed-
back of the seen POIs\,..,). For each of the* possible user feedback combinations
7;, we need to recompute the scores of all valid itineraried,d@termine the one with the
highest score. This is achieved by repeated calls t@ttid t n subroutine (which will be

discussed next). Finally, the expected value of the scottesobptimal itinerary is returned

141

Algorithm 13: Subroutine ExpBatchScore
Require: Maeen, I € Myemain, budgets;

1. AllFeedbacks(Z) ={11,Zo,... I };
2. # eachl; is a possible feedback combination®n
3: ExpBatchScore #r(Z;| Mseen) X

¥1<j<nrt ExpScore(OptIt(Mseen, Zj, B)| Macen);

4: return ExpBatchScore;

Algorithm 14: Subroutine Optltn
Require: Meen, Z;, budgetB;

1: 7 = {7 | totalVisit(7) + totalTransit(7) < B}, wherer is an itinerary
2! Tmaz = argmawfeTEl“pSCO?"e(T|Mseen U IJ)’

3: return Tonae,

(where the expectation is computed over the probabilityribigtion of the user feedback
Z;).

TheOpt | t n subroutine solves th@ptimal Itinerary Construction Problenit takes
as input the user feedbacks from previous batchés.(,., along with a candidate user feed-
back combinatior;), and computes the valid itinerary with the highest expstmre. As
can be seen from Algorithm 14, one straightforward (butfioieint) way of doing this is
to first compute all valid itineraries, compute the expedeares of each of them (condi-
tioned by the user feedback in previous batches and caedidat feedback combination),
and return the one with the highest score.

In summary, the general algorithms discussed above do apaeeer inefficient.
However, in what follows, we show that the problems are Nfyglete in general, and one

may not be able to improve over such naive approaches in therigecase. To improve

142
efficiency, one has to resort to specific scoring functiopgreximation heuristics, and

other optimizations—such approaches are discussed iroSéct.

5.3.2 Complexity Analysis
The generidOptimal POI Batch Selectioalgorithm described above is very ineffi-
cient. The inefficiency stems from three sources:

1. There are('M"j;W“) = O(|Myemain|¥) possible batches df POls that need to be
considered.

2. For a given batclz, all possiblen* user feedback need to be considered.

3. For a given user feedback (i.e., a potential user feedtmack given batch, in con-
junction with the user feedback for earlier batches), timerary with the highest
expected score needs to be computed.

Thus, if we assume that the cost of a single optimal itinecamputation isl’, then
the total time taken by th@pt POl Bat chSel ect i on algorithm is O(| M,cpmain|* X
n* x T'). Unfortunately, as the following arguments show, it appéapossible to improve
this in general, as even the third task in the list above, the. problem of computing the
itinerary with the optimal expected score for a given usedfmck (essentially the Optimal

Itinerary Construction Problem), is NP-complete.

Theorem 5.3.1. TheOptimal Itinerary Construction Probleis NP-complete.

Proof. (sketch) We can reduce the NP-compl&eoted Orienteering Problerfy1] to
this problem. The rooted orienteering problem is definedo#lews: Given a complete
weighted graph (in a metric sense, i.e., satisfying theglminequality), a start node, and
a length budget, determine a path from the start node thiéd @s many nodes as possible
without going over the length budget.

The reduction proceeds as follows. Consider a very simplessacewhere:

143
e the original POIls are connected by a complete weighted gvépre each edge

weight represents the transit time to go from one vertexaather along the edge,
e the visit times of all POls are O,
e there is no prior probability model: thus all possible ussdback for the next batch
are equally likely,
o the user feedback is restricted t@5'/* do_not_care’ for each POI that is shown to
her,
e the score of a valid itinerary is simply the number of POI4 tieve been marked as
‘yes’ by the user in her feedback, and
e we are considering the very first batch, i.e. user feedbaskbgabeen collected for
any POl yet.
Let Z be any subset of POIs. LetZ’ be any subset of, representing a specific subset
of the batch that the user may potentially mark@as’. Consider the induced complete
subgraph graph ovef’. Let this induced graph be isomorphic to the input graph ef th
rooted orienteering problem. It is easy to see that comgutie valid itinerary with the
highest score is equivalent to solving the rooted oriemgeproblem whose length does

not exceed the budget. O

The above theorem shows that computing itinerary with thena) expected score
is NP-complete even for a simple scoring function. Morepsice theOptimal POI Batch
Selection Problens more general than th@ptimal Itinerary Construction Problepthe
former is also easily seen to be NP-complete. Also, as caadag thept | t n subroutine
is called inside the innermost loop of the ovei@iit PO Bat chSel ect i on algorithm,
and is therefore called numerous times, making the ovdgadlighm extremely inefficient.

In the next section, we consider several ways to avoid thasess of intractability. In par-

144
ticular, we consider a simple but practical scoring functad a simple probabilistic model

for scoring itineraries, and use fast heuristics to compptanal itineraries approximately.

5.4 Efficient Algorithms for Itinerary Planning

In this section we discuss more efficient solutions to tmerary planning problems,
by focusing on the simple but practice scoring functionddssed in Section 5.2) based
on the binary feedback model, and the simple probabilisticieh for scoring itineraries
based on the assumption of conditional independence. Quiicsts are based on fast
heuristics to compute optimal itineraries approximattiiys overcoming the intractability
of Opt It n. We also assume that the batch sizes reasonably small (which is true in
practice as the value df is limited by the screen size used to display the selected POI
to the end user), thus making thé factor in the running time oExpBat chScor e
small. We also use a greedy approach to construct:tiOls, thus eliminating hav-
ing to examine all M, ..,...|* subsets of POIs. Finally we develop several other algo-
rithmic and data structure optimizations to achieve veficieht overall performance of
Opt PA Bat chSel ecti on in practice. In the rest of this section we provide more de-

tails of our techniques.

5.4.1 Efficient Approximation Algorithm for POI Batch Selext

One of the main bottleneck in th@pt PO Bat chSel ect i on algorithm is that
a large number of candidate POI batches need to be considecethe best one chosen
from among them. Instead, we follow a greedy approach whereamstruct a POI batch
one POI at a time, thus trading off batch quality (i.€xpBatchScore(Z| Msee)) for
efficiency, with the hope that small quality degradation &aimg in huge performance

improvements.

145
Consider the algorithner eedy PO Bat chSel ect i on shown in Algorithm 15.

The first step is to prune from consideration those POWsR,,..., that are simply too far
away from the start POI to be involved in valid itinerariesr Eight budgets, this can be
a very effective step in practice. Next, the batchkdPOls are constructed greedily in
iterations. In each iteratio) each of the remaining POlIs i, .., are considered as
candidate for adding to the batch, and the one that creatasch twith: POIs with the
maximum batch score is selected for inclusion in the batch.

Thus, unlike theOpt PO Bat chSel ecti on algorithm in the previous section
which makes
O(| M emain|¥) calls to subroutine€ExpBat chScor e (which evaluates each candidate
batch), the newG eedyPQ Bat chSel ect i on only makes at mosO (| M,emain| X
k) calls to subroutind-ast ExpBat chScor e (which itself is a more efficient subrou-
tine than the earlieExpBat chScor e subroutine for evaluating each candidate batch,
to be discussed later). Since the valuekas small is practice, the number of calls to

Fast ExpBat chScor e is acceptably small.

5.4.2 Efficient Computation of a Batch Score

We next discuss the subroutif@st ExpBat chScor e which is shown in Algo-
rithm 16. This subroutine takes as input a candidate batuth,exaluates its “expected
score”, i.e., for the distribution of all possible user fbadk for the candidate batch, the ex-
pected score of the optimal itinerary according to the sestoring function being used.
The structure of this subroutine is very similar to that o #orresponding subroutine
ExpBat chScor e in Section 5.3, because it also enumerates all possiblefesdback
combinations to the candidate batch, and makes a totafo€alls to another subroutine

to determine the optimal itineraries for each possible tessstback combination (this sub-

146

Algorithm 15: Algorithm GreedyPOIBatchSelection
Require: M., consisting of yes’ and ‘do_not_care’ feedback M cmain,

batch sizé:, budgets;
11 Mpruned = {m|m € Myemain, transit(StartPOI, m) + visit(m) < B}; {prune
M emain DY removing POIs that are very far away from the start POI
20 Typaz = {};
3 i=0;
{construct POI batch greedily by adding POIls one by one to initially empty batch
4: while i # k do
5: M = argmatm;eM,, e FastExpBatchScore(Tmae U {m;} [Mseen);
6. Tmaz = Zmaz U {m};
70 Mpruned = Mpruned — {m};
8. itt

9: return Z,az.

routine, calledAppr oxI t n, will be discussed later). Since we assume thiatsmall, and

|Z| < k, the total number of user feedback combinations will beaeably small.
Hamiltonian Paths in Hypercubes However, there is scope for optimizing

ExpBat chScor e even further. The crucial difference betwedeast ExpBat chScor e

and the earlier generiexpBat chScor e is theorder in whichall the user feedback com-

binations are processefixpBat chScor e processes the user feedback combinations in

any arbitrary order, but we observe that certain specifiersrdan be leveraged to improve

overall efficiency. Since we are considering the specifiatyifieedback model, for a given

candidate batcl, there are/?! different user feedback combinations. Consider any spe-

cific user feedback combinatidfy. If we considerZ as an ordered set (in any order) of

POls, therf; can be considered as a Boolean vector of lefigthin which al implies that

the corresponding POI has been potentially markegeas, ‘and a0 implies that the corre-

147

Algorithm 16: Subroutine FastExpBatchScore
Require: M., consisting of yes’ and 'do_not_care’ feedbacks, a sef of < k POls from

Mremain;

1. AllFeedbacks(Z) ={11,Zs,...Iy1}
{above sequence should correspond to Hamiltonian pafkdim hypercubé

2: FastExpBatchScore =, oz (Pr(Zj| Mseen) <
EzxpScore(ApproxItn(Maeen,Zj)| Mseen)); {@bove calculation should be run in
Hamiltonian path sequence to enable incremental computation of ApproxItn and
Pr(Zj| Mseen) }

3: return FastExpBatchScore;

sponding POI has been marked asl@hot_care’. Thus the set o2l user combinations
can be viewed as the vertices (i.e., corners) [df|adimensional hypercube.

The subroutind=ast ExpBat chScor e’s order for processing all user feedback
combinations is as follows: it findstkamiltonian pathn the hypercube, and then processes
each user feedback combination in the order in which it aggpeahis path. For example,
consider the 3-dimensional hypercube in Figure 5.1, whetfamiltonian path is shown

traversing the 8 vertices.

000 001

010

100 10

110 111

Figure 5.1. Hamiltonian paths in hypercubes..

148
The reason for using a Hamiltonian path for ordering the tesstback combinations

is because the Hamming distance between any pair of comgeeattices on this path is
exactly 1, i.e., the corresponding subsetsyet’ POls differ by exactly one POI. This has
important efficiency implications. For every user feedbeokbinationZ;, the subroutine
Fast ExpBat chScor e has to perform two computations (see line 2 in Algorithm 16)
(a) it has to call a subroutin@ppr oxI t n, and (b) it has to computer(Z;| M.,), i.e.,
the probability that the user will give this specific feedbaombination, given her earlier
feedbacks. We defer the detailsAgpr ox| t n till later. However,Pr(Z; 1| Ms.e,) can
be incrementally computed very efficiently froRr(Z;|M..,,) if they differ by only one
‘yes’ POl—as can be seen from the specific probability model fdamn Section 5.2,
Pr(Z; 1| Meen) can be computed fromfr(Z;| M een) in O(| M een|) time rather than in
O(|Mgeen| x |Z]) time, which would be required iPr(Z;, 1| M) had to be computed
from scratch.

The following lemma shows that all-dimensional hypercubes have Hamiltonian

paths, and moreover they are easy to construct.

Lemma 5.4.1. Eachd-dimensional hypercube has a Hamiltonian path, and suchth pa

can be computed i®(2¢) time.

Proof. The proof is by induction. Assume that all hypercubes up toetisiond have
Hamiltonian paths. Consider a Hamiltonian pathuv,, ..., vya_1,v5a. NOw, consider a
(d + 1)-dimensional hypercube. It is easy to see that the @atuv,, . . ., 0vga_;, 0vsa,
lvga, 1vga_q, ..., lug, 1oy is @ Hamiltonian path in thél + 1)-dimensional hypercube. Fig-
ure 5.1 illustrates this construction for the calse- 2, andd + 1 = 3. Cleatrly, this also

implies a simple linear time recursive construction of shiemiltonian paths. O

What if we did not use a Hamiltonian path ordering? If we useabitrary ordering,

the changes between successive user feedback combinakigrize quite large, thus mak-

149
ing probability calculations expensive. For example, siggowe used a random ordering

(i.e., a random permutation of all user feedback combina)ioThen between successive
user feedback combinations in such an ordering, it is easgéahat the expected Ham-
ming distance may bé&(|Z|). Thus every timeAppr oxI t n is called, the incremental
probability computation may take (| M,e..| x |Z|) time rather tharO(| M., |) time if
the Hamiltonian path ordering was used.

The Hamiltonian path order is also crucial in the efficierg@xtion ofAppr oxI t n,

which shall be discussed next.

5.4.3 Approximation Algorithm for Itinerary Construction

The Appr oxI t n subroutine solves thiinerary Construction Problenusing ap-
proximation heuristics. It takes as input a certain set ef ugputs marked agés’ (M seen,
enhanced with a candidate feedback combinafign and computes the valid itinerary
with the (approximate) highest expected score. Since tlmbl@m was shown to be NP-
complete in Section 5.3, we use a “Best-Benefit” approximakiearistic to solve this
problem approximately.

The subroutine is shown in Algorithm 17, which adopts a gyesggproach. Starting
from the start POI, at every iteration, the algorithm ad@sRI®I (chosen from the remain-
ing POls, i.e., those not yet in the partially constructatkitary) that has the bebenefit
as defined in line 5. Intuitively, the benefit correlates pasiy with the probability that
the user will mark the POl agés’, and negatively with the time needed (transit plus visit)

to reach this POI from the last POl added to the itinerary.

Heap Data Structures for Maintaining Benefits For theAppr oxI t n subroutine to be

efficient, at every iteration it needs to be able to quicklyedmine, from the remaining

150

Algorithm 17: Subroutine Approxitn

Require: M..,, and a candidate user feedback combinafipn

1:

2:

3:

Miempseen = Mgeen UZ;

Tmaz = StartPOI

RemainB = B — visit(StartPOI)

{Construct itinerary greedily using a “best benefit” heuristic
while RemainB > 0 do

NextPOI =

Pr(m;.feedback=yes| Miempseen) .
argmaTm,;e Mprune—Tmaz transit(m;,Tmaz-LastPOI)+visit(m;)’

RemainB = RemainB—
transit(NextPOI, Tz LastPOI) 4 time(Next POI);
if RemainB > 0 then

Tmaz = Tmaz U {NextPOI};

return Tz

POls in M3 that are not a part of the partially constructed itinergmg, POl with the best

benefit with regard to the last POI added to the itinerary. Aenavay of doing so is to

pre-compute, before each executionApfpr ox! t n, for all pairs of POlsm,, m, € M

the benefit of reaching, from m,. Then, whileAppr oxI t n is executing, the benefit of

reaching each POI im from the last POI of the itinerary can be compared and the POI

with the best benefit can be selected. Clearly this approdes at leasO (| M|?) time,

not accounting for the pre-computation time.

We can reduce the execution timeAgfpr ox| t n from O(|M|?) to O(|M|log(|]M])),

using the data structuring techniques described belovee@ippr oxl t n is called in the

3Actually, this should beM,,,uned, but in this discussion we assume that in the worst case thayenot

be any pruning, and1,,,neq = M.

151
innermost loop of our overall itinerary planning algoritbythis can be a substantial savings

in practice.
Pre-ComputationTwo data structures are prepared before each cabfr oxI t n:

1. The first isProbOrder, an ordered list of the POIs iM, in decreasing order of
Pr(m;.feedback = yes| Muempseen) TOr €ach POIm,. Note that these quantities
are the numerators of theenefitof each POI (see line 5 in Algorithm 17). Instead
of naively constructing”robOrder from scratch every timé@ppr oxl t n is called,
we can leverage the fact that the calls are made in sequenicg tle Hamiltonian
path ordering of the user feedback combinations. Thus foh 8DI1m,;, we update
Pr(m;. feedback = yes| Mempseen,) from its previous value in constant time, since
Miempseen Nas changed by only one POI since the last execution. PrasOrder
can be updated and re-sorted in ove€i|M |log(|M])) time.

2. The second is a set pfiority queues/heapg’2] H,, H,, . .. H 4, one for each POI
in M. For each POI, the corresponding heap contains the times{trplus visit)
needed to reach every other POLi. Note that these quantities correspond to the
denominators of the benefit of each POI (see line 5 in Algoritv). These heaps
allow the operatiorfind best time POto be performed in constant time, and the
operationglelete best time PQindinsert POIto be performed i) (log(|M|)) time.
Although it may appear that the total size of all the heap3(is\1|?), these heaps
are constructednly onceby theFast ExpBat chScor e subroutine. During each
of the 212! executions ofAppr ox| t n, these heaps change duedilete best time
POI operations, but are restored to their original status leefbe next execution
of Appr oxl t n by undoing the delete operations with correspondimggert POI

operations, as shall be discussed next.

152
In-Computation During the execution oAppr oxI t n, the main task at each iteration is

to determine, for the last added POI, the POI from the remgimvith the best benefit.
However, as described above, we do not store the benefitglbfRgal directly in any data
structure (since that will be expensive to maintain), bdhea store the numerators and
denominators in separate data structures. Thus to find thevRi©Othe best benefit, we
have tosimultaneouslycan both data structures in a round-robin manReopOrder as
well as H,..:po; (the latter is done by repeatéelete best time PQiperations), until we
determine the remaining POI with the best benefit. This iemsaly an application of
the populaiThreshold Algorithn{TA) [61]. While in the worst case it can take(| M) if
both data structures need to be completely scanned, ingeaittis expected to stop very
early. Once the next best POI has been determined, thenaipdhe,; »o; can be restored
by undoing thedelete best time PQdperations with correspondingsert POloperations.
Thus the in-computation cost of each executioppr oxI t n takesO(|M|log(|]M]))
time, assuming that the TA algorithm only goes to a constaptidon each data structure
on average.

