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ABSTRACT 

 
TIME DEPENDENT QUEUING MODELS OF THE NATIONAL AIRSPACE 

SYSTEM 

 

Chatabush Roongrat, PhD 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Jay M. Rosenberger  

 Air transportation in the US system has dramatically changed in the past few 

decades. The National Airspace System (NAS) has increasingly become congested. A 

high volume of air traffic demand is one of the major challenges of the NAS.  However, 

air traffic is very difficult to study due to many uncertainties involved. It is important 

that we be able to understand the relationship under uncertainties due to aviation 

operations, precision of navigation and control, and traffic flow efficiency. Many 

queuing models have been studied to better understand and quantify these relationships. 

In the past decade, most queuing network models assume that inter-arrival times and 

service times are exponentially distributed and stationary, which may not be suitable for 

all scenarios. These queuing models are time invariant and have several drawbacks. In 

particular, they do not account for increases and decreases in demand that are 
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commonly observed in the NAS throughout a day. Previously, the NAS has been 

studied and analyzed by using traditional Makovian queues. However, observations 

from simulations of real traffic data reveal that the inter-arrival time and service time 

probability distributions cannot be represented by exponential probability density 

functions. The Coxian distribution is a phase-type distribution that has gained special 

importance in the research on queuing networks. In this study, several methods of 

fitting Coxian distribution to data together with different time dependent queuing 

models of the NAS are developed and discussed. 

In the past few decades, Coxian distributions have become increasingly more 

popular. The probability distribution functions for inter-arrival times/service times of 

airspace systems cannot be represented by traditional probability distribution functions. 

In the first part of this dissertation, we describe different algorithms to fit Coxian 

distributions to the service times of major Air Traffic Centers. Several fitting methods 

are developed and discussed. Finally, we compare and evaluate those methods by using 

the mean square error (MSE) and the number of phases in the distribution. 

In the second part of this dissertation, we discuss a practical approach for 

modeling the NAS with time-dependent Coxian queues. Time-dependent Cm(t)(t)/Ck/s 

queuing models of the National Airspace are developed in which the inter-arrival 

distribution is a time-dependent piece-wise constant Coxian random variable, and the 

service time distribution is a Coxian random variable. We describe an algorithm for 

calibrating a Cm(t)(t)/Ck/s queuing model from simulated data of an Air Route Traffic 
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Control Center and an algorithmic approach to determine average measures of the 

queues. Finally, we give future directions for studying such queuing models. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Air transportation in the US system has dramatically changed in the past few 

decades. The National Airspace System (NAS) has increasingly become congested. A 

heavy volume of air traffic demand is one major challenge of the NAS. NASA Ames 

reported [72], “The current air traffic demand on the US national airspace frequently 

exceeds its available capacity, due to a large number of factors including bad weather, 

over-scheduling by the airlines, national security, and air traffic control equipment 

outages.”  Over the next ten years, projections reveal an increase in air traffic demand 

[30]. Moreover, travel and business in the aviation industry are expected to grow. By 

the year 2015, the number of passengers that United States (U.S.) Airlines carry will 

double [36]. 

The Federal Aviation Authority [37] noted, “According to the General Aviation 

Manufacturer’s Association (GAMA) statistics for 2000, operations at general aviation 

(GA) airports with [Federal Aviation Administration (FAA)] control towers totaled 

approximately 50,000 aircraft operations per day. Aircraft landings and departures have 

increased steadily with more than 11.5 million reported for 2001.” The Air Traffic 

Control System has dramatically changed from 1935-2000 as shown in Figure 1.1. The 

amount of user demand on the NAS is quickly exceeding the resources. For the period 



 

2 
 

of January through June 2000, delays increased by 13.6 percent from the same time 

period in 1999 [36]. In June alone, delays increased 20 percent. From May through July 

2000, delays increased 6.8 percent from 1991 and totaled more than 86,684 [21]. An 

increasing demand for air travel is one of the most challenging problems in US air 

transportation. In the next 15 years, the annual air traffic in the US is expected to grow 

about 3-5% [30]. Figure 1.2 shows the Airspace Concept Evaluation System (ACES) 

simulation of U.S. traffic demand in 2022. Today the aerospace industry is faced with 

rapidly growing demand the leads to heavy air traffic. Within the U.S. airspace, more 

than 40,000 commercial flights operate in a typical day [17]. 

 

 

Figure 1.1: Air Traffic Control System Expansion 
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Figure 1.2: Simulated U.S. Traffic Demand in 2022 using the Airspace Concept 
Evaluation System (ACES) 

Source: http://vams.arc.nasa.gov/activities/aces.html  
 

Therefore, an efficient and effective air traffic management system is vital to the 

U.S. transportation infrastructure. The inflation adjusted gross domestic product (GDP) 

has increased by 62 percent due to deregulation in the airline industry since 1978 [50]. 

The US Department of Transportation [29] said, “In this same time period, total 

scheduled passenger air transportation has increased by 190 percent, and total airfreight 

ton miles have increased by 289 percent. Since 1997, flight delays have been 

significantly increased. These trends are expected to continue. In 1998, airline delays in 

the U.S. cost industry and passengers $4.5 billion.” 

However, air traffic is very difficult to study due to many uncertainties involved. 

It is important that we be able to understand the relationship under uncertainty. Many 

queuing models have been studied to improve delay problems. In the past decade most 

queuing network models assume that inter-arrival times and service times are 
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exponentially distributed and stationary, which may not be suitable for all scenarios. 

These queuing models are time invariant and have several drawbacks. In particular, they 

do not account for increases and decreases in demand that are commonly observed in 

the National Airspace System (NAS) throughout a day. Previously, the NAS has been 

studied and analyzed by using traditional Makovian queues. The observations from 

simulations of real traffic data, however, show that the inter-arrival and service time 

distributions do not follow an exponential probability density function. In the past few 

decades, Coxian distributions have become increasingly more popular. The Coxian 

distribution is a phase-type distribution that has gained special importance in research 

on queuing networks. In this study, methods of fitting a Coxian distribution to air traffic 

data are developed. The Coxian parameters obtained by the developed fitting methods 

are used to model Cm(t)(t)/Ck/s queues of the NAS.  

Figure 1.3 illustrates the Cm(t)(t)/Ck/s queue procedure. In this study, we 

developed MATLAB code to extract inter-arrival time and service time distributions 

from the FACET simulation. The inter-arrival times are fitted with our developed fitted 

Coxian distribution method called the Random Sample Method or RSM within each time 

period. In addition, service time distributions are also fitted with RSM. These steps, 

called calibration, calibrate a model from data. Once queuing parameters are obtained, 

the queuing models will be appropriately revised based upon what if scenarios. This 

procedure will only used by NASA for studying precision and navigation effects and 

other uncertainties such as weather.  Then, the next procedure is to enumerate states and 

determine the state probability vector. The algorithm to determine the state probabilities 
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is developed and will be discussed more in specific details in chapter 4. These steps are 

called queuing analysis. Lastly, we have to validate our model to check whether or not 

the model is accurate. In this study, we validate our developed queuing model with the 

FACET simulation. 

From Figure 1.3, notice that the red boxes indicate major contributions of this 

study. The several methods of fitting data to Coxian distribution to data are discussed in 

detail in chapter 3. Moreover, we also develop an algorithm to determine probability 

state vectors, which is discussed in chapter 4. 

1.2 Research Overview/Contributions 

 Although air traffic queuing models have been extensively studied over a 

decade, most research on queuing models focuses on steady state Markovian queues 

with time invariant inter-arrival and service time distributions. However, real world 

queuing systems vary with time. There are many time-dependent phenomena, such as 

rush hour or periodicity. Moreover, traditional Markovian queues, which assume inter-

arrival times and service times follow the exponential distribution, do not seem to fit 

with real data. In our research, the objective is to develop more accurate queuing 

models by implementing time dependent Coxian queuing models of the National 

Airspace System. 

Chapter 3 describes different algorithms to fit Coxian distributions to the service 

time data of major Air Traffic Centers. We develop several fitting methods. Fitting a 

Coxian phase-type distribution to data can be done by maximizing the log likelihood.  



 

 

Fit Service Time 
Distribution with 

Coxian Distribution 
by using RSM 

Method

Enumerate States

6 

Simulate FACET 
Data

Fit Service Time 
Distribution with 

Coxian Distribution 
by using RSM 

Method

Determine 
Probability State 

Vector

Revise Queuing 
Model for What If 

Scenario

Enumerate States

Fit Inter-Arrival 
Time Data with 

Coxian Distribution 
by using RSM 

Method

Validate Queuing 
Model

Figure 1.3 Cm(t)(t)/Ck/s Queue Procedure 
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This method has been extensively studied in the literature [2, 61, 62, 63, 64]. 

