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ABSTRACT

POWER CONTROL AND MULTI-TARGET IDENTIFICATION IN COGNITIVE

WIRELESS NETWORKS

Publication No.

Hong-Sam Thi Le, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Qilian Liang

Recent research results have shown that cognitive wireless networks (CWN) have

the potential to alleviate spectrum scarcity problem resulting from current policies for

radio resource allocation management and dramatically improve the overall performance

of communication systems. Unlike conventional wireless networks, which lack the flexi-

bility and adaptation in their operations, CWNs exploit cognitive radio technology which

provides cognitive wireless devices with the ability to sense the situation, adapt to the

environment and take appropriate actions correspondingly.

There have been many challenges in building a fully functional CWN. New develop-

ments and approaches need to be proposed to allow radio users to share primary licensed

spectrum without harming the primary users. This thesis aims to address the problem of

transmit power control in the scenario of spectrum sharing. We design a transmit power

control system using Fuzzy Logic System to provide cognitive radios with the ability

to coexist with primary (licensed) users in the same frequency band. With the built-in

fuzzy power controller, a cognitive radio is able to opportunistically adjust its transmit

power in response to the changes of the interference level to primary user (PU), the dis-

tance to PU and its received power difference at the base station (BS) while satisfying
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the requirement of sufficiently low interference to PU. We increase the reliability of our

power control scheme by using linguistic knowledge of transmit power control (TPC)

obtained from a group of network experts. The outcome of this study show that the

proposed fuzzy power control scheme leads to significant performance improvement in

average transmit power consumption and average outage probability compared with the

fixed-step power control scheme.

A new application of CWNs may be found in radar sensor networks wherein cog-

nitive radios act as cognitive radars. Our key purpose is to deal with multiple targets

within a required surveillance region in a robust and cost-effective manner. Thus, we fo-

cus on the problem of jointly classifying and identifying multiple targets in radar sensor

networks where the maximum number of categories and the maximum number of targets

in each category are obtained a priori based on statistical data. The actual number of

targets in each category and the actual number of target categories being present at any

given time are assumed unknown. We then propose a joint multi-target identification

and classification (JMIC) algorithm for radar surveillance using cognitive radars. The

existing target categories are first classified and the targets in each category are then

identified. We also show that the proposed JMIC algorithm is a well-suited approach to

surveillance activities in the future cognitive radar sensor networks.
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CHAPTER 1

INTRODUCTION

1.1 Cognitive Wireless Networks

Cognitive wireless networks have generated a great deal of interest recently as newly

emerging technologies that are very likely to be implemented in next generation wireless

networks. The positive aspect of using cognitive wireless networks is the ability to sense

and automatically adapt to the environment, recognize and wisely process all collected

information received at receivers. To ensure competitiveness of cognitive wireless net-

works in the next few years and beyond, further enhancement in technologies needs to

be considered. A continued evolution and optimization of new developments, approaches

and applications is also necessary in order to maintain competitiveness in term of both

performance and cost.

This thesis is written in an effort to introduce two applications of cognitive wireless

networks. The first application is cognitive wireless network in connection with cognitive

radio technology. A new power control scheme is proposed to allow cognitive radios to

use any available licensed spectrum without infringing upon the rights of primary users or

operate in a reliable and efficient manner without causing harmful interference to licensed

operations. The second application is cognitive radar sensor network wherein cognitive

radios work as cognitive radars. A new algorithm is presented to address the problem

of jointly classifying and identifying multiple targets in radar sensor networks where the

maximum number of categories and the maximum number of targets in each category

are obtained a priori based on statistical data. However, the actual number of targets

in each category and the actual number of target categories being present at any given

time are unknown. We will provide a brief introduction for each application as follows.
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1.1.1 Cognitive Radio Networks

1.1.1.1 The Motivation for Cognitive Radio

There are many factors that motivate the evolution and deployment of cognitive

radio technology applications. Major factors can be summarized as follows.

First and foremost, recent research projects have clearly shown that the current

usage of the radio spectrum is severely inefficient. Most of the assigned channels are only

occupied for a short duration of time while the demand for communications coming from

unlicensed users is high. Since radio spectrum is a valuable public resource, the fact that

some licensed users own the spectrum that they do not use is not desirable. Therefore, it

becomes increasingly imperative to search for an efficient solution to solve the problem

of unallocated spectrum scarcity as well as the problem of inefficient usage of allocated

spectrum.

Besides, the ability to move the operations of a radio in all frequency bands is very

enticing to public users. Thus, an implementation of a new device that allows these users

to have dynamic use of the spectrum has become necessary. This device must know all

the the rules in each frequency band and be able to adjust its transmission parameters

in response to these rules.

In addition to technical factors as mentioned above, economic factors also have

some effects on the motivation for cognitive radios. Capital investment on a new unused

spectrum is sometimes too high for investors to receive licensed allocations in a particular

geographic area while it is not likely that significant economic profits can be made on

new applications in this spectrum. As a result, investors tend to focus their investments

on low-cost equipments and the larger, more profitable marketplaces.

Last but not least, the current state-of-the-art advance in radio technology has

promisingly shown that it is possible to implement a practical cognitive radio in various

wireless applications at a reasonable cost. These cognitive radios will have the ability to

work on any available frequency spectrum and intelligently adapt to their environment.
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1.1.1.2 Cognitive Radio Definitions

Cognitive radios are intelligence cell phones or smart radios that have the ability to

operate at variable data transmission rates, various modulation formats, different channel

coding schemes and transmit power levels. Unlike regular radios, cognitive radios can

adjust their transmitter parameters in any given channel situation based on interactions

with the surrounding environment. It is noted that the power of a cognitive radio lies in

its cognition. A cognitive radio can make intelligent decisions on how and when to utilize

a particular part of a spectrum or the whole spectrum for communications. In order to

have a reliable and efficient communication, a cognitive radio should be built to do the

following tasks:

• Stay tuned to any available channel in all possible frequency bands.

• Establish and perform network communications.

• Implement channel sharing and power control protocols.

• Employ adaptive transmission bandwidths, data rates, and error correction schemes

to obtain the best possible throughput.

• Implement adaptive antenna steering to focus transmitter power in a required di-

rection to optimize received signal strength.

In term of conceptual forms, cognitive radio can be classified as “Full Cognitive

Radio” and “Spectrum Sensing Cognitive Radio” [15]. In full cognitive radio, every

possible parameter is observed for a decision on transmission and/or parameter change

while in spectrum sensing cognitive radio, only the RF spectrum is considered.

It is also noted that in order to be able to dynamically use the spectrum, a cognitive

radio incorporates four capabilities which can be listed as follows [5], [37].

• Flexibility : The waveform and the configuration of a cognitive radio can be change-

able.

• Agility : A cognitive radio can change the frequency band in which it will operate.
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• Sensing : A cognitive radio can observe the state of the system and self-aware of its

environment.

