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ABSTRACT

DETECTION AND OPPORTUNISTIC SPECTRUM ACCESS IN

SENSOR NETWORKS

Publication No.

Hung Dinh Ly, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Qilian Liang

This thesis examines target detection problems in Radar Sensor Networks (RSN)

and opportunistic spectrum access problem in Cognitive Sensor Networks (CSN). First,

studies on the Space-Time Adaptive Processing (STAP) and radar waveform design are

provided. Investigation into the target detection performance gain of RSN when STAP

and radar waveform design are combined in RSN is then performed. Studies in this thesis

show that detection performance of RSN using our proposal is superior to that of a single

radar system using STAP only. To further studies on target detection, the multi-target

detection problem in RSN is also examined. Signal, interference, and noise at radar

sensors are modeled and analyzed. At the clusterhead of RSN, a Maximum Likelihood

Multi-Target Detection algorithm is proposed to estimate the possible number of targets

in a surveillance area. Achieved results show that detection performance of RSN is much

better than that of a single radar system in terms of the miss-detection probability and

the root mean square error.

Besides detection in RSN, this thesis studies an opportunistic spectrum access

problem and proposes a spectrum access scheme in CSN. The spectrum access scheme

is built using Fuzzy Logic System (FLS); and spectrum access decision is based on: (1)

v



spectrum utilization efficiency of the secondary user (SU); (2) its degree of mobility;

and (3) its average distance to primary users (PU). The output of the FLS provides the

probabilities of accessing spectrum band for SUs and the SU with the highest probability

will be assigned the available spectrum. Studies also show that our scheme performs

much better than random access approach.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

1.1.1 Radar Sensor Networks

Radar sensor networks (RSN) consist of collaboratively operating radar sensors

which are deployed ubiquitously (possibly randomly placed) on airborne, surface, and

sub-surface unmanned vehicles. Radar sensors have capabilities of doing radar sensing,

signal processing, and wireless communication. Autonomous radar sensors operating in

the microwave spectrum are used to detect, classify, and track visible, obscured targets at

the presence of both noise and interference (clutter, jamming, and interference between

sensors). RSN has advantages compared to a single radar system in improving the system

sensitivity, reducing obscuration effects and vulnerability, and increasing the detection

performance [42], [4].

In radar sensor networks, radar sensors are networked together in an ad-hoc fashion,

i.e., they do not depend on any preexisting infrastructure. They are self-organizing

entities that are deployed on demand in support of various events such as surveillance,

battlefield, disaster relief, search and rescue, etc. Therefore, the network of radar sensors

should operate with multiple goals managed by an intelligent platform network that can

manage the dynamics of each radar to meet the common goals of the platform rather than

each radar to operate as an independent system [30]. It is significant to perform signal

design, signal processing, and networking cooperatively within and between platforms of

radar sensors and their communication modules.

Radar sensors receive signals which are reflected from targets and embedded in

interference and noise. Then, these measurements from radar sensors are wirelessly for-

warded to the central processor, where measurement data are processed and combined,
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to perform important applications such as detection, classification, recognition, tracking,

etc. This thesis focuses on the detection problem: (1) improving the detection perfor-

mance using our proposed diversity scheme in RSN, which is presented in Chapter 2; and

(2) solving the multi-target detection problem in RSN, which is discussed in Chapter 3.

1.1.2 Cognitive Sensor Networks

Cognitive sensor networks (CSN) are networks of sensors equipped with cognitive

radios. It has been seen that cognitive radios enables sensor networks or XG networks

to use spectrum efficiently by allowing secondary (cognitive) users to opportunistically

sense and utilize used spectrum. Cognitive radios have two intrinsic characteristics [41]:

• Cognitive capability: Cognitive capability implies the ability of CRs to sense in-

formation from their surroundings to find spectrum portions that are unused by

primary users at a specific time or location. The most suitable CR will be selected

for communications without causing harmful interference to other users.

• Reconfigurability: Reconfigurability enables CRs to be dynamically reprogrammed

according to the real environment. This means that CRs can change the operating

frequencies, modulation schemes, transmission powers, communication protocols,

etc. on the fly without any modification of hardware components.

Cognitive radios, in order to use spectrum opportunistically, experience four main pro-

cedures, i.e.,

1. Spectrum sensing: CRs monitor spectrum bands and detect unused bands which

are location-dependent and time-varying.

2. Spectrum access: Assume that multiple CRs trying to use the spectrum coexist

in an area. This procedure is used to prevent multiple users from colliding in

overlapping spectrum portions.

3. Communications: Once CRs get the assigned spectrum bands, they will inform their

receivers about the chosen bands. After receiver-transmitter handshake procedures

are completed, the CRs start receiving and/or transmitting information.
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4. Spectrum mobility: CRs must move to other spectrum holes to keep doing com-

munications once they detect the signal from the primary users (PU).

There have been many open research problems to develop these procedures. We can re-

fer to research in [13] which provides an extensive list of current proposals and open

challenges for solving above procedures. In Chapter 4, we study the spectrum ac-

cess/spectrum sharing issues and design a knowledge-based spectrum access scheme to

solve the spectrum sharing problem.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, the spatial-

temporal-frequency diversity to improve the detection performance of Radar Sensor Net-

works (RSN) in the presence of certain types of interference (clutter, jamming, and inter-

ference between radar sensors) and noise is studied. In order to reduce the interference

between radar sensors and maximize the signal-to-interference-plus-noise ratio (SINR),

we propose a method using the orthogonality criterion to design waveforms for radar

sensors in the network. Besides the interference between radar sensors, performance of

the network depends largely on other interference, especially clutter, which is extended in

both angle and range, and is spread in Doppler frequency. By using the spatial-temporal

diversity1, we can suppress effects of these interference. In this chapter, we also propose a

receiver for diversity combining in RSN. As an application example, we apply the spatial-

temporal-frequency diversity scheme to improve the detection performance or reduce the

miss-detection probability at a low false alarm probability. Simulation results for both

non-fluctuating targets and fluctuating targets show that the performance of RSN using

our proposed scheme is superior to that of the single radar with the spatial-temporal

diversity only.

In many military and civilian applications, estimating the number of targets in

a region of interest plays a primary role in performing important tasks such as target

1Spatial - Temporal Diversity is also known as Space-Time Adaptive Processing (STAP)
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localization, classification, recognition, tracking, etc. Such an estimation problem is,

however, very challenging since the number of targets is time-varying, targets’ states are

fluctuating, and many kinds of targets might appear in the field of interest. Chapter 3

develops a framework for estimating the number of targets in a sensing area using Radar

Sensor Networks (RSN): (1) the multi-target detection problem is formulated; (2) signals,

interference (e.g., clutter, jamming, and interference between radars) are modeled, and

noise at radar sensors; (3) a Maximum Likelihood Multi-Target Detection (ML-MTD)

algorithm to combine received measurements and estimate the number of targets present

in the sensing area is proposed. We evaluate multi-target detection performance using

RSN in terms of the probability of miss-detection PMD and the root mean square error

(RMSE). Simulation results show that multi-target detection performance of RSN is

much better than that of single radar systems.

Recent studies have shown that, with the traditional spectrum access approach,

the radio spectrum assigned to primary (licensed) users (PUs) is vastly underutilized.

Amongst proposed methods for using spectrum effectively, the opportunistic spectrum

access has become the most viable approach to achieve near-optimal spectrum utilization

by allowing secondary (unlicensed) users (SUs) to sense and access available spectrum op-

portunistically. However, a naive spectrum access for SUs can make spectrum utilization

inefficient and increase interference to adjacent users. Chapter 4 proposes a knowledge-

based spectrum access scheme to opportunistically control the spectrum access. The

spectrum access scheme is built using Fuzzy Logic System (FLS) and spectrum access

decision is based on: (1) spectrum utilization efficiency of the secondary user; (2) its

degree of mobility; and (3) its average distance to PUs. The output of the FLS provides

the probabilities of accessing spectrum band for SUs and the SU with the highest prob-

ability will be assigned the available spectrum. We also show that our scheme performs

much better than random access approach.

Finally, in Chapter 5, we conclude this thesis and discuss some future research

directions on detections in RSN and spectrum access in CSN.



CHAPTER 2

DIVERSITY AND DETECTION IN RADAR SENSOR NETWORKS

2.1 Introduction

Radar sensor networks (RSN) consist of collaboratively operating radar sensors

which are deployed ubiquitously (possibly randomly placed) on airborne, surface, and

sub-surface unmanned vehicles. Each sensor in the network has capabilities for radar

sensing, signal processing, and wireless communication. Autonomous radar sensors oper-

ating in the microwave spectrum are used to detect, classify, and track visible, obscured

or hidden targets such as tactical weapons, aircraft, ships, spacecraft, vehicles, people,

and the natural environment at the presence of both noise and interference (clutter,

jamming, and interference between sensors). Information about a target is wirelessly

forwarded to the central processor, where target identification and network-wide track-

ing are conducted using sensor data from every sensor in the network, along with their

position and timing information.

In radar sensor networks, radar sensors are networked together in an ad-hoc fashion,

i.e., they do not depend on any preexisting infrastructure. They are self-organizing

entities that are deployed on demand in support of various events such as surveillance,

battlefield, disaster relief, search and rescue, etc. RSN has advantages compared to

a single radar system in improving the system sensitivity, reducing obscuration effects

and vulnerability, and increasing the detection performance [42], [4]. However, when

deploying the RSN, we have to solve some challenging problems such as networking

between radar sensors, canceling effects of interference, power efficient communication,

reducing complexity of signal processing schemes, etc. Only few work doing research

on these aspects has been developed. Recently, S. Kadambe [42] proposed a minimax

entropy-based technique to reduce the processing complexity in the RSN. In [4], relative

5
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merits of the RSN and the balance of increased performance, complexity, and cost were

discussed. In this chapter, we will examine a method to design the waveform in order

to cancel the interference between radar sensors and maximize the signal-to-interference-

plus-noise ratio (SINR). In research literature on the waveform design, Fitzgerald [35]

demonstrated the inappropriateness of waveform selection based on measurement quality

alone: the interaction between the measurement and the track can be indirect, but must

be taken into account. Bell [24] used the information theory to design waveform for the

measurement of extended radar targets exhibiting resonance phenomena. Baum [3] used

the singularity expansion method to design some discriminant waveforms. However, these

design methods were used for the single radar only. In [31], radar sensor networks for

automatic target recognition were studied, but clutter and jammer were not considered.

