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ABSTRACT

EFFICIENT EXPLORATION TECHNIQUES ON LARGE DATABASES

SENJUTI BASU ROY, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Gautam Das

Search, retrieval, and exploration of information have become some of the most in-

tense and principal research challenges in many enterprizeand e-commerce applications off

late. The mainstay of this dissertation is to analyze and investigate different aspects of on-

line data exploration, and propose techniques to accomplish them efficiently. In particular,

the results in this dissertation widen the scope of existingfaceted searchandrecommenda-

tion systems- two upcoming fields in data exploration which are still in their infancy.

Faceted search, the de facto standard for e-commerce applications, is an interface

framework with the primary design goal of allowing users to explore large information

spaces in a flexible manner. We study this alternative searchand exploration paradigm in

the context of structured and unstructured databases. Morespecifically, motivated by the

rapid need of knowledge discovery and management in large enterprize organizations, we

proposeDynaCet, a minimum effort driven dynamic faceted search system on structured

databases. In addition, we study the problem of dynamic faceted retrieval in the context of

unstructured data usingWikipedia, the largest and most popular encyclopedia. We propose

Facetedpedia, a faceted retrieval system which is capable of dynamicallygenerating query-

dependent facets for a set of Wikipedia articles.
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The ever-expanding volume and increasing complexity of information on the web

has maderecommender systemsessential tools for users in a variety of information seeking

or e-commerce activities by exposing them to the most interesting items, and by offering

novelty, diversity, and relevance. Current research suggests that there exists an increasing

growth in online social activities that leaves behind trails of information created by users.

Interestingly, recommendation tasks stand to benefit immensely by tapping into these latent

information sources, and by following those trails. A significant part of this dissertation has

investigated on how to improve the online recommendation tasks with novel functionalities

by considering additional contexts that can be leveraged bytapping into social data.

To this end, this dissertation investigates problems such as, how to compute recom-

mendation for a group of users, or how to recommend compositeitems to a user. Underly-

ing models leverage on social data (co-purchase or browsinghistories, social book-marking

of photos) to derive additional contexts to accomplish those recommendation tasks. In par-

ticular, it focuses on techniques that enable a recommendation system to interact with the

user in suggesting composite items - such as, bundled products in online shopping, or

itinerary planning for vacation travel. We investigate thetechnical and algorithmic chal-

lenges involved in enabling efficient recommendation computation, both from the user (the

interaction should be easy, and should converge quickly), as well as the system (efficient

computation) points of view.

This dissertation also discusses extensive performance and user study results, which

were conducted using the crowd-sourcing platform Amazon Mechanical Turk. We con-

clude by briefly describing other promising problems with future opportunities in this field.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This dissertation has focussed in designing novel online data exploration techniques

from underlying large data repositories (structured data and web), that extend existing

ranked retrieval based query-answering paradigm. In particular, the results in this dis-

sertation widen the scope of existingfaceted search, andrecommendation systems- two

upcoming fields in data exploration which are still in their infancy.

Broadly speaking, data exploration aids a naive user to explore a large information

space in an effective manner. A large number of emerging applications stand to benefit from

such exploratory querying techniques; examples include almost any activity a user may

perform online - potential customers shopping for regular commodities (e.g., car, electron-

ics, home, clothes etc.), users looking for pertinent restaurants or movies of their interests,

readers reading news, articles, reviews etc., or professionals in enterprize organizations

searching for some records of their interest from vast data repositories. The mainstay of

this dissertation is to analyze and investigate different aspects of online data exploration,

and propose techniques to accomplish them efficiently.

Exploratory techniques are extremely useful in the cases, where the user queries are

not too selective(e.g.,cheap cars, action movies, iPhone within$200, database research

in graduate schoolsetc.), and are not intended towards a single fact (e.g.,population in

Texas). A relevance-based ranked retrieval method may fail to effectively distinguish a

smaller subset of results from there. Therefore, the query-answering task needs to be further

enhanced to capture additional context and intent that the user may have in mind during

1
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querying. In addition, the increase in online social activity has given rise to additional

opportunity and challenges in query-answering tasks.Recommendation, as a research topic

has emerged to facilitate user in decision making in such cases. Furthermore, sometimes

a user is unfamiliar about the domain, or unsure about her goal. Exploratory browsing

techniques (such asFaceted Search) are of great assistance that facilitates and guides users

to focus on the relevant aspects of her search results.

Consider a potential car buyer searching for a suitable used car listed in an online

auto dealers database, where each car is described via numerous attributes such as Make,

Model, Mileage, and so on. While the buyer is eventually interested in buying only one

car, at the beginning of her search she may only have a few preferences in mind; thus an

exploratory search is necessary to narrow down the choices.

Faceted searchis a novel exploratory search technique to aid users in exploring items

of interest within such vast data repository. It allows users to refine or navigate a collection

of information by using a number of discrete attributes - theso-calledfacets. A facet

represents a specific perspective on content that is typically clearly bounded and mutually

exclusive (e.g., color , manufacturers or model of a car). The values within a facet can

be a flat list (e.g. all possible manufacturers of cars ) that allows only one choice or a

hierarchical list that allows user to drill-down through multiple levels (e.g., car types→

mid size car→ compact executive car→ D-segment). The combination of all facets and

values is often referred to as afaceted interface. In the previous example, a user may have

the option of drilling down through different facets, first by color (color→ Black), then by

car types (car types→ mid size car→ compact executive car→ D-segment), and then by

make (Make→ Japanese Car→ Honda), and so on.

The effectiveness of faceted search lies in the ability of users to create their own

custom navigation by combining various perspectives rather than forcing them through a

specific path. Lately, faceted search has become the de-facto standard for e-commerce
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and product- related web-sites, from big box stores to product review sites. Any content-

heavy sites such as media publishers ( e.g. Financial Times:ft.com), libraries (e.g. NCSU

Libraries: lib.ncsu.edu/), and even non-profit organizations (e.g. Urban Land Institute:

uli.org) are tapping into faceted search to make their vast repository content easily ex-

plorable. We analyze the opportunities of adopting principles of the faceted search paradigm

for tuple search. However, unlike past works on images and unstructured data such as text,

here, the challenge is to dynamically determine the facets that are best suited for enabling

a faceted search interface. Our proposed faceted search framework is dynamic and com-

pletely user interaction dependent as compared to existingfaceted search systems where

the facets and hierarchies are predefined and static [1, 2, 3]. Our overall goal is to judi-

ciously select the facet(s) dynamically based on user query, that the user employs further to

drill down in the results, such that user’snavigational costduring this exploration process

is minimized. We investigate dynamic minimum effort drivenfaceted search in conjunction

with structured and unstructured data.

In the cars database example above, a very simple faceted search interface is one

where the user is prompted an attribute1 (e.g., Make), to which she responds with a desired

value (e.g., “Honda”), after which the next appropriate attribute (e.g., Model) is suggested

to which she responds with a desired value (e.g., “Accord”),and so on. Our overall goal

is to judiciously select the next facet(s) dynamically at every step, so that the user reaches

the desired tuples withminimum effort. While the effort expended by a user during a

search/navigation session may be fairly complex to measure, we focus on a rather simple

but intuitive metric: the expected number of queries that the user has to answer in order to

reach the tuples of interest.

In particular, we proposeDynaCet, the minimum effort driven faceted search sys-

tem that focuses upon two broad problem areas.1. Faceted Search as an Alternative to

1Henceforth in this dissertationfacetsandattributeswill be used interchangeably.
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Ranked-Retrievaland2. Faceted Search that Leverages Ranking Functions. We elaborate

on these problems and propose several of their variants in this dissertation. Furthermore,

we investigate fast implementation techniques of our proposed facet selection algorithms

to achieve significant CPU speed up. This work has been published in [4, 5, 6].

Next, we investigate faceted search in conjunction with unstructured data. To that

end, we proposeFacetedPedia, a faceted retrieval system for information discovery and

exploration inWikipedia. Given the set ofWikipediaarticles resulting from a keyword

query,Facetedpediagenerates a faceted interface for navigating the result articles. Com-

pared with other faceted retrieval systems [1, 2, 3],Facetedpediais fully automatic and

dynamic in both facet generation and hierarchy construction, and the facets are based on

the rich semantic information fromWikipedia. The essence of our approach is to build

upon the collaborative vocabulary inWikipedia, specifically the intensive internal structure

(hyperlinks) and folksonomy (category system). Given the sheer size and complexity of

this corpus, the space of possible choices of faceted interfaces is prohibitively large. We

propose metrics for ranking individual facet hierarchies by user’s navigational cost, and

metrics for ranking interfaces (each withk facets) by both their average pairwise similari-

ties and average navigational costs. We thus develop faceted interface discovery algorithms

that optimize the ranking metrics. This work has been accepted in [7, 8].

This dissertation also discussesrecommendation, another emerging information ex-

ploration technique that aims to support users in their decision-making while interacting

with large information spaces. Broadly speaking, a recommendation system automatically

predicts how much a user will like an item that is unknown to her. Recommended items

of interest are based on preferences that a user has expressed, either explicitly or implic-

itly. The ever-expanding volume and increasing complexityof information on the web has

therefore made such systems essential tools for users in a variety of information seeking

or e-commerce activities. Recommender systems help overcome the information overload
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problem by exposing users to the most interesting items, andby offering novelty, surprise,

and relevance. This dissertation also investigates novel problems in the area of recom-

mender systems.

Single user recommendation has received significant attention in the past due to its

extensive use in Amazon and Netflix. A significant number of single user recommender

systems are already in use, includinglaunch.comfor online music,entreefor restaurant

recommendation,alkindi, Moviefinder, Movielensfor movie recommendation etc. In ad-

dition, social networking sites like Facebook, content sites such as Yahoo! Travel, which

have traditionally focused on managing content only, are beginning to encourage people

to form social ties and share content. While there has been a recent trend in developing

techniques for finding relevant content on social content sites [9], very little has been done

to help socially acquainted individualsfind content of interest to all of them together. The

need forgroup recommendationarises in many scenarios: a movie for friends to watch

together, a travel destination for a family to spend a holiday break, and a good restaurant

for colleagues to have a working lunch. Intuitively, items that are ideal for recommendation

to a group may be quite different from those for individual members.

In this dissertation, we analyze the desiderata of group recommendation and propose a for-

mal semantics that accounts for both item relevance to a group and disagreements among

group members. We design and implement algorithms for efficiently computing group

recommendations. We further explore the impact of space constraints on maintaining per-

user and pair-wise item lists and develop two complementarysolutions that leverage shared

user behavior to maintain the efficiency of our recommendation algorithms within a space

budget. These results have been published in [10].

We further investigate how to extend the idea of single-itemrecommendation to

composite item recommendation, and enable user interaction in recommendation com-

putation. The overall objective is to recommend composite items by interacting with the
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user, and considering her preference. Several online applications such as shopping, trav-

els, and so on benefit from such composite item recommendations. For example, a user

shopping for an iPhone with a price budget can be presented with both the iPhone (central

item) and a package of other items that match well with the iPhone (e.g., Belkin case, Bose

sounddock, Kroo USB cable) as a composite item, whose total price is within the user’s

budget. Alternatively, a traveler, starting from a particular location in a city (central item)

with certain budgets (time, money) can be presented with an itinerary (that consists of dif-

ferent POIs) that can be visited within her specified budget.The heart of this problem is the

existence of different relationships between the individual items in a composite item. As an

example, in the case of former example, the rest of the items in a package forms the shape

of astarwith the central item, whereas, in the latter example, the POIs in an itinerary form

a chain. Different relationship between individual items gives rise to different modeling,

and subsequently completely different solution.

In the case ofstar model, we define the problem as effective construction and explo-

ration of large sets of packages associated with a central item, and design and implement

efficient algorithms for solving the problem in two stages: summarization, a technique

which picksk representative packages for each central item; and visual effect optimiza-

tion, which helps the user diverse composite items quickly by minimizing overlap between

packages. The challenge is to design efficient algorithms, since many of these problems

are NP-complete in nature. We propose formal proof and principled solutions for these

problems. This work has appeared in [11].

In the case ofchain model, we formalize itinerary recommendation as an iterative

process, where, at each step: (1) the user provides feedbackon POIs selected by the sys-

tem, (2) the system recommends the best itineraries based onall feedback so far, and (3)

the system further selects a new set of POIs, with optimal utility, to solicit feedback for, at

the next step. This iterative process stops when the user is satisfied with the recommended
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itinerary. We show that computing an itinerary is NP-complete even for simple itinerary

scoring functions and that POI selection is NP-complete. Wedevelop heuristics and opti-

mizations for a specific case where the score of an itinerary is proportional to the number

of desired POIs. This work has been accepted recently in [1].

In addition to formal modeling and theoretical proofs, my PhD dissertation exten-

sively validates our proposed solutions empirically, by running rigorous experiments, and

comprehensive user studies.

Our results in this dissertation can be divided into two broad categories: In the first

category, we consider the problem of faceted search in the contexts of structured and un-

structured data. In particular, we proposeDynaCetthat enables effective tuple search using

faceted navigation on structured databases. At each step,DynaCetdynamically suggests

facets based on user’s response at previous step such that the expected number of such inter-

actions with user is minimized. In addition, we consider thedesiderata of faceted retrieval

using unstructured data. Precisely, we proposeFacetedPedia, a faceted retrieval system for

information discovery and exploration inWikipedia.

In the next category, we discuss the recommendation relatedproblems. Broadly

speaking, our contributions in this space are in solvinggroup recommendationproblems,

and in investigatingcomposite item construction. Our main results ingroup recommenda-

tion problem are - modeling the semantics of group recommendation and presenting algo-

rithms to compute them efficiently. We further explore the impact of space constraints on

maintaining per-user and pair-wise item lists. We proposebehavior factoring, that factors

out user agreements from disagreement lists, andpartial materialization, that selectively

materializes a subset of disagreement lists to accomplish this task. These results have ap-

peared in [10].
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In particular, we investigate two different models in thecomposite itemspace - the

star model, and thechain model. For thestar model, we aim to solve the problem of

identifying all valid andmaximalsatellite packages, given a central item. We show that

the number of valid and maximal packages associated with a central item is typically very

large and presenting all of them to the user is impractical. Hence we investigate techniques

to choose a set ofk-representative maximal packages usingsummarizationand returning

thosek-packages to the user usingvisual effectoptimization.

For thechain model, we introduce and formalize the novel approach of interactive itinerary

planning based on user feedback and itinerary expected scores. We formalize theoptimal

itinerary construction problem, andoptimal POI batch selection problem, and prove the

hardness. We design efficient algorithms for solving both these problems.

In the rest of this introductory chapter, we provide a brief synopsis of oursignificant

contributions.

1.2 Category I: Faceted Search

1.2.1 DynaCet Results

1. We initiate research into the problem of automated facet discovery to enable minimum-

effort driven faceted search in structured databases. We adopt a simple approxima-

tion algorithm, and show how this approach can be extended toincorporate the notion

of facet uncertainty. We discuss how this approach is different from other attribute

selection techniques.

2. We also extend our methods to work in conjunction with available ranking functions

for tuples. We show how our methods are different from other attribute selection

techniques in the presence of ranking functions such as [12].
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3. We develop novel scalable implementation techniques of our algorithms. In partic-

ular, we leverage pipelining execution ranking models to avoid complete database

scans at any time.

4. We describe the results of a thorough experimental evaluation of our proposed tech-

niques.

5. We propose techniques to improve the performance of the facet selection algorithms

by reducing CPU intensive computations. The main idea is a novel adaptation of the

early stopping techniques used in the TA-family of algorithms for top-k computations

[13, 14, 15]. Such techniques can attain early termination that avoid scanning and

scoring the complete database in determining the next most promising facet.

1.2.2 FacetedPedia Results

1. Concept: FacetedWikipedia: We propose an automatic and dynamic faceted retrieval

system forWikipedia. To the best of our knowledge, this is the first system of its

kind. The key philosophy of our approach is to exploit collaborative vocabulary as

the backbone of faceted interfaces.

2. Metrics: Facet Ranking: Based on a user navigation model, wepropose metrics for

measuring the “goodness” of facets, both individually and collectively.

3. Algorithms: Faceted Interface Discovery: We develop effective and efficient algo-

rithms for discovering faceted interfaces in large search space.

4. System Evaluation:Facetedpedia: We conducted user study to evaluate the effective-

ness of the system and to compare with alternative approaches. We also measured its

quality and efficiency quantitatively.
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1.3 Category II: Recommendation

1.3.1 Subcategory I: Composite Item Construction

We discuss star composite item recommendation, and chain composite recommen-

dation problems to that end.

1.3.1.1 Star Composite Items

1. We propose the notion of composite item and compatible satellite package in the

context of online data exploration. To help users effectively explore composite items,

we formalize the problems of finding valid and maximal packages given a budget,

finding representative packages through summarization, and reordering packages for

visual effect optimization.

2. We design and implement a random walk algorithm to efficiently construct all valid

and maximal packages.

3. We introduce a novel principle for summarizing a large setof maximal packages

associated with one central item, and develop a max-k set coverage algorithm for

efficient summarization. We further improve the efficiency of summarization by in-

tegrating it with the random walk package construction algorithm.

4. We formulate the problem of optimizing the visual effect of k packages associated

with the same central item as that of finding an ordering of thepackages that min-

imizes overlap between consecutive packages. We prove thatthis problem is NP-

Complete, and design and implement a heuristic algorithm forsolving it. In addition,

we also prove that this algorithm is optimal when there is only one satellite type.
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1.3.1.2 Chain Composite Items

1. We introduce and formalize the novel approach of interactive itinerary planning

based on user feedback and itinerary expected scores.

2. We formally define theoptimal itinerary construction problem, which is one of the

two core problems in interactive itinerary planning. We prove NP-completeness

of this problem and design an efficient real-time heuristic algorithm for computing

itineraries based on user feedback and time budget.

3. We formally define theoptimal POI batch selection problem, which is the other core

problem, and propose a probabilistic model based on the notion of expected itinerary

score given user feedback on a POI batch. We prove NP-completeness of this prob-

lem and design efficient heuristics for selecting a good batch of POIs.

4. Finally, we run extensive experiments validating our approach on real datasets. Qual-

ity experiments confirm the effectiveness of our algorithmsfor interactive itinerary

planning and performance experiments demonstrate their efficiency.

1.3.2 Subcategory II: Group Recommendation

1. We formalize the problem of group recommendation and define its semantics as a

consensus function that aims at maximizing item relevance and minimizing disagree-

ments between group members.

2. We prove that the two important disagreement models beingproposed satisfy the

conditions required by the family of top-k threshold algorithms.

3. We design efficient algorithms based on one representative threshold algorithm,TA,

to perform top-k group recommendation.

4. We formalize two optimizations: the problem of which disagreement lists to materi-

alize given a space budget and the refinement of score bounds.
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5. We conduct a comprehensive experimental evaluation, including a user study on

Amazon Mechanical Turk to demonstrate the benefits of incorporating disagreements

into group recommendation, and extensive experiments to demonstrate the efficiency

of our algorithms.

To summarize, Chapter 2 contains results onDynaCet, Chapter 3 onFacetedPedia, Chap-

ter 4 onstar composite item, Chapter 5 onchain composite item, and Chapter 6 ongroup

recommendationproblem. We conclude by discussing ongoing and future research direc-

tions briefly in Chapter 7.



CHAPTER 2

DYNACET: MINIMUM-EFFORT DRIVEN DYNAMIC FACETED SEARCH IN

STRUCTURED DATABASES

2.1 Introduction

One of the primary problems that many organizations face is that of facilitating ef-

fective search for data records within vast data warehouses. For example, consider the cus-

tomer database of a large financial institution such as a bank. A data analyst or a customer

service representative for the bank often has to search for records of a specific customer

or a specific account in such databases. Of course, if the relevant tuple is uniquely iden-

tifiable by an identifier known to the user, this problem is trivial. But in most cases the

user only has partial information about the tuple (e.g., perhaps the values of a few of its

attributes) and thus it is necessary to enable an effective search procedure. As another ex-

ample, consider a potential car buyer searching for a suitable used car listed in an online

auto dealer’s database, where each car is described via numerous attributes such as Make,

Model, Mileage, and so on. While the buyer is eventually interested in buying only one

car, at the beginning of her search she may only have a few preferences in mind (e.g., a

late model family sedan with low mileage); thus a search is necessary to narrow down the

choices.

One approach for enabling tuple search in databases is IR style ranked retrieval

from databases. For the cars example above, a query such as “CarType=sedan, Age<5,

Mileage<10k” can be specified via a form-based interface, and rather than simply execut-

ing the query using SQL - which will result in a flood of resultssince there are presumably

many cars in the database that satisfy such broad query conditions - ranking-based systems

13
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will attempt to rank and retrieve the top-k most “relevant” tuples that satisfy these condi-

tions (wherek is usually a small number, such as 10-20). Much of the recent research has

focused on the design of suitable ranking functions, as wellas on the design of efficient

retrieval algorithms [16, 17, 18].

However, recently, other search paradigms have gained popularity in certain special-

ized IR domains, including for searching over image and textdata. In particular, it has

been argued thatfaceted searchinterfaces can be extremely useful in user navigation and

search [19, 2]. E.g., a user searching for a photograph of theGreat Wall at a photo hosting

website may have the option of drilling down via different facets of the dataset, e.g., first

by geographical regions (such as Asia→ China→ Beijing), then via age (such as period

→ ancient), then via phototype (man made→ historical monuments). While it remains to

be seen if faceted search is a viable option for searching at the Web scale, it does offer a

promising alternative in specialized domains such as theseexamples.

Main Goal of DynaCet - Investigate Faceted Search in Databases: The main goal of Dy-

naCet is to explore the opportunities of adopting principlesof the faceted search paradigm

for tuple search in structured databases. However, unlike past works on images and text

data, where the primary task is to design hierarchical meta-data and facets to enable faceted

search, structured databases come with the tremendous advantage that they are already as-

sociated with rich meta-data in the form of tables, attributes and dimensions, known domain

ranges, and so on. Instead, the challenge is to determine, from the abundance of available

meta-data, which attributes of the tuples are best suited for enabling a faceted search in-

terface. In the cars database example above, a very simple faceted search interface is one

where the user is prompted an attribute1 (e.g., Make), to which she responds with a desired

value (e.g., “Honda”), after which the next appropriate attribute (e.g., Model) is suggested

to which she responds with a desired value (e.g., “Accord”),and so on. In this thesis we fo-

1Henceforth in this thesisfacetsandattributeswill be used interchangeably.
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cus on two broad problem areas. We briefly elaborate on these problems and our solutions

below.

1. FSNoRank - Faceted Search as an Alternative to Ranked-Retrieval: We first consider

the problem where we don’t assume any tuple relevance and ranking function as being

available. Thus when a user poses an initial selection query, without any further information

from the user we can only assume that all of the selected tuples are equally preferred by the

user. Our task is then to develop a dialog with the user to extract more information from her

on other desired attribute values - essentially initiate a facet-by-facet drill down procedure

to enable her to zoom in on the tuple(s) of interest. Our overall goal is to judiciously select

the next facets dynamically at every step, so that the user reaches the desired tuples with

minimum effort. While the effort expended by a user during a search/navigation session

may be fairly complex to measure, we focus on a rather simple but intuitive metric: the

expected number of queries that the user has to answer in orderto reach the tuples of

interest.

Variants of this problem have been considered in [20] in the context of interactive

question-answer applications. It was shown that the problem is intractable, and an approx-

imation algorithm suggested with provably good performance. While we adopt the same

cost metric, we extend the idea in several important ways. Wepropose a novel cost model

for fast tuple search which assumes that attributes are associated withuncertainties, where

the uncertainty of an attribute refers to the probability with which a user can provide a value

that belongs to the domain of the attribute. We develop facetselection techniques that take

into account such uncertainties.

Also, we formally show that the approximation algorithm forbuilding minimal cost

decision trees given in [20] generates trees different fromthose generated by other classical

decision tree construction algorithms based on information gain, as well as other classical

dimensionality reduction techniques such as principal component analysis (PCA).
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2. FSRank - Faceted Search that Leverages Ranking Functions: We next ask whether

faceted search procedures can workin conjunction withranking functions. This is a novel

problem area, and to the best of our knowledge, has not been investigated before. Recall

that a ranked-retrieval system typically assigns relevance scores to all selected tuples and

returns only the top-k tuples. From a faceted search perspective, we may view the rank-

ing function as imposing askewover the user preferences for the selected tuples, and thus

would like to select the facet that directs the user towards the most preferred tuples as effi-

ciently as possible. One interesting complication is that these tuple preferences (or scores)

may change as the faceted search progresses; this is becauseas new attribute information

is provided by the user, the ranking function may re-evaluate the scores of the remaining

tuples still in contention. Thus a faceted search system in conjunction with a ranking func-

tion offers the benefits of focused retrieval as well as drill-down flexibility. We provide a

formal definition of this problem, and offer a solution for facet selection that is based on

minimum-effort driven principles.

The main contributions of our thesis may be summarized as follows:

1. We presentDynaCet[5]- a middle-ware system that sits between the user and the

database and dynamically suggests facets for drilling downinto the database. The

facet suggestion model is driven by our intent to provide aminimum-effortdatabase

exploration solution for enterpriser users. We focus on a simple but intuitive metric

for measuring effort:the expected number of queries that the user has to answer in

order to reach the tuples of interest.

2. We adopt a simple approximation algorithm, and show how this approach can be

extended to incorporate the notion of facet uncertainty. Wediscuss how this approach

is different from other attribute selection techniques.
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3. We also extend our methods to work in conjunction with available ranking functions

for tuples. We show how our methods are different from other attribute selection

techniques in the presence of ranking functions such as [12].

4. We develop novel scalable implementation techniques of our algorithms using a

modified Rainforest framework [21]. Furthermore, we leverage pipelining execu-

tion ranking models to avoid complete database scans (referred to as theFull Scan

Algorithm in this thesis) at any time.

5. We describe the results of a thorough experimental evaluation of our proposed tech-

niques.

2.2 FSNoRank - Faceted Search as an Alternative to Ranked Retrieval

Let D be a relational table withn tuples{t1, t2, . . . , tn} andm categorical attributes

A = {A1, A2, . . . , Am}, each with domainDomi (for the rest of this thesis we only con-

sider categorical data, and assume that numeric data has been suitably discretized). Assume

that no two tuples are identical and that a user wishes to retrieve a tuple from this database.

The faceted search system will prompt the user with a series of questions, where each ques-

tion takes the form of an attribute name, and to which the userresponds with a value from

its domain. This drill-down process terminates when a unique tuple has been isolated. The

task is to design a faceted search system which asks the minimum number of questions on

the average, assuming that each tuple is equally likely to bepreferred by the user (thus we

do not assume the presence of a ranking function).

Essentially, the task is to build adecision treewhich distinguishes each tuple by

testing attribute values (asking questions). Each node of the tree represents an attribute, and

each edge leading out of the node is labeled with a value from the attribute’s domain. As

an example consider Figure 2.1 which refers to a toymoviedatabase with three attributes
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and four tuples. A decision tree for identifying each of the tuples in the tuple setD =

{t1, t2, t3, t4} is shown in Figure 2.2. The leaves of the tree represent the tuple setD and

each tuple appears exactly once. A user reaches her tuple of interest by picking a path after

each non-leaf node in the tree i.e. by assigning a value to each attribute query on the path

leading to the tuple.

Figure 2.1. A small movies database.

Figure 2.2. An optimal decision tree.

Given such a treeT , cost(T ) can be defined as the average tree height,
∑

i ht(ti)/n

whereht(ti) is the height of leafti. Equivalently, cost (i.e., effort) represents the expected

number of queries that needs to be answered before the user arrives at a preferred tuple
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(assuming all tuples are equally likely to be preferred). Itis easy to verify that the tree in

Figure 2.2 is optimal (with minimum cost =(2 + 2 + 1 + 1)/4 = 1.5).

The problem of determining the minimum cost tree has been studied in the past in

the context of question-answering dialog systems, and shown to be NP-complete (see [20]

and references therein). A greedy approximation algorithmhas been developed [20] which

achieves an approximation factor ofO(log d log n) in the cost, whered is the maximum

domain size of any attribute. Although the approximation factor appears large, it is the only

theoretical approximation bound known for this problem. Moreover, as our experiments

show, this algorithm performs quite well in practice. We describe this algorithm next as it

forms the foundation for all our facet selection procedures.

The intuition is that any decision tree should distinguish every pair of distinct tuples.

The approach is to make the attribute that distinguishes themaximum number of pairs of

tuples as the root of the tree, where an attributeAl is said to distinguish a pair of tuples

ti, tj if ti[l] 6= tj[l]. Picking the attributeAl as the root node partitions the databaseD into

disjoint tuple setsDx1 , Dx2 , . . . , Dx|Doml|
, where eachDxq

is the set of tuples that share the

same attribute valuexq of Al. Using this intuition, we seek to select as root attributeAl that

minimizes the number of indistinguishable pairs of tuples.Hence, formally the function,

Indg() seeks to minimize,

Indg(Al, D) =
∑

1≤q≤|Doml|
|Dxq
|(|Dxq

| − 1)/2 (2.1)

This process is recursively repeated for all setsDxq
, until each set reduces to singleton

tuples. Applying this algorithm to the database in Figure 2.1 gives the same resultant

decision tree as shown in Figure 2.2. We see thatIndg(Actor) = 1, while Indg(Genre) =

Indg(Color) = 3. Thus Actor should be the root.
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2.2.1 Comparing Against Other Attribute Selection Procedures

Comparing Against Information Gain: Decision tree construction is a very well under-

stood process in machine learning and data mining, and several popular algorithms such

as ID3 and C4.5 have been developed [22]. These algorithms aredesigned for theclassi-

fication problem, and seek to maximize classification accuracy and avoid over-fitting. In

contrast, our goal is not to solve a classification problem - rather our aim is to build full

decision trees (where each leaf is a tuple) that minimizes average root-to-leaf path lengths.

A popular heuristic used by these algorithms (e.g., ID3) forselecting the next feature, or

“splitting” attribute, is theinformation gainmeasure. Since there is no class variable asso-

ciated with the database, we may imagine that each tuple consists of its own unique class,

and thus the information gain of an attributeAl is equivalent to

InfoGain(Al, D) = log n− 1

n





∑

1≤q≤|Doml|
|Dxq
| log |Dxq

|



 (2.2)

The selected facet may be the one with the largest information gain. Unlike theIndg()

based approach for which there are known approximation bounds, it is open whether simi-

lar approximation bounds exist for information gain based approaches. In fact, as we show

now, the information gain heuristic produces different trees than the approach of minimiz-

ing Indg().

Lemma 2.2.1.Given a databaseD, the decision tree constructed by selecting facets that

minimizeIndg() may be different from the decision tree constructed by selecting facets that

maximizeInfoGain().

Proof: Consider two attributesA andB of a database tableD. LetA be a Boolean attribute

with domain{a1, a2}. Let n(x) represent the number of tuples with attribute valuex. Let
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n(a1) = n(a2) = n/2. Let the domain ofB be{b1, b2, . . . , bn/(2+
√

2)+1} wheren(b1) =

n/
√

2 andn(b2) = · · · = n(bn/(2+
√

2)+1) = 1. We then have

Indg(A,D) =
n

2

( n
2
− 1

2

)

+
n

2

( n
2
− 1

2

)

=
n(n− 2)

4

Indg(B,D) =
n√
2

( n√
2
− 1

2

)

=
n(n−

√
2)

4

ClearlyIndg(B,D) > IndgA,D), and thusA will be preferred overB during facet selec-

tion. We next consider the information gain heuristic. We then have

InfoGain(A,D) = log n− 1

n

(n

2
log

(n

2

)

+
n

2
log

(n

2

))

= 1

InfoGain(B,D) = log n− 1

n
(

n√
2

(

n√
2

log

(

n√
2

))

)

= log n−
(

log n− 1
2

)

√
2

Clearly InfoGain(B,D) > InfoGain(A,D) and thusB will be preferred overA dur-

ing facet selection. These arguments demonstrate that the tree produced by maximizing

information gain may be different from the tree produced by minimizing Indg().

Comparing Against Principal Component Analysis (PCA): We explore the popular

technique ofprincipal component analysis(PCA) [23] to see if it is applicable in facet

selection. PCA has traditionally been developed for dimensionality reduction in numeric

datasets, thus extending PCA to categorical databases such as ours requires some care. We

illustrate these ideas by again considering the small movies database in Figure 2.1. Suppose

we wish to reduce the dimension of this database from three totwo and decide to retain the

dimensions Genre and Color. In that case, the attribute Actorhas to be homogenized (i.e.,

all values have to be transformed to a single common value) such that the number of values

that are changed is minimized. It is easy to see that if we makeall Actors as “Al Pacino”,

this will require minimum number of changes (two changes, i.e., the Actor field in tuples

t2 andt3). Hence the cost of the reduction is two in this case. On the other hand, if we
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decide to retain the dimensions Actor and Genre, only one value in the database needs to

be changed (the Color field oft4 has to be changed to “Color”). Thus, reducing the dimen-

sions to Actor and Genre is cheaper than (and thus preferableto) reducing the dimensions

to Genre and Color. More specifically, the bestk attributes we retain are the ones that have

the smallest modes. Mode of an attribute is defined as:

Mode(Al, D) = max{|Dxq
|, |1 ≤ q ≤ |Doml|}

Lemma 2.2.2.Given a databaseD, the decision tree constructed by selecting facets that

minimizeIndg() may be different from the decision tree constructed by selecting facets that

minimizeMode().

The proof for above lemma can be derived using similar intuition as for prior lemma.

The details are omitted in the interest of space. Among all three heuristics, only theIndg()

based approach has a known approximation factor associatedwith it and performs better in

experimental evaluation.

2.2.2 Modeling Uncertainty in User Knowledge

The facet selection algorithm presented above assumes thatthe user knows the an-

swer to any attribute that is selected as the next facet. In a practical setting, this is not very

realistic. For example, a customer service representativeof a bank searching for a specific

customer may not know exactly the street address of the customer’s residence; likewise a

user searching for a movie may not be sure of the director of the desired movie, and so

on. One of the contributions of this thesis is to recognize that there are inherent uncertain-

ties associated with the user’s knowledge of an entity’s attribute values, and accordingly to

build decision trees that take such uncertainties into account.

In the simplest case, each attributeAi of the database is associated with a probability

pi that signifies the likelihood that a random user knows the answer to the corresponding
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query. For example, in a cars database, the attribute Car Typemay be associated with a

probability of0.8 (i.e., 80% of users know whether they want a sedan, hatchback, SUV, etc.)

For simplicity we assume no correlations between attributeuncertainties (i.e., a user who

does not know the car type is still assumed to specify heated seats with a finite probability)

nor other more general uncertainty models. Estimating these probabilities require access to

external knowledge sources beyond the database such as domain experts, user surveys, and

analyzing past query logs.

In this thesis, we assume that the uncertainty models have already been estimated.

In designing our decision trees to cope with uncertainty, weassume that users can respond

to a question by either (a) providing the correct value of thequeried attributeAi, or (b)

responding with a “don’t know”. In either case, the faceted search system has to respond by

questioning the user with a fresh attribute. Consider Figure2.3, which shows the decision

tree of the same database of Figure 2.1. Assume each of the attributes has associated

uncertainties. Consequently, each node in the decision treealso has an associated “don’t

know” link. As can be seen, the leaf nodes in this decision tree are either a single tuple, a

set of tuples, or, at worst, the entire database. Moreover, note that the tuples of the database

do not occupy unique leaves in the decision tree. For example, there are7 different path

instances of tuplet1. This implies that when attempting to reach a tuple, different users

may follow different paths through the tree.

At this context, we organized a small survey among20 people selected from the

students and faculty of our university.In that survey, eachperson assigned a value (between

0 to 1) for each attribute. This value denotes the likelihood(probability) with which she is

able to answer the question corresponding to that attribute. The overall probability of each

attribute is calculated by averaging all20 values.
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Algorithm 1 : Single Facet Based Search(D,A′)
1: Input: D, a setA′ ⊂ A of attributes not yet used

2: Global parameters: an uncertaintypi for each attributeAi ∈ A

3: Output: A decision treeT for D

4: begin

5: if |D| = 1 then

6: Return a tree with any attributeAl ∈ A′ as a singleton node

7: if |A′| = 1 then

8: Return a tree with the attribute inA′ as a singleton node

9: Let Al be the attribute that distinguishes the maximumexpectednumber of pairs

10: Al = argminAs∈A′(1− ps)× |D|(|D| − 1)/2 + ps × Indg(As, D)

11: Create the root node withAl as its attribute label

12: for eachxq ∈ Doml do

13: Let Dxq
= {t ∈ D|t[l] = xq}

14: Txq
= Single-Facet-Based-Search(Dxq

, A′ − {Al})

15: Add Txq
to T by adding a link fromAl to Txq

with labelxq

16: Create the “don’t know” link:

17: T ′ = Single-Facet-Based-Search(D,A′ − {Al})

18: Add T ′ to T by adding a link fromAl to T ′ with label “don’t know”

19: ReturnT with Al as root

20: end

Thus our challenge is to build such decision trees such that the expected path length

through the tree is minimized. Our Single Facet based searchalgorithm is shown in Al-

gorithm 1. However, we note that each nodeAl now has|Doml| + 1 links, with one of

the links labeled as “don’t know”. This link is taken with probability 1 − pl, whereas the
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Figure 2.3. The decision tree of Figure 2.1 with uncertaintymodels.

rest of the links are taken with probabilitypl. Thus, in the former case, the attributeAl

cannot distinguish any further pairs of tuples (the query was essentially wasted), whereas

in the latter case, onlyIndg(Al, D) pairs were left indistinguishable. Thus, we can see that

if we selectAl as the root node, then theexpectednumber of tuple pairs that cannot be

distinguished is(1− pl)× |D|(|D| − 1)/2 + pl × Indg(Al, D). Consequently, an obscure

attribute that has little chance of being answered correctly by most users, but is otherwise

very effective in distinguishing attributes, will be overlooked in favor of other attributes in

the decision tree construction.

2.2.3 Extending tok-Facets Selection

Next, we extend our model further by giving the user more flexibility at every step.

As a practical consideration, a decision tree as shown in Figure 2.3 can sometimes be

tedious to a user. It may be more efficient to present, at everystep,several(sayk) attributes
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to the user at the same time, with the hope that the user might know the correct value of

one of the proffered attributes.

It may appear that for designing the root node of the decisiontree for thek-facet

case, instead of considering onlym possible attributes as we did for the single-facet case,

we will need to considermCk
sets of attributes of sizek each, and from them, select the set

that is the best at disambiguating tuple pairs. However, if we restrict the user to answering

only one question at each iteration, the problem of determining bestk-facets at any node in

this decision tree has a much simpler solution - we order the unused attributes from the one

that distinguishes most number of tuple pairs to the one thatdistinguishes the least number

of tuple pairs, and select the top-k attributes from this sequence.

In this tree, the probability that a random user will follow “don’t know” links is

much smaller than the single-facet case. For example, giventhe set of attributesA′′ at the

root, the probability that a random user will be unable to answer any of thek questions is
∏

Al∈A′′(1 − pl). Thus we expect such trees to be more efficient (i.e., shallower) than the

trees in the single-facet case.

2.2.4 Designing a Fixedk-Facets Interface

In certain applications, it is disconcerting for the user tobe continuously presented

with new sets of attributes after every response. Such userswould prefer to be presented

with a single fixed form-like interface, in which a reasonably large (k) number of attributes

are shown, and the user assigns values to as many of the preferred attributes as she can.

If the space available on the interface is restricted such that onlyk < m attributes can be

shown, the task is then to select the best set ofk attributes such that the expected number

of tuples that can be distinguished via this interface can bemaximized. We formalize this

problem as follows: Given a databaseD, a numberk, and uncertaintiespi for all attributes

Ai, selectk attributes such that the expected number of tuples that can be distinguished
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is maximized. If we assume that there are no uncertainties associated with attributes, this

problem has similarities with the classical problem of computing minimum-sizedkeysof

database relations, and with the problem of computing approximate keys of sizek (see

[24]).

However, in our case the problem is complicated by the fact that attributes are asso-

ciated with uncertainties, thus such deterministic procedures [24] appear difficult to gen-

eralize to the probabilistic case. Instead, we propose a greedy strategy for selecting the

k facets that is based on some of the underlying principles developed in our earlier algo-

rithms. The overall idea is, if we have already selected a setA′ of k′ attributes, the task

is then to select the next attributeAl such that the expected number of pairs of tuples that

cannot be distinguished byA′ ∪ {Al} is minimized.