• Networking : Communications can take place between multiple nodes. Networking

enables interactions which may be useful for sensing to obtain a better understand-

ing of the environment from the combination of many measurements or useful for

adaptation to make a better decision on using the spectrum over an individual

radio.

1.1.1.3 The Challenges to Cognitive Radio Network Deployment

Cognitive radio is a newly emerging technology which has a very short history.

Many research projects needs to be done to make this technology really mature and

become real applications in next generation wireless networks. That is, many technical

hurdles have to be overcome before cognitive radios can be commercially deployed.

The challenges may come from the implementation of cognitive radios since cog-

nitive hardware and software platforms should be developed in connection with new

concepts and algorithms. Protocol and architecture designs also need to be studied.

In addition, experimental measurements and deployments are very necessary to ensure

successful operations for cognitive radios.

The specification of the protocols and etiquettes is another challenge for technicians

and regulators. The regulators have the responsibility to specify how users are allowed to

use a spectrum. They need to be assured that protocols are robust under all conditions,

and that cognitive radios follow the regulatory policy and create no harmful interference

to primary users. Besides, it is still unclear whether we can assure that device failure will

cause no great impact on the primary licensed networks. However, we can admit that

success in cognitive radio deployment will lead to significant improvements in spectrum

efficiency and bring a fundamental change to the global radio spectrum allocation in the

future.
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1.1.2 Cognitive Radar Sensor Networks

1.1.2.1 The Motivation for Cognitive Radar

In radar sensor networks, a radar is able to locate a target such as a ship or a aircraft

by obtaining information about the azimuth and elevation of the target. However, when

a radar has to deal with multiple targets, determining the ranges of all targets at the

same time is not an easy task.

A sequence of position estimates may be used to estimate the velocity of a target.

It is also expected that the ability of extracting information about the changes of velocity

of multiple targets is a step toward the evolution of radar technology.

Nowadays, providing a powerful multiple target identification capability for mili-

tary applications is widely recommended. Features of multiple targets should be wisely

collected and many complex neural computations need to be implemented. This means

that a radar must learn to be cognitive. As mentioned by Haykin in [43], to be cognitive,

a radar must be able to “learn from continuing interactions with the environment and

intelligently use the information extracted by the receiver on targets under surveillance,

all of this being done on-the-fly during the different phases of the target-track sequence.”

1.1.2.2 Cognitive Radar Definition

A definition of cognitive radar reported by Haykin can be found in [43] as follows:

“Cognitive radar is an intelligent system that is aware of its surrounding environ-

ment (i.e., outside world), uses prior knowledge as well as learning through continuing

interactions with the environment, and thereby adapts both its receiver and transmitter

in response to statistical variations in the environment in real-time so as to meet specific

remote-sensing objectives in an efficient, reliable, and robust manner.”
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1.1.2.3 The Challenges to Cognitive Radar Network Deployment

A network of cognitive radars is critically important to relax the requirements

of intensive computations on a single cognitive radar, improve the reliability of any

information processing and speed up the adaptation process of cognitive radars.

Although a network of cognitive radars looks very promising, we can see that many

technical issues currently remain unaddressed to guarantee the integrity, efficiency and

reliability of the network. Many challenges need to be get over before cognitive radar

networks can be implemented for practical surveillance purposes.

1.2 Thesis Organization

This thesis is organized as follows.

Chapter 1 covers the brief introduction of cognitive wireless networks. Cognitive

radio networks and cognitive radar networks are then introduced in term of motivations,

definitions and challenges.

Chapter 2 describes the scenario in which cognitive radios must follow a particular

transmit power control scheme to coexist with primary licensed users in the same fre-

quency band without violating the rights of these users. We then propose a fuzzy power

controller for cognitive radios. With this fuzzy controller, a cognitive radio is able to

opportunistically adjust its transmit power in response to the changes of the interference

level to primary user (PU), the distance to PU and its received power difference at the

base station (BS) while satisfying the requirement of sufficiently low interference to PU.

Simulation is implemented to obtain the average transmit power increase and the average

outage probability. Simulation results show that using the proposed fuzzy power control

scheme, we can decrease average transmit power consumption and achieve lower average

outage probability compared with the fixed-step power control scheme.

Chapter 3 investigates the problem of jointly classifying and identifying multiple

targets in radar sensor networks where the maximum number of categories and the max-
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imum number of targets in each category are obtained a priori based on statistical data.

However, the actual number of targets in each category and the actual number of target

categories being present at any given time are unknown. It is assumed that a given target

belongs to one category and one identification number. The target signals are modeled

as zero-mean complex Gaussian processes. We propose a joint multi-target identification

and classification (JMIC) algorithm for radar surveillance using cognitive radars. The

existing target categories are first classified and then the targets in each category are

accordingly identified. Simulation results are presented to evaluate the feasibility and

effectiveness of the proposed JMIC algorithm in a query surveillance region.

Finally, chapter 4 completes this thesis with a brief summary of contributions and

future works to facilitate cognitive radios and cognitive radars to fulfill their potentials

and become recognized and successful in industry.



CHAPTER 2

EFFICIENT POWER CONTROL SCHEME IN
COGNITIVE RADIO NETWORKS

2.1 Introduction

Cognitive radio [26] has been considered as an efficient approach to opportunistic

spectrum sharing between primary (licensed) users and cognitive radio users. However,

in order to have such opportunistic spectrum sharing, cognitive radio must be able to

intelligently adapt to the behavior of primary user (PU). If PU vacates its frequency band,

a cognitive radio or secondary user (SU) which is sensing will know and, if necessary,

occupy this band to transmit signals. While doing transmission, the SU still has to

sense unused frequency bands and detect when the PU reclaims its band. There are two

options for the SU when the PU reclaims its band [29]: (1) the SU will free the band

and jump to another available spectrum band, and (2) the SU still stays in this band

altering its transmit power to avoid harmful interference to the PU. Given these options,

we may have the following question: Is it necessary for the active SU to immediately

jump to another available frequency band when the PU reclaims transmission? We

can easily figure out that with an immediate frequency jumping, SU communication is

unexpectedly interrupted. The SU will have to wait to be assigned a new frequency band

to continue its transmission session. Obviously, this takes time and hence degrades the

secondary system performance. On the other hand, without immediate jumping, the

SU will still stay in the frequency band and adjust its transmit power without creating

harmful interference to the PU. This option leads to the following questions: How will the

SU adjust its transmit power? What is the opportunistic transmit power control (TPC)

scheme for the SU in this case? This thesis will give answers to the above questions.

8
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Notably, under the constraint that no excessive interference to the PUs is generated,

TPC decision-making for SUs is still a daunting task when efficient communications of

PUs as well as SUs are taken into consideration. Studies on TPC are progressing to

investigate the best scheme for a workable SU system. In [28], game theory has been

used to alter SU power level but no clear explanation has been given about choosing

appropriate objective function to model the situation [1] wherein SUs are free to set

their power levels in an ALOHA network. Haykin [42] applied water-filling to control the

transmit powers of SUs subject to the constraint that the interference limit is not violated,

however all target transmission rates must be known and lie within a permissible rate

region. Looking for another approach, Hoven and Sahai [35] focused on the SU transmit

power variation using received SNR as a proxy for distance. Although no excessive

interference to PUs is created, efficient operation of the SU is not considered.