Furthermore, the performance of the RSN depends largely on the interference which

is extended in both angle and range and is spread in Doppler frequency because of

motion of the platform and target. Space-Time Adaptive Processing (STAP) or spatial-

temporal diversity has become an excellent technique to suppress effects of interference.

STAP refers to the simultaneous processing of the spatial samples from an array antenna

and the temporal samples provided by the echoes from multiple pulses of a coherent

processing interval (CPI). A considerable amount of work has been done to develop

STAP for processing data from airborne or space-borne radars to reliably detect moving

targets of interest in the presence of strong clutter returns and jamming [45] [36] [20] [18].

By combining waveform design and spatial-temporal diversity, we can perform spatial-

temporal-frequency diversity in RSN. Our studies show that using the proposed diversity

scheme can improve the detection performance of RSN with a low false alarm probability.

The remainder of this chapter is organized as follows. In Section 2.2, we examine

a method to design waveforms. Spatial-temporal diversity and interference analysis are

discussed in Section 2.3 and Section 2.4. In Section 2.5, we propose a diversity combining

scheme and analyze detection performance for non-fluctuating targets as well as fluctu-
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ating targets using our proposed diversity scheme. Simulation results and performance

analysis are discussed in Section 2.6, and in Section 2.7, we conclude the chapter.

2.2 Waveform Design

In radar sensor networks, radar sensors will interfere with one another and SINR

will be very low if waveforms are not properly chosen. In order to have waveforms

designed properly and coexisted in the network, we use orthogonality as one criterion to

design waveforms.

In our study, we choose constant frequency (CF) pulse waveform for radar sensors.

The CF waveform can be defined as

x(t) =

√
E

T
exp(j2πft), 0 ≤ t ≤ T . (2.1)

where E is the energy of the waveform and T is the waveform pulse duration.

We know that the waveforms from different radar sensors will interfere with one

another. We choose the waveform for radar i as

xi(t) =

√
E

T
exp(j2π(f + ∆i)t), 0 ≤ t ≤ T . (2.2)

which means that there is a frequency shift ∆i for the radar sensor i. In order to minimize

the interference between radar sensors, we will find a set of frequency shifts {∆i}M−1
i=0 (M

is the number of radar sensors) for which the waveforms are orthogonal. Let R(k, l)

denote the cross-correlation between the waveforms xk(t) and xl(t).

R(k, l) =

∫ T

0

xk(t)x
∗
l (t)dt, (2.3)

= Esinc((∆k −∆l)T ) exp(jπ(∆k −∆l)T ).

where a superscript asterisk indicates the complex conjugate. If π(∆k −∆l)T = iπ, the

waveforms xk(t) and xl(t) are orthogonal, i.e.,

R(k, l) =





0 k 6= l

E k = l
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Figure 2.1: Space-time beamformer consisting of an K-element ULA and a coherent
processing interval (CPI) comprising P pulses with a fixed PRI [18]

Therefore, we can choose a set of frequency shifts {∆i}M−1
i=0 as below [31]:

∆i = ∆k −∆l =
i

T
, i = 0, 1, ..., M − 1. (2.4)

Based on (2.4), we can confirm that the waveforms can co-exist if the frequency shift

is i/T between two waveforms, i.e., orthogonality among waveforms can be achieved by

separating frequencies of waveforms by multiplying an integer with the inverse of the

waveform pulse duration. So, we will choose the waveforms by this method to get radar

sensors coexisted in RSN. Moreover, by using this waveform design method, we can

perform a frequency diversity in RSN.

2.3 Spatial - Temporal Diversity

At radar sensor i, we use a receiver with an array antenna as shown in Fig. 2.1.

This array consists of an K-element ULA with inter-element spacing di (spatial degrees of

freedom) and P pulse repetition interval (PRI) time taps (temporal degrees of freedom).

Now, we consider a signal gi(t) = A exp (j2πfit) at a frequency fi impinging on the

array. If the wave’s angle of arrival relative to the array is ϕi, the signal observed at the

kth array element is

sk(t) = A exp {j(2πfi(t− kdi sin ϕi/c) + φ0)}, k = 0, 1, ..., K − 1. (2.5)
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where the phase offset φ0 accounts for the absolute phase at the first element. We consider

K samples formed from K array elements at a time t0 and map these K element samples

into a vector form to have a snapshot of the array at a fixed time.

s = A1[1 exp (−j2πdi sin ϕi/λi) ... exp (−j2π(K − 1)di sin ϕi/λi)]
′,

= A1as(θi). (2.6)

where (.)′ denotes the transpose operation, A1 = A exp (j(2πfit + φ0)), θi = di sin ϕi/λi

is the normalized angle, and as(θi) is the spatial steering vector.

as(θi) = [1 exp (−j2πθi) ... exp (−j2π(K − 1)θi)]
′. (2.7)

Since the target is in motion, the normalized Doppler shift at the target induced on the

radar sensor i at an angle ϕi is

fi =
2viT

λi

sin ϕi = βθi. (2.8)

where vi is the velocity of the radar sensor i and β = 2viT
di

= 4viT
λi

|
di=

λi
2

. Each vector of

array outputs from successive pulses due to the target will have a temporal linear phase

progression. Therefore, at the pth PRI, snapshot of the target takes the form [18], [22]:

e(θi, fi) = exp (j2π(p− 1)fi)as(θi), p = 1, 2, ..., P . (2.9)

If P pulses are to be processed in a coherent pulse interval (CPI), the KP dimensional

space-time steering vector (snapshot) corresponding to a possible target at look angle ϕi

and Doppler frequency fi is given by

e(θi, fi) = bt(fi)⊗ as(θi). (2.10)

where⊗ denotes the Kronecker product1 and bt(fi) is the P -dimensional Doppler steering

vector.

bt(fi) = [1 exp (j2πfi) ... exp (j2π(P − 1)fi)]
′. (2.11)

1In mathematics, the Kronecker product, denoted by ⊗, is an operation on two matrices of arbitrary

size resulting in a block matrix. If A is an m-by-n matrix and B is a p-by-q matrix, then the Kronecker

product A⊗B is the mp-by-nq block matrix.
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By introducing the complex weighting vector ωi, the output response of the space-time

beamformer can be maximized for any desired angle of arrival. More specifically, let xi

and yi denote the received data at radar sensor i and beamformer output, respectively.

yi = ω′ixi. (2.12)

In any case, the optimum weight vector, ωi ∈ CKP , that maximizes SINR, satisfies the

Weiner-Hopf equation:

ωi = R−1
i e(θi, fi). (2.13)

where Ri ∈ CKP×KP is the interference-plus-noise covariance matrix.

In practice, the covariance matrix Ri is unknown and must be estimated; and

determining ωi is a challenging problem. To solve this problem, researchers have produced

extensively algorithms [38] [11] [15] [44] to choose an optimal set of complex space-time

weights ωi in order to maximize SINR.

2.4 Interference and Noise Analysis

2.4.1 Clutter

Clutters generate unwanted radar returns that may interfere with the desired signal.

Parasitic returns that enter the radar through the antenna’s main-lobe are called main-

lobe clutter; otherwise, they are called side-lobe clutter. Clutter can be classified into

two main categories: surface clutter (including trees, vegetation, ground terrain, man-

made structures, and sea surface) and volume clutter (including chaff, rain, birds, and

insects). Surface clutter changes from one area to another, while volume clutter may be

predictable. In many scenarios, the dominant disturbance in radar networks is not noise,

but clutter. Consequently, the signal-to-clutter ratio (SCR) is often more important than

the signal-to-noise ratio (SNR).
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The integrated clutter can be generally approximated as the sum of Nci clutter

patches. For clutter patch k, the space-time data vector is modeled as [18]

pki = ξkibt(fki)⊗ as(θki)

= ξkiuki, k = 1, 2, ..., Nci. (2.14)

where ξki is a complex random variable that accounts for the amplitude and phase of

clutter patch k. uki = bt(fki)⊗as(θki) where bt(fki) and as(θki) are temporal vector and

spatial vector of clutter patch k, respectively. fki and θki are the normalized Doppler

shift and angle of arrival of the kth clutter patch, respectively. Total clutter vector wci

equals to

wci =

Nci∑

k=1

ξkibt(fki)⊗ as(θki)

=

Nci∑

k=1

ξkiuki. (2.15)

The KP ×KP covariance matrix of the clutter Rci at the ith radar is given by

Rci = E{wciw
H
ci}

=

Nci∑

k=1

Nci∑
j=1

E{ξiξ
H
j }ukiu

H
ji ,

= σ2
ciMci. (2.16)

where H denotes the Hermitian operation, E{·} denotes the expectation, and Mci is the

normalized covariance matrix, i.e., all diagonal entries of Mci are ones.

2.4.2 Jamming

Jamming signals are generated by hostile interfering signal sources that seek to

degrade the performance of radar sensors by mechanisms such as degrading signal-to-

interference-plus-noise ratio (SINR) by increasing the noise level, or generating false
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detections to overwhelm RSN with false targets. A model for Nji jamming signals is

commonly presented as [45]

wji =

Nji∑

l=1

βl ⊗ aji(θl), i = 1, 2, ..., N. (2.17)

where βl contains voltage samples of the lth jammer waveform and aji(θl) is the jamming

signal waveform at an angle θl. The different jamming waveforms are uncorrelated with

each other.