In summary, in this section we presented efficient approtionaheuristics for the
POI Batch Selection Probleas well as thdtinerary Construction ProblemWe leveraged
a simple itinerary scoring function based on the binary liee#t model, assumed that the
batch size: is reasonably small, and applied a greedy strategy for nartsig the batch of
k POls. This is facilitated by making calls to an approximatigorithm for itinerary con-
struction that is based on tihest benefibeuristic. Moreover, we employ interesting algo-
rithmic and data structure optimizations, such as usindné&zg data structure for indexing
the POI benefits, and maintaining the heaps as well as thalpitil quantities efficiently

by following update strategies based on Hamiltonian padieiang in hypercubes.

153
5.5 Experiments

We conduct a set of comprehensive experiments for popaeeltdestinations using
real world datasets extracted frdmnely Planet andFlickr®. In this section, we describe
our experimental set-up, data generation and explain aalitgand performance results.

We implemented our prototype using JDK 5.0. All performaegperiments were
conducted on a 2.66GHz Intel Core i7 processor, 4GB Memod/580GB HDD, running
OS X. The Java Virtual Memory size is set to 512MB. All numbers abtained as the

average of three runs.

5.5.1 Data Generation

City Names and POI Generation: We consider popular tourist destinations and
their POIs for our itinerary planning probler2 geographically distributed cities are con-
sidered and the popular POls of those cities are extraciad tleeLonely Planetdataset.
City names, corresponding number of POIs in each city and sxam@ple POls are shown
in table 5.3. For each POI, we used Wikipédimextract latitude and longitude information
associated with it.

Transit Time, Visit Time Generation: Given a city, we generate the transit time
between every pair of POls in that city. We uSeogle Map$ to calculate the transit
time by carbetween a pair of POIs using the underlying road networks phocess gives
rise to a POI graph, one for each city and each of these gedegahphs are complete
and directed. Note that, in general, the pairwise transiés generated in this process are
asymmetric, which is usually true for any road network. Misne of each POl is generated

using the Flickr log.

*http://www.lonelyplanet.com/
Shttp://www.flickr.com/services/api/
Shttp://en.wikipedia.org/
"http://maps.google.com/

154
Atomic and Pair-wise Probability Generation using Flickr Log: We use the pub-

licly available Flickr dat&to generate atomic and pair-wise probabilities of POIsckFli
data captures user itineraries in the form of photo streavhsre the photos are tagged
with corresponding POI names and the respective date/ssecated with the photos de-
fine the set of possible itineraries (such as, a set of POitedisn the same day). Given a
Flickr log of a particular city, each row in that log corresis to a user itinerary that is vis-
ited in a12 hour window. We use this log to generate the atomic proliaslof the POIs,
and the pair-wise probabilities of every POI pair for a gautar city. Using three years
worth of Flickr logs, the atomic probability of a POl is thadétion that a POl appears out
of the total number of itineraries in the query log. The ctindal pair-wise probabilities,
Pr(POI;|POI;) are calculated as the fraction thaOI; was also visited out of the total
number of timesPOI; was visited.

The Flickr log may be considered as a collection of itineasgelected by prior users.
This enables us to perform quality experiments evaluatiegetffectiveness of interactive
itinerary planning, without requiring a user study involgiactual users. Our interactive
approach chooses the next batch of POIs suggestions bast@ gnobabilistic model
learned from Flickr itineraries. User response is also kied by the same probabilistic

model.

5.5.2 Summary of Experimental Results

We conduct quality and performance experiments by varnyjiegnumber of POls,
the budget and the size of the suggested POI batch. Eachsef plagameters impacts the
running time and the score of the returned results. We censidtarting POI for each ex-
periment that provides the starting point for the itineraly performance experiments are

reported for a running time of a single batch. We argue thextgomputation of itineraries

8http://www.flickr.com/services/api/

Table 5.3. Example Cities and POls

155

| City Name

| Number of POIs|

Example POls |

Amsterdam

118

Diamond Museum
Museum Amstelkring
Oosterpark

Bangkok

48

Phayathai Palace, Sia
Ocean World, Wat
Traimit

m

Barcelona

73

Arc de Triomf, Museu
Picasso, Plaza Reial

Chicago

91

Flat Iron Building, Lin-
coln Park, Soldier Field

London

163

Brick Lane, Bucking-
ham Palace, Hyde Par

=~

New Orleans

35

French Quarter, Pito
House, St Roch Ceme
tery

—

New York

119

Chelsea Art Museum
Lincoln Center, Rus-
sian & Turkish Baths

Paris

114

Bois de Vincennes
Jardin des Tuilerieg
Petit Palais

Rome

134

Arco di Costantino,
Colosseum, Gianicolo

San Franciscq

)

78

Alcatraz, Mission
Dolores Park, Union
Square

Sydney

96

Bondi Beach, Custom
House, Taronga Zoo

Toronto

48

Cn Tower, Ontario
Place, Spadina Mu
seum

156
is not possible. We observe in our dataset, that, for a buafg&hours, any set of POls

are permissible and can form a valid itinerary. Given a ¢igt tonsists of about0 POls,
roughly the number of valid itineraries that consist offafPOls could be in the range of
0.5 billion (the total number of itineraries would be much moerehich certainly is not
feasible to pre-compute.

In short, our experimental results substantiate our claahthe greedy algorithm for
interactive itinerary planning is a feasible solution foteractive itinerary planning, both
quality and performance wise. In addition, we propose stgatimizations of the greedy
algorithm and our results accordingly corroborate our teeoal analysis, by generating

faster running times for the optimized variants.

5.5.3 Quality Experiments

In this subsection, we discuss and report the results of wairty experiments.

Greedy Interactive Itinerary Planning Algorithm: In this experiment, we vary
the budget and observe the expected score of the optimafatiy in one step of the in-
teractive itinerary planning process. We compare the @titmerary scores produced
by Opt POl Bat chSel ecti on andG eedyPO Bat chSel ect i on. Both of these al-
gorithms use the greedyest benefiheuristic to obtain the best itinerary. Input to these
algorithms is a set of user feedbackge¢’ to 3 different POIs) and a batch siz&)(This
experiment is run on New York City, which ha$9 POls.

Figure 5.2 shows the output of this experiment. We note thidt wcreased budget,
since more POIs can be added to the optimal itinerary, ite&epl score increases. The
figure corroborates the fact thé& eedyPQO Bat chSel ect i on is comparable in the
quality of its optimal itinerary, to the more expensipet PO Bat chSel ecti on.

Effectiveness of Interactive Itinerary Planning: In this experiment, we select prior

Flickr-based25 static itineraries (we refer to this &f f i nel ti nerary) instead of

157

Expected Score
N
w

=0=0ptPOIBatchSelection
==GreedyPOIBatchSelection.

4 hours 6 hours 8 hours 10 hours 12 ours

Figure 5.2. Expected Score Comparison.

actual users, where each itinerary consistd ®POIs, and is visited in2 hours. We
consider a simpler scoring function to assign score in eéttfem - the score of an itinerary
is the number of POIs in it. For each static itinerary, we gpplr interactive itinerary
planning algorithm (known aknt er act i vel t nPl anni ng), where the next batch of
POIs suggestion is based on the probabilistic model leanoad those Flickr itineraries.
I nteractivel t nPl anni ng calls G eedyPQO Bat chSel ecti on to select a POI
batch at each iteration. In each batch, user response ist@kire actual POIls present
in that itinerary,i.e., response is ‘yes’ for those POlIsahhactually surface in that static
itinerary.
Figure 5.3 records the average itinerary score in each bltshows that

| nt eracti vel t nPl anni ng reaches the same score of offline itineraried atches
on an average. Thus this result demonstrates that our atitexa@pproach effectively gen-

erates itineraries that are liked by prior Flickr users .

158

12 1

10 = -, =]

Average Itinerary Score
o

=&=InteractiveltnPlanning

=@~Offlineltinerary

Batch 1 Batch 2 Batch 3 Batch4

Figure 5.3. Effectiveness of Itinerary Planning Algorithm

5.5.4 Performance Experiments
In this subsection, we discuss the efficiency aspects ohtieeactive itinerary plan-
ning algorithms, describe the running time attained bygrenfng proposed optimizations
and compare that with the optimal brute-force algorithm.rf@enance is recorded by
mainly varying3 parameters - budget, batch size and number of POls.
Feasibility of the Optimal Algorithm: We record the running time of
Opt PA Bat chSel ecti on andG eedyPO Bat chSel ect i on, for varying batch sizes
k in Figure 5.4. The number of POls is setltty for this experiment, whereas the budget
is fixed at6 hours.Opt POl Bat chSel ect i on algorithm runs in seconds, whereas
G eedyPQA Bat chSel ect i on runs in milliseconds. Also, beyond batch-size
Opt PA Bat chSel ect i on does not terminate withih0 hours, whereas
G eedy PO Bat chSel ect i on scales well with increasing batch size. This observation
confirms that
G eedyPQ Bat chSel ect i on is an efficient solution for interactive itinerary planning
Varying Batch Size: In this set of experiments, we vary the batch sizznd profile
the running time of the different optimizations performadombination with

G eedyPQ Bat chSel ect i on. This algorithm is compared with its optimized variants

159

7261
[6261
5261
4261

3261

Seconds

Milliseconds
N
&

2261
=é=0ptPOIBatchSelection
[1261

~ii-GreedyPOIBatchSelection. 261

[-739

Figure 5.4. Running time Comparison.

250

200

50 4 —4—GreedyPOIBatchSelection

—8-HeapGreedyPOI

HeapPrunGreedyPOI

k=5 k=10 k=15 k=20 k=25

Batchsize

Figure 5.5. Running time Varying Batch Size.

- greedy that uses a heap to calculaést time POlnd processes user feedback combi-
nations in the heap following the Hamiltonian path compatdteapG eedyPd), and
the the most optimized varianti€apPr unG- eedyPA), which in addition to efficient
heap processing, also prunes the set of remaining POlgcubjthe budget.

The number of POls is set tol9 for this experiment, while the budget is fixed at
6 hours. Figure 5.5 records the running time of this experim®e observe that with an
increasing batch size, the most optimized vartdeapPr unGr eedy PO performs sub-
stantially better thar eedy POl Bat chSel ect i on. This confirms that our proposed

optimizations are important to improve the overall perfanoe.

160

100
90
80

70

nds)

60

50

Time(Millisecor

40

30

20 1 ~o—GreedyPOIBatchSelection

~8-HeapGreedyPOI
10

HeapPrunGreedyPOI

4 hours 6 hours 8 hours 10 hours 12 ours

Budget

Figure 5.6. Running Time Varying Budget.

120
100 -

80

nds)

60

Time (Millisecot

—4—GreedyPOlIBatchSelection

~#-HeapGreedyPOI

HeapPrunGreedyPOI

#POI=48 #POI=91 #POI=119 #POI=134 #POI=163
Number of POIs

Figure 5.7. Running time Varying Number of POls.

Varying Budget: We vary the budget constraints and keep the batch size and the
number of POIs{0 and 119 respectively) fixed, and record the running time of différen
variants of the greedy algorithm in Figure 5.6. The figurewghthat with the increasing
budget, the running time increases in general for all vésiafihe most optimized variant
HeapPrunG eedyPQO outperforms others in all cases. One interesting observagre
is, the running time does not increase linearly with the leidd his phenomenon is due
to the fact, that, for a large enough budget (while everglalse is fixed), there cannot be
any pruning based on budget and hence it does not impactpenice anymore.

Varying Number of POls: We vary the number of POls for a fixed budgéhpurs)

and batch sizel()). The running time of different variants are recorded inufgg5.7. With

161
the increase in POIs, the running time increases in gerena.can be explained since the

greedy algorithm has to probe more POls for selectingstbest POls in each batch. The
most optimized varianHeapPr unG eedyPO outperforms the rest in all cases. One
noteworthy observation here is, the running timéebpPr unG eedyPO increases the
least with the increase in the number of POls. The role ofipgibecomes significant in
this case, hence with the increase in the number of R@apPr unG eedyPO effec-

tively prunes the remaining POls in a batch, and becomes itteew

5.6 Related Work

Our work of interactive itinerary planning is an effort towda returning complex
objects (i.e., an itinerary constructed of several POlgh&user based on user interac-
tion, subject to the constraints. In a recent work, we firsppse the notion of composite
items [73] towards that goal. However, an itinerarm@ any arbitraryordering of a set of
POIs, but it renders a strict ordering between the POlsgestltp the constraints. Conse-
quently this problem is significantly different from our Bar model [73].

The interactive itinerary planning facilitates effectiwavigation through the infor-
mation space. Our interactive POI selection strategy is tkexploratory browsing inter-
faces such as faceted search [74]. However, the interaotiomis on the suggested set of
POls.

Existing work related to travel itineraries can be clasdifi@o touristic data analysis
and touristic information synthesis. Regarding the forrtiegre are a number of studies
on analyzing POI visitation patterns from geo-spatial adgoral evidences left by trav-
elers [75, 76, 77, 78, 79]. However, those works generallynobsynthesize POIs into
itineraries and instead focus solely on the analysis it$aelthe context of touristic infor-
mation synthesis, a number of works construct and recomnoemist itineraries at various

granularities [80, 81, 82, 83] but none of them provides thiditg to query constructed

162
itineraries. Our work is tangentially related to other vBslds such as visualizing geo-

spatial data, tracking movements based on sensor netwamiisgonstraint optimization.
The closest works to ours are [84] and [85] which merge ttiariata analysis and synthe-
sis to recommend itineraries based on user’s input. Howeesre of them does so in an
interactive manner.

A recent work proposes interactive route search in the presef order
constraints [86]. The proposed approach is different framveork in that it does not con-
sider user budget, does not synthesize user’s previoubdekdo learn future probability
of user preferences, and more importantly, tries to buildiaarary POI by POI, whereas
we consider a navigational approach that starts with akiptesvalid itineraries, which is
then iteratively narrowed by suggesting POls in batchesdas highest expected itinerary
scores.

Our optimal itinerary construction problens akin to thevehicle routing problem
andtraveling salesman problefi72, 87], widely studied in the field of Computer Science
and Operation Research. These problems and several of Hr@ants are known to be
NP-complete. One variant of vehicle routing problem is @reenteering problemwhich
and many of its variants are also known to be NP-complete §8890]. In particular,
we deal with the Rooted Orienteering problem in non-Euchdgsymmetric metric space.
Efficient polynomial time approximation scheme is knowntfts problem problem in the
plane [71]. Unfortunately, to the best of our knowledgerérare no known approximation
algorithms with provable bounded factors for its non-Ededin asymmetric variant.

Our greedy solution to the itinerary construction problemuires efficient searching
for the nextbest timePOI. We resort to a heap data structure [72] that facilitatésient
look up operation for the next best time node. Heat benefiPOl is retrieved by perform-

ing a threshold style [61] computation &mobOrderlists and heaps.

163
Our greedy algorithm for POI selection problem processedldack combinations

in a current batch such that the heap requires only one upbd#teeen subsequent com-
binations. We leverage on computing a Hamiltonian Path ogpeitube graph [72] to

accomplish that task.

5.7 Conclusion

In this paper, we formalized interactive itinerary plargiishowed that it is an NP-
complete problem and developed intuitive optimizationglie case where the score of an
itinerary is proportional to the number of Points Of Intér@x0ls) desired by the user. In
order to do so, we reduced our problem to the rooted orientgeroblem. Our optimiza-
tions are based on computing a Hamiltonian path in a hyperenl on using an efficient
heap-based data structure to efficiently prune POls. Inuhed, we are planning to ex-
plore optimizations for more sophisticated itinerary sogrfunctions such as the chain
semantics, and to consider more complex budget constratmth incorporate both time

and price. Our algorithms would need to be revisited for thaipose.

CHAPTER 6
GROUP RECOMMENDATION: SEMANTICS AND EFFICIENCY

6.1 Introduction

Recommender systems have grown to become very effectiveggesting items of
high relevance to individual users. Group recommendatipthe task of finding items that
please a set of users, on the other hand, started to recéteatian relatively recently [91,
92, 93, 94, 95, 96, 97, 10]. We envision a system that a comtsnohusers can consult
when planning an activity together such as looking for a bimoka reading club, finding
a restaurant to celebrate a project milestone with colleggor renting a movie to watch
at a girls’ night out. In this paper, we study this problemhnat focus on time and space
efficiency.

Even more so than in traditional individual recommendatidentifying items of
high relevance to a group is challenging: What if group memdesagree on their favorite
items (e.g., people who prefer non-fiction books vs thosehildiction, in a book reading
club)? What if there is a group member whose tastes highlgrdifom all others (e.g., a
vegetarian going to a restaurant with non-vegetariansj&Abre, group recommendation
necessitates the modeling of disagreements between grexybens and aims to find items
with high predicted rating that also minimize disagreeradigtween group members. In
other terms, it is more desirable to return an item that eacbmmember is happy with
than to return an item that polarizes group members evereifatter has higher average
ratings among them. In this work, we formalize the notiorcohsensus functiorthat

capture such real-world scenarios.

164

165
Intuitively, the general form of consensus functions is aglveed combination of

predicted rating and pair-wise disagreement. For a given, ter individual preference
(i.e., predicted rating generated by an underlying recontteesystem) for items can be
maintained in the so-callegredicted rating list We can then leverage Fagin-style merge
algorithms [61] to generate items to be recommended to thgugpased on individual lists
of items sorted by their predicted ratings to each group negnminfortunately, while item
disagreements between users can be computed from theicteckdhting lists, they do not
increase or decrease monotonically with the predictedgati two users who both think
highly of an item may still disagree more on that item than ontem they both dislike.
This drastically reduces the pruning power of the mergerdlguos. To address this issue,
we introducepair-wise disagreement listshich are pre-computed from predicted rating
lists and sorted in decreasing order of disagreements. Betligted rating lists and pair-
wise disagreement lists can then be merged, using Fagmagorithms, to find items to
recommend to a group.