Furthermore, a fitting procedure for phase-type distributions has been developed by 

using an expectation maximization algorithm [76].  

Many researchers have performed the method of moments to fit the Coxian 

distribution. According to Schmickler and Johnson [54, 55], the method of moments 

matching has been developed to match the moments of a mixture of Erlang 

distributions. Moreover, differences between the moments matching parameter method 

with the maximum likelihood method were discussed in Lang et al [9]. The third group 

of algorithms is based on least squares estimation. The least squares method was to 

estimate the model parameters in Faddy [60]. In this research, we compare and evaluate 

fitting methods by using the goodness of fit based on the mean square error (MSE) and 

the number of phases in the distribution. 

In chapter 4 of this dissertation, we discuss a practical approach for modeling 

the NAS with time-dependent Coxian queues. Various studies of time dependent queues 

are on the Markovian queue M(t)/M/s. For example, Lee [10] studied design of time-

dependent telecommunication systems with infinite servers. Runnenburg [45, 46] 

developed a renewal theory for Markov-dependent random variables to study the 

waiting-time of a single-server queue with Markov-dependent inter-arrival times. Green 

et al. [51, 52] studied effects of non stationary on multi-server Markovian queuing 

systems. Furthermore, Jennings et al. [66] observed time-dependent systems when the 

arrival rate changes very rapidly relative to the service times. 
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Moreover, the Coxian queues in most literature, are time invariant. For example, 

Bertsimas [22] used the Coxian distribution and generalization method of stages 

introduced by Erlang to achieve the solution of queuing system. Neuts [57] studied a 

special class of probability distributions with rational Laplace transforms. Also, 

numerical investigations of queuing systems involving this special class of distributions 

can be found in Neuts [59]. Moreover, Marie [75] studied the queue-length probability 

distribution of a single server queue with a Coxian service distribution and 

exponentially distributed inter-arrival times with a state-dependent arrival rate. Herzog 

et al. [81] obtained numerical results for a single server queue with state-dependent 

arrival and service rates, and assumed that the inter-arrival times as well as the service 

times follow a Coxian distribution. 

Therefore, in this research we propose time-dependent Cm(t)(t)/Ck/s queuing 

models of the National Airspace. The time-dependent Coxian queues are developed in 

which the inter-arrival distribution is a time-dependent piece-wise constant Coxian 

random variable, and the service time distribution is Coxian random variable. We 

describe an algorithm for calibrating a Cm(t)(t)/Ck/s queuing model from simulated data 

of an Air Route Traffic Control Center and an algorithmic approach to determine 

average measures of the queues. The Cm(t)(t)/Ck/s queue has not yet been studied in any 

literature. Finally, in chapter 5, we discuss conclusions and give future extensions of our 

research. 
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CHAPTER 2 

BACKGROUND AND RELATED LITERATURE  

2.1 Overview of the National Airspace System 

The FAA [36] reports, “The National Airspace System (NAS) of the United 

States is one of the most complex aviation systems in the world and consists of 

thousands of people, procedures, facilities, aircraft, control facilities, procedures, 

navigation and surveillance equipment, analysis equipment, decision support tools that 

enables safe air travel in the United States.” The US airspace is divided into 21 large 

areas called centers, each of which is divided into sectors [72] as shown in Figure 2.1 

below. 

  

 

Figure 2.1 Topology for a Center Level Queuing Network Model for the NAS 
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The National Airspace System (NAS) Plan was announced in January 1982 by 

the Federal Aviation Administration (FAA) [36]. The plan improved aviation operations 

tremendously such as better flight service stations, more advanced systems for Air 

Traffic Control (ATC), and faster communication. Furthermore, better computers and 

software were developed that reduced the number of flights. According to the FAA 

[36], “The NAS requires 14,500 air traffic controllers, 4,500 aviation safety inspectors, 

and 5,800 technicians to operate and maintain services. It has more than 19,000 airports 

and 600 air traffic control facilities. In all, there are 41,000 NAS operational facilities. 

In addition, there are over 71,000 pieces of equipment, ranging from radar systems to 

communication relay stations.” Each day, about 50,000 flights use NAS services on 

average [36]. 

Many mathematical models of air traffic flow have been studied by the National 

Aeronautics and Space Administration (NASA) and the FAA [72, 73]. NASA attempts 

to develop the analysis methodologies to improve air traffic flow. In addition, the 

design of the NAS has been studied in Beach and Connolly [53], Caldwell [12], Hinds 

and Kiesler [68], Orasanu and Salas [43], Rasmussen et al [44], Robertson et al [77], 

and Smith and Geddes [70]. Those studied include a design of decision support making 

in aviation environment. Wickens and Hopkins [21, 82] studied human factors in air 

traffic control. Moreover, Kerns et al [50], Billings [18], Lacher and Klein [8] primarily 

focused on the design of the traffic flow management system within the NAS.  
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2.1.1 NAS System 

Air Traffic Control System Command Center (ATCSCC): 

The Air Traffic Control System Command Center (ATCSCC), operational since 

1994 and headquartered in Herndon, Virginia, is in charge of managing the air traffic 

flow within the NAS [37]. The ATCSCC takes action implementing ground delay 

programs, fight cancellations when unforeseen events occur that create an imbalance 

between air traffic demand and capacity. These actions help reduce congestion and 

delays thus facilitating maximum use of the NAS. 

Air Traffic Controlling Facilities (ATC): 

The primary concern of the 21 Air Traffic Control Command Centers (ARTCC) 

in the NAS is to separate and control the movement of aircraft within a specified 

airspace. Each of the 21 ARTCC located in the 21 centers in the U.S. employs 300 or 

more controllers, who guide aircraft towards their destination, reroute aircraft around 

bad weather, and keep them safe from mid-air accidents. 

Terminal Radar Approach Control (TRACON): 

These centers are located near airports and cover airspace of a 50-mile radius or more. 

If they are located within the 50-mile radius, they might control the airspace of other 

airports as well. The Terminal Radar Approach Control (TRACON) is responsible for 

the arrival sequencing at the airports. Air Traffic Management (ATM) decision support 

tools have shown the capability to increase the arrival traffic throughput of TRACON 

facilities without impacting the air traffic controller workloads [89]. NASA Ames 

Research Center and the FAA are developing decision support tools, such as trajectory 
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prediction algorithms, to aid the tactical control of TRACON departure traffic [20]. 

Jung [88] states, “The Expedite Departure Path (EDP) is a decision support tool that 

provides the TRACON traffic management coordinators with departure traffic loading, 

scheduling information and radar controllers with advisories for tactical management of 

terminal area departure traffic.” 

Control Tower: 

The surface traffic is managed by control towers (aircraft operations on the 

ground) and within a specified airspace around the airport. The control tower plays an 

important role in managing proper spacing between aircraft taking off and landing. 

2.1.2 Future ATM Concepts Evaluation Tool (FACET) 

At NASA Ames Research Center, Moffett Field, California, the Future Air 

traffic management Concepts Evaluation Tool (FACET) was developed [48]. By using 

actual air traffic data from the FAA, FACET analyzes the flight plan route and predicts 

trajectories for the climb, cruise and descent phases of flight for each aircraft type [71]. 

NASA Ames Research Center developed the FACET simulation for modeling ATM. 

The purpose of FACET is to provide better evaluation of advanced ATM concepts and 

enable users to keep track of flight plans.  

Developed as an accurate complex model of air traffic flow problem, FACET is 

a simulation model of the US airspace [49]. FACET simulates air traffic based on flight 

plans and allows the user to analyze congestion patterns of different sectors and centers 

by propagating the trajectories of proposed flights forward in time [37]. Extensively 

used by the FAA, NASA and industry (over 40 organizations and 5000 users), FACET 
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can be used to both simulate and display air traffic or provide rapid statistics on 

recorded data [1]. 

In our study, we developed approaches for extracting inter-arrival and service 

time distributions using the FACET simulation of the air traffic data. Figures 2.2 and 

2.3 show FACET snapshots of air traffic over the United States on Jan 15, 2005 at 

12:19 a.m. UTC and on July 10, 2006 at 2:45 p.m. EST, respectively. 

