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ABSTRACT

SEQUENCES OF NEAR-OPTIMAL FEEDFORWARD NEURAL NETWORKS

Publication No.

PRAMOD LAKSHMI NARASIMHA, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Michael T. Manry

In order to facilitate complexity optimization in feedforward networks, several inte-

grated growing and pruning algorithms are developed. First, a growing scheme is reviewed

which iteratively adds new hidden units to full-trained networks. Then, a non-heuristic

one-pass pruning technique is reviewed, which utilizes orthogonal least squares. Based

upon pruning, a one-pass approach is developed for producing the validation error versus

network size curve. Then, a combined approach is devised in which grown networks are

pruned. As a result, the hidden units are ordered according to their usefulness, and less

useful units are eliminated. In several examples, it is shown that networks designed using

the integrated growing and pruning method have less training and validation error. This

combined method exhibits reduced sensitivity to the choice of the initial weights and

produces an almost monotonic error versus network size curve.

Starting from the strict interpolation equations for multivariate polynomials, an

upper bound is developed for the number of patterns that can be memorized by a non-

linear feedforward network. A straightforward proof by contradiction is presented for

the upper bound. It is shown that the hidden activations do not have to be analytic.

Networks, trained by conjugate gradient, are used to demonstrate the tightness of the

v



bound for random patterns. The theoretical results agree closely to the simulations on

two class problems solved by support vector machines.

We model large classifiers like Support Vector Machines (SVMs) by smaller net-

works in order to decrease the computational cost. The key idea is to generate additional

training patterns using a trained SVM and use these additional patterns along with the

original training patterns to train a much smaller neural network. Results shown verify

the validity of the technique and the method used to generate additional patterns. We

also generalize this idea and prove that any learning machine can be used to generate

additional patterns and in turn train any other machine to improve its performance.
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CHAPTER 1

INTRODUCTION

Neural networks are motivated by the functioning of the human cognitive processes

but their implementation is carried out in a much different way. Neural networks have

a massively parallel distributed structure made up of simple processing units that can

learn and generalize. They are nonparametric, nonlinear, universal approximators that

can uniformly approximate any real continuous function to an arbitrary degree of accu-

racy. This has been proved using Stone-Weirstrass theorem from real analysis by Hornik

et al. [1] as pointed out by Lorentz [2] and Hecht-Nielsen [3]. Kolmogorov’s theorem [4]

states that arbitrary continuous function of n-variables can be approximated using linear

summations and superpositions of continuously increasing functions of only one variable.

This theorem has led investigators to develop neural networks, which are used to solve

approximation and classification problems. Applications include power load forecast-

ing [5, 6], ZIP code recognition [7, 8], prognostics [9], target recognition [10, 11] and

stock market prediction [12] among several others.

1.1 Growing and Pruning of Feedforward Networks

When optimizing the structural complexity of feedforward neural networks, differ-

ent size networks are designed which minimize the mean-square training error. Typically,

the machine with the smallest validation error is saved. When different size networks

are independently initialized and trained, however, the training error versus network size

curve is not monotonic. Similarly, the resulting validation error versus size curve is not

smooth, making it difficult to find a proper minimum. Monotonic training curves and

smooth validation curves can be produced by growing methods or by pruning methods.

1
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In growing methods [13], new hidden units are continually added to a trained net-

work, and further training is performed [14]. In [15], the addition of new units continues

as long as the sum of the accuracies for training and cross validation samples improves.

This eliminates the requirement of specifying minimum accuracy for the growing net-

work. Guan and Li [16] have used output parallelism to decompose the original problem

into several sub-problems, each of which is composed of the whole input vector and a

fraction of the desired output vector. They use constructive backpropagation to train

modules of the appropriate size. Modules are merged to get a final network.

The main drawbacks of growing methods are that some of the intermediate networks

can get trapped in local minima. Also, growing methods are sensitive to initial conditions.

Unfortunately, when a sequence of grown network does not guarantee optimal training

of all the hidden units. It is often likely for some hidden units to be linearly dependent.

In pruning methods, a large network is trained and then the least useful nodes or

weights are removed [17, 18, 19, 20, 21]. Orthogonal least squares or Gram-Schmidt based

pruning [22] has been described by Chen et al. [23] and Kaminsky and Strumillo [24] for

Radial Basis Functions (RBF) and by Maldonado et al. [25] for the Multilayer Perceptron

(MLP). In Crosswise Propagation, [26], linearly dependent hidden units are detected

using an orthogonal projection method, and then removed. The contribution of the

removed neuron is approximated by the remaining hidden units. In [27], the hidden

units are iteratively removed and the remaining weights are adjusted to maintain the

original input-output behavior. A weight adjustment is carried out by solving the system

of linear equations using the conjugate gradient algorithm in the least squares sense.

Unfortunately, if one large network is trained and pruned, the resulting error versus

number of hidden units (Nh) curve is not minimal for smaller networks. In other words,

it is possible, though unlikely, for each hidden unit to be equally useful after training.

A promising alternative to growing or pruning alone is to combine them. Huang et

al. [28] have developed an online training algorithm for RBF based Minimal Resource Al-

location Networks (MRAN), which uses both growing and pruning. However, as MRAN
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is an online procedure, it does not optimize the network over all past training data. Also,

MRAN network initialization requires prior knowledge about the data which may not be

available.

1.2 Pattern Storage

It is important to understand the pattern memorization capability of feedforward

networks for several reasons. First, the capability to memorize is related to the ability to

form arbitrary shapes in weight space. Second, if a network can successfully memorize

many random patterns, we know that the training algorithm is powerful [29]. Third,

some useful feedforward networks such as Support Vector Machines (SVMs), memorize

large numbers of training patterns [30, 31].

Many researchers have derived upper and lower bounds on the number of hidden

units for a Multilayer Perceptron (MLP). Baum [32] has derived a lower bound on the

pattern storage by finding the smallest MLP capable of implementing an arbitrary di-

chotomy of Nv points. Sartori and Antsaklis [33] have derived lower bounds on the size of

a multilayer neural network that exactly implements an arbitrary training set. They have

not separated the input space into particular hyperplanes but have simply satisfied the

rank condition on the outputs of the hidden layer. Huang and Babri [34] have derived

a lower bound on pattern storage or an upper bound for the number of hidden units

required in feedforward networks with arbitrary bounded nonlinear activation functions.

Huang [35] has derived a lower bound on pattern storage for two-hidden-layer feedfor-

ward networks to learn any Nv distinct samples with arbitrarily small error. Mazza [36]

has derived a lower bound for the Hopfield associative memory for storing patterns, by

using large deviation estimates.

Suyari and Matsuba [37] have proposed a new derivation of the storage capacity

of neural networks with binary weights which is based on minimum distance between

the patterns rather than the number of patterns. Cosnard et al. [38] have derived upper

and lower bounds on the size of nets capable of computing arbitrary dichotomies. They
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have used the minimum distance between the two classes as a parameter instead of the

number of patterns. Elisseeff and Moisy [39] have also derived upper and lower bounds

on the number of hidden units for exact learning, given the size of the dataset and the

dimension of the input and output spaces. In [40], Ji and Psaltis derive upper and lower

bounds for the information capacity of two-layer feedforward neural networks with binary

interconnections. They allow hidden and output units to take integer and zero thresholds

respectively and then use an approach similar to Baum’s [32] to find the bounds.

Moussaoui [41] and Ma [42] have pointed out that the information capacity is

reflected in the number of weights of the network. They have also shown that the

space complexity of the learning machine (number of weights of the network) should be

minimized in order to achieve good generalization. The proof is based on the extension

of the interpolation theorem of Davis [43], which states that for any Nv distinct points

there exists a unique Nv − 1 degree polynomial that passes through all the points.

1.3 Large, Redundant Networks

Pattern recognition is a branch of artificial intelligence which deals with extract-

ing statistical information from raw data or using apriori knowledge to categorize them.

Some applications are face recognition [44], fingerprint recognition [45], ZIP code recog-

nition [8, 7], prognostics [9], and target recognition [10, 11] among several others.

A key element in a pattern recognition system is the classifier. In Nearest Neighbor

Classifiers (NNCs) the input vector is compared to all the training patterns and classified

as belonging to the class to which the nearest training pattern belongs. The NNC has

been shown to approximate the Bayes classifier, but is computationally very expensive.

A Multilayer perceptron (MLP) trained with backpropagation [46] is a universal

approximator. An MLP classifier is computationally more economic than an NNC. How-

ever, it requires more training patterns in order to generalize and it is sensitive to initial

values of the weights.
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Boosting by filtering [47] improves generalization. However, it requires a lot of

training patterns due to the structure of the training algorithm. Boosting by subsam-

pling [48, 49] counters the need for large training data files by resampling the data during

training according to a distribution. AdaBoost belongs to this category as it permits the

training data to be reused.

Support vector machines (SVMs) [30, 31] solve the problems of other classifiers

by mapping the problem to a large feature space, making use of classical regularization,

and allowing a subset of the training patterns to be support vectors. The curse of

dimensionality is overcome by using the Structural Risk Minimization (SRM) principle.

Unfortunately, SVMs follow the lower bound [34] on memorization. They are difficult

to train due to the choice of various kernels and kernel parameters [50, 51], and they

are too large and redundant. SVMs do not have control over the space complexity of

the learning machine. Attempts have been made to reduce the size of the SVM [52] by

deleting some patterns. Lee et al. [53, 54] have proposed the Reduced Support Vector

Machine (RSVM) where a random subset of training set is chosen and optimized. Kruif

and Vries [52] have proposed pruning of SVM by deleting some patterns from the training

dataset.

The Relevance Vector Machine (RVM) [55] has a probabilistic sparse kernel model

identical in functional form to the SVM. This was developed recently by Tipping to

overcome the limitations of SVMs. However, these RVMs also follow lower bound on

memorization as they adopt the same learning strategy as SVMs.

1.4 Work Summary

Existing growing and pruning algorithms do not order the hidden units optimally,

resulting in a non-monotonic error versus number of hidden units curve. They also do not

prevent linearly dependent hidden units from appearing in the final network. Previous

proofs for the upper bounds on pattern storage are either overly complex, applicable only

for the case of single output, or applicable to a particular type of network. There are
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several large networks that have good generalization but are highly redundant, resulting

in large space and time complexity. In this dissertation, we solve these problems by

devising a new integrated growing and pruning technique, developing proof for an upper

bound on pattern storage, and modeling large classifiers by smaller neural networks.

In Chapter 2, the basic principles behind growing and pruning methods are re-

viewed, along with pattern storage bounds. We also give a brief overview of modeling

the large, redundant learning machines using feedforward networks. Chapter 3 first iden-

tifies problems in learning machines and summarizes the dissertation work, which aims

at solving the problems stated. Chapter 4 presents techniques for combining growing and

pruning methods in order to achieve smaller error for a given number of hidden units.

In Chapter 5, a proof for an upper bound on pattern storage for feedforward networks is

developed. Chapter 6 presents a technique for modeling SVMs using smaller networks.

Two techniques have been devised for generating additional patterns which improve the

modeling. Conclusions and discussion are presented in chapter 7.



CHAPTER 2

REVIEW OF LEARNING MACHINES AND STORAGE BOUNDS

In this chapter, we review basic principles behind the growing and pruning of MLPs.

Pattern storage bounds, and their relevance to SVMs, are also discussed.

2.1 Multilayer Perceptron

Let {xp, tp}Nv
p=1 be the dataset where xp ∈ <N is the input vector and tp ∈ <M is the

desired output vector and Nv is the number of patterns. Figure 2.1 depicts a feedforward

MLP, having one hidden layer with Nh nonlinear units and an output layer with M linear

units. For the pth pattern, the jth hidden unit’s net function and activation are

netpj =
N+1∑
i=1

wh(j, i) · xpi 1 ≤ p ≤ Nv, 1 ≤ j ≤ Nh (2.1)

Opj = f(netpj) =
1

1 + e−netpj
(2.2)

Weight wh(j, i) connects the ith input to the jth hidden unit. Here the threshold of the

jth node is represented by wh(j, N + 1) and by letting xp,N+1 to be a constant, equal to

one.

The kth output for the pth pattern is given by

ypk =
N+1∑
i=1

woi(k, i) · xpi +

Nh∑
j=1

woh(k, j) ·Opj (2.3)

where 1 ≤ k ≤ M . Here, woi(k, i) is the weight connecting ith input to kth output and

woh(k, j) is the weight connecting jth hidden unit to kth output. There are Nv training

patterns denoted by
{
(xp, tp)

}Nv

p=1
where each pattern consists in an input vector xp and

7



8

x
p, 1


x
p, 2


x
p, 3


x
p, N


Input Layer


y
p, 1


y
p, 2


y
p, 3


y
p, M


Output Layer
Hidden Layer


net
p, 1


O
p, 1


N
h


Figure 2.1. MLP with single hidden layer.

a desired output vector tp. For the pth pattern, the N input values are xpi, (1 ≤ i ≤ N)

and the M desired output values are tpk (1 ≤ k ≤ M).

The squared error for the pth pattern is

Ep =
M∑

k=1

[
tpk − ypk

]2
(2.4)

In order to train a neural network for one epoch the mean squared error (MSE) for the

ith output unit is defined as

E(i) =
1

Nv

Nv∑
p=1

[
tpi − ypi

]2
(2.5)
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The overall performance of a MLP network, measured as MSE, can be written as

E =
M∑
i=1

E(i) =
1

Nv

Nv∑
p=1

Ep (2.6)

In many neural net training algorithms, the goal is to minimize E. Example

training algorithms are backpropagation [46], Levenberg Marquart [56], Genetic Algo-

rithms [57, 58, 59], cascade correlation [60] and Output Weight Optimization - Hidden

Weight Optimization [61] which is described in the appendix A.

2.2 Structured Initialization

Initialization of a network plays an important role in the performance of MLP

training, so proper initialization is critical. Assume that a set of MLPs of different

numbers of hidden units, Nh, are to be designed for a given training data set. Let

Ef (Nh) denote the final training MSE, E, of an MLP with Nh hidden units.

Axiom 1: If Ef (Nh) ≥ Ef (Nh − 1), then the network having Nh hidden units is

useless since the training resulted in a larger, more complex network with a larger or the

same training error [13].