Without prior knowledge of what groups can be formed betwesars, a disagree-
ment list has to be created for every user pair. In practigs,introduces enormous space
requirements. A back-of-the-envelope computation shdwas with a modest0K-user,
10K-item database, a total of abQRiIB space is needed to store thetrillion list entries
in pair-wise disagreement lists. To address this concegrdevelop space reduction strate-
gies which exploit two key characteristics of disagreentistg. First, entries in those lists
may be redundant due to shared user behavior. Our stratdgk falstors out common en-
triesin disagreement lists without affecting 1/0. Second, alidido not contribute equally
to processing time because of different rating distrimgioMe develop partial material-
ization strategy which identifies which subset of lists to matezaiin order to maximize

space reduction and minimize processing time.

166
Intuitively, if two users { andv) agree on many items, their disagreement lists with

all other users will be the same for those items. In other semiven any other usev,

the entries corresponding to the items thandv agree on in théu, w) disagreement list
will be the same as those in tlfe, w) disagreement list. Hence, they can be stored only
once, instead of being replicated in all lists. We call tiebavior factoringn disagreement
lists. We formalize the problem and devise an algorithm féiciently factoring common
entries in disagreement lists. This space saving strategyines changes to the group
recommendation algorithm to process factored lists.

Factoring comes for free and always saves space when atweasisers agree on
some items. Unfortunately, if a space budget is imposedoriag alone does not always
guarantee to produce a set of lists within that budget. Wehdéurexplorepartial mate-
rialization as a complementary space reduction strategy which sedgctivaterializes a
subset of the disagreement lists. In a nutshell, a disagreehst which does not sig-
nificantly affect processing time and consumes too muchespa®uld be dropped. Not
surprisingly, partial materialization may negativelyeatff processing time since the benefit
of non-materialized disagreement lists will be lost. Wenfalate partial materialization as
a variant of the Knapsack problem and develop an algorithiciwidentifies the subset of

lists to materialize.

6.1.1 Contributions and Outline
We make the following contributions in this thesis:
1. We formalize the problem dbp-k group recommendaticand introduce the notion
of group consensus function that incorporates variousigestirating and disagree-

ment models.

167
2. We propose the use of pair-wise disagreement lists, asigrdand implement effi-

cient group recommendation algorithms based on the meagidgeffective pruning

of individual predicted rating lists and pair-wise disagresnt lists.

3. Given the potentially large number of disagreement, lisesexploit shared user be-
havior to reduce the space requirement of those lists. Asuatreve extend the
group recommendation algorithms to process factored s show that factoring
common entries in disagreement lists can drastically redticrage space without
incurring 1/0 overhead.

4. The factoring strategy does not always guarantee regehiixed space budget. To
achieve a certain space budget, we develop a partial miaatien strategy which
exploits the size of each disagreement list and their impaajuery processing: it
skips disagreement lists in order to minimize space whieiinng small processing
time overhead. We formalize this question as an adaptafithrednapsack problem
and develop an algorithm to solve it.

5. We run an extensive set of experiments with different greimes on MovielLens data
sets. We perform extensive user-study in Amazon’'s Meclaaiiiark to demonstrate
the effectiveness of our group recommendation semantetbhauw satisfied users are
with recommended group ratings compared to individual ori@gr elaborate per-
formance experiments exhibit the efficiency of group rec@mdation computation.
We also demonstrate the benefit of behavior factoring antibparaterialization on
space.

We note here that the group recommendation problem defiraimol the basic group
recommendation algorithms were first introduced in the enrfce version [10] of this
thesis. Furthermore, [10] also discussed partial mateai@n to a certain extent. How-
ever, the partial materialization algorithms describecklaldress the problem in a more

formal way. Behavioral factoring is introduced for the firgh¢ here. The rest of the

168
thesis is organized as follows. Section 6.2 provides sons&gvaund and formalism. It

describes the family of consensus functions we tackle mttiesis and defines the group
recommendation problem. Section 6.3 describes the grazgmm@mendation algorithm.
Section 6.4 presents our behavior factoring strategy ardision of the group recommen-
dation algorithm to operate on factored lists. Section @s6ubses partial materialization
in the presence of a space budget and develops our adaptétioa Knapsack problem
to achieve partial materialization post factoring. Expemnts are presented in Section 6.6.

Section 6.7 contains the related work. We conclude in Se&i8.

6.2 Background and Data Model

Let &/ denote the set of users afiddenote the set of items (e.g., movies, travel
destinations, restaurants) in the system. Eachws®y have provided a rating for an item
i in the range of) to 5, which is denoted asating(u,%). If the user has not provided a
rating for an item, theating is set to L. We further generatpredicted ratingdor each
pair of user and item, denoted psedictedrating(u,). This predicted rating comes
from two sources. If the user has provided a rating for the itdhen it is simply the user
provided rating. Otherwise, it is generated by the systemgusrecommendation strategy

as outlined next.

6.2.1 Individual Recommendation Model

We review the two most popular families of recommendatiostsgies. These strate-
gies rating on finding items similar to the user’s previousbhly rated items (item-based),
or on finding items liked by people who share the user’s istsrécollaborative filter-

ing) [98]. In both cases, missing ratings are assigned \@alue

169
6.2.1.1 Item-Based Strategies

These are the oldest recommendation strategies. They agndmmend items simi-
lar to those the user preferred in the past. While differeategies use different approaches
to compute the predicted rating, we present one common fation. The rating of an item
i € Z by a current uset € U is estimated as follows:

predictedrating(u,i) = Avgict & rating(u,i#)£1 1temSim(i, ") X rating(u,).

Here,ItemSim(i, ") returns a measure of similarity between two iteraadi’. ltem-
based strategies are very effective when the given user loag &istory of rating activity.
However, item-based strategy do not work well when a userjéinss the system. To ad-
dress that, collaborative filtering strategies have beepagsed, which we briefly describe

next.

6.2.1.2 Collaborative Filtering Strategies

These strategies aim to recommend items which are highdd tay users who share
similar interests with or have declared relationship with given user. The key of this
method is to find other users connected to the given user. atimgyrof an itemi by a user
u is estimated as follows:

predictedrating(u,i) = AvVGuwcu & rating(w,i)#1UserSim(u, u') x rating(u’,)

Here,UserSim(u, u') returns a measure of similarity or connectivity between two
usersu and«’ (it is 0 if v and«’ are not connected). Collaborative filtering strategies
broaden the scope of items being recommended to the usermaadbcome increasingly
popular.

We note that there are also so-called fusion strategies\\@fi¢th combine ideas from
item-based and collaborative filtering strategies, andehbdsed strategies, which lever-

age machine learning techniques. While we do not considen thethis thesis, we note

170
that group recommendation does not consider rating on oa@fgpstrategy to generate

recommendations for individual group members.

6.2.2 Group Recommendation Model

The goal of group recommendation is to compute a recommiemdsitore for each
item to reflect the interests and preferences of all the groembers. In general, group
members may not always have the same tastes andsensus scoffer each item needs
to be carefully designed. Intuitively, there are two maipexds to the consensus score.
First, the score needs teflect the degree to which the item is preferred by the members
The more group members prefer an item, the higher its scavelgtbe for the group.
Second, the score needsrédlect the level at which members disagree or agree with each
other. All other conditions being equal, an item that members egnest about should
have a higher score than an item with a lower overall groupegent. We call the first
aspecgroup predicted ratin@nd the second aspegbup disagreement
Definition 16 (Group Predicted Rating)The predicted rating of an itemby a groupg,
denoted asating(g, i), is an aggregation over the predicated rating of each grogmm
ber,predictedrating (u,i) whereu € G. We consider two main aggregation strategies:
1) Average:

rating(G,i) = ﬁ > (predictedrating(u, 1))
2) Least-Misery:
rating(G,i) = Min(predictedrating(u,1))

Average and Least-Misery aggregation models are considereause they are the
most prevalent mechanisms being employed currently [9lterAative aggregations (e.g.
Most-Happiness, i.e., taking the maximum over all indigtpredicted ratings) are also

possible.

171

Definition 17 (Group Disagreement)lhe disagreement of a grogpover an itemi, de-
noteddis(g, i), reflects the degree of consensus in the predicted ratimgssimong group

members. We consider the following two main disagreementuatign methods:

1) Average Pair-wise Disagreements:

dis(G,i) = M(\% > (|predictedrating(u,i)—

predictedrating(v,i)|), whereu # v andu,v € G;

2) Disagreement Variance:
dis(G,i) = IUI\ > weg (predictedrating(u,i) — mean)?, wheremean is the mean of all
the individual predicted ratings for the item.

The average pair-wise disagreement function computesvtrage of pair-wise dif-
ferences in predicted ratings for the item among group mesnbéhile the variance dis-
agreement function computes the mathematical varianckeoptedicted ratings for the
item among group members. Intuitively, the closer the mtedi ratings fori between
usersu andv, the lower their disagreement farin Section 6.3.1, we will characterize the
properties of both disagreement functions in detail.

Finally, we combine group predicted rating and group disagrent in th&onsensus
function
Definition 18 (Consensus Function)he consensus function, denoted, i), combines
the group predicted rating and the group disagreementfof G into a single group rec-
ommendation score using the following formula:

F(G,i) = wy x rating(G,i) + wy x (1 — dis(G,1)), wherew; + ws = 1.0 and each
specifies the relative importance of predicted rating arghgreement in the overall rec-

ommendation score.

172
While one could design more sophisticated consensus funsc(see [94] for an ex-

ample), we adopt this general form of weighted summationrofig predicted rating and
group disagreement for its simplicity and the fact that tmify of threshold algorithms
can be easily applied for the computation. We note here ttemtommonly used least-
misery model maps to the case whare= 1.0 and group predicted rating is aggregated

using the least-misery function.

6.2.3 Problem Statement

PROBLEM (Top-k Group Recommendatioi@iven a user grougy and a consensus
functionF, identify a listZg of items such that:
1. |Zg| =k
2. ltems inZg are sorted on their decreasing group recommendation ss@@aputed

by the consensus functioh, and?j € Z s.t.F(G, j) > F(G,i),j ¢ Ig,i € Ig.

6.3 Efficient Computation of Group Recommendation

In this section, we discuss efficient group recommendatigorghms. We first ex-
amine the applicability of existing top-k processing altjons, then present our solution.
We then discuss how to improve our algorithm with threshatitening strategies that

benefit from users’ predicted rating lists.

6.3.1 Applicability of Top-K Threshold Algorithms

Many of the best algorithms for computing top-k items beltmtpe family of thresh-
old algorithms [61]. Given an overall scoring function thamputes the score of an item by
aggregating scores from individual components, thresalgidrithms consume sorted item

lists that correspond to each component. Those input lists@nned using sequential or

173
random accesses, and the computation can be terminatext eaihg stopping conditions

based on score bounds (thresholds). Early stopping isljesghen the scoring function
is monotonei.e., if component is the only component in the scoring function and items
1, andi, differ in their scores, the overall scorenfis no less thar,'s if 7;'s score o is

no less tharny’'s score orr.

Recall from Definition 18 that our consensus function is a Weggimmation of two
componentsgroup predicted ratingandgroup disagreementt is clear that the consensus
function itself is monotone in the two individual comporenih other words, if two items
have the same group disagreement, the item with the higloepgoredicted rating will
have at least the same group recommendation score, andevszae v

Itis also clear that the two group predicted rating funcdiproposed in Definition 16
are themselves monotone in the predicted ratings of indatichembers. If all group mem-
bers, except, rate items; andi, the samej; will have at least the same group predicted
rating score as, if u ratesi; no less than,. This holds for both the average and the
least-misery strategies.

It is, however, not clear whether the group disagreemerdtioims proposed in Defi-
nition 17 are monotone. In this section, we prove that thegwaop disagreement functions
proposed can be transformed into aggregations of indivipaiawise disagreements and
become monotone. This means we can apply threshold alg@rith compute the over-
all recommendation score with individual predicted rafists and pair-wise disagreement

lists as inputs, and take advantage of the pruning powethheghold algorithms give us.

6.3.2 Monotonicity of Group Disagreements
We use a simple example group of two users to show that congpgtoup disagree-
ment based on predicted ratings of individual members ismmtotonic. Figure 6.1(a)

illustrates the two sorted predicted rating lists for the wgers {; andu,). It is clear that

174

(i, 4) (g, 3) (i 3) (i, 4)
(i3 3) (i, 3) (i, 4) (i, 4)

Figure 6.1. Group Disagreement is not monotonic w.r.t. jeted rating lists.

while ¢, has a higher predicted rating fag thani, (4 versus3), the group disagreement
score fori, is in fact higher (1 instead of 0). The same non-monotonicity be encoun-

tered when predicted rating lists are sorted in decreasiderdas shown in the example
in Figure 6.1(b)). Hence, the problem of non-monotonicityisagreement in predicted
rating lists persists regardless of the order in which mtedirating lists are sorted.

To address this problem, we propose to mainfaair-wise disagreement lists-
stead and prove their monotonicity properties for the twaugrdisagreement functions in
Definition 17.

A pair-wise disagreement list (or simply disagreemen) list usersu andv is a
list of items which are sorted in the increasing order of thieknce between their pre-
dicted rating scores far andv. For an itemi, we useA! | = |predictedrating(u, i) —
predictedrating(v,i)| to denote this predicted rating difference.

Lemma 6.3.1. The average pair-wise disagreement function in DefinitiomsIvionotonic
w.r.t. pair-wise disagreement lists.
Proof: Let us assume a group = {uy,us,...,u,} With all its p(p — 1)/2 dis-

agreement lists (one for each user pair). Also assume tbat tre a total of items,

175

T = {iy,1i9,...,i; }. Note that we want to retrieve items with minimum disagreetsiérst.
Consider two items, andi, within Z.

The group disagreement fgrandi, can be written asf x Zvj,k:1,27.,,,p(Ai;;7u) and

k

fx Evj,kzl,gmp(Af;ﬁuk), respectively, wher¢ =]ﬁ (see Definition 17).
Without loss of generality, assume we have
Al < Al candVy, k=1,2,...,p, A=Al where(j, k) # (z,y). Itis easy

Uz Uy Uz, Uy ! Uj, Uk Uj U’

to see that
f X Byinmt0p(AF) < f X Byjpmg (AL L)

If the number of disagreement lists is restrictedo the monotonicity property can
still be maintained by assuming the minimum disagreemenega)) for any unavailable
user pairs during top-k computation.

In the disagreement variance model in Definition 17, dissxgpent over an item is
defined as the variance in predicted ratings among all groegmimers. In other words,
the predicted rating by each member is compared against #am ipredicted rating of
the group. We now show that this disagreement function caiadhbe monotonically
aggregated from pairwise disagreement lists.

Lemma 6.3.2. The disagreement variance function in Definition 17 is moniat w.r.t.
pair-wise disagreement lists.

Proof: Let us consider the group and set of item& in Lemma 6.3.1. Consider two

itemsi, andi,. The group disagreement gfandi, can be written as:

Zvl-eppredictedrating(ui 7ir)] 2
p

Yyjeplpredictedrating(u;,i,) —

p

and

Yvicppredictedrating(u;,is)])

Yyjep|predictedrating(u;,is) — =

p

We discuss partial materialization of disagreementsilis&ection 6.5.

176
We can transform this disagreement variance formula,forto (ignoringp):

(AT + A+ H AP+ A+ AZ A+ A AL P [A AL AT]
which can be further expressed as:
AL + .+ [AL] + o+ 2 x [AR][AL] + 2 x [ABI[AL] + ...

It is clear that the above formula is a monotonic aggregatibf\;;|Vj,k € p.
Without loss of generality, assume we ha¥g , < Ap ., andVjk € p, Ay, =
Af;j’uk, where(j,k) # (z,y). Itis easy to see that the disagreement variancg of
less than the disagreement variance of Hence, we have proved that using pair-wise
disagreement lists is sufficient to compute disagreemardanae in a monotonic fashion.
0]

Materializing all possible pair-wise disagreement lisesymot be practical since the
number of such lists grows quadratically in the number ofrsiséVe discuss behavior
factoring in Section 6.4 to save space and in Section 6.5,isass, given a fixed space

constraint, which pairs to materialize in order to produeeliest performance with thresh-

old algorithms.

6.3.3 Group Recommendation Algorithms

Given a groufy, the goal, stated in Section 6.2.3, is to returniheest items accord-
ing to a consensus functian(see Definition 18). We describe several algorithms for this
problem; with each algorithm being a variant of the well4kmorA [100] for top-k query

processing.

177
The Full Materialization (FM) Algorithm: We start by describing Algorithm 18,

which admits predicted rating lis'sC of each user in the input grogpand disagreement
lists DL for every pair of users ig. ZLs are sorted in decreasing order of predicted rating
andDLs are sorted in increasing order of disagreement. Theseqgbeediating lists and
disagreement lists of a group are akin to attributes on wtmeralgorithmTA [100] works.

We refer to Algorithm 18 asM (Full Materialization).

EachZ L is obtained using an individual recommendation strategydéscribed in
Section 6.2.1). EacL is generated for a user pair and records the difference iresco
for all items in their respectivé Ls.

We showed in Section 6.3.1 that pairwise disagreementjisisantee monotonicity
for both pairwise and variance disagreements thereby edfp#M to rely on a threshold
for early stopping. Our algorithm makes sequential acc88% ¢n each input lists (pre-
dicted rating and disagreement) in a round-robin fashioegl3 and 12) and reads an entry
e = (i,7), wherei is the item-id and- is the predicted rating or disagreement value associ-
ated with it. There are two routine€onput eExact Scor e which computes the score of
the current item, an@onput eMaxScor e which produces a new threshold value at each
round. During the execution of the algorithm, we also mam#abounded buffer(heap)
which stores the top-k elements encountered thus far amdcthreesponding exact scores
using the input consensus functiBnlf a new item is encountered during a sequential ac-
cess GA), Conput eExact Scor e performs a random acced®4) on all other predicted
rating lists to compute the score of that item using the igpuasensus functioh The main
difference betweeRM andTA is that whileSAs are done of Ls andDLs interchangeably,
RAs are only done off Ls (since disagreement can be computed from predicted ratings
In fact, DLs are not necessary to compute the final result. They are oafg tio compute

the threshold and enable early termination.