In this work, we design a TPC system using Fuzzy Logic System (FLS) to provide

SUs the ability to opportunistically coexist with PUs in the same frequency band. With

this built-in fuzzy power controller, a SU is able to dynamically adjust its transmit power

in response to the changes of the interference level caused by the SU to the reclaiming PU,

the distance from the SU to the reclaiming PU and the received power difference of the SU

at the base station (BS) while still guaranteeing an acceptable QoS for the PU. Besides,

to increase the reliability of this power control scheme, we set up the fuzzy rules based on

linguistic knowledge of TPC obtained from a group of network experts rather than a single

expert. The transmit power control ratio obtained from the output of the FLS is used

to dynamically adjust the transmit power of the specific SU. Using this proposed fuzzy

power control scheme, we can reduce the number of frequency hops, thereby successfully

minimizing SU communication interruption. We use Monte Carlo simulations to obtain

the average transmit power increase and the average outage probability. Simulation

results show that, with the proposed scheme, lower average transmit power increase and

lower average outage probability can be achieved compared with the fixed-step power

control scheme.
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The rest of the chapter is organized as follows. In Section 2.2, we briefly present

the FLS and then introduce the fuzzy power control system for cognitive radios. In

Section 2.3, we design the membership functions and collect linguistic knowledge of TPC

to implement fuzzy power control. We describe the proposed fuzzy power control scheme

and generate the decision surface for TPC in Section 2.4. In Section 2.5, we analyze

simulation results. Finally, conclusions are given in Section 2.6.

2.2 System Model

2.2.1 Fuzzy Logic System

When an input x = {x1, x2, ..., xp} is applied to a FLS [24] as shown in Fig. 2.1, the

inference engine computes the output set corresponding to each rule. The defuzzifier then

computes a crisp output y from these rule output sets. Consider a p-input 1-output FLS,

using singleton fuzzification, center-of-sets defuzzification [23] and “IF-THEN” rules of

the form [13]

Rl: IF x1 is F l
1 and x2 is F l

2 and ... and xp is F l
p,

THEN y is Gl

Assuming singleton fuzzification, when an input x′ = {x′1, x′2, ..., x′p} is applied, the degree

of firing corresponding to the lth rule is computed as

ξF l
1
(x′1) ? ξF l

2
(x′2) ? ... ? ξF l

p
(x′p) = T p

i=1ξF l
i
(x′i) (2.1)

where ? and T both indicate the chosen t-norm. There are many kinds of defuzzifiers.

In this thesis, we focus, for illustrative purposes, on the center-of-sets defuzzifier. It

computes a crisp output for the FLS by first computing the centroid, cGl , of every con-

sequent set Gl, and, then computing a weighted average of these centroids. The weight

corresponding to the lth rule consequent centroid is the degree of firing associated with

the lth rule, T p
i=1ξF l

i
(x′i), so that

ycos(x
′) =

∑M
l=1 cGlT p

i=1ξF l
i
(x′i)∑M

l=1 T p
i=1ξF l

i
(x′i)

(2.2)

where M is the number of rules in the FLS.
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RULES

INFERENCE

FUZZIFIER DEFUZZIFIER

FUZZY  INPUT

SETS

FUZZY  OUTPUT

SETS

CRISP INPUT CRISP OUTPUT

x X y = f(x) Y

Figure 2.1: Fuzzy logic system

2.2.2 Fuzzy Power Control System

In this thesis, we assume that a fixed point-to-multipoint wireless air interface as

specified in [6] is used for the cognitive radio system. In this system, the BS manages all

SUs in its cell and no SU is allowed to transmit before receiving authorization from BS.

Based on these considerations, we design a fuzzy power control system for SUs as shown

in Fig. 2.2. The sensing and analyzing processor will smartly implement the following

tasks:

• Sense the stimuli from the radio environment.

• Detect the available unused frequency bands.

• Collect information about the interference level caused by the SU to the reclaiming

PU.

• Estimate the distance from the SU to the reclaiming PU.

• Compute the difference between the actual received power of the SU at the BS and

the target received power at this BS.

The FLS is used to dynamically adjust the transmit power control ratio of the specific

SU according to the changes of three following antecedents (ANT):

• ANT 1: The interference level caused by the SU to the reclaiming PU.

• ANT 2: The distance from the SU to the reclaiming PU.

• ANT 3: The received power difference of the SU at BS.
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Radio Environment SENSING & ANALYZING

PROCESSOR

FUZZY LOGIC SYSTEM

1x

2x

3
x

)(i

TXpresent
P

)( i

TXnew
P

)(i

pc
R

Figure 2.2: Fuzzy power control system for cognitive radio

The new transmit power level is obtained by multiplying the present transmit power and

the power control ratio obtained from the output of the FLS together. The transmit

power control ratio of the ith secondary user R
(i)
pc is defined as:

R(i)
pc =

P
(i)
TXnew

P
(i)
TXpresent

(2.3)

where P
(i)
TXnew is the new transmit power level and P

(i)
TXpresent is the present transmit

power level of the ith SU. We can express R
(i)
pc in dB domain as follows:

R(i)
pc (dB) = 10 log

P
(i)
TXnew

P
(i)
TXpresent

= P
(i)
TXnew(dBm)− P

(i)
TXpresent(dBm) (2.4)

To fully assist the task of collecting information about the interference level, we

recommend that interference level P
(i)
I caused by the ith SU is estimated by the reclaiming

PU. The estimated value is then immediately sent to the primary BS which is managing

the PU and from the primary BS to a real time database which can be accessed by the

secondary BS. This BS will finally send the information to SU via a common control

channel. We also suggest that the distance di from the ith SU to the reclaiming PU can

be estimated based on the empirical propagation formula for the path loss. Using the

path loss, the received power P
(i)
I of the ith SU at the reclaiming PU can be expressed

in terms of the transmit power P
(i)
TXpresent as follows:
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P
(i)
I =

α

dβ
i

P
(i)
TXpresent (2.5)

From (2.5), we can calculate the distance di

di =
β

√√√√α
P

(i)
TXpresent

P
(i)
I

(2.6)

where β is path-loss exponent and α is attenuation parameter.