Three distinct types of network initialization are discussed. We give theorems

related to these three methods, which give a basis for this paper. Delashmit [13] has, in

his work, identified problems in MLP training and has stated them in the form of these

theorems. Detailed discussions can be found in his work.

2.2.1 Randomly Initialized Networks

Randomly Initialized (RI) MLPs have no members of the set constrained with

common initial weights or thresholds. In other words, the Initial Random Number Seeds

(IRNS) of the networks are different. The different size networks designed using RI have

statistically independent weights.
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Theorem 1: If two initial RI networks (1) are the same size, (2) have the same

training dataset and (3) the training dataset has more than one unique input vector,

then the hidden unit basis functions are different for the two networks [13].

As the RI networks have random starting points, they have non-monotonic Ef (Nh)

curve. That is, for well-trained MLPs, Ef (Nh) does not always decrease as Nh increases

since the initial hidden unit basis functions are different. Let Ei(Nh) denote the final

training error for an RI network having Nh hidden units, which has been initialized using

the ith random number seed out of a total of Nr total seeds. Let Eav(Nh) denote the

average Ei(Nh), that is

Eav(Nh) =
1

Nr

Nr∑
i=1

Ei(Nh) (2.7)

Delashmit [13] has developed a bound, using the Chebyshev inequality, on the probability

that the average error for Nh hidden units, Eav(Nh) is increasing and that the network

with Nh + 1 hidden units is useless.

P (Eav(Nh + 1) > Eav(Nh)) ≤ var(Ei(Nh + 1)) + var(Ei(Nh))

2 ·Nr · (mav(Nh)−mav(Nh + 1))2
(2.8)

where var() represents the variance and mav(Nh) represent the average MSE for Nh

hidden units.

2.2.2 Common Starting Point Initialized Networks

When a set of MLPs are Common Starting Point Initialized with Structured Weight

Initialization (CSPI-SWI), each one starts with the same IRNS. Also, every hidden unit of

the smaller network is initialized by the same weights and thresholds as the corresponding

hidden unit of the larger network. Input to output weights, are also identical.

Theorem 2: If two initial CSPI-SWI networks (1) are the same size and (2) use the

same algorithm for processing random numbers into weights, then they are identical [13].
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As the size of the MLP is increased by adding new hidden units, a consistent

technique for initializing these new units as well as the previous hidden units is needed

for CSPI-SWI networks.

Theorem 3: If two CSPI-SWI networks are designed, the common subset of the

initial hidden unit basis functions are identical.

The above theorems have been proved by Delashmit [13]. Unfortunately, grow-

ing with CSPI-SWI networks although better than RI, does not guarantee a monotonic

Ef (Nh) curve.

2.2.3 Dependently Initialized Networks

Here a series of different size networks are designed with each subsequent network

having one or more hidden units than the previous network. Such Dependently Initialized

(DI) networks have the advantage of using previous training on smaller networks. Trained

smaller networks are used to initialize the weights and thresholds of larger networks.

Properties of DI networks: Let Eint(Nh) denote the initial value of error during

the training of an MLP with Nh hidden units and let Nhp denote the number of hidden

units in the previous network. That is, Nh − Nhp new hidden units are added to a

well-trained smaller network, to initialize the larger one. Then [13]:

1. Eint(Nh) < Eint(Nhp)

2. Ef (Nh) ≤ Ef (Nhp)

3. Eint(Nh) = Ef (Nhp)

As seen in property 2, DI networks, have a monotonically decreasing Ef (Nh) versus

Nh curve. Unfortunately, there is no guarantee that a Ef (Nh) sample represents a global

minimum.

2.2.4 Pruned Networks

One of the most popular regularization procedures in neural nets is done by limiting

the number of hidden units [62]. Pruning generates series of different size networks
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starting from a large network and each subsequent network having one less hidden unit

than the previous network. In other words, the hidden units will be ordered according

to their importance and the pruning will sequentially delete them one at a time starting

will the least important hidden unit. Hidden units of bigger networks will always be

supersets of those of smaller networks.

Axiom 2: If Ef (Nh) is the error value of a network (having Nh hidden units) in a

sequence of pruned networks, then Ef (Nh) ≤ Ef (Nh − k) for 1 ≤ k ≤ Nh.

The above Axiom indicates that the pruning produces monotonically decreasing

Ef (Nh) versus Nh curve.

2.3 Generation of Feedforward Networks

According to the SRM principle, the best network in an ensemble of MLPs is the

one that has minimum guaranteed risk [63, 31]. However, the guaranteed risk is an upper

bound for the generalization error Eval(Nh). Hence the best network is the one for which

Eval(Nh) is the smallest. In this section we present two general approaches or design

methodologies for generating sequences of networks having monotonic Ef (Nh) curves.

2.3.1 Growing Methods for Training

In growing methods, we start by training a small network (with small Nh) and

then successively train larger networks by adding more hidden units, producing a final

training MSE versus Nh curve, Ef (Nh). After training a sequence of these different size DI

networks, we calculate the validation MSE versus Nh curve Eval(Nh). The validation error

will be the key to decide the network size needed. Growing methods, which are motivated

by the properties of DI networks, are collectively denoted as Design Methodology-1 (DM-

1).

Given training data {xp, tp}Nv
p=1, our growing algorithm, is described as follows.

First, we train a linear network (no hidden units, Nh = 0) using the OWO algorithm and

the network obtained is represented by W0
DM1. Then we successively add a few hidden
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units (Nε = 5 in our case1) and re-train the network. During re-training, for the first

few iterations (say 20% of the total iterations), we train only the newly added hidden

units using OWO-HWO [61] as described in appendix A. Then during the remaining

iterations, we train all the weights and thresholds. The network obtained at the end of

training is represented by WNh
DM1. Also at each step of growing, we validate the network

obtained at that point with validation dataset {xval
p , tval

p }Nval
v

p=1 to help decide upon the

final network size. Obviously, the input and output vectors are of the same dimension as

that of the training data. Let Eval(WNh
DM1) be the validation error for a DM-1 network

with Nh hidden units. The best network among the sequence of different size networks

can be chosen as

WNopt
h

DM1 = argmin Eval(Wk
DM1) (2.9)

where WNopt
h

DM1 represents the DM-1 network with optimal number of hidden units N opt
h

and NhFinal represents the maximum number of hidden units at the end of growing. This

number should be conveniently large so that the best network falls within the sequence of

grown DM-1 networks. The validation error is the mean squared error on the validation

dataset, given by

Eval =
1

N val
v

Nval
v∑

p=1

M∑

k=1

(
tval
pk − yval

pk

)2

(2.10)

where tval
pk and yval

pk are the desired and actual outputs for kth unit and pth pattern of the

validation dataset.

In order to validate the performance of the method, we repeat the growing pro-

cedure several times with different random numbers initializing the network. Then the

average MSEs are calculated, which gives the expected values of the MSEs for each size

1It is shown by Lehtokangas [64] that adding multiple hidden units at a time and training together is
much more efficient than adapting many single units trained independently. Hence in this dissertation,
we have fixed the growing step size to be five.
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network. Also, to obtain a measure for the confidence interval of the method, we calculate

the standard deviations of the MSEs. The average MSEs are given by

M(Eval) =
1

Nr

Nr∑
i=1

Ei
val (2.11)

where Ei
val are the validation MSEs for the ith random initial network and Nr is the

number of random initial networks. The standard deviations of the MSEs are given by

SD(Eval) =

[
1

Nr

Nr∑
i=1

(Ei
val −M(Eval))

2

]1/2

(2.12)

Fig. 2.2 shows sample plots of the training and validation MSEs as a function of

number of hidden units (Nh) for DM-1 with Nr = 10. Note that in this method, there

will not be any intermediate size networks as the step size used to grow the network is

equal to five. A more detailed analysis on the plots of means and standard deviations of

the design methodologies will be made in chapter 4 and hence at this point we have not

shown these plots.

In appendix C, we discuss the constructive backpropagation and cascade correlation

training methods, which are additional examples of DM-1 growing methods.

2.3.2 Pruning Methods

We call the pruning techniques Design Methodology 2 (DM-2). The goal of prun-

ing is stepwise optimal ordering of hidden units. Here we prune a large network in

order to produce a monotonic Ef (Nh) curve. The pruning procedure [25] is explained

in appendix B. Pruning does not change the hidden unit weights but just reorders the

hidden units for a better performance. During pruning, the orthonormalization matrix

A = {amk} for 1 ≤ m ≤ Nu and 1 ≤ k ≤ m is saved, where Nu = N + Nh + 1 is the

total number of basis functions. Let j(m) be an integer valued function that specifies the

order in which the raw basis functions xk are processed into orthonormal basis functions,
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Figure 2.2. MSEs of Speech dataset (a) Training (b) Validation.
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x′k. The mth orthonormal basis is calculated using the previous m−1 ordered bases. The

j() function defines the structure of the new hidden layer. If j(m) = k, then the mth unit

of the new structure comes from the kth unit of the original structure.

The following equation gives the mth orthonormal basis function.

x′m =
m∑

k=1

amk · xj(k) (2.13)

for 1 ≤ m ≤ Nu. The network output is given by the equation

ypk =
Nu∑
i=1

w′
o(k, i) · x′i (2.14)

where the orthonormal weights w′
o(k, i) are

w′
o(k, i) =

i∑
q=1

aiq · c(k, j(q)) (2.15)

The error equation corresponding to the network with Nhd hidden units is given by

Etrn(Nhd) =
1

Nv

Nv∑
p=1

M∑

k=1

[tpk − ypk(Nhd)]
2 (2.16)

Here ypk(Nhd) is the output of the network with Nhd hidden units, given by

ypk(Nhd) =

N+1+Nhd∑
i=1

w′
o(k, i) · x′i (2.17)

One Pass Validation

Given the matrix A and the MLP network with ordered hidden units, we wish

to generate the validation error versus Nh curve Eval(Nh) from the validation dataset

{xval
p , tval

p }Nval
v

p=1 . For each pattern, we augment the input vector with a constant one and
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the hidden activations. So the augmented input vector is xval
p ← [xvalT

p , 1,OvalT

p ]T . Then

the augmented vector is converted into orthonormal basis functions by the transformation

xval′
p (m) =

m∑

k=1

amk · xval
p (k), for 1 ≤ m ≤ Nu (2.18)

In order to get the validation error for all size networks in a single pass through the data,

we use the following strategy:

Let yval
pi (m) represent the ith output of the network having m hidden units for the

pth pattern, let Eval(m) represent the mean square error of the network for validation

with m hidden units. First, the linear network output is obtained and the corresponding

error is calculated as follows:

yval
pi (0) =

N+1∑

k=1

w′
o(i, k) · xval′

p (k), for 1 ≤ i ≤ M

Eval(0) ← Eval(0) +
M∑
i=1

[tval
pi − yval

pi (0)]2 (2.19)

Then for 1 ≤ m ≤ Nh, the following two steps are performed:

• For 1 ≤ i ≤ M compute the ith output for m hidden units as

yval
pi (m) = yval

pi (m− 1) + w′
oh(i, m) ·Oval′

p (m) (2.20)

• Update the validation error of the network with m hidden units as

Eval(m) ← Eval(m) +
M∑
i=1

[tval
pi − yval

pi (m)]2 (2.21)

where w′
oh(i,m) is the orthonormal weight connecting mth hidden unit to ith output.

Apply equations 2.18, 2.19, 2.20 and 2.21 for 1 ≤ p ≤ Nv and get the total validation
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error over all the patterns for each size network. Then these error values should be

normalized as

Eval(m) ← Eval(m)

N val
v

, for 0 ≤ m ≤ Nh (2.22)

Thus we generate the validation error versus the network size curve in one pass through

the validation dataset.

Fig. 2.3 shows sample plots of the training and validation MSEs as a function of

number of hidden units (Nh) for DM-2 with Nr = 10.

2.4 Review of Pattern Storage Bounds

A feedforward network is said to have memorized a dataset if for every pattern,

the network outputs are exactly equal to the desired outputs. Storage capacity of a

feedforward network is the number (Nv) of distinct input vectors that can be mapped,

exactly, to the corresponding desired output vectors resulting in zero error.

The lower bound on memorization (or the upper bound on number of hidden

units) is stated in the following theorem which is due to Sartori and Antsaklis [33] and

Huang [34].

Theorem 4: For a feedforward network with N inputs, M outputs and Nh hidden units

with arbitrary bounded nonlinear activation functions, at least Nh distinct patterns can

be memorized.

This can be expressed as

Nv ≥ Nh (2.23)

for networks having no bypass weights or output thresholds. For networks having bypass

weights and the output thresholds, we generalize this to get

Nv ≥ (N + Nh + 1) (2.24)



20

Researchers are generally aware of the upper bound on number of distinct patterns

Nv that can be memorized by a feedforward nonlinear network.

Theorem 5 For a feedforward network with N inputs, M outputs and Nh hidden units

with arbitrary bounded nonlinear activation functions, the number of distinct patterns

that can be memorized obeys the inequality

Nv ≤
⌊

Nw

M

⌋
(2.25)

where Nw is the number of weights in the network.

For example, the upper bound on the number of hidden units, derived by Elisseeff

and Moisy [39] is based upon (2.25). They assume that the activation functions have

continuous derivatives and have finite limits L− in −∞ and L+ in +∞.

2.5 Support Vector Machines

Support Vector Machines can be used to solve both regression and classification

problems. In this dissertation, we use SVMs to solve two-class classification problems.

Here, we briefly review relevant properties of SVMs [30, 31]. Let the dimension of feature

space be hsvm, which is also the number of Support Vectors (SVs). Note that hsvm is

equivalent to number of hidden units in an MLP. Fig. 2.4 shows a diagram of an SVM.

Let {xp, dp}Nv
p=1 be the training dataset. Let {φj(x)}hsvm

j=1 denote nonlinear transfor-

mation from input space to feature space. In our case, they represent the Radial Basis

Functions (RBF).