178

Comput eMax Scor e produces a new threshold value at each round. Its basic pur-

pose is to provide an upper bound the score of any item thatdiaget been seen by the

algorithm. Thus, ifr, is the last predicted rating value read on figt, for all « € G, and

A, the last pairwise disagreement value read on disagreemsefd,, , for all v, v € G,

then the upper bound for the threshold (assuming the avpegeise disagreement model)

is computed as follows:

2
(1- ——— A
F(g, < wy X |g‘ ZTU + waq X |g‘(|g’ — 1) Z u,v)

ueG u,veEG

Algorithm 18: Group Recommendation Algorithm with Fully MaterializedsPi

agreement ListsHM)

Require: Groupg, consensus functiof;

1: Retrieve predicted rating lis&&L,, for each usert in groupg;

2: Retrieve disagreement lisBL,, ,,) for each user paifu, v) in groupg;

3: Cursorcur = getNext() moves across each predicted rating and disagreement lists;

4: while (cur <> NULL) do

5:

6:

10:

11:

12:

13:

14:

Get entrye = (i,7) atcur;
if |(inHeap(topKHeap, €)) then
if (ComputeMaxScore(e.i,e.r,F) > topKHeap.k; score) then
ComputeExactScore; ProbeZ Ls to compute exact scorzore of e usingF;
if score > topKHeap.ky,score then
topKHeap.addToHeap(e.i, score);
else
return topKList(topKHeap);
Exit;

cur = getNext();

15: return topKList(topKHeap);

179
The Ratings Only (RO) Algorithm: We next describe another variation of the al-

gorithm, calledR0 (Ratings Only), which applies when only the predicted ratisty are
present and none of tHRLs are available R0 has the obvious benefit of consuming less
space. As discussed above, the lack of disagreement lists mtat have any impact on
Conmput eExact Scor e. However, it has an impact on how ti@G®nput eMaxScor e
has to be modified to produce a (somewhat less tight) thréskadle. More precisely,
since disagreement lists are not available, we assumehibaidirwise disagreement be-
tween each pair of users for any unseen itef i$hus the upper bound for the threshold

value only comes from the last values read from each pretireting list:

F(G,i) < wy X LZTU
’g| ueg

The Partial Materialization (PM) Algorithm: Finally, the most general variant is
the case where only some disagreement lists are matedalieterred to a®M (Partial
Materialization). As withR0, PM also has the obvious benefit of consuming less space than
FM. In terms of processing, it differs from the others in howtimeshold is computed. Let
M be the set of all pairs of users for which disagreement liat®been materialized, the
threshold can be computed as follows:

F(G,i) <w;p X ﬁ Y uegTu +
wy x (1 — m Z(u,v)eM Aup)

Intuitively, one may think that the morBLs are materialized, the tighter the score
bound and hence, the faster the algorithm terminates. ristaut that it is not always the
case. The basic intuition is that overall performance islartz between the total number
of distinct items which need to be processed before findiregbibstk items, referred to
asDI P (Distinct Items Processed), and the number of sequenti@isaesSAs, that result
from the proliferation of disagreement lists. Consider thsecof a 3-member group. The

guestion we ask ourselves is when does using two mateuddigis, DL, andDL,, per-

180
form worse than when only one materialized list, 34, is used? If none of top items in

DL, is in the final output, eacBA on DL, is pure overhead. This is exacerbated if the the
top items inDL, andDL,, i.e., the ones with the least disagreement, are distindboth
cases, ifDL, does not provide an opportunity to tighten the threshold ihmber ofSAs
usingDL; andDL, will be much higher than the number 8As where onlyD L, is used.
The PM variant raises an interesting question - which pair-wisaglieement lists
should be materialized as a preprocessing step? Thislpesttimaterialization problem is
discussed in the subsection 6.5. But first, in Section 6.324digcuss interesting and novel

techniques by which the threshold bounds can be sharpeeedwther.

6.3.4 Sharpening Thresholds

In this subsection we examine the different variants offthalgorithm that we have
developed thus far¥, RO andPM—and suggest techniques by which their performance
can be further improved, mainly by modifying tRenput eMax Scor e function to com-
pute sharper thresholds that enable earlier termination.

Our approach is best illustrated by the following simplersgée. Consider a group
consisting of two user§ = {u,v}. Recall thatZL, (resp.ZL,) is the relevant list for
useru (resp.v), andDL, . is the disagreement list of user paiandv. Assume that the
disagreement list has been materialized.

Consider a snapshot of ti! algorithm after a certain number of iterations. Let
r. = 0.5, 7, = 0.5 andA,, = 0.2 be the last predicted rating and disagreement values read
from each list respectively. The task of tBenput eMax Scor e function is to provide an
upper bound on the maximum possible value of the consensadnF (G, i) for any item

1 that has not yet been seen in any of the lists. Let the unseen’d unknown predicted

2While these techniques appear very promising, we note thet #ne the subject of our ongoing

investigations—we discuss them in this version of the pagerarily to illustrate their potential.

181
rating values be, andi, for useru andv respectively. The consensus function is defined

as:

F(G,1) = (i +.)/2+ (1 — i — 4] /1) (6.1)

Since each list is sorted in decreasing order of predictaadg&ncreasing order of

disagreement), it should be clear that the following inditjga hold:

0.2 < iy —iy <1

As described in Section 6.3.3, our current approach prevédsimple upper bound
for F(G, i) by substituting the upper bounds fgrandi, (and the lower bound fge,, — i, |)

from the above inequalities, to arrive at the following gireld:
F(G,i) < (0.5+0.5)/24 (1 -0.2/1) =05+0.8=1.3

However, a more careful examination of the inequalitie®aéy that this bound is
not tight. Notice that, andi, should be at leadt.2 units apart, thus both cannot be at
0.5. Since the upper bound 4fis 0.5, 7, can be at mogi.3. Thus we can derive a sharper

bound forF (g, i) as follows:
F(G,i) < (0.54+0.3)/2+ (1—0.2/1) = 0.4+ 0.8 = 1.2

This example illustrates that due to the dependencies etiie disagreement lists
and the predicted rating lists, there are opportunitiesdmving sharper thresholds for
early termination after each iteration of the algorithm.riglgenerally, after every iteration,
we are faced with a formalptimization problemvhere we seek to maximize the consensus

function overlG| real-valued variables, subject to various constraintheir talues arising

182
from the cursor positions on the predicted rating and dessxgient lists. These optimization

problems have seemingly complex formulations, becaussigensus function as well the
inequalities arising from disagreement lists are nondinavolving absolute terms (e.qg.,
of the form|i, — i,|) in the case of average pair-wise disagreement, as well adratic
terms (e.g., of the fornti,, — mean)?) in the case of variance based disagreement.

In this paper, we conduct a detailed investigation of théagation problem involv-
ing the pair-wise disagreement model. Presence of absutes in the inequalities and
consensus function makes the optimization problem naatinhowever we realize that
the non-linear optimization problem can be reformulatednagtiple linear optimization
problems. Solution to this non-linear optimization can bkeiaved by solving each linear
optimization problems individually and finally selectingetlinear optimization solution
that offers the maximum objective value.

Using LP-based reformulation technique, optimizationbpem in Equation 6.1 can

be reformulated as two linear optimization problems:

a) Maximize
F(G, i) = (tu +10)/2+ (1 = (i — i) /1)
S.t.
0<1,<05
0<1i,<0.5
0.2 < (iy —iy) <1
and
b) Maximize

F(G,i) = (iu+iv)/2 + (1 = (iv — 1u)/1)

183
S.t.

Solution to problem 6.1 is the maximum of the objective valtleat linear opti-
mization problemga) and(b) take. In general, consensus function involvingariables
requiresn! linear reformulations and solving each of them individydtir obtaining the
correct optimization value. However, at the same time thessof the problems themselves
are very small, consisting of only a few variables and camsts (assuming user group
sizes are small), and thus are likely to be efficiently sdivdly reformulating the problem
into multiple linear optimization problems with practityaho overhead per iteration. Note
that this reformulation only works for the absolute operatdhe consensus function (pair-
wise disagreement model), and not for the quadratic opepeidance based disagreement

model).

6.4 Behavior Factoring

In this section, we explore our first space saving strategiglwrelies on factoring
shared behavior from disagreement lists. The intuitiomna if two users have the same
rating on a subset of the items, they can be treated as a singial user whose disagree-
ment lists with other users should only be stored once. Mregeigely, if two users andv
agree on a set of itents, their disagreement lis®L,, ., andDL, .,y with any other user
v share the same disagreement values for itends iAn extreme case is whan andu,
agree on every single item, the two ligd,, ., andDL, ., are the same. We begin by

defining thefactoring setof a pair of users.

184
Definition 19 (Factoring Set) A factoring set for a pair of users andv is the largest set

of items in whichu and v agree. This set is referred to &, ,) € Z and is defined as
Vi € Suw), AL, = 0, whereA! | = |predictedrating(u,i) — predictedrating(v,1)|

Given a pair of usersu, v), Yw € U s.t.,w is different fromu andv, the disagree-
ment listsDL,, .., andDL, ..y, Share the same values for itemsp ,,).

We define a configuratio@ as the set of disagreement lists materialized for a user
basel/. The algorithms developed in Section 6.3 admit differemtfiqurations as input.
FM accepts a configuration where a disagreement list is créatedery user pair id/. RO
accepts an empty configuration (since it only processesqteelrating lists).

Given a space constraimt (number of entries for storing materialized disagree-
ment lists) and a configuratiaf, factoring aims to output a configuratid@’) such that
size(C') < m, wheresize(C') = ZDﬁ(w)eC’ (IDLww). The size of predicted rating
lists 7L, is ignored since they are not affected by factoring. We nestdbe the fac-
toring algorithm in Section 6.4.1 and the modification toryuarocessing in the presence

of factored lists in Section 6.4.2.

6.4.1 Factoring Algorithm

The outline of the algorithm is as follows: factoring begins deciding the user-
pair which has the largest factored set (say user (pair)). The factored set is removed
from the original disagreement list ¢f;, v). That set is also removed from every other
original disagreement list that is shared by eithefor v) and a third user (say) and
their disagreements on those items are stored only onceamanon list (note that in the
original case, items of the factored set are present in fpoth) and (v, w)’s disagreement
lists). This step overall achieves a space reduction. Hewéuthe space budgetq) is not

satisfied yet, same factoring strategy is repeated on threbase which has all other users

185
exceptu andwv. This factoring process is reiterated unless one of thesebmditions are

satisfied: a) overall space is reduced undesr b) no more factoring is possible.
Consider Figure 6.2 that illustrates one complete run of tbpgsed factoring algo-
rithm on an example user base of sizgu, v, w, z,y}. Inputs to the factoring algorithm
are a space budgety(total no of entries in all pair-wise disagreement listdia tiser base)
and the set of all possible pair-wise disagreement liste@tiser base. Figure 6.2(a) mod-
els the user base in form ofsanode clique, where each user contributes one node in that
clique. An edge between a pair of nodes is the pair-wise dkgagent list between them.
Note that, initially, the presence of all pair-wise disagrent lists make this graph com-
plete, as shown in Figure 6.2(a). Next, it aims to computtofary sets for every user pair
and identify the user pair which has the largest factoririg (&nce all disagreement lists
are of same size, largest factored set attains the highase spduction.) Let that user pair
be (u,v), as shown in Figure 6.2(b). On¢e, v) is identified, the disagreement between
u and any other user, and disagreement betweand the same user, over items in their
factoring set, are factored out and only stored once. The pomitive in the algorithm
is to consider one triangle of users at a time involving eflge) and perform factoring.
Note that Figure 6.2(b) explains this step whéyg,, is factored out from disagreement
list DL,.). Next,S,. is factored out fronDL, .,y andDL, ., and is stored only once
in DLs,, - Similarly, S, ,) is factored out fronD L, 4y, DL(yx) aNdDLy), DL 0 y)
and stored once i®Ls, , . andDLs,, , .. respectively. Conceptually this step involves
modifications of3 triangles involving edgéu, v) for the given user base that consists of
users . For each triangle, overall space reductida is |S(,. .|} after factoring. Note that,
user pairs that do not involve eitheror v are not affected so far in this factoring step. We
show(w, z), (w, y) and(z, y) in solid lines in Figure 6.2(b) which remain unaffected afte

factoring w.r.t. user paifu, v).

186

| a) User base consists of 5 users | | b) Factoring using user-pair u,v

y =TT sy S Done!
T S v

g w

‘ ¢) Factoring using user-pair w.y ‘

Figure 6.2. Factoring Steps.

Next, the factoring algorithm checks if the overall space satisfies the specified
space budget. It stops immediately if that condition isséigiil. Otherwise, it continues
to the next step where it considers the largest completengi@size >= 3) which is not
yet affected by factoring (the sizeclique in the example). Note that the clique size gets
reduced by2 in two successive steps. Therefore, the algorithm comph&etactored sets
of the user pairgw, x), (w,y), (z,y) and selects the one which has the largest factored
set (say(w,y) as shown in Figure 6.2(c)). It adheres to the same factotiregegy as
earlier by factoring ousS,,) from DLy,), DL(w+), DLy and storing it only once in
DLs,, .« The overall space reduction in this stegs< |S.,, }. Note that after this step,
all disagreement lists are affected by factoring. Henaeathorithm stops and outputs the
factored disagreement lists.

Algorithm 19 summarizes the factoring strategy. One attiéd this factoring algo-
rithm is it requires at least user pairs to be effective. Note that, any disagreemerislist
factored out into at most two parts using our factoring stygt We intend to explore more

complex factoring techniques in the future.

187

Algorithm 19: Factoring

Require: ConfigurationC, space budget:

1:

2:

3:

10:

11:

12:

13:

14:

15:

16:

17:

Compute space requirement of userbase Process&pas{torageR.
ProcessedPair = null;
if ((|IC] mod 2 =0) and (ProcessedPair| = |G| — 2)) then

Exit;

1f ((|G] mod 2 # 0) and (ProcessedPair| = |G| — 1)) then

Exit;

: while StorageR> m do

for each user pair({i, v) € G) do
if (u ¢ ProcessedPair) and g/ProcessedPairdhen

ConfigurationC, .,y = Factor(, u, v);

Compute storage requirement@f, ,, as ProcessSpacee();

ComputeAS(,) = StorageR — Cy v);

Store Configuratio€(,, ., AS and ProcessSpaeg() in CompProcessList;
Select Configuratio@,, ,y) such thatAS(, ., is maximum.
Set StorageR = ProcessSpace);

Set ProcessedPair{z, y};

return CprocessedPair (StorageR);

188

Algorithm 20: Subroutine - Factor
Require: ConfigurationC, user pain, v

(=Y

: {Perform factoring of a Configuration wrt a particular user pair.

N

: Modify DL,) into DLs,, such that any iters DLs,.,, is sorted in increasing

))

disagreement value ane 0;

3: Add DLs,,., in the Configuratiorq,,,);

N

: Create listDL¢, , from DL,) such that allitems iPL¢ , , are 0.

ol

: for eachr € G and @¢ # u,v) do

6: DecomposeL,) andDL, , in three lists

7: Create disagreement I8 s, , . for items presenti®L¢ , ,

8: CreateDLs, , fromDL, ., DLs, , fromDL, ,) such that an item
€ (PLs,,,, orDLs, ,)isnotinDLs . .

9: AddDLs,) DLs,,, andDLs, . in ConfigurationCy,);

10: return ConfigurationC, .,);

Algorithm 21: Subroutine - ProcessSpace
1. {Computes the space (number of entries) required to store a particulaguratifir}

Require: ConfigurationC;
2: for each listDLs, € C do
3: Computel'otal Space = Total Space + D£3<i);

4: return TotalSpace;

FactoringS,,. from the listDL, ., (resp.,DL,.,)) results in convertin@ L, ..
(resp.,DL) into two lists: afactored listDL, s, ,,w) (€SP, DL(y-5,, ., w)), @Nd &
common listDLs,, , - In this case, the space saving is proportional to the sizaeof
factoring set|S...y|. Hence, the larger the factoring set the higher the saviraje fhat,
factoring may fail to reach the specified budgef) (if factored sets are not large enough

to reduce the overall space consumption to that extent.chp d&the worst case, factoring

189
fails to reduce any space if all factored sets are of leAgthowever, factoring preserves all

information of the original pair-wise disagreement listslahus achieves space reduction

without impacting performance.

6.4.2 Impact of Factoring on Query Processing

Algorithm 18 (M) in Section 6.3.3 admits a group and a configuration comigiall
disagreement lists and outputs the best recommendatiahg tgroup given a consensus
function. Here, we discuss how to adapt the algorithm to #se ©f a factored configura-
tion where at least one disagreement list is factored out.

It turns out all is needed is to redefiget Next () to adapt query processing to work
on factored disagreement lists. The main algorithm (Alhoni 18) does not need to be
aware of such lists. Given a disagreementii, .,y which has been factored into two
lists DE(U,S(M),W) andDES(M),w), theget Next () routine onDL, .,y decides whether to
advance the cursor on one list or the other. The decisiomplgibased on choosing the
entry with the highest agreement value (lowest disagre®raemng those two lists.

A consequence of confining the implementatiogét Next () is that factoring does

not modify the number of I/Os which makes it an appealing sEaving strategy.

6.5 Partial Materialization

In the previous section we discussed the pre-processihgitpee of factoring that
reduces the space required to store all the pairwise disagmet lists between users. How-
ever, if the set of users is large, since the number of user pairs is quadraticfactoring
alone may not be enough to reduce the space to manageabtetmog. In such cases,
it is more practical to materialize (i.e., retain) only a drbat effective subset of the dis-
agreement lists. The central problem that we consider sngbction is thus: given a fixed

space constraint,, to determine (after factoring) which lists to materialsaagch that the

190
total space consumed by these lists is at masand these lists are of “maximum benefit”

during recommendation processing

Intuitively, a (factored) disagreement list should be mateed if (a) the correspond-
ing users together are more likely to be a part of the samepgand (b) materializing the
list significantly improves the running time of top-k recomnaation algorithms. In the
following subsections we formalize this problem and depslalgorithms to address it.