 

 

Figure 2.2 A FACET snapshot of air traffic over the United States on Jan 15, 2005 at 
12:19 a.m. UTC 

Source: http://www.nasa.gov/vision/earth/improvingflight/FACETSOY.html 
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Figure 2.3 A FACET snapshot of air traffic over the United States on July 10, 2006 at 
2:45 p.m. EST/ 11:45 a.m. PDT 

Source: http://www.nasa.gov/vision/earth/improvingflight/FACETSOY.html 
 

2.2 Overview of Queuing Models 

Queuing models have been studied over the past several decades.  Queues and 

queuing systems have been widely studied in research since the first telephone systems 

were introduced. Queuing theory was known with the work of A. K. Erlang of the 

Copenhagen Telephone Company in 1900s [38]. Erlang developed important 

knowledge in tele-traffic engineering. Queuing applications have rapidly grown in 

many branches including telecommunications, computer science, air traffic control, 

logistics, and manufacturing.  

Queuing networks are used widely to analyze computer, communication, 

manufacturing and transportation systems [80]. Smith et al [40] says, “In 1957, Jackson 

published an analysis of a multiple device system where in each device contained one or 

more parallel servers and jobs could enter or exit the system anywhere.” Furthermore, 
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Jackson further studied open and closed systems with dependent service rates in 1963 

[42]. The special case of closed queuing systems has also been simplified [83]. 

Different queuing models and non-Poisson service distributions have been developed 

[28]. Moreover, the product-form solutions of queuing networks application have been 

studied the design and modeling of facilities with over four decades before [10, 40, 65]. 

Many authors have studied Makovian queues with finite capacity. Moreover, 

many practical situations to understand the transient behavior of queuing system were 

studied by Cohen, Kabayashi and Duda [4, 33, 47]. Kimura et al. [78, 79] derived 

diffusion approximations for various queue characteristics in a GI/G/1/N system. By 

using a diffusion process with a reflecting boundary for the heavy traffic case, the 

transient approximations were investigated for the single server case [33, 38, 39]. 

Moreover, Choi and Shin [13] studied M/G/m system with transient diffusion 

approximation with infinite capacity. 

2.2.1 Time-Dependent Queues 

 The evolution of a real-world queuing system varies with time. However, most 

queuing models in the past decade have been dedicated to time-homogeneous models. 

In practice, there are many time-dependent phenomena, such as rush hour or 

periodicity, which they fail to capture.  

Most real-world queuing systems exhibit some sort of time-dependent behavior, 

including time-varying arrival and service rates. Kenneth [74] observed, “However, 

analysis of the time-dependent behavior of even the simple M(t)/M(t)/∞ queuing system 

requires numerical integration of an infinite number of differential-difference equations 
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for general, real-valued and integral arrival/service-rate functions.” An analysis of 

mobile cellular telecommunication system design has extensively used time-dependent 

queuing networks with infinite-servers [10]. Stewart and Marie [87] discussed a review 

of time-dependent queuing networks with infinite-servers. Furthermore, Runnenburg 

[45, 46] studied the waiting-time process of a single-server queue with Markov-

dependent inter-arrival times and negative exponential services. 

Jennings et al [66] observed that the time-dependent nature of a system performs 

well when the arrival rate changes very rapidly relative to the service times. Some non-

stationary effects on multi-server Markovian queuing systems are given in Green et al. 

[51,52], which assumed that at each time point steady state is achieved, and used the 

instantaneous arrival rate λ(t), for the mean arrival rate at time t. In addition, there has 

recently been much interest in the solution of time-dependent queuing problems by 

numerical integration [15, 31, 69]. 

2.2.2 Queuing Network by Enumeration of States 

Haverkort and Knottenbelt [16, 84] performed approaches that search an 

exhaustive state space. Those approaches can be used to utilize mass storage and/or 

distributed hardware in an efficient way to represent the state space [32, 67]. The 

Champman-Kolmogorov equation based state enumeration will be require for the 

solution process if the inter-arrival and service time distributions are not exponential 

[34].  
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2.3 Overview of the Coxian Distribution 

The Erlang distribution was introduced from the study of phases in telephone 

systems by Erlang [7]. Then, Cox [23, 24] generalized the class of Erlang distributions 

and studied probability distributions as mixtures of Erlang distributions. A Coxian 

distribution was first introduced by Cox [23, 24]. This distribution is widely used in 

many science and engineering applications.  

Neuts [59] stated that the time to absorption of a finite Markov chain in 

continuous time that represents in a stochastic model can be represented as the Coxian 

phase-type distribution. There is one absorbing state or phase, and the stochastic process 

starts in transient state. Coxian distributions have become more important because of 

their universality: the Coxian distribution can approximate any distribution function 

closely [90]. The Coxian distribution is the most general form of a phase-type 

distribution that results from a system of one or more sequences, or phases.  

2.3.1 Fitting Coxian Distribution to Data 

It is very difficult to fit distributions or real data to the Coxian phase-type 

distribution according to many reports in the literature [26]. One of the major problems 

of fitting phase type distributions occurs because the functions are nonlinear [9]. 

Because it is not possible to find an exact solution, a numerical algorithm is required 

[58]. Methods of estimation, methods of maximum likelihood, methods of moments 

(moment matching) and the least squares method are methods that have been studied 

earlier. These three methods have been widely used for fitting data to the phase-type 

distribution. The maximum likelihood method has been developed for many years. 
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Fitting a Coxian phase-type distribution to data can be done by maximizing the log 

likelihood. This method has been extensively studied in much literature. For example, 

Bobbio and Cumani [2] applied the maximum likelihood method to maximize a 

combining linear program function. The minimum likelihood was used in Faddy [61, 

62, 63] and Faddy and McClean [64] to study Nelder Mead algorithm. Furthermore, a 

phase-type distribution fitting procedure was developed by using an expectation 

maximization algorithm [76].  

Many researchers have performed the method of moments to fit Coxian 

distributions. According to Schmickler and Johnson [54, 55] the method of moments 

matching is developed to match the moments of a mixture of Erlang distributions. 

Moreover, the comparison between the moments matching parameter method with the 

maximum likelihood method is discussed in Lang and Arthur [9]. The third group of 

algorithms is based on least squares estimation. The least squares method has been used 

to estimate the model parameters in Faddy [60]. Even though, many attempts have been 

performed by researchers, these approaches have limitations. In practice, the method of 

moments is considered the least accurate method when the original distribution is 

unknown [11]. 

2.3.2 Coxian Queuing Model 

The Coxian distribution is a special case of a phase-type distribution. It has 

gained special importance in the research on queuing networks. BCMP methods often 

require distribution functions of random quantities that have rational Laplace transforms 

[28]. This queuing network method was name after the authors [41]. These quantities 
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might be the inter-arrival times or service times of a queuing network. Moreover, 

Coxian distributions have been widely used in queuing applications and other applied 

probability models. According to Cox [25], “Coxian phase-type distribution is a more 

specific method that represents real air traffic data as a special type of Markov model.” 

An approach adopted for deriving queuing results using more general inter-arrival and 

service time distributions is to approximate these processes by Erlang or Coxian 

distribution [85, 86].  

 Various studies of queuing models with Coxian distributions have been reported 

in the literature. In particular, Herzog et al. [81] obtained numerical results for a single 

server queue with state dependent arrival and service rates, assuming that the inter-

arrival times as well as the service times follow a Coxian distribution. Marie [75] 

studied the queue-length probability distribution of a single server queue with a Coxian 

service distribution and a Markovian time-dependent arrival rate. This approach was 

obtained using a recursive technique, which was based on the notion of the conditional 

throughput. Marie's model was extended to several servers as described in Stewart and 

Marie [87] using numerical techniques. Bertsimas [22] used the Coxian distribution and 

generalization method of stages introduced by Erlang to achieve the solution of a 

queuing system. Finally, a special class of probability distributions with rational 

Laplace transforms, which are related to finite Markov chains, were considered by 

Neuts [57]. Also, a special class of distributions can be found in Neuts [59] with 

queuing system numerical investigations.  
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CHAPTER 3 

FITTING COXIAN DISTRIBUTION TO AIR TRAFFIC DATA 

3.1 Introduction 

As mentioned previously, simulations of real traffic data reveal that the inter-

arrival time and service time distributions cannot be represented by exponential 

distribution random variables. The Coxian distribution has gained more attention to 

many researchers due to its universality: any distributions can be approximated closely 

by Coxian distribution. Literature on fitting the Coxian distribution to data was 

described in the previous chapter. 