φj(x) = exp

(
− 1

2σ2
‖x− xj‖2

)
(2.26)
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Figure 2.4. Support Vector Machine with RBF Kernel.

for 1 ≤ j ≤ hsvm. These φj(x) are equivalent to the hidden unit activation functions in

case of MLPs. The output of the SVM is given by

sp =
hsvm∑
j=1

wjφj(xp) + b (2.27)

The main structural differences between MLPs and SVMs are

• Unlike MLPs, bypass weights are not present in case of SVMs (weights connecting

inputs directly to outputs)

• There is only one output for SVMs whereas MLPs can handle multiple outputs
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The decision hyperplane constructed by SVM for a given dataset is as follows:

hsvm∑
j=1

wjφj(x) + b = 0 (2.28)

where {wj}hsvm

j=1 denotes a set of linear weights connecting the feature space to the output

space, and b is the bias. A decision is made on the given input depending on the output

of the SVM. If it is greater than zero, the pattern lies on the right side of the hyperplane

and is classified to be of class one and if it is less than zero, the pattern lies on the left side

of the hyperplane and is classified to be of class two. For a SVM, patterns that are SVs

generate zero squared error. Therefore the SVM memorizes Nv = hsvm patterns. This

corresponds to the lower bound on memorization of Theorem 4 (see equation (2.23)).

The RBF type inner-product kernels as shown in Fig. 2.4 are used which are denoted

by K(x,xi) and defined by

K(x,xi) =
hsvm∑
j=0

φj(x)φj(xi) (2.29)

Now, we may use the inner-product kernel K(x,xi) to construct the optimal hyperplane

in the feature space as
N∑

i=1

αidiK(x,xi) = 0 (2.30)

where αi are the Lagrange multipliers [65].

2.5.1 Structural Risk Minimization (SRM) Principle

The goal in SVMs is to solve a supervised learning problem by realizing the best

generalization performance of a machine, which is obtained by finding the VC dimen-

sion [31] where the minimum of the guaranteed risk (sum of training error and confidence

interval) occurs. In MLP, this corresponds to finding the appropriate number of hidden

units which minimizes the validation error. This is shown in the Fig. 2.5.
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2.5.2 Memorization in Support Vector Machines

Let {xp, dp}Nv
p=1 be the training dataset, where xp ∈ <N , is the input pattern for

the pth example, dp is the corresponding class number and Nv is the number of patterns.

Consider designing a Lagrangian SVM with RBF type inner product kernels denoted by

K(x,xi). In order to solve for the decision surface, slack variables ξp are introduced into

the definition of separating hyperplane as shown [65]

dp(w
T φp + b) ≥ 1− ξp (2.31)

for 1 ≤ p ≤ Nv. Here, φp denotes the kernel function, w is the linear weights in the feature

space and b is the bias. The ξp are called slack variables; they measure the deviation of a

data point from the ideal condition of pattern separability. Using the method of Lagrange

multipliers, a dual problem is formulated and solved for the Lagrange multipliers which

can be used to determine the optimal hyperplane.

φj(x) is equivalent to the activation function of the jth hidden unit. Support vectors

are those particular data points that satisfy equation (2.31) precisely even if ξp > 0. These

support vectors along with the corresponding weights will be used to classify the data
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patterns. Hence the SVM memorizes the number of patterns equal to the number of

support vectors or the number of basis functions. Therefore, SVMs follow the lower

bound on pattern storage, seen in Theorem 4.

2.6 AdaBoost-Stump

Boosting is a committee machine having static structure where weak learners are

combined to achieve a classifier with arbitrarily high accuracy. A weak learner is also

referred to as a base hypothesis and the final voted hypothesis as combined hypothesis.

Boosting can be implemented in three different ways: boosting by filtering, boosting by

subsampling and boosting by reweighting [65]. In this dissertation, we use boosting by

subsampling, in particular the AdaBoost algorithm.

First, the distribution is assumed uniform over all training samples and a weak

learner is trained. This weak classifier correctly classifies a fraction of the training sam-

ples. The error is measured with respect to the distribution. Then the distribution is

updated such that the density of misclassified patterns should increase and that of cor-

rectly classified patterns should decrease. Another weak learner is trained on the new

distribution. This procedure continues until a maximum number of weak classifiers are

trained and the boosting machine combines all the weak classifiers into a single final

strong classifier.

Summary of AdaBoost is given below: Given training samples {xi, di}Nv
i=1, distri-

bution D over Nv labeled examples, weak learning model, an integer Nit specifying the

number of iterations of the algorithm, initialize the set D1(i) = 1/Nv for all i. Repeat

the following steps for n = 1, 2, · · · , Nit

1. Execute the weak learning model using the distribution Dn and get the base hy-

pothesis Hn : xi → di
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2. Calculate the error of hypothesis Hn:

εn =
∑

i:Hn(xi)6=di

Dn(i) (2.32)

3. Set βn = εn

1−εn

4. Update the distribution Dn:

Dn+1(i) =
Dn(i)

Zn

×





βn, if Hn(xi) = di;

1/βn, otherwise.
(2.33)

where Zn is a normalization constant

The final hypothesis is

H(x) = arg max
d∈D

∑

n:Hn(x)=d

(
log

1

βn

)
· Hn(x) (2.34)

The details of AdaBoost algorithm can be found in [65] [66]. Relation of AdaBoost

to Bias-Variance Theory is explained by Schapire et al. in their work [67]. They have

explained the improvements achieved by voting classifier based on separating the expected

error into a bias term and a variance term. They have presented results of several bias-

variance experiments on different artificial datasets and have concluded that boosting

can perform poorly only if there is insufficiency in the available training data compared

to the base hypothesis complexity or the training errors of base hypothesis increases too

quickly.



CHAPTER 3

PROPOSED WORK

In this chapter, we describe the problems or requirements that are identified and

propose a solution for each of them.

3.1 Problems

3.1.1 Sensitivity of Trained Networks to Initial Conditions

Designing DI networks (DM-1) results in monotonic error versus network size

curves, however, there is no guarantee that the error for each size network is mini-

mized. Also the variance of the error on different random initialization is high, which

indicates that the technique is very sensitive to the initial conditions. One of our goals

is to minimize the sensitivity of the network to initialization.

In pruning techniques, (DM-2), the error versus network size curves are also mono-

tonic and the variance of the error over different random initialization is smaller than

DM-1. However, training a large network might drive some of the hidden units to sat-

uration and the larger networks will not be optimal. This calls for a better technique

where we can minimize errors for all network sizes while maintaining low error variance

over different initialization.

3.1.2 Unclear Upper Bound on Pattern Storage

Although several researchers have worked on the upper bound on pattern storage,

there is no clear statement and proof of the upper bound for the case of multiple inputs

and multiple outputs and arbitrary hidden unit activation functions.

26



27

3.1.3 Redundancy in Large Learning Machines

As discussed in the previous chapter, SVMs have large numbers of support vec-

tors, which makes them bulky and slow. In other words, the space (number of network

parameters) and time (computation time) complexities are very high in case of SVMs.

Compact and well generalized networks are required that can perform as well or better

than SVMs. Such compact networks should eliminate the redundancy in the SVMs and

speed up the processing of new data.

3.2 Proposed Goals and Tasks

The goals in the proposed research are to (1) improve and combine growing and

pruning approaches, (2) develop a new proof of an upper bound on pattern storage, and

(3) develop a method for generating compact models of large classifiers.

3.2.1 Combined Growing and Pruning Approaches

We propose a combined growing and pruning approach which is less sensitive to

the initialization and results in smaller error on all network sizes. Its performance will

be evaluated by comparing with the growing and pruning techniques presented in the

previous chapter. A comparison with the existing benchmark growing techniques will

also be presented. We also will discuss improvements of this technique that can lead to a

solution where saturated hidden units can be removed dynamically as new hidden units

are added.

We also extend the work to classification case and give the similar comparisons as

the approximation case.

3.2.2 Upper Bound on Pattern Storage

We propose a proof by contradiction of the upper bound on pattern storage for the

case of arbitrary hidden unit activations. We discuss the pitfalls of a direct approach.
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The tightness and validity of the derived bound will be verified by a simple simulation

experiment.

Using the fact that large SVMs memorizes training data inefficiently, we propose to

use the upper bound of Theorem 5 to predict more appropriate sizes. Then, a method of

concentrating the performance of large learning machines like SVMs into much smaller

feedforward networks is proposed. The advantages of training an approximation network

and converting it into classification network will be discussed.

3.2.3 Compact Modeling of Large Learning Machines

We extend the idea of memorization and model a network based on a better per-

forming learning machine. Methods of generating additional training data using a trained

machine and their effects on the performances of other machines will be presented.

3.2.4 Overview of Proposed Research

Fig. 3.1 shows the block diagram of the work proposed for this dissertation. It is

shown here to help understand the connectivity of our research modules. By developing

(1) a new network sizing approach, (2) an effective training algorithm and (3) a method

for generating extra training data, we hope to produce smaller, more capable networks.
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CHAPTER 4

COMBINED GROWING AND PRUNING

In this chapter, we discuss work done on task 3.2.1. We have presented DM-

3 and DM-4, which are combination of growing and pruning methods. We evaluate

the performances of these techniques and compare them to existing growing methods.

Extensive simulation results on various datasets have been tabulated. Further, we also

extend the technique to the classification case and show the simulation results.

4.1 Design Methodologies for Feedforward Networks

4.1.1 Pruning a Grown Network

The DI network growing approach (DM-1) generates monotonic Ef (Nh) curves.

However, hidden units added earlier in the process tend to reduce the MSE more than

those added later. Unfortunately, there is no guarantee that an Ef (Nh) sample represents

a global minimum, there is no guarantee that the hidden units are ordered properly, and

useless hidden units can occur even for small values of Nh. In Design Methodology 3

(DM-3), we attempt to solve these problems by (1) Performing growing as in DI network

(DM-1), and (2) Performing ordered pruning of the final network (DM-2). This forces the

grown hidden units to be stepwise optimally ordered. This method works better than

pruning a large trained network because the growing by DI network approach would

produce sets of hidden units that are optimally placed with respect to the previously

trained hidden units. Pruning the grown network (DM-3) always produces a monotonic

Ef (Nh) curve. Let us denote the DM-3 network for Nh hidden units by WNh
DM3.

30
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Figure 4.1. MSEs, Speech dataset.
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An alternative solution would be to save the intermediate grown networks and to

select the best performing network obtained either by DM-1 or DM-2 step. In other

words,

Wk
DM3 = argmindm∈{DM1,DM2}Eval

{
Wk

dm

}
(4.1)

for 1 ≤ k ≤ NhFinal, and the optimal network is obtained by picking the network with

minimum validation MSE.

WNopt
h

DM3 = argmink Eval

{
Wk

DM3

}
(4.2)

One problem with this method is that the curve Etrn(Nh) and Eval(Nh) are not going to

be monotonic, but the MSEs for smaller number of hidden units will improve over the

case where there is no minimum operator. Let us denote the former case, without the

minimum operator as DM-3a and the later case, with the minimum operator as DM-3b.

Fig. 4.1 shows the training and validation MSEs for the two cases on speech dataset. This

data set for estimating phoneme likelihood functions in speech, has 39 inputs and 117

outputs. The speech samples are first pre-emphasized and converted into the frequency

domain via the DFT. The data is passed through Mel filter banks and the inverse DFT

is applied on the output to get Mel-Frequency Cepstrum Coefficients (MFCC). Each of

MFCC(n), MFCC(n)-MFCC(n - 1) and MFCC(n)-MFCC(n - 2) would have 13 features,

which results in a total of 39 features. The desired outputs are likelihoods for the be-

ginning, middle, and ends of 39 phonemes. It is clearly seen that monotonicity has been

lost in DM-3b. However, as the scale on the y-axis is very large, the actual value of the

MSE is significantly lower for some networks in DM-3b.

Fig. 4.2 shows the block diagram of the DM-3b procedure.

Unfortunately, DM-3 does not guarantee that all the hidden units for every network

are useful. Some of the hidden units may be saturated and increase complexity while

contributing very little to the generalization of the network. Also these saturated hidden

units might affect the learning of other hidden units.
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Figure 4.2. Block diagram showing the flow of DM-3b.

If there are saturated hidden units or the hidden units that are linearly dependent,

those units need to be removed. This is achieved using the the simultaneous growing and

pruning approach presented below, where the hidden units are pruned in every step of

growing.

4.1.2 Simultaneous Growing and Pruning

The problems faced in DM-3 approaches can be solved by our last approach called

DM-4, where we simultaneously grow and prune the hidden units of the network. During

pruning, we delete the hidden units which contribute less than η% to the network per-

formance (i.e., less than η% change in MSE when removed). This technique eliminates

any saturated hidden units and in turn helps in adding new hidden units with different

starting points. Hence the the technique is termed a Pseudo-Genetic approach.

As in DM-3, we can save all the intermediate networks and select the best perform-

ing network obtained either by the DM-1 or DM-2 step. Note that in DM-4, we have lot

more networks in the pool and we should choose the one with the minimum validation

error. Again, we can denote the case with no minimum operator by DM-4a and the one

with the minimum operator by DM-4b.

Fig. 4.3 shows the block diagram of the DM-3b procedure.
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Figure 4.3. Block diagram showing the flow of DM-4b.

Algorithm (DM-4b) Given the training data and maximum number of hidden

units NhFinal

1. Train a linear network to get woi(k, i) ∈ W0
DM4 and whi(j, i) ∈ W0

DM4 (here Nh = 0),

where 1 ≤ k ≤ M , 1 ≤ j ≤ Nh and 1 ≤ i ≤ N .

2. Add Nε hidden units with random initial input weights and zero output weights

(Nh = Nh + Nε).

3. Train only the new hidden units for 20% of the iterations and the entire network

for the remaining 80% of the iterations. We will get a new set of woi(k, i) ∈ WNh
DM4,

woh(k, j) ∈ WNh
DM4 and whi(j, i) ∈ WNh

DM4, where 1 ≤ k ≤ M , 1 ≤ j ≤ Nh and

1 ≤ i ≤ N .

4. Prune the network: Order the hidden units using the Schmidt procedure explained

in appendix B. Then compute the errors for each size of the network (Ef (Nh))

and delete those hidden units which results in less than η = 1% error change when
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removed. The sequence of networks obtained from pruning (DM-2) the network

WNh
DM4 will be denoted by W(k,Nh)

DM4 , for 1 ≤ k ≤ Nh.