2.3 Fuzzy Power Controller Design

We design a fuzzy power controller to dynamically adjust the transmit powers of

SUs. First, three antecedents mentioned in Section 2.2 are characterized as linguistic

variables. To present the interference level caused by the SU to the reclaiming PU, we

use linguistic variable x1 with the term set low, moderate, and high. The variable x2 used

to represent the distance from the SU to the reclaiming PU is in the set near, moderate,

and far. The received power difference of the SU at the BS is presented by the variable

x3 which specifies negative, zero, and positive. The consequent, i.e., the transmit power

control ratio of the SU is divided into seven levels: highly decrease (HD), moderately

decrease (MD), slightly decrease (SD), remain unchanged (RU), slightly increase (SI),

moderately increase (MI), and highly increase (HI).

Then, we use trapezoidal membership functions (MFs) to represent low, near, neg-

ative and high, far, positive. Triangle MFs are chosen for moderate, zero. For the

consequent, we choose trapezoidal MFs to represent HD and HI. Triangle MFs are used

for MD, SD, RU, SI, MI. The MFs for three antecedents and consequent are shown in

Fig. 2.3 and Fig. 2.4.

Finally, in order to increase the reliability of the fuzzy power controller, we decide

to set up the fuzzy rules based on linguistic knowledge of TPC obtained from a group of

network experts rather than a single one. Questions given to these experts in a survey

were designed in the form as follows:
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Figure 2.3: The membership functions used to represent the linguistic labels: (a) An-
tecedent 1, (b) Antecedent 2, and (c) Antecedent 3
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Figure 2.4: The membership function used to represent the consequent

IF the interference level caused by the SU to the reclaiming PU is moderate, and

the distance from the SU to the reclaiming PU is near, and the received power difference

of the SU at the BS is negative, THEN the transmit power control ratio of this SU will

.

Six network experts were requested to choose a consequent using one of the seven lin-

guistic variables. The questions used in this survey are summarized in Table 2.1. As an

example, answers from a randomly-chosen expert are specified in this table. The results

collected from the completed survey are captured in Table 2.2.

2.4 Opportunistic Power Control Decision

As previously mentioned, we consider the case wherein the SU will not immediately

jump to another available frequency band when the PU reclaims transmission. We then

design an opportunistic TCP scheme for the SU to coexist with the reclaiming PU in the

primary frequency band.
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Table 2.1: The questions of TPC for cognitive radio. Answers from a randomly-chosen
expert are given as an example.

Question # Ant1 Ant2 Ant3 Consequent

1 low near negative SI
2 low near zero RU
3 low near positive MD
4 low moderate negative MI
5 low moderate zero RU
6 low moderate positive MD
7 low far negative HI
8 low far zero RU
9 low far positive SD
10 moderate near negative SI
11 moderate near zero RU
12 moderate near positive MD
13 moderate moderate negative SI
14 moderate moderate zero RU
15 moderate moderate positive MD
16 moderate far negative SI
17 moderate far zero RU
18 moderate far positive SD
19 high near zero MD
20 high near positive HD
21 high moderate zero SD
22 high moderate positive HD
23 high far zero SD
24 high far positive HD
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Table 2.2: Histograms of expert responses about TPC for cognitive radio.

Rule #` HD MD SD RU SI MI HI βl

1 0 0 0 0 3 3 0 2.5
2 0 0 0 6 0 0 0 0.3333
3 1 3 2 0 0 0 0 -3.0444
4 0 0 0 0 1 5 0 3.0555
5 0 0 0 6 0 0 0 0.3333
6 0 3 3 0 0 0 0 -2.3333
7 0 0 0 0 0 2 4 4.7407
8 0 0 0 5 1 0 0 0.5555
9 0 1 5 0 0 0 0 -1.6666
10 0 0 0 0 6 0 0 1.6667
11 0 0 0 6 0 0 0 0.3333
12 2 3 1 0 0 0 0 -3.7555
13 0 0 0 0 4 2 0 2.2222
14 0 0 0 6 0 0 0 0.3333
15 1 4 1 0 0 0 0 -3.3778
16 0 0 0 0 3 3 0 2.5
17 0 0 0 6 0 0 0 0.3333
18 0 3 3 0 0 0 0 -2.3333
19 0 4 2 0 0 0 0 -2.6666
20 6 0 0 0 0 0 0 -5.6
21 0 2 4 0 0 0 0 -2.0
22 5 1 0 0 0 0 0 -5.2222
23 0 1 5 0 0 0 0 -1.6666
24 4 2 0 0 0 0 0 -4.8444
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Under the constraint that no harmful interference to the reclaiming PU is created,

the SU is allowed to increase its transmission power with distance as it moves further from

the PU. The SU near the PU must be quieter. The SU must jump to another available

unused frequency band if it introduces excessive interference level to the PU. Cognitive

radio system is point-to-multipoint as assumed in Section 2.2. A target received power

is required at the BS to achieve equal signal strengths of the SUs. We denote the target

received power at the BS as PRXtar . Thus, the received power difference 4P
(i)
RX of the

ith SU at the BS is given by:

4P
(i)
RX = P

(i)
RX − PRXtar (2.7)

where P
(i)
RX is the actual received power of the ith SU at the BS.

If 4P
(i)
RX < 0, i.e., the actual received power of the ith SU at the BS is less than

the target received power, then the ith SU will have to increase its transmit power under

the constraint that the interference to the PU is not excessive. Otherwise, if 4P
(i)
RX > 0,

this SU will have to decrease its transmit power. Based on the survey, the SU must jump

to another unused frequency band for communications in the following cases:

• Interference level to the reclaiming PU is high, distance to the reclaiming PU is

near and the received power difference is negative.

• Interference level to the reclaiming PU is high, distance to the reclaiming PU is

moderate and the received power difference is negative.

• Interference level to the reclaiming PU is high, distance to the reclaiming PU is

far and the received power difference is negative.

Since there are 3 antecedents and each antecedent has 3 fuzzy sub-sets, the number

of rules can be set up for this FLS is 33 = 27 rules. However, we have three cases in

which SU must jump to another frequency band. Thus, the total number of rules we

need to set up is finally 24 rules which determine 24 questions in the survey as specified

in Table 2.1.
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In our approach to forming a rule base, we chose a single consequent for each rule.

To do this, we averaged the centroids of all the responses for each rule and used this

average in place of the rule consequent centroid. This led to rules that have the following

form:

Rl: IF the interference level caused by the SU to the reclaiming PU (x1) is F l
1 and

the distance from the SU to the reclaiming PU (x2) is F l
2 and the received power difference

of the SU at the BS (x3) is F l
3, THEN the transmit power control ratio of the SU (y) is

βl.

βl =

∑7
i=1 wl

ici∑7
i=1 wl

i

(2.8)

in which wl
i is the number of experts choosing linguistic label i for the consequent of rule

l (i = 1,..., 7; l = 1,..., 24) (Table 2.2) and ci is the centroid of the ith consequent set

(i = 1, ..., 7). All 24 βl values are listed in Table 2.2. The entries from the second to the

eighth column correspond to the weights wl
1, wl

2, wl
3, wl

4, wl
5, wl

6 and wl
7. For every input

(x1, x2, x3), the output is computed using

y(x1, x2, x3) =

∑24
l=1 ξF l

1
(x1)ξF l

2
(x2)ξF l

3
(x3)βl∑24

l=1 ξF l
1
(x1)ξF l

2
(x2)ξF l

3
(x3)

(2.9)

By repeating these calculations for ∀x1 ∈ [-200, 0], ∀x2 ∈ [0, 50] and ∀x3 ∈ [-20, 20],

we received a hypersurface y(x1, x2, x3). In order to obtain the decision surface, we fixed

the variable x2 and considered x1 and x3 as random variables in their definition domains.