Our discussion will proceed in two stages. We shall first @erghe simple scenario,
where factoring has not been applied to a configuratioimn this scenario, all disagreement
lists in C are equal in size, and each contatrentries where is the total number of items.
In Section 6.5.1 we discuss a simple algorithm that mateeisla subset (at most/r) of
these disagreement lists that are of maximum benefit duecgmmendation processing,
i.e., such that the average processing time is least affecte

However, once factoring has been performed, each origisabgceement list may
be composed of up to two factored lists of varying sizes. kan®le, using the factoring
setS(.,.), a disagreement lisD L,) will be decomposed into two Iis@ﬁ(v,‘g(uyv),w) and

DLs,,.,,w)- The sum of those lists’ sizes is the same as th&.of). We discuss this more

)
general situation in Section 6.5.2, where the task is to naditees a subset of the (factored)
disagreement lists such that the total number of entriel tiheamaterialized lists i%2, and
the average processing time is least affected. We formtiizenew problem as an adap-
tation of the well-known NP-hard Knapsack Problem [101] dedelop an approximation

algorithm to address it.

3We assume that represents a user-specified threshold on the total numleertaés in all the material-

ized disagreement lists.

191
6.5.1 Partial Materialization Without Factoring

Let the set of users lié¢ = w4, ..., u,. Recall thatZ L, is the predicted rating list for
useru, andDL,) is the disagreement list of user paiandv. Let the set of all possible
user pairs i/ be S = {(u,v)|u,v € U}. Let M C S be the (unknown) subset of user
pairs whose corresponding disagreement lists we wish temaére (i.e.,|M| = m/r).
Let G C U be any user group. LetG) be the probability (or likelihood) thag will be the
next “query”, i.e., the next group that will seek item recoendations. Let,,(G) be the
execution time of the top-k algorithm on user grawpvhen run using the predicted rating
lists ZL, (for all u € G) as well asthe disagreement list®L,) (for all u,v € G) that
have been materialized it?, i.e., using algorithn¥M. (Note that thereforé,(G) denotes
the execution time of the top-k algorithm on user grguwhen run using only the predicted
rating listsZL,, (for all u € G), i.e., using algorithnR0.

Our objective is to minimize the expected cost of executhregtbp-k algorithm on
any user group query, using the predicted rating lists abthedisagreement lists. Let the
expected cost be denotedtas. The partial materialization of disagreements list praoble

may now be formally defined as follows.

PROBLEM (Partial Materialization Without Factoring)Determine the subset of

pairs M C S's.t.[M|=m/randty = 5, p(G)ta(G) is minimized.

Although clearly very important and practical, the partigdterialization problem is
unfortunately quite hard to solve optimally. There are s@veeasons for this. First, it is
very difficult to get reliable and accurate estimates fordistributionp(G), i.e., the prob-
ability that a given user grou@ will be queried next. Moreover, the set of possible user
groups is exponential in, so it is not clear how such information can be compactlyeepr
sented, even if it were reliably available. Next, due to themplex dependencies involved,

it is very hard to estimate the impact of a materialized disagent list in improving the

192
running time of a top-k algorithm, without actually matéidang candidate disagreement

lists and running the top-k algorithms with and without tis¢sl to determine their benefit.
Finally, an important parameter of a top-k algorithm is tladue of &, which is usually
unknown at pre-processing time. As a first step toward adargghese challenges, we

propose several principled and practical solutions.

6.5.1.1 A Simplifying Assumption, and a Simple Lists Maadidation Algorithm

In order to make the problem more tractable, we make thewaillg simplifying
assumption. We assume that each future user group guerl only contain exactly two
users, and moreovep(G) is reliably known for all pairs of user§. This assumption is
of course patently false, but we emphasize here that we usdyitfor simplifying the
computation ofA/. OnceM has been computed and the corresponding disagreement lists
materialized, we shall later show that they can be used ayguee for answering any user
groupg, even groups containing more than two users.

This assumption considerably simplifies the computatiof/ofvhich can now pro-
ceed as follows. Recall th&t is the set of allz(n — 1)/2 pairs of users. For every pair
of usersu andv, we temporarily materialize the disagreement Tt ,,), and compute
twey({u, v}) as well asty({u, v}) by running the top-k algorithm twice, once with the
disagreement list, and once without the disagreementdispectively:

We can then eliminate frorfi those pairqu, v} wheretq, .,y ({u,v}) > ts((u,v))

Although situations where the additional use of a disagesgiiist actually hurts the
top-k execution may appear counter-intuitive, they caruocEor example, consider two
users that are very similar to each other (e.g., they agraaast items) or are very dis-

similar to each other (e.g., they disagree on most itemd)oth cases, their disagreement

4performance numbers are obtained for a fikedpecifically set for each application. E.g., in a movie

recommendation, 10 movies is typical

193
list contains very similar disagreement values (mostly @'snostly 1's, respectively), and

consequently is of no help in forcing early termination a tbp-k algorithm, and in fact
hurts the execution because of the extra sequential ligtsses incurred. A disagreement
listis useful for forcing early terminatioonly if there is significant skew in its disagreement
scoresj..e, at the top of the list the users agree on most items,easaheir disagreement
is more pronounced as we go deeper into the list.

Let the remaining set of pairs . Then, we should select/ from S” such that

following expression is maximized:

2 umyen PHW v}) - (s ({1, v}) =ty ({u, v}))

Algorithm 22: Partial Materialization Without Factoring
Require: User pairs inS’;

1: Sort the pairgu,v) € S by decreasing({u, v}) - (ts({u, v}) — trww)y({u, v}));

2: Return them/r pairs with the largest values.

Algorithm 22 shows a very simple approach to computeptimally. The algorithm
requiresO(n?) executions of the top-k algorithm. Even though this is a gm@ecessing
step, it may nevertheless be very time consuming. We disoussction 6.5.1.2 additional
techniques by which this can be reduced.

The disagreement lists materialization procedure digtlapove assumed that the
user groups are restricted to two members only. Howevee timem /r lists have been
materialized, they can be used at query processing timeder groups of any size in
a straightforward manner. Consider any arbitrary user g@upn executing the top-
k recommendation algorithm for this group, we use the ptedicating listsZL, (for
all v € G) as well as all disagreement lisBL,) (for all u,v € G) that have been

materialized inM .

194
6.5.1.2 Avoiding Examining all User Pairs

In a large user base, it is very likely that many user pairsaémeost never going
to occur in query groups. In order to reduce pre-processosgse it is critical that we
identify only those user pairs that have significant likebd of occurring together, and
only consider such pairs in the above algorithm.

If we have a richquery log(or workload) of past user groups, then it is possible to
analyze the query log in determining this information. Fearaple, letg,,...,G, be a

query log ofq user groups. Then for any user pgir v), we can compute

pl{u) = Lo €9

This computation can be carefully done to ensure that we @amtypute the probabil-
ities for those user pairs that occur in the query log, thasdiwg having to examine a vast
majority of the user pairs that never occur together. Moegaven for user pairs that occur

together in the query log, we can eliminate those that hatrerely low probabilities.

6.5.2 Partial Materialization after Factoring

We next consider the more complex case when the disagredistsritave already
been factored. Recall that given a factoring >,), each original disagreement list
DLy Is now factored into a possibly smaller Iiﬁcu,s(u,v),w such that the original
list is the union of the factored lisPL,,_s(..),.» @and @ common Iis‘Dﬁs(W,w) for some
other usemw.

Our partial materialization goal will be to identify the s of pairsM C S such
that both the factored as well as common component of thénatigisagreement list for
each such pair is materialized. Using notation similar tti®a 6.5.1, let,(G) be the exe-
cution time of the top-k algorithm on user grodmvhen run using the predicted rating lists

7L, (forallu € G) as well aghe materialized (factored as well as common) disagreement

195

lists corresponding to all user paitg, v) that appear in boti/ andG. Our objective is to
minimize the expected cost of executing the top-k algoritmany user group query, using
the predicted rating lists as well the materialized faddaerd common disagreement lists.
Let the expected cost be denoted gs Given a space budget, the partial materialization

problem after factoring problem may be formally defined doves.

PROBLEM (Partial Materialization After FactoringDetermine the subset of pairs
M C S s.t. the space required by all factored and common listsesgonding to all pairs

in M is at mostm, andty = > 5, p(G)ta(G) is minimized.

As before, we will make the simplifying assumption that efature user group
query G will only contain exactly two users, andg) is reliably known for all pairs of
usersj. We also reduce the set of user pairs fr6ro S’, eliminating those pairs for which
the availability of the disagreement list does not imprdweduery processing time.

Let DLs(p,) be the factored list corresponding to any user gairc S’. Since
common lists are shared, 1€t(S’) represent the set of all common lists corresponding

to S’. Then the space consumed by all factored as well as comnistislis

Space(S') = Z |DLspy)| + Z DL

Pies’ DLEC(S)

It may be that this space is still greater than the space i@nst.. In this case, we
will have to remove a few more user pairs frgi eliminating those pairs for which the
availability of the disagreement list adversely impactsrguprocessing time the least.

For user paifu, v) = F;, let thebenefitB; be defined as

Bi = p({u,v}) - (ts({u, v}) = iy ({w, v}))

The residual problem can be formally defined as follows.

196
PROBLEM (0/1 Knapsack-Based Formulation of Partial Matergdion After Fac-

toring). Determine the subset of paifd C 5’ s.t.
> B
PeM

is maximized, subject to

Space(M) = Z 'DLs(p| + Z |IDLc| <m
PiEM Dﬁceo(]\/[)

We note that this problem is similar, but not identical, te ttlassical NP-Hard 0/1
Knapsack Problem [101]. This is because the space corst@itains a term that repre-
sents the space consumed by the common listd off this term were not there, then the
formulation can be easily seen to be identical to 0/1 Knagpsac

In solving this problem, we leverage the well-known greet®tdpprox algorithm for
0/1 Knapsack, suitably modified to account for the extra derity of having to consider

the materialization of common lists.
Algorithm 23: Partial Materialization After Factoring
Require: User pairs inS’;

1: Sortthe pairsP; € S’ by decreasings;/|DLsp,)|
22 M =1{}

3 i=1

4: while Space(M) + |DLgp,)| < m do

5: M=MUDP; i+ +,

6: if >-p cas Bj > Bithen

7. returnM

8: else

9: returnp;

10: return

197

Algorithm 23 essentially orders the pairs.$ by decreasing “benefit density”, ex-
cept that in the calculation of this density, the commorslete not considered. The com-
mon lists are only considered in the space calculation/of The returned user pairs are
either (a) the largest prefix of this ordered list that can fibim the space budget, or (b) the
very last user pair that causes the space to exceed the budget

While Algorithm 23 is not an optimal algorithm for the probleinis adapted along
the lines of the 1/2-approx algorithm for the classical 0Hafsack problem, and our ex-
periments indicate it is both efficient and provides sohsiof good quality. More interest-
ingly, when run on un-factored disagreement lists, identicalto Algorithm 22 which is
optimal for that case. As shown in our experiments, for tieesgpace constraint, factoring

followed by partial materialization is always better thaat@l materialization alone.

6.6 Experiments

We evaluate our group recommendation system from threerranges. First, from
the quality perspective, we conduct an extensive user study throughzémilechanical
Turk® to demonstrate that group recommendations with the coragide of disagreements
are superior to those relying on aggregating individuatifpted rating scores alone (Sec-
tion 6.6.1). Second, from thgerformanceperspective, we conduct a comprehensive set
of experiments to show that our materialization algoritto@as achieve better pruning than
alternative algorithms (Section 6.6.2). Third, we invgate the performance of our space
saving strategies with respect to both space and time.

We implemented our prototype system using JDK 5.0. All penfnce experiments

were conducted on an Intel machine with dual-core 3.2GHz CRBG8 Memory, and

Shttps:/iwww.mturk.com/

198

Table 6.1. Statistics about the MovieLens Data Set.

users| # movies| # ratings
71,567| 10,681 | 10,000,054

500GB HDD, running Windows XP. The Java Virtual Memory sigeset to 256MB. All
numbers are obtained as the average of three runs.

Data Set We use the MovieLens [102] 10M ratings data set for evatmgpurposes.
The statistics of this data set is shown in Table 6.1.

Individual Predicted Ratings: We adopt collaborative filtering [98] for generating
individual predicted ratings as described in Section 622 \here the user-user similarity,

UserSim(u,u'), is computed as follows:

i[i€Zy N €L, N |rating(u,i)—rating(u,i)|<2
p— u
- {ili€Tu V i€}

sim(u,u’)

whereZ, denotes the set of itemshas rated. We consider a movie to be shared between

two users if they both rated it withidxof each other on the scale @to 5.

6.6.1 User Study

We conduct an extensive user study through Amazon MecHhahick to compare
our proposed group recommendation consensus functiohspwar group recommenda-
tion mechanisms, which rely solely on rating aggregatidmgarticular, we compare four
group recommendation mechanisms:

Average Rating (AR), which computes the group recommendation score as the av-

erage of individual predicted ratings. The disagreemelghtes set to zero.

199
Least-Misery Only (MO), which computes the group recommendation score as the

minimum individual predicted rating among all group menshekgain, the disagreement
weight is set to zero.

Consensus with Pair-wise Disagreement (RPyvhich computes the group recom-
mendation score as a weighted summation of the averagecfgddating and the average
pair-wise disagreements between all group members.

Consensus with Disagreement Variance (RV)which computes the group recom-
mendation score as a weighted summation of the averagecf@edating and the variance
of individual predicted ratings among all group members.

The user study is conducted in two phasdser Collection PhasandGroup Judg-
ment PhaseAt each phase, a series of HITs (Human Intelligence Tasksyenerated and

posted on Mechanical Turk, Amazon users are invited to cetaphose tasks.

6.6.1.1 User Collection Phase

The goal of the User Collection Phase is to recruit users amaroltheir movie
preferences. Those users will later form groups and perfadgments on group recom-
mendations.

Preferences Collection Asking a user to go through all ten thousand movies in our
system and give ratings as they go is clearly not practida¢rd@fore, we selected a subset
of the movies for users to provide their preferences. Weidensd two factors in selecting
those movies:familiarity anddiversity On one hand, we want to present users with a
set of movies that they do know about and therefore can peoratings. On the other
hand, we want to maximize our chances of capturing the diffetastes among movie-
goers. Towards these two goals, we select two sets of movies.first set is called the
popular set which contains the top-40 movies in MovieLens in terms gbydarity (i.e.,

the number of users who rated a movie in the set). The secdns called thediversity

200
set which contains the 20 movies in MovieLens that have thedsglariance among their

user ratings and that are ranked in the top-200 in terms aflpapy. We created two HITs
with 40 movies each. Th&imilar HIT consisted entirely of the movies within thepular
setand theDissimilar HIT consisted of the top-20 movies from thepular setand the 20
movies from theliversity set Fifty users were recruited to participate in each HIT. Wser
are instructed to provide a rating betweeand5 (5 being the best) for at least 30 of the 40
movies listed (in random order) according to their prefeemn In addition to their ratings,
we also record their Mechanical Turk IDs for future refermnc

Group Formation: We consider two main factors in forming user grougsoup
sizeand group cohesivenessWe hypothesize that varying group sizes will impact the
difficulties in reaching consensus among the members anefftiie affect to which degree
members are satisfied with the group recommendation. Weedinasgroup sizes3 and
8, representing small and large groups, respectively. &rgjlwe hypothesize that group
cohesiveness (i.e., how similar are group members in thewerastes) is also a significant
factor in the satisfaction with group recommendation. Assult, we chose to form three
kinds of groupssimilar, dissimilar, randomA similar group is formed by selecting users
who: 1) have completed th&imilar HIT described above; 2) combined with having the
maximum summation of pair-wise similarities (between grawembers) among all groups
of the same size. A dissimilar group is formed by selectirgrsisvho: 1) have completed
the Dissimilar HIT described above; 2) combined with having the minimum suranat
of pair-wise similarities (between group members - basetherprovided ratings) among
all groups of the same size. Finally, a random group is fortmedhindomly selecting users
from all the pool of available users. Table 6.2 illustrates average similarity between

group members of the six groups formed.

201

Table 6.2. Similarities of User Study Groups.

Size=3| Size=8
Similar Group| 0.89 0.90
Dissimilar Group| 0.29 0.27
Random Group 0.69 0.73

6.6.1.2 Group Judgment Phase

The goal of the Group Judgment Phase is to obtain groundjtrd¢fments on movies
by users in a group setting. Those judgments can then be asmmipare group recom-
mendation generated by the four different mechani8RsMO, RP andRV.

Individual Recommendation: For each user in one of the six groups in table 6.2,
we generated and materialized a list of individual reconuiaéinns against the MovieLens
database using collaborative filtering.

Group Recommendation Candidates:For each group, we generated group rec-
ommendations using all of our four strategies. The reltecommendation lists were
combined into a single set of distinct movies, callgdup candidate seflhis ensures that
we obtain ground truth judgments on all the movies we willemter using any of the four
strategies.

For each group, &roup HIT was generated and contained the following group
context: for each movie in the group candidate set, the iddal recommendation score
of each member. The users are then instructed to dediééher a movie in the group can-
didate set is suitable for recommendation given its grouptex Users from the previous
phase were invited back (with a higher payout) to parti@pathe HITs which correspond
to a group to which they belong. Additional users were alsouiged to participate in the
HITs to complement the set of prior users, and they wereuntd to pretend themselves

to be one of the group members in the HIT. At the conclusiorhefuser study, on aver-

202
age 5 users participated in the three 3-member-group Hid4 @msers participated in the

three 8-member-group HITSs, for a total of 45 users.