5. If Nh < NhFinal, then goto step 2.

6. If Nh 6= NhFinal add appropriate number of hidden units so that the total number

of hidden units equal NhFinal and train the network the same way as in step 3.

7. For each size network, we have to select the network that gives minimum validation

error. We get an equation similar to equation 4.1.

W(k,NhFinal)
DM4 = argminn∈Nh

Eval

{
W(k,n)

DM4

}
(4.3)

for 0 ≤ k ≤ NhFinal. Here Nh is the population of all the networks obtained

during step 4 of the DM-4 procedure. The best final network chosen will be that

which gives the minimum validation error over the sequence of all size networks

starting from no hidden units to NhFinal hidden units. We get an equation similar

to equation 4.2.

W(kopt,NhFinal)
DM4 = argmin Eval

{
W(k,NhFinal)

DM4

}
(4.4)

It can be seen from Fig. 4.4, that the minimum operator not only decreases the

MSE for smaller size networks, but also preserves the monotonicity fairly well. Hence,

DM-4b is the best of the proposed methods. In the remainder of this dissertation, DM-4

refers to DM-4b.
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Figure 4.4. MSEs, Speech data set (a) Training (b) Validation.
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4.1.3 Performance Evaluation

In the previous section, we show that DM-4 has advantages over other training

algorithms we have developed. In this section, we compare DM-4 to two well known

existing DI approaches for growing a sequence of networks. We have generated the

sequence of networks on different random number seeds and the average and the standard

deviation of MSEs for various network sizes are computed as explained in Chapter 2.

In Figs. 4.5 and 4.6, we have shown the performances of the four design method-

ologies discussed in this section. Fig. 4.5 (a) and (b) show respectively the averages of

training and validation MSEs obtained over different random initialization of the net-

work during training. Fig. 4.6 (a) and (b) show respectively the the standard deviations

of training and validation MSEs over these initializations. The averages and standard

deviations of MSEs are necessary to analyze the robustness of the various techniques.

The following are the comments and observations on these plots. Clearly, we can

see the disadvantage of DM-2, in which we train a large network and prune to obtain

different size networks. Both the training and validation errors are high in this case. Also,

the standard deviation increases for larger networks (i.e., as number of hidden units Nh

increases) in DM-2, which indicates that the larger networks in this technique are more

sensitive to initial weights. This also demonstrates that the growing method performs

better than training a randomly initialized large network. In DM-1, the average MSE

for smaller networks is less than that of the other methods, but the standard deviation

is very high when compared to other methods. This shows that the smaller networks in

DM-1 are very sensitive to initial weights. As our goal is to find a network generation

technique that is less sensitive to initial conditions and have monotonic error versus

number of hidden units curve, we need to find a technique that has advantages of both

DM-1 and DM-2. So, in DM-3, we first grow the MLP and later prune the final large

grown network. From the plots, it can be seen that both average MSE and standard

deviation of the MSE for DM-3 are less than for the other methods. Further, if there

are saturated hidden units or the hidden units that are linearly dependent, those units
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Figure 4.5. Mean MSEs, Speech data (a) Training (b) Validation.
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Figure 4.6. SD of MSEs, Speech data (a) Training (b) Validation.
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can be removed. This is achieved using the DM-4 approach, where the hidden units are

pruned in every step of growing. Consistent to our analysis, the DM-4 method does give

the best result.

Note that in DM-4, the auto and cross-correlation matrices R = {r(i, j), 1 ≤ i, j ≤
N + Nh + 1} and C = {c(i, j), 1 ≤ i ≤ M, 1 ≤ j ≤ N + Nh + 1} do not need to be

calculated for pruning (see equations B.5 and B.11), since they are already found during

training in the OWO step. This saves an extra pass through the data at each growing

step. The number of multiplies eliminated for calculating the hidden unit activations,

auto and cross correlation matrices is

Nm = Nv ·
[
(M + N) ·Nh +

Nh · (Nh + 1)

2

]
(4.5)

This savings in multiplies is significant, though small.

4.2 Results and Comparison

Here, we compare DM-4 to constructive backpropagation (CBP) and cascade cor-

relation (CC), which are discussed in appendix C. Note that both these techniques are

examples of DM-1. All the techniques were evaluated on seven different datasets. As ex-

plained in the previous section, all techniques are executed Nr = 10 times with different

random initial weights. The average and standard deviation of MSEs for Nh = 5, 10, 30

on all the datasets are shown in Table 4.1. The italicized values are the ones in which

our proposed methodology has sub-optimal performance compared to other algorithms.

We have justified this behavior in the discussion of each dataset that is presented in the

following. Also some example plots of the average and standard deviation of the MSEs

versus hidden units are given for a couple of datasets. The first five datasets are avail-

able for public use [68]. The last two datasets are the well-known benchmark datasets

available for public to access at StatLib repository and PROBEN1 collection.
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As discussed by Yu et al. [69], the HWO algorithm converges as the change in the

error function is non-increasing and the algorithm uses backtracking in order to save the

best network without diverging from the solution. It is also shown that the convergence

speed of the new algorithm is higher than those of other competing techniques.

Speech: Figures 4.7 and 4.8 gives the performance comparison of the proposed

method with the CBP and CC algorithms. It can be seen clearly that the averages and

standard deviations of validation MSEs for all size networks for the proposed method are

lesser than the CC and CBP.

F17 : This set contains prognostics data for onboard flight load synthesis (FLS) in

helicopters [61], where we estimate mechanical loads on critical parts, using measurements

available in the cockpit. There are 17 inputs and 9 outputs. From Table 4.1, it is clearly

seen that our proposed method outperforms the existing techniques in both averages and

standard deviations of validation MSE for all the network sizes considered.

Oh7 : This data set is for inversion of radar scattering from bare soil surfaces [70]. It

has 20 inputs and 3 outputs. The training set contains VV and HH polarization at L 30,

40 deg, C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 degrees along with the corresponding

unknowns rms surface height, surface correlation length, and volumetric soil moisture

content in g/cubic cm. In this case, it is observed that the average and standard deviation

of validation MSEs for big networks (Nh = 30) for the proposed method are larger than

the existing methods. However, the averages and standard deviations of validation MSE

for smaller network (Nh = 5, 10) are lesser. Hence the networks with larger MSEs are

discarded.

Single2 : This data set is for the inversion of surface permittivity [71]. This data has

16 inputs and 3 outputs. The inputs represent the simulated back scattering coefficient

measured at 10, 30, 50 and 70 degrees at both vertical and horizontal polarization. The

remaining 8 are various combinations of ratios of the original eight values. For this

dataset, all the averages of validation MSEs for the proposed method are clearly better

than for the existing methods, but the standard deviation of validation MSE for Nh = 5
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Figure 4.7. Mean MSEs, Speech data (a) Training (b) Validation.
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Figure 4.8. SD of MSEs, Speech data for (a) Training (b) Validation.
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Figure 4.9. Mean MSEs, California housing data (a) Training (b) Validation.
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Figure 4.10. SD of MSEs, California housing data (a) Training (b) Validation.
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on the proposed method is a little higher. However, the average MSEs for proposed

method are so much better than for the existing methods, that the higher standard

deviation does not affect actual performance.

Twod : This training file [72, 73] is used in the task of inverting the surface scat-

tering parameters from an inhomogeneous layer above a homogeneous half space, where

both interfaces are randomly rough. The parameters to be inverted are the effective per-

mittivity of the surface, the normalized rms height, the normalized surface correlation

length, the optical depth, and single scattering albedo of an inhomogeneous irregular

layer above a homogeneous half space from back scattering measurements. The inputs

consist of eight theoretical values of back scattering coefficient parameters at V and H

polarization and four incident angles. The outputs were the corresponding values of per-

mittivity, upper surface height, lower surface height, normalized upper surface correlation

length, normalized lower surface correlation length, optical depth and single scattering

albedo which had a joint uniform pdf. Again on this dataset, it is clearly seen that

our proposed method outperforms the existing techniques in both averages and standard

deviations of validation MSE for all the network sizes considered.

California Housing : This is a dataset obtained from the StatLib repository. The

information was collected on the variables using all the block groups in California from

the 1990 Census. In this sample a block group on average includes 1425.5 individuals

living in a geographically compact area. Naturally, the geographical area included varies

inversely with the population density. The distances are computed among the centroids

of each block group as measured in latitude and longitude. The final data contained

20,640 observations on 9 variables. The dependent variable is ln(median house value).

Figures 4.9 and 4.10 gives the performance comparison of the proposed method with the

CBP and CC algorithms. It can be seen clearly that the average MSE and standard

deviation of MSE for all size networks in the proposed method are lesser than the CC

and CBP.



47

T
ab

le
4.

1.
V

al
id

at
io

n
M

S
E

s,
m

ea
n

(1
st

ro
w

)
an

d
S
D

(2
n
d

ro
w

)
(N

r
=

10
).

N
h

=
5

N
h

=
10

N
h

=
30

D
at

a
S
et

s
C

B
P

C
C

D
M

-4
b

C
B

P
C

C
D

M
-4

b
C

B
P

C
C

D
M

-4
b

S
p
ee

ch
2.

83
e+

4
2.

65
e+

4
8.

88
e+

3
1.

86
e+

4
1.

19
e+

4
5.

74
e+

3
9.

60
e+

3
5.

83
e+

3
2.

46
e+

3

1.
31

e+
3

1.
46

e+
3

4.
15

e+
2

3.
32

e+
3

1.
29

e+
3

2.
41

e+
2

6.
20

e+
2

3.
15

e+
2

1.
52

e+
2

F
17

1.
84

e+
8

1.
83

e+
8

3.
52

e+
7

1.
54

e+
8

1.
41

e+
8

2.
31

e+
7

1.
07

e+
8

9.
46

e+
7

1.
65

e+
7

1.
08

e+
7

7.
13

e+
6

5.
20

e+
6

1.
04

e+
7

1.
14

e+
7

3.
33

e+
6

6.
19

e+
6

5.
85

e+
6

4.
75

e+
6

O
h
7

3.
07

e+
0

3.
01

e+
0

1.
54

e+
0

1.
84

e+
0

1.
77

e+
0

1.
51

e+
0

1.
55

e+
0

1.
52

e+
0

1.
61

e+
0

2.
28

e-
1

1.
93

e-
1

1.
81

e-
2

9.
63

e-
2

9.
62

e-
2

1.
87

e-
2

1.
61

e-
2

1.
58

e-
2

4.
54

e-
2

S
in

gl
e2

1.
49

e+
0

1.
49

e+
0

6.
55

e-
2

9.
57

e-
1

1.
12

e+
0

4.
88

e-
2

4.
99

e-
1

6.
12

e-
1

6.
08

e-
2

3.
00

e-
2

3.
97

e-
2

3.
59

e-
2

2.
44

e-
1

1.
68

e-
1

3.
55

e-
2

1.
76

e-
1

2.
06

e-
1

4.
82

e-
2

T
w

o
d

3.
39

e-
1

3.
37

e-
1

1.
71

e-
1

2.
85

e-
1

2.
92

e-
1

1.
37

e-
1

2.
34

e-
1

2.
56

e-
1

1.
16

e-
1

9.
80

e-
3

8.
39

e-
3

6.
89

e-
3

1.
10

e-
2

2.
81

e-
2

4.
30

e-
3

1.
09

e-
2

2.
26

e-
2

5.
31

e-
3

C
al

h
ou

si
n
g

4.
54

e+
9

4.
58

e+
9

3.
31

e+
9

4.
20

e+
9

4.
13

e+
9

3.
06

e+
9

3.
88

e+
9

3.
72

e+
9

2.
88

e+
9

8.
17

e+
7

1.
85

e+
8

6.
65

e+
7

1.
58

e+
8

1.
19

e+
8

4.
35

e+
7

2.
70

e+
8

2.
10

e+
8

1.
08

e+
8

B
u
il
d
in

g1
2.

44
e-

2
2.

41
e-

2
2.

17
e-

2
2.

31
e-

2
2.

24
e-

2
2.

26
e-

2
2.

39
e-

2
2.

52
e-

2
3.

07
e-

2

5.
81

e-
4

5.
56

e-
4

1.
76

e-
3

1.
66

e-
3

1.
55

e-
3

1.
40

e-
3

2.
16

e-
3

5.
36

e-
3

8.
11

e-
3



48

Building1 : The Building1 problem (taken from PROBEN1 benchmark collection)

predicts the energy consumption in a building. It tries to predict the hourly consumption

of electrical energy, hot water, and cold water, based on the date, time of day, outside

temperature, outside air humidity, solar radiation, and wind speed. It has 14 inputs, 3

outputs, and 4208 patterns. Our proposed method has shown sub-optimal performance

for larger networks (Nh = 10, 30) compared to the CBP and/or CC algorithms on this

dataset. However, for Nh = 5, the average validation MSE of our method is lesser

than the other methods considered, but the standard deviation is higher than the other

methods. For Nh = 5, our proposed method with any random initial network performs

better than or same as any of the two methods CBP and CC. Hence, we discard all the

big networks and save the network which gives the least validation MSE which will be

the network with Nh = 5.

Next, we compute the coefficients of determination (R2) values that will give in-

formation about the goodness of fit of the model. For each dataset we have compared

R2 values (for both training and validation) of our proposed algorithm with the two

benchmark techniques. For computing this, we use the sum of squared errors (SSE) of

the best network for each dataset.

R2 = 1− SSE

SST

(4.6)

where SSE is the sum of squared error (residual error) and SST is the total sum of squares

of the desired outputs. Table 4.2 shows the coefficient of determination values for both

training and validation. Note that in terms of model fitting (training R2), our proposed

method outperforms the other methods. In terms of generalization, our proposed method

is better in all of the datasets except for Oh7 where the R2 value is insignificantly lower

compared to other methods.

In order to analyze the complexity of the training algorithms, we compare the total

number of multiplies for each training algorithm to train a sequence of networks. Then
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we give comparison plots of MSE versus time in seconds for the three training algorithms

on example datasets. The number of multiplies for CBP, CC and DM-4 algorithms are

given respectively in the inequalities below.