Ignoring attribute uncertainties, the algorithm can be described as follows. LetA′ ∪

{Al} partition D into the setsD1, D2, . . . , Dd where within each set the tuples agree on

the values of attributes inA′ ∪ {Al}. Thus, we should selectAl such that the quantity
∑

i |Di|(|Di| − 1)/2 is minimized. Introducing attribute uncertainties implies thatA′ ∪

{Al} does not always partitionD into the setsD1, D2, . . . , Dd. Rather, depending on the

user interactions, the possible partitions could vary between finest possible partitioning,

Pfine(A
′ ∪ {Al}) = {D1, D2, . . . , Dd}, to the coarsest possible partitioningPcoarse(A

′ ∪

{Al}) = {D} (the latter happens if the user responds to each attribute with a “don’t know”).

Each intermediate partitioning occurs when the user responds with a “don’t know” to some

subset of the attributes.

Consider any partitioningP = {U1, U2, . . . Uu}. Let the quantityIndgPartition(P )

be defined as
∑

i |Ui|(|Ui| − 1)/2. This represents the number of tuple pairs that fail to

be distinguished. Since each partitioning is associated with a probability of occurrence,

we should thus selectAl such that the expected value ofIndgPartition(P ) is minimized.

However, this process is quite impractical since the numberof partitionings are exponential
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in |A′ ∪ {Al}|, i.e., exponential ink′ + 1. We thus chose a simpler approach, by assuming

that there are only two partitionings, the finest, as well as the coarsest. The probability

of occurrence of the coarsest partitioning isp(coarse) =
∏

As∈A′∪{Al}(1 − ps). Thus, we

selectAl that minimizes

IndgPartition(Pcoarse(A
′ ∪ {Al}))p(coarse)+

IndgPartition(Pfine(A
′ ∪ {Al}))(1− p(coarse))

2.2.5 Implementation

We have implemented our algorithms by modifying scalable decision tree frame-

works Rainforest [21]. While Rainforest [21] aims to identify aclass of tuples efficiently

for a large data set, our task here is to identify each tuple. Since there is no class variable

associated with the database, we may imagine that each tupleconsists of its own unique

class. Precisely, we can assume At every leaf node of the partially built tree, a single scan

of the database partition associated with that node can be used to score each tuple and si-

multaneously and incrementally computeIndg(Al, D) for all facetsAl, and eventually the

most promising facet is selected.

For the case where the database is static and the search queries are provided be-

forehand, our proposed approaches can simply pre-compute the decision trees. However,

when the search queries are initiated on-the-fly with a regular SQL-like query, then building

faceted search interface would require us to build the tree online (or in realtime). For such

cases, instead of building the complete tree immediately, we can stay in sync with the user

while she is exploring the partially constructed tree, and build a few “look ahead” nodes at

a time. Finally, in the highly dynamic scenario where the database is frequently updated, a

simple solution is to persist with the decision tree createdat the start of the search, except

that if a path through the tree terminates without a tuple being distinguished, the algorithm
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can then ask the remaining attributes in decreasing order ofattribute probability until either

the tuple gets distinguished or we run out of attributes. Thus, a fresh construction of the

decision tree can be deferred to reasonable intervals, rather than after each update to the

database.

2.3 FSRank - Faceted Search in Conjunction with Ranking Functions

In this section we develop faceted search procedures that can work in conjunction

with ranking functions. Given a queryQ, a ranking function typically assigns relevance

scoresS(Q, t) to all selected tuplest, and a ranked-retrieval system will score and re-

turn only the top-n′ tuples wheren′ << n. Developing ranking functions for database

search applications is an active area of research, and ranking functions range from simple

distance-based functions to probabilistic models (see [16, 25]). But in this thesis we shall

treat such ranking functions as “black boxes”; thus our methods are aimed at very general

applicability.

Our facet selection algorithm calls one such “black box” ranking function at every

node in the decision tree during its construction and uses the ranked scores of the returned

tuples as inputs to the facet selection algorithm. However,because the ranking function is

a black box, it is challenging to develop methods for facet selection that are theoretically

rigorous. In our approaches, we shall make one assumption: that the scores are normalized

so that they are (a) positive, and (b)
∑

t selected by Q S(Q, t) = 1. In other words, the ranking

function can be imagined as inducing a non-uniform “probability distribution” over the

selected tuples, such thatS(Q, t) represents the probability that tuplet is preferred by the

user. Of course, in the case that scoring functions are derived from probabilistic IR as

well as language models, this assumption is justifiable. In the case of more ad-hoc ranking

functions (such as distance-based, or vector-space modelspopular in IR), this assumption is
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perhaps a stretch. However, other than this specific assumption, we strive to be as principled

as possible in our approaches.

From a faceted search perspective the task is to select the facet that directs the user

towards the most preferred tuples (according to the rankingfunction) as efficiently as possi-

ble. One interesting complication is that these tuple preferences may change as the faceted

search progresses; this is because as new attribute information is provided by the user, the

ranking function may re-evaluate the scores of the remaining tuples still in contention. As

an example, consider the car buyer who starts her search withan initial queryQ = “Mileage

= low AND Age = recent AND Car Type = sedan”. Suppose a ranking function when ap-

plied to such cars ranks cars with good reliability ratings the highest. After this initial query,

a faceted search process starts which allows her to drill down further into the query results.

But as the faceted search progresses, the buyer could select attribute values that may cause

the ranking function to rank the remaining cars differently. For example, if the user also

desires a “powerful engine” (i.e., the query has now been extended toQ = “Mileage = low

AND Age = recent AND Car Type = sedan AND Engine Power = high”) then the ranking

function may score cars with top speeds higher over good reliability. Thus a faceted search

system in conjunction with a ranking function offers the benefits of focused retrieval as

well as drill-down flexibility.

Defining the Cost of a Decision Tree:Given the above discussion, the cost of a specific

decision treeT becomes more complicated than the corresponding definitionin Section??

where no ranking function was assumed. Consider a databaseD selected by an initial query

Q, and consider a decision treeT with each tuple ofD at its leaves. We will thus derive

a formula forcost(T,Q). Note thatQ needs to be a parameter in the cost, as the ranking

function usesQ to derive preference probabilities for each tuple. Note that in this cost

definition we are not considering attribute uncertainties.
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Let the root of the tree select the facetAl. The root partitionsD into the sets

Dx1 , . . . , Dx|Doml|
whereDxq

is the set that satisfies the queryQ ∧ (Al = xq) for each

xq ∈ Doml. Let the corresponding subtrees for each of these partitions beTx1 , . . . , Tx|Doml|
.

Clearly cost(Txq
, Q ∧ (Al = xq)) is the (recursive) cost of each subtree. The quantity

∑

t∈Dxq
S(Q, t) is the cumulative probabilities of all tuples inDxq

and represents the prob-

ability that when the user is at the root, she will prefer any of the tuples inDxq
. Thus we

have

cost(T, Q) =
∑

xq∈Doml

∑

t∈Dxq

S(Q, t)× (cost(Txq , Q ∧Al = xq) + 1) (2.3)

It is easy to see that if no ranking functions are assumed, i.e., each tuple is uni-

formly preferred by the user, the cost of a tree reduces to thedefinition in Section 2, i.e.,
∑

t∈D ht(t)/n. Our task is then the following:Given an initial queryQ that selects a set

of tuplesD, to determine a treeT such thatcost(T,Q) is minimized.Since the problem is

NP-Hard even without a ranking function, this problem too isintractable.

2.3.1 Facet Selection Algorithms

We develop a greedy heuristic that is motivated by our facet selection approaches

presented in Section 2. Assume that we are at a particular node v of the decision tree. Let

Q be the current query at that node. ThusQ is the initial query at the root, concatenated

(i.e., AND’ed) with all conditions along the path from the root to v. Let D be the set

of tuples of the database that satisfyQ. For any attributeAl we can define a function

Indg(Al, D) as follows:

Indg(Al, D) =
∑

xq∈Doml





∑

ti,tj∈Dxq ,i<j

S(Q, ti)× S(Q, tj)



 (2.4)

The rest of the algorithm for selecting a single facet, even considering attribute uncertainty,

is exactly the same as in Algorithm 1, except that Line 12 of Algorithm 1 is replaced
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selecting the attributeAl that minimizes the expected value of Equation 2.4. The extensions

to selectingk-facets, or building a fixedk-facet interface are similarly straightforward, and

details are omitted from this version of the thesis.

2.3.2 Comparing Against Other Attribute Selection Procedures

In a recent thesis [12], algorithms were described that automatically select attributes

of the results of a ranking query. Several selection criteria were examined, with the overall

objective of attempting to select attributes that are most “useful” to the user. Attributes

are consider most useful if, when the database is projected only on these attributes, the

ranking function will re-rank the tuples in almost the same order. By listing the useful

attributes, the motivation was to provide the end user the reasons why the top tuples were

ranked so high. While such attribute selection algorithms can be used for faceted search,

the following lemma shows that they do not necessarily achieve our goal of minimizing

effort during the drill-down process.

Lemma 2.3.1.Given a queryQ that selects a set of tuplesD, and a scoring functionS(),

the decision tree constructed by selecting facets that minimizeIndg() may be different

from the decision tree constructed by selecting facets according to theScore-Basedand

Rank-Basedattribute selection algorithms in [12].

Proof (sketch): We sketch the proof by describing an example. Consider a carsdatabase,

and assume a ranking function exists, such that when a user poses an initial query for

cars available in Texas, it ranks cars with air-conditioners very high. The ranking function

assigns scores of 1 to the latter cars, and 0 to the rest. Both the Score-Based and Rank-

Based algorithms in [12] will select the Boolean attribute AirCon as the most influential

attribute. However, our minimum effort driven approach would not prefer to select the

AirCon attribute. This is because all cars with air-conditioners will have high scores and

will group together to produce a rather high value forIndg(AirCon). In contrast, consider



33

another attribute such as AutoTrans, which splits the totaltuple set such that the highly

ranked cars are evenly divided into each group. It is easy to see thatIndg(AutoTrans) is

smaller thanIndg(AirCon) and hence more preferable.

Basically the attribute AirCon does not really help in furthernarrowing down the

highly ranked tuples, because of the correlation with Texascars via the ranking function.

Offering some other facet such as AutoTrans will help the user narrow down the tuples

more efficiently. Our experiments corroborate this observation in general.

2.3.3 Implementation

Although we assume that we are provided with a black box scoring functionS(Q, t),

the way such a scoring function is implemented greatly affects the performance of our at-

tribute selection algorithms. We definesingle-result interfacefor the ranking black box

which is supported by previous works [12] on top-k computations. Thesingle-result inter-

faceS(Q, t) takes as input a queryQ and a tuplet and outputs the score of the tuple. This

interface incurs unit cost.

2.3.3.1 Facet Selection using Single Result Interface:

A scalable implementation of facet selection (Equation 2.4) using the single result

interface is straightforward using ideas from the Rainforest framework [21]. We point out

that even though the definition ofIndg() appears to require a quadratic-time algorithm, it

can be computed in a single linear scanFull Scan Algorithm. The extensions to selecting

k-facets as well as designing a fixedk-facet interface are straightforward. The extensions

to include attribute uncertainties,k-facet selection, as well as designing a fixedk-facet

interface are straightforward and omitted.
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2.3.3.2 Implementation of Facet Selection using Pipelining Interface - Early Stoppage:

Furthermore, we explore interesting and novel techniques by which the performance

of the facet selection algorithms in [4, 5] can be improved even further. To be truly effective,

faceted search algorithms have to respond rapidly and without delay during an interactive

session with an end user. The Full Scan algorithm presented in [4, 5], while better than any

naive strategy, still suffered from high CPU cost and slow response time, as selecting the

best attribute at each node required extensive calculations involving the database partition.2

In this thesis, we propose techniques to improve the performance of the facet selection

algorithms by reducing CPU intensive computations. The mainidea is a novel adaptation

of the early stopping techniques used in the TA-family of algorithms for top-k computations

[13, 14, 15]. Such techniques can attain early termination that avoid scanning and scoring

the complete database in determining the next most promising facet. In addition, as an even

faster alternative, we propose an approximate facet selection technique that is guaranteed to

stop after reading a fixed number of tuples and return the mostpromising facet discovered

thus far.

Two types of faceted search problems on databases have been considered so far [4, 5]:

(i) Faceted Search as an Alternative to Ranked-Retrieval and (ii) Faceted Search that Lever-

ages Ranking Functions (referred to as FSNoRank and FSRank respectively in this theis).

Essentially the second problem assumes that a ranking/scoring function is available that de-

scribes the preferences of the user for each tuple in a partition (see [4, 5] for more details).

In this section, we focus on improving response time of the facet selection algorithms, by

leveraging early stopping techniques from top-k algorithms. This part of our work has ap-

2The I/O cost is typically not an issue, as with the latest advent of semiconductor technology, even an

inexpensive personal computer can often store an entire database partition associated with a decision tree

node in main memory. It is the computational costs that are more critical to attain real-time response during

interactions with an end user.
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peared in [6].

Exact Indg() Calculation Based On Top-k ComputationIn general, top-k algorithms

operate on index lists corresponding to a query’s elementary conditions and aggregate

scores monotonically for result candidates. The objectiveis to terminate the index scans

as early as possible based on lower and upper bounds for the scores of result candidates.

Motivated by such early stopping techniques employed in top-k algorithms, we wish to de-

termine the best facet (or the best set ofk facets) at every step of faceted navigation without

performing a complete database partition scan.

In this thesis, we assume that the ranking function in the FSRank problem is acces-

sible via apipelining interface, which is natural and supported by previous works on top-k

computation such as [13, 14, 15]. Thepipelining interfaceS(Q,D) takes as input a query

Q and a databaseD and outputs a stream of tuples ranked descending according to S(Q, t)

along with their scores. The cost incurred in using this interface is the number of tuples

retrieved (we can stop retrieving tuples at any time).

The high-level idea of early stopping is as follows: while scanning the database

partitionD1, we consume tuples in some sequence and maintain a lower and upper bound

for the value ofIndg(As, D1) for each attributeAs, and stop as soon as we discover an

attributeAl whose upper bound is no larger than the lower bound of all other attributes.

Lemma 2.3.2. Given a databaseD with n tuples andm attributes, a CPU speedup of

n/(r + (n− r)/m) over the Full Scan algorithm can be obtained, if onlyr (r ≤ n) tuples

are consumed before the next best facet can be determined.

Proof Sketch: The Rainforest implementation of Full Scan requiresn×m update operations

to computeIndg() and return the best facet to the user (along with its domain information).

Using the pipelining interface, if the best facet is determined after readingr tuples, then the

total number of update operations required to suggest the best facet to the user (along with

its domain information) is(r×m)+(n−r), where the first term refers to the update cost of
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processing the firstr tuples, and the second term refers to the update cost of processing the

remaining tuples, where only the counts for the selected attribute are updated. Therefore

the speedup isn/(r + (n− r)/m). �

As an illustrative example, for a database partition containing 200k tuples and50

attributes, if only20% of the tuples are consumed before termination, then the CPU speedup

over Full Scan is200k/(40k + 160k/50) = 4.6.

We next discuss the FSRank case in detail. Assume that the pipelined interface has

already scoredr tuples, and letDr be the set of tuples with the highest scores. Let the score

of therth tuple beSr. For each attributeAs, we maintain the following two quantities:

LowerIndg(As, D) = Indg(As, Dr) (2.5)

UpperIndg(As, D) = LowerIndg(As, D)+

(n− r)Sr × max
xq∈Doms







∑

t∈Dr,t[s]=xq

S(Q, t)







+

Sr × Sr × (n− r)(n− r − 1)/2 (2.6)

The lower bound ofIndg() reflects the minimum score that attributeAs can get,i.e.,

it assumes that the rest(n−r) tuples will not contribute anything to the score. This implies

that each tuple that is not read yet has a unique domain value under attributeAs. Therefore,

LowerIndg(As, D) = Indg(As, Dr).

On the other hand, the upper bound ofIndg() captures the maximum cumulative

score attributeAs can attain from the rest(n− r) tuples by considering that the rest(n− r)

tuples have the same scoreSr and can be paired with the largest subset of already read

r tuples with the same domain value. This implies, ifxq is the largest domain value of

attributeAs so far, then the domain value of attributeAs for the rest(n − r) tuples is also

xq. Hence theUpperIndg(As, D) formula contains the extra score accumulated by pairing

these(n − r) tuples with scoreSr with each other and adding it up with the scores of the
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pairs formed by each (n-r) tuples with scoreSr and each tuple in the largest subset ofr

tuples with domain valuexq and score≥ Sr. QuantitySr × Sr × (n − r)(n − r − 1)/2

in theUpperIndg(As, D) formula captures the score accumulated by pairing each(n− r)

tuples with each other, whereas the quantity(n − r)Sr × max
xq∈Doms







∑

t∈Dr,t[s]=xq

S(Q, t)







contains the scores obtained by pairing each(n − r) tuples with each tuple in the largest

subset ofr tuples with domain valuexq.

The pipelining interface consumes tuples and maintains these bounds, and stops

when it discovers an attributeAl whose upper bound is no larger than the lower bound

of all other attributes. We refer to this as Exact FSRank Algorithm.
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Algorithm 2 : Exact FSRank (D,A′)
1: Input: a databaseD with n tuples, a subsetA′ ⊂ A attributes not yet used

2: Output: AttributeA1 ∈ A′ that minimizes theIndg() value.

3: if |D| = 1 then

4: Return a tree with any attributeAl ∈ A′ as a singleton node

5: if |A′| = 1 then

6: Return a tree with the attribute inA′ as a singleton node

7: Read the first tuple.

8: Setr = 2;

9: while r <= n do

10: Read ther-th tuple.

11: for eachAl ∈ A′ do

12: LowerIndg(A1, D) = Indg(A1, Dr)

13: UpperIndg(A1, D) =

LowerIndg(A1, D)+

(n− r)Sr × max
xq∈Doms







∑

t∈Dr,t[s]=xq

S(Q, t)







+

Sr × Sr × (n− r)(n− r − 1)/2

14: ChosenAttribute = Attribute withargminA1∈A′UpperIndg(A1, D)

15: for eachAi ∈ A′ andAi 6= ChosenAttribute do

16: if argminA1∈A′UpperIndg(A1, D) ≤ LowerIndg(Ai, D) then

17: Continue;

18: else

19: r = r + 1

20: Return to the while loop;

21: return attribute withargminA1∈A′UpperIndg(A1, D) as root;
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The Exact FSNoRank Algorithm is very similar, except that theupper and lower

Indg() for each attributeAs is computed as follows:

LowerIndg(As, D) = Indg(As, Dr) (2.7)

UpperIndg(As, D) = LowerIndg(As, D)+

[(n− r) + max
xq∈Doms

{

Dxq

}

]/2

{

(n− r) + max
xq∈Doms

{

Dxq

}

− 1

}

(2.8)

Here the pipelining interface outputs tuples in any arbitrary order (since there is no

ranking function), and stops when it discovers an attributeAl whose upper bound is no

larger than the lower bound of all other attributes. We referto this as the Exact FSNoRank

Algorithm.

TheLowerIndg(As, D) calculation in the FSNoRank case follows similar explana-

tion as for the FSRank case, except for the score of each tuple is assumed to be1 here.

Also, the score of each tuple is assumed to be1 in theUpperIndg(As, D) calculation, and

the upper bound simply captures the score that can be attained by pairing each of the rest

(n− r) tuples with the largest subset of ther tuples with domain valuexq.

Although our attribute selection algorithms can work for any black box scoring func-

tion S(Q, t), the score distribution across the tuples greatly affects the performance of

our algorithms, since it determines which algorithms are feasible and efficient. A highly

skewed scoring function - where the top few tuples have largescores, followed by a rapid

degradation in score values for the remaining tuples - is most effective in making the Exact

FSRank algorithm very efficient. This unfortunately does notapply in the case of Exact

FSNoRank, because there is no ranking function to be leveraged. In fact as the lemma be-

low shows, no matter what is the database, more than half of the database has to bealways

scanned by the FSNoRank algorithm before the best attribute can be determined.
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Lemma 2.3.3. For FSNoRank, even in the best case more than half of the database par-

tition has to be scanned using the pipelining interface before the best facet can be deter-

mined.

Proof Sketch: Consider a simple case, where a databaseD with n (n is even) tuples has

only two attributesA andB. Let us assume that alreadyn/2 tuples have been read, and the

best scenario of early stopping has occurred so far inD, i.e., attributeA has returnedn/2

different domain valuesa1, a2, . . . , an/2, while attributeB repeats the same domain valueb1

in all n/2 tuples. Then we have,LowerIndg(A,D) = 0 andUpperIndg(A,D) = n(n +

2)/8. Similarly,LowerIndg(B,D) = n(n− 2)/8 andUpperIndg(B,D) = n(n− 1)/2.

At this stage, no stopping decision can yet be made considering the upper and lower

bounds of theIndg() values of the attributes, and we must continue the scan ofD. �

Approximate Indg() calculation As an even faster alternative to the above algo-

rithms, we can simply stop reading further tuples after a small fixed number of iterations

(i.e., boundedr), and use the most promising facet discovered thus far. Suchan algorithm

is of course guaranteed not to exhaust all tuples in the database partition, but may not

necessarily produce the facet with the minimumIndg() value. However, this is a good ap-

proximation ifr is reasonably chose. It is easy to observe that such an approximateIndg()

calculation can be applied to both FSNoRank and FSRank.

The extensions to include attribute uncertainties,k-facet selection, as well as design-

ing a fixedk-facet interface are straightforward and omitted.

2.4 The DynaCet System

The architecture of DynaCet and the flow of information through the system is il-

lustrated in Figure 2.4. The front-end of the system is a web-based user interface which

enables user to build queries and provides navigational access into the database. The back-

end consists of two components, theFacet Componentand theRanking Component. Dy-
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naCet is domain independent and requires read-only access tothe underlying database, thus

making it implementable over any database system.

Figure 2.4. Architecture of DynaCet.

We have implemented our algorithms by leveraging the scalable decision tree frame-

work Rainforest [21]. TheFacet Generationmodule supports two modes of exploration

over the facets -Browse OnlyandSearch and Browse. In theBrowse Only mode, a typical

browsing session begins by showing suggested facets to the user. A user simply needs to

select one of the facet values in order to move on to the next step in browsing. In this mode,

the entire database is to be explored, hence the facet generation module uses pre-computed

decision trees. However, for theSearch and Browsemode, a more dynamic scenario is in-

vestigated. Here, a user can typically begin her search session by specifying one or more of

her preferences in the form of a query. Next, the resultant tuple set is retrieved by DynaCet

and faceted search is enabled on that set. Hence, in this case, decision trees are constructed
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Figure 2.5. Screen shot of DynaCet GUI.

online over search results. Essentially, we build a partialtree with a few “look ahead”

nodes and then stay in sync with the user while she is exploring the partially constructed

tree. Each of these two above mentioned mode can also work in conjunction with a Rank-

ing component, where the Ranking module imposes askewover the user preferences for

the selected tuples. Different problem variants of DynaCet are discussed in more detail in

[?].

Browse Only Mode: In this model, the user does not initiate the search with a query -

rather DynaCet will recommend facet(s) for her. Consequently, a user is shownm different

facets, to which she responds by selecting a value from one ofthe facet domain (or a

”don’t know”). Depending upon the user response, the next set of facets are dynamically

suggested and the process repeats. The lower half of Figure 2.5 shows the interface from a

typical browsing session over IMDB using DynaCet.

This model takes the advantage of a pre-computed decision tree and thus results

in good response time. We will also provide a comparative evaluation of our proposed
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solutions with some existing attribute selection techniques in the demonstration. The user

will be allowed to choose them-Facets or the Fixedm-Facets algorithm in this mode.

Search and Browse Mode:In this mode the user will be able to start the exploration phase

by providing a query through the form interface. The upper left part of Figure 2.5 shows

the interface for querying. The query form shows only a few attributes from among the

total set of attributes. A larger set can be seen by going toAdvanced Search. In the figure,

the user has asked for movies with Language=“English” and Color=“Color” which then

results in only three dynamically generated facets being shown to the user.

Faceted Search in Conjunction with Ranking Function:The user will have an option of

choosing an appropriate ranking function from the list of available ranking functions (pro-

vided as a drop-down list). A comparative cost evaluation between our proposed solution

and a prior attribute ordering method [12] will also be shown.

2.5 Evaluation

In this section we describe our experimental setup, our different results of facet selec-

tion algorithms (without and in conjunction with ranking functions) and draw conclusions

on the quality and performance of the techniques. We validated the quality of the our solu-

tions by measuringcost, which is defined as the average number of user interactions (i.e.,

number of attributes or facets selected) before the desiredtuple is identified. Experiments

evaluating the time complexity of the node creation step of our tree building algorithms

were also conducted. This measure is especially relevant for exploratory interactive users

and hence a fast scalable implementation is desirable. In case the trees can be built in a

preprocessing step, this measure is less critical. We also implemented several existing at-

tribute selection techniques to compare against our approaches. Evaluation results clearly

show that our solutions perform significantly better.
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All implementation is done using Java and C# and the evaluations performed on a

Windows XP machine with 3.0Ghz Intel Xeon processor and 2GB RAM.

Database Used:We evaluated our methods using two data sets,IMDB movie database3 -

a real world movie database accessible over the internet andYahoo Autos4, a online used-

car listing database. Using the IMDB database, we generateda single movie database

containing about234, 000 tuples with19 attributes including null values in some fields.

Similarly, we built a car database with43 attributes and more than40, 000 tuples. We also

generated a large synthetic dataset having nearly 10 million rows and 100 attributes from

the car dataset by maintaining the original distribution ofthe dataset.

Uncertainty Model: As we discussed in Section 2.2.2, we use external knowledge about

user uncertainty for ranking the attributes of our databases. For our evaluation, we orga-

nized a small survey among20 randomly selected users comprising students and faculty

members. In the survey, each person was asked to assign a value (between 0 to 1) for each

attribute in the IMDB movie database. This value denotes thelikelihood (probability) with

which the user thinks she would be able to answer a question over that attribute. We took

average probability scores for all attributes in our evaluation. Note that the question of

whether the survey accurately reflects the true uncertaintymodel for the user population

at large is an orthogonal problem, and is not extremely relevant for our purposes. The

survey was conducted merely to obtain uncertainty values that are somewhat realistic for

the related domain. Developing techniques for ascertaining uncertainty values is a future

direction of research.
3http://www.imdb.com
4http://autos.yahoo.com
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2.5.1 FSNoRank Experiments

In this set of experiments all tuples were considered equally desirable to the end user

as no ranking function was assumed. We conducted evaluations to check the quality and

robustness of the algorithms we developed.

2.5.1.1 Quality Evaluation

In this subsection, we briefly explain the three different quality experiments we per-

formed and draw inferences. These experiments measure costas defined in previous sec-

tion, which is the average number of queries that needs to be answered before the user

arrives at a desired tuple (i.e., effort).

Cost versus varying attribute probability: The intrinsic assumption in our decision tree

modeling is the user’s inability to answer all the questions. This experiment infers the

influence of the probability of an attribute in determining cost.

Figure 2.6. Change Of cost with varying probability.

As shown in Figure 2.6, we compare the cost of the Single-Facet search with thek-Facets

based search algorithm by varying the uncertainty model. Inour evaluation we set the

value ofk top = 2. We varied the probability of each attribute in increments of 0.2 in this
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experiment. As the graph suggests, with higher probability, the cost decreases for both the

algorithms. This observation corroborates our basic intuition of considering probability of

the attributes in the decision tree construction.

Cost versus varying database size:In this set of experiments, we vary the database size

(auto database) and compare the costs of the Single-Facet and thek-Facets based search

algorithms. As can be seen from Figure 2.7, the cost is more for the Single-Facet algorithm.

Also, in both cases, costs increase with increasing database size. The reason being, with an

increase in the number of tuples, more questions are needed to distinguish them.

Figure 2.7. Change of cost with varying database size.

Comparing against existing techniques:We compared the cost of facets suggested by

our methods with that suggested using theIndg() method developed in [20] (named as

Ambigous method in Figure 2.7, PCA for categorical data and the ID3 classification algo-

rithm. Note that these three algorithms assume all values are known to the user and so do

not have any provision for handlinguncertaintyin user response. Hence, these techniques

are principally different from our facet selection algorithms. Howeve, from Figure 2.7, it

is clear that the Indg() based method clearly outperforms the ID3 and PCA. Since, both

Single-Facet and K-Facet algorithms are richer than Indg()and also show better perfor-
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mance, we can therefore claim that our techniques are betterthan existing facet (attribute)

selection methods.

2.5.2 Performance Evaluation

We implemented the scalable Rainforest [21] framework to construct the decision

tree. We vary two parameters (number of tuples and number of attributes) and measure the

average node creation time. As seen from the Figure 2.13 and Figure 2.12, average node

creation time increases with the increase of dataset size/ width. We point out that that the

objective of our decision tree is to distinguish each tuple (in contrast to identifying a class

of tuples). Hence, the depth of this tree is much larger than the normal decision trees used

for classification problems. Consequently, this leads to a proportional increase in creation

time.

Figure 2.8. Change of average node creation time with varyingnumber of attributes.
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Figure 2.9. Change of average node creation time with varyingnumber of tuples.

2.5.3 FSRank Experiments

In this section, we explain our experiments on facet selection algorithms in conjunc-

tion with ranking functions. We assume the presence of a ”black box” ranking function

which simply contributes skewness towards the preference of tuples. Consequently, the

solution cost is computed as described in Section 2.3.

Ranking Function: Design of an efficient and effective ranking function is an or-

thogonal research problem and is not our focus here. For practical purposes, however, we

implement a simple ranking function where a tuplet gets a score equal to the square of its

Euclidian distance from the centroid of the residual database partition. We further normal-

ize this squared distance to a non-uniform probability distribution over the selected tuples,

such thatS(Q, t) represents the probability that tuplet is preferred by the user, and that
∑

t selected by Q S(Q, t) = 1.
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2.5.3.1 Quality Evaluation

In this experiment, we compared the cost of our Single Interface algorithm with the

existing rank based attribute selection technique [12] on IMDB data. As seen from the

Figure 2.10, our Single Interface facet selection technique performs better than existing

approach.

Figure 2.10. Comparison of Cost - Facet Selection and Attribute Ordering Problem.

Next, we evaluate howr (number of tuples are to be read before the pipelining inter-

face is terminated to make the selection of the attribute) affects the quality of Approximate

FSRank Algorithm.We vary the parameterr here. As expected, by decidingr in advance,

we lose quality (i.e., increase the average navigation cost) as a trade off to the performance.

However, the navigation cost decreases asr increases. An interesting problem here can

be to find an optimalr value for a given dataset. This concludes our discussion on

experiments.

2.5.3.2 Performance Evaluation

As discussed earlier, we implement the scalable Rainforest [21] framework to con-

struct the decision tree. We vary two parameters (number of records and number of at-
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Figure 2.11. Change of Cost Varyingr in Approximate FSRank Algorithm.

tributes) and measure the average node creation time. As seen from the Figures 2.13 and

2.12, average node creation time increases with the increase of dataset size/ width. We

point out that that the objective of our decision tree is to essentially identify each tuple

unambiguously (in contrast to identifying a class of tuples). Hence, the depth of this tree

is much higher than the normal decision trees used for classification purposes in Machine

Learning problems.

Figure 2.12. Change of average node creation time varying attribute size.
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Figure 2.13. Change of average node creation time varying dataset size.

Next, we vary database size and observe the performance of three different algo-

rithms. Performance is evaluated among the FSRank Full Scan Algorithm, the Exact FS-

Rank Algorithm and the Approximate FSRank (r = 100) Algorithm.

Figure 2.14 corroborates our claim - the average node creation time can be signifi-

cantly improved in Exact FSRank Algorithm compared to the FSRank Full Scan Algorithm.

The Approximate FSRank is the fastest, but it comes with a lossin quality - the navigation

cost is sometimes more.

2.6 Related Work

The traditional design goal of faceted search interfaces [19, 26, 2, 27, 28] is to offer

users a flexible navigational structure, targeted towards text and/or image data. There have

been recent efforts at creating a faceted search interface over structured database, e.g., [29],

as well as heterogeneous collections [30]. The former is typically designed for specific

applications by domain experts. In our work, we aim to propose a domain independent

solution for automatically generating facets. In [30], thefocus is on computing correlated
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facets and using them to aggregate and present related information to the user. This appears

to be different from our problem, where the focus is minimum effort drill-down.

Our work bears resemblance to the problem of generating automatic categorization

of query results [31]. Our developed approach differs from this prior work along several

key dimensions: (a) our proposed approach considers uncertainty models, (b) our approach

is decision-tree based and depends on user interaction , and(c) our algorithms can work in

conjunction with available ranking functions.

Decision trees and classicalInformation Value Theory[32] are widely studied class

of techniques in machine learning [22]. However such modelsrequire explicit knowledge

of each of the user decision models which is not present in ourmodel. A recent work [20]

uses decision trees for fast tuple identification in databases. Our proposed decision tree

model captures user inability to answer certain attributesas well as the ability to incorporate

ranking functions, which marks the intrinsic difference between our approach and [20].

In this thesis we have attempted a mapping of the key ideas of PCA [23] to categorical

data, and have compared it against other approaches for selecting facets.
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Ranked retrieval in structured databases is an active research area [16, 17, 18, 33].

Recent research effort address the problem of keyword-basedsearch techniques in databases

combined with the power of aggregation in Online AnalyticalProcessing(OLAP) systems

[34]. This ranking metric is based upon “interestingness” of attributes. We propose an

effort-based strategy in our work for enabling tuple search, and leverage external knowl-

edge in the form of uncertainty models and ranking functions. In [12], algorithms were

described that automatically select attributes of the results of a ranking query. As discussed

in this thesis, while such attribute selection algorithms can be used for faceted search, they

do not necessarily achieve our minimum effort goals.

Selecting the next facet based on a ranking function has connections with automatic

query expansion studies in IR ([35, 36]. At some level automatic facet selection may be

viewed as a similar problem, however while AQE techniques are largely empirical and tar-

get text collections, we make several new and important contributions involving structured

data, black box ranking functions, as well as scalable algorithms based on modern top-k

concepts.

Our Fixedk-Facets Based Search Problem has similarities with the classical problem

of computing minimum and approximate keys and functional dependencies of database re-

lations (see [37, 24]). Most problem variants are NP-complete, and popular algorithms

are based on level-wise methods from data mining ([24]). However, in our case the prob-

lem is complicated by the fact that attributes are associated with uncertainties, thus such

deterministic procedures appear difficult to generalize tothe probabilistic case.

2.7 Conclusion

In this thesis we tackle the problem of effective minimum-effort based faceted search

within structured data warehouses of business organizations. Our proposed technique uses

uncertainty models of attributes in the structured database, as well as leverages the exis-
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tence of ranked-retrieval models, and our solution framework is based on the novel top-k

approaches to efficient decision tree construction. As our future work, we like to extend

these approaches to work for multi-table databases, designmethods for obtaining reliable

uncertainly models from external data sources, and leverage heterogeneous data (e.g., text

as well as structured) as well as rich meta-data (e.g., “non-flat” hierarchies) that naturally

occur as part of modern data warehouses.

We also aim to explore other techniques, such as sampling, that can assist in expe-

diting the response time of facet selection algorithms. Such techniques may be useful in

approximating domain information of the attributes in a principled way, thus guaranteeing

a reduced CPU cost while suggesting facets to the user. We would also like to perform a

comparative quality evaluation of these various proposed techniques on a variety of real

world datasets. In the future, we would like to conduct user studies to obtain user evalua-

tions on our proposed speedup techniques.



CHAPTER 3

FACETEDPEDIA: DYNAMIC GENERATION OF QUERY-DEPENDENT FACETED

INTERFACES FOR WIKIPEDIA

3.1 Introduction

Wikipediahas become the largest encyclopedia ever created, with close to3 million

English articles by far. The prevalent manner in which the Web users accessWikipedia

articles is keyword search. Keyword search has been effective in finding specific Web pages

matching the keywords. Therefore it may well satisfy the users when they are causally

interested in a single topic and useWikipediaas a dictionary or encyclopedia for that topic.

However,Wikipediahas now become a primary knowledge source for many casual users

and even an integral component in the knowledge management systems of businesses for

decision making. It is thus typical for a user to explore a setof relevant topics, instead of

targeting a particular topic, for more sophisticated information discovery and exploratory

tasks. With only keyword search, one would have to digest thepotentially long list of

search result articles, follow hyperlinks to connected articles, adjust the query and perform

multiple searches, and synthesize information manually. This procedure is often time-

consuming and error-prone.

One useful mechanism for information exploration is thefaceted interface, or the

so-calledhierarchical faceted categories(HFC) [1]. A faceted interface for a set of objects

is a set of category hierarchies, where each hierarchy corresponds to an individualfacet

(dimension, attribute, property) of the objects. The user can navigate an individual facet

through its hierarchy of categories and ultimately a specific “property” value if necessary,

thus reaching those objects associated with the categoriesand the value on that facet. The

55
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Figure 3.1. The faceted retrieval interface ofFacetedpedia.

user navigates multiple facets and the intersection of the chosen objects on individual facets

are brought to the user’s attention. The procedure hence resembles repeated constructions

of conjunctive queries with selection conditions on multiple dimensions.

In this paper we proposeFacetedpedia1, a faceted retrieval system which is capable

of dynamically generating query-dependent facets for a setof Wikipediaarticles. We use

the following example to further illustrate.

Example 1(Motivating Example). Imagine that a user is exploring information about ac-

tion films. TheFacetedpedidasystem takes a keyword query, say, “us action film”, as the

input and obtains a ranked list of search result articles. Itwill create a faceted interface,

as shown in Figure 3.1. The system dynamically derivesk facets (region (A)) for covering

the tops result articles. For instance, for “us action film”, these dimensions (facets) can

include Companies, Actors, and so on. Each facet is associated with a hierarchy of cate-

gories. Each article can be assigned to the nodes in these hierarchies, with each assignment

1http://idir.uta.edu/facetedpedia/
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representing an attribute value of the article. On each facet, the user can navigate through

the category path which is formed by parent-child relationships ofWikipediacategories.2

The interface also shows the navigation paths (region (B)) and article titles (region (C)).

When the user clicks one article title, the correspondingWikipediaarticle would be shown.

(This part of the interface is omitted.)

Here in Figure 3.1 we only show three facets from the generatedinterface in region

(A): (1) Film productioncompaniesof the United States; (2) Americanfilm actors; (3)

Americantelevisionactors. When the user selects any facet items for navigationin re-

gion (A), a user navigational path is added in region (B). Here we show only one path:

Films by subgenre>Action films by genre>Sciencefiction action films, which means the

user selected facet root Filmsby subgenre, then its subcategory Actionfilms by genre,

and the subcategory of subcategory, Sciencefiction action films. There are thirteen arti-

cles satisfying the chosen navigational paths, and they areshown in region (C). In this way,

the user filters the large number of result articles and finds those matching her interests.

3.1.1 Overview of Challenges and Solutions

We study the problem of dynamic discovery of query-dependent faceted interfaces.

Given the set of top-s rankedWikipediaarticles as the result of a keyword search query,

Facetedpediaproduces an interface of multiple facets for exploring the result articles.

We focus onautomaticanddynamicfaceted interfaces. The facets could not be pre-

computed due to the query-dependent nature of the system. Inapplications where faceted

interfaces are deployed for relational tuples or schema-available objects, the tuples/objects

are captured by prescribed schemata with clearly defined dimensions (attributes), therefore

a query-independent static faceted interface (either manually or automatically generated)

2A Wikipediaarticle may belong to one or more categories. These categories are listed at the bottom of

the article.
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may suffice. By contrast, the articles inWikipediaare lacking such pre-determined dimen-

sions that could fit all possible dynamic query results. Therefore efforts on static facets

would be futile. Even if the facets can be pre-computed for some popular queries, say,

based on query logs, the computation must be automatic and dynamic. Given the sheer

size and complexity ofWikipediaand its rapid growth, a manual approach would be pro-

hibitively time-consuming and cannot scale to stay up-to-date. The main challenges in

realizingFacetedpediaare summarized as follows:

Challenge 1: The facets and their category hierarchies are not readily available.

The concept of faceted interface is built upon two pillars: facets (i.e., dimensions or

attributes) and the category hierarchy associated with each facet. The definition of “facet”

itself for Wikipediadoes not arise automatically, leaving alone the discovery of a faceted

interface. Therefore we must answer two questions: (1)facet identification– What are the

facets of aWikipediaarticle?; and (2)hierarchy construction– Where does the category

hierarchy of a facet come from?

Challenge 2: We need metrics for measuring the “goodness” offacets both individu-

ally and collectively.