In this chapter, we describe different algorithms to fit Coxian distributions to the 

service time data of major Air Traffic Centers. We develop several fitting methods. We 

compare and evaluate fitting methods by using the mean square error (MSE) and the 

number of phases in the distribution. We begin the chapter with the description of the 

Coxian distribution in section 3.2. In section 3.3, the methods of fitting a Coxian 

distribution to data are presented. Finally, the experimental results are discussed in 

section 3.4. 

 

3.2 Coxian Distribution 

The description of the Coxian distribution here is from Menon et al. [94]. The 

phases of the Coxian distribution are characterized by the following parameters. Let µ1, 
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µ2…µn be the service rates of an n-phase Coxian distribution. The transition 

probabilities for transitioning to the next phase are denoted by a1, a2…an-1 as shown in 

Figure 3.1. 

 

Figure 3.1 The Coxian Distribution 

 Here Q is a (n +1) × (n +1) matrix that represents the transition rate matrix for 

an n-phase Coxian distribution, which can be given by 
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Let α be a state probability vector of the Coxian distribution. Let n  be the number of 

exponential phases associate with states 1,…,n, and let state n +1 be the absorption 

state. T is a n × n matrix corresponding to the n exponential phases and To is the n ×1 

column vector corresponding to the absorption state.  

  

 =0T  (3.2) 

 

 

Hence, the moments of the distribution can be calculated by 
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The density function of the Coxian distribution of the Laplace transform can be given 

by the following equation [3.4]: 
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where, 
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3.3 Methods of Fitting a Coxian Distribution to Data 

Previously, we fitted an n-phase Erlang distribution to the inter-arrival and service 

time data obtained from the FACET simulation. However, the n-phase Erlang 

distribution fitted poorly to the inter-arrival and service time data at some centers. 

Consequently, we develop different fitting methods that improve the fit to data. In this 

section, we describe several methods to fit a Coxian distribution to the service time data 

of major air traffic centers. We then compare and evaluate these methods by using the 

mean square error (MSE) and the number of phases in the distribution. Nonlinear 

Optimization, Fitting Histogram, and Random Sample Method are discussed in sections 

3.3.1, 3.3.2, and 3.3.3, respectively. 
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3.3.1 Nonlinear Optimization Method 

Fitting a Coxian distribution to data involves identifying the service ratesµ and 

the continuation probabilitiesa . In this section, we describe a nonlinear optimization 

method by matching the moments of the distribution with the data. The nonlinear 

optimization method is our first approach to fit data with the Coxian distribution. In our 

implementation of the nonlinear optimization method, we used FMINCON, which is an 

optimization routine in MATLAB to find a minimum of constrained non-linear 

functions. 

3.3.1.1 Nonlinear Optimization Algorithm 

The following steps were used to fit data by using the nonlinear optimization method. 

1. We began the fit with n initial phases of Erlang distribution.   

2. We weighted the objective. The differences in lower moments were more 

penalized than those of higher moments because the lower moments are more 

descriptive of a probability distribution than higher moments.  The revised 

objective essentially created a sequential goal program. 

3. Subsequent Coxian distribution parameters were initialized by those of the 

previous distribution and the continuation probability of the final phase at close 

to zero. 

4. The error in the fit was the MSE. 
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Table 3.1 Comparison of Mean Square Error (MSE) and Number of Phases (k) between 
Erlang and Coxian Distribution fit for each center 

Center Fitted Method 

ID Name 

Nonlinear 

Optimization Erlang 

MSE k MSE K 

1     'Albuquerque' 0.025331 6 0.037093 2 

2     'Atlanta' 0.013714 6 0.013714 1 

3     'Boston' 0.021343 2 0.021343 2 

4     'Chicago' 0.016379 3 0.016379 2 

5     'Cleveland' 0.015167 5 0.015167 2 

6     'Denver' 0.015422 7 0.011788 1 

7     'Fort Worth' 0.009603 5 0.009603 2 

8     'Houston' 0.048014 4 0.003407 1 

9     'Indianapolis' 0.017635 3 0.017635 2 

10     'Jacksonville' 0.014748 7 0.014748 2 

11     'Kansas City' 0.002361 4 0.002361 2 

12     'Los Angeles' 0.015301 8 0.015301 1 

13     'Memphis' 0.00902 7 0.00902 2 

14     'Miami' 0.031226 3 0.031226 2 

15     'Minneapolis' 0.007984 2 0.007984 1 

16     'New York' 0.009733 4 0.009733 2 

17     'Oakland' 0.02913 5 0.02913 2 

18     'Salt Lake City' 0.013672 7 0.013672 1 

19     'Seattle' 0.009755 3 0.009755 2 

20     'Washington DC' 0.021013 4 0.021013 2 

 

From Table 3.1 we observed that the nonlinear optimization method does not 

improve MSE compared to fitting the data to the Erlang distribution at most centers. We 

believe this occurs because of the initialization of the nonlinear optimization method 

with n initial Erlang
 
phases. We also observed that at the Albuquerque center, the 

nonlinear optimization method with k = 6 gives a lower MSE value compared to fitting 
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the data with the Erlang distribution with k = 2. Notice that the accuracy of the 

nonlinear optimization fit can be further improved by increasing the number of phases. 

3.3.2 Fitting Histogram Method  

 The nonlinear optimization method does not give us a better fit compared to 

fitting the data to an Erlang distribution. In this section, we introduce a fitting 

histogram method. This method has been previously studied in the literature [90]. In 

this method we fit a Coxian distribution to the individual bin of a generated histogram 

from the data. 

3.3.2.1 Fitting Histogram Method Algorithm 

1. Generate a histogram from the given data. 

2. For each bin of the histogram, fit it with a k-phased Erlang distribution. 

        3. Set the transition probabilities of the k-phases within each bin to be 1. 

 4. Set the transition probability from one bin to the next bin to be as follows: 

   

Figure 3.2 Example of Data Histogram 

1 2 3 
4 



 

26 
 

 

The mean phase length of bin 1 can be calculated as 
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(3.7) 

where   k = the number of phases in each bin 

             a = the minimum value of bin 1 

             b = the maximum value of bin 1 

The probability of transitioning from bin 1 to bin 2 can be calculated as 
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(3.8) 

where  '�  = the height (frequency) of bin 1. 

The mean phase length of bin 2 can be calculated as 
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(3.9) 

where   c = the maximum value of bin 2. 

The probability of transitioning from bin 2 to bin 3 can be calculated as 

                                                           �&%) � �1 � *+ 
�*,

�                               (3.10) 

where   '&  = The height (frequency) of bin 2. 

Therefore, according to above calculation we can obtain the Coxian parameters 

to fit the data to a Coxian distribution as follows: 
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             Figure 3.3 Coxian distribution by using the fitting histogram method 

 

From Figure 3.3, each node represents a histogram bin. We then fit data with the 

Coxian distribution. However, if we zoom in to each bin block, then we can see that 

each bin consists of k phases.  Using the Erlang distribution, our mean value is: 
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/ (3.11)  

where / = service time. 

The transition probability within each bin is 1. 

 

 

Figure 3.4 k-phased Erlang Distribution 

 

A1→2 A2→3 

1- A1→2 1- A2→3 
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Figure 3.5 Comparison of fitting histogram method by using different k values at 
Boston center 

 

 
Figure 3.6 Comparison of fitting histogram method by using different k values at Miami 

Center 
 

Figures 3.5 and 3.6 illustrate the Coxian distributions fitted to service time 

distributions obtained from FACET. The red dotted line represents a Coxian distribution 

fit to data with k = 2 (the total number of Coxian phases in this experiment equals to 30 

bins × 2 phases for each bin = 60 phases). The blue dashed line represents a Coxian 
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distribution fit to data with k = 4 (total number of Coxian phases in this experiment 

equals to 30 bins histogram × 4 phases for each bin = 80 phases). Finally, the green 

solid line represents a Coxian distribution fit to data with k = 6 (total number of Coxian 

phases in this experiment equals to 30 bins histogram × 6 phases for each bin = 180 

phases). 

 From the above figures, we observed that if we increase the number of phases 

in the bin, then the better we fit the Coxian distribution to the data. Even though the 

fitting histogram method fit data almost perfectly to the histogram, the total number of 

phases is way too large for use in practice. 

3.3.3 Random Sample Method (RSM) 

Two different fitting methods were discussed in the previous sections. The 

nonlinear optimization method does not give lower MSE values compared to fitting the 

data to an Erlang distribution. On the other hand, the fitting histogram method gives us 

a good data fit with low MSE but with a very large number of phases compared to other 

methods.  

