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ABSTRACT

OPTIMIZATION OF COUPLING FROM A SUB-WAVELENGTH METAL

NANOAPERTURE TO A GAUSSIAN MODE

Publication No.

MUTHIAH ANNAMALAI, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Michael Vasilyev

We model the surface resonance effects in a 1D-array of corrugations on a metal-dielectric

film with a sub-wavelength nanoaperture, following the earlier work by Moreno et al [1].

We are interested in computing the coupling of the highly-directional light field emerging

from the metal nanoaperture to the lowest-order Gaussian mode. We follow the approach

by Vasilyev et al [2], to compute the coupling to the fundamental Gaussian mode.

We have developed an optimization routine to compute the field emission patterns

from a metal nanoaperture and transmission coupling to the fundamental Gaussian mode

for various geometrical parameters of the metal nanoastructure. We optimize for maxi-

mum T (power transmittance to the lowest-order mode) and T/L (ratio of transmittance

to loss to higher-order modes), assuming zero absorption so that all reflected light can

be potentially recycled in metal nanocavity.

This optimization work on the geometrical parameters of the cavity can be useful in

fabricating a high Q cavity with desired resonant wavelength for the future construction

of a high-efficiency single-photon emitter.
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CHAPTER 1

INTRODUCTION

In 2002, a counter-intuitive phenomenon of narrow-beam emission from a subwavelength

nanoaperture surrounded by corrugations (this structure is shown in Fig. 1.1) was exper-

imentally reported [3]. The field of subwavelength optics has been traditionally neglected

because of the difficulty imposed by low transmittance and large diffraction losses in such

geometries. The new beam-narrowing phenomenon promises the convenient interface be-

tween subwavelength optics and propagating optical modes.

The P-polarization (TM) nature of the beam-narrowing effect is attributed to the

presence of plasmonic surface resonance at the metal-dielectric interface. The field en-

hancement and highly-directional emission follow from the coupling of the surface waves

to the free-space propagating modes due to momentum and energy conservation rules

[1, 3, 4]. Surface waves are well known in metals and are referred to as surface plasmon

polaritons, or plasmons, for short. Surface plasmons are present at a metal-dielectric

interface, as bound electromagnetic modes when excited by P-polarized (TM) waves, as

discussed in Appendix A. As has been shown in [1], the surface modes appear even in

perfect metal structures, provided that they have corrugations. This will be the case

analyzed in this thesis.

Simply put, subwavelength optics allows creation of photonic systems beyond the

diffraction limit, offering field enhancements of more than order of magnitude and the

advantages of nanometer scale. The advances in this research area are expected to pro-

vide new design tools in subwavelength optics regime for applications such as optical

data storage [5], nonlinear optics, single-photon emitters for quantum communication
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2

Figure 1.1. A schematic of the metal nanoaperture surrounded by periodic corrugations.

and linear-optics-based quantum computing [2], sensors based on Surface Enhanced Ra-

man Spectroscopy (SERS), etc. These exciting applications are enabled by the e-beam

lithography and focused-ion-beam writing technologies available for patterning and work-

ing with metals and semiconductors at the nanometer scale [5].

The theoretical work on corrugated subwavelength metal nanostructures has provided

several degrees of freedom for engineering applications. The geometrical parameters such

as number, periodicity, and depth of the grooves for 1-D periodic arrays [1], and 2-D

arrays with arbitrary hole shapes in place of corrugations [6], directly affect the resonant

characteristics. Such design parameters give a method to select an optimal structure for

the application at specific choice of field enhancement level, focusing distance, resonant

wavelength, or coupling coefficients.
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Initial work has created parameterized universal charts relating the resonant wave-

length to the geometry [7]. In 2004, Pendry and co-workers [8] resolved the origin of

the field enhancement effect observed in non-resonant and resonant mode excitations of

the surface plasmons. They explained the field enhancements in the non-resonant case

due to pseudo-plasmons generated in perfect conductors, and also showed the degrees of

freedom available for design of surface plasmon devices including waveguides.

Our interest is to use these subwavelength structures to build single-photon emitters,

with high ouput coupling efficiency to the fundamental Gaussian mode (TEM0). The

emitter placed within the metal-slit nanocavity will produce deterministic single-photon

emission enhanced by the Purcell effect [9]. In a standing-wave cavity, where the dipole

emitter is located at the crest (antinode) of the electrical field and is aligned with its

direction, the Purcell factor is written as

F =
3λ3

2π2

Q

V
, (1.1)

where Q is the cavity quality factor, V is the mode volume, and λ is the wavelength of

light in the cavity.

We expect the single-photon emitter in the subwavelength nanocavity to yield ef-

ficiency of coupling to the Gaussian mode at least comparable to that reported by

Yamamoto and co-workers [10], who used a micropost-cavity approach with coupling

efficiency of ≈ 38%.

This thesis work directly applies the results from the modeling of emission from a

subwavelength 1-D periodic metal nanostructure by Moreno et al [1, 4], to the coupling of

light from that subwavelength structure to a Gaussian mode. This extends upon previous

work of Vasilyev et al [2] by searching wide parameter space for various geometries that

give a high overall transmission coupling factor for use in a single-photon emitter.
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The rest of this thesis is organized as follows. In Chapter 2, we re-derive the equations

of the subwavelength metal-nanoaperture model following Moreno [1] and using scalar

diffraction theory from the first principles. From the resulting set of linear equations, the

magnetic field emerging from the metal nanoaperture is obtained. We also discuss the

coupling to the fundamental Gaussian mode, from Vasilyev et al [2], and use it as the

metric for our search.

Careful optimization of computing integrals involved in the model of subwavelength

metal nanoaperture has been carried out in [11], and the results are reported in Chapter

3. Specifically, simplifying integrals involving special functions to avoid singularities,

and ordering of the parametric searches to reduce computation and reuse certain parts

of results, are explained.

The specific parametric search solver algorithms are detailed in Chapter 4. We also

show how our solver can accurately replicate published results from Ref. [1], and use

this as a measure of confidence in our simulation results. In this thesis work, we report

searches to find geometries with optimum transmission coupling factors. The specific

search spaces and details are reported in Chapter 4.

The results of our searches for transmission coupling coefficient T and transmission

to loss ratio T/L are presented in Chapter 5. We present graphs and specific numerical

results and discuss the general trend of parameters involved in this search and how they

affect the metrics T and T/L.

We summarize the results of the thesis and discuss future work in Chapter 6.



CHAPTER 2

DIFFRACTED FIELD FROM A SUBWAVELENGTH SLIT

We present the derivation of the diffracted fields from the subwavelength metal nanoaper-

ture from first principles, reproducing the results of Moreno et al [1]. To do that, we

employ scalar diffraction theory for a TM-polarized incident wave. Then, we apply the

results of the derivation to analyze coupling to the fundamental Gaussian mode. Figure

2.1 below illustrates the 2D structure we analyze in this thesis.

2.1 Problem definition

We are interested in computing the diffracted fields excited by a TEM wave propagating in

a subwavelength metal slit (nanoaperture), which is surrounded by periodic corrugations

(grooves). We also calculate the coupling factors from the diffracted fields to the lowest-

order (fundamental) Gaussian mode. Finally, we want to find the optimum geometries

that give the highest coupling factors to this mode.