Mcbp ≤ NitNv

{
0.2Nε

[
N + Nh +

1

2
(1−Nε) + M

]

+0.8
[
(N + M)Nh +

Nh(Nh + 1)

2

]
+

[
Nh(N + 2M + 3)

]}
(4.7)

Mcc ≤ Nit

{
Nv

[
4MNh + Nε(3Nh + 5M)

]
+ Nε(2M + 5)

}
(4.8)

MDM4 ≤ Mcbp + Nit

{
7N2 + 3N

2
+ NhN(N + 1)

}
+

Nh(Nh + 1)(7N2 + 3N)

4
(4.9)

Here Nε is the number of new hidden units added in every growing step (see Step

2 of Algorithm DM-4b).

Figures 4.11 (a) and (b) show the plots of the MSE versus time in seconds for

California housing and speech datasets respectively. Note that the convergence time for

DM-4 on California housing dataset is shorter as it reaches the local minima before it

executes total number of iterations, Nit. This is because, if the learning factor is very

small and the MSE does not decrease for more than five iterations, then a local minimal

is reached and the training is stopped for that network.

4.3 Extension to Classification Case

Growing and pruning are also applicable to classification problems. The MLP

classification training that we use involve the Output Reset (OR) algorithm developed

by Gore et al. [74].

We have tested the DM-4b technique for classification on several datasets and

compare it to the benchmark techniques: cascade correlation and constructive backprop-

agation. The following are the discussion on the performances of the three techniques

on different datasets. The first three datasets are available for public use [68]. The last
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Figure 4.11. Convergence time (a) California housing (b) Speech datasets.
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three datasets are from UCI Machine Learning Repository

(http://mlearn.ics.uci.edu/MLSummary.html).

The segmentation dataset (Comf18) [75] has 18 inputs and 4 classes and is generated

using segmented images. Each segmented region is separately histogram equalized to 20

levels. Then the joint probability density of pairs of pixels separated by a given distance

and a given direction is estimated. We use 0, 90, 180, 270 degrees for the directions

and 1, 3, and 5 pixels for the separations. The density estimates are computed for each

classification window. For each separation, the co-occurrences for for the four directions

are folded together to form a triangular matrix. From each of the resulting three matrices,

six features are computed: angular second moment, contrast, entropy, correlation, and

the sums of the main diagonal and the first off diagonal. This results in 18 features for

each classification window.

A prognostics dataset - F17C [74] has 17 inputs and 39 classes. This data file

consists of parameters that are available in the basic health usage monitoring system

(HUMS), plus some others. The data was obtained from the M430 flight load level

survey conducted in Mirabel Canada in early 1995. The input features include: (1) CG

F/A load factor, (2) CG lateral load factor, (3) CG normal load factor, (4) pitch attitude,

(5) pitch rate, (6) roll attitude, (7) roll rate, (8) yaw rate, (9) corrected airspeed, (10) rate

of climb, (11) longitudinal cyclic stick position, (12) pedal position, (13) collective stick

position, (14) lateral cyclic stick position, (15) main rotor mast torque, (16) main rotor

mast pm, (17) density ratio. The 39 classes represents different maneuvers of the flight

like taking off, landing, turning right or left etc. This is an application for prognostics or

flight condition recognition.

Gongtrn [76] has 16 inputs and 10 classes and corresponds to numeral recognition.

The raw data consists of images from hand printed numerals collected from 3000 people

by the Internal Revenue Service. We randomly chose 300 characters from each class to

generate 3000 character training data. Images are 32 by 24 binary matrices. An image
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scaling algorithm is used to remove size variation in characters. The feature set contains

16 elements. The 10 classes correspond to 10 Arabic numerals.

Glass dataset [77]: A data frame with 214 observation containing examples of the

chemical analysis of 7 different types of glass. The problem is to forecast the type of

class on basis of the chemical analysis. The study of classification of types of glass was

motivated by criminological investigation. At the scene of the crime, the glass left can

be used as evidence (if it is correctly identified!).

Mushroom dataset: This data set [77] includes descriptions of hypothetical samples

corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family. Each

species is identified as definitely edible, definitely poisonous, or of unknown edibility and

not recommended. This latter class was combined with the poisonous one. The Guide

clearly states that there is no simple rule for determining the edibility of a mushroom.

Diabetes dataset [77] contains the distribution for 70 sets of data recorded on

diabetes patients (several weeks’ to months’ worth of glucose, insulin, and lifestyle data

per patient + a description of the problem domain).

Figures. 4.12 and 4.13 show respectively the plots for average and standard devi-

ations of error percent values over different random initialization of the network during

training for the Segmentation dataset. The corresponding plots for Mushroom dataset

are shown in Figures. 4.14 and 4.15. It is evident that our DM-4b outperforms the two

benchmark techniques compared.

In Table 4.3 we have shown the comparison results for all the six datasets consid-

ered. Number of hidden units (Nh) for each dataset is chosen as the one that obtains

minimum validation error. The minimum percentage classification errors for each dataset

is indicated in bold. It is clearly seen that our method gives best results on all datasets

except for Diabetes dataset. We have given the means and standard deviations of the

three techniques on six different datasets.
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Table 4.3. Validation errors (%), mean (1st row) SD (2nd row) (Nr = 10).

Data Sets CBP CC DM-4b
Segmentation 16.1 17.7 15.0

(Nh = 30) 3.86e-001 4.44e-001 4.37e-001
Numeral 8.64 11.4 7.9
(Nh = 30) 3.80e-001 4.51e-001 3.43e-001
Flight Sim 6.47 27.0 2.68
(Nh = 30) 6.26e-001 1.11e+000 4.26e-001
Diabetes 25.0 25.1 26.2
(Nh = 5) 1.06e+000 8.72e-001 1.17e+000

Glass 34.8 33.8 31.9
(Nh = 5) 4.66e+000 3.11e+000 2.35e+000

Mushroom 0.125 0.516 0.0295
(Nh = 30) 1.27e-001 2.79e-001 4.14e-002
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Figure 4.12. Comparison, Segmentation data (a) Training (b) Validation.
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Figure 4.13. Comparison, Segmentation data (a) Training (b) Validation.
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Figure 4.14. Comparison, Mushroom data (a) Training (b) Validation.
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Figure 4.15. Comparison, Mushroom data (a) Training (b) Validation.



CHAPTER 5

UPPER BOUND ON PATTERN STORAGE

In this chapter, we give a straight forward proof of an upper bound on pattern

storage. An example which indicates the validity of the bound is presented. Also, we

use the upper bound to predict the size of MLPs that can mimic the training behavior

of SVMs.

5.1 Storage Capacity and Memorization

A feedforward network is said to have memorized a dataset if for every pattern,

the network outputs are exactly equal to the desired outputs. Storage capacity of a

feedforward network is the number (Nv) of distinct input vectors that can be mapped,

exactly, to the corresponding desired output vectors resulting in zero error.

A review of upper and lower bounds on memorization is given in Chapter 2. In the

next section, we devise a proof for upper bound on pattern storage.

5.2 An Upper Bound

Here, we describe direct approach for proving the upper bound on memorization

given previously in chapter 2. We outline pitfalls in this direct approach. Then a proof by

contradiction is presented which assumes no restrictions on the hidden units activations.

59
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5.2.1 Modeling of Memorization

Let us assume monomial activation functions of degree d for the hidden units. In

this case,

Opj = (netpj)
d (5.1)

=

(
N+1∑
i=1

wh(j, i) · xpi

)d

(5.2)

The above equation can be written as a power series in xp as in the Volterra filter. Let

Xp = [Xp1, Xp2, · · · , XpL]T contain the multinomial combinations of the input variables

for the pth example. Here, L is the number of polynomial basis functions (PBFs) of the

form xn
1 · xm

2 · · · xq
N . For N inputs and maximum degree d, the number of multivariate

basis functions that can be derived is given by

L =
(N + d)!

N !d!
(5.3)

The output in (2.3) can be written as a linear combination of these multinomial bases

ypk =
L∑

i=1

aik ·Xpi (5.4)

for 1 ≤ k ≤ M and 1 ≤ p ≤ Nv, where Nv is the number of patterns. Note that the right

hand side of (5.4) is a Gabor polynomial and is thus equivalent to the kth output of a

functional link net [78].
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Our aim is to find the exact solution for the network weights. This requires replace-

ment of ypk with tpk and making Nv equal to L. Let us define the following matrices.

X =
[
XT

1 ,XT
2 , · · · ,XT

L

]T

=




X11 X12 · · · X1L

X21 X22 · · · X2L

...
...

...
...

XL1 XL2 · · · XLL




(5.5)

A = [a1, a2, · · · , aM ]

=




a11 a12 · · · a1M

a21 a22 · · · a2M

...
...

...
...

aL1 aL2 · · · aLM




(5.6)

T =
[
tT
1 , tT

2 , · · · , tT
L

]T

=




t11 t12 · · · t1M

t21 t22 · · · t2M

...
...

...
...

tL1 tL2 · · · tLM




(5.7)

Each row of X stores the basis vector XT
p for one pattern. Similarly, each row of T stores

the desired output vector for one pattern. Equation (5.4) can be written in a compact

form as

XA = T (5.8)

where A is an FLN coefficient matrix. We find the network weights in two steps. In the

first step, we solve the above equation for A. If the inputs are all distinct, the columns

of X may be linearly independent and hence the rank of X could be equal to L. The
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coefficients aki are found by solving M sets of L equations in L unknowns and it gives

an exact solution for these coefficients,

A = X−1T (5.9)

We know that the coefficients of the matrix A can be expressed as polynomial functions

of the unknown weights of the network. In the second step, we solve for the actual

network parameters. Let f(w) = A where w is a vector that contains all the net-

work weights where the total number of network weights is Nw, hence w ∈ <Nw . Let

f1(w), f2(w), · · · , fM(w) be the columns of the matrix f(w). Then

fi(w) = ai (5.10)

for 1 ≤ i ≤ M . These equations may be solvable by using back substitution. Let

us assume that we eliminate one unknown weight by equating one element of the vec-

tor fi(w) = [f1i(w), f2i(w), · · · , fLi(w)]T to the corresponding element of ai. Assume

fki(w) = aki for 1 ≤ k ≤ L can eliminate one element of w from the remaining equa-

tions. Thus for each i we have

f1i(w) = a1i

f2i(w) = a2i

...

fLi(w) = aLi
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Note that it is not possible to solve the equations by considering each output separately.

There is only one set of equations, since some weights affect more than one output. For

each of the L ·M elements of A, we have one equation in Nw unknowns, which is

fki(w) = aki (5.11)

So if the number of unknowns Nw, is equal to L ·M , a solution that satisfies all the above

L ·M equations is possible. In other words, for an MLP with monomial activation, the

storage capacity, that is the number of patterns that can be memorized by a network

with Nh hidden units is equal to the total number of weights in the network divided by

the number of outputs,

Nv =
Nw

M
=

Nh(N + M + 1) + M(N + 1)

M
(5.12)

There are several problems with this direct approach. The direct design of a mem-

orization network would fail if the inverse of X does not exist in (5.9). Also the validity

of back substitution is questionable as closed form expressions for roots of high degree

polynomials do not exist. Finally, we want a proof for activations other than monomial

activations.

Lagrange polynomial interpolation [79] can be used to model exact, finite degree

polynomial for the activations, Opj. The proof is based on the extension of the interpo-

lation theorem of Davis [43], which states that for any Nv distinct points there exists a

unique Nv − 1 degree polynomial that passes through all the points.
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5.2.2 Arbitrary Hidden Activations

Here we relax the assumption that the activation function is a monomial and let

it be arbitrary. Let us assume that the net functions for different finite inputs can be

different but finite. Equating ypk in (2.3) to tpk, we get

tpk =
N+1∑
i=1

woi(k, i) · xpi +

Nh∑
j=1

woh(k, j) ·Opj (5.13)

In order to model memorization above, we can use an exact, finite degree polynomial

model for Opj. This is accomplished by using Lagrange polynomials [79]. The Nv − 1

degree Lagrange polynomial that precisely satisfies Lj(netpj) = Opj is developed as

Lj(net) =
Nv∑
p=1

Opj · ljp(net) (5.14)

ljp(net) =
Nv∏

k=1,k 6=p

net− netkj

netpj − netkj

(5.15)

The jth hidden unit’s activation function is precisely equal to the interpolation polynomial

for our training patterns, so

Opj =
Nv−1∑
n=0

αjn(netpj)
n (5.16)

where αjn are the Lagrange polynomial coefficients. Substituting equation (5.16) into

equation (5.13), we get

tpk =
N+1∑
i=1

woi(k, i) · xpi

+

Nh∑
j=1

woh(k, j)
Nv−1∑
n=0

αjn(netpj)
n (5.17)

For the memorized training patterns, note that (5.17) is exact, rather than being an

approximation of (5.13). As netpj is a linear combination of the inputs, the expansion
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of (netpj)
n results in polynomial combinations of the input variables of maximum degree

Nv − 1. Thus, we get

tpk =
L∑

i=1

aki ·Xpi (5.18)

which is similar to the output equation obtained for the monomial activation case. The

number of basis functions, L, will always be equal to Nv. With this, we can formally

state our theorem on the storage capacity of feedforward networks.

5.3 Theorem and Proof

Here, we restate the Theorem 5 on the storage capacity of feedforward networks

which was stated in section 2.4 and give the proof.

Theorem 5 For a feedforward network with N inputs, M outputs, Nh hidden units

and arbitrary hidden activation functions, the number of patterns Nv that can be mem-

orized with no error is less than or equal to number of absolute free parameters of the

network, Nw divided by the number of outputs, M . ¤

In other words,

Nv ≤
⌊

Nw

M

⌋
(5.19)

where b·c denotes truncation.

Proof Let us assume that (1) the network can memorize bNw/Mc + 1 patterns and

(2) that we know the values of all the weights. Similar to the monomial activation case,

we find the coefficients of A by solving the equation 5.18 in the first step. There are two

cases.
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Case 1 (X is singular for the given dataset): If the inverse of X does not exist,

assumption (1) is disproved and the theorem is confirmed for the given dataset.

Case 2 (X is nonsingular): For this case, the proof continues to the second step.

The number of nonlinear equations that needs to be solved is NvM = (Nw/M + 1)M =

Nw + M . So, we have Nw + M equations in Nw unknowns.