We need to find facets useful for user navigation. A goodness metric for ranking the

facets is needed. The problem gets even more complex becausethe utilities of multiple

facets do not necessarily build up linearly– Since the facets in an interface should ideally

describe diverse aspects of the result articles, a set of individually “good” facets may not

be “good” collectively.

Challenge 3: We must design efficient faceted interface discovery algorithms based

on the ranking criteria.

It is infeasible to directly apply the ranking metric exhaustively on all possible choices,

due to the large search space. Furthermore, the interactions between the facets in a faceted

interface make the computation of its exact cost intractable. Even computing the costs of
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individual facets without considering the interactions isnon-trivial, given the size and the

complexity ofWikipedia.

3.1.2 Summary of Contributions and Outline

• Concept: FacetedWikipedia. We propose an automatic and dynamic faceted retrieval

system forWikipedia. To the best of our knowledge, this is the first system of its kind.

The key philosophy of our approach is to exploit collaborative vocabulary as the back-

bone of faceted interfaces. (Section 3.3)

• Metrics: Facet Ranking. Based on a user navigation model, we propose metrics for

measuring the “goodness” of facets, both individually and collectively. (Section 3.4)

• Algorithms: Faceted Interface Discovery. We develop effective and efficient algo-

rithms for discovering faceted interfaces in the large search space. (Section 6.3)

• System Evaluation: Facetedpedia. We conducted user study to evaluate the effective-

ness of the system and to compare with alternative approaches. We also measured its

quality and efficiency quantitatively. (Section 6.6)

3.2 Faceted Retrieval Systems: A Comparative Study

Faceted interface has become influential over the last few years and we have seen an

explosive growth of interests in its application [38, 39, 1,39, 1, 40, 41, 42, 43, 44, 45, 46,

47]. Commercial faceted search systems have been adopted by vendors (such asEndeca,

IBM, andMercado), as well as E-commerce Websites (e.g.,eBay.com, Amazon.com). The

utility of faceted interfaces was investigated in various studies [38, 1, 48, 39, 49, 48, 50,

1], where it was shown that users engaged in exploratory tasks often prefer such result

grouping over simple ranked result list (commonly providedby search engines), as well as

over alternative ways of organizing retrieval results, such as clustering [51, 52, 49].
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Figure 3.2. Taxonomies of faceted retrieval systems, (a)Facet types and semantics,
(b)Automation and dynamism.

In this section we present taxonomies to characterize the relevant faceted retrieval

systems and compare them withFacetedpedia. Existing research prototypes or commercial

faceted retrieval systems mostly cannot be applied to meet our goals, because they either are

based on manual or static facet construction, or are for structured records or text collections

with prescribed metadata. Very few have investigated the problem of dynamic discovery of

both facet dimensions and their associated category hierarchies.

To the best of our knowledge, we are the first to propose a query-dependent faceted

retrieval system forWikipedia. CompleteSearch[53] supports query completions and query

refinement inWikipediaby a special type of “facets” on three dimensions that are very dif-

ferent from our notion of general facets: query completionsmatching the query terms; cate-

gory names matching the query terms; and categories of result articles. Recently, a faceted

Wikipediasearch interface came out of theDBPedia [54] project around the same time

as our work. The facets there appear to be query-independently extracted from common
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Wikipediainfobox attributes, although the underlying method remains to be proprietary at

this moment.

Figure 3.2(a): Taxonomy by Facet Types and Semantics

Previous systems roughly belong to two groups on this aspect. In some systems

the facets are on relational data (e.g.,Endeca, Mercado, [44]) or structured attributes in

schemata (e.g., [39, 46, 47]) and the hierarchies on attribute values are predefined based on

domain-specific taxonomies. The hierarchies could even be manually created, thus could

contain rich semantic information. In some other systems a facet is a group of textual

terms, over which the hierarchy is built upon thesaurus-based IS-A relationships (e.g., [40])

or frequency-based subsumption relationships between general and specific terms (e.g.,

[41, 42]). These systems cannot leverage as much semantic information. The work [45] is

in the middle of Figure 3.2(a) since it has both structured dimensions and a subsumption-

based topic taxonomy.

In contrast,Facetedpediaenables semantic-rich facet hierarchies (distilled from

Wikipediacategory system) over text attributes (hyperlinkedWikipediaarticle titles). In

the absence of predefined schemata, it builds facet hierarchies with abundant semantic in-

formation from the collaborative vocabulary, instead of relying on IS-A or subsumption

relationships.

Figure 3.2(b): Taxonomy by Degree of Automation and Dynamism

When building the two pillars in a faceted interface, namely the facet and the hierar-

chy, Facetedpediais both automatic and dynamic, as motivated in Section 3.1.1. On this

aspect, none of the existing systems could be effectively applied in place ofFacetedpedia,

because none is fully automatic in both facet identificationand hierarchy construction.

In some systems (e.g.,Endeca, Mercado, [44, 47, 39, 46]) the dimensions and hier-

archies are predefined, therefore they do not discover the facets or construct the hierarchy.

In [46, 44] a subset of interesting/important facets are automatically selected from the pre-
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defined ones. In [41, 42] the set of facets are predefined, but the hierarchies are automat-

ically created based on subsumption. In [45] only one special facet (a topic taxonomy) is

automatically generated and the rest are predefined.

With respect to the automation of faceted interface discovery, the closest work to

ours is theCastanetalgorithm [40]. The algorithm is intended for short textualdescrip-

tions with limited vocabularies in a specific domain. It automatically creates facets from a

collection of items (e.g., recipes). The hierarchies for the multiple facets are obtained by

first generating a single taxonomy of terms by IS-A relationships and then removing the

root from the taxonomy.

3.3 Faceted Interface for Wikipedia by Collaborative Vocabulary

In discovering faceted interfaces forWikipedia, the basis of our approach is to ex-

ploit its user-generatedcollaborative vocabularysuch as the “grassroots” category system.

Even internalWikipediahyperlinks are an instance of collaborative vocabulary in abroader

sense, as they indicate the users’ collaborative endorsement of relationships between enti-

ties. The collaborative vocabulary represents the collective intelligence of many users and

rich semantic information, and thus constitutes the promising basis for faceted interfaces.

With regard tothe concept of facet dimension, theWikipediaarticles hyperlinked from

a search result article are exploited as its attributes. Thefact that the authors of an arti-

cle collaboratively made hyperlinks to other articles is anindication of the significance of

the linked articles in describing the given article. This view largely enriches the semantic

information associated with the result articles. With regard to the concept of category

hierarchy, theWikipediacategory system provides the category-subcategory relationships

between categories, allowing users to go from general to specific when specifying con-
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Figure 3.3. The concept of facet.

ditions. We now formally define the concepts in our frameworkand deliver the problem

specification.

Definition 1 (Target Article, Attribute Article). Given a keyword queryq, the set of top-

s rankedWikipedia articles, T ={p1, ..., ps}, are thetarget articlesof q. Given a target

article p, eachWikipedia article p′ that is hyperlinked fromp is an attribute articleof

p. This relationship is represented asp′ ← p. GivenT , the set of attribute articles is

A={p′1, ..., p′m}, where eachp′i is an attribute article of at least one target articlepj∈T .

Definition 2 (Category Hierarchy). Wikipedia category hierarchyis a connected, rooted

directed acyclic graphH(rH, CH, EH), where the node setCH={c} is the set of categories

and the edge setEH= {c99Kc′} is the set of category(c)-subcategory(c′) relationships. The

root category ofH, rH, is Category:Fundamental. 3

Definition 3 (Facet). A facetF(r, CF , EF) is a rooted and connected subgraph of the cate-

gory hierarchyH(rH, CH, EH), whereCF⊆CH, EF⊆EH, andr∈CF is the root ofF .

Example 2 (Running Example). In Figure 3.3 there are7 target articles (p1, . . ., p7) and

9 attribute articles (p′1, . . ., p′9). The category hierarchy has14 categories (c1, . . ., c14).

The figure highlights6 facets (F1, . . ., F5, andF ′
2). For instance,F2 is rooted atc2 and

consists of3 categories (c2, c7, c8) and2 edges (c299Kc7, c299Kc8). There are many more

3http://en.wikipedia.org/wiki/Category:Fundamental
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facets since every rooted and connected subgraph of the hierarchy is a facet. Note that the

figure may give the impression that edges such asc1199Kc14 and c7⇒p′1 are unnecessary

since there is only one choice underc11 andc7, respectively. The example is small due to

space limitations. Such single outgoing edge is very rare inthe realWikipedia category

hierarchy. We will use Figure 3.3 as the running example throughout the paper.

The categories in the facet can “reach” the target articlesT through attribute articles

A. That is, by following the category-subcategory hierarchyof the facet, we could find a

category, then find an attribute article belonging to the category, and finally find the target

articles that have the attribute. These target articles arecalledreachable target articles. A

facetis asafe reaching facetif ∀c∈CF , there exists a target articlep∈T such thatc reaches

p, i.e., there existsc99K...⇒p′←p, a navigational path ofF , starting fromc, that reachesp.

In order to capture the notion of “reach”, we formally definenavigational pathas follows.

Definition 4 (Navigational Path). With respect to the target articlesT , the attribute articles

A, and a facetF(r, CF , EF), a navigational pathin F is a sequencec199K...99Kct⇒p′←p,

where,

• for 1≤i≤t, ci∈CF , i.e.,ci is a category inF ;

• for 1≤i≤t−1, ci99Kci+1∈EF , i.e.,ci+1 is a subcategory ofci (in category hierarchyH)

and that category-subcategory relationship is kept inF .

• p′∈A, andct is a category ofp′ (represented asct ⇒ p′);

• p∈T , andp′ is an attribute article ofp (i.e., there is a hyperlinkp→ p′).

Given a navigational pathc199K...99Kct⇒p′←p, we say that the corresponding cat-

egory pathc199K...99Kct reachestarget articlep through attribute articlep′, and we also

say that categoryci (for any 1≤i≤t) reachesp throughp′. Interchangeably we sayp is

reachablefrom ci (for any1≤i≤t).

Definition 5 (Faceted Interface). Given a keyword queryq, a faceted interfaceI={Fi} is

a set of safe reaching facets of the target articlesT . That is,∀Fi∈I, Fi safely reachesT .
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Example 3 (Navigational Path and Faceted Interface). Continue the running example. In

Figure 3.3,I={F2,F5} is a 2-facet interface. Two examples of navigational paths are

c299Kc8⇒p′3←p5 and c599Kc13⇒p′9←p5. However,{F ′
2,F5} is not a valid faceted inter-

face becauseF ′
2 is not a safe reaching facet, as categoryc6 cannot reach any target articles.

Based on the formal definitions, theFaceted Interface Discovery Problemis: Given

the category hierarchyH(rH, CH, EH), for a keyword queryq and its resulting target articles

T and corresponding attribute articlesA, find the “best” faceted interface withk facets. We

shall develop the notion of “best” in Section 3.4.

3.4 Facet Ranking

The search space of the faceted interface discovery problemis prohibitively large.

Given the set ofs targetWikipediaarticles to a keyword query,T , there are a large number

of attribute articles which in turn have many categories associated with complex hierarchi-

cal relationships. To just give a sense of the scale, inWikipediathere are about3 million

English articles with hundreds of millions of internal links. The category systemH con-

tains close to half a million categories and several millioncategory-subcategory relation-

ships. By definition, any rooted and connected subgraph ofH that safely reachesT is a

candidate facet, and any combination ofk facets would be a candidate faceted interface.

Given the large space, we need ranking metrics for measuringthe “goodness” of facets,

both individually and collectively as interfaces.

Given that a faceted interface is for a user to navigate through the associated category

hierarchies and ultimately reaching the target articles, it is natural to rank the interfaces

by the user’s navigational cost, i.e., the amount of effort undertaken by the user during
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Figure 3.4. The navigation on a 2-facet interfaceI = {F2,F5}.

navigation.4 The “best”k-facet interface is the one with the smallest cost. Therefore as

the basis of such ranking metrics, we model users’ navigational behaviors as follows.

User Navigation Model: A user navigates multiple facets in ak-facet interface. At the

beginning, the navigation starts from the roots of all thek facets. At each step, the user

picks one facet and examines the set of subcategories available at the current category

on that facet. She follows one subcategory to further go downthe category hierarchy.

Alternatively the user may select one of the attribute articles reachable from the current

category. The selections made on thek facets together form a conjunctive query. After the

selection at each step, the list of target articles that satisfy the conjunctive query are brought

to the user. The navigation terminates when the user decidesthat she has seen desirable

target articles.

Example 4(Navigation in Faceted Interface). Continue the running example in Figure 3.3.

Consider a faceted interfaceI={F2,F5}. A sequence of navigational steps on this inter-

face are in Figure 3.4. At the beginning, the user has not selected any facet to explore,

therefore all7 target articles are available (step 1). Once the user decides to exploreF2

which starts fromc2, p7 is filtered out since it is unreachable fromF2 (step 2). The user

then selectsc5, which further removesp3 from consideration (step 3). After the user further

exploresF2 by choosingc8 (step 4),c11 is not a choice underc5 anymore because no target

articles could be reached by bothc299Kc8 and c599Kc11. The user continues to explore

4 [44] also selects facets based on navigational costs, although their system is of a different nature, as

discussed in Section 3.2.
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F5 by choosingc13 (step 5), which removesp′2 and also trims down the satisfactory target

articles to{p5}. The user may decide she has seen desirable articles and the navigation

stops.

3.4.1 Single-Facet Ranking

In this section we focus on how to measure the costs of facets individually. Based

on the navigational model, we compute the navigational costof a facet as the average cost

of its navigational paths. Intuitively a low-cost path, i.e., a path that demands small user

effort, should have a small number of steps and at each step only require the user to browse

a small number of choices. Therefore, we formally define the cost of a navigational path

as the summation of the fan-outs (i.e., the number of choices) at every step, in logarithmic

form. 5

Definition 6 (Cost of Navigational Path). With respect to the target articlesT , the corre-

sponding attribute articlesA, and a facetF(r, CF , EF), the cost of a navigational path in

F is

cost(l) = log2(fanout(p′)) +
∑

c∈{c1,...,ct}
log2(fanout(c)) (3.1)

wherel=c199K...99Kct⇒p′←p.

In Formula 3.1,fanout(p′) is the number of (directly) reachable target articles

through the attribute articlep′,

fanout(p′) = |Tp′ | (3.2)

Tp′ = {p|p ∈ T ∧ p→ p′(i.e.,∃ a hyperlink fromp to p′)} (3.3)

In Formula 3.1,fanout(c) is the fanout of categoryc in F ,

fanout(c) = |Ac|+ |Cc| (3.4)

5The intuition behind the logarithmic form is: When presentedwith a number of choices, the user does

not necessarily scan through the choices linearly but by a binary search.
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whereAc is the set of attribute articles belonging toc,

Ac = {p′|p′ ∈ A ∧ c⇒ p′} (3.5)

andCc is the set of subcategories ofc in F ,

Cc = {c′|c′ ∈ CF ∧ c 99K c′ ∈ EF} (3.6)

Note that we made several assumptions for simplicity of the model. The cost formula

only captures the “browsing” cost. A full-fledged formula would need to incorporate other

costs, such as the “clicking” cost in selecting a choice and the cost of “backward” naviga-

tion when the user decides to change a previous selection. Furthermore, we assume the user

always completes the navigational path till reaching the target articles. In reality, however,

the user may stop in the middle when she already finds desirable articles reachable from

the current selection of category. We leave the investigation of more sophisticated models

to future study.

Example 5(Cost of Navigational Path). We continue the running example.

Givenl=c599Kc12⇒p′8←p6, a navigational path ofF5 in Figure 3.3,

cost(l)=fanout(c5)+fanout(c12)+ fanout(p′8)

= log2(3)+ log2(2)+ log2(3)=4.17

Albeit the basis of our facet ranking metrics, the definitionof navigational cost is

not sufficient in measuring the goodness of a facet. It does not consider such a scenario

that a facet cannot fully reach all the target articles, which presents an unsatisfactory user

experience. In fact, low-cost and high-coverage could be two qualities that compete with

each other. On the one hand, a low-cost facet could be one thatreaches only a small portion

of the target articles. On the other hand, a comprehensive facet with high coverage may

tend to be wider and deeper, thus more costly. Therefore we must incorporate into the cost

formula the notion of “coverage”, i.e., the ability of a facet to reach as many target articles

as possible. To combine navigational cost with coverage, wepenalize a facet by associating



69

Figure 3.5. Navigational costs of facets.

a high-costpseudo pathwith each unreachable article. We then define the cost of a facet as

the average cost in reaching each target article.

Definition 7 (Cost of Facet). With respect to the target articlesT , the cost of a safe

reaching facetF(r, CF , EF), cost(Fr), is the average cost in reaching each target arti-

cle. The cost for a reachable target article is the average cost of the navigational paths

that start fromr and reach the target, and the cost for an unreachable target is a pseudo

costpenalty.

cost(Fr) =
1

|T | × (
∑

p∈Tr

cost(Fr, p) + penalty × |T − Tr|) (3.7)

wherecost(Fr, p) is the average cost of reachingp from r,

cost(Fr, p) =
1

|lp|
×

∑

l∈lp

cost(l) (3.8)

wherelp is the set of navigational paths inF that reachp from r,

lp = {l|l = r 99K ...⇒ p′ ← p} (3.9)

In Formula 3.7,penalty is the cost of the aforementioned expensive pseudo path that

“reaches” the unreachable target articles, i.e.,T −Tr, for penalizing a facet for not reaching

them. Its value is empirically selected (Section 6.6) and isat least larger than the highest

cost of any path to a reachable target article.

Example 6(Cost of Facet). We continue the running example. Figure 3.5 shows the costs of

the5 highlighted facets in Figure 3.3, together with their category hierarchies and reach-
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Figure 3.6. The sequences of navigational steps.

able attribute and target articles. It does not showF1 which is Figure 3.3 itself exclud-

ing c6. The costs of facets are obtained by Formula 3.7, withpenalty=7. cost(F2)=

1
7
×(

∑

p∈{p1,p2,p3,p4,p5,p6}cost(F2, p)

+penalty×|T −TF2 |)= 1
7
×(16+7×1)=3.286. F2 andF5 achieve lower costs than other

facets. Even though the paths inF4 are cheap,F4 has higher cost due to the penalty for

unreachable target articles (p6 andp7). F1 is even more costly due to its wider and deeper

hierarchy, although it reaches all target articles.

3.4.2 Multi-Facet Ranking

Even with the cost metrics for individual facets, measuringthe “goodness” of a

faceted interface, i.e., a set of facets, is not straightforward. This is because the bestk-facet

interface may not be simply the cheapestk facets. The reason is that when the user nav-

igates multiple facets, the selection made at one facet has impact on the available choices

on other facets, as illustrated by Example 4.

To directly follow the approach of ranking faceted interfaces by navigational cost, in

principle we could represent the navigational steps on multiple facets as if the navigation

is on one“integrated” facet. To illustrate, consider the navigation on a2-facet interface

I={F2,F5} from Figure 3.3. Two possible sequences of navigational steps are shown in

Figure 3.6(a). One isc2, c5, c8, c13, p′9, p′3, p5, which are the steps taken by the user in
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Figure 3.4, followed by choosingp′9, p′3, and finallyp5. (Remember, for simplification of

the model, we assumed that the user will always complete navigational paths till reaching

the target articles.) At each step, the available choices from both facets are put together as

the choices in the “integrated” facet. Note that afterc8 is chosen,c12 andc13 are still valid

choices butc11 is not available anymore becausec11 cannot reach the target articles that

c8 reaches. For the same reason, afterc13 is chosen,p′3 is still a valid choice butp′2 is not

anymore. The other highlighted sequence isc5, c11, c2, c7, p′1, c14, p′6, p1. There are many

more possible sequences not shown in the figure due to space limitations.

With the concept of “integrated” facet, one may immediatelyapply Definition 7 to

define the cost of a faceted interface. That entails computing all possible sequences of

interleaving navigational steps across all the facets in the interface. The interaction between

facets is query- and data-dependent, rendering such exhaustive computation practically

infeasible.

However, the “integrated” facet does shed light on what are the characteristics of

good faceted interfaces. In general an interface should notinclude two facets that overlap

much. Imagine a special case when two facets form a subsumption relationship, i.e., the

root of one facet is a supercategory of the other root. Presenting both facets would not

be desirable since they overlap significantly, thus cannot capture the expected properties

of reaching target articles through different dimensions.As a concrete example, consider

the navigational steps ofF2 andF3 in Figure 3.6(b). After the user selectsc2 from F2

and thenc3 from F3, the available choices become{c7, c8, c9}, which all come from the

“dimension”,F3. The same happens if the user selectsc3 and thenc2.

Based on the above observation, we propose to capture the overlap of thek facets by

their average pair-wise similarity. The pair-wise similarity of two facets is the degree of

overlap of their category hierarchies and associated attribute articles, defined below.
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Definition 8 (Average Similarity ofk-Facet Interface). The average pair-wise similarity of

a k-facet interface is

sim(I = {F1, ...,Fk}) =

∑

1≤i<j≤k sim(Fi,Fj)

k(k − 1)/2
, (3.10)

wheresim(Fi,Fj) is defined by the Jaccard coefficient,

sim(Fi,Fj) =
|CFi

⋂ CFj
|+ |AFi

⋂AFj
|

|CFi

⋃ CFj
|+ |AFi

⋃AFj
| (3.11)

whereCFi
is the set of categories inFi (Definition 3) andAFi

is the set of attribute articles

reachable fromFi,

AFi
= {p′|p′ ∈ A ∧ ∃c ∈ CFi

s.t. c⇒ p′} (3.12)

We choose Jaccard coefficient since it is one of the simplest set-similarity measures.

While more complex measures that give different weights to nodes higher in the hierarchy

are possible, we do not follow that in the interest of simplicity.

Example 7(Similarity of Facets). Consider facetsF1, . . .,F5 in Figure 3.3.sim(F2,F3)=

|CF2

⋂ CF3
|+|AF2

⋂ AF3
|

|CF2

⋃ CF3
|+|AF2

⋃ AF3
|

=
|{c7,c8}|+|{p′1,p′2,p′3}|

|{c2,c7,c8,c3,c9}|+|{p′1,p′2,p′3,p′4}|
=5/9. Other pair-wise similarities can be computed in the

same way. The average pari-wise similarity ofI={F2,F3,F5} is sim(I) = (sim(F2,F3)

+ sim(F2,F5) + sim(F3,F5))/3 = 5/27.

We do not design a single function to combine the average pair-wise similarity of a

faceted interface with its navigational cost, since they represent two measures with different

natures. Instead, in Section 3.5.3 we discuss how to search the space of candidate interfaces

by considering both measures.

3.5 Algorithms

A straightforward approach for faceted interface discovery is to enumerate all pos-

sible k-facet interfaces with respect to the category hierarchyH and apply the ranking

metrics directly to find the best interface. Such a naı̈ve method results in the exhaustive
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examination of all possible combinations ofk instances of all possible facets, i.e., rooted

and connected subgraphs ofH. Clearly it is a prohibitively large search space, given the

sheer size and complexity ofWikipedia. The näıve technique would be extremely costly.

Therefore finding the bestk-facet interface is a challenging optimization problem.

Our k-facet discovery algorithm hinges on (1) reducing the search space; and (2)

searching the space effectively and efficiently.

Reducing the Search Space: There are two search spaces in finding a goodk-facet interface:

the space of facets and the space ofk-facet interfaces, which are sets ofk facets. To

reduce the space of candidate facets, we focus on a subset of the safe reaching facets,

RCH-induced facets, which are the facets that contain all the descendant categories of

their roots (Section 3.5.1). To further reduce the space of faceted interfaces, we rank the

facets individually by their navigational costs (Section 3.5.2) and only consider the top

ranked facets that do not subsume each other (Section 3.5.3).

Searching the Space: Instead of exhaustively examining all possible interfaces, we design

a hill-climbing based heuristic algorithm to look for a local optimum (Section 3.5.3). To

further tackle the challenge of modeling the interactions of multiple facets in measuring the

cost of an interface, the hill climbing algorithm optimizesfor both the average navigational

cost and the pair-wise similarity of the facets.

Our k-facet discovery algorithm is outlined as three steps: construction of relevant

category hierarchy, ranking single facet, and searching for k-facet interface.

3.5.1 Relevant Category Hierarchy (Algorithm 3)

By Definition 5, the facets in a faceted interface must be safe reaching facets, i.e.,

they do not contain “dead end” categories that cannot reach any target articles. Therefore

the categories appearing in any safe reaching facet could only come from therelevant
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category hierarchy(RCH), which is a subgraph of theWikipediacategory hierarchyH,

defined below.

Definition 9 (Relevant Category Hierarchy). Given the category hierarchyH(rH, CH, EH),

the target articlesT , and the attribute articlesA, therelevant category hierarchy(RCH) of

T is a subgraph ofH. Given any category inRCH, it is either directly a category of some

attribute articlep′∈A or a super-category or ancestor of such categories. There exists an

edge (category-subcategory relationship) between two categories inRCH if the same edge

exists inH. By this definition the root ofH is also the root ofRCH.

The procedural algorithm for gettingRCH is in Algorithm 3. Based on definition,

straightforwardly we could prove every safe reaching facetof the target articlesT is a

(rooted and connected) subgraph ofRCH. However, not every rooted and connected sub-

graph ofRCH is a safe reaching facet. Therefore, even thoughRCH is much smaller

thanH, the search space is still very large which needs us to further shrink the space by

considering only one type of safe reaching facets, theRCH-induced facets.

Definition 10 (RCH-Induced Facet). Given the relevant category hierarchyRCH of the

target articlesT , a facetF(r, CF ,EF) isRCH-inducedif it is a rooted induced subgraph

ofRCH, i.e., inF all the descendants of the rootr and their category-subcategory rela-

tionships are retained fromRCH.

Example 8(RCH andRCH-Induced Facet). Continue the running example. In Figure 3.3,

theRCH contains all the categories in the category hierarchyH exceptc6 (and thus the

edgec299Kc6), sincec6 cannot reach any target article.F2 is anRCH-induced facet, but

would not be if it does not containc7 (or c8).

Note that everyRCH-induced facet is safe reaching, and the single-facet ranking and

searching for k-facet are performed on it.
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Algorithm 3 : Construct RCH and Get Attribute Articles
Input : T : target articles;H: category hierarchy.

Output : A:attribute articles;RCH:relevant category hierarchy.

// get attribute articles.

A←∅; CRCH←∅; ERCH←∅1

foreachp ∈ T do2

foreachp→ p′, i.e., a hyperlink fromp to p′ do3

A←A∪{p′}4

// start from the categories of attribute articles.

foreachp′ ∈ A do5

foreach c⇒ p′, i.e., a category ofp′ do6

CRCH ← CRCH ∪ {c}7

// recursively obtain the supercategories.

C←CRCH; C′ ← ∅8

while C is not emptydo9

foreach c ∈ C do10

foreach c′ 99K c ∈ EH do11

ERCH ← ERCH ∪ {c′ 99K c}12

if c′ /∈ CRCH then13

CRCH ← CRCH ∪ {c′}; C′ ← C′ ∪ {c′}14

C ← C′; C′ ← ∅15

return A andRCH(rH, CRCH, ERCH)16
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Algorithm 4 : Facet Ranking
Input : T :targets;A:attributes;RCH:relevant category hierarchy.

Output : In: topnRCH-induced facets with smallest costs.

// get reachable target articles for each attribute article.

foreachp′∈A do1

Tp′ ← {p|p ∈ T ∧ ∃ p→ p′ (hyperlink fromp to p′) }2

fanout(p′)← |Tp′ |3

initialize visited(r) to beFalse for everyr ∈ CRCH.4

ComputeCost(rH) // recursively compute the costs of all theRCH-induced facets, starting5

from the root ofRCH.

In← the topnRCH-induced facets with the smallest costs.6

return In7
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Algorithm 5 : ComputeCost(r)
Input : r: the root of anRCH-induced facet.

Output : cost(Fr): cost ofFr; cost(Fr, p): average cost of reaching target articlep fromFr;

pathcnt(Fr, p): number of navigational paths reachingp fromFr; Tr: reachable target

articles ofr.

if visited(r) then1

return2

visited(r)← True;3

Cr←{c|r 99K c ∈ ERCH} // subcategories ofr.4

foreach c ∈ Cr do5

ComputeCost(c)6

Ar←{p′|p′ ∈ A ∧ r ⇒ p′} // attribute articles belong tor.7

fanout(r)← |Ar| + |Cr|8

Tr← (∪p′∈Ar
Tp′)

⋃

(∪c∈Cr
Tc) // reachable target articles.9

foreachp ∈ Tr do10

pathcnt(Fr, p)← |{p′|p′∈Ar,p∈Tp′}|+∑

c∈Cr
pathcnt(Fc, p)11

cost1←
∑

p′∈Ars.t.p∈Tp′
(log2(fanout(r)) + log2(fanout(p′)))12

cost2←
∑

c∈Cr
(log2(fanout(r))+cost(Fc, p))×pathcnt(Fc, p)13

cost(Fr, p)← cost1+cost2
pathcnt(Fr,p)14

cost(Fr)←
∑

p∈Tr
cost(Fr, p)+penalty×|T − Tr|15

return16
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Algorithm 6 : Facet Selection
Input : In: the topnRCH-induced facets with the smallest costs.

Output : Ik: a discovered faceted interface withk facets (k<n).

// remove subsumed facets fromIn

In−←{Fc|@Fc′ ∈ In s.t.Fc is subsumed byFc′ , i.e.,c is a descendant category ofc′}1

// hill climbing

Ik ← a randomk-facet subset ofIn− ; I ′← In−\Ik2

repeat3

makeIk=<Ik[1],...,Ik[k]> sorted in increasing order of cost.55

makeI ′=<I ′[1],...,I ′[n−k]> sorted in increasing order of cost6

for i = k to 1 step−1 do7

for j = 1 to n−k do8

Inew←(Ik\{Ik[i]}) ∪ {I ′[j]}9

S1←
∑

Fc,Fc′∈Inew,Fc 6=Fc′
sim(Fc,Fc′)10

C1←
∑

Fc∈Inew
cost(Fc)11

S2←
∑

Fc,Fc′∈Ik,Fc 6=Fc′
sim(Fc,Fc′)12

C2←
∑

Fc∈Ik
cost(Fc)13

if (S1≤S2 and C1<C2) or (S1<S2 and C1≤C2) then14

Ik ← Inew; I ′← In−\Ik15

go to line 516

until Ik does not change;17

return Ik18

3.5.2 Ranking Single Facet (Algorithm 4 and 5)

Among all theRCH-induced facets, only the topn facets with the smallest navi-

gational costs are considered in searching for a faceted interface. In ranking the facets by

their costs, one straightforward approach is to enumerate all theRCH-induced facets and to

separately compute the cost of each facet by enumerating allof its navigational paths. This
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approach is exponentially complex due to repeated traversal of the edges inRCH, because

theRCH-induced facets would have many common categories and category-subcategory

relationships.

To avoid the costly exhaustive method, we design a recursivealgorithm that calcu-

lates the navigational costs of all theRCH-induced facets by only one pass depth-first

search ofRCH. The details are in Algorithm 4. The essence of the algorithmis to, during

the recursive traversal ofRCH, book-keep the number of navigational paths in a facet in

addition to its navigational cost. The bookkeeping is performed for each reachable target ar-

ticle because the cost is averaged across all such articles by Definition 7. The cost of a facet

rooted atr can be fully computed based on the book-kept information of the facets rooted

atr’s direct subcategories, without accumulating the individual costs of the facets rooted at

r’s descendants. Therefore it avoids the aforementioned repeated traversal ofRCH. More

specifically, the lines 11-14 in Algorithm 5 are for computing cost(Fr, p) in Formula 3.7.

However, the algorithm does not compute it by a direct translation of Formula 3.8 and 3.1,

i.e., enumerating all the navigational paths that reachp. Instead, line 12 getscost1, the

total cost of all the navigational pathsr⇒p′←p, i.e., the ones that reachp without going

through any other categories; line 13 computescost2, the total cost of all the navigational

paths that go through other categories, by utilizingcost(Fc, p) andpathcnt(Fc, p) of the

subcategoriesc, but not other descendants. We omit the formal correctness proof.

3.5.3 Searching for k-Facet Interface (Algorithm 6)

Algorithm 6 searches fork-facet interface. To reduce the search space, our algo-

rithm only considersIn, the topn facets from Algorithm 4. We further reduce the space

by excluding those top ranked facets that are subsumed by other top facets (line 1). In

other words, we only keepIn−, the maximalantichainof In based on the graph (category
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hierarchy) subsumption relationship. This is in line with the idea of avoiding large overlap

between facets (Section 3.4.2).

GivenIn− , instead of exhaustively considering all possiblek-element subsets ofIn− ,

we apply ahill-climbing methodto search for a local optimum, starting from a randomk-

facet interfaceIk. At every step, we try to find a better neighboring solution, where a

k-facet interfaceInew is a neighbor ofIk if they only differ by one facet (line 9). Given

thek×(n−k) possible neighbors at every step, we examine them in the order of average

navigational costs (line 5, 6, and 9). The algorithm jumps tothe first encountered better

neighbor. The algorithm stops when no better neighbor can befound. As the goal function

to be optimized in hill-climbing,Inew is considered better if the facets ofInew have both

smaller pair-wise similarities and smaller navigational costs than that ofIk (line 14). The

idea of considering both similarity and cost is motivated inSection 3.4.2.

3.6 Experimental Evaluation

3.6.1 Experimental Settings

Facetedpediais implemented in C++ and the dataset is stored in aMySQLdatabase.

The experiments are executed on a Dell PowerEdge 2900 III server running Linux kernel

2.6.27, with dual quad-core Xeon2.0 GHz processors,2x6MB cache,8GB RAM, and three

1TB SATA hard drivers in RAID5.

Dataset: We downloaded theWikipediadump of July 24, 2008 from

http://download.wikimedia.organd loaded the data into aMySQLdatabase. In particular, we

used the tablespage.sql, pagelinks.sql, categorylinks.sql, andredirect.sql, which provide

all the relevant data including the hyperlinks between articles, categories of articles, and

the category system. We performed several preprocessing tasks on the tables, including

the detection and removal of cycles in the category hierarchy. Although cycles should

usually be avoided as suggested byWikipedia, the category system inWikipediacontains



81

number of articles 2, 445, 642

number of hyperlinks between articles 109, 165, 108

average number of hyperlinks per article 45

number of distinct categories 329, 007

average number of categories per article 3

number of category-subcategory relationships 731, 097

Figure 3.7. Characteristics of the dataset.

a very small number (594 in the dataset) of elementary cycles6 due to various reasons.

We applied depth-first search algorithm to detect the elementary cycles. The category hi-

erarchy is made acyclic by removing the last encountered edge in each elementary cycle

during the depth-first search. Other performed preprocessing steps include: removing tu-

ples irrelevant to articles and categories; replacing redirect articles by their original articles;

removing special articles such as lists and stubs. We also applied basic performance tuning

of the database, including creating additional indexes onpageid in various tables. The

characteristics of the dataset are summarized in Figure 3.7. The total size of the tables is

1.2GB.

Queries: We experimented with20 keyword queries that we designed (Figure 3.8), in

addition to the open queries that the users came up with during user study (Section 3.6.2).

Parameters in algorithms: Each query was sent toGooglewith site constraint

site:en.wikipedia.orgto get the top200 (s=200) EnglishWikipediatarget articles. The rel-

evant category hierarchyRCH was then generated by applying Algorithm 3 on the afore-

mentionedMySQLdatabase. By default, Algorithm 4 returns top200 (n=200) facets and

Algorithm 6 generates10 facets (k=10). The value ofpenalty in Definition 7 was set

as7. It was empirically selected by investigating the relationship between the number of

unreachable target articles (|T − Tr|) and the total navigational costs of reachable targets

(
∑

p∈Tr
cost(Fr, p)).

6A cycle is elementary if no vertices in the cycle (except the start/end vertex) appear more than once.
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Q1 action film Q2 country singer

Q3 philosophers Q4 Texas universities

Q5 Turing Award winner Q6 missile

Q7 Ivy League schools Q8 NBA players

Q9 historic landmarks Q10 cartoon characters

Q11 Microsoft acquired game companies Q12 stand up comedian

Q13 graph theorists Q14 lakes in North America

Q15 American presidents Q16 battle far east

Q17 waterfall national park Q18 Chinese cuisine

Q19 premier league clubs Q20 PS3 game

Figure 3.8. Experiment queries.

3.6.2 User Studies

We conducted user studies to evaluate the effectiveness ofFacetedpedia, and to com-

pare the quality of the faceted interfaces generated byFacetedpediaandCastanet[40]. We

obtained the implementation ofCastanetfrom its authors. Note thatCastanetis intended

for static, short, and domain-specific documents with limited vocabularies. Nevertheless,

we appliedCastaneton the dynamic keyword search results. Although not originally de-

signed for such purposes,Castanetstill appears to be possibly the closest related work. We

use the same graphical user interface for both systems, to make the comparison irrelevant

to interface design.

The user studies were conducted online. The users all have college degrees or are in

college, including university students, faculty, staff, and financial and IT company work-

ers. We believe these users are experienced with Web search and comfortable with more

sophisticated access mechanisms, matching the target users of our system. To reduce the

overhead of the user, we partitioned the20 queries in Figure 3.8 into4 equal-size groups

and asked each user to only participate in the5 queries of one group. For each query group,

we sent user-study invitations to roughly equal number of people. Ultimately we were able

to collect opinions from totally36 users,8 each for2 groups, and10 each for the other2

groups.

For each query, we showed the query keywords and objective description to the user,

and asked the user to explore two interfaces pre-generated by FacetedpediaandCastanet,
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Choices– 1: useless; 2: not very useful; 3: useful to
some extent; 4: useful; 5: very useful

R1 My rating about usefulness of Facetedpedia.
R2 My rating about usefulness of Castanet.

Choices– Facetedpedia; Castanet
R3 Which interface is better than the other?

Choices– 1: strongly disagree; 2: disagree; 3: neutral;
4: agree; 5: strongly agree

R4 The facets in Facetedpedia conveys important concepts re-
garding the articles related to the query.

R5 Facetedpedia is useful for browsing and exploration purposes.
R6 I look forward to use this interface even in the future for

exploratory browsing purposes.

Figure 3.9. User study questions and available answers.

respectively. At the end of each query, the user was asked to provide response to3 ques-

tions, namelyR1-R3 in Figure 3.9. The available choices forR1 andR2 are ratings from

1:“useless” to5:“very useful”. The choices forR3 are “Facetedpedia” and “Castanet”. The

same process iterated through the5 queries in the group assigned to the user. After the

5 queries were done, the user was also provided opportunity totry arbitrary open queries

on Facetedpedia, and provided answers to questionsR4-R6 in Figure 3.9. The available

choices are ratings from1:“strongly disagree” to5:“strongly agree”. The same open query

study, however, was not possible forCastanetbecause the implementation we obtained

from the authors takes about5 minutes to process each query and therefore could not be

used for dynamic queries. The reason is that it checksWordNetfor each word in construct-

ing category hierarchy. (Remember it was designed for staticcollection of short texts.)

In Figure 3.10, column 2 and column 3 records average user ratings per query on

questionsR1 andR2 respectively. Column 4 and 5 represent user’s absolute preference on

one system over the other. Clearly, from the results,Facetedpediareceives much stronger

feedback thanCastanetonR1 andR2. Also, for absolute preference, user prefersFaceted-

pedia over Castanet almost unanimously. Figure 3.11 records average user ratings per

group forR4, R5 andR6. As it can be seen, majority of the groups provide strong positive
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Average R1 Average R2 R3-Facetedpedia R3-Castanet

Q1 3.5 2.5 7 1

Q2 3.5 2.625 5 3

Q3 3.5 2.875 5 3

Q4 3.625 2.5 7 1

Q5 3.375 2.5 7 1

Q6 3.625 3.375 6 2

Q7 4.0 3.625 5 3

Q8 3.75 3.625 4 4

Q9 4.125 3.25 7 1

Q10 3.5 3.875 4 4

Q11 4.2 3.1 9 1

Q12 3.8 3.2 8 2

Q13 3.8 3.5 6 4

Q14 3.7 3.5 6 4

Q15 3.7 3.7 6 4

Q16 3.9 2.9 9 1

Q17 4.1 3.1 9 1

Q18 4.2 2.9 9 1

Q19 3.7 2.7 7 3

Q20 3.6 3.1 6 4

Figure 3.10. Usefulness ofFacetedpediaandCastanet.
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dia for open queries.
Figure 3.12. Execution time ofFacetedpedia

vs. number of target articles.

opinion the about usefulness of facets and the interface generated byFacetedpediaand they

believeFacetedpediainterface is effective for exploration purposes.