We are specifically concerned with the particular 2D geometry of periodic grooves

(corrugations) made in a metal-dielectric interface with a subwavelength slit, shown in

Figs. 2.1 and 2.2. The field enhancement phenomenon is due to the surface-wave reso-

nance effect observed only in case of illumination by TM-waves.

We seek to derive expressions for the coupling to the lowest-order (fundamental)

Gaussian mode as a way to optimize metal-nanoaperture devices for operation with

other Gaussian-beam optical elements for various purposes mentioned in Chapter 1.

We treat both the transmission and reflection properties of the subwavelength metal

nanoaperture corresponding to Fig. 2.2.

5
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Figure 2.1. Coupling light to the fundamental Gaussian mode from the subwavelength
metal nanoaperture.

2.2 2D TM Waves

2D electromagnetic problems (i.e. ones in which no variation in y-dimension occurs)

can be analyzed by decomposing the fields over TE (Ex = Ez = Hy = 0) and TM

(Hx = Hz = Ey = 0) subsets [12]. TM (P-polarization) excitation is required for the

geometry of Fig. 2.2 in order to observe surface field enhancement.

Maxwell’s equations are given by

∇×H = ǫ0
∂E
∂t

, (2.1)

∇× E = −µ0
∂H
∂t

. (2.2)
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Figure 2.2. TM wave around metal nanoaperture.

For time-harmonic fields H = He−iωt, E = Ee−iωt, and these equations become

∇× H = −ikcǫ0E , (2.3)

∇× E = ikcµ0H , (2.4)

where k = ω/c. Note that all the results that follow can be extended to the case of a

specific dielectric by replacing ǫ0 by ǫǫ0 everywhere.

For TM fields, H-field is a scalar (because Hx = Hz = 0), which makes it suitable

for scalar diffraction theory analysis. (For TE fields same holds for E-field, thus any 2D

problem can be treated as 2 scalar diffraction problems in TM and TE [12].) For TM

field and geometry of Figs. 2.1 and 2.2, we have Hx = Hz = Ey = 0, with remaining

components Hy, Ex and Ez that are functions of x and z (no dependence on y).
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Maxwell’s curl equations for the TM-case in component form are:

ikcµoHy =
∂Ex

∂z
− ∂Ez

∂x
, (2.5)

−ikcǫ0Ex = −∂Hy

∂z
. (2.6)

It is easy to see that ψ(x, z) = Ex, Ez, orHy satisfies the Helmholtz equation (∇2+k2)ψ =

0. In Sections 2.4 and 2.5, we will set the boundary conditions on the electric field

Ex (z = 0) and compute the scattered field Hy (~r) as a function of the boundary values

using scalar diffraction theory, with a proper choice of Green’s function.

2.3 TEM mode of a metal slab waveguide

Let us begin with describing the lowest-order mode of the waveguide formed by a free-

space slab between two perfectly conducting metal plates, as shown in Fig. 2.3. If

we consider the electric and magnetic fields in the slab, i.e. E(~r, t) = x̂Ex(~r )e−iωt =

x̂Ex(x, y)e
−i(ωt±kz) and H(~r, t) = ŷHy(~r )e−iωt = ŷHy(x, y)e

−i(ωt±kz), then the lowest-

order mode is TEM, for which

Hy =

√

ǫo
µo
Ex , for wave travelling in + z direction,

Hy = −
√

ǫo
µo

Ex , for wave travelling in − z direction,

(2.7)

and Ex(x, y) = const, i.e. there is no field variation in x-direction [13]. Here, x̂, ŷ are

the unit vectors in the x- and y-directions. Quantity

η =
Ex

Hy
=

√

µo

ǫo
= 377Ω (2.8)
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Figure 2.3. TEM wave in a metal slab waveguide.

is referred to as “impedance of vacuum.” Conditions Hz = Ez = Ey = Hx = 0 hold inside

our slab waveguide. Since both Hz and Ez components along the propagation direction

z are zero, this mode is called the transverse electromagnetic, or TEM, wave. It is useful

to note that TEM wave does not have a cut-off. The next-order modes, TM1 and TE1,

both have cutoffs at λc = 2a, i.e do not propagate in slabs that are narrower than λ/2.

Now let us assume that at z = 0,

Ex(~r ) = E0 , (2.9)

and that the waveguide is short-circuited at z = h, where

Ex(~r ) = 0 . (2.10)
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In that case, the electric field is given by

Ex(~r ) = E1e
−ikz + E2e

ikz, (2.11)

i.e it consists of two waves counter-propagating in the slab. At z = h, the field evaluates

to

E1e
−ikh + E2e

ikh = 0 , (2.12)

and we have

E1 = −E2e
2ikh. (2.13)

From this, we have at z = 0:

Ex(~r ) = E2

(

1 − e2ikh
)

= E0 , (2.14)

i.e.

E2 =
E0

1 − e2ikh
. (2.15)

The corresponding magnetic field

Hy(~r ) = −E1

η
e−ikz +

E2

η
eikz

=
E2

η

[

eik(2h−z) + eikz
]

. (2.16)

At z = h

Hy(~r ) =
2E2

η
eikh, (2.17)
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and at z = 0

Hy(~r ) =
E2

η

[

1 + e2ikh
]

=
E0

η

1 + e2ikh

1 − e2ikh
= i

Ex(~r)

η tan(kh)
. (2.18)

In other words, the impedance at z = 0 is

Z =
Ex

Hy

= −iη tan(kh) . (2.19)

In Section 2.5, we will also need to analyze the situation where slab is excited by a

−z-travelling wave with Ex-field magnitude A0/
√
a. At z = 0, the slab is open-ended,

producing a reflected wave with amplitude (E0 −A0)/
√
a, where E0/

√
a is Ex-field mag-

nitude at z = 0, and the factor
√
a is the normalization by the slab width. Hy-field at

z = 0 is, therefore,

Hy = − A0

η
√
a

+
E0 − A0

η
√
a

=
1

η
√
a

(E0 − 2A0) . (2.20)

2.4 Scalar diffraction theory for a planar screen

We treat the problem of diffraction from the corrugated metal-nanoaperture using scalar

diffraction theory.

By the second Green’s theorem we have

∫ ∫

A

(G∇2Hy −Hy∇2G)dA =

∮

C

(

G
∂Hy

∂n
−Hy

∂G

∂n

)

dC, (2.21)

where ∂/∂n is a partial derivative in the outward normal direction at each point of the

curve C surrounding area A.
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If the scalar field Hy represents the amplitude of a harmonic light wave, then it sat-

isfies the Helmholtz equation (∇2 + k2)Hy = 0. From this, Kirchhoff-Helmholtz integral

theorem can be obtained with a proper choice of G , called the Green’s function [14],

defined as the solution of (∇2 + k2)G = δ(~r − ~r ′).

The integral theorem of Kirchhoff-Helmholtz finds the field at a point P0 in space as

a function of the field and its derivative on a closed curve (for 2D theorem) surrounding

that point. Goodman [14] only gives the Kirchhoff-Helmholtz formula for the 3D problem,

thus we need to derive the 2D formula for this theorem.

Since for Green’s theorem to work, both G(~r, ~r ′) and Hy(~r ) have to have continuous

0th, 1st and 2nd derivatives, area A should exclude point P0 with coordinate ~r ′ = ~r.