6.6.1.3 Result Interpretation

Given a Mechanical Turk user’s ground truth evaluation ef¢andidate movies, we
adopt the Discounted Cumulative Gain (DCG) [103] measure &tuete each of the fol-
lowing six group recommendation strategies (note thatahsttimisery model by definition
considers only one member of the group and therefore canencbimbined with either of
the disagreement models):

AR, MO: these two are group recommendation lists generated basacoage and
least-misery models, respectively, without the disagesgrnomponent.

RP20, RP80:these two are group recommendation lists generated by camgtthe
average predicted ratings model with the pair-wise disagent model. RP20 sets in
Definition 18 t00.2, while RP80 sets it t0.8.

RV20, RV80: these two are group recommendation lists generated by camgbi
the average predicted ratings model and the disagreemesmnea model. RV20 sets; in
Definition 18 t00.2, while RV80 sets it td).8.

Each strategy generates a 10-movie recommendation lisbaadjiven list, its DCG

value is calculated as follows:

DCGy = rating; + 2;22 %ﬁf{
whererating; is the ground truth (provided by the Mechanical Turk userthef movie at
positioni, and is eitheil (the user considers this movie suitable for the group 9tbn0

(otherwise). We further normalize the DCG value into a rargfevben) and1 by dividing

203
it by the DCG value of the ideal list to produce the nDCG valudng(ideal list is obtained

by re-sorting the movies in the list in the order of their peged ratings.)

For each group with a given size and cohesiveness, the nD@@svaf each recom-
mendation list are computed as the average of all the usesgatticipated in the group
HIT. The results are shown in Figure 6.6.1.3.

The top-left chart in Figure 6.6.1.3 reports the nDCG for $raatl large groups of
similar users. In a real world setting, a group of friends barthought of as such a group.
According to this chartyO results in the best performance for both small and largegou
This can be explained as a group activity of similar usergrelthe objective is to agree
with the person who has the harshest opinid®© is most practical for this setting since
agreeing upon the worst opinion results in the least digageat from a user’s personal
opinion. Itis also interesting to notice, that for large gps,MO performs very well. The
next best strategy i8R, which is intuitively true for any set of similar users - péoith
very high similarity have no difference in their opinioRV80 and RP80 perform worst
since there is hardly any scope of difference in opinion imaug of similar users.

The top-right chart in Figure 6.6.1.3 reports the nDCG forlsarad large groups of
dissimilar users. In a practical setting, a group of familgmipers, whose tastes typically
differ is a good example here. For dissimilar users, diffees in opinion is conspicuous
hence needs to be captured carefully. Indeed, we can seeotitadisagreement based
modelsRV80, RP80start performing better than other two models. Specificédlylarge
groups,RV80 results in the best value of nDCG while the predicted ratingedanodels
are useless. This observation corroborates our initiaincthat formalizing disagreement
as a component of the consensus function is important farpggrecommendation.

The bottom-left chart in Figure 6.6.1.3 reports the nDCG foall and large groups

of random users. A random group can consist of both simildrdissimilar users. For

204

Similar User Group Dissimilar User Group

=RO =RO
=MO 04 =m0
RVEO 02 RVE0

=RP80 =RP80

Small Group Large Group Small Group Large Group

Random User Group Dissimilar Group with variations

=RO =RV20
03 =Mo =RP20
02 RV80 02 RV80

=RP80 =RP80

Small Group Large Group Small Group Large Group

Figure 6.3. Comparison of User predicted ratings (using ND&®@yng Different Group
Recommendation Lists.

small groupsMO works best, whereas, for large groups, there is no signifitiffierence
between all four strategies.

The bottom-right chart in Figure 6.6.1.3 reports the ddferes in our disagreement
models (notice the different weights) for dissimilar useoups. It is interesting to no-
tice that, for small groups, all four disagreement model$gom equally well in general.
However, for large groups, disagreement becomes a comsmqart in decision making.
Consequently, the disagreement strategt®80, RP80 outweigh the other two models
RV20, RP2Q

To summarize, we can say that user similarity in a group akasejroup size should
be accounted in modeling disagreement in the consensusdandne of our planned
experiment is to involve users more actively in the final jonggt by letting group members
consult with each other and reach consensus in an iteratwveen as described in [91].
Such feedback would help draw a stronger connection betgreeip size and overall group

dynamics in group recommendation.

205
6.6.1.4 Effectiveness of Group Ratings

We next perform user studies to validate the effectivenégseayroup ratings. More
precisely, we ask users to compare group ratings genergtedrtgroup recommendation
strategies with the individual ratings obtained directiyni the underlying recommenda-
tion system. AgainGroup HITs are generated based on similar and dissimilar groups.
Additional users were recruited to participate in the Hidsbdmplement the set of prior
users, and they were instructed to pretend themselves todbef the group members in the
HIT. Within each HIT, al0-movie recommendation list is presented to each user witi&in
context of a group. Each movie comes with the individual foted rating and the group
rating generated by one of our group recommendations gieatP80andRV80). The
users were then instructed to give thpieference for either the group or the individual
rating for each movigalthough the explicit model name was kept hidden from thad.
ditionally, they were also required tiescribe their satisfaction level for the group ratings
overall, in the scale ofl-5. In this new user study, on averagfe users participated in the
each of the two (similar and dissimilar) 3-member-group $1&hd8 users participated in
each of the two (similar and dissimile&ymember-group HITs, for a total @fi8 users.

Result Interpretation: For each group with a given size and cohesiveness, we cal-
culate the percentage of user’s preference for group atingesponding to a strategy and
compare that with the percentage of user’s preference dridual ratings. The results are
listed in Figure 6.6.1.4. In all cases, group ratings arégpred by more thaf0% of users.
Itis also easy to observe that the group ratings are morempeefover individual ratings for
similar user groups as compared to dissimilar user groups.r@ason is intuitive and can
be explained as follows: similar users have similar ratiimgsnovies; hence with a small
compensation, they can match their individual preferente thve group preference. How-

ever, for dissimilar user groups, preference varies widehpong group members - hence

206

Dissimilar User Group Similar User Group

" =
. |

3 80

£

§ 60

2

s

& 40 # Individual Rating
2 = Group Rating
0

Small ‘ Large

®|ndividual Rating
= Group Rating

Small ‘ Large

‘ RV80

Models

Figure 6.4. Comparison of Percentage of User Preferenceréup@Ratings and Individual
Predicted Ratings among Different Group Recommendatios.List

Table 6.3. Dissimilar User Group - Overall model ratings

Rating RP80 RVvV80
small | large | small | large
0% 0% 0% 0%
5% 0% 8% 3%
31% | 20% | 28% | 1%
42% | 44% | 60% | 36%
22% | 36% 4% 44%

Y | W I N~

dissimilar users are more reluctant to adopt group ratiAgsther interesting observation
is, irrespective of group cohesiveness, members in largepgrprefer group ratings more
than members in small groups do. This corroborates the effichour group recommen-

dation strategies which are designed to minimize the diffee in opinions between group
members individual preference and are more conspicuouarfyer groups.

Table 6.3 and Table 6.4 record the percentage of overallpgraiings (in the scale
of 1 — 5) of different group recommendation strategies for différgroup cohesiveness
and group size. It can be easily observed from the tableptbabsed group recommen-
dation strategies are highly rated (mosilgnd above) always, irrespective of the size and

cohesiveness of the group under consideration.

207

Table 6.4. Similar User Group - Overall model ratings

Rating RP80 RV80
small | large | small | large
3% 0% 5% 0%
14% 0% 8% 0%
14% 14% 20% 11%
52% | 30% | 40% | 41%
17% | 56% | 27% | 48%

Y | W I N~

6.6.2 Performance Evaluation

In this section, we analyze the performance of the threeggrecommendation al-
gorithms described in Section 6.3: Dynamic Computation Witkdicted Rating List Only
(RO), Full Materialization EM), and Partial Materialization with a given budget on number
of lists (PM. At the core of all three algorithms is the top-k TA algonitii61], which scans
down the input lists and stops processing when score bomaldsate that no more items
qgualify. The cost ofTA is determined by two factors: the numbersafiquential accesses
which corresponds to the numberroéxt () calls made during the scan of each list, and
the number ofandom accessewhich corresponds to the number of calls made to each list
for score retrieval given an item. During the processingemthe buffer is bounded and
only the top-k items are kept, the number of random accesg@sportional to the number
of sequential accesses. When the buffer is unbounded, thberuwshrandom accesses is
proportional to thenumber of distinct items processedle adopt the bounded buffer ver-
sion of the TA algorithm and therefore mostly measure thelmemof sequential accesses
to compare the performance between various algorithms.

In addition to that, we also compare our proposed group revamdation algorithms
with a very simple baseline approadi¥t hout - Fagi n RO. This algorithm works as

follows: It works only with the set of lists relevant to a sgecgroup. This algorithm

208
doesn’t work in Fagin(top-k) style; i.e., it can not acquamgy early stopping using upper

bound value of thresholds. In order to compute the top-kgratings, it maintains a heap
and stores the top-k ratings encountered thus far. Howtheglgorithm can only termi-

nate once the entire database is scanned and outputs thdé&sgpratings thereafter.

Group Formation: Groups are formed by selecting users from the MovieLens
database. The key factor we consider is group cohesivenesingilarity). We defined
four group similarity levels0.3, 0.5, 0.7, 0.9, with a margin of£0.05. To form a group o8
with similarity 0.3, we select three usets, us, uz from the database, such thét j, 0.25 <
sim(u;,u;) < 0.35, wherel < 4,5 < 3,7 # j. The other factors we consider are number
of recommendations being produced (smafl,#medium =10, large =30) and the size of
groups (small =3, medium =5, large =8).

Summary of Results: Our first observation is that group similarity has a direct im
pact on the number of sequential accesSés). This is not surprising: the predicted rating
lists of similar users tend to contain similar items at sanpositions, including those with
high predicted ratings. Our second observation is that doisegreement ListsI{Ls) al-
most always guarantee earlier stopping. HeR&@wins in very few cases. However, the
presence oDLs is not always beneficial and can sometimes beaeshendant In fact, the
results show that for different user groups, differenttetyees RO, FMor PM) will win. In
particular, a higher number @Ls does not guarantee earlier stopping. The proliferation
of lists may increase the number ®As and also the number of distinct items seen unnec-
essarily, thereby hurting the performance in the end. Intimehdto that, we compare our
three algorithms, with the baseline appro&éh hout - Fagi n RO. Eventually, as shown
in Figure 6.5, This algorithm always scans the entire dalaad encounters all items in
the database before producing the output. Consequentlyaihsthe worst performance

among all. We provide detailed descriptions on our expeanisbelow.

#SAs

2000

Varying Similarity

1800 -
1600 -
1400 -
1200 H
1000 -
800 -
600 1
400 1
200 ~

1000

#SAs
(%))
o
o

BFM
BRO
apPMm

BWithout-
Fagin RO

R

-
||||||H||||H\|||||||H|||||H|||||||\\|||||\\IW

. (@) .
Varying no of items

0.5 0.7 0.9
Similarity

|| @pPM

1| EWithout-

EHFM

ERO

Fagin RO

Figure 6.5.

10 30
No of items
(c)

#DIPs

1200

Varying Similarity

1000 4

800 -

600 -

400 -

200 -

3000

2500 -

2000 A
2 1500
b]

1000 -

500 -

Similarity
(b)

Varying group size

BRO

BPM

Group Size
(d)

B Without-
Fagin RO

Performance Comparison among AlgorithlR®, FM PM and
W t hout - Fagi n RO. a)Measures #SA-s varying Similarity, b)Measures #DIRuyv
ing Similarity, c)Measures #SA-s varyirig and d)Measures #SA-s varying Group Size.

6.6.2.1 Varying Group Similarity

Figure 6.5(a)(b) illustrate the performanceR®, FMand PMwith different group

similarities in terms of botl8As andDI P. The group size is fixed & and the number

of recommended items i). For PM the number of materialized lists 3s As the group

similarity increases, the effectiveness of our matergion algorithms gradually decrease.

This is not surprising since the more similar the membersaatte each other, the more

likely their agreements on the top items are close to theipmends that are estimated in

the RO algorithms. As a resulfRO can reach stopping conditions as earlyPddand FM

do. This observation is also corroborated by the similar lnens ofDI P betweenRO and

210
the other two algorithms for high similarity values. Furtinere,FMforces the system to

scan unnecessarily large number of lists and results in pedormances instead. In fact,
it can be easily observed from Figure 6.5(a)(b), for veryhhsgnilarity, RO results in the
best performances, whereas, for very low similaftylis the winner in most of the cases.
The performance oPMcan be observed to be in between. An interesting observation
this case is, for average similaritgMresults in the best performances for b&hs and
DI P. This corroborates the fact that in certain cases partiaétnadization can be the best

option.

6.6.2.2 Varying K

Figure 6.5(c) illustrates the performance comparisdrR@f-MandPMwith different
numbers of items recommended. The group size is fixédaatd the group similarity is
fixed at0.5. Algorithm PMuses three materialized lists for= 5, 10 and five lists fork =
30. As expected, the number 8As increases with the increasing number of recommended

items. For all three cases, algoriti®vout-performs botlRO andFMsignificantly.

6.6.2.3 Varying Group Size

We examine the effect of different group sizes in Figured.5{he group similarity
is fixed at0.5 and the number of recommended itemd(s For PM the number of mate-
rialized lists is3. As expected, the number 8As increases as the group size increases.
When the group sizes are small and medium, both materiaizatgorithms significantly
out-performRQ. It is counter-intuitive to see that when the group size igdathe benefit
of materialization decreases. After some investigatiomgvgcovered that when the group

is large, it is easy to have a predicted rating list that cawvige enough pruning power to

211

Varying # of materialized lists @#DIPs

400 E#SAs

#DIPs and #SAs

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10
No of lists materialized

Figure 6.6. Effect of the number @Ls.

trigger the early stopping conditions. As a result, prurtmmgugh the disagreement lists is

no longer as effective.

6.6.2.4 Effect of disagreement lists in query processing

We study the impact of materializing different numbers skdjreement lists{Ls).
The group size is fixed atand its similarity is fixed a0.5, the number of recommended
items is5. We reportSAs andDl P by varying the number of materialized disagreement
lists. As shown in Figure 6.6, the performance is at its warisén the number oDLs
is 0, which corresponds tBO. It starts getting better as mofLs are added and the
performance is best when the numberZ®fs reaches 3. Then, it starts degrading and
never gets better. However, from ti#fé to the10" list, the number obl P remains almost
the same. By examining th&” list, we noticed that many top items in that list are not
present in the final result, and, as a result, the numbe3Asf increases unnecessarily.
We also noticed that the top items in thé list are shared by all subsequent lists (which
explains the close-to-constant performance). This stioatan arise when a subset of the

group dislikes the same set of movies equally.

212
6.6.3 Space reduction techniques and their impact on quecgpsing

The main focus of this subsection is to analyze and comparejtlery processing
performance ofPM algorithm under space constraints. Recall that Rivkalgorithm is
designed when a space budget is enforced and a subset dflpassti of pair-wise dis-
agreement lists can be materialized. We proposed to confddt@ring and disagreement
lists materialization to satisfy such hard space condBaidere, we experimentally eval-
uate query processing performance attainedPlblusing configurations offered by these
different space reduction techniques.

Summary of Results: Our first observation i®Mis never worse thaRO. For some
groups, the best performance can be attained by WRihglgorithm. In generalFMgets
better with bigger group sizes. However, the differencearfgrmance betweeRMand
PMis not noteworthy as the group size is increased. Hence rungpace constrainEM
is an acceptable solution. Next, we observe that our praploskavior factoring algorithm
performs well in reducing space. Finally, we experimegtdémonstrate that factoring is
always beneficial from performance perspective since # &ighreserve more disagreement
lists in a lossless way. Consequentially, Factoring folldlwg Knapsack baseeMis better
thanPMOnly even when a small fraction of space is offered to maliee disagreement
lists.

In these experiments, the space required by a configuratioterpreted as the total
number of entries in the disagreement lists (as defined ind®e@.4.) That is because pre-
dicted rating lists being necessary, they are not affecyeal space reduction strategies,

factoring and partial materialization.

213

©
=)

EFM EPM

@®
=3

ORO

~
=}

#Average SAs
N w o [=2]
o o o o

-
=)

o

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Group Size

Figure 6.7. Query Processing Performance of Group RecomatiendAlgorithms.

6.6.3.1 Effect of partial materialization (PM-Only) on gqu@rocessing

First, we perform a comparative performance study of quenggssing of different
group recommendation algorithmB@ FMand PM). In these experiments, we set the
available space to materialize disagreement lists0t@ of the total space consumed by
all possible pair-wise disagreement lists in the user b¥¢e vary the query size fror
to 20 (recall that a query is a group that is seeking recommenagtiand measure the
number of sequential access&§) required to compute top-ki:(= 30) recommended
items to the group. Each performance number of a particularygsize is obtained by
averaging the number of sequential accesses required tputertop-k recommendations
of three different groups of that particular size. For aipatar query, its size is increased
by adding one random new user from the user base.

Figure 6.7 illustrates the performance comparison of dfie group recommenda-
tion algorithms. As expected, the average numbeBAs increases with the increasing
group size in general. In gener&lVgets better as group size is increasB performs
the worst among all three in all cases. For grobps and7, PMis the best solution. By
examining group in one individual run, we noticed th&Muses onlyl disagreement lists

at that step, whereaBMuses alll0 disagreement lists. These extra disagreement lists in-

214

2 3 456 7 8 9 101112 13 14 15 16 17 18 19 20

Group Size

Figure 6.8. Difference in Performance betwé¥andFM

cur unnecessary sorted accesseSNhAlso, PMgets better from group to group5. Our
analysis reveals th&Muses onlyl disagreement list in group, whereas in group, it
uses3 new disagreement lists. We further investigate that beland notice that the new
disagreement lists play crucial role in reaching the thotssfast during topk computation.
Consequently, the overall number of accesses drops fronpgromugroup5. This experi-
ment also reinforces the intuition that different disagneat lists have varying impacts on
performance.