2.4.3 Interference between Radar Sensors

When we deploy the radar sensor network, waveforms from different radar sen-

sors will interfere with each other. Thus, interference between radar sensors need to be

studied. Interference between radar sensors was analyzed in [31]. To suppress this inter-

ference, we should choose waveforms correctly. Based on [31], we choose the orthogonality

criterion to design the waveforms.

2.4.4 Thermal Noise

The echo signal received from a target or clutter inevitably competes with noise.

Noise can be received through antenna from external sources or generated in the radar

receiver itself. Among noise existing in RSN, thermal noise due to ohmic losses at the

radar receiver is normally dominant. We model the thermal noise vector ni at radar

sensor i as a complex white Gaussian vector with zero-mean and covariance σ2
ni. The

covariance matrix of noise Rni = σ2
niI where I is the KP ×KP identity matrix.

2.5 Diversity Combining and Target Detection

Radar sensor networks are composed of many radar sensors deployed in a large ge-

ographical area. Radar sensors (nodes) are networked together in an ad-hoc fashion, i.e.,

they do not depend on any preexisting infrastructure. In fact, they are self-organizing

entities that are deployed on demand to perform various tasks such as surveillance, disas-



13

ter relief, search and rescue, etc. Scalability concerns suggest a hierarchical organization

of the radar sensor networks with the lowest level in the hierarchy being a cluster. The

clusters are independently controlled and dynamically reconfigured as nodes move. Thus,

this network architecture has some main advantages as follows [5]

1. Using the radio resources efficiently. For example, bandwidth can be shared or

reserved in a controlled fashion in each cluster.

2. Providing spatial and frequency reuse due to node clustering.

3. Robustness with topological changes caused by node motion, node failure, and node

insertion/removal.

4. Concealing the details of global network topology from individual nodes.

In our work, each sensor in the network will be assigned a waveform with specific

parameters. Radar sensors can provide their parameters about waveforms to the cluster-

head where waveforms from cluster members are collected and combined.

The received data at radar sensor i consists of the desired signal and disturbance

which includes interference and noise, i.e.,

xi(u, t) = αi(u)e(θi, fi)si(t− τi) + wi + ni. (2.18)

wi = wci + wji + wri. (2.19)

where wi presents the overall interference which is the sum of the clutter vector wci, the

jamming vector wji, and the interference between radar sensors wri. ni is the background

white noise. αi(u) is a random variable that models the radar cross section (RCS), e(θi, fi)

is a spatial-temporal steering vector that models the target return with an angle θi and

a Doppler shift fi, and si(t− τi) is the return of waveform with delay τi.

The data at the output of the ith sensor is the multiplication of the received data

xi(u, t) and the spatial-temporal weight vector ωi, i.e.,

yi(u, t) = ω
′
ixi(u, t),

= ω
′
i[αi(u)e(θi, fi)si(t− τi) + wi + ni],

= αi(u)si(t− τi)Li(θi, fi) + Di. (2.20)
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Figure 2.2: Structure of the receiver at the clusterhead for diversity combining

where Di
4
= ω

′
i(wi + ni) and Li(θi, fi)

4
= ω

′
ie(θi, fi).

Assume that the radar sensor network consists of M radar sensors, the received

signal r(u, t) at the cluster-head is

r(u, t) =
M∑
i=1

yi(u, t),

=
M∑
i=1

{αi(u)si(t− τi)Li(θi, fi) + Di}. (2.21)

Note that αi(u) can be modeled using non-zero constants, e.g., Swerling target models

0 or V, for non-fluctuating targets and random variables, e.g., Swerling target models

I-IV, for fluctuating targets. Target fluctuation might lower the probability of detection

or equivalently reduce SINR [29].

At the cluster-head, we use a receiver proposed in [31] to combine waveforms. The

structure of receiver is shown in the Fig. 2.2. According to this receiver, the received

signal r(u, t) is processed by a bank of matched filters. After integration, the output of

the branch 1 is given by

Z1(u) = |
∫ T

0

r(u, t)s∗1(t− τ1)dt|, (2.22)

= |
M∑
i=1

αi(u)Li(θi, fi)

∫ T

0

si(t− τi)s
∗
1(t− τ1)dt +

M∑
i=1

∫ T

0

s∗1(t− τ1)Didt|,

= |Z11(u) + Z12(u)|. (2.23)
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where Z11(u) and Z12(u) are defined as below

Z11(u)
4
=

M∑
i=1

αi(u)Li(θi, fi)

∫ T

0

si(t− τi)s
∗
1(t− τ1)dt, (2.24)

=
M∑
i=2

αi(u)Li(θi, fi)

∫ T

0

si(t− τi)s
∗
1(t− τ1)dt + Eα1(u)L1(θ1, f1).

Z12(u)
4
=

M∑
i=1

∫ T

0

s∗1(t− τ1)Didt. (2.25)

Based on (2.4), Z11(u) can be rewritten as

Z11(u) = Eα1(u)L1(θ1, f1). (2.26)

Assuming that waveforms are designed properly. So the interference between radar

sensors is negligible. Since the detection performance of RSN is greatly affected by the

clutter, we consider the clutter the primary interference source. The overall disturbance

is the sum of clutter and noise. That is,

wi = wci + ni, (2.27)

=
Nc∑
j=1

γijuij + ni. (2.28)

where uij = bt(fki)⊗ as(θki). Thus, Z12(u) becomes

Z12(u) =
M∑
i=1

∫ T

0

ω
′
iwis

∗
1(t− τ1)dt. (2.29)

Since γij is a complex random variable, we assume γij is a complex Gaussian random

variable. Therefore, it is not difficult to prove that Z12 is a complex Gaussian noise n(u).

Then, the output of the branch 1 becomes

Z1(u) ≈ |Eα1(u)L1(θ1, f1) + n(u)|. (2.30)

Similarly, the output of the ith branch (i = 1, 2, ..., M) can be written as

Zi(u) ≈ |Eαi(u)Li(θi, fi) + n(u)|. (2.31)
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Based on (2.31), we can recognize that the output of the ith branch is composed of the

signal from the radar sensor i and noise. Note that when we compute Zi(u), we still have

to estimate the interference-plus-noise covariance matrix.

Our objective is now to combine the outputs of all branches and use the spatial-

temporal-frequency diversity to improve the target detection performance of RSN. We

know that the purpose of detection problem is to figure out the presence or absence of the

desired targets such as missiles, tanks, fighter aircrafts, other tactical weapons from the

enemy, illegal intruders at the border of the country, over-speeded vehicles or strange ships

at sea, etc. In this work, we use an equal gain combining method to combine the outputs

of all branches and apply a Neyman-Pearson criterion to detect the presence/absence of

targets. To analyze the detection performance of RSN for both non-fluctuating targets

and fluctuating targets, we use miss-detection probability and false alarm probability

as evaluation metrics. The detection problem in RSN can be formulated as a binary

hypothesis testing problem. We define two hypotheses H0 and H1 as follows:

H0 : Target is not present

H1 : Target is present (2.32)

2.5.1 Non-fluctuating Targets

Non-fluctuating targets can be modeled as the Swerling 0 or equivalently Swerling

V [1], [29]. The radar cross section (RCS) αi(u) of non-fluctuating targets is constant

and unknown. We assume that RCS of the target at radar sensors is similar. That is,

α1(u) = α2(u) = ... = αM(u) = α(u). (2.33)

Under hypothesis H0, Zi(u) follows the Rayleigh distribution. Therefore, the prob-

ability density function (pdf) of Zi is

f(zi|H0) =
2zi

σ2
exp(− z2

i

σ2
). (2.34)
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Under hypothesis H1, Zi(u) follows the Rician distribution. So the pdf of Zi with

the parameter mi is

f(zi|H1) =
2zi

σ2
exp(−z2

i + m2
i

σ2
)I0(

2mizi

σ2
). (2.35)

where mi = Eα(u)Li(θi, fi), σ2/2 is the noise power for each branch I, Q, and I0(.) is the

zero-order modified Bessel function of the first kind. We assume that Z1, Z2, ..., Zm are

independent random variables. Let Z
4
= (Z1, Z2, ..., ZM), the joint pdf of the variable Z

for each hypothesis:

f(z|H0) =
M∏
i=1

2zi

σ2
exp(− z2

i

σ2
). (2.36)

f(z|H1) =
M∏
i=1

2zi

σ2
exp(−z2

i + m2
i

σ2
)I0(

2mizi

σ2
). (2.37)

2.5.2 Fluctuating Targets

In practice, RCS is normally fluctuating. Based on different combinations of pdf

and decorrelation (pulse to pulse or scan to scan), Swerling [29] proposed four Swerling

models which are Swerling models I-IV to model RCS for fluctuating targets. He showed

that the statistics associated with Swerling I and II models are applied to targets consist-

ing of many small RCS scatters of comparable RCS values, while the statistics associated

with Swerling III and IV models are applied to targets consisting of one large scatter and

many small equal RCS scatters [1].

In our work, we focus our studies on the Swerling II model. The magnitude |α(u)| of

Swerling II targets fluctuates independently from pulse to pulse according to a chi-square

probability density function with two degree of freedom, i.e., a Rayleigh probability

density function.