In this section, a random sample method (RSM) will be introduced. RSM is a 

quick and powerful method that gives a very good fit to the data with both low MSE 

and few phases. The RSM algorithm steps and an example will be discussed in sections 

3.3.3.1 and 3.3.3.2, respectively.  
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3.3.3.1 RSM Algorithm 

1. Start with iteration j = 1 

2. Let jX  be the data set at iteration j 

3. Fit data set jX to an Erlang (k, µ)  distribution  

4. From data set jX  subtract each data point with a random sample from an 

exponential distribution with mean parameter µ.  

5. Remove negative data points fromjX . 

6.  Set µj = µ and aj to be the size of data set jX divided by the size of data set

1jX − . 

7. Set j = j+ 1 

8. If the size of data set jX < ε, then stop otherwise go back to step 3. 

3.3.3.2 Random Sample Method Example 

 In this section we demonstrate a small example of fitting data with RSM.  

Consider data given in Table 3.2 to be the original data set in this example. For iteration 

1, the first step is to fit the data given in Table 3.2 with an Erlang distribution with µ 

parameter equal to 0.048 as shown in Figure 3.7. Then we subtract random samples 

from an exponential distribution with mean parameter µ = 0.048 from each data point. 

The new data set can be shown in Table 3.3. The last step of this method is to set the 

Coxian parameter µ1 to equal to 0.048 and the transition probability a1 to the size of the 

new data set of iteration 2 as given in Table 3.3 divided by the size of the original data 
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set of iteration 1 as given in Table 3.2. In this case, a1 is equal to 30/30 = 1. The Coxian 

parameters after the first iteration can be shown in Figure 3.8. 

 

Table 3.2 Data set for iteration 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.7 Fitted Erlang distribution with µ = 0.048 for iteration 1 

 
 

 

Index Value Index Value 
1 10.5 16 24.5 
2 34.5 17 4.5 
3 19.5 18 3.5 
4 197.5 19 36 
5 225 20 28.5 
 6 35.5 21 3.5 
7 12 22 10 
8 28.5 23 4 
9 32.5 24 21.5 
10 56.5 25 32 
11 58.5 26 41.5 
12 80 27 26.5 
13 54.5 28 17 
14 36 29 44.5 
15 14 30 45.5 
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Table 3.3  Data set after remove negative data point at  iteration 1 
     

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

 

 

 

Figure 3.8 The Coxian parameters for iteration 1 

 

 
 
 
 
 
 

Index Value Index Value 
1 8.568735 16 22.56873 
2 32.56873 17 2.568735 
3 17.56873 18 1.568735 
4 195.5687 19 34.06873 
5 223.0687 20 26.56873 
6 33.56873 21 1.568735 
7 10.06873 22 8.068735 
8 26.56873 23 2.068735 
9 30.56873 24 19.56873 
10 54.56873 25 30.06873 
11 56.56873 26 39.56873 
12 78.06873 27 24.56873 
13 52.56873 28 15.06873 
14 34.06873 29 42.56873 
15 12.06873 30 43.56873 

µ1 
=0.0484 

 

a1 = 1 

1-a1= 0 



 

 

 
 
 Now let the data set given in Table 3.3 be the data set for this iteration 2. The 

basic concept is to fit this data set to an Erlang distribution with 

0.0507 as shown in Figure 3.9. Then we subtract 

distribution with mean parameter 

be shown in Table 3.4. Notice that, some of the data points are n

are removed out from the data set. Therefore, our new data set for the next iteration is 

given as Table 3.5. 

 
Figure 3.9 Fitted Erlang distribution with 
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Now let the data set given in Table 3.3 be the data set for this iteration 2. The 

basic concept is to fit this data set to an Erlang distribution with µ parameter equal to 

0.0507 as shown in Figure 3.9. Then we subtract random samples from the exponential 

distribution with mean parameter µ = 0.0507 from each data point. The new data set can 

be shown in Table 3.4. Notice that, some of the data points are negative values, which 

are removed out from the data set. Therefore, our new data set for the next iteration is 

 

 

 
 
 
 
 
 
 
 

Figure 3.9 Fitted Erlang distribution with µ = 0.0507 for iteration 2

 

 

 

Now let the data set given in Table 3.3 be the data set for this iteration 2. The 

parameter equal to 

from the exponential 

= 0.0507 from each data point. The new data set can 

egative values, which 

are removed out from the data set. Therefore, our new data set for the next iteration is 

= 0.0507 for iteration 2 
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Table 3.4  Data set after subtracting exponential random variable at  iteration 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3.5 New data set for iteration 3 

Index Value Index Value 
1 -24.9566 16 -10.9566 
2 -0.95662 17 -30.9566 
3 -15.9566 18 -31.9566 
4 162.0434 19 0.54338 
5 189.5434 20 -6.95662 
6 0.04338 21 -31.9566 
7 -23.4566 22 -25.4566 
8 -6.95662 23 -31.4566 
9 -2.95662 24 -13.9566 
10 21.04338 25 -3.45662 
11 23.04338 26 6.04338 
12 44.54338 27 -8.95662 
13 19.04338 28 -18.4566 
14 0.54338 29 9.04338 
15 -21.4566 30 10.04338 

Index Value 
1 162.0434 
2 189.5434 
3 0.04338 
4 21.04338 
5 23.04338 
6 44.54338 
7 19.04338 
8 0.54338 
9 0.54338 
10 6.04338 
11 9.04338 
12 10.04338 
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Figure 3.10 The Coxian parameters for iteration 1 and 2 

The final step of this iteration is to set the Coxian parameter µ2 to equal to 

0.0507, and the transition probability a2 can be calculated as 12/30 = 0.4. The Coxian 

parameters after the first and second iterations can be shown in Figure 3.10. We 

continue doing these same steps until the size of the data is really small; then we stop. 

The final Coxian parameters in this example can be shown in Figure 3.11. 

 

 
 
 
 
 
 

 Figure 3.11 The final Coxian distribution 

3.4 Experimental Results 

Several fitting methods were developed and discussed earlier. In this section, we 

compare and evaluate a variety of fitting methods by using the mean square error 

(MSE) and the number of phases in the distribution. The results of fitting different 

µ1 =0.0484 

 

a1 = 1 µ2 =0.0507 

 

 

a2 = 0.4 

1-a1= 0 

µ3 
=0.032

4 

a3 = 0.25 

µ7 
=0.230

4 

µ1 
=0.048

4 

a1 = 1 

µ2 
=0.050

7 

a2 = 0.4 

1-a1= 0 1-a2= 0.6 1-a3= 0.75 
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methods to service time data at the Miami and Albuquerque centers are given in Figures 

1 and 2, respectively. 

Figures 3.12 and 3.13 represent the comparison of MSE and the total number of 

phases (k) for each of the fitting methods. The results show that RSM finds a good fit to 

the service time data at the Albuquerque and Miami centers. By using this method, we 

get low MSE values and fewer phases (k) compared to the nonlinear optimization 

method and the fitted histogram method at both centers. Even though, the fitted 

histogram method gives the lowest MSE value, it requires 300 phases, which is not 

really practical.  

 

 

 
Figure 3.12 Comparison of different fitting Coxian distribution methods to service time 

data at the Miami Center 
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Figure 3.13 Comparison of different fitting Coxian distribution methods to service time 
data at the Albuquerque Center 

 

Notice that at the Miami center, fitting service time data with the nonlinear 

optimization method does not improve the MSE value compared to fitting data to an 

Erlang distribution. As discussed earlier, we believe this occurs because of the 

initialization of the nonlinear optimization method with an initial n-phase Erlang. 

From our experimental results, we can conclude that the RSM is a quick and 

powerful method that yields a lower MSE and fewer phases compared to other methods. 

This method will be used for fitting time dependent inter-arrival time Cm(t)(t)/Ck/s 

queuing models, which will be discussed in chapter 4. 
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CHAPTER 4 

TIME-DEPENDANT QUEUING MODELS OF THE NATIONAL AIRSPACE 

SYSTEM 

4.1 Introduction 

The real world queuing models have arrival rate and service rate vary with time. 

In this chapter we present time dependant queuing models of the national airspace 

system. In section 4.2, we describe an algorithm for calibrating Cm(t)(t)/Ck/s queuing 

model. The state enumeration technique is discussed in section 4.3. Furthermore, we 

present an algorithmic approach to determine average measures of the queues in section 

4.4. Finally, we validate time dependant queuing models with FACET simulation.   

4.1.1. Problem Description 

 In our study, we developed approaches for extracting inter-arrival and service 

time distributions using the FACET simulation for June 1-7, 2007 of the air traffic data.  