Next, we study the difference in performance betw&dhand FM (the better one
betweerFMandRO) in the same settings in Figure 6.8. Althougthoutperform$Mwith
the increase in group size, however, the difference is gaifstant. These two experiments
corroborate our initial claims: even when full materiatina is acceptable, partial materi-
alization is important since that can attain the best peréace sometime. Also, under a
space constrainEMis a satisfactory solution since its performance is redsigraose to

the best solution.

6.6.3.2 Benefit of factoring algorithm in space saving

Next, we evaluate the space saving benefit of behavior fagtoM/e increase the

size of the user base (fromto 20) and measure the space requirement (i.e., no of entries)

215

50000

45000 -

40000 -

35000 -

30000 -

25000 -

20000

Total Space Requirement

15000 -

10000 -

—&— Without Factoring
—&—With Factoring

5000 -

3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20
Group Size

Figure 6.9. Space Savings of Factoring Algorithm for SimiJgerbase.

to store all pair-wise disagreement lists for that user bageandwithout factoring. Recall
that, the benefit of factoring can only be achieved for growjk size3 and beyond. In
particular, we consider two different cases: in one caseywauser is added into the existing
user base at random, whereas, in other case, a new user isatetyed for addition into
the existing user base when it is highly simil&% or more) to at least one existing
user (henceforth referred to as Random Userbase and Sinséabbke respectively in this
section.)

Figure 6.9 demonstrates the benefit of space saving for &itdderbase. The user
group of size20 has190 disagreement lists that contad@978 entries (space) originally.
Upon factoring, the total size of these lists is reduced2@63 entries, thus achieving a
space saving of8.66% in a lossless manner.

Figure 6.10 demonstrates the benefit of space saving for Rabiderbase. The user
group of size20 has190 disagreement lists that consum@812 entries (space) originally.
Upon factoring, the total size of these lists is reducedli@23 entries, thus achieving a
space saving 026.15% in a lossless manner. It is easy to observe that space redusti
very significant for Similar Userbase, however, even for RamdJserbase the reduction

achieves good performance. This demonstrates that treifagalgorithm is effective and

216

45000

40000 -

35000

30000 -

25000

20000 -

15000 -

Total Space Requirement

10000 -

—— Without Factoring

5000

—&— With Factoring

——— T T T
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Group Size

Figure 6.10. Space Savings of Factoring Algorithm for Randisarbase.
performs well in practice, thereby, reinforcing the ideattinless no two users agree on

any item, factoring is always beneficial.

6.6.3.3 Impact of different space reduction strategiesu@rygprocessing

Finally, we investigate different space reduction streegnd their comparative ef-
fectiveness in query processing. Recall that, given a spadgédh (i.e., number of entries)
for materializing disagreement lists, behavior factommay fail to reduce the original pair-
wise disagreement lists of the user base to that extentctis#mess of space saving solely
depends on similarity between users in the user base undsidesation. Therefore, it
may be necessary to apply techniques to drop some disagnebsieon the factored user
base (refer to Algorithm in Section 6.5) to satisfy the hgvdce constraint. On the other
hand, the hard space constraint can also be guaranteed lgyngppartial materialization
only (refer to Section 6.5) on the original (not factoredirpése disagreement lists.

In these experiments, we intend to evaluate the impact afespaduction techniques from

two major angles: first, given different space budgets, wauate the impact on query

processing of factoring followed by disagreement listsematization (henceforth referred

217

100

90 1

80 1

701

60 1

50 4

Average #SAs

40

30 4

20 4

10 4 —&— Factoring Followed by Knapsack Based PM
—&—PM-Only
T

0% 25% 50% 75% 100%
Space Budget

Figure 6.11. Performance of Space Saving Strategies Urnifferént Space Budgets.
to asFactoring foll owed by Knapsack based PMin this section) and com-
pare that with the performance attained by applying parieterialization only (henceforth
referred to a®M Onl y in this section).

Figure 6.11 shows the comparative study of the query prowpgerformance of
Factoring followed by Knapsack based PMandPM Only on Random User-
base. The group size is fixed Hi. Performance numbers are obtained by averaging the
number of sequential accesses required to compute tép=k 80) recommendations of
three different groups of siz&) chosen randomly from the Random Userbase. Space
constraints are varied by different numbers, in an equi-spaced manner, ranging from
(0% —100%). Recall that this hard space constraint allows only certaiaunt of space#
of entries) for materializing disagreement lists. Note t§a space means no disagreement
list can be materialized (AlgorithrRO) and 100% space budget allows all disagreement
lists to be materialized (Algorithr&M)

Figure 6.11 demonstrates one such case, where a higher spdget results in
better performance. Therefore, performance is the worst%e space and the best for
100% space. It also corroborates the fact that factoring is advmgneficial, since, it con-

serves more information in a lossless way under the same spastraint. Consequently,

218

120

100 -

80 4

60 -

Average #SAs

40 -

20 -

—@— Factoring Followed By Knapsack Based PM
—4&— PM-Only

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Group Size

Figure 6.12. Performance of Space Saving Strategies wifaaeSBudget 050%.

Factoring foll owed by Knapsack based PMperforms better thaRM Onl y

in all three intermediate space constrair#s% , 50% and 75%. The most interesting
observation ig~act ori ng fol |l owed by Knapsack based PMattains the same
performance irv5% and100% space constraints. Recall that we use Random Userbase in
this experiment which achieve28.15% overall space saving, i.e., factoring stores all dis-
agreement lists i86.15% less space, while guaranteeing the same processing parfoem
asFM

Finally, we investigate the comparative performance oftitee space reduction strategies

discussed above at a fixed space constraibfic. We profile the performance of query
processing by varying query size (i.e., group size fidto 20) there. Each performance
number is presented after averaging the individual perdoiee numbers as discussed ear-
lier.

Figure 6.12 summarizes the result of this experiment. Agetqul, the average num-
ber of SAs increases with the increasing group size in general. HexvEact ori ng

foll owed by Knapsack based PMoutperform$M Onl y significantly in all group

219
sizes. This result corroborates the effectiveness of theqeed-act ori ng f ol | owed

by Knapsack based PMalgorithm.

6.7 Related Work

We organized our related work section into two subsectioesommendations and

query processing.

6.7.1 Recommendations

Two good surveys of recommendations can be found in [98] 884 [Briefly, the
goal of a recommendation strategy is to estimate a usergyrédr items he has not rated
before, and return k items with highest estimated ratingg& tWo most popular families of
recommendation strategies are item-based and collabefdtiering. The former leverages
items similar to the user’s previously highly rated items #me latter leverages users who
share the user’s interests. In this paper, we use collabefdtering to generate individual
recommendations.

A survey on group recommendations is given in [91]. It désesithe two prevalent
approachesvirtual userandrecommendation aggregatioifhe former combines existing
ratings of each group member to create a virtual user to whamentional recommenda-
tion strategies are applied, whereas, the latter creatgdnal recommendation lists for
each member and consolidates those lists to form the gréisp’dn this paper, we adopt
the latter approach for its flexibility as described in [91].

Existing research on group recommendations mainly focuges group formation
and evolution, privacy concerns and interfaces for supppgroup recommendations. To
the best of our knowledge, we have not encountered any deladek that emphasizes on
performance aspect of group recommendation computat@rdamthey provide a theoret-

ical and empirical study of different consensus functi@ssywe have done in this work. A

220
few conducted user studies to evaluate the benefits of gexgmmendations. Those are

summarized below.

PolyLens [93], is a group recommender extension to the Mens recommender
system. The authors report a user study where existing Mewnie users were allowed to
form groups of their preference(e.g., by inviting each othed the system studies the im-
pact of group behavior on the recommender system Moviellerder to produce group
recommendations, individual groups members’ recomméntaivere merged using the
least misery model. User satisfaction was measured usilogving different criteria: how
easy the process of creating groups was; how easy it was tonadtbers into a group;
how useful group recommendations were; and the overaBfaation. The study con-
cluded, among other findings, that users in a group prefargrecommendations than
individual ones. This inspired our group vs individual resoendation comparison in
Subsection 6.6.1.4.

In [95], the authors develop a genetic algorithm based botktive filtering strat-
egy to infer interactions between group members to comphéeptedicted rating of an
item for a group. Even here, their experimental evaluatiaiidates the quality of group
recommendations and users satisfaction.

In [97], the authors distinguish between group recommeodstn online commu-
nities and in non-online ones. They propose a two-phaseoappr where, first a set of
recommendations are generated for a group using collabefdtering, and then items are
filtered from that set in order to improve satisfaction ofiundual members preferences.
Their experiments show that the proposed method has censistigher precision and
individual members are more satisfied.

AHP (Analytic Hierarchy Process) of multi-criteria deaisimaking is used in [94]
to model group preferences using the preferences of ingisd The authors also use a

Bayesian network to model uncertainty in an individual uspreference. Their evaluation

221
on 10 different situations assesses the high usability of thetesn and a comparison with

both random and rule-based recommendation is also pravided

The authors in [92] develop 3 different aggregation pofi@éindividual user models
into a group model and for the purpose of biasing recommeéntain a critiquing-based,
case-based recommender. They conduct experiments taghghtte benefits of group
recommendation using live-user preference data.

Finally, in [96], the authors use hierarchical clusterimgl @ecision trees to gener-
ate recommendations of user groups in Facebook. This wifdeslfrom ours because it
focuses on recommending friends groups instead of recomlimgitems to groups. The
experiments show that a large number of groups in Facebds)are accurately pre-

dicted using members’s profiles.

6.7.2 Query Processing

Factoring Lists: In [104], the authors developed space-saving strategiksymord
inverted lists using shared user behavior. Their approatiased on clustering users first
and then building per-cluster keyword indices instead dividual users’ indices. The
experiments show that such clustering saves space andrtedsging keyword queries
on cluster-based indices has acceptable time overheadsre &ne two key differences
between our factoring strategy and this work. First, faotpis explored in a pair-wise
fashion (and not for an entire user cluster). Second, fagatoes not incur additional 1/O.
One extension of our work is to explore factoring for a clustieusers.

Top-K Processing: The family of top-k threshold algorithms [105, 100] aim te re
duce the amount of processing required to compute top-teerkgwers, and have been used
in the relational [106], XML [107], and many other settinggdonotonic score aggregation

functions, which operate on sorted input, enable the eadgipg of low-rank answers. In

222
this work, we apply these algorithms on user’s predictedgdists and introduce pair-wise

disagreement lists to improve performance.

Knapsack Problem: This combinatorial optimization problem [60, 108] arises
whenever resource allocation is required between manyendsets under budgetary con-
straints. Each resource has a cost and a value and the lotadtatl resource cost is re-
stricted under a hard constraint, so it aims to allocateuness such that it gathers maxi-
mum value for a given cost. Two main variants of this probleen Bounded Knapsacknd
Unbounded KnapsackBounded Knapsack assumes limited availability of eachureso
type, whereas, each resource may have infinite no of coplgstunded Knapsack prob-
lem. We adapt apecialcase of Bounded Knapsack known(gd Knapsackior modeling
disagreement lists materialization problem. Each disagest list is selected for material-
ization under overall space constraints (space budgegdbas how much benefit it offers

in speeding up query processing (value) by consuming howhrapace (cost).

6.8 Conclusion

Group recommendations are becoming of central importaegeeaple engage in
online social activities together. In this thesis, we defime semantics and study the ef-
ficiency of delivering recommendations to groups of userg. iNttoduce the notion of a
consensus function which aims to achieve a balance betweitena's aggregate predicted
rating in the group and individual member’s disagreememgs the item. We design and
implement efficient threshold algorithms to compute groegommendations. We report
on a user study conducted on the MovielLens data sets using@mrisaMechanical Turk
and a comprehensive performance study of our algorithmsestblished that similarity

between group members impacts both quality and efficiency.

223
In the absence of any information about what groups couldbedd, pair-wise user

disagreement lists need to be maintained in order to effigipnocess recommendations
to randomly formed groups. Hence, we developed two compitamng space reduction
strategies and studied their impact on space and time. ticpiar, our experiments showed
that behavior factoring, a space saving strategy wheresitera users agree on are stored
only once, achieves considerable space reduction. Tleegyr combined with selectively
materializing disagreement lists successfully addreappbcations where a space budget
is enforced.

There are many avenues we would like to explore in the fut@ee extension to
this work is to devise a query optimization algorithm whiakés a group and a configura-
tion (a set of materialized and possibly factored disagesdriists) and determines which
lists to use for that group. The experiment in Section 646showed that it is sometimes
beneficial to merge a subset of the disagreement lists foe gpoups, even if they are ma-
terialized. Another avenue for improvement is the impletagon of threshold sharpening
as described in Section 6.3.4 for the pair-wise disagreemedel. We believe this will

have drastic improvements on processing recommendations.

CHAPTER 7
CONCLUSION

This dissertation focusses in designing novel online dgtéoeation techniques from
underlying large data repositories (structured data arx) Mieat extend existing ranked re-
trieval based query-answering paradigm. In particul& résults in this dissertation widen
the scope of existingaceted searchand onlinerecommendation system$nvo upcoming
fields in online data exploration which are still in theiranty. To that end, we propose
dynamic faceted search systeémsonjunction with structured and unstructured data, thase
on anavigational effort based moddfurthermore, we augment the existing online recom-
mender systems with novel functionalities that enablesylséem to recommentbmpos-
ite itemsto a uselinteractively or to recommend items togroup of usersWe investigate
technical and algorithmic challenges involved in enabkfigcient computation in these

online problems. In this section, we briefly discuss othenpsing problems with future

opportunities in this field.

7.1 Ongoing Work

As an ongoing work, we investigate how to enable the funelities of the Star
composite items onto the Chain composite items, and viceavefsr example, we aim
at understanding how ummarizdop- diversifieditineraries, or how to enablaterac-
tion in package construction problem. Furthermore, we wish ¥estigate how we can
establish the connection between the interaction in coitodem recommendation and
an effort based modelwhere the objective is to suggest composite items baseden u

feedback such that the interaction completes miaimum number of iterationWe also

224

225
aim at exploring other composite item models; especiall,ane keen to propose a solu-

tion framework for composite item recommendations thapigrapriate for any arbitrary

composite relationship.

Observe that, so far we have explored problems such as hoactonmendcomposite
items or how to recommend top-kdividual items to agroup of user8 A natural exten-
sion of those problems may b®w to recommend composite items to a group of users?
Consider the interesting example scenario, where a trayaljency is required to design
a vacation travel itinerary for a group of travelers (who Vdooe traveling together), sub-
ject to some budgetary constraints (time, money, etc). @bdhat, the challenges are,
each traveler in the group may have different preferencay, mve different budget; the
itinerary recommendation system for the group must congidese constraints. Thus the
corresponding optimization problem requires substdpt@ifferent modeling, and sub-

stantially different solutions.

7.2 Future Work

Data is one of the primary assets to any organization, an@xtabited an extraor-
dinary growth rate off late. An incredible amount of knowdedcan be harvested by ana-
lyzing and exploring this ever-expanding large volume dhd®ata exploration is still an
emerging research area, and a tremendous scope of researhbre. In this section, we

summarize some of my future research plans.

Analysis and Management of Structured and Unstructured Data

My immediate research interests lie in large-scale datéoexion, touching upon diverse
areas: web search, information retrieval, data miningaloslzges, recommender systems,
and so on. we plan to build information systems with novelrgramswering capabilities.

we would like to focus on a good mix of futuristic researchigems, and in building real-

226
world systems that impart immediate higher impacts in tloget@. For example, we would

like to investigate how to design exploratory search igiegt for large organizations which
require in-depth understanding and detail modeling of tideulying complex schema, or
how to leverage collaborative tagging information for desng faceted interface, or how
to augment existing recommendation systems with additiburectionality, considering
additional contexts. In addition, most of my current reshaonsiders the case where the
guery isunder specifiedwe would also like to study how data exploration techniqueas

be enabled for thever-specifiedjueries that do not return any results initially.

Analysis and Management of Social Data
New research suggests that every digital comment made bg asgwhere - a product
review, social book-marking, tweets, blogs, activitiesaosocial network site, e-mails can
be mined for hints as to emotions and other thoughts. we dnteriap into these latent
information sources and leverage that in a principled wagrthance query answering
tasks, and analyze that information for future learning @pplortunities. For example, we
would like to investigate how tweets, blogs impact markehdis, or social outcomes in
advance.

Observe that, there are diverse challenges involved. Thesirate challenge lies in
the automatic extraction and cleaning of the real worldyhdata. we intend to investigate a
principled and domain independent framework to accomptiahtask. The next challenge
is how to leverage those information in a principled manoearthance underlying analysis
or query-answering tasks, and finally, how to design effickealable solutions that needs
to handle the analysis of this data deluge during query time.

we am also interested in studying the security and privape@s of social web,
that can potentially be leveraged to build dossiers on usBxial network application

providers benefit from the increasing amount of persondiniifiable information avail-

227
able on social sites through blogs, Twitter, Facebook, mpsi through idle chatter and

casual conversation, but, at the same time, risks of datasaithreaten the information
privacy of individual users as well as the providers busmasdel.

We are interested in studying and analyzing how online $aciavities can be used
to provide a supportive and assistive environment to usatscan foster behavioral devel-
opment and further learning. Especially, we intend to stilndypsychological aspects of
social activity, and leverage that for social and persoydivelopment, health promotion,
and so on. For example, what kind of social activities candeful to educate people of
different ages, or how social and health awareness can beoped through social activity.
we intend to collaborate with experts in the area of psyaglsociology to harness the

needful expertise and knowledge for that.

REFERENCES

[1] M. A. Hearst, “Clustering versus faceted categories fdoimation exploration,”
Commun. ACMvol. 49, no. 4, pp. 59-61, 2006.

[2] E. Stoica, M. A. Hearst, and M. Richardson, “Automatingation of hierarchical
faceted metadata structures, HiL. T-NAACL, 2007, pp. 244-251.

[3] W. Dakka and et al., “Automatic discovery of useful fatetms,” 2006.

[4] S. B. Roy, H. Wang, G. Das, U. Nambiar, and M. K. Mohania, “Miam-effort
driven dynamic faceted search in structured databaseSJKiM, 2008, pp. 13—-22.