Case 2.1 (Back-substitution eliminates exactly one equation and one unknown at

a time):

Here, we solve exactly one equation at a time and substitute its solution into the

remaining equations. By the end of this back substitution procedure, we will be left with

M or more equations and no unknowns. Hence, the network weights that are already

found must satisfy the remaining M equations in order to memorize Nv = Nw/M + 1

distinct patterns. This in general is not possible as we shall see in Case 2.2.

The last step in this sub-case is to show the validity of back-substitution in this

proof. Without assumption (2), this would be a daunting task. Note that in (5.11),

each weight can occur many times. However, (5.11) can be simplified by substituting the

correct value of the weight for most occurrences of the weight variable. As an example

of (5.11), consider the equation

5w1w
8
2 + 4w3

3w
5
2 + 3w8

4 = 43 (5.20)

Solving for an occurrence of w2 in the first term, we have

w2 =
43− 4w3

3w
5
2 − 3w8

4

5w1w7
2

(5.21)

where the correct numerical value of w2 is used on the right hand side. In back substitu-

tion, a solution of the form of (5.21) would be substituted into the remaining equations.

Hence, we do not need a closed form expression for roots of an eighth degree equation.
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Equation number Nw may be very complicated, but it will have only one unknown,

and the method described above still works. For this first sub-case, there are M equations

left over that cannot be solved. For this sub-case, therefore, the theorem is proved by

contradiction.

Case 2.2 (In at least one back-substitution step, more than one equation is solved):

Suppose that two or more equations are solved by a back-substitution step. For the

second equation solved, we have a constant on the left hand side and a FLN coefficient

aki on the right hand side, in (5.11). We now change aki slightly so that the equation is

not solved. Using equation (5.8), we now generate new desired outputs for our data file,

without invalidating any of the equations already successfully solved. For this second

sub-case, there are again M equations left over that cannot be solved. Therefore the

theorem is proved by contradiction. ¤

Since the proof uses only Nh · Nv samples of the activation, its characteristics at

other values do not matter. Therefore, the activations do not need to be continuous,

analytic, or even bounded, in between the known points. Now that we have proved the

theorem, we can investigate the tightness of the bound.

5.4 Demonstration of the Derived Bound

In this section, we experimentally demonstrate the tightness of the upper bound.

We generated a dataset having fifteen inputs, two outputs and 340 patterns. All the

inputs and outputs were Gaussian random numbers with zero mean and unit standard

deviation. The number of hidden units required to memorize all the Nv patterns according

to equation (5.12) and Theorem 5, satisfies

Nh ≥ Nv ·M −M · (N + 1)

N + M + 1
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Plugging in Nv = 340, N = 15, and M = 2, we get

Nh ≥ 36 (5.22)
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Figure 5.1. MSE versus number of hidden units (Nh).

MLP networks of different sizes were trained using the conjugate gradient algo-

rithm [80, 81, 29] on the dataset. A plot of the MSE for different network sizes is shown

in Fig. 5.1. The plot shows the MSE for networks of different sizes starting from zero

hidden units up to fifty at intervals of five. It is observed that the error curve changes

dramatically from the linear network case (zero hidden units) to the neighborhood of

Nh = 35 hidden units. After 40 hidden units, the change in error is negligible. This

confirms that the network takes around Nh = 36 hidden units to memorize all the pat-

terns, which agrees with Theorem 5. Unfortunately, the good performance of conjugate

gradient on random data does not extend to the case of correlated data [29].
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5.5 Efficient Modeling of SVMs

In this section, we recall the memorization behavior of SVMs, and propose a tech-

nique to compactly model SVMs through memorization.

5.5.1 Memorization in SVMs

For an SVM, patterns that are SVs generate zero squared error. This corresponds

to the lower bound on memorization [34]. Hence they follow lower bound on memoriza-

tion. One logical argument would be to train a network that follows upper bound on

memorization. This reduces the model size and results in faster processing.

The SVMs must have better class boundaries which are better located than those

of the memorizing MLPs. What we need is a method for extracting this class boundary

information and making it available to the MLP.

5.5.2 Compact Modeling Through Memorization

Kruif and Vries [52] have used pruning to reduce the training set size for func-

tion approximation using SVMs. They select those patterns that introduce minimum

approximation error when omitted. However, this technique does not guarantee that the

cardinality of the set of support vectors responsible for the computational complexity is

minimized. Also, the SVM’s ability to generate a good decision boundary is often thinly

spread over thousands of SVs, so pruning of SVs does not help much. Another approach

for generating a small network is needed.

Since SVM pattern memorization follows the lower bound of Theorem 4, it is

natural to try to duplicate this memorization using the upper bound as in equation

(5.22). One approach is to save the output values of the SVM on the training dataset

to obtain a new function approximation dataset. This new dataset has the same inputs

as the original training file and the SVM outputs as the desired outputs
{
xp, y

svm
p

}Nv

p=1
,

where ysvm
p is the output of the SVM for the pth training pattern. We now train a

feedforward network to approximate the new dataset and the network obtained is denoted
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Figure 5.2. SVM modeling block diagram.

by Wmap = {wmap
oi , wmap

oh , wmap
hi }. We can also use our DM-4 approach that is discussed

in chapter 4 to train the new dataset. In order to convert the network obtained into

a classification network, with one output per class, all the weights are copied to the

classification network without any changes. Then we add a second output unit and all

the weights connecting to it are made equal to the negative of the corresponding weights

connecting to the first output unit. That is

wcls
oi (2, i) = −wmap

oi (1, i) (5.23)

wcls
oh (2, j) = −wmap

oi (1, j) (5.24)

for 1 ≤ i ≤ N + 1 and 1 ≤ j ≤ Nh. In this way we obtain a feedforward classification

network denoted by Wcls = {wcls
oi , wcls

oh , wcls
hi }. We now prune [25] this network to the

desired number of hidden units and compare its performance to that of the original

SVM. Fig. 5.2 shows the block diagram of the modeling procedure.

Using SV M light [82] which implements Vapnik’s SVM [31], we have trained SVMs

for several two class problems. The first dataset, Comf18, is an image segmentation

dataset [75] with 18 inputs and 4 classes. Classes 1 and 2 are extracted from this dataset

in order to get a binary classification problem. A prognostics dataset - F17C [74] has



71

Table 5.1. Modeling SVMs with MLPs.

SVM MLP
Dataset Patterns SVs % Training % Test Hidden % Training % Test

Error Error units Error Error
Segmentation 4265 1095 7.43% 7.68% 33 6.27% 5.16%
Prognostics 238 190 5.88% 14.49% 19 0.42% 0.0%
Numeral 600 179 3.5% 5.17% 32 0.67% 8.5%
Speech 236 87 2.12% 2.63% 4 0.85% 7.89%

17 inputs and 39 classes. Here, classes 3 and 6 are extracted from the dataset to bet

binary classification problem. Gongtrn [76] has 16 inputs and 10 classes and corresponds

to numeral recognition. The third two class problem is formed by extracting classes

5 and 10 from the numeral recognition dataset. The fourth dataset is from a speech

phoneme recognition problem, which has 39 inputs and 32 classes. We extracted classes

1 and 4 from this dataset for our experiments. The features of these datasets are already

described in the previous chapter.

Table 5.1 shows the results obtained. It is clearly seen that the MLP training errors

are consistently less than the SVM training errors. For the segmentation and prognostics

datasets, the MLP validation errors are also smaller. Sometimes, good training per-

formance does not carry over to the validation case, as seen in the numeral and speech

datasets. Observe that the number of support vectors needed for the SVM is much larger

than the number of hidden units needed for the MLP. The number of hidden units shown

in the table is calculated using Theorem 5 in section 2.4. In the case of Comf18, we found

that Nh = 33 is sufficient to get good generalization that also satisfies Theorem 5.



CHAPTER 6

COMPACT MODELING OF LARGE CLASSIFIERS

In this chapter, the extension of memorization to a workable modeling procedure

is motivated and discussed. We propose two data generation methods and show the

effects of additional patterns. Several simulation experiments are shown to indicate the

advantages of additional patterns in training a learning machine.

6.1 Generating Additional Patterns

Although modeling through memorization works sometimes, it is unreliable. Good

performance on training data is never a guarantee of good performance on validation

data. Now, in order to minimize the validation error, the decision boundary of the MLP

should be forced to converge to that of the best available classifier (BAC). One intuitive

way of reaching the goal is by obtaining more training patterns for the MLP. Although

new input vectors xp can be generated, desired outputs tp usually cannot be generated.

There is a way to sidestep this problem, however. Note that in this chapter, we are

considering only two class classification problems (Nc = 2).

6.1.1 Bias-variance Decomposition Theory

The equation for the training error, E is given by,

E =
1

Nv

Nv∑
p=1

(tp − yp)
2 (6.1)

where Nv is the number of training patterns, tp ∈ {+1,−1} and yp are the desired and

actual neural network outputs for the pth pattern. Let sp be the corresponding output

of the BAC, for the given dataset. Borrowing the idea of the classical result of Geman’s

72
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bias-variance decomposition theory [83], we can split the training error into three parts

as follows.

E = E1 + E2 + E3 (6.2)

where

E1 =
1

Nv

Nv∑
p=1

(tp − sp)
2 (6.3)

E2 =
1

Nv

Nv∑
p=1

(sp − yp)
2 (6.4)

E3 =
1

Nv

Nv∑
p=1

2(tp − sp)(sp − yp) (6.5)

If the BAC is assumed to give the Bayesian estimate, the cross term E3 in the above

expansion will tend to zero [83, 65]. The first term E1 is the variance of the expectational

error of the considered model and is a constant with respect to the MLP weights. Rather

than training a network on E, we can choose to train it using E2. There may seem to

be no advantage to this. However, note that Nv is fixed when we train with E, since

we cannot generate correct desired outputs tp for arbitrary new input vectors. For E2,

however, we can generate as many patterns as we want as follows. First, random vectors

zp are generated, which may come from the joint pdf fX(x) or some function of it. Then

the vectors zp are processed by the BAC, producing scalar outputs sp. So the limitation

on the number of training patterns for the MLP is circumvented. Let Nva denote the

number of randomly generated data patterns (zp, sp). E2 can now be rewritten as

E2 =
1

Nv + Nva

Nv+Nva∑
p=1

(sp − yp)
2 (6.6)

As we increase Nva, the MLP can be trained to mimic the BAC’s validation performance

as well as its training performance. Thus, small MLPs can mimic the performance of far

larger BACs.
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6.1.2 Volumetric Method

Here, the basic idea is to form a Voronoi tessellation of the training data’s feature

space and generate uniformly distributed random data points in this space. The number

of data points generated for each cell is therefore made proportional to the volume of

that cell.

Let the training data be represented by {xp, dp}Nv
p=1, where xp is the input vector

and dp is the correct class id for the pth pattern. Using Self-Organizing Maps (SOM)

(see Appendix D), we can group the inputs into K clusters. In order to compute the

volume of each cluster, we first calculate the volume of the enclosing hyper-rectangle Rk

for 1 ≤ k ≤ K. This is done as follows: for each cluster k, let xmax(k) and xmin(k) be

vectors containing maximum and minimum values of the features in kth cluster. The nth

element of xmax(k) and xmin(k) are {xmax
n (k) and {xmin

n (k), where n varies from 1 to N .

Then,

Rk =
N∏

n=1

(xmax
n (k)− xmin

n (k)) (6.7)

Next we generate a large number (say Nvol) of uniformly distributed data points

inside the enclosing hyper-rectangle. We then calculate the number (Nclus) of points

that actually lie inside the corresponding SOM cluster. The ratio of the number of data

points that lie inside the cluster, Nclus to the total number of data points generated, Nvol is

multiplied with the volume of the enclosing hyper-rectangle, Rk to give the approximate

cluster volume Vk.

Vk =
Nclus

Nvol

· Rk (6.8)

Once the approximate volumes of each cluster is known, we generate uniformly

distributed random vectors and the total number of vectors generated within each cluster

will be proportional to the estimated cluster volume. The probability of generating the

additional data point in cluster k is calculated by normalizing the cluster volume as

pk =
Vk∑K

n=1 Vn

(6.9)
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for 1 ≤ k ≤ K.

Let Nva be the total number of additional patterns to be generated. For each

cluster k, where 1 ≤ k ≤ K, we generate pk ·Nva random input vectors whose elements

are generated as

zn(k) = xmin
n (k) + (xmax

n (k)− xmin
n (k)) · rn (6.10)

for 1 ≤ n ≤ N . Here rn is a uniform random variable distributed between 0 and 1.

Thus we are generating uniformly distributed inputs within a cluster and the number of

points generated within a cluster is proportional to the volume of the cluster. We then

pass these zp through the BAC and record the corresponding outputs sp. Thus the new

patterns (zp, sp) for 1 ≤ p ≤ Nva are generated.

Let the joint pdf of the new data points, z in cluster k, be fZ(z|k). Since the

random numbers generated have uniform distribution between xmin(k) and xmax(k) for

cluster k, the joint pdf of z is given by

fZ(z|k) =





1
Vk

, for z ∈ Ck ;

0, elsewhere.
(6.11)

where Ck represents the cluster k. The overall pdf of the newly generated input vectors

z can be expressed as piecewise uniform distribution over different clusters. Using the

probability of generating z in cluster k, pk computed in equation 6.9, we can write the

overall pdf as

fZ(z) =
K∑

k=1

fz(z|k)P (z ∈ Ck) (6.12)

where P (z ∈ Ck) is the probability of the vector z falling in cluster k, which is given by

pk as shown in equation 6.9.

6.1.3 Additive Noise Method

Here, instead of generating uniformly distributed data, we generate new data by

adding noise to the original training data points.
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First, we calculate the standard deviations of each input feature in the two classes,

σi
n for 1 ≤ n ≤ N and i ∈ {1, 2}. For each training vector xp in the training set, we add

random vectors rp with zero mean (mr = 0) and a covariance matrix given by:

Σr =




σr1 0 · · · 0

0 σr2 · · · 0

...
... · · · ...

0 0 · · · σrN




N×N

(6.13)

where,

σrn =





σ1n

10
, if dp = 1;

σ2n

10
, if dp = 2.