α(u) = αI(u) + jαQ(u). (2.38)
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where αI(u) and αQ(u) follow Gaussian distribution with the variance ρ2/2 for each

branch I, Q. Under hypothesis H0, Zi(u) follows the Rayleigh distribution. Hence, the

pdf of Zi(u) is

f(zi|H0) =
2zi

σ2
exp(− z2

i

σ2
). (2.39)

Under hypothesis H1, Zi(u) follows the Rayleigh distribution. Thus the pdf of

Zi(u) is given as

f(zi|H1) =
2zi

σ2
i

exp(− z2
i

σ2
i

). (2.40)

where σi =
√

(ELi(θi, fi))2ρ2 + σ2. We assume that Z1, Z2, ..., Zm are independent ran-

dom variables. Let Z
4
= (Z1, Z2, ..., ZM), the joint pdf of the variable Z for each hypoth-

esis:

f(z|H0) =
M∏
i=1

2zi

σ2
exp(− z2

i

σ2
). (2.41)

f(z|H1) =
M∏
i=1

2zi

σ2
i

exp(− z2
i

σ2
i

). (2.42)

For both non-fluctuating and fluctuating targets, our objective is to decide whether

or not a target is present based on the received signal at the cluster-head. The likelihood

ratio is computed as:

Λ =
f(z|H1)

f(z|H0)
. (2.43)

We assume that the probability of presence of a target is equal to the probability

of absence of a target. This means that P (H1) = P (H2). Therefore, using the Neyman-

Pearson criterion, our detection problem can be simplified as

• If Λ > ν where ν is a detection threshold, then we claim that the target is present.

• If Λ < ν, then we claim that the target is absent.

To evaluate detection performance, we use the false alarm probability PFA and

miss-detection probability PMD. According to [43], we can constrain PFA by choosing

the threshold ν. PMD and PFA are defined:

PMD = P (H0|H1),

= P (Λ < ν|H1). (2.44)
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PFA = P (H1|H0),

= P (Λ > ν|H0). (2.45)

2.6 Simulation Results and Detection Performance Analysis

2.6.1 Simulated Data Model

In this work, we use the modified Joint Domain Localized (JDL) algorithm proposed

by Adve et.al [38] to determine the space-time weights at sensors. The data generation

scheme uses the physical model presented by Ward [20].

As mentioned in the section 2.3, the clutter is modeled as a sum of the contributions

of many discrete far field sources. We assume that amplitude of each discrete source is

a complex Gaussian random variable whose average power is set by a chosen clutter-

to-noise ratio (CNR). The normalized Doppler shift associated with each clutter source

depends on the velocity of the platform.

Thermal noise is modeled as a Gaussian white noise process. The average power

is set to unity, allowing the clutter and target powers to be referenced to the white

noise power. Simulations do not consider the effects of Jammers. Parameters used in

simulations are listed in the Table 2.1 [38].

Table 2.1: Parameters used in simulations

Parameters Values

Array elements 8
Pulses 8
Element spacing λi/2
Pulse Repetition Frequency (PRF) 1024 Hz
The number of clutter sources 181
Thermal noise power Unity
Clutter to noise ratio (CNR) 50 dB
The number of Doppler bins in LPR 3
The number of Angle bins in LPR 3
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Suppose that the interference-plus-noise covariance matrices at radar sensors are

similar. This mean that Rd1 = Rd2 = ... = RdM = Rd. Rd is computed by

Rd = Rn + εc(h)Rc (2.46)

where Rn is the covariance matrix of noise, Rc is the clutter covariance matrix, and

εc(h) is a random variable used to model the clutter power of the hth range cell. εc(h)

often follows Weibull or gamma distribution [37][46]. In homogeneous environments, the

average clutter power does not depend on h. Consequently, our objective is to evaluate

the detection gain when radar sensors are networked.

2.6.2 Detection Performance Analysis

In RSN, each radar sensor transmits a known waveform. This waveform is then

reflected back from the target toward the receiving sensor. RSN’s tasks are to detect the

existence of the target and to estimate its unknown parameters, e.g., range speed and

direction. In our work, we use the spatial-temporal-frequency diversity in RSN to improve

the detection performance. To evaluate detection performance, we investigate two types

of targets such as non-fluctuating targets and fluctuating targets. Fig. 2.3a presents

the probability of miss-detection PMD as a function of signal-to-clutter-plus-noise ratio

(SCNR) and PFA = 10−6 while Fig. 2.3b presents the miss-detection probability PMD

as the function of false alarm probability PFA and SCNR = 10 dB for non-fluctuating

targets. Similarly, Fig. 2.4a presents the probability of miss-detection PMD as a function

of SCNR and PFA = 10−6 while Fig. 2.4b presents the miss-detection probability PMD as

the function of false alarm probability PFA and SCNR = 10 dB for fluctuating targets.

Based on results in Fig. 2.3 and Fig. 2.4, we recognize that the probability of miss-

detection PMD is extremely reduced when the number of radar sensors increases. For

instance, at the same SCNR = 10 dB, PMD of the 2-radar RSN is lower than that of the

single radar system. For non-fluctuating targets, PMD of the 2-radar RSN and the single

radar system is greater than 10%, while PMD of the 5-radar RSN is much lower than 10%.
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Figure 2.3: Non-fluctuating target models: (a) Miss-detection probability PMD as a
function of SCNR, PFA = 10−6, (b) Miss-detection probability PMD as the function of
false alarm probability PFA, SCNR=10 dB

However, for fluctuating targets, PMD of the 2-radar RSN and the single radar system

is much greater than 10%, while PMD of the 5-radar RSN is a little lower than 10%. It

is desirable for PMD to be as low as possible. In the real world, PMD less than 10% is

reasonable [14]. For both target types, we can observe that it is very difficult to achieve

this reasonable PMD with the single radar system at a low PFA; and if possible, the SCNR

must be larger than 14 dB for non-fluctuating targets and 21 dB for fluctuating targets.

In case we use the 2-radar RSN; we can achieve the PFA=10% with SCNR around 8 dB
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Figure 2.4: Fluctuating target models: (a) Miss-detection probability of miss-detection
PMD as a function of SCNR, PFA = 10−6, (b) Miss-detection probability PMD as the
function of false alarm probability PFA, SCNR=10 dB

for non-fluctuating targets and around 15 dB for fluctuating targets. Nevertheless, the

5-radar RSN can maintain very low PMD at a low SCNR.

We also notice that it requires more SCNR with fluctuating targets than that with

non-fluctuating targets to achieve the same PMD. For example, when we use 5 radar

sensors and PMD is about 10%, SCNR is 9.3 dB for fluctuating targets but less than

9 dB for non-fluctuating targets. Furthermore, Fig. 2.3b and Fig. 2.4b show that, at

the same values of PMD and SCNR, PFA for non-fluctuating targets is lower than for
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fluctuating targets. So depending on specific scenarios, we can choose PFA and SCNR

logically in order to get the desired detection performance.

2.7 Conclusions

In this chapter, we investigated and applied the spatial-temporal-frequency di-

versity to improve the detection performance of RSN. We also proposed a receiver for

diversity combining in RSN. The probability of miss-detection as a function of the false

alarm probability and the signal-to-clutter-plus-noise (SCNR) is analyzed for both non-

fluctuating targets and fluctuating targets. Simulation results showed that the detection

performance of our diversity scheme-based radar sensor networks is much better than

that of single radar systems using the spatial-temporal diversity only.



CHAPTER 3

COLLABORATIVE MULTI-TARGET DETECTION IN
RADAR SENSOR NETWORKS

3.1 Introduction and Motivations

Radar sensor networks (RSN) are networks of distributed radar sensors which col-

laboratively operate and are deployed ubiquitously on airborne, surface, and unmanned

vehicles in a large geographical area. Radar sensors have capabilities for radar sensing,

signal processing, and wireless communications. In RSN, radar sensors are networked

together in an ad-hoc fashion, i.e., they do not depend on any preexisting infrastruc-

ture. In fact, they are self-organizing entities that are deployed on demand to perform

various tasks such as surveillance, search and rescue, disaster relief, etc. RSN have ad-

vantages compared to single radar systems in improving the system sensitivity, reducing

obscuration effects and vulnerability, and increasing the detection performance [42], [4].

An RSN is organized into clusters, which are independently controlled and dynam-

ically reconfigured as sensors move, to observe targets such as tactical weapons, missiles,

aircraft, ships, etc. in the surveillance area. In a cluster, sensors receive the signals

backscattered by targets in the presence of interference (e.g., clutter, jamming, interfer-

ence between radar sensors) and noise. Then, the observed signals from all radar sensors

are forwarded to a clusterhead where received data set will be combined to perform fun-

damental tasks such as detection, localization, identification, classification, and tracking.

For target detection problem, there are two primary levels: single target detection and

multi-target detection. In the single target scenario, we proposed a diversity scheme in

Chapter 2 and [9] to improve detection performance of RSN in the presence of strong

interference, especially clutters, and noise. We are now interested in using RSN to esti-

mate the number of targets present in the surveillance area. In practice, multiple moving

24
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targets might appear in the sensing area, the number of targets is time-varying, and

targets’ states are fluctuating. Therefore, the multi-target detection is more challenging

and difficult to solve than the single target detection.

Among the existing work on multi-target detection, Yung and Mourad [49] used

frequency diversity signaling to estimate the number of moving targets. Kaveh et al. [26]

applied the information theoretic criteria to detect the number of targets. However, both

works only studied the performance of their proposals for the case of two closely spaced

targets. A performance analysis for a general case was provided in [47] and [33]. In [6],

multiple target detection and estimation by exploiting the amplitude modulation induced

by antenna scanning was proposed and a sequential hypothesis test was examined to de-

termine the number of targets. However, all above work studied multi-target detection

problem using a single radar. For the sensor network scenario, Wang et al. [48] applied

Bayesian source number estimation to solve the distributed multiple target detection in

sensor networks. Based on their approach, each cluster computed the posterior proba-

bility corresponding to each hypothesis on the number of sources and a central processor

fused posterior probabilities using Bayes’ theorem to select the best hypothesis. Their

proposal however did not consider Doppler shifts of the targets and was not suitable for

the multi-target detection in RSN.