3.6.3 Characteristics of Generated Facets

Our experiments compared the effectiveness of three algorithms: hill-climbing (Al-

gorithm 6),top-k– selecting the topk facets ranked by Algorithm 4, andrandom-k– ran-

domly choosingk facets. Figure 3.13 shows the average characteristics of the faceted

interfaces generated by these methods. Althoughhill-climbing had a slightly worse target

article coverage than the other two (5% less), it outperformed them in pair-wise similarity

which means thek facets selected have smaller overlap of navigational paths. The detailed

tracing results show thathill-climbing started from choosing top-k facets and gradually
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Coverage average

width

average

height

average

pair-wise

similarity

Random-k 72.3% 53.8 8.6 0.108

Top-k 73.9% 10.2 5.5 0.187

Hill-

climbing

68.9% 9.8 5.7 0.072

Figure 3.13. Compare the quality of faceted interfaces generated by various methods.

replaced similar facets by less similar ones. The finalk facets selected byhill-climbing

usually were still within the top30%, while the ones selected byrandom-k were evenly

distributed among the results from single-facet ranking. The average width and height of

the facets generated by the three methods were about the same, except thatrandom-k oc-

casionally chose some much wider facets. Their average width and height were usually

around10 and6, respectively. Therefore the fanout of internal nodes and the length of

navigational paths are within a reasonable range for the users. Overall,hill-climbing helps

us reducing overlapping facets without losing much coverage of target articles.

3.6.4 Efficiency Evaluation

We evaluated the scalability of our approach by measuring the average execution

time of discoveringk=10 facets for varying number of target articles (s from 50 to 500). As

can be seen from Figure 3.12,Facetedpediascales well since the execution time increases

linearly by the number of target articles. It also shows thatFacetedpediaalready achieved

fairly fast response without much performance optimization. In average it took3 seconds

to discover the facets for50 target articles, and5 seconds for200 target articles.

3.7 Discussion

The faceted interfaces generated byFacetedpediaare certainly not perfect and could

be improved on many aspects. The pitfalls and drawbacks of our system pose several open
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challenges which could possibly form new research directions. It is our plan to forward our

investigation along the following lines:

First, hyperlinks inWikipediaarticles are not always good features of the target arti-

cles. In many cases the hyperlinked articles are important attribute articles that are strongly

related to the target articles. However, there are also cases in which the authors of an ar-

ticle make hyperlinks to other articles not because they have strong relationships with the

target articles. The author may believe that the readers would not be familiar with an entity

mentioned in an article, therefore decides to make that mention an anchor text linking to

the article describing the entity. The hyperlinked articleis not necessarily highly related to

the target article. For example, inWikipediaarticle IndependenceDay (film), hyperlinked

articles such asWill Smithand20th CenturyFoxare certainly valid attribute articles, while

Moon andMexicomay not be. To assure the quality of the discovered facets, weplan to

investigate data mining methods and NLP techniques in finding truly related articles.

Second, we found through experiments that a category hierarchy based on both rich

semantics and strong IS-A relationships will provide more accurate facets than the current

Wikipediacategory system. This “grass-roots” folksonomy inWikipedia, albeit containing

user-generated categories with richer semantics than a thesaurus such asWordNet, is not

always organized by rigorous IS-A relationships. For instance, it includes subcategories

such asPeoplefrom TexasandHistory of Texasunder categoryTexas, which can be mis-

leading to a user who plans to navigate through geographicalconcepts by choosingTexas.

We plan to refine the category hierarchy for strong IS-A relationships.

Third, we need to design methods to improve the diversity of the top ranked facets

generated byFacetedpedia. Since our ranking metric penalizes the facets that have small

coverage, the top ranked ones may tend to come from relatively large concept domains such

as people, organizations, etc. To avoid missing useful facets from small concept domains,
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one idea is to first cluster the attribute articles into several groups and then make sure that

each group has at least a number of facets in the final results.

3.8 Conclusion

In this thesis we proposedFacetedpedia, a faceted search system overWikipedia.

This system provides a dynamic and automated faceted searchinterface for users to browse

the articles that are the result of a keyword search query. Given the sheer size and com-

plexity of Wikipediaand the large space of possible faceted interfaces, we proposed metrics

for ranking faceted interfaces as well as efficient algorithms for discovering them. Our ex-

perimental evaluation and user study verify the effectiveness of our methods in generating

useful faceted interfaces. Moreover, our findings pose several open problems for future

study. It would also be interesting to further investigate if the proposed framework and

methods can be applied to other applications, or even the generic Web.



CHAPTER 4

STAR COMPOSITE ITEMS

4.1 Introduction

While many online sites are still centered around facilitating a user’s interaction with

individual items (such as buying an iPod or booking a flight),an increasing emphasis is

being put on helping users with more complexsearchactivities, such as comparing similar

products and determining which products are compatible with each other. For example,

Amazon and Zappos offer the “Customers Who Viewed This Item Also Viewed” feature

to engage users more effectively. Similarly, the “Explore by Destination” feature from

Expedia invites users to examine related sights and activities in a given geographic location.

At the center of those activities is the notion ofcomposite item. It consists of a

central item, which is the main focus of the activity, and asatellite package, which is a set

of satellite itemsof differenttypesthat arecompatiblewith the central item. Compatibility

can be eithersoft (e.g., other books that are often purchased together with the book being

browsed) orhard (e.g., battery packs that must be compatible with the laptopor a travel

destination that must be within a certain distance from the main destination). Composite

items are often further constrained by certain criteria, such as a price budget on purchases

and a time budget on travel itineraries.

Consider a user shopping for an iPhone with a price budget. In addition to the list of

available iPhones within the budget, it is also desirable topresent, along with each iPhone,

a small set of packages, each of which consists of compatibleitems that can be purchased

together with the iPhone and whose total price is within the budget. An example of such a

package is{Belkin case, Bose sounddock, Kroo USB cable}. Here, compatibility between

88
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each item in the package and the returned iPhone, can be derived using item co-browsing

and co-purchasing histories or absolute product compatibilities provided by manufacturers.

Similarly, consider a user interested in discovering the northern and central parts of France.

Typically, such a user will have a main destination (e.g.,Paris) and a visit duration (akin

to the price budget). In addition to the main destination, itis also desirable to present

a set of small travel packages, each of which contains a few trips to nearby places (e.g.,

{Normandy, Fontainebleau, Versailles}), that can be completed within the indicated visit

duration. Here, compatibility can be defined based on intrinsic properties of each location,

such as the geographic distance between the central location and each satellite location.

The goal of this work is to develop a principled approach for constructing such composite

items and helping users explore them efficiently and effectively.

We address three main technical challenges. First, we aim tosolve the problem of

identifying all valid andmaximalsatellite packages given a central item. A valid package

must satisfy a given budget such as a visit duration. A maximal package is the largest

valid set of satellite items, where each item is compatible with the central item. A valid

and maximal package is thereforea set of compatible satellite items, such that, collectively

with their central item, satisfy a budget and are not subsumedby another valid package.

We develop a random walk algorithm for that purpose.

The number of valid and maximal packages associated with a central item is typically

very large and presenting all of them to the user is impractical. Hence, we tackle the

challenge ofsummarizingthe packages associated with a central item intok representative

packages. Intuitively, the goal of summarization is to expose the user to as many satellite

items as possible with as few as possible summary packages. Those packages can then

be presented to the user, who can directly use them, or selecta subset of satellite items

to construct their desired composite items,without worrying about checking the budget.
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We achieve this goal based on a principle calledmaximizingk-set coverageand explore a

greedy algorithm and a randomized algorithm for efficient summarization.

Finally, when visualizing the satellite packages associated with a central item, the

user experience is often affected by the diversity of satellite items encountered in sequential

packages. Intuitively, given that most users explore ranked lists in a top-down fashion,

there is an ordering of the packages associated with a central item, thatminimizes overlap

between any two consecutive packages and hence,maximizes their visual diversity. Our

third challenge is therefore to efficiently identify an ordering of the k packages which

maximizes the visual effect of diversity.We prove that this problem in its generality is

NP-Complete and propose an efficient heuristic algorithm forsolving it.

In summary, we make the following main contributions:

• We propose the notions of composite item and compatible satellite package in the

context of online data exploration. To help users effectively explore composite items,

we formalize the problems of finding valid and maximal packages given a budget,

finding representative packages through summarization, and reordering packages for

visual effect optimization (Section 4.2).

• We design and implement a random walk algorithm to efficiently construct all valid

and maximal packages (Section 4.3).

• We introduce a novel principle for summarizing a large set ofmaximal packages

associated with one central item, and develop a max-k set coverage algorithm for

efficient summarization. We further improve the efficiency of summarization by in-

tegrating it with the random walk package construction algorithm (Section 4.4).

• We formulate the problem of optimizing the visual effect ofk packages associ-

ated with the same central item as that of finding an ordering of the packages that

minimizes overlap between consecutive packages. We prove that this problem is

NP-Complete, and design and implement a heuristic algorithmfor solving it (Sec-
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tion 4.5). In addition, we also prove that this algorithm is optimal when there is only

one satellite type.

We conduct extensive experiments on data sets from Yahoo! Shopping site to verify

the effectiveness and efficiency of our algorithms (Section4.6). Finally, we discuss related

works and conclude in Sections 4.7 and 5.7, respectively.

4.2 Model and Problem Statement

We start by introducing our data model and some basic definitions, and then we

formally state our exploration problem.

Let C denote the central type (e.g.,iPhone) andS = {S1, . . . ,Sn}, the set of satellite

types (e.g.,Case, Speaker). We refer to an instance of a central (resp., satellite) type as a

central (resp., satellite) item. Each item (central or satellite) has a unique identifierid and

a set of attributes including a required application-dependent attribute,cost. For example,

the cost of an item may represent the price for retail products or the visit duration for travel

destinations. Compatibility between a central itemc and a satellite items, is provided

using the predicatecomp(c, s), which is true ifc ands are compatible. For example, for

products, compatibility can be defined according to manufacturer specifications, based on

co-purchasing histories gathered from millions of users, or a combination of the two. Each

central type with its set of compatible satellite types formthe composite type, denoted

[C,S1, . . . ,Sn].

4.2.1 Valid and Maximal Packages

Definition 11 (Satellite Package). A satellite package, p, for a given composite type,

[C,S1, . . . ,Sn], is a set of satellite items{s1, . . . , sn}, where eachsi is either an item of

satellite typeSi or a null item (shown as symbol “−”) indicating that p does not contain

an item ofSi.
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A packagep is said to becompatiblewith a central itemc iff ∀s ∈ p, comp(c, s)

= true, i.e., each satellite items in packagep is compatible with the central itemc.

Definition 12 (Validity). Given a budgetb, a valid composite item, denoted(c, s1, . . . , sn),

is an instance of the composite type[C,S1, . . . ,Sn], s.t. the satellite package{s1, . . . , sn}

is compatible with the central itemc and (c.cost +
∑

i(si.cost)) ≤ b. We refer to

{s1, . . . , sn} as avalid package.

Budget constraints are typically provided by the user at query time. Depending on

the application, it may represent a price (e.g., for retail products), a time constraint (e.g.,

for travel itineraries), or a combination thereof.

As an example, consider a user shopping an iPhone for less than $350. Assume we

have the following table containing five iPhones as central items. Out of the five candidate

iPhones, four qualify with price below$350.

Table 4.1. Central Items

iPhone memory price
iPhone 3G 8GB $99
iPhone 3G 16GB $199
iPhone 3G S 8GB $199
iPhone 3G S 16GB $299
iPhone 3G S 32GB $399

Also, consider the satellite items in Table 4.2, grouped by type for ease of exposition.

There are7 types in the table. Assume, for simplicity, that all satellite items in Table 4.2

are compatible with all available iPhones in Table 4.1. Table 4.3 then lists some of the valid

packages along with their central items, given the budget of$350.

As shown in the example, even with a small number of satelliteitems, the number

of valid packages can quickly become overwhelming. Therefore, we define the notions of

valid and maximal package(or simplymaximal package) andmaximal composite item.
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Table 4.2. Satellite Items and their Price

type item price
Case s1

case: Kroo Case $14.95
s2
case: Belkin Sport Case $29.95

s3
case: Mesh Sport Case $18.95

s4
case: Folio Leather Case $39.95

Charger s1
charger: CarFM Charger $59.95

s2
charger: Kensington Deluxe Charger$99.00

s3
charger: Insipio Car Charger $24.95

s4
charger: Wireless Car Charger $14.95

Kit s1
kit: iKlear Spray Kit $24.95

s2
kit: iPhone wipes $9.95

Cable s1
cable: Dock 2ft Cable $19.95

s2
cable: Belkin Stereo Cable $14.95

s3
cable: Kroo USB Cable $34.95

Speaker s1
speaker: Twin Speaker $29.95

s2
speaker: Portable Bose Sounddock $149.00

s3
speaker: Scosche Speaker Dock $64.95

Screen s1
screen: AntiGlare Screen $6.95

s2
screen: BodyGuardz Screen $24.95

s3
screen: Macally Mirror Screen $14.95

s4
screen: Zagg Invisible Shield $66.00

Pen s1
pen: Touch Pen $19.95

s2
pen: Kroo Stylus $9.75

Table 4.3. Examples of Valid Satellite Packages

central item/capacity satellite packages total price

iPhone 3G/8GB {s1
case, s

1
charger, s

1
kit, s

1
cable, s

1
speaker, s

2
screen, s1

pen} $273.70
iPhone 3G/8GB {s4

case, s
2
charger, − , s3

cable, − , s1
screen, s1

pen} $299.80
iPhone 3G/8GB { − , − , − , − , s2

speaker, − , s2
pen} $257.75

iPhone 3G/8GB {s2
case, s

4
charger, − , s2

cable, s
3
speaker, s

4
screen, s1

pen} $309.75
iPhone 3G/8GB . . . . . . . . .

iPhone 3G/16GB {s2
case, s

4
charger, − , − , s3

speaker, s
3
screen, s1

pen} $343.75
iPhone 3G/16GB . . . . . . . . .

. . . . . . . . . . . .
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Definition 13 (Maximality). Given a central item and a budget constraint, amaximal

packageis a valid package, to which no further satellite item can be added without violating

the validity. A maximal package, together with its associated central item, form amaximal

composite item.

For example, the two packages{s4
case, s

2
charger, s

1
kit, s

4
screen, s1

pen} and{s2
speaker} form

maximal composite items with the central itemiPhone 3G/8GBand iPhone 3G S/8GB,

respectively. Hence, any strict subset of those packages isnot maximal. We now define our

first technical problem of maximal package construction.

PROBLEM (Maximal Package Construction.)

Given a central itemc, and a budgetb, efficiently compute the maximal composite item set

Mc formed by the set of valid composite items, which share the same central itemc, s.t.,

the package within each composite item is maximal.

Examining maximal composite items, rather than enumerating all valid composite

items, is useful to an end user because it drastically reduces the number of packages to

be explored while preserving all compatible satellite items. At the end, users can always

choose a subset of the items in the package to continue their transaction. We discuss our

solution to the above problem in Section 4.3.

4.2.2 Summarization

While it is much smaller than the set of all valid packages,Mc can still become very

large in practice. More importantly, different maximal packages associated with the same

central item, may overlap significantly in their satellite items. For example, both{s2
case,

s4
charger, s3

cable, s3
speaker} and{s2

case, s4
charger, s3

speaker, s3
screen, s1

pen} are maximal packages

w.r.t. the central itemiPhone 3G/16GB(for a budget of$350), but they overlap consider-

ably. Hence, in addition to finding maximal packages, we further propose tosummarize
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Mc into a smaller setIc, containingk representativepackages (typically5− 10). We now

define the summarization problem.

PROBLEM (Summarization.) Given a maximal composite item setMc and k,

efficiently compute a setIc of k representative packages fromMc, s.t. the number of

packages inMc represented by thek packages inIc is maximized.

We refer to the output setIc as the set of summary packages, orsummary set. The

motivation is to present to the user a short list ofk maximal packages and yet represent

as many valid packages as possible, thus offering the widestchoice to the user. Table 4.4

shows two examples of maximal composite item sets containing four representative pack-

ages each associated with the iPhone 3G/8GB. We discuss our summarization solution in

Section 4.4.

Table 4.4. Two Sets of Summary Packages for Central ItemiPhone 3G/8GB

p1 = {s1
case, s

1
charger, s

1
kit, s

1
cable, s

1
speaker, s

2
screen, s1

pen}
p2 = {s4

case, s
2
charger, − , s3

cable, − , s1
screen, s1

pen}
p3 = { − , − , − , − , s1

speaker, − , s1
pen}

p4 = {s4
case, s

2
charger, − , s3

cable, − , s1
screen, s1

pen}
p1 = {s1

case, s
1
charger, s

1
kit, s

1
cable, s

1
speaker, s

2
screen, s1

pen}
p2 = {s1

case, s
1
charger, − , s3

cable, − , s1
screen, s1

pen}
p3 = {s1

case, s
4
charger, − , s2

cable, s
3
speaker, − , s1

pen}
p4 = {s2

case, s
4
charger, − , s2

cable, s
3
speaker, s

1
screen, s1

pen}

4.2.3 Visual Effect

The next challenge after obtainingk summary packages for a given central item, is

to effectively present them to the user, typically in a ranked list format. While ranking

packages according to a particular attribute (such as price) is desirable in certain scenarios
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(e.g., when the user is looking for the cheapest package), itis not always applicable. For

many users, once the package satisfies their budget, price isno longer a critical factor in

their purchase decision, and many other factors come into play. One such factor isdiversity,

i.e., the user will like to explore many different packages associated with a given central

item, quickly. Our summarization technique addresses diversity to a certain extent since it

aims at returning representative packages. However, it maystill return packages sharing

satellite items. Hence, we introducevisual effect, a new principle which guides how a set of

packages associated with the same central item, should be ranked in order to expose users

to as many different satellite items as early as possible in their exploration process.

The visual effect principle aims to sort a set of packagesIc associated with a central

item c, such thatpresenting a package that is too similar to a package the userhas just

seen, is avoided. This is particularly important for satellite types which matter to the user.

Hence, to formally define the visual effect principle, we introduce the notion ofsatellite

type prioritization, denotedO = S1 ≺ S2 ≺ . . . ≺ Sm, which indicates thevisual order

of importanceof satellite typesSi to a user, meaning that it is more important to ensure

diversity inS1 than inS2, and so on. Indeed, while one user looking for an iPhone may

prefer seeing variety in chargers over seeing variety in speakers, another user may prefer

variety in protective screens over variety in cables, etc. Adefault prioritization can often

be set if it is not provided by the user. We can now define the notion of penalty.

Definition 14 (Penalty). Given a satellite type prioritization,O = S1 ≺ S2 ≺ . . . ≺ Sm,

and two packagesp1 andp2 associated with the same central item, thepair penaltybetween

p1 andp2 is a vector,pv(p1, p2) = 〈v1, v2, . . . , vm〉, wherevi = 1 if p1 andp2 share the

same item on typeSi, andvi = 0 for all other scenarios, including the cases where one of

the two packages does not have an item for typeSi. Letpv(p1, p2)[i] refer tovi.

Hence, we define thepenaltyfor an ordering of packages associated with the same

central itemc, Pc = [p1, p2, . . . , pk], as a vector,pv(Pc) = 〈a1, a2, . . . , am〉, whereai =



97
∑k−1

j=1(pv(pj, pj+1)[i]). pv(Pc) is an aggregation over the pair penalties of all consecutive

packages inPc.

Intuitively, the penalty vector of an ordering of packages associated with the same

central item, keeps track of the number of times the same satellite item has appeared in con-

secutive packages. It is a good indicator of howvisually diversethe ranked list of packages

appears to the user. As an example, let us examine the two summary sets associated with

iPhone 3G/8GB in Table 4.4. The first ordering[p1, p2, p3, p4], has penalty〈0, 0, 0, 0, 0, 0, 3〉

which is computed by aggregating pairwise penalties in the ordering:pv(p1, p2), pv(p2, p3),

andpv(p3, p4). For example, given p1 = (s1
case, s

1
charger, s

1
kit, s

1
cable, s

1
speaker, s

2
screen, s1

pen),

p2 = (s4
case, s

2
charger, − , s3

cable, − , s1
screen, s1

pen)

we havepv(p1, p2) = 〈0, 0, 0, 0, 0, 0, 1〉. The penalty for the second set of packages (in

their listed order) is〈2, 2, 0, 1, 1, 0, 3〉.

We now formally define our third technical problem of finding apackage ordering

with theoptimal visual effect.

PROBLEM (Visual Effect Optimization.) Given a setIc of k packages associated

with the same central itemc and a satellite type prioritizationO = S1 ≺ S2 ≺ . . . ≺ Sm,

find an orderingPc of the packages s.t.,∀P ′
c,Pc 6= P ′

c:

- pv(Pc)[1] < pv(P ′
c)[1], or

- ∀i, 0 < i < m, pv(Pc)[i] = pv(P ′
c)[i], or

- ∃h,∀i, 0 < i < h, pv(Pc)[i] = pv(P ′
c)[i], pv(Pc)[h] ≤ pv(P ′

c)[h].

Intuitively, the ordering with optimal visual effect incurs smaller penalties on higher

priority types. We discuss the problem complexity and a heuristic algorithm in Section 4.5.
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4.3 Maximal Package Construction

Recall from Section 4.2.1 that a maximal package is a set of satellite items associated

with a central item where 1) each satellite item is compatible with the central item, 2) the

total cost of the package and central item is within budget, and 3) thereis no other valid

package containing it as a proper subset. Given a central item, our first technical challenge

is to construct its set of maximal packages,Mc, efficiently.

This problem is closely related to frequent (maximal) itemset mining (FIM) [55, 56],

where the goal is to identify (maximal) sets of items that co-occur frequently (i.e., above

a certainsupport threshold) in a transaction database. There are two main differences,

however, between this problem and our maximal package construction problem. First, the

candidate itemsets in FIM are limited to items appearing within the database transactions,

while the packages in our problem need to be constructed, subject to compatibility and

budget constraints. Second, checking the satisfaction of an itemset against thesupport

threshold requires scanning through the transaction database, while thebudgetconstraint

in our problem, can be checked using the cost of each item in the package itself, which

makes our problem easier.

Given its resemblance to FIM, one straight-forward algorithm to solve our problem

is to adapt the Apriori-style algorithms [55]. This algorithm simply iterates through pack-

ages level-wise (i.e., single-item packages first, then two-item packages, etc.), selecting

compatible packages and eliminating those that no longer satisfy the budget or that can

be subsumed by another larger package satisfying the budget. The result is the correct

maximal composite item setMc.

Constructing the correctMc using an Apriori algorithm is costly when the results

have to be computed and returned to the user in real time. The number of valid packages

to go through can be overwhelming when the number of satellite items is large, which is
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typically the case. As a result, we propose an alternative algorithm (adapted from [57]),

MaxCompositeItemSet, that computes an approximateMc based on random walks.

4.3.1 Algorithm MaxCompositeItemSet

Algorithm 7 illustrates our random walk algorithm. Intuitively, it constructs random

maximal packages one at a time and stops after each current random maximal package

has been generated at least twice. The routineMaxCompositeItem (Figure 4.1) accom-

plishes the random walk procedure. It starts from a random single item package and picks

the next random item which is different from previously added items and which satisfies

compatibility, and validity until the package is maximal.

Algorithm 7 : MaxCompositeItemSet(c,A, b) : computing maximal composite

item setMc

Require:

c, the central item,

A, the set of all satellite items compatible withc,

b, the budget constraint

1: Mc = {}

2: repeat

3: p = MaxCompositeItem(c,A, b)

4: if p /∈Mc then

5: Mc =Mc ∪ {p}

6: count(p) = 1

7: else

8: count(p) + +;

9: until {∀p ∈Mc, count(p) ≥ 2}

10: return Mc ;

We illustrate this algorithm with the running iPhone example from Section 4.2.
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Function MaxCompositeItem(c,A, b) : Subroutine for computing one maximal package
p

Require:
c, the central item,
A, the set all satellite items compatible withc,
b, the budget constraint

1: p = {}
2: pick a randoma ∈ A, adda to p
3: repeat
4: pick a randoma ∈ A, a /∈ p, such that: (1)∀s ∈ A, a ands are of different types, (2)a is

compatible withc, and (3)a.cost +
∑

si∈A(si.cost) ≤ b
5: adda to p
6: until {no new item can be added}
7: return p

Figure 4.1.Function MaxCompositeItem.

Example 9. Consider the central item, iPhone 3G/16GB (costing$199), and a total price

budget of$300, which means a total of$101 as the price budget for the satellite package.

Assume there are5 satellite items that are compatible with the central item:s1
kit($24.95),

s3
cable($34.95), s3

speaker($64.95), s4
screen($66.00), ands2

pen($9.95).

The set of maximal packages in this example are:

{s1
kit, s

3
cable, s

2
pen}, {s3

cable, s
3
speaker}, {s3

cable, s
4
screen},

{s1
kit, s

3
speaker, s

2
pen}, {s1

kit, s
4
screen, s2

pen}.

The algorithm will randomly construct one of those five packages at each iteration,

keep counts of the packages it has seen so far, and stop when the counts of every seen

packages is at least two. Figure 4.2 depicts the random walk process as selecting random

paths in the package lattice. Algorithm 7 may not generate the full Mc. For example,

it may construct each of the first four packages twice before seeing the last package, in

which case, it will produce an approximate (i.e., incomplete)Mc instead. We discuss the

algorithm termination condition and the probability of finding all ofMc next.
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Figure 4.2. Random Walk on Item Lattice.

4.3.2 Termination Condition

The termination condition used in Algorithm 7 is inspired bytheGood Turing Test

that is often used in population studies to determine the number of unique species in a large

unknown population [58]. Consider a large population of individuals drawn from an un-

known number of species with diverse frequencies, including a few common species, some

with intermediate frequencies, and many rare species. Let us draw a random sample ofN

individuals from this population, which results inn1 individuals that are the lone represen-

tatives of their species, and the remaining individuals belong to species that contain multi-

ple representatives in the sample population. Then,P0, which represents the frequency of

all unseen species in the original population can be estimated using the following Lemma:

Lemma 4.3.1(Good Turing Test). P0 = n1/N .

The assumption here is that the overall probability of hitting one rare species is high

while the probability of hitting the same rare species is low. Therefore, the more the sample

hits the rare species multiple times, the less likely there are unseen species in the original

population. We apply Lemma 4.3.1 to the maximal package construction problem, where

the maximal packages map to the species and the probabilities of constructing each max-
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imal package inMaxCompositeItem are the frequencies. The set of maximal packages

constructed through the random walk process is the sample population. By ensuring this

process visits each constructed maximal package at least twice, we are essentially ensuring

thatn1 is 0. Thus, using Lemma 4.3.1,P0 can be estimated to be0, which means it is highly

likely that all maximal packages have been discovered.

4.4 Summarization

Presenting the full set of maximal packages to the user directly has two main chal-

lenges as discussed in Section 4.2.2. First, the number of maximal packages can be ex-

tremely large for effective exploration by the user. Second, there can be significant overlaps

between the maximal packages. The goal of summarization is therefore to findk represen-

tativemaximal packages for further exploration by the user.

One commonly adopted approach for summarization is clustering. Specifically, a

pair-wise distance measure can be defined to measure the distance between any two pack-

ages. Then, various clustering algorithms (e.g., k-means)can be used to group the packages

into k clusters, and one package can be selected from each cluster to form thek represen-

tatives. However, defining a good distance measure in our case is difficult. For example,

Jaccard distance can not tell the difference between a pair of single-item packages and a

pair of multiple-item packages, as long as there is no overlapping item in either pair.

In this work, we explore a different approach to summarization by leveraging the

principle of maximizing coverage. Specifically, we consider the goal of summarization

as the following: maximizing the number of valid packages a user can construct with the

k maximal packages, where we consider a package isconstructibleif it is subsumed by

(i.e., is a subset of) one of thek maximal packages. Intuitively, this provides the user with
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Figure 4.3. Example Maximal Packages to be Summarized..

the highest flexibility in creating a desired package without worrying about checking the

budget constraints. Formally, we have:

Definition 15 (Set Coverage). Given a set of packagesM = {m1,m2, . . . ,mn}, let I =

2m1
⋃

2m2
⋃

. . .
⋃

2mn be the union of all powersets of the individual packages inM, the

set coverageofM, denotedCoverage(M), is |I|, the number of unique sets in the union.

The goal of summarization is therefore to compute a set ofk representative maximal

packagesIc such thatCoverage(Ic) is maximized.

This principle is better illustrated in Figure 4.3, where the numbers indicate satel-

lite items and the circles indicate maximal packages. (For simplicity, we adopt abstract

items in this example and assume that these are all the possible valid maximal packages.)

Assume we want to pick2 packages out of the4 total packages (i.e.,k = 2). Selecting

p1 andp3 (which turns out to be the best summary in this example) will allow the user to

construct a total of279 unique valid packages:255 packages can be constructed from the

8-item packagep1 and31 packages can be constructed from the5-item packagep3, minus

the 7 packages that are doubled-counted because of the3-item overlap between the two

packages. In contrast, selecting the two non-overlapping packagesp2 andp3 will only give

us38 constructible packages.
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Function ComputeCoverage(M) : Subroutine for Coverage Computa-
tion
Require:

M = {m1, m2, . . . , mn}, the set of packages
1: M1 =

∑n
i=1(2

|mi| − 1)

2: M2 =
∑n

1≤i<j≤n(2|mi

⋂

mj | − 1)

3: M3 =
∑n

1≤i<j<k≤n(2|mi

⋂

mj

⋂

mk| − 1)
4: . . .
5: Mn = 2|m1

⋂

...
⋂

mn| − 1
6: C = M1 −M2 + M3 − . . . (−1)n−1Mn

7: return C

Figure 4.4. FunctionComputeCoverage.

Intuitively, the coverage of a set of packages can be computed based on theInclusion-

Exclusion Principle[59] (a standard technique for deriving the cardinality of the union of

a set of sets) using the procedure described in Figure 4.4. This naive way of coverage

computation has an exponential complexity, since eachMi may require the summation of

an exponential number of terms. As a result, summarization by maximizing coverage turns

out to be a hard problem.

To address this performance challenge, in Section 4.4.1, weintroduce a baseline

greedy algorithm and a fast greedy algorithm for efficientlycomputingk summary pack-

ages, with a coverage that is within a bounded factor of the optimal coverage. Furthermore,

in Section 4.4.2, we show that the performance can be furtherimproved by generating

summary packages directly from individual items, a processinspired by the random walk

process in Section 4.3.

4.4.1 Greedy Summarization Algorithms with Bounded Approximation Factors

We first present the baselineGreedySummarySet, which is shown in Algorithm 15.

The algorithm starts by selecting the largest package (i.e., the package with the largest num-

ber of items). At each iteration, it selects the package that, together with the previously cho-

sen packages, produces the highest coverage (as computed byFunctionComputeCoverage
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in Figure 4.4). The algorithm stops afterk packages have been chosen. Consider again the

example in Figure 4.3: whenk = 2, Algorithm 15 produces the summary{p1, p3}, and

whenk = 3, it produces the summary{p1, p3, p4}.
Algorithm 8 : GreedySummarySet(Mc, k) : Algorithm for computingk sum-

mary packages
Require:

Mc, the set of maximal packages for central itemc,

k, desired number of summary packages

1: Ic = {}

2: let packagep be the largest package inMc

3: removep fromMc

4: addp to Ic
5: iteration = 1

6: while iteration ≤ k do

7: p = argmaxp∈Mc(ComputeCoverage(Ic
⋃{p}))

8: removep fromMc

9: addp to Ic
10: iteration + +

11: return Ic

This baseline algorithm is directly adapted from a greedy approximate algorithm de-

signed for theMaximumk-Set Coverproblem [60], which is defined as follows. Given a

set of setsX over a set of elementsE, find k sets inX such that the union of thek sets

is maximized. Our summarization problem can be mapped to theMaximumk-Set Cover

problem by considering each subset ofMc as an element inE. The greedy approximate al-

gorithm for theMaximumk-Set Coverproblem is known to have a(1−1/e) approximation

ratio [60], therefore we have:
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Lemma 4.4.1. Given the set of maximal packagesMc, let the optimal set ofk pack-

ages beIopt
c and the set ofk packages returned byGreedySummarySet be Igreedy

c , then

Coverage(Igreedy
c )

Coverage(Iopt
c )

≥ (1− 1/e), wheree is the base of the natural logarithm.

Because of the need to compute the coverage of multiple sets ateach iteration, Al-

gorithm 15 can still be quite expensive in practice. We describe FastGreedySummarySet

(Algorithm 9) that improves upon the performance ofGreedy SummarySet, while pro-

ducing the same output (therefore maintaining the same approximation bound). The key

idea within the fast greedy algorithm is to leverage Bonferroni upper and lower bounding

techniques [59] to speed up the coverage calculations, and make sure the decision made

in each iteration ofFastGreedySummarySet is exactly the sameas the decision made by

GreedySummarySet.
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Algorithm 9 : FastGreedySummarySet(Mc, k) : Algorithm for computingk

summary packages
Require:

Mc, the set of maximal packages for central itemc,

k, desired number of summary packages

1: Ic = {}

2: iteration = 1

3: while iteration ≤ k do

4: r = −1

5: repeat

6: r = r + 2

7: for p ∈Mc do

8: p.lower = BonferroniLower(Ic
⋃{p}, r)

9: p.upper = BonferroniUpper(Ic
⋃{p}, r)

10: p1 = argmaxp′∈Mc
(p′.lower)

11: p2 = argmaxp′∈Mc,p′ 6=p1(p
′.upper)

12: until (p1.lower ≥ p2.upper)

13: removep1 fromMc

14: addp1 to Ic
15: iteration + +

16: return Ic

The algorithm estimates the coverage using theBonferroni Inequalities[59] with a

depth parameterr, an odd number between1 andn wheren is the total number of pack-

ages inMc. Specifically, the lower and upper bound estimates of the coverage can be

computed as:BonferroniLower(M, r) = M1 − M2 + M3 − . . . + Mr − Mr+1, and

BonferroniUpper(M, r) = M1−M2 + M3− . . . + Mr. Whenr is relatively small com-
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pared ton, those bounds can be computed efficiently. WhileGreedySummarySet computes

the exact coverage of each candidate package at each iteration, FastGreedySummarySet

considers the candidate packages in a round-robin manner and computes the (increasingly

tighter) lower and upper bounds of the coverage by graduallyincreasingr. Furthermore,

whenr is incremented, the upper and lower bounds can be computed incrementally from

those computed earlier with a smaller value ofr. At each iteration, a package is cho-

sen when its coverage lower bound is no smaller than the coverage upper bounds of the

remaining candidates. The idea of leveraging the lower and upper bounds is motivated

by the TA-style algorithms developed for top-k ranking problems [61], since the function

ComputeCoverage exhibits a monotonic behavior with increasingr.

4.4.2 Randomized Summarization Algorithm

Both greedy algorithms described in Section 4.4.1 take as input the full set of maxi-

mal packagesMc. As a result, their performance is constrained by the package construc-

tion time (i.e., Algorithm 7). In practice, the number of maximal packages can be large

and therefore limits how fast the summary can be generated. In this section, we describe

a randomized algorithm,ProbSummarySet, that producesk representative packages di-

rectly from the set of compatible satellite items, without generating the full set of maximal

packages first.
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Algorithm 10 : ProbSummarySet(Vc, b, k) : Randomized Algorithm for comput-

ing k summary packages
Require:

Vc, the set of all satellite items across all satellite types for the central itemc,

b, the budget,

k, desired number of summary packages

1: Ic = {}

2: i = 1

3: for a ∈ Vc do

4: a.seenCnt = 1

5: while i ≤ k do

6: p = SelectRepresentative(Vc, b)

7: if p /∈ Ic then

8: addp to Ic
9: for a ∈ p do

10: a.seenCnt + +

11: i + +

12: return Ic ;

As shown in Algorithm 10,ProbSummarySet has the same overall structure as

MaxCompositeItemSet (Algorithm 7), i.e., it makes similar random walks to generate

a set of maximal packages. There are two main differences. First, Algorithm 10 stops as

soon ask packages are generated. Second, more importantly, each random walk (Function

Select Representative in Figure 4.5) invoked from within Algorithm 10 is designed to

generate a package that is as “different” as possible from the packages already discovered

by the previous random walks, thus maximizing the potentialcoverage of the resulting set

of maximal packages.
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We now explain the rationale behind the computation of the probabilities of items

being chosen (inside FunctionSelectRepresentative, lines 1-4). Consider theith it-

eration and assume thatIc = {m1,m2, . . . ,mi−1} is the current set of packages already

chosen by the algorithm. For each itema ∈ Vc, the algorithm keeps track of the number

of packages inIc that containa (a.seenCnt). The algorithm then selects the next item

with probability inversely proportional to itsa.seenCnt. The intuition is that if an item has

already appeared in many chosen packages, picking it again will not increase the coverage

by much. The probability also inversely depends on the cost of the item. The intuition for

this is that packages with items of lower costs can admit moreitems, hence, leading higher

coverage.

As an example, consider Example 9 and the corresponding itemlattice in Figure 4.2

and assume that Algorithm 10 discovers the maximal satellite package

p1 = {s1
kit, s3

speaker, s
2
pen} during the first iteration of the random walk. In the second

iteration, the probabilities of the items that appear inp1 are reduced. For example, item

s1
kit now gets a16% probability of being chosen, compared against its20% probability

in the first iteration, whereas itemss3
speaker ands2

pen now get6% and42% probabilities,

respectively. On the other hand, the remaining itemss3
cable ands4

screen, which have14% and

7% probabilities, respectively, in the first random walk, are now given higher probabilities

of 24% and12%, respectively. (Note that, the cheaper items3
cable gains higher probability,

although it appears in the same number of chosen packages ass4
screen.)

While there is no approximation guarantee that can be provided forProbSummarySet,

it runs much faster than the greedy algorithms since it bypasses the computation of the full

set of maximal packages. As shown in Section 4.6, we found this randomized summariza-

tion algorithm to work very well in practice.
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Function SelectRepresentative(Vc, b): Subroutine for selecting one random pack-
age
Require:

Vc, the set of all satellite items across all satellite types for the central itemc, with their
seenCnts

b, the budget,

1: P =
∑

a∈Vc

{ 1

a.seenCnt
× 1

a.cost
}

2: for a ∈ Vc do
3: a.probiblity = 1

a.seenCnt×a.cost×P
4: p = {}
5: repeat
6: pick a ∈ Vc, a /∈ p, with probabilitya.probility, such that: (1)∀s ∈ A, a ands are of

different types, (2)a is compatible withc, and (3)a.cost +
∑

si∈A(si.cost) ≤ b
7: adda to p
8: until {no new item can be added}
9: return p

Figure 4.5. FunctionSelectRepresentative.

4.5 Visual Effect Optimization

While summarization drastically reduces the number of packages to be explored by

the user, the challenge of presenting the finalk packages to the user still remains. As dis-

cussed in Section 4.2.3, we propose a new principle calledvisual effectto guide how a set of

packages should be ordered and presented to the user to achieve better visual diversity. Op-

timal visual effect is achieved when the cumulative penaltybetween consecutive packages

(i.e., common satellite items) in the ordering is minimizedat higher priority satellite types,

given a satellite type prioritization. In this section, we consider how to solve the problem

of identifying the package ordering with optimal visual effect. We begin by recalling the

second set of packages in Table 4.4:

Example 10. Consider the following four packages:

p1 = (s1
case, s

1
charger, s

1
kit, s

1
cable, s

1
speaker, s

2
screen, s1

pen),

p2 = (s1
case, s

1
charger, − , s3

cable, − , s1
screen, s1

pen),

p3 = (s1
case, s

4
charger, − , s2

cable, s
3
speaker, − , s1

pen),
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p4 = (s2
case, s

4
charger, − , s2

cable, s
3
speaker, s

1
screen, s1

pen),

Let the type priority beO = Scase ≺ Scharger ≺ Skit ≺ Scable ≺ Sspeaker ≺ Sscreen ≺ Spen.

Among the24 possible orderings,[p1, p4, p2, p3] is one of the two optimal orderings, with

penalty〈1, 0, 0, 0, 0, 0, 3〉. This penalty indicates that the ordering incurs one penalty point

(i.e., same satellite item for one consecutive package pair) for typeScase (betweenp2 and

p3), three penalty points for typeSpen (between all three consecutive pairs), and none for

the other five types.

Identifying the ordering with the optimal visual effect turns out to be a hard problem.