To do that, we surround point P0 with infinitesimally small circle Cǫ of radius ǫ, so that

area A is contained between C and Cǫ (see Fig. 2.4). Then, within A, left-hand side of

Eq. (2.21) is zero, and

∮

C+Cǫ

(

G
∂Hy

∂n
−Hy

∂G

∂n

)

= 0 . (2.22)

We are interested in using Eq.(2.22) for diffraction on a planar screen at z = 0, as in Fig

2.4. In what follows, we will show that Hy(~r ) in point P0 depends on Hy and ∂Hy/∂z

along the screen. Therefore, to eliminate ∂Hy/∂z (or Hy) from that equation, it makes

sense to choose G(~r, ~r ′) whose value (or value of its normal derivative, respectively)

vanishes on the screen. We choose the latter option (i.e. ∂G/∂n = ∂G/∂z′ = 0 at z = 0)

by using the following 2D Green’s function:

G(~r, ~r ′) = H
(1)
0 (k|~r − ~r ′|) +H

(1)
0 (k|~r ∗ − ~r ′|) , (2.23)
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where

~r ∗ = xx̂− zẑ ,

~r = xx̂+ zẑ . (2.24)

In these equations H
(1)
0 is a Hankel function describing cylindrical wave from a 2D point

source P0, and ~r ∗ is a coordinate of a point P ∗
0 , mirror image of P0 with respect to

the screen. Equation (2.23) describes two harmonic oscillators in phase with each other,

yielding field continuity across the screen face, with normal derivative being zero. (Note

that, to eliminate ∂Hy/∂z by setting G = 0 at z′ = 0 instead, we would have needed

to subtract the two Hankel functions in Eq. (2.23).) At the screen (z′ = 0), |~r − ~r ′| =

|~r ∗ − ~r ′|, therefore

∂G

∂n
=
∂G

∂z′

=

[

kH
(1) ′
0 (k|~r − ~r ′|) z

′ − z

|~r − ~r ′| + kH
(1) ′
0 (k|~r ∗ − ~r ′|) z′ + z

|~r ∗ − ~r ′|

]

z′=0

= 0 , (2.25)

where H
(1) ′
0 denotes the derivative of the Hankel function with respect to its argument.

The Green’s function on the plane of the screen (z′ = 0) is

G(~r, ~r ′) = 2H
(1)
0 (k|~r − x′x̂|) . (2.26)

Let us now evaluate

∮

Cǫ

(

G
∂Hy

∂n
−Hy

∂G

∂n

)

dCǫ . (2.27)
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Figure 2.4. Planar diffraction treated by scalar diffraction theory.

The first term after integration will be proportional to1

2πǫH
(1)
0 (kǫ) ≈ i4ǫ ln(ǫ) , (2.28)

whose limit is 0 for ǫ → 0. At the same time, the second term after integration becomes

Hy(~r )2πǫ
∂H

(1)
0 (kǫ)

∂ǫ
= Hy(~r )2πǫ

2i

πǫ
= 4iHy(~r ) . (2.29)

The integral over curve C includes integration over the screen (z′ = 0) and integration

over the semi-circle of radius R→ ∞. Assuming that we only deal with outgoing waves

on that semi-circle, Hy decreases at least as fast as a diverging cylindrical wave, making

1For x → 0, Hankel function of zeroth order, first kind, has asymptotic H
(1)
0 (x) = 1 +

i 2
π

[lnx + γ − ln z] + O(x2) + iO(x2 lnx), where γ = 0.57721566490153286061.
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the contribution of the semi-circle vanish at R → ∞, which is the Sommerfeld radiation

condition for 2D. Then,

∮

C+Cǫ

(

G
∂Hy

∂n
−Hy

∂G

∂n

)

dC = 4iHy(~r ) +

[
∫ +∞

−∞
G(~r, ~r ′)

∂Hy(~r
′)

∂z′
dx′

]

z′=0

= 4iHy(~r ) + 2ikcǫ0

∫ +∞

−∞
H

(1)
0 (k|~r − x′x|)Ex(x

′)dx′, (2.30)

where we used Eq. (2.6). Finally,

Hy(~r ) = − k

2η

∫ +∞

−∞
H

(1)
0 (k|~r − x′x|)Ex(x

′)dx′, (2.31)

where η =
√

µo/ǫo = 377 Ω.

2.5 Diffraction from a periodically corrugated structure

In the structure of Fig 2.2, the slit and each groove can be considered metal slab waveg-

uides supporting only the fundamental TEM mode. The incident TEM field is exiting

from a corrrugated output face. Then, for the plane z = 0, we obtain from Eqs. (2.19),

(2.20), and (2.31):

Ex(x) =
ik

2
tan(kh)

∫ +∞

−∞
H

(1)
0 (k|x− x′|)Ex(x

′) dx′ (for grooves) (2.32)

and

E0 = 2A0 −
k
√
a

2

∫ +∞

−∞
H

(1)
0 (k|x− x′|)Ex(x

′) dx′ (for slit), (2.33)
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where Ex(x) = 0 between the corrugations, and Ex(x) = Eα at the corrugation with

index α (slit has index α = 0). In other words,

Ex(x) =
∑

α

Eαφα(x), (2.34)

where

φα(x) =











1√
a

for x ∈ groove α,

0 elsewhere,
(2.35)

and

∫ +∞

−∞
φ∗

α(x)φβ(x)dx = δαβ (2.36)

for α, β ∈ [−N,N ]. By projecting Eqs. (2.32) and (2.33) onto φ∗
α(x) and integrating over

x , we obtain

(2A0 − E0) δα0 − i
Eα6=0

tan(kh)
=

k

2

∑

β

Eβ

∫ +∞

−∞

∫ +∞

−∞
φ∗

α(x)H
(1)
0 (k|x− x′|)φβ(x

′)dxdx′. (2.37)

By using the notation

Gαβ =
ik

2

∫ +∞

−∞

∫ +∞

−∞
φ∗

α(x)H
(1)
0 (k|x− x′|)φβ(x′)dxdx′, (2.38)

we rewrite conveniently the main equation as

(Gαα − ǫα)Eα +
∑

β 6=α

GαβEβ = 2iA0δα0, (2.39)
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where ǫα is defined as

ǫα =











−i , α = 0,

1
tan(kh)

, α 6= 0.
(2.40)

From this, we can write the total transmittance as

Ttotal =
|A0|2 − |E0 − A0|2

|A0|2
= 1 −

∣

∣

∣

∣

E0

A0

− 1

∣

∣

∣

∣

2

= 1 − R , (2.41)

where

R = |r|2 =

∣

∣

∣

∣

E0

A0

− 1

∣

∣

∣

∣

2

(2.42)

is the reflectance back into the slit waveguide, and

r =
E0

A0
− 1 (2.43)

is the amplitude reflection coefficient.