Two cases were investigated. First, we set x2 = 15 and changed two other variables. We

obtained a decision surface y(x1, 15, x3) as shown in Fig. 2.5a. Similarly, we then let x2

= 45 and obtain another surface y(x1, 45, x3) as shown in Fig. 2.5b. From Fig. 2.5, we

see that although a SU has a small distance to the reclaiming PU, its transmit power

control ratio can be higher than some SUs having further distance to the reclaiming PU.
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Figure 2.5: TPC decision surface for fixed distance to the reclaiming PU: (a) x2 = 15
and (b) x2 = 45.
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Figure 2.6: TPC ratios of 625 SUs within the radius of 50 km. The SU with maximum
TPC ratio has distance: 47.903, interference: -184.89, and received power difference:
-19.948. The SU with minimum TPC ratio has interference: -16.615, distance: 1.6219,
and received power difference: 19.11 using fuzzy power control scheme.

2.5 Simulation Results

We randomly generated 625 SUs within a radius of 50 km from a BS. Each SU

has the interference level to its corresponding reclaiming PU in [-200, 0] and its received

power difference at the BS in [-20, 20]. The distance of each SU to the its reclaiming PU

is taken as 10 log(d) resulting [0, 50] scale. We applied (2.9) to compute the transmit

power control ratio for each SU as illustrated in Fig. 2.6.

We then investigated the average transmit power increase achieved using the pro-

posed scheme. We ran the simulations with different number of active SUs within the

radius of 50 km for 105 times. The step of 1 dB was used for the fixed-step scheme. The

average transmit power increase using our scheme compared with the average transmit

power increase using fixed-step scheme is shown in Fig. 2.7a. Our simulation results show

that our fuzzy power control scheme has better performance compared to the fixed-step
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Figure 2.7: Comparison between two power control schemes for cognitive radios: (a)
Average transmit power increase, (b) Average outage probability.
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scheme. Our average transmit power increase in each case is lower than that of fixed-

step scheme. Therefore, using the proposed scheme, we can save the power of the whole

system, especially in the case the number of active SUs is increased. Besides, our scheme

has a stable performance because when the number of active SUs is increased from 20

users to 400 users, the average transmit power increase difference is just approximately

0.23% while the difference for fixed-step scheme is 63.47%.

Fig. 2.7b, finally, shows a comparison of average outage probabilities between the

proposed scheme and the fixed-step scheme for different number of active SUs. The

average outage probability is defined as:

Po =
1

N

N∑
i=1

P (i)
o (2.10)

where N is the number of active SUs and P
(i)
o is the outage probability of the ith SU:

P (i)
o = Pr{SINR(i) < SINRth} (2.11)

Simulation results were obtained for N active secondary users after 100 runs. For the same

number of active SUs, the outage probability of our fuzzy scheme is smaller than that

of the fixed-step scheme. The outage probability of our power control scheme increases

with the number of active SUs but more slowly than the corresponding probability of

fixed-step power control scheme.

2.6 Conclusion

In this chapter, we propose a novel power control system design using the fuzzy

logic system to opportunistically control the transmit power of cognitive radio in the case

cognitive radio has a desire for coexistence with primary user. The linguistic knowledge

of transmit power control based on three antecedents is obtained from a group of network

experts, so that an acceptable decision can be achieved. Simulation results show that,

using the proposed scheme, we can achieve lower average outage probability and lower

average transmit power increase compared to fixed step scheme, thereby improving the
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performance and decreasing power consumption of the whole network. Moreover, our

proposed scheme is an efficient solution not only to reduce the spectrum handoff du-

ration for cognitive radios since cognitive radios can continue their transmissions while

looking for new spectrum bands, but also to improve the performance of cognitive radios

by allowing cognitive radios to use reclaimed band and other unused bands for multi-

band transmissions. Therefore, we believe that our proposed scheme is promising to be

implemented in future cognitive radio networks.



CHAPTER 3

JOINT MULTI-TARGET IDENTIFICATION AND CLASSIFICATION IN
COGNITIVE RADAR SENSOR NETWORKS

3.1 Introduction

The importance of providing multiple target identification and classification (MTIC)

capabilities for military applications is widely recognized nowadays. When the total num-

ber of targets present in tactical battlefields is increased, classifying as well as identifying

these targets will become a very challenging task. Measurements received from multiple

radar sensors should be collected and processed in an efficient and robust manner to

obtain the most meaningful information for identification and classification. Therefore,

collaborative processing algorithms at the fusion center are in urgent need to successfully

achieve this ultimate goal.

Many algorithms have been suggested to handle the task of multiple target iden-

tification and classification. In [8], a Gaussian Mixture Model (GMM) classifier was

proposed to distinct categories in a semi-structured outdoor environment. For radar tar-

get identification, a multi-feature decision space approach was discussed in detail in [21].

Other approaches to the problem of target identification were presented in [16] applying

two statistical-based techniques Bayesian and Dempster-Shafer to develop radar target

identification algorithms. Distributed multi-class classification with fault-tolerance ca-

pability was studied in [52]. Collaborative classification algorithms [7] were applied to

single target scenarios and then extended to more complex scenarios of multiple targets.

Multiple target identification and classification have become major concerns in

radar surveillance applications. Usually, this task is implemented based on wideband

radars or imaging radars [53]. In this thesis, we address the problem of MTIC for radar

surveillance using cognitive radars. Cognitive radars, as presented in [44] and [43], con-

25
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tinuously interact with the environment, intelligently collect data and thereby efficiently

adapt to statistical variations in the environment in real-time so as to achieve reliable

surveillance where the likelihood of the presence of targets is high. Cognitive radars are

showing promise in home health care, rescue and homeland security applications [43], [54].

Such applications were studied in [44], [54].

We consider the scenario wherein the total number of targets K is unknown in a

region of interest and a query regarding the classification of these targets and the iden-

tification of the targets in each category is inquired. This is the general surveillance

scenario since each target belonging to one distinct category as in [22] is no longer con-

sidered. In this work, targets may now have the same category but different identification

numbers. In order to perform this higher complexity version of surveillance scenario, we

assume that each given target belongs to one distinct pair of one target category and

one identification number. Based on statistical data, we then reasonably assume that

the maximum number of target categories M and the maximum number of targets N in

each category are a priori known parameters. However, the actual number of existing

target categories and the actual number of targets present in each category at any given

time are unknown. It is assumed that there are R cognitive radar sensors in the query

region.