[5] S. B. Roy, H. Wang, U. Nambiar, G. Das, and M. K. Mohania, “Rgat: Building
dynamic faceted search systems over database§Di, 2009, pp. 1463—-1466.

[6] S.B. Roy and G. Das, “Top-k implementation techniques afimum effort driven
faceted search for databases,G®MAD, 2009.

[7] C. Li, N. Yan, S. B. Roy, L. Singh, and G. Das, “Facetedpedign&mic genera-
tion of query-dependent faceted interfaces for wikipédmayVorld Wide Web Conf.
2010.

[8] N. Yan, C. Li, S. B. Roy, R. Ramegowda, and G. Das, “Facetedpeshabling
query-dependent faceted search for wikipediaCIKM, 2010, pp. 1927-1928.

[9] S. Amer-Yahia, L. Lakshmanan, and C. Yu, “SocialScopealitimg Information
Discovery on Social Content Sites,” @IDR, 2009.

[10] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu, “Groupdtemendation:
Semantics and Efficiency,” WLDB, 2009.

[11] S.B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu, “Corgtng and Explor-
ing Composite Items,” I5IGMOD, 2009.

228

229
[12] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan, “@irtgthe attributes of query

results,” inSIGMOD Conference2006, pp. 395-406.

[13] R. Fagin, “Combining fuzzy information from multiple dgsns,” in Proceed-
ings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposiunrioniples of
Database Systems, June 3-5, 1996, Montreal, CanadACM Press, 1996, pp.
216-226.

[14] U. Guntzer, W.-T. Balke, and W. Kiel3ling, “Optimizing multi-fee queries for
image databases,” MLDB, 2000, pp. 419-428.

[15] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregationalthms for middleware,”
in PODS 2001.

[16] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum, “Prbitiatic information re-
trieval approach for ranking of database query restl€M Trans. Database Syst.
vol. 31, no. 3, pp. 1134-1168, 2006.

[17] V. Hristidis and Y. Papakonstantinou, “Discover: Keyw search in relational
databases,” iWLDB, 2002, pp. 670—681.

[18] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Naklrarag, and S. Sudar-
shan, “Banks: Browsing and keyword searching in relationtdlutses,” irVLDB,
2002, pp. 1083-1086.

[19] J. English, M. A. Hearst, R. R. Sinha, K. Swearingen, andPKYee, “Hierarchical
faceted metadata in site search interfaces,Chil Extended Abstract2002, pp.
628-639.

[20] V. T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and M.Mobhania, “Decision
trees for entity identification: approximation algorithmsd hardness results,” in

PODS 2007, pp. 53-62.

230
[21] J. Gehrke, R. Ramakrishnan, and V. Ganti, “Rainforest amé&work for fast deci-

sion tree construction of large datasef3dta Min. Knowl. Discoy.vol. 4, no. 2/3,
pp. 127-162, 2000.

[22] T. Mitchell, Machine Learning McGraw Hill, 1997.

[23] J. Shilens, “A tutorial on principal component analyslastitute for Nonlinear Sci-
ence no. UCSD, 2005.

[24] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen, “Efficient discovery afdu
tional and approximate dependencies using partitiondCIDE. |IEEE Computer
Society, 1998, pp. 392-401.

[25] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis, “Autoethtanking of database
query results,” inCIDR, 2003.

[26] W. Dakka, P. G. Ipeirotis, and K. R. Wood, “Faceted browsover large databases
of text-annotated objects,” l€DE, 2007, pp. 1489-1490.

[27] ——, “Automatic construction of multifaceted browsingerfaces,” inCIKM, 2005,
pp. 768-775.

[28] I. Martin and J. M. Jose, “Fetch: A personalised infotimaretrieval tool,” inRIAQ,
2004, pp. 405-419.

[29] FacetedDBLP, “Faceted dblp,” http://www.I3s.de/gh@ag/demonstrators.php.

[30] O. Ben-Yitzhak, N. Golbandi, N. Har'El, R. Lempel, A. Neanm, S. Ofek-
Koifman, D. Sheinwald, E. J. Shekita, B. Sznajder, and S. Yogeyond basic
faceted search,” ilWSDM 2008, pp. 33—-44.

[31] K. Chakrabarti, S. Chaudhuri, and S. won Hwang, “Automatktegorization of
query results,” irSIGMOD Conference2004, pp. 755—-766.

[32] S. J. Russell and P. Norvigytificial Intelligence: A Modern Approach Prentice
Hall Series, 2003.

231
[33] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: enapkeyword search over

relational databases,” BIGMOD Conference2002, p. 627.

[34] P. Wu, Y. Sismanis, and B. Reinwald, “Towards keywordsen analytical process-
ing,” in SIGMOD Conference2007, pp. 617-628.

[35] R. A. Baeza-Yates and B. A. Ribeiro-Netdpdern Information Retrieval ACM
Press / Addison-Wesley, 1999.

[36] E. N. Efthimiadis, “User choices: A new yardstick foretlevaluation of ranking
algorithms for interactive query expansiofif. Process. Managevol. 31, no. 4,
pp. 605-620, 1995.

[37] C. L. Lucchesi and S. L. Osborn, “Candidate keys for relai’ J. Comput. Syst.
Sci, vol. 17, no. 2, pp. 270-279, 1978.

[38] A. S. Pollitt, “The key role of classification and indexg in view-based searching,”
in IFLA, 1997.

[39] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst, “Faceteetadata for image search
and browsing,” inCHI '03, 2003.

[40] E. Stoica, M. A. Hearst, and M. Richardson, “Automatingation of hierarchical
faceted metadata structures,”®noc. NAACL-HLT 200,/2007, pp. 244-251.

[41] W. Dakka, P. G. Ipeirotis, and K. R. Wood, “Automatic ctmstion of multifaceted
browsing interfaces,” it€IKM, 2005, pp. 768—775.

[42] W. Dakka and P. Ipeirotis, “Automatic extraction of @iefacet hierarchies from
text databases|CDE, 2008.

[43] K. A. Ross and A. Janevski, “Querying faceted databaseshe Second Workshop
on Semantic Web and Databas2804.

[44] S.B. Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania, “Minom effort driven

dynamic faceted search in structured database&THiM, 2008.

232
[45] J. Diederich and W.-T. Balke, “FacetedDBLP - navigatioaecess for digital li-

braries,”Bulletin of IEEE Technical Committee on Digital Librariesl. 4, Spring
2008.

[46] D. Debabrata, R. Jun, N. Megiddo, A. Ailamaki, and G. Lam"“Dynamic faceted
search for discovery-driven analysis,”@KM, 2008, pp. 3—-12.

[47] O. Ben-Yitzhak, N. Golbandi, N. Har'El, R. Lempel, A. Neamnm, S. Ofek-
Koifman, D. Sheinwald, E. Shekita, B. Sznajder, and S. YogBeyond basic
faceted search,” ilWSDM 2008, pp. 33—-44.

[48] W. Pratt, M. A. Hearst, and L. M. Fagan, “A knowledge-bdspproach to organiz-
ing retrieved documents,” iIRAAI '99/1AAI '99, 1999, pp. 80-85.

[49] M. Kaki, “Findex: search result categories help users whenrdeatiranking fails,”
in CHI '05, 2005, pp. 131-140.

[50] K. Rodden, W. Basalaj, D. Sinclair, and K. Wood, “Does migation by similarity
assist image browsing?” i@HI, 2001, pp. 190-197.

[51] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tuk8gatter/gather: a
cluster-based approach to browsing large document ciglfest in SIGIR 92 1992,
pp. 318-329.

[52] O. Zamir and O. Etzioni, “Grouper: a dynamic clusterintgerface to web search
results,” inWWW 1999.

[53] H. Bast and I. Weber, “The CompleteSearch engine: Intgcefficient, and to-
wards IR & DB integration,” inCIDR, 2007, pp. 88—95.

[54] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, anéves, “DBpedia:
A nucleus for a web of open data,” th Int.l Semantic Web ConR007.

[55] R. Agrawal and R. Srikant, “Fast algorithms for mining @sation rules in large

databases,” iVLDB '94: Proceedings of the 20th International Conferenoé/ery

233
Large Data Bases San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1994, pp. 487-4909.

[56] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. YiiMafia: A maximal
frequent itemset algorithm EEE Trans. Knowl. Data Engwvol. 17, no. 11, pp.
1490-1504, 2005.

[57] D. Gunopulos, H. Mannila, and S. Saluja, “Discoveridign@ost specific sentences
by randomized algorithms,” ilCDT, ser. Lecture Notes in Computer Science, F. N.
Afrati and P. G. Kolaitis, Eds., vol. 1186. Springer, 199, p15—-229.

[58] W. A. Gale and G. Sampson, “Good-turing frequency esatiom without tears,”
Journal of Quantitative Linguisticyvol. 2, no. 3, pp. 217-237, 1995.

[59] R. Motowani and P. RaghavaRandomized Algorithms Cambridge University
Press, 1995.

[60] M. R. Garey and D. S. JohnsaDpmputers and Intractability: A Guide to the Theory
of NP-Completeness W.H. Freeman and Company, 1979.

[61] R. Fagin and et. al., “Optimal Aggregation Algorithmg fdiddleware,” inPODS
2001.

[62] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregationalthms for middleware,”
JCSSvol. 66, no. 4, pp. 614-656, 2003.

[63] M. Miah, G. Das, V. Hristidis, and H. Mannila, “Standigt in a crowd: Selecting
attributes for maximum visibility,” inCDE, 2008, pp. 356—365.

[64] R. J. B. Jr., “Efficiently mining long patterns from dataka,” inSIGMOD Confer-
ence L. M. Haas and A. Tiwary, Eds. ACM Press, 1998, pp. 85-93.

[65] X. Yang, C. M. Procopiuc, and D. Srivastava, “Summaiggielational databases,”

PVLDB, vol. 2, no. 1, pp. 634-645, 2009.

234
[66] C. Yu and H. V. Jagadish, “Schema summarization,VinDB, U. Dayal, K.-Y.

Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. KaChnd
Y.-K. Kim, Eds. ACM, 2006, pp. 319-330.

[67] X.Lin, Y. Yuan, Q.Zhang, and Y. Zhang, “Selecting staFbe k most representative
skyline operator,” iIHCDE, 2007, pp. 86-95.

[68] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bha§.ateher-Yahia, “Efficient
computation of diverse query results,”li@DE, 2008, pp. 228—-236.

[69] J. WhittakerGraphical Models in Applied Multivariate Statistics Wiley, 1990.

[70] T. M. Mitchell, Machine Learning New York: McGraw-Hill, 1997.

[71] K. Chen and S. Har-Peled, “The Euclidean orienteeringbljgm revisited,”
SICOMR vol. 38, no. 1, pp. 385-397, 2008.

[72] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stémroduction to Algo-
rithms, Second Editian The MIT Press and McGraw-Hill Book Company, 2001.

[73] S.B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu, “Corgdtng and explor-
ing composite items,” itsIGMOD ConferencgeA. K. EImagarmid and D. Agrawal,
Eds. ACM, 2010, pp. 843-854.

[74] K.-P. Yee, K. Swearingen, K. Li, and M. A. Hearst, “Fae@tmetadata for image
search and browsing,” i6HI, G. Cockton and P. Korhonen, Eds. ACM, 2003, pp.
401-408.

[75] S. Ahern, M. Naaman, R. Nair, and J. Yang, “World exploMsualizing aggregate
data from unstructured text in geo-referenced collecfiond?roc. Joint Conference
on Digital Libraries (JCDL'07) June 2007, pp. 1-10.

[76] D. Crandall, L. Backstrom, D. Huttenlocher, and J. Klegrdy “Mapping the world’s
photos,” inProc. 18th International World Wide Web Conference (WWW2200
April 2009, pp. 761-770.

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

235
F. Girardin, “Aspects of implicit and explicit humanteractions with ubiquitous

geographic information,” Ph.D. dissertation, UniversRampeu Fabra, Barcelona,
Spain, 2009.

A. Popescu and G. Grefenstette, “Deducing trip relaéarmation from flickr,” in
Proc. 18th International World Wide Web Conference (WWWe208pril 2009, pp.
1183-1184.

T. Rattenbury, N. Good, and M. Naaman, “Toward autometicaction of event and
place semantics from flickr tags,” iAroc. 30th Annual International ACM SIGIR
Conference on Research and Development in Informationdretr{SIGIR’07) July
2007, pp. 103-110.

L. Ardissono, A. Goy, G. Petrone, M. Segnan, and P. Boa¥dntrigue: Personal-
ized recommendation of tourist attractions for desktoplamtiset devicesApplied
Artificial Intelligence vol. 17, no. 8-9, pp. 687—714, 2003.

K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Etdiou, “Developing a
context-aware electronic tourist guide: some issues apdreences,” inCHI '00:
Proceedings of the SIGCHI conference on Human factors in atingp systems
New York, NY, USA: ACM, 2000, pp. 17-24.

S. Dunstall, M. E. T. Horn, P. Kilby, M. Krishnamoorthg. Owens, D. Sier, and
S. Thiebaux, “An automated itinerary planning system fdiday travel,” Informa-
tion Technology and Tourismol. 6, no. 3, 2004.

D. Leake and J. Powell, “Mining large-scale knowledgarses for case adaptation
knowledge,” inProc. ICCBR 20072007, pp. 209-223.

C. H. Tai, D. N. Yang, L. T. Lin, and M. S. Chen, “Recommendpgysonalized
scenic itinerary with geo-tagged photos,” noc. IEEE International Conference

on Multimedia and Expo (ICME’20082008, pp. 1209-1212.

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

236
M. D. Choudhury, M. Feldman, S. Amer-Yahia, N. GolbarkliLempel, and C. Yu,

“Automatic construction of travel itineraries using sdtcieeadcrumbs,” irHT, M. H.
Chignell and E. Toms, Eds. ACM, 2010, pp. 35-44.

R. Levin, Y. Kanza, E. Safra, and Y. Sagiv, “Interactieeite search in the presence
of order constraintsPVLDB, vol. 3, no. 1, pp. 117-128, 2010.

G. Dantzig and J. Ramser, “The truck dispatching proljlemOperations Research
1959, pp. 80-91.

K. Chen and S. Har-Peled, “The euclidean orienteerimplem revisited,'SIAM J.
Comput, vol. 38, no. 1, pp. 385-397, 2008.

A.Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, andWhkoff, “Approx-
imation algorithms for orienteering and discounted-reivsp,” SIAM J. Compuf.
vol. 37, no. 2, pp. 653—-670, 2007.

C. Chekuri, N. Korula, and M. &, “Improved algorithms for orienteering and re-
lated problems,” iI'SODA '08: Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithmsPhiladelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2008, pp. 661-670.

A. Jameson and B. Smytithe Adaptive Welser. LNCS. Springer-Verlag, 2007,
vol. 4321, ch. Recommendation to Groups, p. 596.

K. McCarthy, L. McGinty, and B. Smyth, “Case-based grouporemendation:
Compromising for success,” iIlCCBR ser. Lecture Notes in Computer Science,
R. Weber and M. M. Richter, Eds., vol. 4626. Springer, 2007 289-313.

M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl, “Pohde A recommender
system for groups of user,” IBCSCW 2001, pp. 199-218.

M.-H. Park, H.-S. Park, and S.-B. Cho, “Restaurant recondgagon for group of

people in mobile environments using probabilistic muitteria decision making,”

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

237
in APCHI, ser. Lecture Notes in Computer Science, S. Lee, H. Choo, Suridd, C.

Shin, Eds., vol. 5068. Springer, 2008, pp. 114-122.

Y.-L. Chen, L.-C. Cheng, and C.-N. Chuang, “A group recomnagioth system with
consideration of interactions among group membeEspert Syst. Appl.vol. 34,
no. 3, pp. 2082—-2090, 2008.

E.-A. Baatarjav, S. Phithakkitnukoon, and R. Dantu, “Gyraecommendation sys-
tem for facebook,” inOTM Workshopsser. Lecture Notes in Computer Science,
R. Meersman, Z. Tari, and P. Herrero, Eds., vol. 5333. Sprj2g08, pp. 211-
219.

H. O. J.K. Kim, H.K. Kim and Y. Ryu, “A group recommendatigystem for online
communities,” ininternational Journal of Information Managemegct. 2009.

G. Adomavicius and A. Tuzhilin, “Toward the next gen@va of recommender sys-
tems: A survey of the state-of-the-art and possible extessilEEE Trans. Knowl.
Data Eng, vol. 17, no. 6, 2005.

J. A. Konstan, “Introduction to recommender systemsSIGIR 2007.

R. Fagin, A. Lotem, and M. Naor, “Optimal aggregatiogaithms for middleware,”
in PODS 2001.

S. Martello and P. TottKnapsack Problems: Algorithms and Computer Implemen-
tations (Wiley-Interscience Series in Discrete Matheosaind Optimization) John
Wiley & Sons, 1990.

GroupLens at University of Minnesota, “http://wwwogiplens.org/node/73.”

K. Jarvelin and K. Kekalainen, “Cumulated gain-baseal@ation of ir techniques,”
ACM TOIS vol. 20, no. 4, 2002.

S. Amer-Yahia, M. Benedikt, L. Lakshmanan, and J. Stoyich, “Efficient

Network-Aware Search in Collaborative Tagging Sites,VinDB, 2008.

238
[105] R. Fagin, “Combining fuzzy information: an overviel 8IGMOD Recordvol. 32,

no. 2, pp. 109-118, 2002.

[106] M. J. Carey and D. Kossmann, “On saying "enough alréaidysql,” in SIGMOD,
1997.

[107] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivasta¥alaptive processing of
top-k queries in xml,” inCDE, 2005.

[108] S. Sahni, “Approximate algorithms for the 01 knapspadblem,” inJournal of the
ACM. ACM, 1975.

BIOGRAPHICAL STATEMENT

Senjuti Basu Roy was born in Calcutta, India. She received hexdh.Tdegree in
Computer Science and Engineering from the University of Gtd¢india, in 2004. She has
received her M.S. in Computer Science from The Universityefab at Arlington in 2007.
Her current research interests include data and sociatebmanagement and exploration,
information retrieval, data mining techniques on databasel social networks, algorithms

etc.

239