In this chapter, we develop a framework for estimating the number of targets in the

field of interest using RSN. At the ith sensor, we deploy a receiver with an K element-ULA

(Uniform Linear Array) whose spacing between elements is di. During the observation

time, P pulses are transmitted to track targets. The useful signals backscattered from

targets include spatial-temporal snapshots of targets and parameters representing radar

cross section of targets. Then, a RSN-clusterhead collects measurements from all radar

sensors and combines them to perform detection procedures. To fuse received measure-

ments and estimate the unknown number of targets in the area of interest, at the RSN-

clusterhead, we propose a multi-target detection algorithm which is Maximum Likelihood

Multi-Target Detection (ML-MTD) algorithm. We use the probability of miss-detection
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PMD and the root mean square error (RMSE) as metrics to evaluate multi-target detec-

tion performance using RSN. Simulation results show that detection performance of the

RSN is much better than that of a single radar system.

The rest of this chapter is organized as follows. In Section 3.2, we state our multi-

target detection problem. In Section 3.3 and In Section 3.4, we model signals, inter-

ference, and noise at radar sensors. In Section 3.5, we propose an ML-MTD algorithm

to estimate the number of targets present in the sensing field. Multi-target detection

performance of RSN is discussed in Section 3.6 while conclusions and open directions are

given in Section 3.7.

3.2 Multi-Target Detection Problem Statement

In this work, we address a realistic situation in which the number of targets to

be detected is generally unknown and has to be estimated. To handle our problem, an

RSN consisting of N radar sensors is deployed. Radar sensors receive signals embedded

in interference and forward them to a central processor, e.g., a clusterhead to perform

detection tasks. At the RSN-clusterhead, we propose a detection algorithm to estimate

the number of targets. To support the rest of the paper, we make some assumptions as

follows:

• Targets evolve along independent trajectories and do not leave the surveillance area

during the entire observation time of P consecutive pulses.

• Targets are modeled as Swerling II target models whose magnitudes fluctuate inde-

pendently from pulse to pulse according to a chi-square probability density function.

• The locations of targets are unknown. Besides, Doppler frequencies when targets

are moving relatively to radar platforms are uncertain.

• Observation data or measurements from radar sensors, at the RSN-clusterhead,

are statistically independent. The measurements furthermore either originate from

true targets or clutters.
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The estimated number of targets present in the surveillance area is determined as

{τ̂1, τ̂2, ..., τ̂N} = arg min
τ1,τ2,...,τN

Λ(τ). (3.1)

where τ̂i is the estimated number of targets at sensor i and Λ(τ) is an utility function

derived in 3.5. Hence, the possible number of targets M̂ that RSN can detect is the

average value of τ̂1, τ̂2, ..., and τ̂N , i.e.,

M̂ = d 1

N

N∑
i=1

τ̂ie. (3.2)

where d·e denotes a ceil operation.

3.3 Signal Model

At radar sensor i, we deploy a receiver with an K-element ULA whose spacing

between elements is di. If P pulses are processed in a coherent pulse interval, the snapshot

of target m is a KP×1 spatial-temporal steering vector with the following form [45], [18]:

e(θim, fim) = bt(fim)⊗ as(θim). (3.3)

where fim and θim are the normalized Doppler shift and normalized angle for the target

m, respectively. The notation ⊗ denotes the Kronecker product, bt(fim) is a P × 1

Doppler steering vector, and as(θim) is a K × 1 spatial steering vector. bt(fim) and

as(θim) are defined as follows:

bt(fim) = [1 ej2πfim ... ej2π(P−1)fim ]T . (3.4)

as(θim) = [1 e−j2πθim ... e−j2π(K−1)θim ]T . (3.5)

where T denotes the transpose operation. Let φim be an angle at which sensor i observes

the mth target, fmax,m be the maximum Doppler frequency for target m, and Tp be the

pulse duration. The normalized angle θim for target m and the normalized Doppler shift

fim when target m is moving relatively to sensor platform i are computed as [18]

θim =
di sin φim

λi

(3.6)

fim = 4fmax,mTpθim (3.7)
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We now assume that radar sensor i can detect Mi targets during the observation

time. The received signal vector zi(u, t) at sensor i is the superposition of signals reflected

from Mi targets, interference, and noise.

zi(u, t) =

Mi∑
m=1

e(θim, fim)αm(u)smi(t) + wi,

= A(θi, fi)si(u, t) + wi, i = 1, 2, ..., N.

(3.8)

where

• A(θi, fi) = [e(θi1, fi1), e(θi2, fi2), ..., e(θiMi
, fiMi

)] is the PK × Mi target response

matrix. e(θim, fim) is a spatial-temporal steering vector that models the mth target

return at angle θim and Doppler shift fim.

• si(u, t) = [α1(u)s1i(t), α2(u)s2i(t), ..., αMi
(u)sMii(t)]

T is the Mi × 1 target signal

vector with a random variable αm(u) that models the radar cross section (RCS) of

the target m and smi(t) is the waveform reflected from target m.

• wi = wci + wji + wsi + ni represents the overall interference and noise: a clutter

vector wci, a jamming vector wji, an interference vector between radar sensors wsi,

and thermal noise ni.

Received signals from radar sensors are forwarded to a central controller, e.g.,

clusterhead. Then, these received signal vectors zi(u, t) are fused to make estimation

operations. Since zi(u, t) is a zero-mean Gaussian vector, the probability density function

of zi(u, t) can be presented as

f(zi(u, t)) =
exp{−1

2
zH

i [R
(τi)
z,i ]−1zi}

(2π)
KP
2 |R(τi)

z,i |
1
2

. (3.9)

where R
(τi)
z,i is the covariance matrix of zi(u, t), τi is the rank of Rz,i, and | · | denotes the

determinant of the matrix.
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3.4 Interference and Noise Model

As pointed out, at the ith radar sensor, the interference vector wi is the sum of

clutter wci, jamming wji, and interference between sensors wsi. We apply the wave-

form design algorithm proposed in [31] to have waveforms at sensors be orthogonal. By

doing so, interference between sensors can be negligible, i.e., wsi = 0. Following are

characteristics and models of clutter, jamming, and thermal noise at radar sensor i.

3.4.1 Clutter

Clutter generates undesired radar returns that may interfere with the desired signal.

In RSN, the signal-to-clutter ratio (SCR) is often more important than the signal-to-

noise ratio (SNR). The integrated clutter can be generally approximated as the sum of

Nci clutter patches. For clutter patch k, the space-time data vector is modeled as [18]

pki = ξkibt(fki)⊗ as(θki)

= ξkiuki, k = 1, 2, ..., Nci. (3.10)

where ξki is a complex random variable that accounts for the amplitude and phase of

clutter patch k. uki = bt(fki)⊗as(θki) where bt(fki) and as(θki) are temporal vector and

spatial vector of clutter patch k, respectively. fki and θki are the normalized Doppler

shift and angle of arrival of the kth clutter patch, respectively. Total clutter vector wci

equals to

wci =

Nci∑

k=1

ξkibt(fki)⊗ as(θki)

=

Nci∑

k=1

ξkiuki. (3.11)

The KP ×KP covariance matrix of the clutter Rci at the ith radar is given by

Rci = E{wciw
H
ci}

=

Nci∑

k=1

Nci∑
j=1

E{ξiξ
H
j }ukiu

H
ji ,

= σ2
ciMci. (3.12)
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where H denotes the Hermitian operation, E{·} denotes the expectation, and Mci is the

normalized covariance matrix, i.e., all diagonal entries of Mci are ones.

3.4.2 Jamming

Jamming signals are generated by hostile interfering signal sources that seek to

degrade the performance of radar sensors by mechanisms such as degrading signal-to-

interference-plus-noise ratio (SINR) by increasing the noise level, or generating false

detections to overwhelm RSN with false targets. A model for Nji jamming signals is

commonly presented as [45]

wji =

Nji∑

l=1

βl ⊗ aji(θl), i = 1, 2, ..., N. (3.13)

where βl contains voltage samples of the lth jamming waveform and aji(θl) is the jamming

signal waveform at an angle θl. The different jamming waveforms are uncorrelated with

each other.

3.4.3 Thermal Noise

Among noise existing in RSN, thermal noise due to ohmic losses at the radar

receiver is normally dominant. We model the thermal noise vector ni at radar sensor i

as a complex white Gaussian vector with zero-mean and covariance σ2
ni. The covariance

matrix of noise Rni = σ2
niI where I is the KP ×KP identity matrix.

In RSN, detection performance is largely affected by clutters. So we will consider

the disturbance at the ith radar as a sum of thermal noise and clutter. The disturbance

covariance matrix Rwi is given by

Rwi = E{wiw
H
i }

= Rni + εci(h)Rci. (3.14)

where Rni and Rci are the covariance matrices of noise and clutter, respectively. εci(h)

is a random variable used to model the clutter power of the hth range cell. εci(h) often
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follows Weibull distribution for ground clutter or gamma distribution for sea and/or

weather clutter [37][46]. In homogeneous environments, the average clutter power does

not depend on h, i.e., εci(h) is constant. Therefore, the disturbance covariance matrix is

rewritten as

Rwi = σ2
wiMwi

= σ2
niI + εcσ

2
ciMci. (3.15)

where σ2
wi is the total disturbance power and Mwi is the normalized disturbance covari-

ance matrix.

Mwi =
1

CNRi + 1
I +

CNRi

CNRi + 1
Mci. (3.16)

with CNRi =
εcσ2

ci

σ2
ni

is the clutter-to-noise power ratio. Then, total interference and noise

can be modeled as a complex zero-mean white Gaussian vector with the covariance matrix

σ2
wiMwi, i.e., wi ∼ CN (0, σ2

wiMwi).