The lowest-order (fundamental) 1D Gaussian mode TEM0 has the form

g(x, z) = Gaussian(x, z) =

exp

{

−1
2

kx2

[ka2

0
−i(z−z0)]

}

4

√

πa2
0

[

1 + (z − z0)
2/(ka2

0)
2
]

, (2.44)

where a0 is the beam waist size also called the 1/e intensity radius, and z0 is the focal

position where this beam waist occurs. We assume the mode to be propagating in the

−z direction (for +z, replace k by −k), and to be normalized to 1:

∫ +∞

−∞
|g∗(x, z)|2dx = 1. (2.45)
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When considering coupling to the Gaussian mode TEM0, we write the coupling coefficient

as the overlap integral, with power transmission T as follows:

t = −η
∫ +∞
−∞ g∗(x, 0)Hy(x)dx

A0

, (2.46)

T = |t|2 = η2

∣

∣

∣

∫ +∞
−∞ g∗(x, 0)Hy(x)dx

∣

∣

∣

2

|A0|2
. (2.47)

Note that T +R + L = 1, where L is the loss due to coupling to higher-order modes.

We also note that, for the case of the incident wave with no corrugations (N = 0),

Equation (2.39) reduces to

E0 =
2iA0

G00 + i
, (2.48)

Eα6=0 = 0, (2.49)

so that

r =
2i

G00 + i
− 1, (2.50)

Ttotal = 1 − |r|2 =
4 Im(G00)

|G00 + i|2 . (2.51)

In the limiting case of ka≪ 1, we have G00 ≈ −ka
π

ln(ka) + ika
2

, and Ttotal ≈ 2ka.

2.6 Solutions

The solution to the integral equation can be written as a matrix equation, where we need

to solve for Eα (the fields at the faces of the grooves) from Eq. (2.39), where α, β indices
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are running from −N to + N through 0. This is a system of 2N + 1 linear equations

with 2N + 1 variables Eα. It can be written in matrix formulation as

G′Ex = Ein, (2.52)

where G′
αβ = Gαβ for α 6= β, and G′

αα = Gαα − ǫα, i.e.

























G−N,−N − ǫ−N . . . G−N,r G−N,+N

... . . . G−(N−1),r
...

Gk,−N
. . .

. . . Gk,N

... . . . Gs,s − ǫs
...

GN,−N . . . GN,r GN,N − ǫN

















































E−N

...

E−r

...

EN

























= 2iAo

























0

...

δ00
...

0

























. (2.53)

Equation (2.52) can be solved as

Ex = G′−1Ein . (2.54)

This system is solved for Ex using a computer inversion of G′. Then, one can calculate

the output emerging magnetic field as

Hy(~r ) = − 1

µ0c

∑

α

EαG(α,~r ), (2.55)

where

G(α,~r ) =
k

2

∫ +∞

−∞
H

(1)
0 (k|~r − x′x̂|)φ∗

α(x′) dx′. (2.56)
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From the previous equations, one can calculate total transmittance Ttotal using Eq. (2.41),

as well as the far-field intensity emission pattern I(θ) (to be discussed at the end of this

Section).

Computationally, in order to calculate coupling to a Gaussian mode, one first needs to

calculate Gαβ, then invert the matrix equation Eq.(2.53), and then compute the overlap

integral T . Calculation of Gαβ in x -domain requires taking a double integral. The same

operation can be performed in the spatial frequency domain, where it is reduced to a

single integral (convolution becomes product), but with a singularity inside:

Gαβ =
i

2π

∫ +∞

−∞

[

sin(y/2)

y/2

]2

eiy d
a
(α−β) dy

√

1 − (y/κ)2
, (2.57)

where

y = kxa, and κ = ka . (2.58)

Using spatial-frequency-domain expression for normalized Gaussian,

Gaussian(kx) = 4

√

4πa2
0 exp

{

− [ka2
0 − i(z − z0)] k

2
x

2k

}

, (2.59)

where the integral is normalized to 1, i.e.

∫ +∞

−∞
|Gaussian(kx)|2

dk

2π
= 1, (2.60)
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we obtain

t =
1

2πA0

4

√

4π
a2

0

a2

∑

α

Eα

∫ +∞

−∞

sin(y/2)

y/2

exp{−iy d
a
α− κ(a0/a)2+i[(z−z0)/a]

κ
y2

2
}

√

1 − (y/κ)2
dy. (2.61)

The computational difficulty of the integrals Eqs. (2.57) and (2.61) is in their sensitivity

to the step size near the singularity.

A more computationally attractive alternative in Gαβ calculation is in reducing the

double integral over x, x′ to a single integral still in the x -domain (by simplifying it

analytically), which is discussed in Section 3.1.

For Gaussian projection calculation, the most computationally efficient approach is

to use far-field (i.e r → ∞) asymptotic of Hy(~r ). For x → ∞, H
(1)
0 (x) →

√

2
πx
ei(x−π/4).

Assuming x = r sin θ, z = −r cos θ, we have

|~r − x′x̂| =
√

z2 + (x− x′)2 = r

√

cos2 θ + (sin θ − x′/2)2

= r

√

1 − 2
x′

r
sin θ +

(

x′

r

)2

(2.62)

≈ r − x′ sin θ for r → ∞ . (2.63)

Then, for r → ∞,

Hy(~r ) ≈ − k

2η

√

2

πkr
ei(kr−π/4)

∫ +∞

−∞
e−ik sin θ x′

Ex(x
′) dx′

= −1

η

√

k

2πr
ei(kr−π/4)Ex(kx) for kx = k sin θ , i.e. |kx| ≤ k . (2.64)
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The spatial-frequency representation of the electric field on the face of the metal nanos-

tructure is

Ex(kx) =

∫ +∞

−∞
e−ikxxEx(x)dx =

∑

α

Eαφα(kx)

=
∑

α

Eα

√
ae−ikxαd

[

sin (kxa/2)

kxa/2

]

. (2.65)

Using kx = k sin θ, we can now re-write the overlap integral over the angle θ in far field

as

t =

∫
π
2

−π
2

g∗(θ)HNorm
y (θ)dθ

A0

, (2.66)

where we have omitted the constant phase factor e−i[Φ(r)+π/4] with Φ(r) ≈ −π
2

being the

Gouy phase shift for the Gaussian beam.

The transmittance T is given by

T =

∣

∣

∣

∫ + π
2

−π
2

g∗(θ)HNorm
y (θ)

∣

∣

∣

2

|A0|2
. (2.67)

In Eqs. (2.66) and (2.67), the Gaussian profile is

g(θ) =
4

√

(ka0)2

π
eikz0 cos θe−(ka0θ)2/2 , (2.68)

with the sign convention such that z0 < 0 is in front of the corrugated side, and

HNorm
y (θ) =

√

ka

2π

sin[(ka sin θ)/2]

(ka sin θ)/2

∑

α

Eαe
−ikdα sin θ. (2.69)
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We note that

∫ π
2

−π
2

|g(θ)|2 dθ = 1 , (2.70)

and

∫ π
2

−π
2

∣

∣HNorm
y (θ)

∣

∣

2
dθ = |A0|2 Ttotal . (2.71)

The last equation comes from the fact that far-field intensity emission pattern

I(θ) =
r |Hy(~r)|2 η
|A0|2 Ttotal/η

=
ka

2

[

sin(kxa/2)

kxa/2

]2
∣

∣

∑

αEαe
−ikxαd

∣

∣

2

|A0|2 − |A0 −E0|2
, (2.72)

introduced in [1], is the ratio of the energy sent per unit angle θ in direction ~r to the

total energy |A0|2Ttotal/η emitted by the slit. I(θ) is normalized so that,

∫ π
2

−π
2

I(θ) dθ = 1 , (2.73)

as one can easily see from the no-corrugations, ka≪ 1, case, where |A0|2Ttotal = 2ka|A0|2,

E0 = −2A0, and I(θ) = 1
π

(uniform distribution). We see that

HNorm
y (θ) = lim

r→+∞

[

Hy(~r)
√
rη

]

. (2.74)



CHAPTER 3

OPTIMIZATION OF COMPUTATIONAL MODEL

The double integrals required to compute the problem are resolved into single integrals

through clever use of substitution rules and properties of special functions, as reported

in [11]. The details of the reductions are presented here.