In Section 4.5.1, we give the proof sketch that the visual effect optimization problem is

NP-complete. As a result, we design a heuristic algorithm inSection 4.5.2 and show that it

is optimal when there is only one satellite type.

4.5.1 Visual Effect Optimization is NP-Complete

Lemma 4.5.1.Thevisual effect optimizationproblem is NP-Complete form satellite types,

wherem is bounded byn, the number of packages.

Proof Sketch: To prove this, we use a reduction from the NP-complete Hamiltonian

Path problem.

Consider the following problem:Given a set of packages and a type priority order-

ing, check if an orderingP of the packages exists such that∀i, pv(P)[i] = 0. If we can

solve the visual effect optimization problem in polynomialtime, then this new problem can

be solved in polynomial time by producing an ordering with the optimal visual effect, and

checking whether the penalty vector of the result ordering contains all zeros. The process of

checking can be accomplished inO(mn), wheren is the number of packages andm is the

number of satellite types. Therefore, to prove that the visual effect optimization problem is

NP-Complete, we just need to show this new problem is NP-Complete.
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1p1

…S1

Figure 4.6. Transforming a graph into packages..

Given a graphG, we can transform it into a set of packagesS in polynomial time

and show that an optimal ordering of the packages with an all-zero penalty vector exists if

and only if a Hamiltonian path exists forG.

Due to lack of space, we omit the details of the full transformation and only provide

a brief description here. Basically, each nodeni in the graphG corresponds to one package

pi. For any edge(ni, nj) in the graph, the corresponding packagespi andpj are created

such that theydo notshare any common satellite item on any type. For any non-edgepair

of nodes(ni, nj), the packagespi andpj are created such that they share the same satellite

item on at least one type. Figure 4.6 illustrates an example transformation from a graph to

a set of packages. Thus, an ordering of the packages with an all-zero penalty vector exists

if and only if a Hamiltonian path exists forG.

It can also be shown that the number of satellite types required for this transformation

is bounded by the number of packages:(n − 1) satellite types are needed only whenG

contains a single node that is not connected to any other nodein G and the rest ofG is fully

connected. The time complexity of the transformation isO(n3): we update a packagepi at

most(i− 1)2 times.�
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4.5.2 Heuristic Visual Effect Optimization

In this section, we introduce a heuristic algorithm (Algorithm 11) for solving the

visual effect optimization problem. The basic idea is to always select the next package

from among the candidate packages that are optimized for thefirst satellite type (i.e., the

one with the highest priority) and select the package in a greedy fashion by choosing the

one that incurs the minimum penalty with the previously chosen package. Interestingly, we

show later that, despite being heuristic in the general case, this algorithm is optimal when

there is exactly one satellite type.
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Algorithm 11 : EnhanceVE(P ,O) : Heuristic algorithm for enhancing visual ef-

fect
Require:

P = {p1, p2, ...}: the set of satellite packages

O = S1 ≺ S2 ≺ ... ≺ Sm: the prioritization ofm satellite types

1: PO = {} will maintain the ordered list of packages to be output

2: let DS1(P) be the set of distinct satellite items for typeS1 within all the packages inP;

let Dsx
1
(P) be the set of packages (∈ P) with itemsx

1 ∈ DS1 for typeS1;

3: while |DS1(P)| > 1 do

4: let po be the last chosen package

5: let sx
1 be the satellite item for typeS1 in po

6: let Dsy
1
(P) be the largest set of packages among all setsDsi

1
(P), si

1 ∈ DS1

7: let Dsz
1
(P) be the second largest such set

8: if sy
1 == sx

1 then

9: D = Dsz
1
(P)

10: else

11: D = Dsy
1
(P)

12: p = PickBestCandidate(po, D,O)

13: addp to PO

14: removep fromP

15: while |P| > 0 do

16: let po be the last chosen package

17: p = PickBestCandidate(po, D,O)

18: addp to PO

19: removep fromP

20: return PO
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Function PickBestCandidate(po, D,O) : Subroutine for choosing the next best pack-
age
Require:

po: the previously chosen package
D: the set of candidate packages
O = S1 ≺ S2 ≺ ... ≺ Sm: the ordered list ofm satellite types

1: for i = 2 to m do
2: C = {} will maintain the just eliminated candidate packages
3: for pj ∈ D do
4: if po andpj share the same item for typeSi then
5: addpj to C
6: removepj from D
7: if |D| == 1 then
8: return p ∈ D
9: if |D| == 0 then

10: return randomp ∈ C
11: if |D| > 1 then
12: return randomp ∈ D

Figure 4.7.Function PickBestCandidate.

Intuitively, the algorithm starts by grouping all packagesaccording to their satellite

items of typeS1. In choosing the next package, the algorithm always selectsfrom the

largest group for the remaining packages, unless the last package is also selected from that

group, in which case the algorithm selects from the second largest group. Picking the exact

package from within the group is accomplished by removing packages that share the same

satellite item with the previously chosen package for each subsequent satellite type, until

one package remains. We illustrate the algorithm with the simple example in Table 4.4:

Example 11. Given the following four packages:

p1 = (s1
case, s

1
charger, s

1
kit, s

1
cable, s

1
speaker, s

2
screen, s1

pen),

p2 = (s1
case, s

1
charger, − , s3

cable, − , s1
screen, s1

pen),

p3 = (s1
case, s

4
charger, − , s2

cable, s
3
speaker, − , s1

pen),

p4 = (s2
case, s

4
charger, − , s2

cable, s
3
speaker, s

1
screen, s1

pen),
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We first separate them into two groupsGs1
case

= {p1, p2, p3} andGs2
case

= {p4}. Next,p1

is randomly chosen from the groupGs1
case

since it is a larger group. AlthoughGs2
case

is still

the smaller group, we need to choose a package from it because the last chosen package

p1 is from the larger group. Next,p4 is chosen from the groupGs2
case

. Then, between the

two remaining packagesp2 andp3, p3 is eliminated first because it shares items4
charger with

p4, the last chosen package. The final ordering is therefore(p1, p4, p2, p3), which happens

to be one of the two optimal orderings. Observe that, it is important to deterministically

select the next package such that its addition incurs the least penalty with respect to the

previously added package. Otherwise, a random selection betweenp2 andp3 in the third

step may generate an ordering such as(p1, p4, p3, p2), which is worse than the ordering that

our algorithm produces. In certain settings, where the packages share many common items

with each other on lower priority satellite types, such a randomization may exacerbate the

result drastically.

The algorithm is not guaranteed to find the optimal ordering.For example, ifp3

is chosen as the first package, the algorithm will fail to find one of the two optimal or-

derings. However, the time complexity of the algorithm is only O(mn2), wherem is the

number of types andn is the number of packages. As we will experimentally demonstrate

in Section 4.6, this heuristic algorithm efficiently produces package orderings with close

to optimal quality. Further, we prove that whenm = 1, Algorithm 11 does produce the

optimal ordering.

Lemma 4.5.2. Algorithm 11 produces the ordering of packages with the optimal visual

effect if|O| = 1.

Proof: Givenn packages, letGbig be the largest group containing a single item with

a total ofx packages. Let the remaining groups have a total ofy packages. Let the optimal

ordering have penalty〈t〉. If x <= y+1, there will be enough packages that are not inGbig

to separate packages inGbig, thereforet = 0. Otherwise, there will bex−y−1 packages in
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Gbig that are followed or preceded by another package inGbig, leading tot = x−y−1. The

ordering produced by Algorithm 11 has exactly〈t〉 as the penalty because each package

in Gbig is followed and/or preceded by a package containing a different item, until there

is no more such package left, at which point, allt + 1 remaining packages inGbig are

consecutively placed.�

4.6 Experiments

We conduct a set of comprehensive experiments using a data set obtained from Ya-

hoo! Shopping site to evaluate the quality and performance of our proposed summarization

and visual effect optimization algorithms. We assume that the list of central items can be

retrieved efficiently (for example, using the TA-family of algorithms [62]) and focus our

experiments primarily on efficiently summarizing and presenting satellite packages for a

given central item.

Our prototype system is implemented in Java with JDK 5.0. Allexperiments were

conducted on an Intel machine with dual-core 3.2GHz CPUs, 4GBMemory, and 500GB

HDD, running Windows XP. The Java Virtual Memory size is set to 512MB. All numbers

are obtained as the average of three runs.

4.6.1 Data Preparation

Online shopping is one of the main applications of compositeitem construction and

exploration, so we naturally turn to Yahoo! Shopping that isavailable to us for data set

generation. There are two main pieces of required data:product listingsandproduct com-

patibilities. The product (i.e., item) listings are obtained from the site directly, and for each

item, we obtain itsid, price, andtype. The items have wide ranging prices from1 cent to

several thousand dollars. We filter away items with extreme prices (price below $2 or price

above $1000) because those are often spam listings. The items are organized into10 high-
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level types. We choose one particular type, which contains amuch higher concentration

of items with prices from $550 to $1000, to be the central type, and the other9 to be the

satellite types. In the end, we have101, 271 items, of which2, 222 are considered as central

items, and the rest are satellite items. On an average, we have 11, 005 items per satellite

type.

Obtaining item compatibilities turns out to be a non-trivial task. Our initial thought

is to use manufacturers’ specifications. However, it is extremely hard to obtain a compre-

hensive list of compatibilities for such a large number of items. Instead, we turn to the

history of transactions from the shopping site. Specifically, we compute the compatibilities

between two items based on their pair-wise co-occurrences in various kinds of activities of

the same user, such as browsing, rating, and purchasing. Theresulting compatibility is a

normalized score between0 and1, indicating how related two items are based on historical

records. A threshold score is then selected to determine whether two items are compatible.

In the experiments, tuning this threshold allows us to control how many satellite items are

compatible with a central item on average.

The rest of this section is organized as follows. In Section 4.6.2, we demonstrate that

our summarization algorithms,FastGreedySummarySet and ProbSummarySet, clearly

outperform baseline algorithms in terms of speed while producing summaries of the same

quality. Similarly, in Section 4.6.3, we show that the heuristic EnhanceVE algorithm can

produce almost the optimal ordering of the summary packageswhile running much faster

than its brute force counterpart.

4.6.2 Summarizing Maximal Packages

In this section, we experimentally evaluate both performance and quality aspects of

theFastGreedySummarySet andProbSummarySet algorithms in Section 4.4. We com-

pare them against three baseline algorithms:
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Table 4.5. # Maximal Packages Generated

#Comp. Size 10 50 100 150 200
#Max. Pckg. 71 320 2, 442 6, 877 17, 972

% Price 5% 10% 15% 20% 25%
#Max. Pckg. 320 1, 060 4, 375 11, 470 14, 805

Random, where a set ofk random packages are chosen to be in the summary;

Deterministic, where a set ofk largest packages are chosen to be in the summary;

GreedySummarySet (Algorithm 15), where the coverage of a candidate set of summary

packages are computed using theInclusion-Exclusion Principle[59].

We begin by validating that summarization is a necessary technique to help users

explore the results because the number of maximal packages is large in many reasonable

scenarios.

4.6.2.1 Number of Maximal Packages is Large

Given a central item, the set of maximal packages are generated from individual

items, which are compatible with the central item, usingMaxCompositeItemSet (Algo-

rithm 7). The number of generated maximal packages depends mainly on two factors:

compatibility size, i.e., how many satellite items are compatible with the central item; and

price budget, i.e., the total price the user is willing to pay. We vary bothfactors and examine

the number of maximal packages generated.

Specifically, we control the compatibility size by tuning the threshold for the compat-

ibility score, and we vary the price budget for the satellitepackage by setting it at various

percentage levels compared to the price of the central item.A random sample of100 central

items are chosen, and we record the average number of maximalpackages being generated

for those items. The price budget is fixed at5% when we vary the number of compatible
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satellite items, while the number of compatible satellite items is fixed at50 when we vary

the price budget. As shown in Table 4.5, the number of maximalpackages grows quickly

as the price budget goes up and as the number of compatible satellite items increases. More

importantly, even at a modest level of 5% price budget and50 compatible satellite items,

the number of maximal packages reaches into the hundreds, which is clearly beyond what a

normal user is willing to explore. This result clear indicates that obtaining a good summary

of those maximal packages is a necessary step for exploration by the user.

Finally, we note that the number of maximal packages being generated by the ran-

domizedMaxCompositeItemSet algorithm is not an underestimate of the actual number

that is generated by the Apriori-style optimal algorithms.In those settings where the op-

timal algorithms are able to finish within a reasonable amount of time (they don’t always

do), our heuristic algorithm generates exactly the same setof maximal packages (results

omitted due to space limitation).

4.6.2.2 Summarization: Performance

Figure 4.8 shows the performance comparison between our twoproposed algorithms,

FastGreedySummarySet andProb SummarySet, against the baseline algorithm,

GreedySummarySet. For this experiment, we fix the compatibility size at50 and the

price budget at5% (i.e., on an average320 maximal packages), and vary the size of

the summary (i.e., number of representatives) to be between5 and25. Not surprisingly,

FastGreedySummarySet outperforms the baseline algorithm, especially for largersum-

maries. More importantly,ProbSummarySet significantly outperforms both across all sum-

mary sizes. The significant performance advantage ofProbSummarySet lies in the fact that

it avoids producing the full set of maximal packages, while the other two algorithms have

to generate all the maximal packages first. In fact, the process of generating the full set of

maximal packages alone is quite time-consuming, as shown inFigure 4.8, where the cost
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Figure 4.8. Summarization Algorithms Performance.

of MaxCompositeItemSet alone is more than the cost ofProbSummarySet. We note that

the other two baseline algorithms:Random andDeterministic have essentially the same

performance asMaxCompositeItemSet since they also require the generation of the full

set of maximal packages, but the cost of picking random packages or largest packages are

negligible. Finally, we note that onlyProbSummarySet is able to produce the summary

with interactive speed, which is critical in our goal of supporting users’ exploration of the

results.

4.6.2.3 Summarization: Quality

Having the best performance is of little importance if our algorithms fail to gen-

erate summaries of good qualities. We next verify that the summaries generated by our

FastGreedySummarySet andProbSummarySet are indeed comparable with the baseline

algorithm and better than the two simple heuristic algorithms. The experiments are per-

formed with the same settings as in the previous section. As shown in Figure 4.9,

FastGreedySummarySet achieves exactly the same coverage as the baseline

GreedySummarySet, which confirms our theoretical analysis in Section 4.4.1 that the for-
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Figure 4.9. Summarization Algorithms Coverage.

mer faithfully mimics the behaviors of the latter, while having a substantially better perfor-

mance. Furthermore,ProbSummarySet’s coverage number is within a reasonable range of

the baseline coverage ofGreedySummarySet, and it is comparable withDeterministic

and significantly better thanRandom. Given the far superior performance ofProbSummarySet

against all other algorithms as shown in Figure 4.8, we believe it is the best choice for sum-

marization.

4.6.3 Visual Effect Optimization

In this section, we evaluate the quality and performance of the heuristics visual effect

optimization algorithmEnhanceVE in Section 4.5. We compare this algorithm against the

exponential brute force algorithmBruteForceVE, which computes the optimal ordering

of packages by going through the types in their priority order and removing candidate

orderings, which are no longer the best for the list of examined types so far, until only

one ordering is left or all types are examined. We perform theexperiments for100 central

items, and for each central item, we generate summaries of varying sizes (i.e., number of

representatives), starting with3, using both algorithms.
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Performance of Visual Effect Algorithm
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Figure 4.10. Performance of Visual Effect Algorithms.

Performance: Figure 4.10 illustrates thatEnhanceVE significantly outperforms

BruteForceVE. Note that the time cost ofBruteForceVE is shown along the second y-

axis on the right and is measured in seconds. As expected,BruteForceVE fails to produce

an ordering within a reasonable amount of time (10 minutes) as soon as the summary

size reaches10, which is a reasonable number of packages to be shown to the user in

practice. Meanwhile,EnhanceVE is able to produce an ordering in under20 milliseconds,

fast enough for the system to be interactive with the user.

Quality : Table 4.6 shows the aggregated penalty vectors for different values ofk.

(Note thatBruteForceVE fails to produce results after2 hours of running for summaries

with k > 10.) The penalty vectors are of size9 (the number of satellite types in the experi-

ment), where the earlier entries correspond to higher priority satellite types. As the numbers

illustrate, the penalty vector of the ordering produced byEnhanceVE matches exactly with

the optimal penalty vector in higher priority types in all cases, and is only slightly higher

in very few positions on the lower priority types. This indicates thatEnhanceVE indeed

produces realistically good solutions at a fraction of the cost of the brute force algorithm.
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Table 4.6. Comparison of Penalty Vectors

k EnhanceVE BruteForceVE

3 [0, 0, 0, 0, 0, 0, 2, 1, 0] [0, 0, 0, 0, 0, 0, 2, 1, 0]
5 [1, 2, 0, 1, 3, 0, 4, 1, 0] [1, 2, 0, 1, 2, 1, 4, 1, 0]
8 [2, 0, 2, 2, 1, 0, 4, 1, 0] [2, 0, 2, 1, 1, 1, 4, 1, 0]

10 [2, 1, 2, 3, 1, 3, 5, 1, 0] [2, 1, 2, 2, 1, 2, 5, 1, 0]
15 [2, 1, 2, 3, 1, 4, 7, 2, 1] N/A
20 [2, 1, 2, 5, 3, 4, 7, 2, 1] N/A
25 [2, 3, 2, 5, 3, 5, 7, 2, 2] N/A

4.7 Related Work

We organize our discussion on related works according to thethree main technical

problems of our work: maximal package generation, summarizing packages, and visual

effect optimization. We also note that, to the best of our knowledge, the work described in

this thesis is the first to propose and address the general problem of helping online users

construct and explore composite items.

Generating Maximal Packages:Our maximal item set generation algorithm lever-

ages random walk algorithms [57, 63] that are primarily designed for computing maximal

frequent itemsets. Several other works have also investigated this problem [55, 64, 56].

Our solution is efficient since it leverages the fact that thebudget constraint can be checked

purely based on the item itself, and uses theGood Turing Test[58] as the stopping criterion.

Summarizing Packages:Our summarization problem can be mapped to an instance

of the well-known NP-completeMax k-Set Cover Problem[60]. The main difference lies

in counting the number of distinct subsets (not distinct items) of representative sets.

Although different from our problem statement, we note thatschema summarization

techniques based on information theory and statistical models were proposed recently in

the context of relational [65] and XML databases [66].
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Our proposed modeling of summarization bears resemblance to existing work on

ranking skyline points based on dominance [67]. Each representative maximal package

can be thought of as a skyline point which covers (dominates)a set of sub-packages. Thus

the problem is to selectk-representative maximal packages (points) such that the number of

packages covered by at least one of them is maximized. However, our problem is more dif-

ficult, since we consider this problem in a high dimensional categorical space (as opposed

to a low-dimensional numeric space) where the packages covered by a representative max-

imal package are not present explicitly in the data set.

Visual Effect Optimization: Our visual effect optimization problem definition uses

a similar intuition as the diversity problem in [68]. However, while the latter solves the

problem of evaluatingk diverse query results, we aim at finding an optimalordering of

a set of representative packages which maximizes their visual diversity. This calls for a

fundamentally different solution. The NP-completeHamiltonian Path Problem[60] can be

reduced to an instance of our visual effect optimization problem as discussed in Section 4.5.

4.8 Conclusion

A wide variety of online stores, from e-commerce sites such as Amazon, to online

travel reservation sites such as Expedia offer features where a user is suggested a set of ad-

ditional complementary items along with her main item of interest based on co-purchasing

or co-viewing behavior. Broadly motivated by such applications, our approach helps users

efficiently and effectively explore a large number of composite items formed by a central

item, the item of interest, and compatible satellite packages subject to a budget constraint.

To that effect, we proposesummarizationto reduce the large number of satellite packages

associated with a central item, andvisual effect optimizationto leverage diversity and help

users get a quick overview of available options within theirbudget. We design and im-

plement efficient algorithms to address the technical challenges involved. Our extensive
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experiments on data obtained from Yahoo! Shopping site demonstrate the effectiveness

and efficiency of our algorithms. As future research directions, we aim to explore more

complex modeling of compatibility between satellite itemsand other variants of visual di-

versity.



CHAPTER 5

CHAIN COMPOSITE ITEMS

5.1 Introduction

Planning an itinerary is one of the most time-consuming travel preparation activities.

For a popular touristic city, it involves painstakingly examining the hundreds of Points-

of-Interest (POIs) to select the POIs that one likes, figuring out the order in which they

are to be visited, and ensuring the time it takes to visit them, and to transit from one POI

to the next, satisfies the user’s time budget. Many online services such as Lonely Planet

provide packaged itineraries to their users. However, those itineraries suffer from two main

drawbacks. First, they are often not tailored to one’s own interests. For example, a first-

time NYC tourist is likely to be interested in a trip to the Statue of Liberty, while a NYC

regular may prefer to check out the latest MoMA exhibit. Second, suggested itineraries

may not fit one’s particular time budget. Someone who visits aplace for a very short time

frame, e.g, in the case of a layover in a city, or a very long time frame, e.g., in the case of

a month-long backpacking trip, is unlikely to find an itinerary suggested by those services,

satisfactory.

Constructing a personalized itinerary for a user is a big challenge because, even with

a relatively small number of POIs, the number of possible itineraries can be combinatorially

large. In this paper, we adopt an interactive process where the user provides feedback on

POIs suggested by our itinerary planning system and the system leverages those feedback

to suggest the next batch of POIs, as well as to recommend the best itineraries so far. The

process repeats until the user is satisfied. In other words, instead of asking the user to

examine all the POIs before deciding on the itinerary, our goal is to ask the user to examine

128
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only a subset of those POIs in multiple steps, each with a small number of increasingly

relevant POIs, thereby reducing the overall efforts required on the user to construct the

itinerary. To the best of our knowledge, this work is the firstto address the question of

formalizing interactive itinerary planning and explore efficient solutions to this problem.

More specifically, the itinerary planning process involvesthe following interactions.

1. It starts with a user providing a time budget and a startingpoint of the itinerary

(usually corresponding to the hotel where the user is staying);

2. At each step, the system presents the user with a small fixednumber of POIs that are

most probably likedby the user, based on feedback provided by the user so far;

3. The system also recommendshighly ranked itinerariesto the user based on the feed-

back;

4. The user provides herfeedbackon suggested POIs to indicate whether or not she is

interested in them, and the process continues;

5. The user can also choose to pick one of the recommended itineraries, at which point,

the process stops.

Designing such an interactive system is a non-trivial task and raises both semantics

and efficiency challenges. We provide a brief overview of those challenges here.

First, we need to define thePOI Feedback Model, which dictates how the user can

specify her preference for the individual POIs. The most generic model is thestar model

where the user provides 5-star ratings for POIs she really wants to visit and 1-star ratings for

POIs she does not want to see. Two simpler models are also common: theternary model,

where the user specifies‘yes′ (i.e., positive),‘do not care′, and‘no′ (i.e., negative) for the

POIs, and thebinary model, where the user is provided with only two feedback options

‘yes′ and‘do not care′. We note that the star model can often be converted into the ternary

model. We will discuss the impact of different feedback models on the complexity of

itinerary planning, and focus on the binary model within this work.
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Second, we need to define theItinerary Scoring Semantics, which dictates how an

itinerary should be scored based on the user feedback. Similarly, it can also be defined us-

ing multiple semantics. In theset semantics, the score of an itinerary positively correlates

with the number of POIs with a‘yes′ feedback and negatively correlates with the number of

POIs with a‘no′ feedback. In the strictest interpretation, a single POI with a ‘no′ feedback

can render the entire itinerary ineligible. In thechainsemantics, the score of an itinerary

will further depend on how the positive and negative POIs arearranged in the itinerary.

One such semantics could be to rank itineraries containing consecutive POIs marked with

a ‘yes′ higher than ones containing more POIs marked with a‘yes′ none of which being

consecutive. Finally, an itinerary is onlyvalid if it satisfies the budget constraint specified

by the user. We focus on time budget in this paper and defer other kinds of budget for

future work. We argue that during the interactive itinerarybuilding process, previous user

feedback has a direct impact on the score of a new itinerary. For example, whenTimes Sq.

has been marked‘yes′ by the user in previous steps, the score of an itinerary containing

Times Sq.andMadame Tussauds Wax Museum, should increase, because those two POIs

are frequently co-visited. In this work, we use a probabilistic model to compute theex-

pected scoreof valid itineraries given user feedback using the set semantics. We leave the

chain semantics to future work.

Third, we need to efficiently solve theOptimal Itinerary Construction Problem ,

i.e., how to construct the best scoring itinerary based on a given set of POIs, along with their

feedback, and the user provided time budget. We argue that materialization of all itineraries

is not practically feasible and design efficient algorithmsfor computing itineraries with the

best expected scoreson the fly.

Finally, we need to efficiently solve theOptimal POI Batch Selection Problem,

i.e., how to select a fixed number of POIs to solicit future user feedback based on the feed-

back received so far. We argue that the best candidate POIs (to be suggested to the user
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next) are those which maximize theexpected scoresof the best itineraries. Any user feed-

back for those POIs is likely to lead to itineraries with highexpected scores, and therefore

satisfy user’s needs sooner. We provide a formal definition of this problem and propose

a probabilistic model to compute the expected score of a batch of POIs. There are two

main efficiency challenges. First, selecting the optimal batch of k POIs according to the

expected itinerary scores requires the system to go throughall mCk
sets of POIs, wherem

is the number of remaining POIs in the system, which can be large. We design a heuris-

tic algorithm that selects POIs one by one to form partial batches, therefore significantly

reducing the candidate POI sets to be examined. Second, the number of remaining POIs

to be checked for each partial batch can still be large. In order to reduce that number, we

design an efficient pruning strategy which accounts for the distance of the remaining POIs

from the starting point and from POIs already in the batch.

Table 5.1 summarizes an example of a2-step interactive itinerary planning for a user,

whose starting location isGround Zero, NYCand has a budget of6 hours. At each step, the

suggested batch of5-POIs (column-2) is shown, the POIs for which user feedback is ‘yes′

(column-3), and the resulting top-1 itinerary based on her feedback (column-4) are also

displayed. Note that, top-1 itinerary of step-2 considers both step-1 and step-2 feedback.

In summary, we make the following contributions.

The paper is organized as follows. Section 5.2 contains a formalization of the inter-

active itinerary planning approach. Section 5.3 describesthe algorithms. Our experiments

are reported in Section 6.6. The related work is summarized in Section 5.6. We conclude

with future directions in Section 5.7.

5.2 Formalism and Problem Statement

In this section, we discuss the formal data model of interactive itinerary planning.

We begin by describing different notations and their corresponding interpretations to be
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Table 5.1. 3-step Iterative Itinerary Planning

Step POI batch ‘yes′ feedback Top-1 Itinerary

1 Trinity Church.;
Brooklyn Bridge;
NYC Stock Ex;
Battery Park ;
Statue of Liberty

Trinity Church.; NYC
Stock Ex; Battery Park

1. Ground Zero - Trin-
ity Church - NYC Stock
Ex - Battery Park

2 Times Square
; Grand Cen-
tral Terminal ;
Chrysler Build-
ing ; UN Head
Quarter ; Rocke-
feller Center

Times Square; Grand
Central Terminal

1. Ground Zero - Trin-
ity Church - NYC Stock
Ex - Battery Park -
Times Square - Grand
Central Terminal

used throughout the paper. A summary of those notations is listed in Table 5.2 for easy

reference.

Data Model: The underlying data model is a directedcomplete graphG = (M, E). Each

nodem ∈ M represents a POI and each edge(mi,mj) in E represents a transit between

the two nodes and is annotated with an edge costtransit(mi,mj). The edge cost is not

always symmetric. For example, traveling time between two POIs can be different because

it is downhill in one direction and uphill in another. Each POI mi is also annotated with

visit(mi), which represents the cost associated with visiting the POI. For example, it

takes about 3 hours to visit theStatue of Liberty.

Itinerary : An itinerary is a path in the input graph starting from the start POI. Each

itinerary τ has a total visit timetotalVisit(τ) = Σmi∈τvisit(mi), and a total transit

time,totalTransit(τ) = Σ(mi,mj)∈τtransit(mi,mj). A valid itinerary is one such that

totalVisit(τ) + totalTransit(τ) ≤ B, whereB is a user provided budget constraint.
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Table 5.2. Notations and Their Corresponding Interpretations

Notation Interpretation

M set of all POIs in a city
Mseen set of POIs for which feed-

back has been received
Mremain =M−Mseen

transit(mi,mj) transit time from POImi

to mj

visit(mi) time to visit POImi

FeedbackOptions set of different feed-
back values a user
can assign a POI (e.g.,
{‘yes′, ‘no′, ‘do not care′})

n number of feedback op-
tions

〈id, feedback〉 a POI as an ordered pair of
id and feedback option

I a POI batch
k number of POIs in a batch
B total budget
AllFeedbacks(I) = {I1, . . . , Ink}, i.e., set

of all possible feedback
combinations ofI

Ij = {< id1, feedbackj
1 >

, . . . , < idk, feedbackj
k >

}, i.e., j-th feedback com-
bination for the POI batch
I

τ an itinerary, expressed as a
sequence of POIs

τIj
best itinerary correspond-
ing to j-th feedback com-
bination for the POI batch
I

SIj
score of the best itinerary,
givenIj, B andMseen

ExpScore(τ |Mseen) expected score of itinerary,
given feedbackMseen

ExpBatchScore(I|Mseen) expected value (over all
Ij) of SIj
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5.2.1 System Overview

The input to the system is the graphG that obeys metric properties, a budgetB (e.g.,

the user has8 hours to spend in the city), and a starting POI (e.g., an airport or a hotel).

The task of the system is to interact with the user and gather her preferences, and build

the best possible itinerary for her via this iterative feedback process. In each iteration, the

system suggests a batch ofk POIs to the user, and the user provides feedback on these

POIs, i.e., her preference for including them in her itinerary. Based on the feedbacks, the

valid itineraries are re-ranked according to thescoring semanticsand the top itineraries are

suggested to the user. SinceG is complete, therefore the POIs that the user has preferred

to have included in the itinerary can always be connected with each other with direct edges

based on their shortest transit time paths subject to the budget constraints, and does not

need to involve any POI that she has not chosen. At each step, the user is shown the next

batch of POI suggestions from the system. This interactive process ends when the user is

satisfied with the top itineraries suggested by the system and decides not to proceed with

the next batch.

Two computational problems form the heart of the system. Thefirst is theOptimal

POI Batch Selection Problem, where the system has to determine at every iteration the

next batch ofk POIs to be shown to the user. Once these POIs have been presented and

user feedback collected and updated, the system then has to solve theOptimal Itinerary

Construction Problem, which re-ranks all itineraries and presents the top-ranked ones to the

user. In fact, theOptimal POI Batch Selection Problemalso requires solutions to multiple

instances of theOptimal Itinerary Construction Problem, as each candidate set ofk POIs

have to be considered and top itineraries have to be computedfor each possible combination

of user feedback. In the rest of this section we develop formal notations and definitions of

both problems. We begin by describing the feedback models that we consider.
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POI Feedback Model: When one (or more) POIs are shown to the user, the user expresses

her preference for them according to a specific feedback model. Let FeedbackOptionsbe

the set of different ways in which a user can show her preference to a POI. As an exam-

ple, for theternary feedback model, FeedbackOptions = {‘yes′, ‘no′, ‘do not care′}. A

simpler modelbinary feedback modelhas the options{‘yes′, ‘do not care′}. An alternate

binary feedback model may have the options{‘yes′, ‘no′}.

Interestingly, since in this paper we consider recommending itineraries only for a

single user, the specific feedback model is irrelevant. We only need to beconcerned with

the POIs marked as‘yes′ by the user, as the POIs marked as‘no′ or ‘do not care′ are never

considered by the recommendation algorithm. This is because the underlying graph is a

complete graph, and the recommended itinerary should try tovisit as many‘yes′ POIs as

the budget allows, and will never need to visit any a POI marked as ‘no’ or ‘donot care’.

The different feedback models only differ in their “user friendliness”, and do not impact

the underlying solution.1

In our system, a POI may be regarded as an ordered pair〈id, feedback〉, whereid

identifies the POI (e.g., ‘Statue of Liberty). Initially each POI’s feedback is set to the value

‘unseen’, and, after the POI is seen by the user, is set to a value fromFeedbackOptions.

At any stage during the interactive process, letMseen (respectively,Mremain) be the set

of POIs that have currently been seen (respectively, remainto be seen) by the user; thus

initially M = Mremain. At every step of the iteration, the system selects a batchI of k

POIs fromMremain and shows them to the user. The user provides feedback for each

POI in I indicating her preference for including the POIs in the output itinerary. Let

1However, if an itinerary has to be shared by a group of users (e.g., a set of people sharing a tour bus),

then a POI marked as ‘no’ by some users may be marked as ‘yes’ byother users, and the recommendation

algorithm will have to carefully consider the impact of visiting a POI with conflicting preferences by the user

group. Recommending itineraries for user groups is left forfuture work.
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n = |FeedbackOptions|. We note that there can benk feedback combinations, each of

which represents a possible user feedback for POIs inI. The following notation will be

convenient:AllFeedbacks(I) = {I1, I2, . . . , Ink}, where eachIj represents a specific

combination of feedback by the user for each POI. Thus for theternary model there are3k

feedback combinations, whereas the simpler binary model leads to2k feedback combina-

tions.

5.2.2 Probability Model

For any candidate setI of k POIs considered during an iteration, it is crucial that

the system be able to derive the probability distribution ofthesenk feedback combinations.

Such a probability distribution will be useful in steering the system towards choosing the

subsetI that maximizes the chances of getting highly ranked itineraries. We adopt prob-

abilistic models that are intended to combine users’ general preferences (e.g., statistics

derived from past query logs may reveal that most users who wish to visit theStatus of

Liberty would also like to visit theEmpire State Building) with personalization (e.g., the

specific feedback obtained from the user on previous batchesof POIs may reveal that this

particular user prefers art related places). We describe our models in more details below.

Generic Probability Model: A generic probability model can be used to compute the

probability of j-th feedback combination:Pr(Ij|Mseen). This probability model can be

learned from two training sources: the past activities (e.g., past itineraries accepted by

other users of the system), and current ongoing activities (i.e., the POIs that have been seen

and marked by the current user). Several classical machine learning solutions can be used

for this purpose, e.g., graphical models such as Bayesian Networks or Markov Random

fields [69].

Specific Probability Model: In this paper, however, instead of relying on complex solu-

tions involving a generic probability model, we adopt a muchsimpler probability model
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using the assumption of a limited form ofconditional independence2. We assume the POIs

in Ij are nottotally independentbut rather areconditionally independent.

Under the conditional independence assumption, we have:

Pr(Ij|Mseen) =
∏

mi∈Ij
Pr(mi|Mseen)

Using Bayes’ Theorem [70], this can be rewritten as:

Pr(Ij|Mseen) =
∏

mi∈Ij

Pr(Mseen|mi)×Pr(mi)
Pr(Mseen)

SincePr(Mseen) is a constant for that particular iteration, we therefore have:

Pr(Ij|Mseen) ∝∏

mi∈Ij
Pr(Mseen|mi)× Pr(mi)

Applying conditional independence again:

Pr(Ij|Mseen) ∝∏

mi∈Ij

∏

ml∈Mseen
Pr(ml|mi)× Pr(mi)

Even though the probability formula is a proportionality formula, it suffices for our

purpose as it is used in the scoring function for ranking itineraries, since all we need to

know is whether one itinerary has a higher score than the other—the exact score is irrele-

vant. Computing the probability formula requires us to know the value of quantities such

asPr(ml|mi) andPr(mi) wheremi andml are POIs. However, singleton and pairwise

probabilities can be computed in a preprocessing step from itineraries chosen by previous

users. For example,Pr(ml|mi) can be estimated as the fraction of previous itineraries con-

tainingmi that also containml, andPr(mi) can be estimated as the fraction of itineraries

that containmi.

5.2.3 Itinerary Scoring Semantics

An itinerary consists of two sets of POIs: the seen POIs for which user feedback

has already been collected, and the remaining POIs for whichwe can only estimate the

2Conditional independence assumption is used in building Naive Bayes classifiers [70]
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user feedback. Thus the score of an itinerary should be a combination of the score of the

seen part, as well as the expected score of the remaining part, where the expectation is over

the probability distribution of all possible user feedback. The probability model proposed

earlier can be used to model the expected score of the unseen part.

Generic Scoring Function: Consider an itineraryτ asτseen ∪ τremain. A generic scoring

function has the form:

ExpScore(τ |Mseen) =

Combine(Score(τseen), ExpScore(τremain|Mseen))

where the two parts may be combined using any meaningful operation (such as addition,

weighted or un-weighted). There can be numerous ways of defining reasonable forms of the

functionScore(τseen). For example, a reasonable function is positively correlated with the

number of ‘yes’ POIs, or a sophisticated scoring function may even consider the sequence

of the ‘yes’ POIs in the overall itinerary score.

Specific Scoring Function: While we do not advocate for a specific scoring function in

this paper, we illustrate several optimization opportunities in conjunction with a specific

scoring function in Section 5.4. This scoring function is related to the binary feedback

model, and has a simple but compelling form—the score of an itinerary is the expected

number of POIs that will be marked as‘yes′ by the user.

5.2.4 Problem Definitions

We are now ready to describe the two fundamental problems that our system needs

to solve.

Optimal Itinerary Construction Problem : GivenB,Mseen, andIj (i.e., a specific batch

of k POIs with their feedbacks from the user), compute the valid itinerary τ such that

ExpScore(τ |Mseen ∪ Ij) is maximized.
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We next introduce some useful notation. LetτIj
be the output of theOptimal Itinerary

Construction Problem, i.e., the valid itinerary with the maximum expected score,and let its

expected score beSIj
. Next, givenB,Mseen, and a batch ofk unseen POIsI (i.e., without

any specific user feedback combination), letExpBatchScore(I|Mseen) be the expected

value (over all possible user feedback combinationsIj) of the random variableSIj
.

Optimal POI Batch Selection Problem: GivenB andMseen, compute the batch ofk

unseen POIs that maximizesExpBatchScore(I|Mseen).

Intuitively, we wish to select a batch ofk unseen POIs such that, no matter how

the user responds with her preferences to these POIs, the expected score of the top ranked

itinerary over all possible user feedback is maximized.

As will be discussed in the next sections, the choice of the itinerary scoring function

as well as the probability model affects the efficiency of oursolutions to these problems.

We discuss a general solution framework for these problems in Section 5.3, and more ef-

ficient solutions tailored to a specific scoring function andthe simpler probability model

in Section 5.4. Our solutions are designed to solve one iteration step in the interactive

itinerary planning problem.

5.3 General Algorithms for Itinerary Planning

In this section we shall develop the framework of a generic algorithm for solving the

Optimal POI Batch Selection Problem. We refer to this as a “generic” algorithm because

it is essentially a framework that assumes any arbitrary scoring function for itineraries, as

well as any arbitrary probabilistic model for predicting user preferences for the remaining

unseen POIs, given the current user feedback. We also develop a generic subroutine to solve

the Optimal Itinerary Construction Problem. We analyze the computational complexity

of the problems as well as the proposed algorithms. In the next section, we show how
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a specific probabilistic model (based on conditional independence), as well as a specific

scoring function (based on user feedback restricted to only‘yes’ and ‘do not care’ for

POIs), can be leveraged, along with several algorithmic optimizations, to achieve extremely

efficient approximate solutions to these problems.

5.3.1 A Generic Optimal POI Batch Selection Algorithm

Our generic algorithm for theOptimal POI Batch Selection Problemis shown in

Algorithm 12. As can be seen, the main body consists of generating all possiblek-sized

batches of potential POIs from the remaining unseen POIs, and for each potential batch,

computing the expected score of the optimal itinerary—where the expectation is over the

probability distribution of all possible user feedback to thosek POIs. This calculation is

performed by theExpBatchScore subroutine (which will be discussed next). The set

of k POIs selected are those that maximize this expected optimalscore. We next

Algorithm 12 : Algorithm OptPOIBatchSelection
Require: Mseen,Mremain, batch sizek, budgetB;

1: RS = {I | I ⊆ Mremain, |I| = k};

2: Imax = argmax∀I∈RSExpBatchScore(I|Mseen,B);

3: return Imax;

discuss theExpBatchScore subroutine as described in Algorithm 13, which computes

the expected score of the top itinerary given the POI batch (I), conditioned upon the feed-

back of the seen POIs (Mseen). For each of thenk possible user feedback combinations

Ij, we need to recompute the scores of all valid itineraries, and determine the one with the

highest score. This is achieved by repeated calls to theOptItn subroutine (which will be

discussed next). Finally, the expected value of the score ofthe optimal itinerary is returned
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Algorithm 13 : Subroutine ExpBatchScore
Require: Mseen, I ⊆Mremain, budgetB;

1: AllFeedbacks(I) = {I1, I2, . . . Ink};

2: # eachIj is a possible feedback combination onI

3: ExpBatchScore =Pr(Ij |Mseen)×

Σ1≤j≤nkExpScore(OptIt(Mseen, Ij ,B)|Mseen);

4: return ExpBatchScore;

Algorithm 14 : Subroutine OptItn
Require: Mseen, Ij , budgetB;

1: T = {τ | totalVisit(τ) + totalTransit(τ) ≤ B}, whereτ is an itinerary

2: τmax = argmaxτ∈T ExpScore(τ |Mseen ∪ Ij);

3: return τmax;

(where the expectation is computed over the probability distribution of the user feedback

Ij).