3.5 Maximum Likelihood Multi-Target Detection (ML-MTD) Algorithm

In this section, we develop an algorithm to detect the number of targets in the

sensing region. We assume that signals backscattered from targets and interference are

uncorrelated. From the signal model in (3.8), the covariance matrix of received signal

zi(u, t) at radar sensor i is given by

R
(τi)
z,i = E{zi(u, t)zH

i (u, t)},

= A(θi, fi)Rs,iA
H(θi, fi) + σ2

wiMwi,

= Φ
(τi)
i + σ2

wiMwi. (3.17)

where Rs,i is a Mi×Mi positive definite matrix which represents the covariance matrix of

the signal si(u, t), σ2
wi is the disturbance power, and Mwi is the normalized disturbance

covariance matrix at radar sensor i. Matrices Rs,i and Φ
(τi)
i are defined:

Rs,i = E{si(u, t)sH
i (u, t)} (3.18)

Φ
(τi)
i = A(θi, fi)Rs,iA

H(θi, fi) (3.19)
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The random variables αm(u) (i = 1, 2, ..., Mi) in si(u, t) model the RCS of the mth

target. In [29], Swerling proposed five target models called Swerling models where Swer-

ling V model is for non-fluctuating targets and Swerling I-IV models are for fluctuating

targets. In this work, we focus our studies on the Swerling II target models. We know

that magnitude of the RCS |α(u)| for Swerling II targets fluctuates independently from

pulse to pulse according to a chi-square probability density function with two degree of

freedom, i.e., a Rayleigh probability density function. Therefore, the RCS of target m

can be modeled as a Gaussian random variable. That is,

αm(u) = αIm(u) + jαQm(u). (3.20)

where αIm(u) and αQm(u) follow Gaussian distribution with zero mean and variance

ρ2
m/2 for each branch I, Q.

From (3.17), it follows that the rank of matrix R
(τi)
z,i is τi, which is equal to the

number of targets Mi present in the surveillance region, and the smallest (KP − τi) of its

eigenvalues are zero, i.e., the received signal contains interference and noise only. Sorting

the eigenvalues of R
(τi)
z,i in a decreasing order, we obtain

λ1 ≥ λ2 ≥ ... ≥ λτi
. (3.21)

λτi+1 = λτi+2 = ... = λKP = σ2
wi. (3.22)

Assume that measurements zi(u, t), at the clusterhead, are statistically independent

complex Gaussian random vectors with zero mean. The joint probability density function

of these random vectors has the form:

f(z(u, t)) =
N∏

i=1

f(zi(u, t)),

=
N∏

i=1

exp{−1
2
zH

i [R
(τi)
z,i ]−1zi}

(2π)
KP
2 |R(τi)

z,i |
1
2

. (3.23)
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Basically, we have to estimate τ̂i such that the joint probability density function

f(z(u, t)) is maximized. We now define a log-likelihood function Γ(τ) {τ = [τ1, τ2, ..., τN ]}
in (3.24). Hence, our mission is to find τ̂i such that Γ(τ) is minimized.

Γ(τ) = − ln f(z(u, t)),

=
N ×KP

2
ln(2π) +

1

2

N∑
i=1

log |R(τi)
z,i |+

+
1

2

N∑
i=1

zH
i [R

(τi)
z,i ]−1zi. (3.24)

Omitting terms that are independent of τi, we find the log-likelihood function Γ(τ).

Γ(τ) =
N∑

i=1

log |R(τi)
z,i |+

N∑
i=1

zH
i [R

(τi)
z,i ]−1zi. (3.25)

From [8], [19], and [7], the utility function Λ(τ) takes the form:

Λ(τ) = Γ(τ) + P (N). (3.26)

where P (N) = ℘(N)[τavg(2KP − τavg)] is a bias correction term or penalty function

to make estimate unbiased. τavg is an average value of {τi|i = 1, 2, ..., N} and ℘(N)

is a penalty coefficient which is a constant function of N . For example, ℘(N) = 1 for

the Akaike information criterion (AIC) and ℘(N) = 1
2
ln N for the minimum description

length (MDL). Λ(τ) then can be rewritten as

Λ(τ) =
N∑

i=1

log |R(τi)
z,i |+

N∑
i=1

zH
i [R

(τi)
z,i ]−1zi +

+ ℘(N){τavg(2KP − τavg)}. (3.27)

Our ML-MTD algorithm to detect the number of targets M̂ present in the sensing

field now can be expressed as

M̂ = d 1

N

N∑
i=1

τ̂ie. (3.28)

where τ̂ = {τ̂1, τ̂2, ..., τ̂N} is computed as

{τ̂1, τ̂2, ..., τ̂N} = arg min
τ1,τ2,...,τN

Λ(τ). (3.29)
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In practice, sensors can observe the different numbers of targets, i.e., τis may not

be equal, since targets might not be exposed to all sensors. However, for the sake of

simplicity, we assume that all radar sensors can observe the same number of targets, i.e.,

τ1 = τ2 = ... = τN = τ and energy backscattered from targets is similar at radar sensors.

Furthermore, we assume that the environment is homogeneous, that is, the average clut-

ter power is a constant. These assumptions imply that R
(τ)
z,1 = R

(τ)
z,2 = R

(τ)
z,N = R

(τ)
z . For

those reasons, our ultimate purpose is to evaluate detection performance improvement

achievable by exploiting the networking of multiple radar sensors. Under our assump-

tions, the utility function Λ(τ) can be simplified as

Λ(τ) = N log |R(τ)
z |+ Ntr([R(τ)

z ]−1Y) + ℘(N){τ(2KP − τ)}. (3.30)

where tr(·) denotes the trace of a matrix and Y is the sample covariance matrix of

z1, z2, ..., zN .

Y =
1

N

N∑
i=1

ziz
T
i . (3.31)

Based on (3.30) and (3.31), we can observe that the utility function Λ(τ) depends

on the number of radar sensors N . Our ML-MTD algorithm is used to determine any

non-negative integer τ to minimize the utility function Λ(τ) when the number of radars

is changed. Achieved results are analyzed to evaluate the multi-target detection perfor-

mance in Section 3.6.

3.6 Multi-Target Detection Performance Analysis

We denote the true number of targets appearing in the observation area and the

number of targets we can estimate from received signals as M and M̂ , respectively. The

probability of miss detection PMD and the root mean square error (RMSE) are used as

metrics to evaluate detection performance of the RSN using our proposed algorithm. We

define PMD and RMSE as follows:

• PMD is the probability that the estimated number of targets is smaller than the

true number of targets. Suppose that ωmd is the number of estimations in which
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the estimated number of targets is smaller than the true number of targets and ωt

is the total number of estimations. PMD is given as

PMD = P (M̂ < M)

=
ωmd

ωt

. (3.32)

• RMSE is used to determine the vibration of the estimated number of targets M̂

around the true number of targets M .

RMSE =

√√√√ 1

ωt

ωt∑
g=1

(M − M̂g)2. (3.33)

To study the MTD performance, we setup parameters for the RSN and targets as

follows.

1. Spacing di between elements of the K-element ULA at radar sensor i is chosen to

be a half of the wavelength λi, i.e., di = λi

2
.

2. The pulse duration (Tp) is 1 ms.

3. The number of elements (K) in ULA is 5.

4. The number of pulses (P ) in a coherent pulse interval is 4.

5. To observe targets, we assume that θim is a random variable which follows a uniform

distribution in an interval [-0.5, 0.5].

6. The maximum Doppler frequencies for targets are similar, e.g., fmax = 5000Hz.

The normalized Doppler shift fim only depends on the random variable θim.

7. Average Signal-to-Interference-plus-Noise Ratio (SINR) refers to average SINR of

all radars in RSN. We examine detection performance of RSN with average SINR

in an interval [5dB, 15dB].

8. The MDL criterion is used for the penalty function.

9. 105 estimations are performed, i.e., ωt = 105.

We first examine the case in which there are three targets in surveillance region,

i.e., M = 3. Single radar system, 4-radar RSN, and 8-radar RSN are employed to detect

these targets. At each average SINR, the estimated number of targets is compared to the
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Figure 3.1: Miss-detection probability PMD and RMSE, M=3

true number of targets to compute PMD and RMSE which are drawn in Fig. 3.1 for this

case. After that, we increase the number of targets into four, i.e., M = 4. Using the same

RSN as the previous case, we can get PMD and RMSE as plotted in Fig. 3.2. Based on

achieved results in Fig. 3.1a and Fig. 3.2a, we can realize that miss-detection probability

of 4-radar RSN and 8-radar RSN is much smaller than that of single radar system. This

implies that detection performance of 4-radar RSN and 8-radar RSN is improved. For

example, to achieve the same PMD = 10% which is good enough according to Skolnik [14],

the average SINR required for 4-radar RSN to detect three targets is about 9dB while

the average SINR required for the single radar system is greater than 15dB. This means
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Figure 3.2: Miss-detection probability PMD and RMSE, M=4

that detection performance gain of the 4-radar RSN is greater than 6dB. In both cases,

moreover, the probability of miss-detection is vastly reduced when the 8-radar RSN is

used.

Furthermore, we observe that the higher average SINR, the smaller probability of

miss-detection. The reason is that, at high average SINR, radar sensors radiate signals

at a high power level, so the coverage area of radar sensors is large. However, radiating

signals at high power levels is costly. Thus tradeoff between cost and detection perfor-

mance is necessary. We also observe that when we increase the number of targets, the

detection performance is slightly reduced. For example, to achieve the same PMD = 10%,
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the 4-radar RSN to detect four targets requires average SINR around 4dB higher than

that to detect three targets. This means that we need increase the transmit power for

radar sensors. If the number of sensor radars is however large, e.g. N = 8, the detection

performance of the RSN does not change much.

Besides the miss-detection probability, RMSE is the other metric to examine the

detection performance of the RSN. RMSE helps us evaluate the variability of the esti-

mated number of targets around the true number of targets present in the sensing field.

From Fig. 3.1b and Fig. 3.2b, we note that, to estimate three or four targets, RMSE

of a single radar system is very high while RMSE of RSN is reduced tremendously. For

example, at SINR = 9dB, compared to a single radar system, the 4-radar RSN can reduce

RMSE by 31.52% for three target case and 42.32% for four target case. Moreover, we

can see that RMSE is reduced when we increase the number of sensors and/or average

SINR.