We make the following assumptions:  

Assumption 1: It is possible to un-truncate the arrival data. 

Assumption 2: The set of times representing fundamental changes in the inter-arrival 

distribution is 24 one-hour time periods. 

Assumption 3: The service time distribution does not change and remains stable for the 

entire time horizon. 
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The first step to calibrate a Cm(t)(t)/Ck/s queuing model was to extract inter-

arrival and service time data from the FACET simulation. We then fitted 24 one-hour 

inter-arrival time periods and service time data to Coxian distribution by using RSM as 

discussed in chapter 3.  

Furthermore, we applied the state enumeration technique for the queuing 

solution. The steady state solution can be obtained by integrating the Markov process 

equation Qxx =&  until steady state is reached. More specific details will be discussed in 

the next section. Finally, an algorithmic approach is used to determine average 

measures of the queues. The average measures can be obtained by calculating the 

probability state vector for each time period.  

4.2 Calibrating a Time Dependant Queuing Model 

 In this section, we describe an algorithm for calibrating a Cm(t)(t)/Ck/s queuing 

model in which the service distribution is a Coxian random variable, and the inter-

arrival distribution is a time-dependent piece-wise constant Coxian random variable 

from FACET data.  

4.2.1. Calibrating Queuing Parameters 

4.2.1.1 Estimating Arrival Rates 

 Using seven days of FACET data, we developed MATLAB code to extract 

network arrivals that include both external sources and aircraft arriving from other 

centers within the network called network arrivals directly from FACET. Let 1,..., lX X  

be a set of independent Coxian random variables of the inter-arrival time at different 
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periods throughout the day.  In this study, we assume l equals to 24 one- hour time 

period. Then, the inter-arrival time is a time-dependent piece-wise constant Coxian 

random variable given by equation (4.1) 
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For each time period, we then fitted inter-arrival times to a Coxian distribution. 

However, fitting a Coxian distribution to the data involves identifying the rates µ and 

the continuation probabilitiesa . We discussed RSM to fit a Coxian distribution with 

data in chapter 3.   

4.2.1.2 Estimating Service Rates 

 Like estimating arrival rates, we developed MATLAB code to extract the time 

that an aircraft takes to cross a specific center, which is referred to as service time. The 

service time distributions are also fitted by RSM. 

4.3 Queuing Network by Enumeration of States 

The Champman-Kolmogorov equation based state enumeration will be require 

for the solution process if the inter-arrival and service time distributions are not 

exponential [34]. The continuous time long run behavior of a Markov process can be 

described as  

 )()( tQxtx =&  (4.2) 

where )(tx is a probability vector [92]. The value )(txi  represents the probability of the 

system being in state i where i = 1,…,n . Let )(tQ be the nn× matrix. This matrix is 
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called the infinitesimal generator matrix or the transition rate matrix for a Markov 

process. Consider a queue with arrival rate λ  and service rate µ  for all nodes in the 

queuing system. The Markov process in steady-state, we simple have  

                                                    0xQ =                           (4.3) 

Here x  is the stationary probability vector where ix  is the steady-state 

probability that the system is in state i. The vector x  can also be obtained from equation 

(4.3). The normalizing condition can be calculated as follow 
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The steady state solution can be obtained by integrating Equation (4.2) until steady state 

is reached.  

 As discussed above, by integrating Qxx =& , the steady state solution to the 

Markov process can be reached. The transient solutions can also be obtained by using 

this method. Using the matrix exponentQ
te, the solution of time in variant system 

solution can also be obtained.  

4.3.1 State Enumeration   

  As discussed in Sengupta and Tandale [91], the analysis of a queue with a 

Coxian arrival process distribution and a Coxian service time distribution with s servers 

can be represented in Figure 1.7. Let µG1, µG2,,…, µGm be the service parameters with an 

m-phase Coxian distribution, and let aG1, aG2,…., aGm be the transition probabilities of 

the arrival process. We refer to this as a generator. Furthermore, the Cm/Ck/s queue 
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service node can be represented by a k-phase Coxian, with service parameters µN1, 

µN2,…., µNk , and transition probabilities aN1, aN2,…., aNk. In this study, we assume that 

the service node has s identical servers, each of which has the same set of parameters. 

The Cm/Ck/s queuing system can be represented by Figure 4.1.   

 

Figure 4.1 Cm/Ck/s Queue 

 
In this study, the Cm/Ck/s queuing system state can be defined by (1) the phase of 

the arrival process or generator, (2) the number of items in service node, and (3) the 

number of servers in the same phase of service node.  Let a be the phase of the 

generator, let b be the number of items in service, and let  c1, c2,…,ck be the number of 

servers in phases 1,2,…, k, Therefore, the state of the system can be represented by the 

sequence a : b(c1, c2, …., ck). The total number of servers in phases 1,2,…, k at a service 

node can be given as [91]: 
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(4.5) 

 
Here we want to illustrate the queuing state system with 2 generator phases, 3 servers, 

each with 3 service phases. In this example, the generator is in phase 2, and the  

maximum number of items in service is 4. Table 4.1 shows the possible states of such 

queue. 

Table 4.1 Enumerated States for C2/C3/3 Queue with Generator in Phase 2 and n ≤ 4 
Items in Service [91]             

Index State Index State Index State Index State 
0 2:0(0,0,0) 8 2:2(1,10) 16 2:3(1,2,0) 24 2:4(1,0,2) 
1 2:1(0,0,1) 9 2:2(2,0,0) 17 2:3(2,0,1) 25 2:4(1,1,1) 
2 2:1(0,1,0) 10 2:3(0,03) 18 2:3(2,1,0) 26 2:4(1,2,0) 
3 2:1(1,0,0) 11 2:3(0,1,2) 19 2:3(3,0,0) 27 2:4(2,0,1) 
4 2:2(0,0,2) 12 2:3(0,2,1) 20 2:4(0,0,3) 28 2:4(2,1,0) 
5 2:2(0,1,1) 13 2:3(0,3,0) 21 2:4(0,1,2) 29 2:4(3,0,0) 
6 2:2(0,2,0) 14 2:3(1,0,2) 22 2:4(0,2,1) 30 1:0(0,0,0) 
7 2:2(1,0,1) 15 2:3(1,1,1) 23 2:4(0,3,0) . . 

 

4.3.1.1 State Transitions 

The transitions of a Cm/Ck/s queue which we described as sequence   

a: b (c1,c2,…, ck)  above can be defined as following events: 

1. A phase change in the arrival node or generator  

2. An aircraft arrival into the service node or departure from the generator 

3. An aircraft departure from the service node.  

Each transition is described in detail. 
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• Phase Change in Arrival node (Generator) 

Let µGi be the service rate in the process of generating an arrival with an m-

phase Coxian distribution, and let aGi be the transition probability in phase i where 

i= 1,…m. The transition rate can be given by µGiaGi when the generator changes from 

the phase i to phase (i+1). The state transition of a phase change in the arrival node can 

be given by  

 1+← aa  (4.6) 

• Arrival into Service Node 

An arrival event occurs when an aircraft departing from the generator moves to 

be served at a service node. The transition rate is µGi (1 - aGi) where i = 1,…,m  

represents the phase of the arrival node from which the aircraft departs. An event occurs 

in which an aircraft departs from phase i and returns back to phase 1. This event is 

given by: 

 1←a  (4.7) 

The number of aircraft in service is incremented by one, which is given by  

 1+← bb  (4.8) 

If the number of aircraft in service is less than the number of available server in current 

state, then the arriving aircraft is immediately served by an idle server, which is given 

by  

 111 +← cc  (4.9) 

If the number of aircraft in service is greater than or equal to the number of available 

servers, then aircraft has to wait in the queue, and so only b is incremented as in (4.8). 
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• Departure from the Service Node 
 

When an aircraft leaves the server from a service node, the departure event 

occurs. Let µNj be the service rate of server in service node in jth phase where j = 

1,…,k. Let jaN be the transition probability at service node. Then the transition rate for 

the jth phase can be simply given by j (1- )jN aNµ , when the aircraft depart from service 

node.  