TheOptItn subroutine solves theOptimal Itinerary Construction Problem. It takes

as input the user feedbacks from previous batches (Mseen, along with a candidate user feed-

back combinationIj), and computes the valid itinerary with the highest expected score. As

can be seen from Algorithm 14, one straightforward (but inefficient) way of doing this is

to first compute all valid itineraries, compute the expectedscores of each of them (condi-

tioned by the user feedback in previous batches and candidate user feedback combination),

and return the one with the highest score.

In summary, the general algorithms discussed above do appear rather inefficient.

However, in what follows, we show that the problems are NP-complete in general, and one

may not be able to improve over such naive approaches in the generic case. To improve
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efficiency, one has to resort to specific scoring functions, approximation heuristics, and

other optimizations—such approaches are discussed in Section 5.4.

5.3.2 Complexity Analysis

The genericOptimal POI Batch Selectionalgorithm described above is very ineffi-

cient. The inefficiency stems from three sources:

1. There are
(|Mremain|

k

)

= O(|Mremain|k) possible batches ofk POIs that need to be

considered.

2. For a given batchI, all possiblenk user feedback need to be considered.

3. For a given user feedback (i.e., a potential user feedbackfor a given batch, in con-

junction with the user feedback for earlier batches), the itinerary with the highest

expected score needs to be computed.

Thus, if we assume that the cost of a single optimal itinerarycomputation isT , then

the total time taken by theOptPOIBatchSelection algorithm isO(|Mremain|k ×

nk×T ). Unfortunately, as the following arguments show, it appears impossible to improve

this in general, as even the third task in the list above, i.e., the problem of computing the

itinerary with the optimal expected score for a given user feedback (essentially the Optimal

Itinerary Construction Problem), is NP-complete.

Theorem 5.3.1.TheOptimal Itinerary Construction Problemis NP-complete.

Proof. (sketch) We can reduce the NP-completeRooted Orienteering Problem[71] to

this problem. The rooted orienteering problem is defined as follows: Given a complete

weighted graph (in a metric sense, i.e., satisfying the triangle inequality), a start node, and

a length budget, determine a path from the start node that visits as many nodes as possible

without going over the length budget.

The reduction proceeds as follows. Consider a very simple scenario where:
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• the original POIs are connected by a complete weighted graphwhere each edge

weight represents the transit time to go from one vertex to the other along the edge,

• the visit times of all POIs are 0,

• there is no prior probability model: thus all possible user feedback for the next batch

are equally likely,

• the user feedback is restricted to ‘yes’/‘ do not care’ for each POI that is shown to

her,

• the score of a valid itinerary is simply the number of POIs that have been marked as

‘yes’ by the user in her feedback, and

• we are considering the very first batch, i.e. user feedback has not been collected for

any POI yet.

Let I be any subset ofk POIs. LetI ′ be any subset ofI, representing a specific subset

of the batch that the user may potentially mark as‘yes′. Consider the induced complete

subgraph graph overI ′. Let this induced graph be isomorphic to the input graph of the

rooted orienteering problem. It is easy to see that computing the valid itinerary with the

highest score is equivalent to solving the rooted orienteering problem whose length does

not exceed the budget. �

The above theorem shows that computing itinerary with the optimal expected score

is NP-complete even for a simple scoring function. Moreover, since theOptimal POI Batch

Selection Problemis more general than theOptimal Itinerary Construction Problem, the

former is also easily seen to be NP-complete. Also, as can be seen, theOptItn subroutine

is called inside the innermost loop of the overallOptPOIBatchSelection algorithm,

and is therefore called numerous times, making the overall algorithm extremely inefficient.

In the next section, we consider several ways to avoid these sources of intractability. In par-
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ticular, we consider a simple but practical scoring function and a simple probabilistic model

for scoring itineraries, and use fast heuristics to computeoptimal itineraries approximately.

5.4 Efficient Algorithms for Itinerary Planning

In this section we discuss more efficient solutions to the itinerary planning problems,

by focusing on the simple but practice scoring function (discussed in Section 5.2) based

on the binary feedback model, and the simple probabilistic model for scoring itineraries

based on the assumption of conditional independence. Our solutions are based on fast

heuristics to compute optimal itineraries approximately,thus overcoming the intractability

of OptItn. We also assume that the batch sizek is reasonably small (which is true in

practice as the value ofk is limited by the screen size used to display the selected POIs

to the end user), thus making thenk factor in the running time ofExpBatchScore

small. We also use a greedy approach to construct thek POIs, thus eliminating hav-

ing to examine all|Mremain|k subsets of POIs. Finally we develop several other algo-

rithmic and data structure optimizations to achieve very efficient overall performance of

OptPOIBatchSelection in practice. In the rest of this section we provide more de-

tails of our techniques.

5.4.1 Efficient Approximation Algorithm for POI Batch Selection

One of the main bottleneck in theOptPOIBatchSelection algorithm is that

a large number of candidate POI batches need to be consideredand the best one chosen

from among them. Instead, we follow a greedy approach where we construct a POI batch

one POI at a time, thus trading off batch quality (i.e.,ExpBatchScore(I|Mseen)) for

efficiency, with the hope that small quality degradation canbring in huge performance

improvements.
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Consider the algorithmGreedyPOIBatchSelection shown in Algorithm 15.

The first step is to prune from consideration those POIs inMremain that are simply too far

away from the start POI to be involved in valid itineraries. For tight budgets, this can be

a very effective step in practice. Next, the batch ofk POIs are constructed greedily ink

iterations. In each iterationi, each of the remaining POIs inMpruned are considered as

candidate for adding to the batch, and the one that creates a batch with i POIs with the

maximum batch score is selected for inclusion in the batch.

Thus, unlike theOptPOIBatchSelection algorithm in the previous section

which makes

O(|Mremain|k) calls to subroutineExpBatchScore (which evaluates each candidate

batch), the newGreedyPOIBatchSelection only makes at mostO(|Mremain| ×

k) calls to subroutineFastExpBatchScore (which itself is a more efficient subrou-

tine than the earlierExpBatchScore subroutine for evaluating each candidate batch,

to be discussed later). Since the value ofk is small is practice, the number of calls to

FastExpBatchScore is acceptably small.

5.4.2 Efficient Computation of a Batch Score

We next discuss the subroutineFastExpBatchScore which is shown in Algo-

rithm 16. This subroutine takes as input a candidate batch, and evaluates its “expected

score”, i.e., for the distribution of all possible user feedback for the candidate batch, the ex-

pected score of the optimal itinerary according to the specific scoring function being used.

The structure of this subroutine is very similar to that of the corresponding subroutine

ExpBatchScore in Section 5.3, because it also enumerates all possible userfeedback

combinations to the candidate batch, and makes a total ofn|I| calls to another subroutine

to determine the optimal itineraries for each possible userfeedback combination (this sub-
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Algorithm 15 : Algorithm GreedyPOIBatchSelection
Require: Mseen consisting of ‘yes’ and ‘do not care’ feedback,Mremain,

batch sizek, budgetB;

1: Mpruned = {m|m ∈Mremain, transit(StartPOI, m) + visit(m) ≤ B}; {prune

Mremain by removing POIs that are very far away from the start POI}

2: Imax = {};

3: i = 0;

{construct POI batch greedily by adding POIs one by one to initially empty batch}

4: while i 6= k do

5: m = argmaxmj∈Mpruned
FastExpBatchScore(Imax ∪ {mj}|Mseen);

6: Imax = Imax ∪ {m};

7: Mpruned =Mpruned − {m};

8: i++;

9: return Imax;

routine, calledApproxItn, will be discussed later). Since we assume thatk is small, and

|I| ≤ k, the total number of user feedback combinations will be reasonably small.

Hamiltonian Paths in Hypercubes: However, there is scope for optimizing

ExpBatchScore even further. The crucial difference betweenFastExpBatchScore

and the earlier genericExpBatchScore is theorder in whichall the user feedback com-

binations are processed.ExpBatchScore processes the user feedback combinations in

any arbitrary order, but we observe that certain specific orders can be leveraged to improve

overall efficiency. Since we are considering the specific binary feedback model, for a given

candidate batchI, there are2|I| different user feedback combinations. Consider any spe-

cific user feedback combinationIj. If we considerI as an ordered set (in any order) of

POIs, thenIj can be considered as a Boolean vector of length|I|, in which a1 implies that

the corresponding POI has been potentially marked as ‘yes’, and a0 implies that the corre-



147

Algorithm 16 : Subroutine FastExpBatchScore
Require: Mseen consisting of ‘yes’ and ’do not care’ feedbacks, a setI of ≤ k POIs from

Mremain;

1: AllFeedbacks(I) = {I1, I2, . . . I2|I|}

{above sequence should correspond to Hamiltonian path inI-dim hypercube}

2: FastExpBatchScore =Σ1≤j≤2|I|(Pr(Ij |Mseen)×

ExpScore(ApproxItn(Mseen, Ij)|Mseen)); {above calculation should be run in

Hamiltonian path sequence to enable incremental computation of ApproxItn and

Pr(Ij |Mseen)}

3: return FastExpBatchScore;

sponding POI has been marked as a ‘do not care’. Thus the set of2|I| user combinations

can be viewed as the vertices (i.e., corners) of a|I|-dimensional hypercube.

The subroutineFastExpBatchScore’s order for processing all user feedback

combinations is as follows: it finds aHamiltonian pathin the hypercube, and then processes

each user feedback combination in the order in which it appears in this path. For example,

consider the 3-dimensional hypercube in Figure 5.1, where aHamiltonian path is shown

traversing the 8 vertices.

!!!"
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#!!"

##!"

!#!"

Figure 5.1. Hamiltonian paths in hypercubes..
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The reason for using a Hamiltonian path for ordering the userfeedback combinations

is because the Hamming distance between any pair of consecutive vertices on this path is

exactly 1, i.e., the corresponding subsets of ‘yes’ POIs differ by exactly one POI. This has

important efficiency implications. For every user feedbackcombinationIj, the subroutine

FastExpBatchScore has to perform two computations (see line 2 in Algorithm 16)

(a) it has to call a subroutineApproxItn, and (b) it has to computePr(Ij|Mseen), i.e.,

the probability that the user will give this specific feedback combination, given her earlier

feedbacks. We defer the details ofApproxItn till later. However,Pr(Ij+1|Mseen) can

be incrementally computed very efficiently fromPr(Ij|Mseen) if they differ by only one

‘yes’ POI—as can be seen from the specific probability model formula in Section 5.2,

Pr(Ij+1|Mseen) can be computed fromPr(Ij|Mseen) in O(|Mseen|) time rather than in

O(|Mseen| × |I|) time, which would be required ifPr(Ij+1|Mseen) had to be computed

from scratch.

The following lemma shows that alld-dimensional hypercubes have Hamiltonian

paths, and moreover they are easy to construct.

Lemma 5.4.1. Eachd-dimensional hypercube has a Hamiltonian path, and such a path

can be computed inO(2d) time.

Proof. The proof is by induction. Assume that all hypercubes up to dimensiond have

Hamiltonian paths. Consider a Hamiltonian pathv1, v2, . . . , v2d−1, v2d . Now, consider a

(d + 1)-dimensional hypercube. It is easy to see that the path0v1, 0v2, . . . , 0v2d−1, 0v2d ,

1v2d , 1v2d−1, . . . , 1v2, 1v1 is a Hamiltonian path in the(d+1)-dimensional hypercube. Fig-

ure 5.1 illustrates this construction for the cased = 2, andd + 1 = 3. Clearly, this also

implies a simple linear time recursive construction of suchHamiltonian paths. �

What if we did not use a Hamiltonian path ordering? If we use anyarbitrary ordering,

the changes between successive user feedback combinationsmay be quite large, thus mak-
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ing probability calculations expensive. For example, suppose we used a random ordering

(i.e., a random permutation of all user feedback combinations). Then between successive

user feedback combinations in such an ordering, it is easy tosee that the expected Ham-

ming distance may beO(|I|). Thus every timeApproxItn is called, the incremental

probability computation may takeO(|Mseen| × |I|) time rather thanO(|Mseen|) time if

the Hamiltonian path ordering was used.

The Hamiltonian path order is also crucial in the efficient execution ofApproxItn,

which shall be discussed next.

5.4.3 Approximation Algorithm for Itinerary Construction

The ApproxItn subroutine solves theItinerary Construction Problemusing ap-

proximation heuristics. It takes as input a certain set of user inputs marked as ‘yes’ (Mseen,

enhanced with a candidate feedback combinationIj), and computes the valid itinerary

with the (approximate) highest expected score. Since this problem was shown to be NP-

complete in Section 5.3, we use a “Best-Benefit” approximationheuristic to solve this

problem approximately.

The subroutine is shown in Algorithm 17, which adopts a greedy approach. Starting

from the start POI, at every iteration, the algorithm adds the POI (chosen from the remain-

ing POIs, i.e., those not yet in the partially constructed itinerary) that has the bestbenefit,

as defined in line 5. Intuitively, the benefit correlates positively with the probability that

the user will mark the POI as ‘yes’, and negatively with the time needed (transit plus visit)

to reach this POI from the last POI added to the itinerary.

Heap Data Structures for Maintaining Benefits: For theApproxItn subroutine to be

efficient, at every iteration it needs to be able to quickly determine, from the remaining
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Algorithm 17 : Subroutine ApproxItn
Require: Mseen, and a candidate user feedback combinationIj

1: Mtempseen =Mseen ∪ Ij
2: τmax = StartPOI

3: RemainB = B − visit(StartPOI)

{Construct itinerary greedily using a “best benefit” heuristic}

4: while RemainB > 0 do

5: NextPOI =

argmaxmi∈Mprune−τmax

Pr(mi.feedback=yes|Mtempseen)
transit(mi,τmax.LastPOI)+visit(mi)

;

6: RemainB = RemainB−

transit(NextPOI, τmax.LastPOI) + time(NextPOI);

7: if RemainB > 0 then

8: τmax = τmax ∪ {NextPOI};

9: return τmax;

POIs inM3 that are not a part of the partially constructed itinerary, the POI with the best

benefit with regard to the last POI added to the itinerary. A naive way of doing so is to

pre-compute, before each execution ofApproxItn, for all pairs of POIsmx,my ∈ M

the benefit of reachingmy from mx. Then, whileApproxItn is executing, the benefit of

reaching each POI inM from the last POI of the itinerary can be compared and the POI

with the best benefit can be selected. Clearly this approach takes at leastO(|M|2) time,

not accounting for the pre-computation time.

We can reduce the execution time ofApproxItn fromO(|M|2) toO(|M| log(|M|)),

using the data structuring techniques described below. SinceApproxItn is called in the

3Actually, this should beMpruned, but in this discussion we assume that in the worst case theremay not

be any pruning, andMpruned =M.
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innermost loop of our overall itinerary planning algorithms, this can be a substantial savings

in practice.

Pre-Computation: Two data structures are prepared before each call toApproxItn:

1. The first isProbOrder, an ordered list of the POIs inM, in decreasing order of

Pr(mi.feedback = yes|Mtempseen) for each POImi. Note that these quantities

are the numerators of thebenefitof each POI (see line 5 in Algorithm 17). Instead

of naively constructingProbOrder from scratch every timeApproxItn is called,

we can leverage the fact that the calls are made in sequence along the Hamiltonian

path ordering of the user feedback combinations. Thus for each POImi, we update

Pr(mi.feedback = yes|Mtempseen) from its previous value in constant time, since

Mtempseen has changed by only one POI since the last execution. ThusProbOrder

can be updated and re-sorted in overallO(|M| log(|M|)) time.

2. The second is a set ofpriority queues/heaps[72] H1, H2, . . . HM, one for each POI

in M. For each POI, the corresponding heap contains the time (transit plus visit)

needed to reach every other POI inM. Note that these quantities correspond to the

denominators of the benefit of each POI (see line 5 in Algorithm 17). These heaps

allow the operationfind best time POIto be performed in constant time, and the

operationsdelete best time POIandinsert POIto be performed inO(log(|M|)) time.

Although it may appear that the total size of all the heaps isO(|M|2), these heaps

are constructedonly onceby theFastExpBatchScore subroutine. During each

of the 2|I| executions ofApproxItn, these heaps change due todelete best time

POI operations, but are restored to their original status before the next execution

of ApproxItn by undoing the delete operations with correspondinginsert POI

operations, as shall be discussed next.
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In-Computation: During the execution ofApproxItn, the main task at each iteration is

to determine, for the last added POI, the POI from the remaining with the best benefit.

However, as described above, we do not store the benefits of each POI directly in any data

structure (since that will be expensive to maintain), but rather store the numerators and

denominators in separate data structures. Thus to find the POI with the best benefit, we

have tosimultaneouslyscan both data structures in a round-robin manner,ProbOrder as

well asHLastPOI (the latter is done by repeateddelete best time POIoperations), until we

determine the remaining POI with the best benefit. This is essentially an application of

the popularThreshold Algorithm(TA) [61]. While in the worst case it can takeO(|M|) if

both data structures need to be completely scanned, in practice, it is expected to stop very

early. Once the next best POI has been determined, then the heapHLastPOI can be restored

by undoing thedelete best time POIoperations with correspondinginsert POIoperations.

Thus the in-computation cost of each execution ofApproxItn takesO(|M| log(|M|))

time, assuming that the TA algorithm only goes to a constant depth on each data structure

on average.

In summary, in this section we presented efficient approximation heuristics for the

POI Batch Selection Problemas well as theItinerary Construction Problem. We leveraged

a simple itinerary scoring function based on the binary feedback model, assumed that the

batch sizek is reasonably small, and applied a greedy strategy for constructing the batch of

k POIs. This is facilitated by making calls to an approximation algorithm for itinerary con-

struction that is based on thebest benefitheuristic. Moreover, we employ interesting algo-

rithmic and data structure optimizations, such as using theheap data structure for indexing

the POI benefits, and maintaining the heaps as well as the probability quantities efficiently

by following update strategies based on Hamiltonian path ordering in hypercubes.
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5.5 Experiments

We conduct a set of comprehensive experiments for popular travel destinations using

real world datasets extracted fromLonely Planet4 andFlickr5. In this section, we describe

our experimental set-up, data generation and explain our quality and performance results.

We implemented our prototype using JDK 5.0. All performanceexperiments were

conducted on a 2.66GHz Intel Core i7 processor, 4GB Memory, and 500GB HDD, running

OS X. The Java Virtual Memory size is set to 512MB. All numbers are obtained as the

average of three runs.

5.5.1 Data Generation

City Names and POI Generation: We consider popular tourist destinations and

their POIs for our itinerary planning problem.12 geographically distributed cities are con-

sidered and the popular POIs of those cities are extracted using theLonely Planetdataset.

City names, corresponding number of POIs in each city and someexample POIs are shown

in table 5.3. For each POI, we used Wikipedia6 to extract latitude and longitude information

associated with it.

Transit Time, Visit Time Generation: Given a city, we generate the transit time

between every pair of POIs in that city. We useGoogle Maps7 to calculate the transit

time by carbetween a pair of POIs using the underlying road network. This process gives

rise to a POI graph, one for each city and each of these generated graphs are complete

and directed. Note that, in general, the pairwise transit times generated in this process are

asymmetric, which is usually true for any road network. Visit time of each POI is generated

using the Flickr log.

4http://www.lonelyplanet.com/
5http://www.flickr.com/services/api/
6http://en.wikipedia.org/
7http://maps.google.com/
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Atomic and Pair-wise Probability Generation using Flickr Log: We use the pub-

licly available Flickr data8 to generate atomic and pair-wise probabilities of POIs. Flickr

data captures user itineraries in the form of photo streams,where the photos are tagged

with corresponding POI names and the respective date/time associated with the photos de-

fine the set of possible itineraries (such as, a set of POIs visited on the same day). Given a

Flickr log of a particular city, each row in that log corresponds to a user itinerary that is vis-

ited in a12 hour window. We use this log to generate the atomic probabilities of the POIs,

and the pair-wise probabilities of every POI pair for a particular city. Using three years

worth of Flickr logs, the atomic probability of a POI is the fraction that a POI appears out

of the total number of itineraries in the query log. The conditional pair-wise probabilities,

Pr(POIi|POIj) are calculated as the fraction thatPOIi was also visited out of the total

number of timesPOIj was visited.

The Flickr log may be considered as a collection of itineraries selected by prior users.

This enables us to perform quality experiments evaluating the effectiveness of interactive

itinerary planning, without requiring a user study involving actual users. Our interactive

approach chooses the next batch of POIs suggestions based onthe probabilistic model

learned from Flickr itineraries. User response is also simulated by the same probabilistic

model.

5.5.2 Summary of Experimental Results

We conduct quality and performance experiments by varying the number of POIs,

the budget and the size of the suggested POI batch. Each of these parameters impacts the

running time and the score of the returned results. We consider a starting POI for each ex-

periment that provides the starting point for the itinerary. All performance experiments are

reported for a running time of a single batch. We argue that pre-computation of itineraries

8http://www.flickr.com/services/api/
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Table 5.3. Example Cities and POIs

City Name Number of POIs Example POIs

Amsterdam 118 Diamond Museum,
Museum Amstelkring,
Oosterpark

Bangkok 48 Phayathai Palace, Siam
Ocean World, Wat
Traimit

Barcelona 73 Arc de Triomf, Museu
Picasso, Plaza Reial

Chicago 91 Flat Iron Building, Lin-
coln Park, Soldier Field

London 163 Brick Lane, Bucking-
ham Palace, Hyde Park

New Orleans 35 French Quarter, Pitot
House, St Roch Ceme-
tery

New York 119 Chelsea Art Museum,
Lincoln Center, Rus-
sian & Turkish Baths

Paris 114 Bois de Vincennes,
Jardin des Tuileries,
Petit Palais

Rome 134 Arco di Costantino,
Colosseum, Gianicolo

San Francisco 78 Alcatraz, Mission
Dolores Park, Union
Square

Sydney 96 Bondi Beach, Customs
House, Taronga Zoo

Toronto 48 Cn Tower, Ontario
Place, Spadina Mu-
seum
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is not possible. We observe in our dataset, that, for a budgetof 6 hours, any set of5 POIs

are permissible and can form a valid itinerary. Given a city that consists of about150 POIs,

roughly the number of valid itineraries that consist of all5 POIs could be in the range of

0.5 billion (the total number of itineraries would be much more), which certainly is not

feasible to pre-compute.

In short, our experimental results substantiate our claim that the greedy algorithm for

interactive itinerary planning is a feasible solution for interactive itinerary planning, both

quality and performance wise. In addition, we propose several optimizations of the greedy

algorithm and our results accordingly corroborate our theoretical analysis, by generating

faster running times for the optimized variants.

5.5.3 Quality Experiments

In this subsection, we discuss and report the results of our quality experiments.

Greedy Interactive Itinerary Planning Algorithm: In this experiment, we vary

the budget and observe the expected score of the optimal itinerary in one step of the in-

teractive itinerary planning process. We compare the optimal itinerary scores produced

by OptPOIBatchSelection andGreedyPOIBatchSelection. Both of these al-

gorithms use the greedybest benefitheuristic to obtain the best itinerary. Input to these

algorithms is a set of user feedbacks (‘yes′ to 3 different POIs) and a batch size (3). This

experiment is run on New York City, which has119 POIs.

Figure 5.2 shows the output of this experiment. We note that with increased budget,

since more POIs can be added to the optimal itinerary, its expected score increases. The

figure corroborates the fact thatGreedyPOIBatchSelection is comparable in the

quality of its optimal itinerary, to the more expensiveOptPOIBatchSelection.

Effectiveness of Interactive Itinerary Planning: In this experiment, we select prior

Flickr-based25 static itineraries (we refer to this asOfflineItinerary) instead of
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Figure 5.2. Expected Score Comparison.

actual users, where each itinerary consists of10 POIs, and is visited in12 hours. We

consider a simpler scoring function to assign score in each of them - the score of an itinerary

is the number of POIs in it. For each static itinerary, we apply our interactive itinerary

planning algorithm (known asInteractiveItnPlanning), where the next batch of

POIs suggestion is based on the probabilistic model learnedfrom those Flickr itineraries.

InteractiveItnPlanning calls GreedyPOIBatchSelection to select a POI

batch at each iteration. In each batch, user response is akinto the actual POIs present

in that itinerary,i.e., response is ‘yes’ for those POIs which actually surface in that static

itinerary.

Figure 5.3 records the average itinerary score in each batch. It shows that

InteractiveItnPlanning reaches the same score of offline itineraries in4 batches

on an average. Thus this result demonstrates that our interactive approach effectively gen-

erates itineraries that are liked by prior Flickr users .
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Figure 5.3. Effectiveness of Itinerary Planning Algorithm.

5.5.4 Performance Experiments

In this subsection, we discuss the efficiency aspects of the interactive itinerary plan-

ning algorithms, describe the running time attained by performing proposed optimizations

and compare that with the optimal brute-force algorithm. Performance is recorded by

mainly varying3 parameters - budget, batch size and number of POIs.

Feasibility of the Optimal Algorithm: We record the running time of

OptPOIBatchSelection andGreedyPOIBatchSelection, for varying batch sizes

k in Figure 5.4. The number of POIs is set to119 for this experiment, whereas the budget

is fixed at6 hours.OptPOIBatchSelection algorithm runs in seconds, whereas

GreedyPOIBatchSelection runs in milliseconds. Also, beyond batch-size4,

OptPOIBatchSelection does not terminate within10 hours, whereas

GreedyPOIBatchSelection scales well with increasing batch size. This observation

confirms that

GreedyPOIBatchSelection is an efficient solution for interactive itinerary planning.

Varying Batch Size: In this set of experiments, we vary the batch sizek and profile

the running time of the different optimizations performed in combination with

GreedyPOIBatchSelection. This algorithm is compared with its optimized variants
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Figure 5.4. Running time Comparison.

Figure 5.5. Running time Varying Batch Size.

- greedy that uses a heap to calculatebest time POIand processes user feedback combi-

nations in the heap following the Hamiltonian path computation(HeapGreedyPOI), and

the the most optimized variant, (HeapPrunGreedyPOI), which in addition to efficient

heap processing, also prunes the set of remaining POIs, subject to the budget.

The number of POIs is set to119 for this experiment, while the budget is fixed at

6 hours. Figure 5.5 records the running time of this experiment. We observe that with an

increasing batch size, the most optimized variantHeapPrunGreedyPOI performs sub-

stantially better thanGreedyPOIBatchSelection. This confirms that our proposed

optimizations are important to improve the overall performance.
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Figure 5.6. Running Time Varying Budget.

Figure 5.7. Running time Varying Number of POIs.

Varying Budget: We vary the budget constraints and keep the batch size and the

number of POIs (10 and119 respectively) fixed, and record the running time of different

variants of the greedy algorithm in Figure 5.6. The figure shows that with the increasing

budget, the running time increases in general for all variants. The most optimized variant

HeapPrunGreedyPOI outperforms others in all cases. One interesting observation here

is, the running time does not increase linearly with the budget. This phenomenon is due

to the fact, that, for a large enough budget (while everything else is fixed), there cannot be

any pruning based on budget and hence it does not impact performance anymore.

Varying Number of POIs: We vary the number of POIs for a fixed budget (6 hours)

and batch size (10). The running time of different variants are recorded in Figure 5.7. With
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the increase in POIs, the running time increases in general.This can be explained since the

greedy algorithm has to probe more POIs for selecting thek best POIs in each batch. The

most optimized variantHeapPrunGreedyPOI outperforms the rest in all cases. One

noteworthy observation here is, the running time ofHeapPrunGreedyPOI increases the

least with the increase in the number of POIs. The role of pruning becomes significant in

this case, hence with the increase in the number of POIs,HeapPrunGreedyPOI effec-

tively prunes the remaining POIs in a batch, and becomes the winner.

5.6 Related Work

Our work of interactive itinerary planning is an effort towards returning complex

objects (i.e., an itinerary constructed of several POIs) tothe user based on user interac-

tion, subject to the constraints. In a recent work, we first propose the notion of composite

items [73] towards that goal. However, an itinerary isnot any arbitraryordering of a set of

POIs, but it renders a strict ordering between the POIs, subject to the constraints. Conse-

quently this problem is significantly different from our earlier model [73].

The interactive itinerary planning facilitates effectivenavigation through the infor-

mation space. Our interactive POI selection strategy is akin to exploratory browsing inter-

faces such as faceted search [74]. However, the interactionhere is on the suggested set of

POIs.

Existing work related to travel itineraries can be classified into touristic data analysis

and touristic information synthesis. Regarding the former,there are a number of studies

on analyzing POI visitation patterns from geo-spatial and temporal evidences left by trav-

elers [75, 76, 77, 78, 79]. However, those works generally donot synthesize POIs into

itineraries and instead focus solely on the analysis itself. In the context of touristic infor-

mation synthesis, a number of works construct and recommendtourist itineraries at various

granularities [80, 81, 82, 83] but none of them provides the ability to query constructed
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itineraries. Our work is tangentially related to other vastfields such as visualizing geo-

spatial data, tracking movements based on sensor networks,and constraint optimization.

The closest works to ours are [84] and [85] which merge touristic data analysis and synthe-

sis to recommend itineraries based on user’s input. However, none of them does so in an

interactive manner.

A recent work proposes interactive route search in the presence of order

constraints [86]. The proposed approach is different from our work in that it does not con-

sider user budget, does not synthesize user’s previous feedback to learn future probability

of user preferences, and more importantly, tries to build anitinerary POI by POI, whereas

we consider a navigational approach that starts with all possible valid itineraries, which is

then iteratively narrowed by suggesting POIs in batches based on highest expected itinerary

scores.

Our optimal itinerary construction problemis akin to thevehicle routing problem

andtraveling salesman problem[72, 87], widely studied in the field of Computer Science

and Operation Research. These problems and several of their variants are known to be

NP-complete. One variant of vehicle routing problem is theOrienteering problem, which

and many of its variants are also known to be NP-complete [88,89, 90]. In particular,

we deal with the Rooted Orienteering problem in non-Euclidean asymmetric metric space.

Efficient polynomial time approximation scheme is known forthis problem problem in the

plane [71]. Unfortunately, to the best of our knowledge, there are no known approximation

algorithms with provable bounded factors for its non-Euclidean asymmetric variant.

Our greedy solution to the itinerary construction problem requires efficient searching

for the nextbest timePOI. We resort to a heap data structure [72] that facilitatesefficient

look up operation for the next best time node. Thenext benefitPOI is retrieved by perform-

ing a threshold style [61] computation onProbOrderlists and heaps.
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Our greedy algorithm for POI selection problem processes feedback combinations

in a current batch such that the heap requires only one updatebetween subsequent com-

binations. We leverage on computing a Hamiltonian Path on a hypercube graph [72] to

accomplish that task.

5.7 Conclusion

In this paper, we formalized interactive itinerary planning, showed that it is an NP-

complete problem and developed intuitive optimizations for the case where the score of an

itinerary is proportional to the number of Points Of Interest (POIs) desired by the user. In

order to do so, we reduced our problem to the rooted orienteering problem. Our optimiza-

tions are based on computing a Hamiltonian path in a hypercube and on using an efficient

heap-based data structure to efficiently prune POIs. In the future, we are planning to ex-

plore optimizations for more sophisticated itinerary scoring functions such as the chain

semantics, and to consider more complex budget constraintswhich incorporate both time

and price. Our algorithms would need to be revisited for thatpurpose.



CHAPTER 6

GROUP RECOMMENDATION: SEMANTICS AND EFFICIENCY

6.1 Introduction

Recommender systems have grown to become very effective in suggesting items of

high relevance to individual users. Group recommendation,or the task of finding items that

please a set of users, on the other hand, started to received attention relatively recently [91,

92, 93, 94, 95, 96, 97, 10]. We envision a system that a community of users can consult

when planning an activity together such as looking for a bookfor a reading club, finding

a restaurant to celebrate a project milestone with colleagues, or renting a movie to watch

at a girls’ night out. In this paper, we study this problem with a focus on time and space

efficiency.

Even more so than in traditional individual recommendation, identifying items of

high relevance to a group is challenging: What if group members disagree on their favorite

items (e.g., people who prefer non-fiction books vs those wholike fiction, in a book reading

club)? What if there is a group member whose tastes highly differ from all others (e.g., a

vegetarian going to a restaurant with non-vegetarians)? Atits core, group recommendation

necessitates the modeling of disagreements between group members and aims to find items

with high predicted rating that also minimize disagreements between group members. In

other terms, it is more desirable to return an item that each group member is happy with

than to return an item that polarizes group members even if the latter has higher average

ratings among them. In this work, we formalize the notion ofconsensus functionsthat

capture such real-world scenarios.

164
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Intuitively, the general form of consensus functions is a weighted combination of

predicted rating and pair-wise disagreement. For a given user, her individual preference

(i.e., predicted rating generated by an underlying recommender system) for items can be

maintained in the so-calledpredicted rating list. We can then leverage Fagin-style merge

algorithms [61] to generate items to be recommended to the group based on individual lists

of items sorted by their predicted ratings to each group member. Unfortunately, while item

disagreements between users can be computed from their predicted rating lists, they do not

increase or decrease monotonically with the predicted ratings: two users who both think

highly of an item may still disagree more on that item than on an item they both dislike.

This drastically reduces the pruning power of the merge algorithms. To address this issue,

we introducepair-wise disagreement listswhich are pre-computed from predicted rating

lists and sorted in decreasing order of disagreements. Both predicted rating lists and pair-

wise disagreement lists can then be merged, using Fagin-style algorithms, to find items to

recommend to a group.

Without prior knowledge of what groups can be formed betweenusers, a disagree-

ment list has to be created for every user pair. In practice, this introduces enormous space

requirements. A back-of-the-envelope computation shows that with a modest70K-user,

10K-item database, a total of about2TB space is needed to store the14 trillion list entries

in pair-wise disagreement lists. To address this concern, we develop space reduction strate-

gies which exploit two key characteristics of disagreementlists. First, entries in those lists

may be redundant due to shared user behavior. Our strategy which factors out common en-

tries in disagreement lists without affecting I/O. Second, all lists do not contribute equally

to processing time because of different rating distributions. We develop apartial material-

izationstrategy which identifies which subset of lists to materialize in order to maximize

space reduction and minimize processing time.
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Intuitively, if two users (u andv) agree on many items, their disagreement lists with

all other users will be the same for those items. In other terms, given any other userw,

the entries corresponding to the items thatu andv agree on in the(u,w) disagreement list

will be the same as those in the(v, w) disagreement list. Hence, they can be stored only

once, instead of being replicated in all lists. We call thisbehavior factoringin disagreement

lists. We formalize the problem and devise an algorithm for efficiently factoring common

entries in disagreement lists. This space saving strategy requires changes to the group

recommendation algorithm to process factored lists.

Factoring comes for free and always saves space when at leasttwo users agree on

some items. Unfortunately, if a space budget is imposed, factoring alone does not always

guarantee to produce a set of lists within that budget. We further explorepartial mate-

rialization as a complementary space reduction strategy which selectively materializes a

subset of the disagreement lists. In a nutshell, a disagreement list which does not sig-

nificantly affect processing time and consumes too much space, should be dropped. Not

surprisingly, partial materialization may negatively affect processing time since the benefit

of non-materialized disagreement lists will be lost. We formulate partial materialization as

a variant of the Knapsack problem and develop an algorithm which identifies the subset of

lists to materialize.

6.1.1 Contributions and Outline

We make the following contributions in this thesis:

1. We formalize the problem oftop-k group recommendationand introduce the notion

of group consensus function that incorporates various predicted rating and disagree-

ment models.
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2. We propose the use of pair-wise disagreement lists, and design and implement effi-

cient group recommendation algorithms based on the mergingand effective pruning

of individual predicted rating lists and pair-wise disagreement lists.

3. Given the potentially large number of disagreement lists, we exploit shared user be-

havior to reduce the space requirement of those lists. As a result, we extend the

group recommendation algorithms to process factored lists. We show that factoring

common entries in disagreement lists can drastically reduce storage space without

incurring I/O overhead.

4. The factoring strategy does not always guarantee reaching a fixed space budget. To

achieve a certain space budget, we develop a partial materialization strategy which

exploits the size of each disagreement list and their impacton query processing: it

skips disagreement lists in order to minimize space while incurring small processing

time overhead. We formalize this question as an adaptation of the Knapsack problem

and develop an algorithm to solve it.

5. We run an extensive set of experiments with different group sizes on MovieLens data

sets. We perform extensive user-study in Amazon’s Mechanical Turk to demonstrate

the effectiveness of our group recommendation semantics and how satisfied users are

with recommended group ratings compared to individual ones. Our elaborate per-

formance experiments exhibit the efficiency of group recommendation computation.

We also demonstrate the benefit of behavior factoring and partial materialization on

space.

We note here that the group recommendation problem definition and the basic group

recommendation algorithms were first introduced in the conference version [10] of this

thesis. Furthermore, [10] also discussed partial materialization to a certain extent. How-

ever, the partial materialization algorithms described here address the problem in a more

formal way. Behavioral factoring is introduced for the first time here. The rest of the
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thesis is organized as follows. Section 6.2 provides some background and formalism. It

describes the family of consensus functions we tackle in this thesis and defines the group

recommendation problem. Section 6.3 describes the group recommendation algorithm.

Section 6.4 presents our behavior factoring strategy and a revision of the group recommen-

dation algorithm to operate on factored lists. Section 6.5 discusses partial materialization

in the presence of a space budget and develops our adaptationof the Knapsack problem

to achieve partial materialization post factoring. Experiments are presented in Section 6.6.

Section 6.7 contains the related work. We conclude in Section 6.8.

6.2 Background and Data Model

Let U denote the set of users andI denote the set of items (e.g., movies, travel

destinations, restaurants) in the system. Each useru may have provided a rating for an item

i in the range of0 to 5, which is denoted asrating(u, i). If the user has not provided a

rating for an item, therating is set to⊥. We further generatepredicted ratingsfor each

pair of user and item, denoted aspredictedrating(u, i). This predicted rating comes

from two sources. If the user has provided a rating for the item, then it is simply the user

provided rating. Otherwise, it is generated by the system using a recommendation strategy

as outlined next.

6.2.1 Individual Recommendation Model

We review the two most popular families of recommendation strategies. These strate-

gies rating on finding items similar to the user’s previouslyhighly rated items (item-based),

or on finding items liked by people who share the user’s interests (collaborative filter-

ing) [98]. In both cases, missing ratings are assigned value0.
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6.2.1.1 Item-Based Strategies

These are the oldest recommendation strategies. They aim torecommend items simi-

lar to those the user preferred in the past. While different strategies use different approaches

to compute the predicted rating, we present one common formulation. The rating of an item

i ∈ I by a current useru ∈ U is estimated as follows:

predictedrating(u, i) = Avgi′∈I & rating(u,i′) 6=⊥ItemSim(i, i
′)× rating(u, i′).

Here,ItemSim(i, i′) returns a measure of similarity between two itemsi andi′. Item-

based strategies are very effective when the given user has along history of rating activity.

However, item-based strategy do not work well when a user first joins the system. To ad-

dress that, collaborative filtering strategies have been proposed, which we briefly describe

next.

6.2.1.2 Collaborative Filtering Strategies

These strategies aim to recommend items which are highly rated by users who share

similar interests with or have declared relationship with the given user. The key of this

method is to find other users connected to the given user. The rating of an itemi by a user

u is estimated as follows:

predictedrating(u, i) = Avgu′∈U & rating(u′,i) 6=⊥UserSim(u, u′)× rating(u′, i)

Here,UserSim(u, u′) returns a measure of similarity or connectivity between two

usersu and u′ (it is 0 if u and u′ are not connected). Collaborative filtering strategies

broaden the scope of items being recommended to the user and have become increasingly

popular.

We note that there are also so-called fusion strategies [99], which combine ideas from

item-based and collaborative filtering strategies, and model based strategies, which lever-

age machine learning techniques. While we do not consider them in this thesis, we note
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that group recommendation does not consider rating on one specific strategy to generate

recommendations for individual group members.