We analytically integrate the Hankel function of the first kind and zero order H
(1)
0 (x)

near zero using its asymptotic expansion. This process removes stepping on a singularity

during integration and makes for a stable integral calculation.

3.1 Quasi-Green’s function Gαβ integral reduction

In what follows, the specific forms of the integrals are given, and 2D integrals are reduced

to 1D by variable transformation. In certain places, the singularity of the Hankel function

is eliminated by careful construction of the integral.

Gαβ =
ika

2

∫ α d
a
+ 1

2

α d
a
− 1

2

dy

∫ β d
a
+ 1

2

β d
a
− 1

2

dy′H
(1)
0 (ka|y − y′|)

=
ika

4

∫ p′+1−|z−p|

p′−1+|z−p|
dz′

∫ p+1

p−1

dz H
(1)
0 (ka|z|) , (3.1)

which yields

Gαβ =
ika

2

∫ p+1

p−1

(1 − |z − p|)H(1)
0 (ka|z|) dz (3.2)

with p = (α− β) d/a. We have 2 cases,

24
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1. p = 0, i.e. α = β:

G00 =
ika

2

∫ 1

−1

(1 − |z|)H(1)
0 (ka|z|) dz

= ika

∫ 1

0

(1 − z)H
(1)
0 (kaz) dz

= ika

∫ 1

0

(1 − z)[H
(1)
0 (kaz) − 2i

π
ln z +

2i

π
ln z ] dz , (3.3)

which yields

G00 = ika

∫ 1

0

(1 − z)[H
(1)
0 (kaz) − 2i

π
ln z ] dz − 3i

2π
, (3.4)

where function under the integral no longer has a singularity at z = 0.

2. p 6= 0, i.e. α 6= β:

Gαβ =
ika

2

∫ |p|

|p|−1

(1 + z − |p|)H(1)
0 (kaz) dz +

∫ |p|+1

|p|
(1 − z + |p|)H(1)

0 (kaz) dz , (3.5)

where no singularities are present, since |p| > 1 for any α 6= β.

3.2 Search order optimization

One useful optimization when carrying out search over large parameter spaces of various

values of N, d, and h, is the symmetry of the quasi Green’s function matrix G′. When

faced with solving G′Ex = Ein, we only need to compute G for various N, d. We

can simply reuse G for various depths h, because in matrix G′ only the main diagonal

elements change due to ǫα, so that G′ is simply recalculated for each h.
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Since profiling results on our code indicate that 90% of code execution time is spent on

the calculation of elements in the quasi Green’s matrix G, we obtain significant speedup

of the size of h-range (groove depth range) in large-scale parametric searches. This is

directly useful in our thesis problem, when we search for optimizing coupling parameters

over numerous geometries.

In calculating the Gaussian projection, we need to vary the waist position z0 to obtain

the maximum overlap. This is done after time-consuming calculation of the values of Eα,

so it can be very fast.



CHAPTER 4

SOLVER FOR METAL-NANOAPERTURE MODEL

The simulation programs are written using numerical programming language Matlab

(version 6, release 12). The solver is organized into a series of individual solver-functions

and a set of driver routines that compute angular emission patterns, transmission coeffi-

cient, and coupling coefficient to Gaussian mode. In this chapter, the organization of the

solver, description of the critical solver routines, validation of the solver routines, and

specific steps in the parametric search and optimization are explained.

4.1 Organization

The solver is created to compute only the E,H fields at the output face of the 1D

corrugated subwavelength metal-nanoaperture. To tackle this problem computationally,

we need to solve the equations described in Chapters 2 and 3.

4.1.1 Algorithm for computing the diffracted fields

To compute the E,H fields at output face of a corrugated subwavelength metal nanoaper-

ture, we complete the following steps:

1. Provide geometry details of the subwavelength structure. Typical values of the

parameters are similar to values in Fig. 1.1.

• N , number of grooves/indentations on either side of the central aperture

• h , depth of the groove/indentation

• a , central slit and groove width

• d , periodicity of grooves

27
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• λ , wavelength of the TM-field incident on nanoaperture.

2. Assume a normalized Ein incident electric field.

3. Compute the G matrix.

4. Solve for the electric field at slit face Ex = G′−1
Ein.

5. Compute the far-field intensity pattern I(θ).

6. Compute normalized far-field magnetic field HNorm
y (θ).

With these values, one has sufficient information to compute the coupling to a Gaussian

mode.

4.1.2 Solver functions

Separate functions are created corresponding to each step of the algorithm. Such func-

tions are listed below with their specific steps in the algorithm; a few other utility func-

tions are also listed below for computing coupling and transmission factors.

1. greens quasi 2d : computes the basic quasi greens matrix G.

2. greens matrix : corrects the greens matrix for ǫα factors in main diagonal, yielding

G′.

3. efield incident : generates an E-field vector Ein incident only on the central slit.

4. intensity far field : computes the far-field intensity distribution I(θ) of the light

emerging from the nanoaperture.

5. couplingtx slit2gaussian atface: compute the coupling to a 1D Gaussian mode TEM0,

loss (coupling to higher-order modes), and the reflection factor.

4.2 Accuracy

The accuracy of the solver was verified as follows. For a numerical simulation, it is critical

for us to ensure the results reported to be accurate, and reproducible. This section

explains how we validated the solver, the benchmarks used and necessary parameters.
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We have compared our results with [1] and with the transmission coupling values reported

by Vasilyev et al [2]. We have ensured that the computation of the integrals, and special

functions have a sufficient degree of accuracy.

4.2.1 Comparison with published literature

The first and most important validations of the solver come from matching comparisons

to results in the published works of Moreno [1] and Vasilyev [2].

To compare with [1], we solved the nanoaperture geometry with N = 10, a = 40 nm,

d = 500 nm, h = 100 nm used in [1] at resonant wavelength λ = 560 nm. The solver

generated the cases described in graphs below, reproducing Figs. 2–4 in [1].

1. Intensity emission patterns across the azimuthal plane

Intensity emission patterns I(θ) across the azimuthal angle θ for same geometry

at 2 different wavelengths of λ = 560 nm, 800 nm, are shown in Figs. 4.1 left

and right, respectively. Also the insets corresponding to the original paper are

reproduced in Figs. 4.2 and 4.3. These figures show the relative enhancement in

power at the output far-field. We compute data in Figs. 4.2 and 4.3 as Poynting

vectors normalized to the no-corrugation geometry, S(N=10,θ)
S(N=0,θ)

= I(N=10,θ)
I(N=0,θ)

, to show

enhancements in the field due to the presence of output corrugations.