Within the above-described framework, we propose a joint multi-target identifi-

cation and classification (JMIC) algorithm for radar surveillance. Firstly, the existing

target categories are classified based on M?-ary hypothesis testing where M? = 2M . Note

that, M? hypotheses correspond to all possibilities we may have regarding to the presence

or absence of each category. Thereafter, based on the result obtained from classification

specifying which target categories exist, we identify targets present in each detected

category. Targets in a category are identified based on their identification numbers or

identification indices. Therefore, N? (N? = 2N - 1) hypotheses are set up corresponding

to all scenarios of presence or absence of each target identification index. Numerical
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results based on simulated data are finally presented to demonstrate the feasibility and

effectiveness of the proposed JMIC algorithm in a query surveillance region.

The rest of the chapter is organized as follows. In Section 3.2, we provide a frame-

work and formulate the multi-target classification and identification problem in a cog-

nitive radar network. In Section 3.3, we propose the joint multi-target identification

and classification algorithm. Simulation results are presented in Section 3.4. Finally,

Section 3.5 concludes the chapter.

3.2 System Description and Problem Formulation

The general system architecture for MTIC problem used in this work is shown in

Fig. 3.1. This architecture accommodates the deployment of R cognitive radar sensors

(CRSs). These sensors will collect and then send all the target signals to the fusion

center. There are K targets in the region of interest. Each target is considered as a point

source and target signals are modeled as zero-mean complex Gaussian processes [22]. All

measurements from sensors are combined to reduce the impact of target signal variability.

At any given time, the measurements in distinct cognitive radar sensors are approximately

independent.

It is assumed that at most M distinct target categories and N targets in each

category are present in the surveillance region in the observation duration. However,

the actual existing number of target categories is unknown. Therefore, we set up 2M

hypotheses corresponding to all possible scenarios of presence or absence of each target

category. We denote these hypotheses by Hk (k = 0, 1, ..., 2M − 1). Target categories

are denoted by i (i = 1, 2, ..., M) and in each ith category, targets are identified by the

identification indices j (j = 1, 2, ..., N). We use the parameter bij ∈ {0, 1} to denote

the event in which target of category i, index j is absent or present. Specifically,

bij =





0 if target of category i, index j is absent

1 if target of category i, index j is present
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Figure 3.1: System architecture for JMIC algorithm

Classification and identification parameters are given in Table 3.1 wherein each

row represents one target category and each column represents one target index. The

probability of target of category i, index j being absent P (bij = 0) is denoted by pij,

i.e., P (bij = 0) = pij. Hence, the probability of presence of this target P (bij = 1) is:

P (bij = 1) = 1- pij.

We employ hypothesis H0 for scenario of no category being present, hypothesis H1

for scenario of category 1 being present,..., and hypothesis H2M−1 for scenario of all M

categories being present. We assume that the total number of targets K in the region
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Table 3.1: Classification and Identification Parameters

Index 1 Index 2 Index 3 . . . Index N

Category 1 b11 b12 b13 . . . b1N

Category 2 b21 b22 b23 . . . b2N

Category 3 b31 b32 b33 . . . b3N

...
...

...
...

...
...

Category M bM1 bM2 bM3 . . . bMN

of interest is unknown. In the case of K = 0, i.e., there is no target in the surveillance

region, hypothesis H0 is chosen. The prior probability of hypothesis H0 is given by:

P (H0) = P {no category present}

= P (∀b1j = 0; ∀b2j = 0; ...;∀bMj = 0),

for j = 1, 2, ..., N (3.1)

Since the possibilities for presence or absence of targets are independent, we have

P (H0) = P (∀b1j = 0).P (∀b2j = 0)...P (∀bMj = 0)

= (p11.p12...p1N)(p21.p22...p2N)...(pM1...pMN)

=
N∏

j=1

p1j ·
N∏

j=1

p2j . . .
N∏

j=1

pMj (3.2)

Similarly, the prior probability of H1 is given by:

P (H1) = P {category 1 present}

= P (at least one b1j = 1; ∀b2j = 0; ...; ∀bMj = 0)

= P (∃ one b1j = 1).P (∀b2j = 0)...P (∀bMj = 0)

= (1−
N∏

j=1

p1j) ·
N∏

j=1

p2j . . .

N∏
j=1

pMj (3.3)

Generally, we obtain the prior probability of hypothesis Hk in the form as follows:

P (Hk) =
M∏
i=1

[b
(k)
i (1−

N∏
j=1

pij) + (1− b
(k)
i )

N∏
j=1

pij] (3.4)

where b
(k)
i takes the value of 0 when category i is absent, otherwise b

(k)
i takes the value

of 1 when category i is present under hypothesis Hk.
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3.3 Joint Multi-target Identification and Classification Algorithm

Joint multi-target identification and classification algorithm consists of two steps.

In the first step, multiple target classification is implemented to investigate which target

categories are present within the entire surveillance region. Then, in the second step,

based on classification results, we identify targets in each detected category using their

identification indices. Our JMIC algorithm relies on the framework previously presented

in Section 3.2.

3.3.1 Multiple Target Category Classification

The M?-ary hypothesis testing problem is given by:

Hk : zl = sl + nl, k = 0, 1, ..., 2M − 1 (3.5)

where zl is a feature vector of dimension D collected by the lth (l = 1,2,..., R) cognitive

radar sensor. It is assumed that target signals have the same energy, i.e., these signals

are modeled as zero-mean complex Gaussian vectors with covariance matrix Σm. Thus,

sl ∼ CN (0,Σslk
), where Σslk

=
M∑

i=1(i∈Hk)

N∑
j=1

bijΣm (3.6)

Signals are corrupted by zero-mean complex white Gaussian noise.

nl ∼ CN (0, σ2
nI). (3.7)

Under hypothesis Hk, the probability density function of the feature vector zl is given

by:

P (zl|Hk) = pk(zl)

=
1

πD|Σzlk
| exp {−zH

l Σ−1
zlk

zl} (3.8)

where Σzlk
= Σslk

+ σ2
nI

We denote P (Hk) by δk. The decision rule for the multiple target classifier is

therefore given by:

k̂ = arg max
k=0,1,...,M?−1

pk(z1, z2, ..., zR)δk (3.9)
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Due to the conditional independence of zl, (3.9) can be expressed as:

k̂ = arg max
k=0,1,...,M?−1

R∏

l=1

pk(zl)δk (3.10)

In terms of log-likelihood, we have

∆k(z1, z2, ..., zR) = log
R∏

l=1

pk(zl)δk

=
R∑

l=1

log pk(zl) + log δk (3.11)

By substituting pk(zl) from (3.8) to (3.11) and omitting constants that do not depend

on categories, we then obtain ∆k in the following form, :

∆k(z1, z2, ..., zR) = −R log |Σzlk
| −

R∑

l=1

zH
l Σ−1

zlk
zl + log δk (3.12)