6.2.2 Group Recommendation Model

The goal of group recommendation is to compute a recommendation score for each

item to reflect the interests and preferences of all the groupmembers. In general, group

members may not always have the same tastes and aconsensus scorefor each item needs

to be carefully designed. Intuitively, there are two main aspects to the consensus score.

First, the score needs toreflect the degree to which the item is preferred by the members.

The more group members prefer an item, the higher its score should be for the group.

Second, the score needs toreflect the level at which members disagree or agree with each

other. All other conditions being equal, an item that members agree most about should

have a higher score than an item with a lower overall group agreement. We call the first

aspectgroup predicted ratingand the second aspectgroup disagreement.

Definition 16 (Group Predicted Rating). The predicted rating of an itemi by a groupG,

denoted asrating(G, i), is an aggregation over the predicated rating of each group mem-

ber,predictedrating (u, i) whereu ∈ G. We consider two main aggregation strategies:

1) Average:

rating(G, i) = 1
|G|

∑

(predictedrating(u, i))

2) Least-Misery:

rating(G, i) = Min(predictedrating(u, i))

Average and Least-Misery aggregation models are considered because they are the

most prevalent mechanisms being employed currently [91]. Alternative aggregations (e.g.

Most-Happiness, i.e., taking the maximum over all individual predicted ratings) are also

possible.
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Definition 17 (Group Disagreement). The disagreement of a groupG over an itemi, de-

noteddis(G, i), reflects the degree of consensus in the predicted ratings for i among group

members. We consider the following two main disagreement computation methods:

1) Average Pair-wise Disagreements:

dis(G, i) = 2
|G|(|G|−1)

∑

(|predictedrating(u, i)−

predictedrating(v, i)|), whereu 6= v andu, v ∈ G;

2) Disagreement Variance:

dis(G, i) = 1
|G|

∑

u∈G (predictedrating(u, i) − mean)2, wheremean is the mean of all

the individual predicted ratings for the item.

The average pair-wise disagreement function computes the average of pair-wise dif-

ferences in predicted ratings for the item among group members, while the variance dis-

agreement function computes the mathematical variance of the predicted ratings for the

item among group members. Intuitively, the closer the predicted ratings fori between

usersu andv, the lower their disagreement fori. In Section 6.3.1, we will characterize the

properties of both disagreement functions in detail.

Finally, we combine group predicted rating and group disagreement in theconsensus

function.

Definition 18 (Consensus Function). The consensus function, denotedF(G, i), combines

the group predicted rating and the group disagreement ofi for G into a single group rec-

ommendation score using the following formula:

F(G, i) = w1 × rating(G, i) + w2 × (1 − dis(G, i)), wherew1 + w2 = 1.0 and each

specifies the relative importance of predicted rating and disagreement in the overall rec-

ommendation score.
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While one could design more sophisticated consensus functions (see [94] for an ex-

ample), we adopt this general form of weighted summation of group predicted rating and

group disagreement for its simplicity and the fact that the family of threshold algorithms

can be easily applied for the computation. We note here that the commonly used least-

misery model maps to the case wherew1 = 1.0 and group predicted rating is aggregated

using the least-misery function.

6.2.3 Problem Statement

PROBLEM (Top-k Group Recommendation).Given a user groupG and a consensus

functionF , identify a listIG of items such that:

1. |IG| = k

2. Items inIG are sorted on their decreasing group recommendation score as computed

by the consensus functionF , and@j ∈ I s.t.F(G, j) > F(G, i), j /∈ IG, i ∈ IG.

6.3 Efficient Computation of Group Recommendation

In this section, we discuss efficient group recommendation algorithms. We first ex-

amine the applicability of existing top-k processing algorithms, then present our solution.

We then discuss how to improve our algorithm with threshold tightening strategies that

benefit from users’ predicted rating lists.

6.3.1 Applicability of Top-K Threshold Algorithms

Many of the best algorithms for computing top-k items belongto the family of thresh-

old algorithms [61]. Given an overall scoring function thatcomputes the score of an item by

aggregating scores from individual components, thresholdalgorithms consume sorted item

lists that correspond to each component. Those input lists are scanned using sequential or
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random accesses, and the computation can be terminated earlier using stopping conditions

based on score bounds (thresholds). Early stopping is possible when the scoring function

is monotone, i.e., if componentc is the only component in the scoring function and items

i1 andi2 differ in their scores, the overall score ofi1 is no less thani2’s if i1’s score onc is

no less thani2’s score onc.

Recall from Definition 18 that our consensus function is a weight summation of two

components,group predicted ratingandgroup disagreement. It is clear that the consensus

function itself is monotone in the two individual components. In other words, if two items

have the same group disagreement, the item with the higher group predicted rating will

have at least the same group recommendation score, and vice versa.

It is also clear that the two group predicted rating functions proposed in Definition 16

are themselves monotone in the predicted ratings of individual members. If all group mem-

bers, exceptu, rate itemsi1 andi2 the same,i1 will have at least the same group predicted

rating score asi2 if u ratesi1 no less thani2. This holds for both the average and the

least-misery strategies.

It is, however, not clear whether the group disagreement functions proposed in Defi-

nition 17 are monotone. In this section, we prove that the twogroup disagreement functions

proposed can be transformed into aggregations of individual pairwise disagreements and

become monotone. This means we can apply threshold algorithms to compute the over-

all recommendation score with individual predicted ratinglists and pair-wise disagreement

lists as inputs, and take advantage of the pruning power thatthreshold algorithms give us.

6.3.2 Monotonicity of Group Disagreements

We use a simple example group of two users to show that computing group disagree-

ment based on predicted ratings of individual members is notmonotonic. Figure 6.1(a)

illustrates the two sorted predicted rating lists for the two users (u1 andu2). It is clear that
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Figure 6.1. Group Disagreement is not monotonic w.r.t. predicted rating lists.

while i1 has a higher predicted rating foru1 thani2 (4 versus3), the group disagreement

score fori2 is in fact higher (1 instead of 0). The same non-monotonicitycan be encoun-

tered when predicted rating lists are sorted in decreasing order (as shown in the example

in Figure 6.1(b)). Hence, the problem of non-monotonicity of disagreement in predicted

rating lists persists regardless of the order in which predicted rating lists are sorted.

To address this problem, we propose to maintainpair-wise disagreement listsin-

stead and prove their monotonicity properties for the two group disagreement functions in

Definition 17.

A pair-wise disagreement list (or simply disagreement list) for usersu andv is a

list of items which are sorted in the increasing order of the difference between their pre-

dicted rating scores foru andv. For an itemi, we use∆i
u,v = |predictedrating(u, i)−

predictedrating(v, i)| to denote this predicted rating difference.

Lemma 6.3.1.The average pair-wise disagreement function in Definition 17is monotonic

w.r.t. pair-wise disagreement lists.

Proof: Let us assume a groupG = {u1, u2, ..., up} with all its p(p − 1)/2 dis-

agreement lists (one for each user pair). Also assume that there are a total oft items,
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I = {i1, i2, ..., it}. Note that we want to retrieve items with minimum disagreements first.

Consider two itemsir andis within I.

The group disagreement forir andis can be written as:f ×Σ∀j,k=1,2,...,p(∆
ir
uj ,uk

) and

f × Σ∀j,k=1,2,...,p(∆
is
uj ,uk

), respectively, wheref = 2
p(p−1)

(see Definition 17).

Without loss of generality, assume we have

∆ir
ux,uy

< ∆is
ux,uy

, and∀j, k = 1, 2, . . . , p, ∆ir
uj ,uk

= ∆is
uj ,uk

, where(j, k) 6= (x, y). It is easy

to see that

f × Σ∀j,k=1,2,...,p(∆
ir
uj ,uk

) < f × Σ∀j,k=1,2,...,p(∆
is
uj ,uk

).

If the number of disagreement lists is restricted tom,1 the monotonicity property can

still be maintained by assuming the minimum disagreement values (0) for any unavailable

user pairs during top-k computation.�

In the disagreement variance model in Definition 17, disagreement over an item is

defined as the variance in predicted ratings among all group members. In other words,

the predicted rating by each member is compared against the mean predicted rating of

the group. We now show that this disagreement function can infact be monotonically

aggregated from pairwise disagreement lists.

Lemma 6.3.2. The disagreement variance function in Definition 17 is monotonic w.r.t.

pair-wise disagreement lists.

Proof: Let us consider the groupG and set of itemsI in Lemma 6.3.1. Consider two

itemsir andis. The group disagreement ofir andis can be written as:

Σ∀j∈p[predictedrating(uj, ir)− Σ∀i∈ppredictedrating(ui,ir)

p
]2

p

and

Σ∀j∈p[predictedrating(uj, is)− Σ∀i∈ppredictedrating(ui,is)

p
]2

p

1We discuss partial materialization of disagreements listsin Section 6.5.
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We can transform this disagreement variance formula forir into (ignoringp):

[∆ir
12 +∆ir

13 + ...+∆ir
1p]

2 +[∆ir
21 +∆ir

23 + ...+∆ir
2p]

2 + ...+[∆ir
p1 +∆ir

p2 + ...+∆ir
p(p−1)]

2

which can be further expressed as:

[∆ir
12]

2 + ... + [∆ir
1p]

2 + ... + 2× [∆ir
12][∆

ir
13] + 2× [∆ir

12][∆
ir
14] + ...

It is clear that the above formula is a monotonic aggregationof [∆jk]∀j, k ∈ p.

Without loss of generality, assume we have∆ir
ux,uy

< ∆is
ux,uy

, and∀j, k ∈ p, ∆ir
uj ,uk

=

∆is
uj ,uk

, where(j, k) 6= (x, y). It is easy to see that the disagreement variance ofir is

less than the disagreement variance ofis. Hence, we have proved that using pair-wise

disagreement lists is sufficient to compute disagreement variance in a monotonic fashion.

�

Materializing all possible pair-wise disagreement lists may not be practical since the

number of such lists grows quadratically in the number of users. We discuss behavior

factoring in Section 6.4 to save space and in Section 6.5, we discuss, given a fixed space

constraint, which pairs to materialize in order to produce the best performance with thresh-

old algorithms.

6.3.3 Group Recommendation Algorithms

Given a groupG, the goal, stated in Section 6.2.3, is to return thek best items accord-

ing to a consensus functionF (see Definition 18). We describe several algorithms for this

problem; with each algorithm being a variant of the well-known TA [100] for top-k query

processing.
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The Full Materialization (FM) Algorithm: We start by describing Algorithm 18,

which admits predicted rating listsIL of each user in the input groupG and disagreement

listsDL for every pair of users inG. ILs are sorted in decreasing order of predicted rating

andDLs are sorted in increasing order of disagreement. These predicted rating lists and

disagreement lists of a group are akin to attributes on whichthe algorithmTA [100] works.

We refer to Algorithm 18 asFM (Full Materialization).

EachIL is obtained using an individual recommendation strategy (as described in

Section 6.2.1). EachDL is generated for a user pair and records the difference in scores

for all items in their respectiveILs.

We showed in Section 6.3.1 that pairwise disagreement listsguarantee monotonicity

for both pairwise and variance disagreements thereby allowing FM to rely on a threshold

for early stopping. Our algorithm makes sequential access (SA) on each input lists (pre-

dicted rating and disagreement) in a round-robin fashion (lines 3 and 12) and reads an entry

e = (i, r), wherei is the item-id andr is the predicted rating or disagreement value associ-

ated with it. There are two routines:ComputeExactScorewhich computes the score of

the current item, andComputeMaxScore which produces a new threshold value at each

round. During the execution of the algorithm, we also maintain a bounded buffer(heap)

which stores the top-k elements encountered thus far and their corresponding exact scores

using the input consensus functionF. If a new item is encountered during a sequential ac-

cess (SA), ComputeExactScore performs a random access (RA) on all other predicted

rating lists to compute the score of that item using the inputconsensus functionF. The main

difference betweenFM andTA is that whileSAs are done onILs andDLs interchangeably,

RAs are only done onILs (since disagreement can be computed from predicted ratings).

In fact,DLs are not necessary to compute the final result. They are only there to compute

the threshold and enable early termination.
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ComputeMaxScore produces a new threshold value at each round. Its basic pur-

pose is to provide an upper bound the score of any item that hasnot yet been seen by the

algorithm. Thus, ifru is the last predicted rating value read on listILu for all u ∈ G, and

∆u,v the last pairwise disagreement value read on disagreement listDLu,v for all u, v ∈ G,

then the upper bound for the threshold (assuming the averagepairwise disagreement model)

is computed as follows:

F(G, i) ≤ w1 ×
1

|G|
∑

u∈G
ru + w2 × (1− 2

|G|(|G| − 1)

∑

u,v∈G
∆u,v)

Algorithm 18 : Group Recommendation Algorithm with Fully Materialized Dis-

agreement Lists (FM)
Require: GroupG, consensus functionF;

1: Retrieve predicted rating listsILu for each useru in groupG;

2: Retrieve disagreement listsDL(u,v) for each user pair(u, v) in groupG;

3: Cursorcur = getNext() moves across each predicted rating and disagreement lists;

4: while (cur <> NULL) do

5: Get entrye = (i, r) at cur;

6: if !(inHeap(topKHeap, e)) then

7: if (ComputeMaxScore(e.i, e.r, F) > topKHeap.kthscore) then

8: ComputeExactScore; ProbeILs to compute exact scorescore of e usingF;

9: if score > topKHeap.kthscore then

10: topKHeap.addToHeap(e.i, score);

11: else

12: return topKList(topKHeap);

13: Exit;

14: cur = getNext();

15: return topKList(topKHeap);
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The Ratings Only (RO) Algorithm: We next describe another variation of the al-

gorithm, calledRO (Ratings Only), which applies when only the predicted ratinglists are

present and none of theDLs are available.RO has the obvious benefit of consuming less

space. As discussed above, the lack of disagreement lists does not have any impact on

ComputeExactScore. However, it has an impact on how theComputeMaxScore

has to be modified to produce a (somewhat less tight) threshold value. More precisely,

since disagreement lists are not available, we assume that the pairwise disagreement be-

tween each pair of users for any unseen item is0. Thus the upper bound for the threshold

value only comes from the last values read from each predicted rating list:

F(G, i) ≤ w1 ×
1

|G|
∑

u∈G
ru

The Partial Materialization (PM) Algorithm: Finally, the most general variant is

the case where only some disagreement lists are materialized, referred to asPM (Partial

Materialization). As withRO, PM also has the obvious benefit of consuming less space than

FM. In terms of processing, it differs from the others in how thethreshold is computed. Let

M be the set of all pairs of users for which disagreement lists have been materialized, the

threshold can be computed as follows:

F(G, i) ≤ w1 × 1
|G|

∑

u∈G ru +

w2 × (1− 2
|G|(|G|−1)

∑

(u,v)∈M ∆u,v)

Intuitively, one may think that the moreDLs are materialized, the tighter the score

bound and hence, the faster the algorithm terminates. It turns out that it is not always the

case. The basic intuition is that overall performance is a balance between the total number

of distinct items which need to be processed before finding the bestk items, referred to

asDIP (Distinct Items Processed), and the number of sequential accesses,SAs, that result

from the proliferation of disagreement lists. Consider the case of a 3-member group. The

question we ask ourselves is when does using two materialized lists,DL1 andDL2, per-
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form worse than when only one materialized list, sayDL1, is used? If none of top items in

DL2 is in the final output, eachSA onDL2 is pure overhead. This is exacerbated if the the

top items inDL1 andDL2, i.e., the ones with the least disagreement, are distinct. In both

cases, ifDL2 does not provide an opportunity to tighten the threshold, the number ofSAs

usingDL1 andDL2 will be much higher than the number ofSAs where onlyDL1 is used.

The PM variant raises an interesting question - which pair-wise disagreement lists

should be materialized as a preprocessing step? This partial list materialization problem is

discussed in the subsection 6.5. But first, in Section 6.3.4, we discuss interesting and novel

techniques by which the threshold bounds can be sharpened even further.

6.3.4 Sharpening Thresholds

In this subsection we examine the different variants of theTA algorithm that we have

developed thus far—FM, RO andPM—and suggest techniques by which their performance

can be further improved, mainly by modifying theComputeMaxScore function to com-

pute sharper thresholds that enable earlier termination.2

Our approach is best illustrated by the following simple example. Consider a group

consisting of two usersG = {u, v}. Recall thatILu (resp. ILu) is the relevant list for

useru (resp.v), andDL(u,v) is the disagreement list of user pairu andv. Assume that the

disagreement list has been materialized.

Consider a snapshot of theFM algorithm after a certain number of iterations. Let

ru = 0.5, rv = 0.5 and∆u,v = 0.2 be the last predicted rating and disagreement values read

from each list respectively. The task of theComputeMaxScore function is to provide an

upper bound on the maximum possible value of the consensus functionF(G, i) for any item

i that has not yet been seen in any of the lists. Let the unseen item i’s unknown predicted

2While these techniques appear very promising, we note that they are the subject of our ongoing

investigations—we discuss them in this version of the paper primarily to illustrate their potential.



181

rating values beiu andiv for useru andv respectively. The consensus function is defined

as:

F(G, i) = (iu + iv)/2 + (1− |iu − iv|/1) (6.1)

Since each list is sorted in decreasing order of predicted rating (increasing order of

disagreement), it should be clear that the following inequalities hold:

0 ≤ iu ≤ 0.5

0 ≤ iv ≤ 0.5

0.2 ≤ |iu − iv| ≤ 1

As described in Section 6.3.3, our current approach provides a simple upper bound

for F(G, i) by substituting the upper bounds foriu andiv (and the lower bound for|iu− iv|)

from the above inequalities, to arrive at the following threshold:

F(G, i) ≤ (0.5 + 0.5)/2 + (1− 0.2/1) = 0.5 + 0.8 = 1.3

However, a more careful examination of the inequalities reveals that this bound is

not tight. Notice thatiu and iv should be at least0.2 units apart, thus both cannot be at

0.5. Since the upper bound ofiu is 0.5, iv can be at most0.3. Thus we can derive a sharper

bound forF(G, i) as follows:

F(G, i) ≤ (0.5 + 0.3)/2 + (1− 0.2/1) = 0.4 + 0.8 = 1.2

This example illustrates that due to the dependencies between the disagreement lists

and the predicted rating lists, there are opportunities forderiving sharper thresholds for

early termination after each iteration of the algorithm. More generally, after every iteration,

we are faced with a formaloptimization problemwhere we seek to maximize the consensus

function over|G| real-valued variables, subject to various constraints on their values arising
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from the cursor positions on the predicted rating and disagreement lists. These optimization

problems have seemingly complex formulations, because theconsensus function as well the

inequalities arising from disagreement lists are non-linear, involving absolute terms (e.g.,

of the form |iu − iv|) in the case of average pair-wise disagreement, as well as quadratic

terms (e.g., of the form(iu − mean)2) in the case of variance based disagreement.

In this paper, we conduct a detailed investigation of the optimization problem involv-

ing the pair-wise disagreement model. Presence of absoluteterms in the inequalities and

consensus function makes the optimization problem non-linear; however we realize that

the non-linear optimization problem can be reformulated asmultiple linear optimization

problems. Solution to this non-linear optimization can be achieved by solving each linear

optimization problems individually and finally selecting the linear optimization solution

that offers the maximum objective value.

Using LP-based reformulation technique, optimization problem in Equation 6.1 can

be reformulated as two linear optimization problems:

a) Maximize

F(G, i) = (iu + iv)/2 + (1− (iu − iv)/1)

s.t.

0 ≤ iu ≤ 0.5

0 ≤ iv ≤ 0.5

0.2 ≤ (iu − iv) ≤ 1

and

b) Maximize

F(G, i) = (iu + iv)/2 + (1− (iv − iu)/1)



183

s.t.

0 ≤ iu ≤ 0.5

0 ≤ iv ≤ 0.5

0.2 ≤ (iv − iu) ≤ 1

Solution to problem 6.1 is the maximum of the objective values that linear opti-

mization problems(a) and(b) take. In general, consensus function involvingn variables

requiresn! linear reformulations and solving each of them individually for obtaining the

correct optimization value. However, at the same time the sizes of the problems themselves

are very small, consisting of only a few variables and constraints (assuming user group

sizes are small), and thus are likely to be efficiently solvable by reformulating the problem

into multiple linear optimization problems with practically no overhead per iteration. Note

that this reformulation only works for the absolute operator in the consensus function (pair-

wise disagreement model), and not for the quadratic operator (variance based disagreement

model).

6.4 Behavior Factoring

In this section, we explore our first space saving strategy which relies on factoring

shared behavior from disagreement lists. The intuition is that if two users have the same

rating on a subset of the items, they can be treated as a singlevirtual user whose disagree-

ment lists with other users should only be stored once. More precisely, if two usersu andv

agree on a set of itemsS, their disagreement listsDL(u,w) andDL(v,w) with any other user

v share the same disagreement values for items inS. An extreme case is whenu1 andu2

agree on every single item, the two listsDL(u,w) andDL(v,w) are the same. We begin by

defining thefactoring setof a pair of users.
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Definition 19 (Factoring Set). A factoring set for a pair of usersu andv is the largest set

of items in whichu and v agree. This set is referred to asS(u,v) ⊆ I and is defined as

∀i ∈ S(u,v), ∆
i
u,v = 0, where∆i

u,v = |predictedrating(u, i)− predictedrating(v, i)|

Given a pair of users,(u, v), ∀w ∈ U s.t.,w is different fromu andv, the disagree-

ment listsDL(u,w) andDL(v,w), share the same values for items inS(u,v).

We define a configurationC as the set of disagreement lists materialized for a user

baseU . The algorithms developed in Section 6.3 admit different configurations as input.

FM accepts a configuration where a disagreement list is createdfor every user pair inU . RO

accepts an empty configuration (since it only processes predicted rating lists).

Given a space constraintm (number of entries for storing materialized disagree-

ment lists) and a configurationC, factoring aims to output a configuration(C′) such that

size(C′) ≤ m, wheresize(C′) =
∑

DL(u,v)∈C′ (|DL(u,v)|). The size of predicted rating

lists IL(u,v) is ignored since they are not affected by factoring. We next describe the fac-

toring algorithm in Section 6.4.1 and the modification to query processing in the presence

of factored lists in Section 6.4.2.

6.4.1 Factoring Algorithm

The outline of the algorithm is as follows: factoring beginsby deciding the user-

pair which has the largest factored set (say user pair(u, v)). The factored set is removed

from the original disagreement list of(u, v). That set is also removed from every other

original disagreement list that is shared by eitheru (or v) and a third user (sayw) and

their disagreements on those items are stored only once in a common list (note that in the

original case, items of the factored set are present in both(u,w) and(v, w)’s disagreement

lists). This step overall achieves a space reduction. However, if the space budget (m) is not

satisfied yet, same factoring strategy is repeated on the user base which has all other users
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exceptu andv. This factoring process is reiterated unless one of these two conditions are

satisfied: a) overall space is reduced underm or b) no more factoring is possible.

Consider Figure 6.2 that illustrates one complete run of the proposed factoring algo-

rithm on an example user base of size5, {u, v, w, x, y}. Inputs to the factoring algorithm

are a space budget (m, total no of entries in all pair-wise disagreement lists in the user base)

and the set of all possible pair-wise disagreement lists of the user base. Figure 6.2(a) mod-

els the user base in form of a5-node clique, where each user contributes one node in that

clique. An edge between a pair of nodes is the pair-wise disagreement list between them.

Note that, initially, the presence of all pair-wise disagreement lists make this graph com-

plete, as shown in Figure 6.2(a). Next, it aims to compute factoring sets for every user pair

and identify the user pair which has the largest factoring set. (Since all disagreement lists

are of same size, largest factored set attains the highest space reduction.) Let that user pair

be (u, v), as shown in Figure 6.2(b). Once(u, v) is identified, the disagreement between

u and any other user, and disagreement betweenv and the same user, over items in their

factoring set, are factored out and only stored once. The core primitive in the algorithm

is to consider one triangle of users at a time involving edge(u, v) and perform factoring.

Note that Figure 6.2(b) explains this step whereS(u,v) is factored out from disagreement

list DL(u,v). Next,S(u,v) is factored out fromDL(u,w) andDL(v,w) and is stored only once

in DLS(u,v),w. Similarly, S(u,v) is factored out fromDL(u,x), DL(v,x) andDL(u,y),DL(v,y)

and stored once inDLS(u,v),x andDLS(u,v),z, respectively. Conceptually this step involves

modifications of3 triangles involving edge(u, v) for the given user base that consists of5

users . For each triangle, overall space reduction is{2× |S(u,v)|} after factoring. Note that,

user pairs that do not involve eitheru or v are not affected so far in this factoring step. We

show(w, x), (w, y) and(x, y) in solid lines in Figure 6.2(b) which remain unaffected after

factoring w.r.t. user pair(u, v).
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Figure 6.2. Factoring Steps.

Next, the factoring algorithm checks if the overall space now satisfies the specified

space budget. It stops immediately if that condition is satisfied. Otherwise, it continues

to the next step where it considers the largest complete graph (of size>= 3) which is not

yet affected by factoring (the size3 clique in the example). Note that the clique size gets

reduced by2 in two successive steps. Therefore, the algorithm computesthe factored sets

of the user pairs(w, x), (w, y), (x, y) and selects the one which has the largest factored

set (say(w, y) as shown in Figure 6.2(c)). It adheres to the same factoring strategy as

earlier by factoring outS(w,y) from DL(w,y), DL(w,x), DL(y,x) and storing it only once in

DLS(w,y),x. The overall space reduction in this step is{2×|S(w,y)|}. Note that after this step,

all disagreement lists are affected by factoring. Hence, the algorithm stops and outputs the

factored disagreement lists.

Algorithm 19 summarizes the factoring strategy. One artifact of this factoring algo-

rithm is it requires at least3 user pairs to be effective. Note that, any disagreement listis

factored out into at most two parts using our factoring strategy. We intend to explore more

complex factoring techniques in the future.
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Algorithm 19 : Factoring
Require: ConfigurationC, space budgetm

1: Compute space requirement of userbase ProcessSpace(G) asStorageR.

2: ProcessedPair = null;

3: if ((|C|mod 2 = 0) and (|ProcessedPair| = |G| − 2)) then

4: Exit;

5: if ((|G|mod 2 6= 0) and (|ProcessedPair| = |G| − 1)) then

6: Exit;

7: while StorageR> m do

8: for each user pair ((u, v) ∈ G) do

9: if (u /∈ ProcessedPair) and (v/∈ ProcessedPair)then

10: ConfigurationC(u,v) = Factor(G, u, v);

11: Compute storage requirement ofC(u,v) as ProcessSpace(u, v);

12: Compute∆S(u,v) = StorageR− C(u,v);

13: Store ConfigurationC(u,v), ∆S and ProcessSpace(u, v) in CompProcessList;

14: Select Configuration(C(x,y)) such that∆S(x,y) is maximum.

15: Set StorageR = ProcessSpace(x, y);

16: Set ProcessedPair ={x, y};

17: return CProcessedPair(StorageR);
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Algorithm 20 : Subroutine - Factor
Require: ConfigurationC, user pairu, v

1: {Perform factoring of a Configuration wrt a particular user pair.}

2: Modify DL(u,v) intoDLS(u,v)
such that any item∈ DLS(u,v)

is sorted in increasing

disagreement value and> 0;

3: AddDLS(u,v)
in the Configuration(C(u,v));

4: Create listDLC(u,v)
fromDL(u,v) such that all items inDLC(u,v)

are 0.

5: for eachx ∈ G and (x 6= u, v) do

6: DecomposeDL(x,u) andDL(x,v) in three lists

7: Create disagreement listDLS(u,v),x for items present inDLC(u,v)

8: CreateDLS(x,u)
fromDL(x,u) ,DLS(x,v)

fromDL(x,v) such that an item

∈ (DLS(x,u)
orDLS(x,v)

) is not inDLS(u,v),x)

9: AddDLS(u,v),x),DLS(x,u)
andDLS(x,v)

in Configuration(Cuv);

10: return Configuration(C(u,v));

Algorithm 21 : Subroutine - ProcessSpace
1: {Computes the space (number of entries) required to store a particular configuration}

Require: ConfigurationC;

2: for each listDLS(i)
∈ C do

3: ComputeTotalSpace = TotalSpace +DLS(i)
;

4: return TotalSpace;

FactoringS(u,v) from the listDL(u,w) (resp.,DL(v,w)) results in convertingDL(u,w)

(resp.,DL(v,w)) into two lists: afactored listDL(u−S(u,v),w) (resp.,DL(v−S(u,v),w)), and a

common list, DLS(u,v),w. In this case, the space saving is proportional to the size ofthe

factoring set,|S(u,v)|. Hence, the larger the factoring set the higher the saving. Note that,

factoring may fail to reach the specified budget (m) if factored sets are not large enough

to reduce the overall space consumption to that extent. In fact, at the worst case, factoring
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fails to reduce any space if all factored sets are of length0. However, factoring preserves all

information of the original pair-wise disagreement lists and thus achieves space reduction

without impacting performance.

6.4.2 Impact of Factoring on Query Processing

Algorithm 18 (FM) in Section 6.3.3 admits a group and a configuration containing all

disagreement lists and outputs the best recommendations tothe group given a consensus

function. Here, we discuss how to adapt the algorithm to the case of a factored configura-

tion where at least one disagreement list is factored out.

It turns out all is needed is to redefinegetNext() to adapt query processing to work

on factored disagreement lists. The main algorithm (Algorithm 18) does not need to be

aware of such lists. Given a disagreement listDL(v,w) which has been factored into two

listsDL(v−S(u,v),w) andDLS(u,v),w), thegetNext() routine onDL(v,w) decides whether to

advance the cursor on one list or the other. The decision is simply based on choosing the

entry with the highest agreement value (lowest disagreement) among those two lists.

A consequence of confining the implementation togetNext() is that factoring does

not modify the number of I/Os which makes it an appealing space saving strategy.

6.5 Partial Materialization

In the previous section we discussed the pre-processing technique of factoring that

reduces the space required to store all the pairwise disagreement lists between users. How-

ever, if the set ofn users is large, since the number of user pairs is quadratic inn, factoring

alone may not be enough to reduce the space to manageable proportions. In such cases,

it is more practical to materialize (i.e., retain) only a small but effective subset of the dis-

agreement lists. The central problem that we consider in this section is thus: given a fixed

space constraintm, to determine (after factoring) which lists to materializesuch that the
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total space consumed by these lists is at mostm, and these lists are of “maximum benefit”

during recommendation processing3.

Intuitively, a (factored) disagreement list should be materialized if (a) the correspond-

ing users together are more likely to be a part of the same group, and (b) materializing the

list significantly improves the running time of top-k recommendation algorithms. In the

following subsections we formalize this problem and develops algorithms to address it.

Our discussion will proceed in two stages. We shall first consider the simple scenario,

where factoring has not been applied to a configurationC. In this scenario, all disagreement

lists inC are equal in size, and each containsr entries wherer is the total number of items.

In Section 6.5.1 we discuss a simple algorithm that materializes a subset (at mostm/r) of

these disagreement lists that are of maximum benefit during recommendation processing,

i.e., such that the average processing time is least affected.

However, once factoring has been performed, each original disagreement list may

be composed of up to two factored lists of varying sizes. For example, using the factoring

setS(u,v), a disagreement listDL(v,w) will be decomposed into two listsDL(v−S(u,v),w) and

DLS(u,v),w). The sum of those lists’ sizes is the same as that ofS(u,v). We discuss this more

general situation in Section 6.5.2, where the task is to materializes a subset of the (factored)

disagreement lists such that the total number of entries in all the materialized lists ism, and

the average processing time is least affected. We formalizethis new problem as an adap-

tation of the well-known NP-hard Knapsack Problem [101] anddevelop an approximation

algorithm to address it.

3We assume thatm represents a user-specified threshold on the total number ofentries in all the material-

ized disagreement lists.
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6.5.1 Partial Materialization Without Factoring

Let the set of users beU = u1, . . . , un. Recall thatILu is the predicted rating list for

useru, andDL(u,v) is the disagreement list of user pairu andv. Let the set of all possible

user pairs inU beS = {(u, v)|u, v ∈ U}. Let M ⊂ S be the (unknown) subset of user

pairs whose corresponding disagreement lists we wish to materialize (i.e.,|M | = m/r).

Let G ⊆ U be any user group. Letp(G) be the probability (or likelihood) thatG will be the

next “query”, i.e., the next group that will seek item recommendations. LettM(G) be the

execution time of the top-k algorithm on user groupG when run using the predicted rating

lists ILu (for all u ∈ G) as well asthe disagreement listsDL(u,v) (for all u, v ∈ G) that

have been materialized inM , i.e., using algorithmFM. (Note that thereforetφ(G) denotes

the execution time of the top-k algorithm on user groupG when run using only the predicted

rating listsILu (for all u ∈ G), i.e., using algorithmRO.

Our objective is to minimize the expected cost of executing the top-k algorithm on

any user group query, using the predicted rating lists as well the disagreement lists. Let the

expected cost be denoted astM . The partial materialization of disagreements list problem

may now be formally defined as follows.

PROBLEM (Partial Materialization Without Factoring).Determine the subset of

pairsM ⊆ S s.t. |M | = m/r andtM =
∑

G⊆U p(G)tM(G) is minimized.

Although clearly very important and practical, the partialmaterialization problem is

unfortunately quite hard to solve optimally. There are several reasons for this. First, it is

very difficult to get reliable and accurate estimates for thedistributionp(G), i.e., the prob-

ability that a given user groupG will be queried next. Moreover, the set of possible user

groups is exponential inn, so it is not clear how such information can be compactly repre-

sented, even if it were reliably available. Next, due to the complex dependencies involved,

it is very hard to estimate the impact of a materialized disagreement list in improving the
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running time of a top-k algorithm, without actually materializing candidate disagreement

lists and running the top-k algorithms with and without the lists to determine their benefit.

Finally, an important parameter of a top-k algorithm is the value ofk, which is usually

unknown at pre-processing time. As a first step toward addressing these challenges, we

propose several principled and practical solutions.

6.5.1.1 A Simplifying Assumption, and a Simple Lists Materialization Algorithm

In order to make the problem more tractable, we make the following simplifying

assumption. We assume that each future user group queryG will only contain exactly two

users, and moreover,p(G) is reliably known for all pairs of usersG. This assumption is

of course patently false, but we emphasize here that we use itonly for simplifying the

computation ofM . OnceM has been computed and the corresponding disagreement lists

materialized, we shall later show that they can be used at query time for answering any user

groupG, even groups containing more than two users.

This assumption considerably simplifies the computation ofM , which can now pro-

ceed as follows. Recall thatS is the set of alln(n − 1)/2 pairs of users. For every pair

of usersu andv, we temporarily materialize the disagreement listDL(u,v), and compute

t{(u,v)}({u, v}) as well astφ({u, v}) by running the top-k algorithm twice, once with the

disagreement list, and once without the disagreement list,respectively.4

We can then eliminate fromS those pairs{u, v} wheret{(u,v)}({u, v}) ≥ tφ((u, v))

Although situations where the additional use of a disagreement list actually hurts the

top-k execution may appear counter-intuitive, they can occur. For example, consider two

users that are very similar to each other (e.g., they agree onmost items) or are very dis-

similar to each other (e.g., they disagree on most items). Inboth cases, their disagreement

4Performance numbers are obtained for a fixedk, specifically set for each application. E.g., in a movie

recommendation, 10 movies is typical
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list contains very similar disagreement values (mostly 0’s, or mostly 1’s, respectively), and

consequently is of no help in forcing early termination of the top-k algorithm, and in fact

hurts the execution because of the extra sequential list accesses incurred. A disagreement

list is useful for forcing early terminationonly if there is significant skew in its disagreement

scores,i..e, at the top of the list the users agree on most items, whereas their disagreement

is more pronounced as we go deeper into the list.

Let the remaining set of pairs beS ′. Then, we should selectM from S ′ such that

following expression is maximized:

∑

(u,v)∈M p({u, v}) · (tφ({u, v})− t{(u,v)}({u, v}))

Algorithm 22 : Partial Materialization Without Factoring
Require: User pairs inS′;

1: Sort the pairs(u, v) ∈ S′ by decreasingp({u, v}) · (tφ({u, v})− t{(u,v)}({u, v}));

2: Return them/r pairs with the largest values.

Algorithm 22 shows a very simple approach to computeM optimally. The algorithm

requiresO(n2) executions of the top-k algorithm. Even though this is a pre-processing

step, it may nevertheless be very time consuming. We discussin Section 6.5.1.2 additional

techniques by which this can be reduced.

The disagreement lists materialization procedure discussed above assumed that the

user groups are restricted to two members only. However, once them/r lists have been

materialized, they can be used at query processing time for user groups of any size in

a straightforward manner. Consider any arbitrary user groupG. In executing the top-

k recommendation algorithm for this group, we use the predicted rating listsILu (for

all u ∈ G) as well as all disagreement listsDL(u,v) (for all u, v ∈ G) that have been

materialized inM .
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6.5.1.2 Avoiding Examining all User Pairs

In a large user base, it is very likely that many user pairs arealmost never going

to occur in query groups. In order to reduce pre-processing costs, it is critical that we

identify only those user pairs that have significant likelihood of occurring together, and

only consider such pairs in the above algorithm.

If we have a richquery log(or workload) of past user groups, then it is possible to

analyze the query log in determining this information. For example, letG1, . . . ,Gq be a

query log ofq user groups. Then for any user pair(u, v), we can compute

p({u, v}) =
|{Gi|u, v ∈ Gi}|

q

This computation can be carefully done to ensure that we onlycompute the probabil-

ities for those user pairs that occur in the query log, thus avoiding having to examine a vast

majority of the user pairs that never occur together. Moreover, even for user pairs that occur

together in the query log, we can eliminate those that have extremely low probabilities.

6.5.2 Partial Materialization after Factoring

We next consider the more complex case when the disagreementlists have already

been factored. Recall that given a factoring setS(u,v), each original disagreement list

DL(u,w) is now factored into a possibly smaller listDLu−S(u,v),w such that the original

list is the union of the factored listDLu−S(u,v),w and a common listDLS(u,v),w) for some

other userw.

Our partial materialization goal will be to identify the subset of pairsM ⊆ S such

that both the factored as well as common component of the original disagreement list for

each such pair is materialized. Using notation similar to Section 6.5.1, lettM(G) be the exe-

cution time of the top-k algorithm on user groupG when run using the predicted rating lists

ILu (for all u ∈ G) as well asthe materialized (factored as well as common) disagreement
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lists corresponding to all user pairs(u, v) that appear in bothM andG. Our objective is to

minimize the expected cost of executing the top-k algorithmon any user group query, using

the predicted rating lists as well the materialized factored and common disagreement lists.

Let the expected cost be denoted astM . Given a space budgetm, the partial materialization

problem after factoring problem may be formally defined as follows.

PROBLEM (Partial Materialization After Factoring).Determine the subset of pairs

M ⊆ S s.t. the space required by all factored and common lists corresponding to all pairs

in M is at mostm, andtM =
∑

G⊆U p(G)tM(G) is minimized.

As before, we will make the simplifying assumption that eachfuture user group

queryG will only contain exactly two users, andp(G) is reliably known for all pairs of

usersG. We also reduce the set of user pairs fromS to S ′, eliminating those pairs for which

the availability of the disagreement list does not improve the query processing time.

Let DLS(Pi) be the factored list corresponding to any user pairPi ∈ S ′. Since

common lists are shared, letC(S ′) represent the set of all common lists corresponding

to S ′. Then the space consumed by all factored as well as common lists is

Space(S ′) =
∑

Pi∈S′

|DLS(Pi)|+
∑

DLC∈C(S′)

|DLC |

It may be that this space is still greater than the space constraint m. In this case, we

will have to remove a few more user pairs fromS ′, eliminating those pairs for which the

availability of the disagreement list adversely impacts query processing time the least.

For user pair(u, v) = Pi, let thebenefitBi be defined as

Bi = p({u, v}) · (tφ({u, v})− t{(u,v)}({u, v}))

The residual problem can be formally defined as follows.
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PROBLEM (0/1 Knapsack-Based Formulation of Partial Materialization After Fac-

toring). Determine the subset of pairsM ⊆ S ′ s.t.

∑

Pi∈M

Bi

is maximized, subject to

Space(M) =
∑

Pi∈M

|DLS(Pi)|+
∑

DLC∈C(M)

|DLC | ≤ m

We note that this problem is similar, but not identical, to the classical NP-Hard 0/1

Knapsack Problem [101]. This is because the space constraint contains a term that repre-

sents the space consumed by the common lists ofM . If this term were not there, then the

formulation can be easily seen to be identical to 0/1 Knapsack.