(6.14)

for 1 ≤ n ≤ N . Thus we generate a new input vector zp. Then we pass this zp = xp + rp

through the BAC and record the output sp. The new input pattern (zp, sp) is thus formed.

In order to verify the statistics of the generated patterns, we do the following

analysis. Let the mean vector and covariance matrix for the original training inputs be

denoted by mx and Σx respectively. Let the mean vector and covariance matrix of the

noise r be mr and Σr respectively. Let z = x + r. Let mz and Σz be its mean vector

and covariance matrix respectively. The mean vector of the new patterns is

mz = E{z}

= E{x + r}

= E{x}+ E{r}

= mx + mr
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The covariance matrix of the new patterns is

Σz = E{(z−mz) · (z−mz)
T}

= E{(x + r− (mx + mr)) · (x + r− (mx + mr))
T}

= E{((x−mx) + (r−mr)) · ((x−mx) + (r−mr))
T}

Since x and r are independent of each other, the above equation becomes

Σz = E{(x−mx) · (x−mx)
T + (r−mr) · (r−mr)

T}

= Σx + Σr

Since the noise has zero mean, mz = mx and the noise standard deviation is 1/10th

the standard deviation of the inputs, Σz will be a diagonal matrix with diagonal elements

equal to
√

1.1 times the diagonal values of Σx.

Now, let us analyze the probability density function (pdf) of the new dataset. Let

the pdfs of the original dataset, noise and the new dataset be represented by fX(x),

fR(r) and fZ(z). Let the joint pdf of X and R be denoted by fX,R(x, r). The cumulative

distribution function (cdf) of Z is given by [84]

FZ(z) =

∫ ∞

−∞

∫ z−x

−∞
fX,R(x′, r′)dr′dx′

=

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ z1−x1

−∞
· · ·

∫ zN−xN

−∞
fX(x1, x2, · · · , xN)fR(r1, r2, · · · , rN)

drN · · · dr1dxN · · · dx1 (6.15)
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As X and R are independent random variables, their joint density is equal to the product

of individual marginal densities. The pdf of Z is obtained by differentiating the cdf as

follows

fZ(z) =
dN

dz
FZ(z) =

dN

dz1 · · · dzN

FZ(z1, · · · , zN)

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(x1, x2, · · · , xN)

∂N

∂z1 · · · ∂zN

∫ z1−x1

−∞
· · ·

∫ zN−xN

−∞
fR(r1, r2, · · · , rN)drN · · · dr1dxN · · · dx1

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(x1, x2, · · · , xN)fR(z1 − x1, · · · , zN − xN)dxN · · · dx1(6.16)

Note that the derivative turns into partial derivative when absorbed inside the integral

in the above equation, which is a result of Leibniz integral rule. Hence the above integral

can be expressed in vector form as

fZ(z) =

∫ ∞

−∞
fX(x′)fR(z− x′)dx′ (6.17)

Thus the pdf of new dataset is given by the convolution integral of the marginal pdf’s

of the original dataset and the additive noise. In other words, we are just smoothing or

blurring the pdf of the original distribution for the new data.

6.2 Numerical Results and Analysis

Here we consider two class problems from different datasets and analyse the perfor-

mances of SVM, AdaBoost and MLPs trained using constructive backpropagation (see

appendix C). Here, the MLPs are trained similar to the technique used in chapter 5.

First an approximation MLP is trained for one output case and then it is converted into

a classifier by including the second output unit. Negated weights connecting the first

output is used for the second output.
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The variation of performances of MLP when introduced with additional data pat-

terns is analyzed. This technique of using additional data is also called semi-supervised

learning [85]. We have used both volumetric method and additive noise method as de-

scribed in section 6.1.3 to generate the additional patterns and combine them with the

original training data. The behavior of the machines are analysed as the number of ad-

ditional patterns increase. SVM and AdaBoost are considered to be candidates for the

BAC. Later, we generalize this technique and show that any learning machine can be

used to generate the additional patterns, which the other machines can take advantage

of during training.

6.2.1 SVM as BAC

In this subsection, we generate additional patterns using SVM as BAC. Depending

on the size of the dataset, we split the data into k parts and perform k-fold cross-

validation. It should be noted that here we are using one part for training and k − 1

parts for validation, hence the percentage error values we get here is different from the

results shown in Table 5.1. The new dataset for MLP training consists of the original

training data along with the SVM generated data. We have used CBP for training the

MLP networks and the number of hidden units (Nh) is fixed from the upper bound

theorem that we proved in the previous chapter.

Simulation results show how the additional patterns generation techniques (volu-

metric method and additive noise method) discussed in the previous section improve the

performance of the MLPs.

Volumetric Case

Figs. 6.1 and 6.2 show comparison plots of percentage classification error (average

cross-validation error) versus number of additional patterns, Nva for Numeral dataset and

Segmentation dataset respectively. Here, we have used volumetric technique to generate

additional patterns.
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Figure 6.1. Volumetric Method (SVM as BAC), Numeral dataset.

Additive Noise Case

Figs. 6.3 and 6.4 show comparison plots of percentage classification error (aver-

age cross-validation error) versus number of additional patterns, Nva for the Numeral

and Segmentation datasets respectively. Here, we have used additive noise technique to

generate the additional patterns.

We can see that the SVM performs better than the MLP on original datasets. As we

increase the number of additional patterns included for training, MLP’s error decreases

significantly. This indicates that the information extracted from the SVM in the form of

additional patterns are being utilized constructively. It can be seen that by including the

additional patterns, it is possible to get a classifier that is better than the SVM. This is

possible because the MLP type training forces all the patterns to be support vectors and

the additional patterns that descend from SVM will be used effectively during the MLP

training.

Table 6.1 shows the average cross-validation error percentage values for various

datasets that are considered here. The additional patterns are generated using the trained
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Figure 6.2. Volumetric Method (SVM as BAC), Segmentation dataset.

Table 6.1. Average validation error percentage (SVM as BAC).

Dataset k Nh SVM Val MLP Val MLP Val Err% MLP Val Err%
fold Error % Error % Additive Noise Volumetric

Numeral 3 22 4.2 9.2 5.37 5.5
Segmentation 15 5 12.7 22.35 14.049 9.41
Flight Sim 3 20 6.34 7.8 7.8 5.85

Speech 5 2 9.76 18.8 18.8 18.08

SVM and minimum average cross-validation error obtained on both additive noise method

and volumetric method are shown. The details of these datasets are given in the previous

chapter. It should be noted that the features in fight simulation and the speech datasets

are normalized in order to improve the accuracy. It can be seen that both data generation

techniques reduce the MLP error most of the time.

Incorrect Models

Let us consider two learning machines A and B. Let us assume that A performs

better than B on a particular dataset. If we include the additional patterns generated
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Figure 6.3. Additive Noise Method (SVM as BAC), Numeral dataset.

using B to train A, we are in effect providing bad data for the better performing learning

machine. This is equivalent to assume that the BAC is not used to generate additional

patterns. This shows up in the performance resulting in increased validation error. Hence

the additional pattern generation technique does not work constructively in such cases.

The technique can be applied to train B using pattern generated by A and should be

used only when there is an advantage of using B over A even when their generalization

errors are same. This problem is discussed in detail with examples in [85]. They give the

theory behind this phenomenon and relate this to the Bias-Variance effect.

An example of the general effects of incorrect models is shown in Fig. 6.5 for

Numeral recognition dataset. Here SVM is used to generate additional data, however,

AdaBoost performs better than SVM on the original training dataset. When AdaBoost

is trained using the newly generated dataset, its performance degrades. This verifies

that the additional patterns generated have the expected effect on the learning machines

analyzed.
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Figure 6.4. Additive Noise Method (SVM as BAC), Segmentation dataset.

6.2.2 AdaBoost as BAC

Since there is significant improvement in MLP’s performance by using SVM gener-

ated additional data patterns, and as the AdaBoost sometimes performs better than SVM

(see last example in previous subsection), we have tried modeling MLPs using additional

data patterns generated by a trained AdaBoost classifier. Instead of passing the newly

generated input vectors through trained SVM, we pass them through trained AdaBoost

and record the output. The new pattern is generated by pairing the input vector with

the corresponding AdaBoost output. Again, we have experimented with both volumetric

method and additive noise method of generating additional patterns and have shown the

results. The new dataset for MLP training consists of the original training data along

with the AdaBoost generated data. We have used CBP for training the MLPs.
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Figure 6.5. SVM as BAC on Numeral dataset.

Volumetric Case

In Figs. 6.6 and 6.7, we show how that the MLP’s error can be decreased by

generating additional patterns, Nva using trained AdaBoost network. In this case, we

have generated additional patterns using volumetric method.

Additive Noise Case

In Figs. 6.8 and 6.9, we show how that the MLP’s error can be decreased by

generating additional patterns, Nva using trained AdaBoost network. In this case, we

have generated additional patterns using additive noise method.

Similar to that of SVM, we have generated another table for the AdaBoost case.

Table 6.2 shows the average cross-validation error percentage values for the datasets that

are considered. The additional patterns are generated using the trained AdaBoost and

minimum average cross-validation error obtained on both additive noise method and

volumetric method are shown. The details of these datasets are given in the previous
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Figure 6.6. Volumetric Method (AdaBoost as BAC), Numeral dataset.

Table 6.2. Average cross-validation error percentage (AdaBoost as BAC).

Dataset k Nh AdaBoost MLP Val MLP Val Err% MLP Val Err%
fold Val Error % Error % Additive Noise Volumetric

Numeral 3 22 4.41 7.916 5.12 5.25
Segmentation 15 5 9.62 13.95 8.5 7.9
Flight Sim 3 20 10.08 7.31 7.31 6.5

Speech 5 2 17.04 19.12 16.8 16.4

chapter. It can be seen even here that both data generation techniques reduce the MLP

error most of the time.

Incorrect Models

Here, we show a plot where an MLP is trained on AdaBoost generated additional

patterns, when MLP better generalizes on the original dataset. This is also equivalent to

assume that the BAC is not used to generate additional patterns. Fig 6.10 shows a plot

of MLP’s error approaching the error of trained AdaBoost network for Flight Simulation

dataset.
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Figure 6.7. Volumetric Method (AdaBoost as BAC), Segmentation dataset.
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Figure 6.8. Additive Noise Method (AdaBoost as BAC), Numeral dataset.
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Figure 6.9. Additive Noise Method (AdaBoost as BAC), Segmentation dataset.
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Figure 6.10. AdaBoost as BAC on Flight Simulation dataset.



CHAPTER 7

CONCLUSIONS AND DISCUSSION

We have explored four design methodologies for producing sequences of trained and

validated feedforward networks. In the growing approach (DM-1), dependently initialized

networks result in monotonically decreasing Ef (Nh) curves. A pruning method (DM-

2) is shown that requires one pass through the data. A method is also described for

simultaneously validating many different size networks simultaneously, using a single

data pass. In the third, combined approach (DM-3), ordered pruning is applied to grown

networks. Lastly, our final combined approach (DM-4) successively grows the network by

a few units, and then prunes. These methodologies produce networks of different sizes,

which generalize well and result in small training and validation errors. The methods

also produce sequences of networks that have monotonic MSE versus Nh curves. As seen

in the simulations, the DM-4 approach usually produces smaller training and validation

errors than the other methodologies.

The DM-4 method was compared with the two other well known growing tech-

niques: constructive backpropagation (CBP) and cascade correlation (CC). On seven

different datasets, the results show that our proposed method performs significantly bet-

ter than the existing methods. We have also extended the work to classification case and

have given the performance comparison with the CBP and CC algorithms.

We have developed a simple proof of an upper bound on the storage capacity of

feedforward networks with arbitrary hidden unit activation functions. The validity and

tightness of the upper bound has been demonstrated through simulation.

We have also developed a technique to obtain small models of large BACs. We

have discussed the memorization and redundancy in SVM. Also, we have discussed two
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methods of generating additional training data and their effects on the performances of

MLP and Adaboost algorithms.

More work remains to be done. In DM-4, the standard deviation of training and

validation errors have not been driven to zero. In chapter 6, the validation error curves

are too oscillatory. Also, MLP validation error curves do not always approach those of

the SVM and AdaBoost.
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In the original OWO-HWO algorithm [61], the net functions are updated in gradient

direction. It is well known that optimizing in the gradient direction, as in steepest descent,

is very slow.

Let the new desired net function netpjd for the pth training pattern and jth hidden

unit be

netpjd = netpj + Z ·∆net∗pj (A.1)

where ∆net∗pj written as

∆net∗pj = net∗pj − netpj (A.2)

is the difference between current net function netpj and the optimal value net∗pj. Now

the net function approaches the optimal value net∗pj, instead of moving in the negative

gradient direction. The current task for constructing the new HWO algorithm is to find

∆net∗pj.

Using Taylor series expansion on equation 2.2 about netpj, we get

O∗
pj = f(net∗pj) = Opj + f ′pj · Z ·∆net∗pj (A.3)

where f ′pj is the derivative of the activation function f(netpj) with respect to netpj. Now

∆net∗pj can be derived based on

∂E

∂netpj

∣∣∣
netpj=net∗pj

= 0 (A.4)

The desired change in net function can be derived as

∆net∗pj =
δpj

(f ′pj)
2
∑M

i=1 w2
oh(i, j)

(A.5)
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It can be shown that minimizing E is equivalent to minimizing the weighted hidden error

function

Eδ(k) =
1

Nv

Nv∑
p=1

(f ′pk)
2

[
∆net∗pk −

N+1∑
n=1

e(k, n)xpn

]2

(A.6)

where e(k, n) is the change in hidden weight. The auto and cross correlation matrices

are found as

R(n, m) =
1

Nv

Nv∑
p=1

(xpn · xpm) · (f ′pk)
2 (A.7)

and

Cδ(k, m) =
1

Nv

Nv∑
p=1

(∆net∗pk · xpm) · (f ′pk)
2 (A.8)

We have (N + 1) equations in (N + 1) unknowns for the kth hidden unit. After finding

the learning factor Z, the hidden weights are updated as

whi(k, n) ← whi(k, n) + Z · e(k, n) (A.9)

This modified algorithm converges as the change in the error function E is non-

increasing and the algorithm uses backtracking in order to save the best network without

diverging from the solution.