The information about zl is then sent from the lth (l = 1, 2,..., R) cognitive radar sensor

to the fusion center. The classifier at the fusion center then makes the final classification

decision in the form:

k̂ = arg max
k=0,1,...,M?−1

∆k(z1, z2, ..., zR)

= arg min
k
{R log |Σzlk

|+
R∑

l=1

zH
l Σ−1

zlk
zl − log δk}

(3.13)

From (3.13), we map the integer value of k̂ to binary value to obtain a category

vector c = [c1, c2, ...., cM ] where ci (i = 1, 2, ..., M) takes value of 1 corresponding to

category i being present or takes value of 0 corresponding to category i being absent in the

area of interest. The total number of target categories being present in the surveillance

region is given by:

NC =
M∑
i=1

ci (3.14)

For example, if k̂ = 5, then we get c = [1, 0, 1, 0, ...,0], i.e., only categories 1 and 3 are

present within the surveillance region. Therefore, the total number of target categories

being present NC is 2.
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3.3.2 Multiple Target Identification

Based on the estimated value k̂, we realize which target categories have shown up

in the surveillance region. However, we still have no information about the number of

targets belonging to each category. Therefore, the second step of the JMIC algorithm

is repeatedly applied to each detected category to identify targets in the surveillance

region. We aim at searching all the targets using their jth indices. For each category i,

we denote H i
h,k̂

to represent the hypothesis h (h = 0, 1, ..., 2N - 1), given category i ∈ S

being present under hypothesis Hk̂. Note that, S is a set of all categories i being present

in hypothesis Hk̂.

S = {i present in Hk̂} (3.15)

Since category i is estimated to be present, i.e, at least one target index j shows up in this

category, thus, the scenario of no target index of category i being present is eliminated,

i.e., P(H i
0,k̂

) = 0. Thus, we only have N? = 2N - 1 hypotheses corresponding to h = 1,

2, ..., N?. We choose H i
1,k̂

to represent the hypothesis of target index ]1 of category i

∈ S being present, H i
2,k̂

to represent the hypothesis of target index ]2 of category i ∈ S

being present, ..., H i
N?,k̂

to represent the hypothesis of all targets index ]1, ]2, ..., ]N of

category i ∈ S being present.

We have

P (H i
h,k̂

) = P (H i
h, Hk̂)

= P (H i
h|Hk̂)P (Hk̂) (3.16)

The conditional probability of hypothesis H i
1,k̂

is given by:

P (H i
1|Hk̂) = P {target index ]1 category i present}

= P (bi1 = 1; bi2 = 0; ...; biN = 0)

(3.17)
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Because the possibilities for presence or absence of targets are independent, we have

P (H i
1|Hk̂) = P (bi1 = 1).P (bi2 = 0)...P (biN = 0)

= (1− pi1).pi2...piN (3.18)

Similarly, the conditional probability of hypothesis H i
2,k̂

is:

P (H i
2|Hk̂) = P {target index ]2 category i present}

= P (bi1 = 0; bi2 = 1; ...; biN = 0)

= P (bi1 = 0).P (bi2 = 1)...P (biN = 0)

= pi1.(1− pi2)...piN (3.19)

In general, we obtain the conditional probability of hypothesis H i
h,k̂

as follows:

P (H i
h|Hk̂) =

N∏
j=1

[b
(h)
ij (1− pij) + (1− b

(h)
ij )pij] (3.20)

where b
(h)
ij takes the value of 0 when target index j of category i is absent, otherwise b

(h)
ij

takes the value of 1 when target index j of category i is present under hypothesis H i
h

given hypothesis Hk̂.

We now set up N? hypotheses:

H i
h,k̂

: zi
l = si

l + ni
l, h = 1, 2, ..., N? (3.21)

where zi
l is collected by lth (l = 1, 2, ..., R) cognitive radar sensor regarding to ith

category. Target signals of ith category are given by:

si
l ∼ CN (0,Σsi

l,h
), where Σsi

l,h
=

N∑

j=1(j∈Hi
h,k̂

)

bijΣm (3.22)

Signals are corrupted by zero-mean complex white Gaussian noise.

ni
l ∼ CN (0, σ2

nI) (3.23)
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Under hypothesis H i
h,k̂

, the probability density function of the feature vector zi
l of category

i is given by:

P (zi
l|H i

h,k̂
) = ph,k̂(z

i
l)

=
1

πD|Σzi
l,h
| exp {−(zi

l)
HΣ−1

zi
l,h

zi
l} (3.24)

where Σzi
l,h

= Σsi
l,h

+ σ2
nI.

We denote P (H i
h|Hk̂) by αi

h. From (3.16) and due to the conditional independence

of zi
l, the identification decision rule is hence given by:

ĥ = arg max
h=1,2,...,N?

R∏

l=1

ph,k̂(z
i
l)α

i
hδk̂ (3.25)

In terms of log-likelihood, we have

∆i
k = log

R∏

l=1

ph,k̂(z
i
l)α

i
hδk̂

=
R∑

l=1

log ph,k̂(z
i
l) + log αi

h + log δk̂ (3.26)

By substituting ph,k̂(z
i
l) from (3.24) to (3.26) and omitting constants that do not

depend on target indices in each category, we have ∆i
k in the following form:

∆i
k = −R log |Σzi

l,h
| −

R∑

l=1

(zi
l)

HΣ−1
zi
l,h

zi
l + log αi

h + log δk̂ (3.27)

The information about zi
l is sent from the lth cognitive radar sensor to the fusion center.

The identifier at the fusion center then makes the final identification decision:

ĥ = arg max
h=1,2,...,N?

∆i
k

= arg min
h
{R log |Σzi

l,h
|+

R∑

l=1

(zi
l)

HΣ−1
zi
l,h

zi
l − log αi

h

− log δk̂} (3.28)

From (3.28), we map the integer value of ĥ to binary value to obtain a index vector

bi = [bi1, bi2, ..., biN ] where every component of bi takes the value of 1 or 0. Component
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]j takes value of 1 corresponding to the scenario of target index ]j of category i being

present. The total number of targets Ni in each category i is calculated by:

Ni =
N∑

j=1

bij (3.29)

Following the example previously described in classification step, for i = 1, if ĥ =

7, then we get b1 = [1, 1, 1, 0, ...,0]. Therefore, only targets with indices 1, 2 and 3

of category 1 are present within the surveillance region. The total number of targets of

category 1 being present N1 is 3. Repeatedly implementing this step, for i = 3, if ĥ =

3, we obtain b3 = [1, 1, 0, 0, ..., 0]. So, targets with indices 1 and 2 of category 3 are

present. The total number of targets of category 3 being present N3 is 2.

The total number of targets K in the surveillance region is finally given by:

K =
M∑
i=1

Ni =
M∑
i=1

N∑
j=1

bij (3.30)

In the example, the total number of targets within the surveillance region K is 5.