3.7 Conclusions

We investigate a multi-target detection problem in Radar Sensor Networks. Sig-

nal, interference, and noise models at radar sensors are presented and analyzed. We

also propose a Maximum Likelihood Multi-Target Detection algorithm to estimate the

possible number of targets in a surveillance area. RSN-clusterhead utilizes our algorithm

to combine measurements from radar sensors and make decision. Achieved results show

that detection performance of our RSN is much better than that of a single radar system

in terms of the miss-detection probability and the root mean square error.



CHAPTER 4

OPPORTUNISTIC SPECTRUM ACCESS IN
COGNITIVE SENSOR NETWORKS

4.1 Introduction

Recent measurements have shown that, with the traditional spectrum access ap-

proach, the radio spectrum assigned to primary (licensed) users is vastly underutilized

while the demand for access to the limited radio spectrum has been growing dramati-

cally. This view is supported by actual measurements conducted by the FCC’s Spectrum

Policy Task Force which has determined that, in some locations or at some times of a

day, about 70 percent of the allocated spectrum may not be in use [40]. Measurements

in [23] reveal that spectrum utilization is often heavy in unlicensed bands while low in TV

bands or medium in some cellular bands. These observations on actual spectrum usage

have challenged approaches to the radio spectrum management and fueled interests in

the opportunistic spectrum access problem.

Opportunistic spectrum access (OSA) has been enabled by cognitive radios (CRs)

which have capabilities to sense their surroundings and actively adapt their operation

modes to maximize the quality of service for secondary users (SUs) while minimizing

interference to primary users (PUs). Hence, CRs must carry out spectrum sensing to

identify white spaces or spectrum holes which are bands of frequencies assigned to PUs,

but, at a particular time and a specific geographic location, these bands are not being

utilized by those users [41]. Some methods on spectrum sensing have been proposed

in [39], [2], and [13]. Once spectrum holes are identified, CRs opportunistically utilize

these holes for communications without causing harmful interference to PUs. Assume

that a spectrum band is available for SUs. If only one SU, in a particular location and at

a specific time, can sense this available spectrum, this SU can use this band right after

39
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the PU finishes its communications session. In the case of multiple SUs trying to access

the spectrum, however, SUs are supposed to compete with each other in a collaborative

and fair manner to access the spectrum.

Amongst existing work on spectrum sharing, the work in [34] and [28] applied game-

theoretic framework to find strategies for spectrum sharing. In [12], spectrum allocation

using a graph coloring algorithm is proposed but mobility of the secondary users is not

considered. Moreover, authors assumed that if two SUs within distance of each other

use the same spectrum band, they fail to access spectrum. With this approach, some

SUs will lose the rights to compete for using spectrum and monitoring SUs conflicting

in using spectrum band is also a challenging issue. In [13], some other spectrum sharing

methods were summarized.

In this chapter, we propose a Knowledge-based Spectrum Access Scheme to effi-

ciently assign the available spectrum for SUs and guarantee that the SU using assigned

band will not interfere with PUs. To achieve these objectives, our scheme is designed

using FLS with three descriptors: spectrum utilization efficiency of the SU, its degree

of mobility, and its average distance to PUs. To increase the reliability of our method,

the linguistic knowledge of spectrum access based on these descriptors is obtained from

a group of network experts. 27 fuzzy spectrum sharing rules are set up based on this lin-

guistic knowledge. The output of the FLS provides the probability of assigning spectrum

for each SU and the SU with the highest probability will access the available spectrum.

The rest of this chapter is organized as follows. In Section 4.2, we briefly introduce

the fuzzy logic system. The knowledge-based spectrum access scheme is proposed in

Section 4.3. In Section 4.4, we discuss the simulation results and conclusions are presented

in Section 4.5.

4.2 Fuzzy Logic Systems

Fig. 4.1 shows the structure of a fuzzy logic system (FLS). When an input is applied

to the FLS, the inference engine computes the output set corresponding to each rule. The
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Figure 4.1: The structure of a Fuzzy Logic System

defuzzifier then computes a crisp output from these rule output sets. Consider a p-input

1-output FLS, using singleton fuzzification, center-of-sets defuzzification and IF-THEN

rules of the form [16]

Rl: IF x1 is F 1
l and x2 is F 2

l and ... and xp is F p
l ,

THEN y is Gl

Assuming singleton fuzzification is used, when an input x′ = {x′1, x′2, ..., x′p} is

applied, the degree of firing corresponding to the lth rule is computed as

µF l
1
(x′1) ? µF l

2
(x′2) ? ... ? µF l

p
(x′p) = T p

i=1µF l
i
(x′i) (4.1)

where ? and T both indicate the chosen t-norm. There are many kinds of defuzzifiers. In

this work, we focus, for illustrative purposes, on the center-of-sets defuzzifier. It computes

a crisp output for the FLS by first computing the centroid, cGl , of every consequent set

Gl, and, then computing a weighted average of these centroids. The weight corresponding

to the lth rule consequent centroid is the degree of firing associated with the lth rule,

T p
i=1µF l

i
(x′i), so that

ycos(x
′) =

∑M
l=1 cGlT p

i=1µF l
i
(x′i)∑M

l=1 T p
i=1µF l

i
(x′i)

(4.2)

where M is the number of rules in the FLS.
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4.3 Knowledge Processing and Knowledge-based Spectrum Access Scheme

4.3.1 Knowledge-based Spectrum Access Scheme Design

We design a Knowledge-based Spectrum Access Scheme using a fuzzy logic system

to solve the opportunistic spectrum access problem in cognitive radio networks. Expert

knowledge for selecting the best suitable SU to access the available band is collected

based on the following three antecedents:

1. Antecedent 1: Spectrum utilization efficiency.

2. Antecedent 2: Degree of mobility.

3. Antecedent 3: Average distance to primary users.

Generally, the SU with the furthest average distance to PUs or the SU with max-

imum spectrum utilization efficiency can be chosen to access spectrum under the con-

straint that no harmful interference is created for PUs. In our approach, using the

rule-based FLS, we combine the above descriptors to assign spectrum opportunistically.

We observe that different users perceive different available spectrum and using spectrum

efficiently is the main purpose of the OSA schemes. For that reason, spectrum utilization

efficiency ηs is introduced in our design. ηs is defined as the ratio between the spectrum

BWs which SU desires to utilize and the available band BWa, i.e.,

ηs =
BWs

BWa

× 100% (4.3)

Mobility of SUs plays an important role in our design. When SU is moving at a velocity

v m/s, it generates the Doppler shift fD.

fD =
v

c
fc (4.4)

where fc is carrier frequency and c is the speed of light (3 × 108m/s). Mobility of SUs

can reduce capability of detecting signal from PUs. If SU is not capable of detecting

the primary signal, it will incorrectly determine that the spectrum is unused; thereby

leading to potential interference to adjacent users, i.e., the signal transmitted by SU will

interfere with the signal that PU is trying to decode. This situation is often referred as

the hidden node problem.
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Moreover, we also consider the average distance between SU and PUs. The location

of PUs can be obtained via GPS (Global Positioning System) or other position location

technologies. If the location of PUs is unknown, we can consider signal-to-noise ratio

(SNR) as a proxy for distance [27]. Assume the PU at the distance di from SU i transmits

signal at power P1i and the power gain between PU and SU, g(di), is a continuous,

nonnegative, strictly decreasing function of di defined on the interval [0,∞].

γsi = 10log(
P1ig(di)

σ2
1

) (4.5)

where γsi and σ2
1 are the SNR and noise power measured at the SU i, respectively.

Linguistic variances to represent Antecedent 1 and Antecedent 2 are divided into

three levels: low, moderate, and high while we use three levels: near, moderate, and

far to represent Antecedent 3. Five levels, i.e., very low, low, medium, high, and very

high are used for the consequence. We use trapezoidal membership functions (MFs) to

represent near, low, far, high, very low, and very high; and triangle MFs to represent

moderate, low, medium, and high. Designed MFs are shown in Fig. 4.2. Since we have 3

antecedents and 3 fuzzy subsets, we need to set up 33 rules for our FLS. Then, we design

questions used in our survey according to rules as follows:

IF spectrum utilization efficiency of the secondary user is moderate, its degree of

mobility is low, and its average distance to primary users is far, THEN the probability

that this user is selected to access the spectrum is .

4.3.2 Knowledge Processing for Spectrum Access Scheme

As pointed out in [17], “words mean different things to different people”, and in [21],

“the decision makers may have the same preferences to a particular alternative, e.g.,

highly preferred but with different degrees;” so, we created one survey for the network

experts. These experts were requested to choose a consequent, using one of the five

linguistic variables. Different experts gave different answers to the questions in the survey.