2. Azimuthal intensity emission patterns across wavelengths

The maps of intensity emission patterns I(θ) across the azimuthal angle θ in the

wavelength range λ = 400−1100 nm for 3 different groove depths h = 10, 100, and

160 nm, given by Fig. 3 in [1], are reproduced exactly by our simulation, as shown

in Figs. 4.4–4.6.



30

Figure 4.1. Intensity emission patterns I(θ) across the azimuthal angle θ at wavelengths
(top) λ = 560 nm and (bot) λ = 800 nm for geometry N, h, d, a = {10, 100 nm, 500 nm,
40 nm}.
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Figure 4.2. Relative enhancement in emission spectrum in wavelength range 400–800 nm
due to corrugations, for geometry N, h, d, a = {10, 100 nm, 500 nm, 40 nm}.

3. Normalized electric field across the slits

Figure 4.7 shows |Eα/E0|, i.e. electric field normalized to peak field, versus the

groove number α for a fixed geometry and excitation at λ = 560 nm, 800 nm. This

reproduces Fig. 4 of Moreno [1].

These graphs match exactly with the published figures of Moreno [1]. This is one impor-

tant accuracy metric for a good confidence in the solver results.

The next check is comparison to the coupling coefficients reported by Vasilyev et

al [2] for the geometry N = 7, d = 500 nm, a = 40 nm, h = 100 nm, λ = 560 nm.

Coupling coefficients reported in the paper are: T = |t2|2 = 30% and R = |r2|2 = 40%,

T/L ≈ 1 for a Gaussian mode (TEM0) with focus position z0 = 7 µm from the face of

the film and beam waist size a0 = 1.4 µm. Our calculations also compare exactly with
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Figure 4.3. Relative enhancement in intensity emission pattern due to presence of cor-
rugations, across azimuthal angle θ at (top) λ = 560 nm, (bottom) λ = 800 nm for
geometry N, h, d, a = {10, 100 nm, 500 nm, 40 nm}.
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Figure 4.4. Azimuthal intensity emission patterns I(θ) for various wavelengths, for ge-
ometry N, h, d, a = {10, 10 nm, 500 nm, 40 nm}.

the reported transmission, reflection and transmission-to-loss ratio factors. This is the

other important validation for the solver.

4.2.2 Numerical accuracy

Accuracy in computing special functions, and integrals contributes to the overall ac-

curacy of the final transmission and coupling parameters. Careful optimization of the

multiple integrals in Chapter 3 solves much of the problem, especially computing near

singularities. Remaining computations are easily done using available routines, or well

known algorithms. The Hankel function are built-ins of the Matlab numerical package

used for simulations, and they consume the longest time in the calculation. We use

trapezoid integration formulas, which require ≈ 50 points for integrals (3.4), (3.5) and

≤ 1000 points for calculating far field emission patterns and coupling to Gaussian mode.
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Figure 4.5. Azimuthal intensity emission patterns I(θ) for various wavelengths, for ge-
ometry N, h, d, a = {10, 100 nm, 500 nm, 40 nm}. Observe the peak value of intensity
around 3.5, which is ≈ 10 times the minimum, at λ = 560 nm.

4.3 Parametric search and optimization of transmission coupling

An important contribution of this thesis is the parametric search for a geometry and a

Gaussian mode waist position that ensures a good coupling T > 30% to the Gaussian

mode. This parametric search is the focus of the simulations in this thesis work. The

parameters to be optimized for coupling to the Gaussian mode (TEM0) are the geometry

of the structure, wavelength and waist position of the Gaussian mode.

We run a parametric search over the problem space given by groove number N =

[0 : 16], groove period d = [200 : 50 : 1000] nm, groove depth h = [10.1 : 2 :

(λ/4 + 5)] nm, and wavelength λ = [200 : 5 : 1000] nm. This translates into 17 ×

17 × ∑1000
λ=200, step 5 length [10.1 : 2 : (λ/4 + 5)] = 17 × 17 × 11743 = 3,393,727 cases of

various geometries and wavelengths, for which we solve the problem.
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Figure 4.6. Azimuthal intensity emission patterns I(θ) for various wavelengths, for ge-
ometry N, h, d, a = {10, 160 nm, 500 nm, 40 nm}.

Figure 4.7. Relative field amplitudes |Eα/E0| versus indentation number α at λ =
560 nm, λ = 800 nm for N, h, d, a = {20, 100 nm, 500 nm, 40 nm}.
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The Gaussian mode coupling is computed in the post-processing stage, for the given

scattered fields at the geometry and wavelength of TM-polarized light incident on it.

Here we try to vary the waist position of the Gaussian beam over a specified range

−2ka2
0 · · · + 2ka2

0 with 161 steps, keeping the waist size at the minimum ∼ 1.4 µm

achievable in a practical small-core single-mode fiber. The program searches for peak

transmission coupling coefficients above 30% value reported by Vasilyev [2].



CHAPTER 5

RESULTS OF METAL-NANOAPERTURE SIMULATIONS

The running times of the programs increase in direct proportion to N , the number of cor-

rugations in the geometry, as we solve for a 2N+1 size matrix. The most time consuming

part of the computation turns out to be filling the G′ matrix, which is consequently due

to computing the Hankel function. But the optimized solver takes very little time and

can process all the geometries for the transmission coupling search within several hours

on a standard PC.

Improving the T/L ratio is of interest when the subwavelength nanocavity is used as

an open-ended waveguide resonator embedded with an active emitter, e.g. a quantum

dot. Value of T/L ≈ 1 was reported by Vasilyev [2]. Our optimization seeks to increase

the value of this ratio. Under a perfect-metal assumption, all light reflected back at the

nanoaperture-air interface is available for reuse in the nanocavity, i.e is not lost. So we

only have to be concerned with Gaussian mode (TEM0) coupling, and reduce the losses

to higher-order modes, which are irreversible. A large T/L ratio indicates that most of

the light is coupled to the Gaussian mode of interest, rather than to the higher-order

modes.

5.1 Optimization of T and T/L metrics with a fixed beam waist

In this round of simulations, we use the same Gaussian waist size a0 = 1.4 µm for all

wavelengths.

We report larger values of T/L up to 1.67 for a geometry with depth h = 206 nm,

number of grooves N = 4, period d = 800 nm, slit width a = 40 nm, at wavelength

37
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λ = 1000 nm coupled to a fundamental Gaussian mode with waist a0 = 1.4 µm, and

focus position z0 = 6773.27 nm. For this geometry, T = 0.22066.

The peak transmission coupling of T = 0.351 was found for geometry with depth

h = 32.1 nm, number of grooves N = 16, period d = 250 nm, slit width a = 40 nm, at

wavelength λ = 265 nm when coupled to a fundamental Gaussian mode with same waist,

but focus position optimized to z0 = 39501.1 nm. For this geometry, T/L = 0.84382.

The summary of the searches is documented in Tables 5.1 and 5.2, and is also charted

for convenience in Fig. 5.1. The general trend of the data shows an increase of the

metrics with the number of grooves, saturating after N ≈ 3 . . . 8. The dependence of T

and T/L metrics on wavelength λ and groove period d is also analyzed in Figs. 5.2 and

5.3, respectively.