In solving this problem, we leverage the well-known greedy 1/2-approx algorithm for

0/1 Knapsack, suitably modified to account for the extra complexity of having to consider

the materialization of common lists.
Algorithm 23 : Partial Materialization After Factoring

Require: User pairs inS′;

1: Sort the pairsPi ∈ S′ by decreasingBi/|DLS(Pi)|

2: M = {}

3: i = 1

4: while Space(M) + |DLS(Pi)| ≤ m do

5: M = M ∪ Pi; i + +;

6: if
∑

Pj∈M Bj ≥ Bi then

7: returnM

8: else

9: returnPi

10: return
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Algorithm 23 essentially orders the pairs inS ′ by decreasing “benefit density”, ex-

cept that in the calculation of this density, the common lists are not considered. The com-

mon lists are only considered in the space calculation ofM . The returned user pairs are

either (a) the largest prefix of this ordered list that can fit within the space budget, or (b) the

very last user pair that causes the space to exceed the budget.

While Algorithm 23 is not an optimal algorithm for the problem, it is adapted along

the lines of the 1/2-approx algorithm for the classical 0/1 Knapsack problem, and our ex-

periments indicate it is both efficient and provides solutions of good quality. More interest-

ingly, when run on un-factored disagreement lists, it isidentical to Algorithm 22 which is

optimal for that case. As shown in our experiments, for the same space constraint, factoring

followed by partial materialization is always better than partial materialization alone.

6.6 Experiments

We evaluate our group recommendation system from three major angles. First, from

thequality perspective, we conduct an extensive user study through Amazon Mechanical

Turk5 to demonstrate that group recommendations with the consideration of disagreements

are superior to those relying on aggregating individual predicted rating scores alone (Sec-

tion 6.6.1). Second, from theperformanceperspective, we conduct a comprehensive set

of experiments to show that our materialization algorithmscan achieve better pruning than

alternative algorithms (Section 6.6.2). Third, we investigate the performance of our space

saving strategies with respect to both space and time.

We implemented our prototype system using JDK 5.0. All performance experiments

were conducted on an Intel machine with dual-core 3.2GHz CPUs, 4GB Memory, and

5https://www.mturk.com/
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Table 6.1. Statistics about the MovieLens Data Set.

# users # movies # ratings
71,567 10,681 10,000,054

500GB HDD, running Windows XP. The Java Virtual Memory size is set to 256MB. All

numbers are obtained as the average of three runs.

Data Set: We use the MovieLens [102] 10M ratings data set for evaluation purposes.

The statistics of this data set is shown in Table 6.1.

Individual Predicted Ratings: We adopt collaborative filtering [98] for generating

individual predicted ratings as described in Section 6.2.1.2, where the user-user similarity,

UserSim(u, u′), is computed as follows:

sim(u, u′) =
|{i|i∈Iu ∧ i∈Iu′ ∧ |rating(u,i)−rating(u,i)|≤2}|

|{i|i∈Iu ∨ i∈Iu′}|

whereIu denotes the set of itemsu has rated. We consider a movie to be shared between

two users if they both rated it within2 of each other on the scale of0 to 5.

6.6.1 User Study

We conduct an extensive user study through Amazon Mechanical Turk to compare

our proposed group recommendation consensus functions with prior group recommenda-

tion mechanisms, which rely solely on rating aggregations.In particular, we compare four

group recommendation mechanisms:

Average Rating (AR), which computes the group recommendation score as the av-

erage of individual predicted ratings. The disagreement weight is set to zero.
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Least-Misery Only (MO) , which computes the group recommendation score as the

minimum individual predicted rating among all group members. Again, the disagreement

weight is set to zero.

Consensus with Pair-wise Disagreement (RP), which computes the group recom-

mendation score as a weighted summation of the average predicted rating and the average

pair-wise disagreements between all group members.

Consensus with Disagreement Variance (RV), which computes the group recom-

mendation score as a weighted summation of the average predicted rating and the variance

of individual predicted ratings among all group members.

The user study is conducted in two phases:User Collection PhaseandGroup Judg-

ment Phase. At each phase, a series of HITs (Human Intelligence Tasks) are generated and

posted on Mechanical Turk, Amazon users are invited to complete those tasks.

6.6.1.1 User Collection Phase

The goal of the User Collection Phase is to recruit users and obtain their movie

preferences. Those users will later form groups and performjudgments on group recom-

mendations.

Preferences Collection: Asking a user to go through all ten thousand movies in our

system and give ratings as they go is clearly not practical. Therefore, we selected a subset

of the movies for users to provide their preferences. We considered two factors in selecting

those movies:familiarity and diversity. On one hand, we want to present users with a

set of movies that they do know about and therefore can provide ratings. On the other

hand, we want to maximize our chances of capturing the different tastes among movie-

goers. Towards these two goals, we select two sets of movies.The first set is called the

popular set, which contains the top-40 movies in MovieLens in terms of popularity (i.e.,

the number of users who rated a movie in the set). The second set is called thediversity
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set, which contains the 20 movies in MovieLens that have the highest variance among their

user ratings and that are ranked in the top-200 in terms of popularity. We created two HITs

with 40 movies each. TheSimilar HIT consisted entirely of the movies within thepopular

setand theDissimilar HIT consisted of the top-20 movies from thepopular setand the 20

movies from thediversity set. Fifty users were recruited to participate in each HIT. Users

are instructed to provide a rating between0 and5 (5 being the best) for at least 30 of the 40

movies listed (in random order) according to their preferences. In addition to their ratings,

we also record their Mechanical Turk IDs for future reference.

Group Formation : We consider two main factors in forming user groups:group

sizeand group cohesiveness. We hypothesize that varying group sizes will impact the

difficulties in reaching consensus among the members and therefore affect to which degree

members are satisfied with the group recommendation. We chose two group sizes,3 and

8, representing small and large groups, respectively. Similarly, we hypothesize that group

cohesiveness (i.e., how similar are group members in their movie tastes) is also a significant

factor in the satisfaction with group recommendation. As a result, we chose to form three

kinds of groups:similar, dissimilar, random.A similar group is formed by selecting users

who: 1) have completed theSimilar HIT described above; 2) combined with having the

maximum summation of pair-wise similarities (between group members) among all groups

of the same size. A dissimilar group is formed by selecting users who: 1) have completed

the Dissimilar HIT described above; 2) combined with having the minimum summation

of pair-wise similarities (between group members - based onthe provided ratings) among

all groups of the same size. Finally, a random group is formedby randomly selecting users

from all the pool of available users. Table 6.2 illustrates the average similarity between

group members of the six groups formed.
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Table 6.2. Similarities of User Study Groups.

Size = 3 Size = 8
Similar Group 0.89 0.90

Dissimilar Group 0.29 0.27
Random Group 0.69 0.73

6.6.1.2 Group Judgment Phase

The goal of the Group Judgment Phase is to obtain ground truthjudgments on movies

by users in a group setting. Those judgments can then be used to compare group recom-

mendation generated by the four different mechanismsAR, MO , RP andRV.

Individual Recommendation: For each user in one of the six groups in table 6.2,

we generated and materialized a list of individual recommendations against the MovieLens

database using collaborative filtering.

Group Recommendation Candidates:For each group, we generated group rec-

ommendations using all of our four strategies. The resulting recommendation lists were

combined into a single set of distinct movies, calledgroup candidate set. This ensures that

we obtain ground truth judgments on all the movies we will encounter using any of the four

strategies.

For each group, aGroup HIT was generated and contained the following group

context: for each movie in the group candidate set, the individual recommendation score

of each member. The users are then instructed to decidewhether a movie in the group can-

didate set is suitable for recommendation given its group context. Users from the previous

phase were invited back (with a higher payout) to participate in the HITs which correspond

to a group to which they belong. Additional users were also recruited to participate in the

HITs to complement the set of prior users, and they were instructed to pretend themselves

to be one of the group members in the HIT. At the conclusion of the user study, on aver-
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age 5 users participated in the three 3-member-group HITs and 10 users participated in the

three 8-member-group HITs, for a total of 45 users.

6.6.1.3 Result Interpretation

Given a Mechanical Turk user’s ground truth evaluation of the candidate movies, we

adopt the Discounted Cumulative Gain (DCG) [103] measure to evaluate each of the fol-

lowing six group recommendation strategies (note that the least-misery model by definition

considers only one member of the group and therefore can not be combined with either of

the disagreement models):

AR, MO: these two are group recommendation lists generated based onaverage and

least-misery models, respectively, without the disagreement component.

RP20, RP80:these two are group recommendation lists generated by combining the

average predicted ratings model with the pair-wise disagreement model. RP20 setsw2 in

Definition 18 to0.2, while RP80 sets it to0.8.

RV20, RV80: these two are group recommendation lists generated by combining

the average predicted ratings model and the disagreement variance model. RV20 setsw2 in

Definition 18 to0.2, while RV80 sets it to0.8.

Each strategy generates a 10-movie recommendation list andfor a given list, its DCG

value is calculated as follows:

DCG10 = rating1 +
∑10

i=2
ratingi

log2(i)

whereratingi is the ground truth (provided by the Mechanical Turk user) ofthe movie at

positioni, and is either1 (the user considers this movie suitable for the group setting) or0

(otherwise). We further normalize the DCG value into a range between0 and1 by dividing
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it by the DCG value of the ideal list to produce the nDCG value. (The ideal list is obtained

by re-sorting the movies in the list in the order of their predicted ratings.)

For each group with a given size and cohesiveness, the nDCG values of each recom-

mendation list are computed as the average of all the users who participated in the group

HIT. The results are shown in Figure 6.6.1.3.

The top-left chart in Figure 6.6.1.3 reports the nDCG for small and large groups of

similar users. In a real world setting, a group of friends canbe thought of as such a group.

According to this chart,MO results in the best performance for both small and large groups.

This can be explained as a group activity of similar users, where the objective is to agree

with the person who has the harshest opinion.MO is most practical for this setting since

agreeing upon the worst opinion results in the least disagreement from a user’s personal

opinion. It is also interesting to notice, that for large groups,MO performs very well. The

next best strategy isAR, which is intuitively true for any set of similar users - people with

very high similarity have no difference in their opinion.RV80 andRP80 perform worst

since there is hardly any scope of difference in opinion in a group of similar users.

The top-right chart in Figure 6.6.1.3 reports the nDCG for small and large groups of

dissimilar users. In a practical setting, a group of family members, whose tastes typically

differ is a good example here. For dissimilar users, differences in opinion is conspicuous

hence needs to be captured carefully. Indeed, we can see that, our disagreement based

modelsRV80, RP80start performing better than other two models. Specifically, for large

groups,RV80 results in the best value of nDCG while the predicted rating based models

are useless. This observation corroborates our initial claim that formalizing disagreement

as a component of the consensus function is important for group recommendation.

The bottom-left chart in Figure 6.6.1.3 reports the nDCG for small and large groups

of random users. A random group can consist of both similar and dissimilar users. For
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Figure 6.3. Comparison of User predicted ratings (using NDCG)among Different Group
Recommendation Lists.

small groups,MO works best, whereas, for large groups, there is no significant difference

between all four strategies.

The bottom-right chart in Figure 6.6.1.3 reports the differences in our disagreement

models (notice the different weights) for dissimilar user groups. It is interesting to no-

tice that, for small groups, all four disagreement models perform equally well in general.

However, for large groups, disagreement becomes a conspicuous part in decision making.

Consequently, the disagreement strategiesRV80, RP80outweigh the other two models

RV20, RP20.

To summarize, we can say that user similarity in a group as well as group size should

be accounted in modeling disagreement in the consensus function. One of our planned

experiment is to involve users more actively in the final judgment by letting group members

consult with each other and reach consensus in an iterative manner as described in [91].

Such feedback would help draw a stronger connection betweengroup size and overall group

dynamics in group recommendation.
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6.6.1.4 Effectiveness of Group Ratings

We next perform user studies to validate the effectiveness of the group ratings. More

precisely, we ask users to compare group ratings generated by our group recommendation

strategies with the individual ratings obtained directly from the underlying recommenda-

tion system. Again,Group HITs are generated based on similar and dissimilar groups.

Additional users were recruited to participate in the HITs to complement the set of prior

users, and they were instructed to pretend themselves to be one of the group members in the

HIT. Within each HIT, a10-movie recommendation list is presented to each user withinthe

context of a group. Each movie comes with the individual predicted rating and the group

rating generated by one of our group recommendations strategies (RP80andRV80). The

users were then instructed to give theirpreference for either the group or the individual

rating for each movie, although the explicit model name was kept hidden from them.Ad-

ditionally, they were also required todescribe their satisfaction level for the group ratings

overall, in the scale of1-5. In this new user study, on average15 users participated in the

each of the two (similar and dissimilar) 3-member-group HITs and8 users participated in

each of the two (similar and dissimilar)8-member-group HITs, for a total of218 users.

Result Interpretation: For each group with a given size and cohesiveness, we cal-

culate the percentage of user’s preference for group ratings corresponding to a strategy and

compare that with the percentage of user’s preference for individual ratings. The results are

listed in Figure 6.6.1.4. In all cases, group ratings are preferred by more than50% of users.

It is also easy to observe that the group ratings are more preferred over individual ratings for

similar user groups as compared to dissimilar user groups. The reason is intuitive and can

be explained as follows: similar users have similar ratingsfor movies; hence with a small

compensation, they can match their individual preference with the group preference. How-

ever, for dissimilar user groups, preference varies widelyamong group members - hence
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Figure 6.4. Comparison of Percentage of User Preference for Group Ratings and Individual
Predicted Ratings among Different Group Recommendation Lists.

Table 6.3. Dissimilar User Group - Overall model ratings

Rating RP80 RV80
small large small large

1 0% 0% 0% 0%
2 5% 0% 8% 3%
3 31% 20% 28% 17%
4 42% 44% 60% 36%
5 22% 36% 4% 44%

dissimilar users are more reluctant to adopt group ratings.Another interesting observation

is, irrespective of group cohesiveness, members in large groups prefer group ratings more

than members in small groups do. This corroborates the efficacy of our group recommen-

dation strategies which are designed to minimize the difference in opinions between group

members individual preference and are more conspicuous forlarger groups.

Table 6.3 and Table 6.4 record the percentage of overall group ratings (in the scale

of 1 − 5) of different group recommendation strategies for different group cohesiveness

and group size. It can be easily observed from the tables thatproposed group recommen-

dation strategies are highly rated (mostly3 and above) always, irrespective of the size and

cohesiveness of the group under consideration.
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Table 6.4. Similar User Group - Overall model ratings

Rating RP80 RV80
small large small large

1 3% 0% 5% 0%
2 14% 0% 8% 0%
3 14% 14% 20% 11%
4 52% 30% 40% 41%
5 17% 56% 27% 48%

6.6.2 Performance Evaluation

In this section, we analyze the performance of the three group recommendation al-

gorithms described in Section 6.3: Dynamic Computation withPredicted Rating List Only

(RO), Full Materialization (FM), and Partial Materialization with a given budget on number

of lists (PM). At the core of all three algorithms is the top-k TA algorithm [61], which scans

down the input lists and stops processing when score bounds indicate that no more items

qualify. The cost ofTA is determined by two factors: the number ofsequential accesses,

which corresponds to the number ofnext() calls made during the scan of each list, and

the number ofrandom accesses, which corresponds to the number of calls made to each list

for score retrieval given an item. During the processing, when the buffer is bounded and

only the top-k items are kept, the number of random accesses is proportional to the number

of sequential accesses. When the buffer is unbounded, the number of random accesses is

proportional to thenumber of distinct items processed. We adopt the bounded buffer ver-

sion of the TA algorithm and therefore mostly measure the number of sequential accesses

to compare the performance between various algorithms.

In addition to that, we also compare our proposed group recommendation algorithms

with a very simple baseline approach-Without-Fagin RO. This algorithm works as

follows: It works only with the set of lists relevant to a specific group. This algorithm
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doesn’t work in Fagin(top-k) style; i.e., it can not acquireany early stopping using upper

bound value of thresholds. In order to compute the top-k group ratings, it maintains a heap

and stores the top-k ratings encountered thus far. However,the algorithm can only termi-

nate once the entire database is scanned and outputs the top-k best ratings thereafter.

Group Formation: Groups are formed by selecting users from the MovieLens

database. The key factor we consider is group cohesiveness (or similarity). We defined

four group similarity levels:0.3, 0.5, 0.7, 0.9, with a margin of±0.05. To form a group of3

with similarity 0.3, we select three usersu1, u2, u3 from the database, such that∀i, j, 0.25 <

sim(ui, uj) < 0.35, where1 ≤ i, j ≤ 3, i 6= j. The other factors we consider are number

of recommendations being produced (small =5, medium =10, large =30) and the size of

groups (small =3, medium =5, large =8).

Summary of Results:Our first observation is that group similarity has a direct im-

pact on the number of sequential accesses (SAs). This is not surprising: the predicted rating

lists of similar users tend to contain similar items at similar positions, including those with

high predicted ratings. Our second observation is that someDisagreement Lists (DLs) al-

most always guarantee earlier stopping. Hence,RO wins in very few cases. However, the

presence ofDLs is not always beneficial and can sometimes becomeredundant. In fact, the

results show that for different user groups, different strategies (RO, FM or PM) will win. In

particular, a higher number ofDLs does not guarantee earlier stopping. The proliferation

of lists may increase the number ofSAs and also the number of distinct items seen unnec-

essarily, thereby hurting the performance in the end. In addition to that, we compare our

three algorithms, with the baseline approachWithout-Fagin RO. Eventually, as shown

in Figure 6.5, This algorithm always scans the entire database and encounters all items in

the database before producing the output. Consequently, it attains the worst performance

among all. We provide detailed descriptions on our experiments below.



209
Varying Similarity

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.3 0.5 0.7 0.9
Similarity

(a) 

#
S

A
s

FM

RO

PM

Without-
Fagin RO

Varying Similarity 

0

200

400

600

800

1000

1200

0.3 0.5 0.7 0.9

Similarity

(b)

#
D

IP
s

FM

RO

PM

Without-
Fagin
RO

Varying no of items 

0

100

200

300

400

500

600

700

800

900

1000

5 10 30

No of items

(c)

#
S

A
s

FM

RO

PM

Without-
Fagin RO

Varying group size

0

500

1000

1500

2000

2500

3000

3 5 8

Group Size

(d)

#
S

A
s

FM

RO

PM

Without-
Fagin RO
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6.6.2.1 Varying Group Similarity

Figure 6.5(a)(b) illustrate the performance ofRO, FM andPM with different group

similarities in terms of bothSAs andDIP. The group size is fixed at5 and the number

of recommended items is10. ForPM, the number of materialized lists is3. As the group

similarity increases, the effectiveness of our materialization algorithms gradually decrease.

This is not surprising since the more similar the members arewith each other, the more

likely their agreements on the top items are close to the upper bounds that are estimated in

theRO algorithms. As a result,RO can reach stopping conditions as early asPM andFM

do. This observation is also corroborated by the similar numbers ofDIP betweenRO and



210

the other two algorithms for high similarity values. Furthermore,FM forces the system to

scan unnecessarily large number of lists and results in poorperformances instead. In fact,

it can be easily observed from Figure 6.5(a)(b), for very high similarity,RO results in the

best performances, whereas, for very low similarity,FM is the winner in most of the cases.

The performance ofPM can be observed to be in between. An interesting observationin

this case is, for average similarity,PM results in the best performances for bothSAs and

DIP. This corroborates the fact that in certain cases partial materialization can be the best

option.

6.6.2.2 Varying K

Figure 6.5(c) illustrates the performance comparison ofRO, FM andPMwith different

numbers of items recommended. The group size is fixed at5 and the group similarity is

fixed at0.5. AlgorithmPM uses three materialized lists fork = 5, 10 and five lists fork =

30. As expected, the number ofSAs increases with the increasing number of recommended

items. For all three cases, algorithmPM out-performs bothRO andFM significantly.

6.6.2.3 Varying Group Size

We examine the effect of different group sizes in Figure 6.5(d). The group similarity

is fixed at0.5 and the number of recommended items is10. ForPM, the number of mate-

rialized lists is3. As expected, the number ofSAs increases as the group size increases.

When the group sizes are small and medium, both materialization algorithms significantly

out-performRO. It is counter-intuitive to see that when the group size is large, the benefit

of materialization decreases. After some investigation, we discovered that when the group

is large, it is easy to have a predicted rating list that can provide enough pruning power to
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Figure 6.6. Effect of the number ofDLs.

trigger the early stopping conditions. As a result, pruningthrough the disagreement lists is

no longer as effective.

6.6.2.4 Effect of disagreement lists in query processing

We study the impact of materializing different numbers of disagreement lists (DLs).

The group size is fixed at5 and its similarity is fixed at0.5, the number of recommended

items is5. We reportSAs andDIP by varying the number of materialized disagreement

lists. As shown in Figure 6.6, the performance is at its worstwhen the number ofDLs

is 0, which corresponds toRO. It starts getting better as moreDLs are added and the

performance is best when the number ofDLs reaches 3. Then, it starts degrading and

never gets better. However, from the4th to the10th list, the number ofDIP remains almost

the same. By examining the4th list, we noticed that many top items in that list are not

present in the final result, and, as a result, the number ofSAs increases unnecessarily.

We also noticed that the top items in the4th list are shared by all subsequent lists (which

explains the close-to-constant performance). This situation can arise when a subset of the

group dislikes the same set of movies equally.
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6.6.3 Space reduction techniques and their impact on query processing

The main focus of this subsection is to analyze and compare the query processing

performance ofPM algorithm under space constraints. Recall that thePM algorithm is

designed when a space budget is enforced and a subset of possible set of pair-wise dis-

agreement lists can be materialized. We proposed to combinefactoring and disagreement

lists materialization to satisfy such hard space constraints. Here, we experimentally eval-

uate query processing performance attained byPM using configurations offered by these

different space reduction techniques.

Summary of Results:Our first observation isPM is never worse thanRO. For some

groups, the best performance can be attained by usingPM algorithm. In general,FM gets

better with bigger group sizes. However, the difference in performance betweenFM and

PM is not noteworthy as the group size is increased. Hence, under a space constraint,PM

is an acceptable solution. Next, we observe that our proposed behavior factoring algorithm

performs well in reducing space. Finally, we experimentally demonstrate that factoring is

always beneficial from performance perspective since it aids to preserve more disagreement

lists in a lossless way. Consequentially, Factoring followed by Knapsack basedPM is better

thanPM-Only even when a small fraction of space is offered to materialize disagreement

lists.

In these experiments, the space required by a configuration is interpreted as the total

number of entries in the disagreement lists (as defined in Section 6.4.) That is because pre-

dicted rating lists being necessary, they are not affected by our space reduction strategies,

factoring and partial materialization.
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Figure 6.7. Query Processing Performance of Group Recommendation Algorithms.

6.6.3.1 Effect of partial materialization (PM-Only) on query processing

First, we perform a comparative performance study of query processing of different

group recommendation algorithms (RO, FM andPM ). In these experiments, we set the

available space to materialize disagreement lists to50% of the total space consumed by

all possible pair-wise disagreement lists in the user base.We vary the query size from2

to 20 (recall that a query is a group that is seeking recommendations) and measure the

number of sequential accesses (SAs) required to compute top-k (k = 30) recommended

items to the group. Each performance number of a particular query size is obtained by

averaging the number of sequential accesses required to compute top-k recommendations

of three different groups of that particular size. For a particular query, its size is increased

by adding one random new user from the user base.

Figure 6.7 illustrates the performance comparison of different group recommenda-

tion algorithms. As expected, the average number ofSAs increases with the increasing

group size in general. In general,FM gets better as group size is increased.RO performs

the worst among all three in all cases. For groups5, 6 and7, PM is the best solution. By

examining group5 in one individual run, we noticed thatPM uses only4 disagreement lists

at that step, whereas,FM uses all10 disagreement lists. These extra disagreement lists in-
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Figure 6.8. Difference in Performance betweenPM andFM.

cur unnecessary sorted accesses inFM. Also,PM gets better from group4 to group5. Our

analysis reveals thatPM uses only1 disagreement list in group4, whereas in group5, it

uses3 new disagreement lists. We further investigate that behavior and notice that the new

disagreement lists play crucial role in reaching the threshold fast during top-k computation.

Consequently, the overall number of accesses drops from group 4 to group5. This experi-

ment also reinforces the intuition that different disagreement lists have varying impacts on

performance.

Next, we study the difference in performance betweenPM andFM (the better one

betweenFM andRO) in the same settings in Figure 6.8. Although,FM outperformsPM with

the increase in group size, however, the difference is not significant. These two experiments

corroborate our initial claims: even when full materialization is acceptable, partial materi-

alization is important since that can attain the best performance sometime. Also, under a

space constraint,PM is a satisfactory solution since its performance is reasonably close to

the best solution.

6.6.3.2 Benefit of factoring algorithm in space saving

Next, we evaluate the space saving benefit of behavior factoring. We increase the

size of the user base (from3 to 20) and measure the space requirement (i.e., no of entries)
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Figure 6.9. Space Savings of Factoring Algorithm for Similar Userbase.

to store all pair-wise disagreement lists for that user basewith andwithout factoring. Recall

that, the benefit of factoring can only be achieved for groupswith size3 and beyond. In

particular, we consider two different cases: in one case, a new user is added into the existing

user base at random, whereas, in other case, a new user is onlyselected for addition into

the existing user base when it is highly similar (50% or more) to at least one existing

user (henceforth referred to as Random Userbase and Similar Userbase respectively in this

section.)

Figure 6.9 demonstrates the benefit of space saving for Similar Userbase. The user

group of size20 has190 disagreement lists that contain42978 entries (space) originally.

Upon factoring, the total size of these lists is reduced to22063 entries, thus achieving a

space saving of48.66% in a lossless manner.

Figure 6.10 demonstrates the benefit of space saving for Random Userbase. The user

group of size20 has190 disagreement lists that consumes42012 entries (space) originally.

Upon factoring, the total size of these lists is reduced to31023 entries, thus achieving a

space saving of26.15% in a lossless manner. It is easy to observe that space reduction is

very significant for Similar Userbase, however, even for Random Userbase the reduction

achieves good performance. This demonstrates that the factoring algorithm is effective and
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Figure 6.10. Space Savings of Factoring Algorithm for RandomUserbase.

performs well in practice, thereby, reinforcing the idea that unless no two users agree on

any item, factoring is always beneficial.

6.6.3.3 Impact of different space reduction strategies on query processing

Finally, we investigate different space reduction strategies and their comparative ef-

fectiveness in query processing. Recall that, given a space budget (i.e., number of entries)

for materializing disagreement lists, behavior factoringmay fail to reduce the original pair-

wise disagreement lists of the user base to that extent. Effectiveness of space saving solely

depends on similarity between users in the user base under consideration. Therefore, it

may be necessary to apply techniques to drop some disagreement lists on the factored user

base (refer to Algorithm in Section 6.5) to satisfy the hard space constraint. On the other

hand, the hard space constraint can also be guaranteed by applying partial materialization

only (refer to Section 6.5) on the original (not factored) pair-wise disagreement lists.

In these experiments, we intend to evaluate the impact of space reduction techniques from

two major angles: first, given different space budgets, we evaluate the impact on query

processing of factoring followed by disagreement lists materialization (henceforth referred
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Figure 6.11. Performance of Space Saving Strategies Under Different Space Budgets.

to asFactoring followed by Knapsack based PM in this section) and com-

pare that with the performance attained by applying partialmaterialization only (henceforth

referred to asPM-Only in this section).

Figure 6.11 shows the comparative study of the query processing performance of

Factoring followed by Knapsack based PM andPM-Only on Random User-

base. The group size is fixed at10. Performance numbers are obtained by averaging the

number of sequential accesses required to compute top-k (k = 30) recommendations of

three different groups of size10 chosen randomly from the Random Userbase. Space

constraints are varied by5 different numbers, in an equi-spaced manner, ranging from

(0%−100%). Recall that this hard space constraint allows only certain amount of space (#

of entries) for materializing disagreement lists. Note that 0% space means no disagreement

list can be materialized (AlgorithmRO) and100% space budget allows all disagreement

lists to be materialized (AlgorithmFM.)

Figure 6.11 demonstrates one such case, where a higher spacebudget results in

better performance. Therefore, performance is the worst for 0% space and the best for

100% space. It also corroborates the fact that factoring is always beneficial, since, it con-

serves more information in a lossless way under the same space constraint. Consequently,
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Figure 6.12. Performance of Space Saving Strategies with a Space Budget of50%.

Factoring followed by Knapsack based PM performs better thanPM-Only

in all three intermediate space constraints,25% , 50% and 75%. The most interesting

observation isFactoring followed by Knapsack based PM attains the same

performance in75% and100% space constraints. Recall that we use Random Userbase in

this experiment which achieves a26.15% overall space saving, i.e., factoring stores all dis-

agreement lists in26.15% less space, while guaranteeing the same processing performance

asFM.

Finally, we investigate the comparative performance of thetwo space reduction strategies

discussed above at a fixed space constraint (50%). We profile the performance of query

processing by varying query size (i.e., group size from3 to 20) there. Each performance

number is presented after averaging the individual performance numbers as discussed ear-

lier.

Figure 6.12 summarizes the result of this experiment. As expected, the average num-

ber of SAs increases with the increasing group size in general. However, Factoring

followed by Knapsack based PM outperformsPM-Only significantly in all group
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sizes. This result corroborates the effectiveness of the proposedFactoring followed

by Knapsack based PM algorithm.

6.7 Related Work

We organized our related work section into two subsections:recommendations and

query processing.

6.7.1 Recommendations

Two good surveys of recommendations can be found in [98] and [99]. Briefly, the

goal of a recommendation strategy is to estimate a user’s rating for items he has not rated

before, and return k items with highest estimated ratings. The two most popular families of

recommendation strategies are item-based and collaborative filtering. The former leverages

items similar to the user’s previously highly rated items and the latter leverages users who

share the user’s interests. In this paper, we use collaborative filtering to generate individual

recommendations.

A survey on group recommendations is given in [91]. It describes the two prevalent

approaches:virtual userandrecommendation aggregation. The former combines existing

ratings of each group member to create a virtual user to whom conventional recommenda-

tion strategies are applied, whereas, the latter creates individual recommendation lists for

each member and consolidates those lists to form the group’slist. In this paper, we adopt

the latter approach for its flexibility as described in [91].

Existing research on group recommendations mainly focusesupon group formation

and evolution, privacy concerns and interfaces for supporting group recommendations. To

the best of our knowledge, we have not encountered any related work that emphasizes on

performance aspect of group recommendation computation, nor do they provide a theoret-

ical and empirical study of different consensus functions,as we have done in this work. A
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few conducted user studies to evaluate the benefits of group recommendations. Those are

summarized below.

PolyLens [93], is a group recommender extension to the MovieLens recommender

system. The authors report a user study where existing MovieLens users were allowed to

form groups of their preference(e.g., by inviting each other) and the system studies the im-

pact of group behavior on the recommender system MovieLens.In order to produce group

recommendations, individual groups members’ recommendations were merged using the

least misery model. User satisfaction was measured using following different criteria: how

easy the process of creating groups was; how easy it was to addmembers into a group;

how useful group recommendations were; and the overall satisfaction. The study con-

cluded, among other findings, that users in a group prefer group recommendations than

individual ones. This inspired our group vs individual recommendation comparison in

Subsection 6.6.1.4.

In [95], the authors develop a genetic algorithm based collaborative filtering strat-

egy to infer interactions between group members to compute the predicted rating of an

item for a group. Even here, their experimental evaluation validates the quality of group

recommendations and users satisfaction.

In [97], the authors distinguish between group recommendations in online commu-

nities and in non-online ones. They propose a two-phase approach, where, first a set of

recommendations are generated for a group using collaborative filtering, and then items are

filtered from that set in order to improve satisfaction of individual members preferences.

Their experiments show that the proposed method has consistently higher precision and

individual members are more satisfied.

AHP (Analytic Hierarchy Process) of multi-criteria decision making is used in [94]

to model group preferences using the preferences of individuals. The authors also use a

Bayesian network to model uncertainty in an individual user’s preference. Their evaluation
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on10 different situations assesses the high usability of their system and a comparison with

both random and rule-based recommendation is also provided.

The authors in [92] develop 3 different aggregation policies of individual user models

into a group model and for the purpose of biasing recommendations in a critiquing-based,

case-based recommender. They conduct experiments to highlight the benefits of group

recommendation using live-user preference data.

Finally, in [96], the authors use hierarchical clustering and decision trees to gener-

ate recommendations of user groups in Facebook. This work differs from ours because it

focuses on recommending friends groups instead of recommending items to groups. The

experiments show that a large number of groups in Facebook (73%) are accurately pre-

dicted using members’s profiles.

6.7.2 Query Processing

Factoring Lists: In [104], the authors developed space-saving strategies onkeyword

inverted lists using shared user behavior. Their approach is based on clustering users first

and then building per-cluster keyword indices instead of individual users’ indices. The

experiments show that such clustering saves space and that processing keyword queries

on cluster-based indices has acceptable time overheads. There are two key differences

between our factoring strategy and this work. First, factoring is explored in a pair-wise

fashion (and not for an entire user cluster). Second, facoring does not incur additional I/O.

One extension of our work is to explore factoring for a cluster of users.

Top-K Processing: The family of top-k threshold algorithms [105, 100] aim to re-

duce the amount of processing required to compute top-ranked answers, and have been used

in the relational [106], XML [107], and many other settings.Monotonic score aggregation

functions, which operate on sorted input, enable the early pruning of low-rank answers. In
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this work, we apply these algorithms on user’s predicted rating lists and introduce pair-wise

disagreement lists to improve performance.

Knapsack Problem: This combinatorial optimization problem [60, 108] arises

whenever resource allocation is required between many contenders under budgetary con-

straints. Each resource has a cost and a value and the total allocated resource cost is re-

stricted under a hard constraint, so it aims to allocate resources such that it gathers maxi-

mum value for a given cost. Two main variants of this problem are: Bounded Knapsackand

Unbounded Knapsack. Bounded Knapsack assumes limited availability of each resource

type, whereas, each resource may have infinite no of copies inUnbounded Knapsack prob-

lem. We adapt aspecialcase of Bounded Knapsack known as0/1 Knapsackfor modeling

disagreement lists materialization problem. Each disagreement list is selected for material-

ization under overall space constraints (space budget) based on how much benefit it offers

in speeding up query processing (value) by consuming how much space (cost).

6.8 Conclusion

Group recommendations are becoming of central importance as people engage in

online social activities together. In this thesis, we definethe semantics and study the ef-

ficiency of delivering recommendations to groups of users. We introduce the notion of a

consensus function which aims to achieve a balance between an item’s aggregate predicted

rating in the group and individual member’s disagreements over the item. We design and

implement efficient threshold algorithms to compute group recommendations. We report

on a user study conducted on the MovieLens data sets using Amazon’s Mechanical Turk

and a comprehensive performance study of our algorithms. Weestablished that similarity

between group members impacts both quality and efficiency.
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In the absence of any information about what groups could be formed, pair-wise user

disagreement lists need to be maintained in order to efficiently process recommendations

to randomly formed groups. Hence, we developed two complementary space reduction

strategies and studied their impact on space and time. In particular, our experiments showed

that behavior factoring, a space saving strategy where items two users agree on are stored

only once, achieves considerable space reduction. That strategy combined with selectively

materializing disagreement lists successfully addressesapplications where a space budget

is enforced.

There are many avenues we would like to explore in the future.One extension to

this work is to devise a query optimization algorithm which takes a group and a configura-

tion (a set of materialized and possibly factored disagreement lists) and determines which

lists to use for that group. The experiment in Section 6.6.2.4 showed that it is sometimes

beneficial to merge a subset of the disagreement lists for some groups, even if they are ma-

terialized. Another avenue for improvement is the implementation of threshold sharpening

as described in Section 6.3.4 for the pair-wise disagreement model. We believe this will

have drastic improvements on processing recommendations.
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CONCLUSION

This dissertation focusses in designing novel online data exploration techniques from

underlying large data repositories (structured data and web), that extend existing ranked re-

trieval based query-answering paradigm. In particular, the results in this dissertation widen

the scope of existingfaceted search, and onlinerecommendation systems- two upcoming

fields in online data exploration which are still in their infancy. To that end, we propose

dynamic faceted search systemsin conjunction with structured and unstructured data, based

on anavigational effort based model. Furthermore, we augment the existing online recom-

mender systems with novel functionalities that enables thesystem to recommendcompos-

ite itemsto a userinteractively, or to recommend items to agroup of users. We investigate

technical and algorithmic challenges involved in enablingefficient computation in these

online problems. In this section, we briefly discuss other promising problems with future

opportunities in this field.

7.1 Ongoing Work

As an ongoing work, we investigate how to enable the functionalities of the Star

composite items onto the Chain composite items, and vice versa. For example, we aim

at understanding how tosummarizetop-r diversifieditineraries, or how to enableinterac-

tion in package construction problem. Furthermore, we wish to investigate how we can

establish the connection between the interaction in composite item recommendation and

an effort based model, where the objective is to suggest composite items based on user

feedback such that the interaction completes in aminimum number of iteration. We also

224
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aim at exploring other composite item models; especially, we are keen to propose a solu-

tion framework for composite item recommendations that is appropriate for any arbitrary

composite relationship.

Observe that, so far we have explored problems such as how to recommendcomposite

items, or how to recommend top-kindividual items to agroup of users? A natural exten-

sion of those problems may behow to recommend composite items to a group of users?.

Consider the interesting example scenario, where a traveling agency is required to design

a vacation travel itinerary for a group of travelers (who would be traveling together), sub-

ject to some budgetary constraints (time, money, etc). Observe that, the challenges are,

each traveler in the group may have different preferences, may have different budget; the

itinerary recommendation system for the group must consider these constraints. Thus the

corresponding optimization problem requires substantially different modeling, and sub-

stantially different solutions.

7.2 Future Work

Data is one of the primary assets to any organization, and hasexhibited an extraor-

dinary growth rate off late. An incredible amount of knowledge can be harvested by ana-

lyzing and exploring this ever-expanding large volume of data. Data exploration is still an

emerging research area, and a tremendous scope of research lies here. In this section, we

summarize some of my future research plans.

Analysis and Management of Structured and Unstructured Data

My immediate research interests lie in large-scale data exploration, touching upon diverse

areas: web search, information retrieval, data mining, databases, recommender systems,

and so on. we plan to build information systems with novel query-answering capabilities.

we would like to focus on a good mix of futuristic research problems, and in building real-
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world systems that impart immediate higher impacts in the society. For example, we would

like to investigate how to design exploratory search interfaces for large organizations which

require in-depth understanding and detail modeling of the underlying complex schema, or

how to leverage collaborative tagging information for designing faceted interface, or how

to augment existing recommendation systems with additional functionality, considering

additional contexts. In addition, most of my current research considers the case where the

query isunder specified. we would also like to study how data exploration techniquescan

be enabled for theover-specifiedqueries that do not return any results initially.

Analysis and Management of Social Data

New research suggests that every digital comment made by users anywhere - a product

review, social book-marking, tweets, blogs, activities ona social network site, e-mails can

be mined for hints as to emotions and other thoughts. we intend to tap into these latent

information sources and leverage that in a principled way toenhance query answering

tasks, and analyze that information for future learning andopportunities. For example, we

would like to investigate how tweets, blogs impact market trends, or social outcomes in

advance.

Observe that, there are diverse challenges involved. The immediate challenge lies in

the automatic extraction and cleaning of the real world noisy data. we intend to investigate a

principled and domain independent framework to accomplishthat task. The next challenge

is how to leverage those information in a principled manner to enhance underlying analysis

or query-answering tasks, and finally, how to design efficient scalable solutions that needs

to handle the analysis of this data deluge during query time.

we am also interested in studying the security and privacy aspects of social web,

that can potentially be leveraged to build dossiers on users. Social network application

providers benefit from the increasing amount of personally identifiable information avail-
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able on social sites through blogs, Twitter, Facebook, or simply through idle chatter and

casual conversation, but, at the same time, risks of data misuse threaten the information

privacy of individual users as well as the providers business model.

We are interested in studying and analyzing how online social activities can be used

to provide a supportive and assistive environment to users that can foster behavioral devel-

opment and further learning. Especially, we intend to studythe psychological aspects of

social activity, and leverage that for social and personality development, health promotion,

and so on. For example, what kind of social activities can be useful to educate people of

different ages, or how social and health awareness can be promoted through social activity.

we intend to collaborate with experts in the area of psychology, sociology to harness the

needful expertise and knowledge for that.
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