 1j jc c← −  (4.10) 

The number of aircraft in service can be also given by 

 1−← bb  (4.11) 

 

4.3.1.2 Total Number of States 

Let N(n) be the total number of states in which there are at most n aircraft in the 

system. Then is N(n) as described in Sengupta and Tandale [91]: 
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where P(i, k) is  the number of ways that k nonnegative integers sum to i, which is given 

by 
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             Then, P(i, k) can be written as 
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             The total number of states is obtained by substituting (4.15) in (4.12) 

 

                                         0,.....,

( )
1( )

( )           ,.......
-1

n k
m n s

k
N n

s ks k
m n s n s

kk

 + 
=  

  
= 

+ − +  − + =      

 (4.16) 

 

4.4 Determining Probability State Vector 

The research in this section was previously described in Menon et al. [93]. We 

described how enumeration of states can be used within a Cm(t)(t)/Ck/s queuing network. 

The enumeration of states methodology solves for the steady state value of x , where 

)(ix is the probability that the system is in statei . Furthermore, the approach to 

determine average measures of the queues is discussed. The transition matrix ( )Q t  can 

be written as given in equation (4.16) due to the piece-wise time dependent inter-arrival 

time of a Cm(t)(t)/CK/s queuing model.  

 

1 1 0

2 2 1

1

( )

l l l

Q t t t

Q t t t
Q t

Q t t t −

> ≥
 > ≥

= 

 > ≥

M M
 (4.17) 



 

47 
 

This shows that the transition rate matrix varies, which can lead to the steady 

state probabilities not existing. However, we still would like to calculate certain average 

measures based upon the probabilities of each state over time horizon using equation 

(4.18), where ( )M x is a measure based upon the state probability vector x , and M is the 

average of the measure over time. 
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(4.18) 

Equation (4.18) can be rewritten to determine the average state probability 

vector ix for each time period 1,...,i l∀ =  and an average measure M  for each time 

period using equation (4.19) due to the linearity of many standard queuing model 

measures with respect to the state probability vector. 
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How to calculate ixfor each time period lit i ,.....1  , =∀  will be discussed. By 

integrating numerically using the ODE 45 in MATLAB, equation (4.20) shows how to 

calculate the state probability vector over time as following 

( ) [ )1

1 1( ) ( ), , , 1,...,i iQ t t
i i ix t e x t t t t i l−−
− −= ∀ ∈ ∀ =

 
(4.20) 

For a sufficiently small  )(, εε −> itx0   and )( itx  represent probability state 

vectors of two different state spaces at a given time it . Because this can lead to a 

significant calculation complication, litx i ,.....,1 ),( =∀  will be redefined by two 
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different vectors. Let )( itx+  and )( itx−  be the state probability vectors at timeit in state 

spaces associated with periods [ )1, +ii tt and[ )ii tt ,1− , respectively for each time

1,.....1  , −=∀ lit i . Variables )( 0tx and )( ltx are redefined as )( 0tx+ and )( ltx− , as shown 

in equation (4.20), to further specify notation. 

( )1

1( ) ( ), 1,...,i i iQ t t
i ix t e x t i l−−− +

−= ∀ =  (4.21) 

An algorithm to calculate the probability vector for each time period

lixi ,.....,1 , =∀ is given by the following steps. 

Step 1: Let 1=i  and assume )( 0tx+  is given. 

Step 2: Find )( itx−  and ix using integration.  

Step 3: If li < , then project )( itx−  into the state space of period [ )1, +ii tt  to find )( itx+  

and goto step 2. 

Even though state vector )( 0tx+  may not have existed, the algorithm assumes 

that it is given in Step 1. The time very early in the morning before most aircraft have 

entered the airspace, 0t , and some time very late in the evening after most aircraft have 

already left the airspace, lt  , are implicit values. It is possible that the time lt  can be set 

to exactly one day after time0t . State vector )( ltx− can be assumed to be the steady-

state probability associated with lQ   because the airspace is generally emptying in the 

time period[ )ll tt ,1− . The steady-state probability can be determined by solving 0=xQl  
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and 11 =x .  Using the same projection method in step 3, we can project this steady state 

probability into the state space of period [ )10 ,tt  to find )( 0tx+ . 

4.4.1 Projection Algorithm 

An approach for projecting the probability vector )( itx− to vector )( itx+ as in 

step 3 is shown in this section.  Vectors )( itx− and )( itx+

 will be rewritten as −x and +x  

to simplify notation. The sets of the states of the inter-arrival distribution the Coxian 

queue associated with time periods [ )ii tt ,1− and[ )1, +ii tt  will be defined as −A and +A  

respectively, and the set of states of the customers in service in the Coxian queues will 

be defined as S .  Let )( +−
ijij xx   be the associated component of vector )( +− xx  for each 

state +− ∈∈ AiAi or  and each state Sj ∈  . 

The projection algorithm is described below. 

Step 1: Determine the probability state vector of the inter-arrival distribution −α . For 

each state,  −∈ Ai set ∑
∈

−− =
Sj

iji xα . 

Step 2: Determine the probability state vector of the inter-arrival distribution +α . Solve 

the goal programming problem in (4.21) in which the parameters ....0 <<< 21 ww . 
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Step 3: Determine the probability state vector

Sj ∈ set ∑
−∈

−++ =
Ai

ijiij xx α .  

 
 

 
Figure 4.2 Steps for determining probability state v

Figure 4.2 shows the steps for determining the probability state vector. The vector 

the steady-state probability associated with

= 0 and 1x = 1. In order to find 

state space of initial time period 

then continue to integrate and project for each time period.

4.5 Validating Time

We attempt to develop the queuing model

and Coxian service time distributions

state space. Consequently, 

distribution for the inter-arrival 

service time distribution. U

limited increase in the state space
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Determine the probability state vector+x . For each state +∈ Ai  and each state,  

Figure 4.2 Steps for determining probability state vector at each time perio

Figure 4.2 shows the steps for determining the probability state vector. The vector 

state probability associated with Q24 that can be determined by solving 

o find x0, we can project this steady state probability into the 

period t0 using the projection method discussed in step 3

then continue to integrate and project for each time period. 

Time-Dependent Queuing Models with FACET 

attempt to develop the queuing model with Coxian inter-arrival time d

time distributions. However, the model suffered from an enormous 

Consequently, in this study we employ a time-dependent Coxian 

arrival time distribution, and a Markovian distribution

Using the Coxian distribution inter-arrival distribution 

limited increase in the state space.  

xQx2
4

=&

and each state,  

 

ector at each time period 

Figure 4.2 shows the steps for determining the probability state vector. The vector x24 is 

that can be determined by solving Q24x 

, we can project this steady state probability into the 

discussed in step 3. We 

 

arrival time distributions 

from an enormous 

dependent Coxian 

rkovian distribution for the 

arrival distribution has a 
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4.5.1 Center Level Study 

 The Em(t)(t)/M/s queuing models were studied earlier in Menon et al. [93]. In this 

section, we compare results of the Em(t)(t)/M/s and Cm(t)(t)/M/s with those of the FACET 

simulation.  Results for the expected number of aircraft in the NAS based upon the 

major center-level network are given in Figures 4.3 through 4.8, which show the 

average number of aircraft in the system for each of the two queuing models. The 

average numbers of aircraft are obtained from integrating )()( tQxtx =&  equation at each 

time period until steady-state reached. The red dotted line, labeled ErlangFit, represents 

a queuing model with time-dependent Erlang inter-arrival time distributions and a 

Markovian service time distribution. The blue dashed line, labeled CoxianFit, represents 

a queuing model with time-dependent Coxian inter-arrival time distributions and a 

Makovian service time distribution. The purple line represents the averaged FACET 

simulation for June 1-7, 2007. We simply calculate the average number of aircraft from 

FACET by counting the number of aircraft at a particular center every 30 second time 

step, and then we take the average of the total number of aircraft for every 1 hour time 

period. 

The results show that the both Em(t)(t)/M/s and Cm(t)(t)/M/s models perform well 

until the 13th time period with the exception of the first period of the day.  This can be 

attributed to the fact that the models assume that the number of aircraft are periodic, 

which is not necessarily apparent in FACET. We believe that this is due to initialization 

within FACET. Finally, we also observe that from 14th time period, the results of the 

Cm(t)(t)/M/s models estimate the FACET simulation better than the results of the 
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Em(t)(t)/M/s model. Therefore, we can conclude that the Coxian distribution gives a more 

accurate national airspace queuing model than Erlang distribution. 