These simulations were carried out with step in wavelength λ of 5 nm and step

in period d of 50 nm. Thus, for a given wavelength, T or T/L can be maximized,

primarily, by changing the period d. Since step in period is coarse compared to the step

in wavelength, we see oscillations with period of 50 nm in Fig. 5.2, which indicate that,

for some wavelengths (minima), the geometry is not optimum owing to an unsuitable d.

Optimum d is typically less than (0.8 − 0.9)λ, which explains sharp roll-off at large d in

Fig. 5.3, because the high end of d seems to be too large for given wavelength range.

The general observations from the simulations seem to suggest a trade-off between a

larger T and a larger T/L, by the choice of geometry and wavelength. One can easily

see that T is maximized at short-wavelength end, whereas T/L is maximized at the

long-wavelength end of the range. A rapid increase in T/L with λ can be explained

by the fact that the size of the beam waist a0 in this run did not depend on λ. Thus,

the angular spread of the long-wavelength Gaussian beams was wider, thereby capturing

larger portion of the emitted light. In order to model the realistic scenario where far-field



39

Figure 5.1. (Top) Optimum transmission coupling factor T , (bottom) optimum trans-
mission to loss ratio T/L, as functions of the number of grooves N .
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Figure 5.2. (Top) Optimum transmission coupling factor T , (bottom) optimum trans-
mission to loss ratio T/L, as functions of the number of grooves N and wavelength λ.
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Figure 5.3. (Top) Optimum transmission coupling factor T , (bottom) optimum trans-
mission to loss ratio T/L, as functions of the number of grooves N and groove period
d.
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Table 5.1. Peak values of transmission coupling T to TEM0 Gaussian mode, at the
optimum combination of number of grooves N , wavelength λ, groove period d, groove
depth h, and Gaussian-mode focus position z0, with waist set at a0 = 1.4 µm.

Maximized transmission coupling T
N λ (nm) d (nm) h (nm) T T/L Ttotal z0 (nm)
0 200 200 10.1 0.00058 0.84326 0.000696 -4.41786
1 1000 350 218.1 0.155 0.55973 0.382 307.876
2 745 600 148.1 0.205 0.43228 0.898 0
3 590 500 110.1 0.247 0.53667 0.853 1043.65
4 515 450 90.1 0.279 0.58595 0.909 2391.27
5 450 400 74.1 0.3 0.63006 0.908 4105.01
6 445 400 72.1 0.315 0.6464 0.948 6918.56
7 330 300 48.1 0.327 0.74146 0.788 7463.66
8 330 300 48.1 0.335 0.74426 0.82 11195.5
9 325 300 46.1 0.34 0.7788 0.774 11367.7
10 325 300 46.1 0.344 0.78025 0.787 16104.3
11 325 300 46.1 0.346 0.783 0.791 19893.5
12 325 300 46.1 0.347 0.78567 0.79 23682.8
13 265 250 32.1 0.348 0.83936 0.708 22074.1
14 265 250 32.1 0.349 0.84024 0.711 27883.1
15 265 250 32.1 0.35 0.84189 0.712 33692.1
16 265 250 32.1 0.351 0.84382 0.713 39501.1

size of Gaussian mode is constant for all λ, but the beam waist is proportional to λ, we

have performed another optimization run presented in Section 5.2.

5.2 Optimization of T and T/L metrics with a scaled beam waist

In this run of simulations, we choose a0 = 1.4 µm at λ = 560 nm and scale a0 propor-

tionally to λ for all other wavelengths, i.e. a0(λ) = 1.4 µm × λ/(560 nm).

The peak transmission of T = 0.407 takes place for depth h = 30.1 nm, number of

grooves N = 14, period d = 200 nm, slit width a = 40 nm, wavelength λ = 225 nm, and

z0 = 9056.62 nm. For this geometry, T/L = 1.036.
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Table 5.2. Peak values of transmission coupling to loss ratio T/L for TEM0 Gaussian
mode, at the optimum combination of number of grooves N , wavelength λ, groove period
d, groove depth h, and Gaussian-mode focus position z0, with waist set at a0 = 1.4 µm.

Maximized transmission to loss ratio T/L
N λ (nm) d (nm) h (nm) T/L T Ttotal z0 (nm)
0 200 200 10.1 0.84326 0.00058 0.000696 -4.41786
1 1000 700 212.1 0.868 0.140276 0.30185 0
2 1000 750 210.1 1.48 0.191541 0.3212 923.628
3 1000 800 206.1 1.66 0.213802 0.34223 3386.64
4 1000 800 206.1 1.67 0.22066 0.35318 6773.27
5 990 800 204.1 1.62 0.222854 0.36033 8085.63
6 1000 800 206.1 1.61 0.214094 0.34692 7696.9
7 1000 800 206.1 1.63 0.216476 0.34927 7696.9
8 985 800 202.1 1.62 0.223162 0.36052 9064.37
9 1000 800 206.1 1.62 0.215276 0.34823 7696.9
10 1000 800 206.1 1.62 0.2157 0.34868 7696.9
11 985 800 202.1 1.62 0.222665 0.36 9064.37
12 1000 800 206.1 1.62 0.215546 0.34849 7696.9
13 1000 800 206.1 1.62 0.215587 0.34853 7696.9
14 1000 800 206.1 1.62 0.215525 0.34849 7696.9
15 1000 800 206.1 1.62 0.215574 0.34852 7696.9
16 1000 800 206.1 1.62 0.215544 0.3485 7696.9

The peak T/L = 1.134 occurs for h = 164.1 nm, N = 13, d = 750 nm, a = 40 nm,

λ = 850 nm, and z0 = 30876 nm. For that geometry, T = 0.239.

The optimum values of T and T/L for scaled a0 are shown in Tables 5.3 and 5.4. The

global peak T and T/L values are plotted as functions of the number of corrugations

N in Fig. 5.4. Graphs showing optimum T and T/L values as functions of wavelength

λ and groove period d are reported in Figs. 5.5 and 5.6, respectively. A saturation in

T/L values at longer wavelengths, or longer groove periods, is seen from Figs. 5.5 and

5.6. The fact that T/L stabilises at longer wavelengths is more relevant to the practical

situation, as was explained in the previous Section 5.1. This concludes our results for

this thesis.
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Table 5.3. Peak values of transmission coupling T to TEM0 Gaussian mode, at the
optimum combination of number of grooves N , wavelength λ, groove period d, groove
depth h, and Gaussian-mode focus position z0, with a scaled beam waist.