APPENDIX B

SCHMIDT PROCEDURE

93



94

Here we describe the Schmidt procedure that is used to orthonormalize the MLP

basis functions and then we describe the pruning procedure [25]. For the ease of notation,

in this section, we use the augmented input vector, i.e., xp ← [xT
p , 1,OT

p ]T , where 1 is for

the threshold. The new dimension of xp is Nu = N + Nh + 1. Also, for simplicity, the

subscript p indicating the pattern number will not be used unless it is necessary. The

output of the network in equation 2.3, can be rewritten as

yi =
Nu∑

k=1

wo(i, k) · xk (B.1)

where xk = Op,(k−N−1) for N + 2 ≤ k ≤ Nu, where Nu is the total number of units equal

to N + Nh + 1. In equation B.1, the signals xk are the raw basis functions for producing

yi.

The normal Gram-Schmidt procedure [22] is a recursive process that requires ob-

taining scalar products between raw basis functions and orthonormal basis functions.

The disadvantage in this process is that it requires one pass through the training data to

obtain each new basis function. In this section a more useful form of the Schmidt process

is reviewed, which will let us express the orthonormal system in terms of autocorrelation

elements.

Basic Algorithm

The mth orthonormal basis function x′m, can be expressed as

x′m =
m∑

k=1

amk · xk (B.2)

From equation B.2, for m = 1, the first basis function is obtained as

x′1 =
1∑

k=1

a1k · xk = a11x1 (B.3)

a11 =
1

‖x1‖ =
1

r(1, 1)1/2
(B.4)
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where

r(i, j) = 〈xi, xj〉 =
1

Nv

Nv∑
p=1

xpi · xpj (B.5)

For values of m between 2 and Nu, ci is first found for 1 ≤ i ≤ m− 1 as

ci =
i∑

q=1

aiq · r(q,m) (B.6)

Then obtain m coefficients bk as,

bk =




−∑m−1

i=k ci · aik, 1 ≤ k ≤ m− 1;

1, k = m.
(B.7)

Finally for the mth basis function the new amk coefficients (for 1 ≤ k ≤ m) are found as

amk =
bk[

r(m,m)−∑m−1
i=1 c2

i

]1/2
(B.8)

The output equation B.1 can be written as

yi =
Nu∑
q=1

w′
o(i, q) · x′q (B.9)

where the weights in the orthonormal system are

w′
o(i, q) =

q∑

k=1

aqk · 〈xk, ti〉 =

q∑

k=1

aqk · c(i, k) (B.10)

where elements of the cross correlation matrix C are defined as.

c(i, k) =
1

Nv

Nv∑
p=1

tpi · xpk (B.11)



96

Using equation B.2, we obtain output weights for the system as

wo(i, k) =
Nu∑

q=k

w′
o(i, q) · aqk (B.12)

Substituting equation B.9 into equation 2.5, we obtain E(i) in orthonormal system as

E(i) =
〈
(ti −

Nu∑

k=1

w′
o(i, k) · x′k), (ti −

Nu∑
q=1

w′
o(i, q) · x′q)

〉
(B.13)

If we decide to use the first Nhd hidden units in our original network, the training error

is

E(i) = 〈ti, ti〉 −
N+1+Nhd∑

k=1

(w′
o(i, k))2 (B.14)

Modifying equation B.12, the output weights would be

wo(i, k) =

N+1+Nhd∑

q=k

w′
o(i, q) · aqk (B.15)

The purpose of pruning is to eliminate useless inputs and hidden units as well as

hidden units that are less useful. Useless units are those which (1) have no information

relevant for estimating outputs or (2) are linearly dependent on inputs or hidden units

that have already been orthonormalized.

We modify the Schmidt procedure so that during pruning, the hidden units are

ordered according to their usefulness and useless basis functions x′m are eliminated.

Let j(m) be an integer valued function that specifies the order in which raw basis

functions xk are processed into orthonormal basis functions x′k. Then x′m is to be calcu-

lated from xj(m), xj(m−1) and so on. This function also defines the structure of the new

hidden layer where 1 ≤ m ≤ Nu and 1 ≤ j(m) ≤ Nu. If j(m) = k then the mth unit of

the new structure comes from the kth unit of the original structure.
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Given the function j(m), and generalizing the Schmidt procedure, the mth or-

thonormal basis function is described as

x′m =
m∑

k=1

amk · xj(k) (B.16)

Initially, x′1 is found as a11 · xj(1) where

a11 =
1

‖xj(1)‖ =
1

r(j(1), j(1))1/2
(B.17)

For 2 ≤ m ≤ Nu, we first perform

ci =
i∑

q=1

aiq · r(j(q), j(m)), for 1 ≤ i ≤ m− 1 (B.18)

Second, we set bm = 1 and get

bk = −
m−1∑

i=k

ci · aik, for 1 ≤ k ≤ m− 1 (B.19)

Lastly, we get coefficients amk as

amk =
bk[

r(j(m), j(m))−∑m−1
i=1 c2

i

]1/2
, for 1 ≤ k ≤ m (B.20)

Then weights in the orthonormal system are found as

w′
o(i,m) =

m∑

k=1

amk · c(i, j(k)), for 1 ≤ i ≤ M (B.21)

The goal of pruning is to find the function j(m) which defines the structure of the

hidden layer. Here it is assumed that the original basis functions are linearly independent

i.e., the denominator of equation B.20 is not zero.
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Since we want the effects of inputs and the constant “1” to be removed from

orthonormal basis functions, the first N + 1 basis functions are picked as,

j(m) = m, for 1 ≤ m ≤ N + 1 (B.22)

The selection process will be applied to the hidden units of the network. We now define

notation that helps us specify the set of candidate basis function to choose in a given

iteration. First, define S(m) as the set of indices of chosen basis functions where m is the

number of units of the current network (i.e., the one that the algorithm is processing).

Then S(m) is given by

S(m) =




{φ}, for m = 0;

{j(1), j(2), · · · , j(m)}, for 0 < m ≤ Nu.
(B.23)

Starting with an initial linear network having 0 hidden units, where m is equal to N +1,

the set of candidate basis functions is clearly Sc{m} = {1, 2, 3, · · · , Nu}−S(m), which is

{N +2, N +3, · · · , Nu}. For N +2 ≤ m ≤ Nu, we obtain Sc{m−1}. For each trial value

of j(m) ∈ Sc{m − 1}, we perform operations in equations B.18, B.19, B.20 and B.21.

Then P (m) is

P (m) =
M∑
i=1

[
w′

o(i,m)
]2

(B.24)

The trial value of j(m) that maximizes P (m) is found. Assuming that P (m) is maximum

when validation the ith element, then j(m) = i. S(m) is updated as

S(m) = S(m− 1) ∪ {j(m)} (B.25)

Then for the general case the candidate basis functions are, Sc(m−1) = {1, 2, 3, · · · , Nu}−
{j(1), j(2), · · · , j(m − 1)} with Nu − m + 1 candidate basis function. By using equa-

tion B.24, after validation all the candidate basis function, j(m) takes its value and
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S(m) is updated according to equation B.25. Defining Nhd as the desired number of

units in the hidden layer, the process is repeated until m = N + 1 + Nhd. Then the

orthonormal weights are mapped to normal weights according to equation B.30. Consid-

ering the final value of function j(m) row reordering of the original input weights matrix

is performed for generating the right Opj values when applying equation B.1. After re-

ordering the rows, because only the Nhd units are kept then the remaining units (Opj

with Nhd < j ≤ Nh) are pruned by deleting the last Nh −Nhd rows.

Linear dependency condition

Unfortunately, ordered pruning by itself is not able to handle linearly dependent

basis functions. A minor modification is necessary. Assume that raw basis function xj(m)

is linearly dependent on previously chosen basis functions, where j(m) denotes an input

(1 ≤ m ≤ N) and j(m) has taken on a trial value. Then

xj(m) =
m−1∑

k=1

dk · x′k (B.26)

Now the denominator of amk in B.20 can be rewritten as

g = 〈zm, zm〉1/2 (B.27)

where

zm = xj(m) −
m−1∑
i=1

〈x′i, xj(m)〉 · x′i (B.28)

Substituting B.26 into B.28, however, we get

〈x′i, xj(m)〉 = di (B.29)

and zm and g are both zero.
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If j(m) denotes an input and g is infinitesimally small, then we equate j(k) to k

for 1 ≤ k < m and j(k) = k + 1 for m ≤ k ≤ N . In effect we decrease N by one and

let the j(k) function skip over the linearly dependent input. If j(m) denotes a hidden

unit, the same procedure is used to determine whether or not xj(m) is useful. If xj(m) is

found to be linearly dependent, the current, bad value of j(m) is discarded before amk is

calculated.

Once we get these orthonormal weights, the hidden units and their weights are

reordered in the descending order of their energies. Then the output weights of the

original system are obtained using the equation

wDM2
o (i, k) =

Nu∑

q=k

w′
o(i, q) · aqk (B.30)

Here wDM2
o ∈ WNh

DM2 is the output weights obtained using Schmidt procedure.
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Here, we briefly discuss two existing well known DI approaches for growing a se-

quence of networks.

Constructive Backpropagation (CBP)

In the constructive backpropagation algorithm of Lehtokangas [64], the backprop-

agation algorithm is used to train the network. Let the initial network trained be linear

(Nh = 0) and be denoted by W0
cbp. Then add a batch of hidden units (Nh = Nh + Nε)

and train them to get another network WNh
cbp . Once the new hidden units are trained,

their input and output weights are frozen and further training is continued only on the

newly added hidden units. There is only one error function to be minimized, which is

the squared error between the previous error of the output unit and the weighted sum of

the newly added hidden units.

Ecbp =
Nv∑
p=1

M∑

k=1

{
tpk − ycbp

pk

}2

=
Nv∑
p=0

M∑

k=1

{
tpk −

( N+1∑
i=1

wcbp
oi (k, i) · xpi +

Nh−Nε∑
j=1

wcbp
oh (k, j) ·Opj

)

−
Nh∑

n=Nh−Nε+1

wcbp
oh (k, n) ·Opn

}2

=
Nv∑
p=1

M∑

k=1

{
ecbp

pk −
Nh∑

n=Nh−Nε+1

wcbp
oh (k, n) ·Opn

}2

(C.1)

Here ycbp
pk is the kth output of the pth pattern of the network WNh

cbp , epk is the error

between the desired output and the output of the previous networkWNh−Nε

cbp . The weights

connecting the inputs and hidden units to the output units respectively are represented

by wcbp
oi ∈ WNh

cbp and wcbp
oh ∈ WNh

cbp .
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Cascade Correlation (CC)

The cascade correlation learning procedure [60] is similar to constructive back-

propagation, in that the initial network is linear (i.e., Nh = 0). The network obtained is

represented by W0
cc. We have slightly modified the original cascade correlation algorithm

so that we can add multiple hidden units at each growing step making fair comparison

to other methods. Also, the cascade correlation architecture can be viewed as standard

single hidden layer MLP with additional lateral weights in the hidden layer connecting

every hidden unit to all its previous hidden units. This set of lateral weights can be

represented by wcc
hh(i, j) ∈ WNh

cc for 2 ≤ i ≤ Nh and 1 ≤ j < i. Therefore, wcc
hh(i, j) is the

weight going from jth hidden unit to ith hidden unit. The cost function to be maximized

is

Ecc =

Nh∑
j=Nh−Nε+1

M∑

k=1

∣∣∣
Nv∑
p=1

(Opj − Ôj) · (Epk − Êk)
∣∣∣ (C.2)

where Ôj is the mean of the activations of the jth hidden unit and Êk is the mean of

the errors of the kth output unit over all the patterns. Here also, once the hidden unit’s

input and output weights are trained, they will be frozen and the next step in growing

will adapt only the weights connecting the new hidden units.
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In Self Organizing Map (SOM) network [86], the high dimensional input vector

is projected nonlinearly onto a regular two dimensional grid. This mapping tends to

preserve the topological relation between the input elements. Let us assume there are

K clusters. Each cluster k is associated with a parametric reference vector mk =

[mk1,mk2, · · · , mkN ] ∈ RN for 1 ≤ k ≤ K. In an abstract scheme, it may be imag-

ined that the input xp, by means of some parallel computing mechanisms, is compared

with all the mk, and the location of best match in some metric is defined as the location

of the “response”. By computer programming, of course, the location of the best match

is a trivial task. The exact magnitude of the response need not be determined; the in-

put is simply mapped into this location, like in a set of decoders. For an input xp, the

Euclidean distances ‖xp −mk‖ is computed and the smallest distance is defined as the

best-matching node, denoted by subscript c.

c = arg min
k
{‖xp −mk‖} (D.1)

which is same as

‖xp −mc‖ = min
k
‖xp −mk‖ (D.2)

The N -dimensional input vector is mapped onto nearest center (reference) vector mc.

Thus the entire input space is divided into Voronoi regions. During learning, those nodes

that are topographically close in the array up to a certain geometric distance will activate

each other to learn something from the same input xp.

The SOM learning algorithm is as follows: Given K, number of clusters, Nv vectors

xp of dimension N , decreasing functions z(t) and N(t) and the number of iterations, Nit,

1. Find the mean (µi) and standard deviation (σi) for each of the N inputs, 1 ≤ i ≤ N .

2. Initialize the cluster means (reference vectors) as mi as Gaussian random vectors

with ith element having mean µi and standard deviation σi. Initialize iteration

number to zero, it = 0

3. it = it + 1. Quit if it > Nit
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4. For 1 ≤ p ≤ Nv,

t = p + (it − 1)Nv

Find c such that, dist(xp,mc) is minimum

Update mk as

mk = mk + z(t)(xp −mk) for |c− k| ≤ N(t)

end

5. Goto step 3

Following exponential functions are used for the gains and neighborhoods.

z(t) = a1e
−t/T1

N(t) = a2 + a3e
−t/T2 (D.3)

where,

T1 =
NvNit

3
, T2 =

NvNit

10

a1 =
K

Nv

, a2 = 0, a3 =
K

10

Once the trained center vectors from SOM is obtained, they can be used to initialize

the RBF means. This would help the model to adapt to the system quickly.
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