Table 4.1 summarizes the questions used in our survey. As an example, we give an expert’s
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Figure 4.2: Membership functions (MFs) representing linguistic labels for: (a) Antecedent
1, (b) Antecedent 2 and 3, and (c) Consequence.
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Table 4.1: Questions for opportunistic spectrum access problem

Rule # Antecedent 1 Antecedent 2 Antecedent 3 Consequence

1 low low near very low
2 low low moderate low
3 low low far low
4 low moderate near very low
5 low moderate moderate low
6 low moderate far medium
7 low high near very low
8 low high moderate low
9 low high far medium
10 moderate low near very low
11 moderate low moderate medium
12 moderate low far high
13 moderate moderate near very low
14 moderate moderate moderate medium
15 moderate moderate far high
16 moderate high near very low
17 moderate high moderate low
18 moderate high far high
19 high low near low
20 high low moderate high
21 high low far very high
22 high moderate near low
23 high moderate moderate high
24 high moderate far very high
25 high high near very low
26 high high moderate high
27 high high far high

answer in the table. Since we chose a single consequent for each rule to form a rule base,

we averaged the centroids of all the responses for each rule and used average values in

place of the rule consequent centroid. Doing this leads to rules with the following form:

Rl: IF spectrum utilization efficiency of the secondary user (x1) is F 1
l , and its degree

of mobility (x2) is F 2
l , and its average distance to primary users (x3) is F 3

l , THEN the

probability (y) that this secondary user is chosen to access the available spectrum is cl
avg

(l = 1, 2, ..., 27).

cl
avg =

∑5
i=1 wl

ic
i

∑5
i=1 wl

i

(4.6)
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Table 4.2: Values of cavg corresponding to each rule

Rule # cavg Rule # cavg

1 17.222 15 63.33
2 23.611 16 17.22
3 43.333 17 30.278
4 23.611 18 56.667
5 30 19 50
6 43.333 20 70
7 10.833 21 89.167
8 23.611 22 36.667
9 36.667 23 63.333
10 30.278 24 82.778
11 56.667 25 30.287
12 76.389 26 56.667
13 23.889 27 63.333
14 43.333

Table 4.3: Three descriptors and spectrum access probability for four SUs

Parameters SU1 SU2 SU3 SU4

Mobility degree 2.4966 3.0715 6.5382 0.9135
Distance to PU 8.4852 3.0036 10 1.6437

Probability 82.2944 54.5189 45.3072 53.1432
Spectrum usage efficiency 88.7104% 97.9340% 24.2160% 92.4424%

in which wl
i is the number of experts choosing linguistic label i for the consequence of

rule l and ci is the centroid of the ith consequence set (i = 1, 2, ..., 5). Table 4.2 provides

cavg for each rule from the completed survey. For every input (x1, x2, x3), the output

y(x1, x2, x3) of the designed FLS is computed as

y(x1, x2, x3) =

∑27
l=1 µF l

1
(x1)µF l

2
(x2)µF l

3
(x3)c

l
avg∑27

l=1 µF l
1
(x1)µF l

2
(x2)µF l

3
(x3)

(4.7)

We recognize that (4.7) can be represented in a 4-D surface. Since it is impossible

to plot it visually, we fix one of three variables. More specifically, we fixed the average

distance to the primary users x3 and kept x1 and x2 as random variables. Two cases,

i.e., x3 = 1 and x3 = 9, were considered. Fig. 4.3 represents a decision surface for the

cognitive users in these cases. The concept of decision surface, which is central in fuzzy

logic systems, describes the dynamics of the controller and is generally a time-varying
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Figure 4.3: Decision surface for cognitive users with a fixed average distance to primary
users: (a) x3 = 1, (b) x3 = 9.

nonlinear surface. From Fig. 4.3, we see clearly that, at the same spectrum utilization

efficiency and mobility degree, SUs further from PUs have higher chance to access the

spectrum.

4.4 Simulation Results and Discussion

To validate our approach, we randomly generated 20 SUs over an area of 100×100

meters. Assume that an PU was placed randomly in this area. Three descriptors were
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Figure 4.4: An OSA scenario example: SU1, SU2, SU3, and SU4 are denoted using ?,
5, ◦, and ♦, respectively. The primary user is denoted using ¤.

randomly generated for each SU. More specifically, the spectrum utilization efficiency of

each secondary user was a random value in the interval [0, 100] and its mobility degree

in [0, 10]. Distances to the PU were normalized to [0, 10].

di =
√

(xi − xp)2 + (yi − yp)2 (4.8)

where (xp, yp) and (xi, yi) represent the coordinate of the PU and the ith SU (i =

1, 2, ..., 20).

The values of descriptors corresponding to each SU were passed through the FLS.

The output of the FLS, i.e., the probability that a SU was selected to access the available

spectrum, was computed in (4.7). Then, the SU with the highest probability would be

chosen to access the spectrum.

At a particular time, values of three descriptors and probability for four SUs, i.e.,

the SU chosen to access the available spectrum (SU1), the SU with the highest spectrum

utilization efficiency (SU2), the SU having the furthest distance to the primary user

(SU3), and the SU with the lowest mobility degree (SU4) are listed in Table 4.3. Position

of these users is shown in Fig. 4.4 while spectrum usage efficiency of SUs is drawn in
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Figure 4.5: Spectrum Utilization Efficiency (SUE) and Spectrum Access Probability
(SAP) for SU1, SU2, SU3, SU4

Fig. 4.5. From the graph, we note that SU2 has the highest spectrum utilization efficiency

with 97.93%, SU4 with 92.4424% while SU1 only achieves 88.7104%. Although SU3 is

the SU with the furthest distance, it has the lowest spectrum utilization efficiency and

highest mobility degree.

In wireless networks, the radio link quality is usually limited by interference rather

than noise. Therefore, the outage probability due to co-band is of primary concern

and can be determined by the Signal-to-Interference Ratio (SIR). SIR measured at the

receiver j associated with transmitter i can be expressed as:

SIRij =
PiGji∑N

k=1,k 6=i PkGjkI(k, j) + δ2
(4.9)

where Pi is the transmission power at transmitter i, Gji is the link gain between trans-

mitter i and receiver j. δ2 denotes the received noise and it is assumed to be the same

for all receiver nodes. I(i; j) is the interference function characterizing the interference

created by node i to node j.

I(i; j) =





1 if transmitters i and j are transmitting over the same band

0 otherwise
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Figure 4.6: Outage Probability vs. Number of Secondary Users

We assume the QoS requested is guaranteed when the SIRij exceeds a given threshold

SIRth. The outage probability Pout of the jth receiver/ith transmitter pair is given by

Pout = Pr(SIRij ≤ SIRth) (4.10)

= Pr(PiGji ≤ SIRth(
N∑

k=1,k 6=i

PkGjkI(k, j) + δ2))

Fig. 4.6 show the relation between the outage probability and the number of active

SUs. From the graph, we can recognize that our proposed approach successfully reduced

the outage probability by about 20% which implies a higher probability that the received

signal level will exceed SNRth. Hence, the quality of communications of adjacent users

can be guaranteed.

Until now, someone may have two more questions: (1) who will decide the spec-

trum access rights for SUs? (2) if there are N users competing for M spectrum bands

(N >> M), how can we control the spectrum access? Since we use the centralized spec-

trum sharing architecture, a centralized entity such as base stations in cognitive wireless

networks or clusterheads in sensor networks collects information about three descriptors

and available spectrum bands from SUs through a common control channel and dynam-

ically builds a spectrum map. Then, it uses our proposed knowledge-based spectrum
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access scheme to control the spectrum assignment and access procedures in order to pre-

vent multiple users from colliding in overlapping spectrum portions. In case, N users

competing for M spectrum bands, the centralized processor also takes advantage of our

scheme for each band to allow the best secondary user to access each spectrum.

4.5 Conclusions

We propose a knowledge-based spectrum access scheme which is built on the rule-

based fuzzy logic system to control opportunistic spectrum access for SUs in cognitive

radio networks. The SU is selected based on combination of spectrum utilization efficiency

of SU, its degree of mobility, and its average distance to PUs. The linguistic knowledge of

spectrum access is based on experiences from a group of network experts instead of only

a single one, so that an acceptable decision could be obtained. Moreover, we can modify

the membership functions in our design in accordance to requirements of the primary

network and the spectrum usage policy. To validate our approach, an OSA scenario

is simulated and analyzed. We also show that our scheme could decrease the outage

probability compared to the random access method. Then, our scheme is promising to

be implemented practically in future cognitive radio networks.



CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

In this thesis, we have discussed the target detection problem in Radar Sensor

Networks (RSN) and opportunistic spectrum access in Cognitive Sensor Networks (CSN).

Two main detection problems in RSN have been addressed:

• Improving the target detection performance using our proposed diversity, which is

based on the combination of STAP technique and waveform design, is discussed and

analyzed. Studies show that the detection performance in term of miss-detection

probability and false alarm probability of the RSN using our diversity scheme is

superior to that of the single radar system using STAP only.

• Estimating the number of targets present in the surveillance field is discussed. At

the clusterhead, an algorithm to detect the number of targets is also developed

based on measurement data at radar sensors. Simulation results confirm that the

multi-target detection performance of RSN in terms of the miss-detection proba-

bility and the root mean square error is much better than that of the single radar

system.

We also studied the spectrum access problem in cognitive sensor networks. A

spectrum access scheme using the fuzzy logic system is proposed. We show that our

spectrum access scheme performs much better than a random spectrum access scheme.

5.2 Future Directions

Besides our studies presented in this thesis, we can extend our research in several

directions as follows:

52
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5.2.1 Detection in Radar Sensor Networks

• The performance of RSN is affected by other factors such as crab angle, mutual

coupling, and beam mismatch between target and steering vector. Therefore, target

detection performance can be examined when these factors exist.

• This thesis studies detection problems in the homogeneous environment. So detec-

tion problem when interference environment is heterogeneous can be investigated.

• Using the diversity scheme proposed in the chapter 2 to solve advanced problems

in radar sensor networks such as target search and target recognition is also worth

looking into.

• Target models as small moving point-like targets in our detection problems are

considered in this thesis. Thus dynamic and state space-based models might be

further studied.

• Naturally, multiple target model types can appear during observation, so multi-

target detection problem when multiple target models coexist in the sensing region

is worth looking into.

• Our proposal to estimate the number of targets in a surveillance region is a primary

state for important tasks such as target recognition, classification, tracking, etc. A

joint algorithm to combine multi-target detection and one of above tasks can be

investigated.

5.2.2 Opportunistic Spectrum Access in Cognitive Sensor Networks

In Multi-Hop Cognitive Sensor Networks, cognitive users experience spectrum het-

erogeneity, i.e., their spectrum availability fluctuates over time and location. We know

that existing work on general routing problem for wireless networks has been well inves-

tigated. However, they do not consider spectrum fluctuation in their routing algorithms.

Therefore, a joint spectrum opportunity discovery and routing scheme can be examined.

To evaluate the performance of this scheme, throughput and latency can be used as

evaluation metrics.
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