3.4 Simulation Results

We perform simulations to illustrate the performance of the proposed JMIC al-

gorithm. An encounter of unknown K targets in the region of query was simulated.

A set of R cognitive radar sensors was deployed. A cognitive radar sensor may detect

more than one target at any given time. Therefore, a more accurate estimation about

target categories and the total number of targets being present in each category can be

obtained by fusion of several radar sensors. The maximum number of categories M = 3

and the maximum number of targets in each category N = 4 were assumed in the region

of interest.

An example using JMIC for K = 7 targets in the region of interest is given in

Table 3.2. We use JMIC algorithm to obtain k̂ = 7 which specifies that categories 1, 2,

3 are present and thus Nc = 3. The number of targets of category 1 is 2 (target index ]2

and ]4) corresponding to ĥ = 10. The number of targets of category 2 is 3 (target index
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Table 3.2: Classification and Identification Example

Index 1 Index 2 Index 3 Index 4

Category 1 0 1 0 1
Category 2 1 1 0 1
Category 3 1 1 0 0

]1, ]2, and ]4) corresponding to ĥ = 11. The total number of targets of category 3 is 2 (

target index ]1 and ]2) corresponding to ĥ = 3.

To evaluate the performance of the proposed JMIC algorithm, we conduct a Monte-

Carlo simulation of 105 runs. The probability of error of the proposed JMIC algorithm

given in the form of function of signal-to-noise power ratio is shown in Fig. 3.2, Fig. 3.4,

and Fig. 3.6. The total number of cognitive radar sensors R = 3, 5 and 10 were used in

the simulations.
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Figure 3.2: Probability of error using JMIC algorithm for K = 3
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Figure 3.3: Surveillance scenario of K = 3
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Figure 3.4: Probability of error using JMIC algorithm for K = 6
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Figure 3.5: Surveillance scenario of K = 6
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Figure 3.6: Probability of error using JMIC algorithm for K = 8
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Figure 3.7: Surveillance scenario of K = 8
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From Fig. 3.2, we realize that a sufficiently low probability of error can be obtained

with a small number of cognitive radar sensors R = 5 in the surveillance scenario of K

= 3 targets as shown in Fig. 3.3. Comparison of probability of error for the different

number of cognitive radar sensors in the scenario of K = 3 targets was shown in Fig. 3.2.

The simulation results demonstrate our algorithm in the surveillance scenarios of K = 6

as described in Fig. 3.5 and K =8 as in Fig. 3.7 are, correspondingly, given in Fig. 3.4 and

Fig. 3.6. From Fig. 3.2, Fig. 3.4 and Fig. 3.6, we also observe that for a given number of

targets K in the surveillance region, the performance of JMIC using R = 5 or R = 10

radar sensors is better than that using R = 3 radar sensors. Besides, for a given number

of R radar sensors, the identification and classification performance is reduced when we

notice an increasing number of targets in the surveillance region. The probability of

JMIC error is inversely proportional to signal-to-noise power ratio. At high SNR, the

probability of error is rather small. The simulation results validate the robustness and

effectiveness of our proposed JMIC algorithm.

3.5 Conclusion

We have demonstrated that K targets in a query region can be classified and

identified reliably by a network of R cognitive radar sensors using our JMIC algorithm.

A computer simulation with simulated radar data was used to investigate the accuracy

of classification and identification algorithm in the variations of the target signals in the

network. Using JMIC algorithm, we show that a sufficiently low probability of error can

be achieved with a fairly small number of radar sensors for a given common number of

targets. The unprecedented desire of knowing not only the number of categories, but also

the total number of targets belonging to each category in a surveillance region is making

JMIC algorithm an attractive choice in practice for military applications.



CHAPTER 4

CONCLUSION AND FUTURE WORKS

4.1 Contributions

Cognitive radio has been considered as an efficient approach to opportunistic spec-

trum sharing between primary (licensed) users and cognitive radio users. However, in

order to have such opportunistic spectrum sharing, cognitive radio must be able to in-

telligently adapt to the behavior of primary user (PU). Under the constraint that no

excessive interference to the PUs is generated, TPC decision-making for SUs is still a

daunting task when efficient communications of PUs as well as SUs are taken into con-

sideration. Studies on TPC are progressing to investigate the best scheme for a workable

SU system. In this thesis, we have discussed the transmit power control problem in cog-

nitive radio networks. To address the problem, a novel power control design using the

fuzzy logic system to opportunistically control the transmit power of a cognitive radio

in the case this cognitive radio has a desire for coexistence with primary user has been

proposed.

• We have received acceptable decisions on transmit power control for cognitive radios

by obtaining the linguistic knowledge of transmit power control based on three

antecedents from a group of network experts.

• Our studies show that, using the proposed scheme, we have achieved lower average

outage probability and lower average transmit power increase compared to the

fixed-step power control scheme, thereby improving the performance and decreasing

power consumption of the whole network.

Moreover, our proposed scheme is an efficient solution not only to reduce the spec-

trum handoff duration for cognitive radios since cognitive radios can continue their trans-

missions while looking for new spectrum bands, but also to improve the performance of

41
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cognitive radios by allowing cognitive radios to use reclaimed band and other unused

bands for multi-band transmissions.

Multiple target identification and classification have become major concerns in

radar surveillance applications. In this thesis, we have also discussed the problem of

jointly classifying and identifying multiple targets in radar sensor networks where the

maximum number of categories and the maximum number of targets in each category

are obtained a priori based on statistical data. However, the actual number of targets

in each category and the actual number of target categories being present at any given

time are unknown. We considered the scenario wherein the total number of targets is

unknown in a region of interest and a query regarding the classification of these targets

and the identification of the targets in each category is inquired.

• We have demonstrated that multiple targets in a surveillance region can be classified

and identified reliably by a network of cognitive radar sensors using our JMIC

algorithm.

• A computer simulation with simulated radar data was used to investigate the ac-

curacy of classification and identification algorithm in the variations of the target

signals in the network. Using JMIC algorithm, we have proved that a sufficiently

low probability of error can be achieved with a fairly small number of radar sensors

for a given common number of targets.

The unprecedented desire of knowing not only the number of categories, but also

the total number of targets belonging to each category in a surveillance region is making

JMIC algorithm an attractive choice in practice for military applications.

4.2 Future Works

Our future research ideas include the following works:

• Develop an efficient cross-layer design between the physical (PHY) layer and the

MAC layer for spectrum sensing algorithms in cognitive radio networks.
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• Investigate adaptive channel-coding algorithms in cognitive radio networks to op-

timize transmission data throughput and reduce error rate.

• Apply Independent Component Analysis (ICA) to cognitive radars to facilitate

multiple target identification in military applications. A mixture of different sounds

will be extracted to identify each individual target noise (for example, aircraft noise

or tank noise).

• Design cognitive waveform for cognitive radios and cognitive radars.

• Develop novel non-interference methods for dynamic spectrum access.
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