Maximized transmission coupling T
N λ (nm) d (nm) h (nm) T T/L Ttotal z0 (nm)
0 200 200 10.1 0.0646 0.083 0.84326 0
1 280 200 50.1 0.179 0.3768 0.65325 0
2 250 200 40.1 0.277 0.6385 0.71049 0
3 240 200 36.1 0.341 0.8622 0.73555 706.858
4 235 200 34.1 0.376 0.9916 0.75492 1614.97
5 230 200 32.1 0.394 1.04 0.77363 2709.62
6 230 200 32.1 0.4 1.046 0.78314 4290.24
7 225 200 30.1 0.402 1.009 0.79992 5522.33
8 225 200 30.1 0.404 1.012 0.80397 7510.37
9 225 200 30.1 0.405 1.02 0.8027 8393.94
10 225 200 30.1 0.405 1.025 0.79953 8614.84
11 225 200 30.1 0.405 1.029 0.79794 8614.84
12 225 200 30.1 0.406 1.032 0.79842 8614.84
13 225 200 30.1 0.407 1.035 0.7996 8835.73
14 225 200 30.1 0.407 1.036 0.80011 9056.62
15 225 200 30.1 0.407 1.034 0.79983 9056.62
16 225 200 30.1 0.406 1.033 0.79943 8835.73
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Figure 5.4. Scaled waist case, (top) optimum transmission coupling factor T , (bottom)
optimum transmission to loss ratio T/L, as functions of the number of grooves N .
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Figure 5.5. Scaled waist case, (top) optimum transmission coupling factor T , (bottom)
optimum transmission to loss ratio T/L, as functions of the number of grooves N and
wavelength λ.
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Figure 5.6. Scaled waist case, (top) optimum transmission coupling factor T , (bottom)
optimum transmission to loss ratio T/L, as functions of the number of grooves N and
groove period d.
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Table 5.4. Peak values of transmission coupling to loss ratio T/L for TEM0 Gaussian
mode, at the optimum combination of number of grooves N , wavelength λ, groove period
d, groove depth h, and Gaussian-mode focus position z0, with a scaled beam waist.

Maximized transmission to loss ratio T/L
N λ (nm) d (nm) h (nm) T/L T Ttotal z0 (nm)
0 200 200 10.1 0.083 0.0646 0.84326 0
1 730 500 150.1 0.3884 0.105 0.37436 0
2 960 750 198.1 0.6731 0.136 0.33794 942.478
3 965 800 196.1 0.9077 0.173 0.36314 2842.16
4 945 800 190.1 1.056 0.197 0.38373 6494.26
5 985 850 198.1 1.122 0.205 0.38841 11604.3
6 920 800 182.1 1.134 0.222 0.41696 17160.9
7 855 750 166.1 1.127 0.237 0.44732 21824.3
8 855 750 166.1 1.122 0.238 0.44937 26021.2
9 850 750 164.1 1.119 0.239 0.45263 29207
10 850 750 164.1 1.121 0.238 0.44963 30041.5
11 850 750 164.1 1.127 0.237 0.44828 30041.5
12 850 750 164.1 1.132 0.238 0.4489 30041.5
13 850 750 164.1 1.134 0.239 0.44994 30876
14 850 750 164.1 1.133 0.239 0.45022 30876
15 850 750 164.1 1.131 0.239 0.44988 30876
16 850 750 164.1 1.131 0.239 0.4496 30876



CHAPTER 6

CONCLUSION

In this thesis we have shown theoretically the method to optimize the transmission cou-

pling to a Gaussian mode from a 1D sub-wavelength metal nanoaperture surrounded by

periodic corrugations. We have characterized the effect of various parameters on the

transmission coupling factor T and transmission coupling to loss ratio T/L. We have

optimized the values of the parameters of metal nanostructure, such as number of corru-

gations, groove depth, and groove periodicity, to find maximum T and T/L for a given

wavelength.

We have achieved optimum T = 0.35 and T/L = 1.67 for a Gaussian beam with waist

size a0 = 1.4 µm independent of the wavelength, as well as T = 0.4 and T/L = 1.13 for

that with beam waist size linearly proportional to the wavelength.

The future work is to use these results to realize a single-photon source with high

coupling efficiency to an optical fiber.
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APPENDIX A

SURFACE PLASMONS
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A.1 OVERVIEW OF SURFACE PLASMONS

The surface plasmons are bound waves created at the metal-dielectric interface, when

excited by TM-polarized light. They exist as bound waves because of a momentum

mismatch at the boundary with respect to the corresponding wave propagating in air.

We will start by considering Drude model of metal conductivity [13]. Drude model

yields metal permittivity

ǫ = ǫ1 − i
ε

ωǫ0
, (A.1)

where ǫ1 represents the contribution of bound electrons, and

σ =
σ0

1 + iω/ν
, (A.2)

with ν being the frequency of collisions between the electrons and the lattice, and σ0 =

nee
2/(mν) being the DC value of the conductivity (ne—concentration of the electrons,

whereas e and m are electronic charge and mass, respectively). Collision frequency ν is

related to electron mobility µ = e/(mν). Thus, Equation (A.1) can be rewritten as

ǫ = ǫ1 −
nee

2

mǫ0(ν2 + ω2)
− i

nee
2ν

mǫ0ω(ν2 + ω2)

= ǫ′ − iǫ′′ = (n− iκ)2, (A.3)

ǫ′ = n2 − κ2, (A.4)

ǫ′′ = 2nκ2. (A.5)

For typical metals, we have ǫ′ < 0.

The nature of the plasmonic waves is such that the electric fields decay along the

direction of propagation in the surface as e−αz/2, where the attenuation constant is given



52

Figure A.1. A schematic of the surface plasmon generation in metal-dielectric interface .

by α ≈ 4πn/(κ3λ) for n ≪ κ, typical for good conductors. In contrast to that, a

conventional electromagnetic wave propagating into the absorbing medium with κ ≪ n

is attenuated with α = 4πκ/λ.

The plasmon has a propagation constant given by

β =

√

ǫdǫ′

ǫd + ǫ′
ω

c
, (A.6)

where ǫd is the permittivity of the dielectric above the metal surface. Plasmon attenuation

factor is

α =
ǫ
3/2
d ǫ′′

√

ǫ′ (ǫd + ǫ′)3

ω

c
, (A.7)

and the plasmon resonance takes place at ǫd = −ǫ′.

Now, we can consider several limiting cases.



53

• Free-electron plasma:

If ν = 0 (no collisions), we have σ = −inee
2/(mω), and

ǫ = ǫ′ = ǫ1 −
nee

2

mǫ0ω2
= ǫ1 −

(ωp

ω

)2

, (A.8)

where ωp =
√

nee2/(mǫ0) is the plasmon frequency. In free-electron plasma, ǫ1 = 1

and

ǫ = 1 −
(ωp

ω

)2

. (A.9)

For ω < ωp, ǫ = ǫ′ < 0, therefore we have limited 1/e field penetration depth

δ into the metal. For ω ≪ ωp, we have an almost perfect conductor, where δ ≈
√

m/(µ0nee2) = c/ωp is small.

Free-electron plasma is a good approximation for pure crystal metals at low

temperatures, as well as for superconductors at near-zero temperatures and h̄ω < ∆

(where ∆ is the energy gap in electron fluid spectrum).

Note that for vacuum-plasma interface, the plasmonic resonance takes place at

ǫ = −1, i.e. at ω = ωp/
√

2.

• Low frequency (DC and RF) case:

If ν 6= 0, but σ0 ≫ ωǫ1ǫ0, i.e ω ≪ ω2
p/(ǫ1ν), as well as ω ≪ ν, then

ǫ ≈ −i σ0

ωǫ0
. (A.10)

This, again, means exponential attenuation of the wave over skin depth δ =
√

2
ωµ0σ0

= c
ωp

√

2ν
ω

. Such material is referred to as good conductor. Please note
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that penetration depth in this case is
√

2ν
ω

times greater than that for free-electron

plasma, i.e plasma is a better conductor than a good conductor.
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