Figure 4.3 Time-dependent queuing models versus FACET averaged for June 1-7, 2007 
at the Atlanta Center 

 

Figure 4.4 Time-dependent queuing models versus FACET averaged for June 1-7, 2007 
at the Chicago Center 
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Figure 4.5 Time-dependent queuing models versus FACET averaged for June 1-7, 2007 
at the Washington DC Center 

 
 

 
Figure 4.6 Time-dependent queuing models versus FACET averaged for June 1-7, 2007 

at the New York Center 
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Figure 4.7 Time-dependent queuing models versus FACET averaged for June 1-7, 2007 

at the Fort Worth Center 
 

 
Figure 4.8 Time-dependent queuing models versus FACET averaged for June 1-7, 2007 

at the Los Angeles Center 
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4.5.2 Cell Level Study 

We define the US. boundaries by specifying latitude and longitude with 1.5-

degree-by-1.5-degree as a cell. Moreover, we assumed that the dimension of the cell is 

squared. We then compare results for models of five cells that included the major 

airports ATL, DFW, JFK, LAX, and ORD. The results are given in Figures 4.9 through 

4.13, which show the average number of aircraft in the system for each of the two 

queuing models. The dark red solid line represents cell capacity which is the number of 

server in the queue. MATLAB code is developed to extract cell level information from 

FACET including capacity.  

We observe that the results of the Em(t)(t)/M/s model, and the Cm(t)(t)/M/s model 

fit the FACET simulations very well in most airports until time period 13 with the 

exception of the first period of the day as discussed above. These results are consistent 

with those in previous section. Notice that, at time period 19 at LAX, the average 

number of aircraft of the Em(t)(t)/M/s model is over LAX’s capacity and the FACET 

simulation results. On the other hands, using the Cm(t)(t)/M/s model was actually more 

accurate. Moreover, we also again observe that the overall results Cm(t)(t)/M/s model are 

more accurate than the results of the Em(t)(t)/M/s model compared with FACET. Again, 

consistent with those in previous section, we can conclude that the Coxian distribution 

gives more accurate queuing model than the Erlang distribution. 

The summary of results is shown in Table 4.1. The table compared each 

distribution fitted with the MSE value for major centers and cells level. From those 

tables the averaged MSE values of Coxian fitted are obtained by take the average of 
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MSE for every time period. Notice that, MSE value is much lower for the Coxian 

distribution than the Erlang distribution at both center and cell level. Hence, the results 

of the compared MSE value for each distritbution are consistent with the results in the 

previous section. Therefore, we can conclude that fitting air traffic data to the Coxian 

distribution improves the accuracy of queuing model of the NAS. 

 

 

Figure 4.9 Time-dependent queuing models versus FACET averaged for June 1-7, 2007 
at ATL. 
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Figure 4.10 Time-dependent queuing models versus FACET averaged for June 1-7, 
2007 at DFW. 

 
 

 
 

Figure 4.11 Time-dependent queuing models versus FACET averaged for June 1- 7, 
2007 at JFK. 
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Figure 4.12 Time-dependent queuing models versus FACET averaged for June 1-7, 

2007 at LAX. 
 
 
 
 

 
Figure 4.13 Time-dependent queuing models versus FACET averaged for June 1-7, 

2007 at ORD. 
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Table 4.2 Average MSE values between Coxian and Erlang distribution at cell and  
center level 

 
 
 
 
 
 
 
 
 
 

4.5.3 Period Length Analysis 

The analysis of Em(t)(t)/M/s and Cm(t)(t)/M/s in sections 4.5.1 and 4.5.2 was 

performed with 1 hour 24 time periods. However, Menon et al. [93] discussed using 

periods that were not necessarily one hour and equal in length.  By using the Markovian 

steady-state analysis within each time period, this section discusses an analysis of 

different period lengths of Markovian Time-Dependent queue (M(t)/M/s).  Figure 4.14 

illustrates the compared results of Markovian steady state and Markovian time-

dependent queuing models in which the time periods had durations of one hour 

(denoted 1 segment), two hours (denoted 2 segment), four hours (denoted 4 segment), 

and six hours (denoted 6 segment). 

 

Erlang Coxian

ZFW 0.121475 0.0553

DC 0.10424 0.036759

Atlanta 0.16055 0.041591

NY 0.151116 0.047106

ZLA 0.133475 0.052113

chicago 0.088319 0.035221

MSE

Center
Erlang Coxian

DFW 0.036284 0.0154

JFK 0.035781 0.018289

LAX 0.050239 0.017288

ORD 0.021728 0.009293

ATL 0.027674 0.013103

MSE

Airport
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Figure 4.14 Results for the Queuing Models for Different Time Period Lengths at Each 
Center. 

 

Notice that, the average number of aircraft increased with shorter time periods in 

most cases.  The largest difference occurs in Center 13 in which the average number of 

aircraft varied by 2.8 in the steady-state model and 2.6 in the time-dependent analysis.  

4.5.4 Long-Run Convergence Analysis 

This section was described previously in Menon et al. [93].  In the analysis of 

the Coxian and Erlang queues, the time-dependent models are only integrated over a 24 

one hour periods.  The initial starting vector of the first period is a projection of the 

steady-state vector of the final period.  However, the initial starting vector may not be 

representative of an appropriate starting vector in long-run conditions if the final period 

does not reach steady state. Furthermore, a potential misrepresentation in the starting 

vector may trickle into subsequent periods. This section analyzes the queues over 96 

one-hour periods and compares them to those over the first 24 hours. Figure 4.15 

displays the average number of aircraft when considering 24 versus 96 hours.   
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Figure 4.15 Results for queuing models over 24 hours versus 96 hours for each center. 

The results reveal that performance in the first 24 hours is very similar to the 

entire 96 hours. Therefore, we can conclude that performing a long run queuing analysis 

is unnecessary. The analysis of 24 hr time periods give as accurate queuing model as the 

long run analysis. However, in this section the long-run convergence analysis is 

performed only with Markovian queues. The analysis of long run period convergence 

with a Coxian queue would be a very interesting future research topic. 
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CHAPTER 5 

CONCLUSION AND FUTURE RESEARCH 

In this dissertation, we described several fitting Coxian distribution to data 

methods, which are 1) Nonlinear Optimization 2) Fitting Histogram and 3) Random 

Sample. The nonlinear optimization method, which used the method of moment 

technique, did not give us a better fit compared to fitting the data to an Erlang 

distribution. Therefore, we introduced a fitting histogram method [90]. In this method, 

we fitted a Coxian distribution to the individual bin of a generated histogram from the 

data. Even though the fitting histogram method fit data almost perfectly to the 

histogram, the total number of phases was way too large for use in practice. Last but not 

least, we developed a random sample method (RSM), which is a quick and powerful 

method. RSM gave a very good fit to the data with both low MSE and few phases. This 

method was used for fitting time dependent inter-arrival time Cm(t)(t)/Ck/s queuing 

models in chapter 4. We discussed a practical approach for modeling the NAS with 

time-dependent Coxian queues. Time-dependent Cm(t)(t)/Ck/s queuing models of the 

National Airspace were developed in which the inter-arrival distribution is a time-

dependent piece-wise constant Coxian random variable, and the service time 

distribution is a Coxian random variable. We described an algorithm for calibrating a 

Cm(t)(t)/Ck/s queuing model from simulated data of an Air Route Traffic Control Center 

and an algorithmic approach to determine average measures of the queues. We 
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attempted to develop Cm(t)(t)/Ck/s however, Cm(t)(t)/M/s was used in this study due to the 

uncontrollable state space when we used Coxian service time distributions. We 

compared our Cm(t)(t)/M/s queues with Em(t)(t)/M/s models, which were previously 

studied. Furthermore, we also validated both of our queuing models with the FACET 

simulation. We observed that the overall results of the Cm(t)(t)/M/s models were more 

accurate than the results of the Em(t)(t)/M/s models when compared with FACET. 

Therefore, we concluded that the Coxian distribution gives more accurate queuing 

models than the Erlang distribution. 

Finally, the Cm (t)(t)Ck(t)/s  queuing model in which the inter-arrival distribution is a 

time-dependent piece-wise constant Coxian random variable, and the service time 

distribution is a time-dependent piece-wise constant Coxian random variable might be 

one of the interesting topic of future research. The more sophisticated Cm(t)(t)Ck(t)/s  

queuing model would likely be a more accurate representation of the real world systems 

with uncertainties like weather. 

As discussed earlier in section 4.5.4, a long-run convergence analysis with the 

Coxian queuing model is another topic of our future research. The results of a long-run 

convergence analysis with the Markovian queue compared 96 time periods with 24 time 

periods and gave similar results. In this study we only used the default capacity in 

FACET. However, there are lots of different models for the capacity of a cell. This 

would be our future work to study the effects of capacity on the approach.   
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